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Preface to the Second Edition

“A teacher can never truly teach unless he is still learning himself.
A lamp can never light another lamp unless it continues to burn
its own flame. The teacher who has come to the end of his subject,
who has no living traffic with his knowledge but merely repeats
his lessons to his students, can only load their minds; he cannot
quicken them.”

Rabindranath Tagore

When the first edition of this book was published in 1995 under the sole
authorship of Lokenath Debnath, it was well received, and has been used as
a senior undergraduate or graduate level text and research reference in the
United States and abroad for the last ten years. We received many comments
and suggestions from many students and faculty around the world. These
comments and criticisms have been very helpful, beneficial, and encouraging.
This second edition is the result of that input.

Another reason for adding this second edition to the literature is the fact
that there have been major discoveries of several integral transforms including
the Radon transform, the Gabor transform, the inverse scattering transform,
and wavelet transforms in the twentieth century. It is becoming even more
desirable for mathematicians, scientists and engineers to pursue study and
research on these and related topics. So what has changed, and will continue
to change, is the nature of the topics that are of interest in mathematics,
science and engineering, the evolution of books such as this one is a history
of these shifting concerns.

This new and revised edition preserves the basic content and style of the
first edition. As with the previous edition, this book has been revised primar-
ily as a comprehensive text for senior undergraduates or beginning graduate
students and a research reference for professionals in mathematics, science,
and engineering, and other applied sciences. The main goal of this book is on
the development of the required analytical skills on the part of the reader,
rather than the importance of more abstract formulation with full mathe-
matical rigor. Indeed, our major emphasis is to provide an accessible working
knowledge of the analytical methods with proofs required in pure and applied
mathematics, physics, and engineering.
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We have made many additions and changes in order to modernize the con-
tents and to improve the clarity of the previous edition. We have also taken
advantage of this new edition to update the bibliography and correct typo-
graphical errors, to include additional topics, examples of applications, exer-
cises, comments, and observations, and in some cases, to entirely rewrite whole
section. This edition contains a collection of over 600 challenging worked ex-
amples and exercises with answers and hints to selected exercises. There is
plenty of material in the book for a year-long course. Some of the material
need not be covered in a course work and can be left for the readers to study
on their own in order to prepare them for further study and research. Some
of the major changes, additions, and highlights in this edition and the most
significant difference from the first edition include the following:

1. Chapter 1 on Integral Transforms has been completely revised and some
new material on brief historical introduction was added to provide new
information about the historical developments of the subject. These
changes have been made to provide the reader to see the direction in
which the subject has developed and find those contributed to its devel-
opments.

2. Chapter 2 on Fourier Transforms has been completely revised and new
material added, including new sections on Fourier transforms of general-
ized functions, the Poisson summation formula, the Gibbs phenomenon,
and the Heisenberg uncertainty principle. Many sections have been com-
pletely rewritten with new examples of applications.

3. Four entirely new chapters on Radon Transforms, and Wavelets and
Wavelet Transforms, Fractional Calculus and its applications to ordinary
and partial differential equations have been added to modernize the
contents of the book. A new section on the transfer function and the
impulse response function with examples of applications was included
in Chapters 2 and 4.

4. The book offers a detailed and clear explanation of every concept and
method that is introduced, accompanied by carefully selected worked
examples, with special emphasis being given to those topics in which
students experience difficulty.

5. A wide variety of modern examples of applications has been selected
from areas of ordinary and partial differential equations, quantum me-
chanics, integral equations, fluid mechanics and elasticity, mathematical
statistics, fractional ordinary and partial differential equations, and spe-
cial functions.

6. The book is organized with sufficient flexibility to enable instructors
to select chapters appropriate to courses of differing lengths, emphases,
and levels of difficulty.
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7. A wide spectrum of exercises has been carefully chosen and included at
the end of each chapter so the reader may further develop both analytical
skills in the theory and applications of transform methods and a deeper
insight into the subject.

8. Answers and hints to selected exercises are provided at the end of the
book to provide additional help to students. All figures have been re-
drawn and many new figures have been added for a clear understanding
of physical explanations.

9. All appendices, tables of integral transforms, and the bibliography have
been completely revised and updated. Many new research papers and
standard books have been added to the bibliography to stimulate new
interest in future study and research. Index of the book has also been
completely revised in order to include a wide variety of topics.

10. The book provides information that puts the reader at the forefront of
current research.

With the improvements and many challenging worked problems and exer-
cises, we hope this edition will continue to be a useful textbook for students
as well as a research reference for professionals in mathematics, science and
engineering.

It is our pleasure to express our grateful thanks to many friends, colleagues,
and students around the world who offered their suggestions and help at
various stages of the preparation of the book. We express our sincere thanks
to Veronica Martinez and Maria Lisa Cisneros for typing the final manuscript
with constant changes. In spite of the best efforts of everyone involved, some
typographical errors doubtless remain. Finally, we wish to express our special
thanks to Bob Stern, Executive Editor, and the staff of CRC/Chapman Hall
for their help and cooperation.

Lokenath Debnath
Dambaru Bhatta

The University of Texas-Pan American
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Preface to the First Edition

Historically, the concept of an integral transform originated from the cele-
brated Fourier integral formula. The importance of integral transforms is that
they provide powerful operational methods for solving initial value problems
and initial-boundary value problems for linear differential and integral equa-
tions. In fact, one of the main impulses for the development of the operational
calculus of integral transforms was the study of differential and integral equa-
tions arising in applied mathematics, mathematical physics, and engineering
science; it was in this setting that integral transforms arose and achieved
their early successes. With ever greater demand for mathematical methods
to provide both theory and applications for science and engineering, the u-
tility and interest of integral transforms seems more clearly established than
ever. In spite of the fact that integral transforms have many mathematical
and physical applications, their use is still predominant in advanced study
and research. Keeping these features in mind, our main goal in this book is
to provide a systematic exposition of the basic properties of various integral
transforms and their applications to the solution of boundary and initial value
problems in applied mathematics, mathematical physics, and engineering. In
addition, the operational calculus of integral transforms is applied to integral
equations, difference equations, fractional integrals and fractional derivatives,
summation of infinite series, evaluation of definite integrals, and problems of
probability and statistics.

There appear to be many books available for students studying integral
transforms with applications. Some are excellent but too advanced for the
beginner. Some are too elementary or have limited scope. Some are out of
print. While teaching transform methods, operational mathematics, and/or
mathematical physics with applications, the author has had difficulty choosing
textbooks to accompany the lectures. This book, which was developed as a
result of many years of experience teaching advanced undergraduates and
first-year graduate students in mathematics, physics, and engineering, is an
attempt to meet that need. It is based essentially on a set of mimeographed
lecture notes developed for courses given by the author at the University of
Central Florida, East Carolina University, and the University of Calcutta.

This book is designed as an introduction to theory and applications of inte-
gral transforms to problems in linear differential equations, and to boundary
and initial value problems in partial differential equations. It is appropriate
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for a one-semester course. There are two basic prerequisites for the course: a
standard calculus sequence and ordinary differential equations. The book as-
sumes only a limited knowledge of complex variables and contour integration,
partial differential equations, and continuum mechanics. Many new examples
of applications dealing with problems in applied mathematics, physics, chem-
istry, biology, and engineering are included. It is not essential for the reader
to know everything about these topics, but limited knowledge of at least some
of them would be useful. Besides, the book is intended to serve as a reference
work for those seriously interested in advanced study and research in the sub-
ject, whether for its own sake or for its applications to other fields of applied
mathematics, mathematical physics, and engineering.

The first chapter gives a brief historical introduction and the basic ideas of
integral transforms. The second chapter deals with the theory and applications
of Fourier transforms, and of Fourier cosine and sine transforms. Important
examples of applications of interest in applied mathematics, physics statis-
tics, and engineering are included. The theory and applications of Laplace
transforms are discussed in Chapters 3 and 4 in considerable detail. The fifth
chapter is concerned with the operational calculus of Hankel transforms with
applications. Chapter 6 gives a detailed treatment of Mellin transforms and its
various applications. Included are Mellin transforms of the Weyl fractional in-
tegral, Weyl fractional derivatives, and generalized Mellin transforms. Hilbert
and Stieltjes transforms and their applications are discussed in Chapter 7.

Chapter 8 provides a short introduction to finite Fourier cosine and sine
transforms and their basic operational properties. Applications of these trans-
forms are also presented. The finite Laplace transform and its applications to
boundary value problems are included in Chapter 9. Chapter 10 deals with a
detailed theory and applications of Z transforms.

Chapter 12 is devoted to the operational calculus of Legendre transforms
and their applications to boundary value problems in potential theory. Jacobi
and Gegenbauer transforms and their applications are included in Chapter 13.
Chapter 14 deals with the theory and applications of Laguerre transforms. The
final chapter is concerned with the Hermite transform and its basic operational
properties including the Convolution Theorem. Most of the material of these
chapters has been developed since the early sixties and appears here in book
form for the first time.

The book includes two important appendices. The first one deals with sev-
eral special functions and their basic properties. The second appendix includes
thirteen short tables of integral transforms. Many standard texts and reference
books and a set of selected classic and recent research papers are included in
the Bibliography that will be very useful for the reader interested in learning
more about the subject.

The book contains 750 worked examples, applications, and exercises which
include some that have been chosen from many standard books as well as
recent papers. It is hoped that they will serve as helpful self-tests for under-
standing of the theory and mastery of the transform methods. These exam-
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ples of applications and exercises were chosen from the areas of differential
and difference equations, electric circuits and networks, vibration and wave
propagation, heat conduction in solids, quantum mechanics, fractional calcu-
lus and fractional differential equations, dynamical systems, signal processing,
integral equations, physical chemistry, mathematical biology, probability and
statistics, and solid and fluid mechanics. This varied number of examples and
exercises should provide something of interest for everyone. The exercises tru-
ly complement the text and range from the elementary to the challenging.
Answers and hints to many selected exercises are provided at the end of the
book.

This is a text and a reference book designed for use by the student and the
reader of mathematics, science, and engineering. A serious attempt has been
made to present almost all the standard material, and some new material
as well. Those interested in more advanced rigorous treatment of the topic-
s covered may consult standard books and treatises by Churchill, Doetsch,
Sneddon, Titchmarsh, and Widder listed in the Bibliography. Many ideas,
results, theorems, methods, problems, and exercises presented in this book
are either motivated by or borrowed from the works cited in the Bibliography.
The author wishes to acknowledge his gratitude to the authors of these works.

This book is designed as a new source for both classical and modern topics
dealing with integral transforms and their applications for the future devel-
opment of this useful subject. Its main features are:

1. A systematic mathematical treatment of the theory and method of integral
transforms that gives the reader a clear understanding of the subject and
its varied applications.

2. A detailed and clear explanation of every concept and method that is in-
troduced, accompanied by carefully selected worked examples, with special
emphasis being given to those topics in which students experience difficulty.

3. A wide variety of diverse examples of applications carefully selected from
areas of applied mathematics, mathematical physics, and engineering sci-
ence to provide motivation, and to illustrate how operational methods can
be applied effectively to solve them.

4. A broad coverage of the essential standard material on integral transforms
and their applications together with some new material that is not usually
covered in familiar texts or reference books.

5. Most of the recent developments in the subject since the early sixties appear
here in book form for the first time.

6. A wide spectrum of exercises has been carefully selected and included at
the end of each chapter so that the reader may further develop both manip-
ulative skills in the applications of integral transforms and a deeper insight
into the subject.
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7. Two appendices have been included in order to make the book self-contained.

8. Answers and hints to selected exercises are provided at the end of the book
for additional help to students.

9. An updated Bibliography is included to stimulate new interest in future
study and research.

In preparing the book, the author has been encouraged by and has benefit-
ed from the helpful comments and criticism of a number of graduate students
and faculty of several universities in the United States, Canada, and India.
The author expresses his grateful thanks to all these individuals for their in-
terest in the book. My special thanks to Jackie Callahan and Ronee Trantham
who typed the manuscript and cheerfully put up with constant changes and
revisions. In spite of the best efforts of everyone involved, some typographical
errors doubtlessly remain. I do hope that these are both few and obvious, and
will cause minimal confusion. The author also wishes to thank his friends and
colleagues including Drs. Sudipto Roy Choudhury and Carroll A. Webber for
their interest and help during the preparation of the book. Finally, the author
wishes to express his special thanks to Dr. Wayne Yuhasz, Executive Editor,
and the staff of CRC Press for their help and cooperation. I am also deeply
indebted to my wife, Sadhana, for all her understanding and tolerance while
the book was being written.

Lokenath Debnath
University of Central Florida
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1

Integral Transforms

“The thorough study of nature is the most fertile ground for math-
ematical discoveries.”

Joseph Fourier

“If you wish to foresee the future of mathematics our proper course
is to study the history and present condition of the science.”

Henri Poincaré

“The tool which serves as intermediary between theory and prac-
tice, between thought and observation, is mathematics, it is math-
ematics which builds the linking bridges and gives the ever more
reliable forms. From this it has come about that our entire contem-
porary culture, in as much as it is based the intellectual penetration
and the exploitation of nature, has its foundations in mathematic-
s.”

David Hilbert

1.1 Brief Historical Introduction

Integral transformations have been successfully used for almost two centuries
in solving many problems in applied mathematics, mathematical physics, and
engineering science. Historically, the origin of the integral transforms includ-
ing the Laplace and Fourier transforms can be traced back to celebrated work
of P. S. Laplace (1749–1827) on probability theory in the 1780s and to mon-
umental treatise of Joseph Fourier (1768–1830) on La Théorie Analytique de
la Chaleur published in 1822. In fact, Laplace’s classic book on La Théorie
Analytique des Probabilities includes some basic results of the Laplace trans-
form which is one of the oldest and most commonly used integral transforms
available in the mathematical literature. This has effectively been used in find-
ing the solution of linear differential equations and integral equations. On the
other hand, Fourier’s treatise provided the modern mathematical theory of

1
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heat conduction, Fourier series, and Fourier integrals with applications. In his
treatise, Fourier stated a remarkable result that is universally known as the
Fourier Integral Theorem. He gave a series of examples before stating that
an arbitrary function defined on a finite interval can be expanded in terms of
trigonometric series which is now universally known as the Fourier series. In
an attempt to extend his new ideas to functions defined on an infinite interval,
Fourier discovered an integral transform and its inversion formula which are
now well known as the Fourier transform and the inverse Fourier transfor-
m. However, this celebrated idea of Fourier was known to Laplace and A. L.
Cauchy (1789–1857) as some of their earlier work involved this transforma-
tion. On the other hand, S. D. Poisson (1781–1840) also independently used
the method of transform in his research on the propagation of water waves.

However, it was G. W. Leibniz (1646–1716) who first introduced the idea of
a symbolic method in calculus. Subsequently, both J. L. Lagrange (1736–1813)
and Laplace made considerable contributions to symbolic methods which be-
came known as operational calculus. Although both the Laplace and the Fouri-
er transforms have been discovered in the nineteenth century, it was the British
electrical engineer Oliver Heaviside (1850–1925) who made the Laplace trans-
form very popular by using it to solve ordinary differential equations of elec-
trical circuits and systems, and then to develop modern operational calculus.
It may be relevant to point out that the Laplace transform is essentially a
special case of the Fourier transform for a class of functions defined on the
positive real axis, but it is more simple than the Fourier transform for the
following reasons. First, the question of convergence of the Laplace transform
is much less delicate because of its exponentially decaying kernel exp (−st),
where Re s> 0 and t> 0. Second, the Laplace transform is an analytic func-
tion of the complex variable and its properties can easily be studied with the
knowledge of the theory of complex variable. Third, the Fourier integral for-
mula provided the definitions of the Laplace transform and the inverse Laplace
transform in terms of a complex contour integral that can be evaluated with
the help the Cauchy residue theory and deformation of contour in the complex
plane.

It was the work of Cauchy that contained the exponential form of the Fourier
Integral Theorem as

f(x) =
1
2π

∞∫
−∞

∞∫
−∞

eik(x−y)f(y)dydk. (1.1.1)

Cauchy’s work also contained the following formula for functions of the oper-
ator D:

φ(D)f(x) =
1
2π

∞∫
−∞

∞∫
−∞

φ(ik)eik(x−y)f(y)dydk. (1.1.2)

This essentially led to the modern form of the operational calculus. His famous
treatise entitled Memoire sur l’Emploi des Equations Symboliques provided a
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fairly rigorous description of symbolic methods. The deep significance of the
Fourier Integral Theorem was recognized by mathematicians and mathemati-
cal physicists of the nineteenth and twentieth centuries. Indeed, this theorem
is regarded as one of the most fundamental results of modern mathematical
analysis and has widespread physical and engineering applications. The gen-
erality and importance of the theorem is well expressed by Kelvin and Tait
who said: ”...Fourier’s Theorem, which is not only one of the most beautiful
results of modern analysis, but may be said to furnish an indispensable instru-
ment in the treatment of nearly every recondite question in modern physics.
To mention only sonorous vibrations, the propagation of electric signals along
a telegraph wire, and the conduction of heat by the earth’s crust, as subjects
in their generality intractable without it, is to give but a feeble idea of its
importance.”

During the late nineteenth century, it was Oliver Heaviside (1850–1925) who
recognized the power and success of operational calculus and first used the
operational method as a powerful and effective tool for the solutions of tele-
graph equation and the second order hyperbolic partial differential equations
with constant coefficients. In his two papers entitled “On Operational Meth-
ods in Physical Mathematics,” Parts I and II, published in The Proceedings
of the Royal Society, London, in 1892 and 1893, Heaviside developed opera-
tional methods. His 1899 book on Electromagnetic Theory also contained the
use and application of the operational methods to the analysis of electrical
circuits or networks. Heaviside replaced the differential operator D≡ d

dt by
p and treated the latter as an element of the ordinary laws of algebra. The
development of his operational methods paid little attention to questions of
mathematical rigor. The widespread use of the Heaviside method prior to its
vindication by the theory of the Fourier or Laplace transform created a lot
of controversy. This was similar to the controversy put forward against the
widespread use of the delta function as one of the most useful mathematical
devices in Dirac’s logical formulation of quantum mechanics during the 1920s.
In fact, P. A. M. Dirac (1902–1984) said: “All electrical engineers are familiar
with the idea of a pulse, and the δ-function is just a way of expressing a pulse
mathematically.” Dirac’s study of Heaviside’s operator calculus in electromag-
netic theory, his training as an electrical engineer, and his deep knowledge of
the modern theory of electrical pulses seemed to have a tremendous impact
on his ingenious development of modern quantum mechanics.

Apparently, the ideas of operational methods originated from the classic
work of Laplace, Fourier, and Cauchy. Inspired by this remarkable work, Heav-
iside developed his new but less rigorous operational mathematics. In spite of
the striking success of Heaviside’s calculus as one of the most useful math-
ematical methods, contemporary mathematicians hardly recognized Heavi-
side’s work in his lifetime, primarily due to lack of mathematical rigor. In his
lecture on Heaviside and Operational Calculus at the Birth Centenary of Oliv-
er Heaviside, J. L. B. Cooper (1952) revealed some of the controversial issues
surrounding Heaviside’s celebrated work, and declared: “As a mathematician
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he was gifted with manipulative skill and with a genius for finding convenient
methods of calculation. He simplified Maxwell’s theory enormously; according
to Hertz, the four equations known as Maxwell’s were first given by Heaviside.
He is one of the founders of vector analysis....” Reviewing the history of Heav-
iside’s calculus, Cooper gave a fairly complete account of early history of the
subject along with mathematicians’ varying opinions about Heaviside’s con-
tributions to operational calculus. According to Cooper, a widely publicized
story that operational calculus was discovered by Heaviside remained contro-
versial. In spite of the controversies, it is generally believed that Heaviside’s
real achievement was to develop operational calculus, which is one of the most
useful mathematical devices in applied mathematics, mathematical physics,
and engineering science. In this context Lord Rayleigh’s following quotation
seems to be most appropriate from a physical point of view: “In the mathemat-
ical investigation I have usually employed such methods as present themselves
naturally to a physicist. The pure mathematician will complain, and (it must
be confessed) sometimes with justice, of deficient rigor. But to this question
there are two sides. For, however important it may be to maintain a uniformly
high standard in pure mathematics, the physicist may occasionally do well to
rest content with arguments which are fairly satisfactory and conclusive from
his point of view. To his mind, exercised in a different order of ideas, the more
severe procedure of the pure mathematician may appear not more but less
demonstrative. And further, in many cases of difficulty to insist upon highest
standard would mean the exclusion of the subject altogether in view of the
space that would be required.”

With the exception of a group of pure mathematicians, everyone has found
Heaviside’s work a remarkable achievement even though he did not provide
a rigorous demonstration of his operational calculus. In defense of Heaviside,
Richard P. Feynman’s thought seems to be worth quoting. “However, the em-
phasis should be somewhat more on how to do the mathematics quickly and
easily, and what formulas are true, rather than the mathematicians’ interest
in methods of rigorous proof.” The development of operational calculus was
somewhat similar to that of calculus of the seventeenth century. Mathemati-
cians who invented the calculus did not provide a rigorous formulation of it.
The rigorous formulation came only in the nineteenth century, even though
in the transition the non-rigorous demonstration of the calculus that is still
admired. It is well known that twentieth-century mathematicians have pro-
vided a rigorous foundation of the Heaviside operational calculus. So, by any
standard, Heaviside deserves a lot of credit for his remarkable work.

The next phase of the development of operational calculus is characterized
by the effort to provide justifications of the heuristic methods by rigorous
proofs. In this phase, T. J. Bromwich (1875-1930) first successfully introduced
the theory of complex functions to give formal justification of Heaviside’s
calculus. In addition to his many contributions to this subject, he gave the
formal derivation of the Heaviside expansion theorem and the correct inter-
pretation of Heaviside’s operational results. After Bromwich’s work, notable



© 2007 by Taylor & Francis Group, LLC

Integral Transforms 5

contributions to rigorous formulation of operational calculus were made by J.
R. Carson, B. van der Pol, G. Doetsch, and many others.

In concluding our discussion on the historical development of operational
calculus, we should add a note of caution against the controversial evaluation
of Heaviside’s work. From an applied mathematical point of view, Heavi-
side’s operational calculus was an important achievement. In support of his
statement, an assessment of Heaviside’s work made by E. T. Whittaker in
Heaviside’s obituary is recorded below: “Looking back..., we should place the
operational calculus with Poincaré’s discovery of automorphic functions and
Ricci’s discovery of the tensor calculus as the three most important math-
ematical advances of the last quarter of the nineteenth century.” Although
Heaviside paid little attention to questions of mathematical rigor, he recog-
nized that operational calculus is one of the most effective and useful mathe-
matical methods in applied mathematical sciences. This has led naturally to
rigorous mathematical analysis of integral transforms. Indeed, the Fourier or
Laplace transform methods based on the rigorous mathematical foundation
are essentially equivalent to the modern operational calculus.

There are many other integral transformations including the Mellin trans-
form, the Hankel transform, the Hilbert transform and the Stieltjes transform
which are widely used to solve initial and boundary value problems involving
ordinary and partial differential equations and other problems in mathematics,
science and engineering. Although, Mellin (1854–1933) presented an elaborate
discussion of his transform and its inversion formula, it was G. Bernhard Rie-
mann (1826–1866) who first recognized the Mellin transform and its inversion
formula in his famous memoir on prime numbers. Hermann Hankel (1839–
1873), a student of G. B. Riemann, introduced the Hankel transform with the
Bessel function as its kernel, and this transform can easily be derived from
the two-dimensional Fourier transform when circular symmetry is assumed.
The Hankel transform arises naturally in solving boundary value problems in
cylindrical polar coordinates.

Although the Hilbert transform was named after one of the greatest mathe-
maticians of the twentieth century, David Hilbert (1862–1943), this transform
and its properties are basically studied by G. H. Hardy (1877-1947) and E.
C. Titchmarsh (1899-1963). The Dutch mathematician, T. J. Stieltjes (1856–
1894) introduced the Stieltjes transform in his study of continued fractions.
Both the Hilbert and Stieltjes transforms arise in many problems in mathe-
matics, science and engineering. The former is used to solve problems in fluid
mechanics, signal processing, and electronics, while the latter arises in solving
the integral equations and moment problems.

We would like to conclude this section by making some comments on the
history of the Radon transform, the Gabor transform and the wavelet trans-
form. The Radon transform is introduced by Johann Radon (1887–1956) in
1917 and has enormous useful applications to medical imaging, and comput-
er assisted tomography (CAT). The wavelet transform is discovered by Jean
Morlet, a French geophysical engineer, as a new mathematical tool to study
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seismic signal analysis in 1982. It is one of the most versatile linear integral
transformations and can be applied to solve a wide variety of problems in
mathematics, science and engineering. The reader is referred to Chapter 19 of
this book for more detailed information on wavelets and wavelet transforms.

1.2 Basic Concepts and Definitions

The integral transform of a function f(x) defined in a≤ x≤ b is denoted by
I {f(x)}=F (k), and defined by

I {f(x)}=F (k) =

b∫
a

K(x, k)f(x)dx, (1.2.1)

where K(x, k), given function of two variables x and k, is called the kernel of
the transform. The operator I is usually called an integral transform operator
or simply an integral transformation. The transform function F (k) is often
referred to as the image of the given object function f(x), and k is called the
transform variable.

Similarly, the integral transform of a function of several variables is defined
by

I {f(x)}=F (κ) =
∫
S

K(x,κ)f(x)dx, (1.2.2)

where x= (x1, x2, . . . , xn), κ = (k1, k2, . . . , kn), and S⊂Rn.
A mathematical theory of transformations of this type can be developed by

using the properties of Banach spaces. From a mathematical point of view,
such a program would be of great interest, but it may not be useful for prac-
tical applications. Our goal here is to study integral transforms as operational
methods with special emphasis to applications.

The idea of the integral transform operator is somewhat similar to that of
the well-known linear differential operator, D≡ d

dx , which acts on a function
f(x) to produce another function f ′(x), that is,

Df(x) = f ′(x). (1.2.3)

Usually, f ′(x) is called the derivative or the image of f(x) under the linear
transformation D.

Evidently, there are a number of important integral transforms including
Fourier, Laplace, Hankel, and Mellin transforms. They are defined by choosing
different kernels K(x, k) and different values for a and b involved in (1.2.1).
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Obviously, I is a linear operator since it satisfies the property of linearity:

I {αf(x) + βg(x)} =

b∫
a

{αf(x) + βg(x)}K(x, k)dx

= αI {f(x)} + βI {g(x)}, (1.2.4)

where α and β are arbitrary constants. In order to obtain f(x) from a given
F (k) = I {f(x)}, we introduce the inverse operator I −1 such that

I −1{F (k)}= f(x). (1.2.5)

Accordingly I −1I = I I −1 = 1 which is the identity operator. It can be
proved that I −1 is also a linear operator as follows

I −1 {αF (k) + β G(k)} = I −1 {αI f(x) + βI g(x)}
= I −1 {I [αf(x) + β g(x)]}
= αf(x) + β g(x)
= αI −1 {F (k)} + βI −1 {G(k)}.

It can also be proved that the integral transform is unique. In other words,
if I {f(x)}= I {g(x)}, then f(x) = g(x) under suitable conditions. This is
known as the uniqueness theorem.

We close this section by adding the basic scope and applications of integral
transformation from a general point of view. It follows from the above dis-
cussion that an integral transformation simply means a unique mathematical
operation through which a real or complex-valued function f is transformed
into another new function F = I f , or into a set of data that can be measured
(or observed) experimentally. Thus, the importance of the integral transform
is that it transforms a difficult mathematical problem to an relatively easy
problem, which can easily be solved. In the study of initial-boundary value
problem involving differential equations, the differential operators are replaced
by much simpler algebraic operations involving F , which can readily be solved.
The solution of the original problem is then obtained in the original variables
by the inverse transformation. So, the next basic problem leads to the com-
putation of the inverse integral transform exactly or approximately. Indeed,
in order to make the integral transform method effective, it is essential to
reconstruct f from I f =F which is, in general, a difficult step in practice.
However, this difficulty can be resolved in many different ways. In application-
s, often the transform function F itself has some physical meaning and needs
to be studied in its own right. For example, in electrical engineering problems,
the original function f (t) may represent a signal that is a function of time t.
The Fourier transform F (ω) of f (t) represents the frequency spectrum of the
signal f (t) and it is physically useful as the time representation of the signal
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itself. Indeed, it is often more important to work with F rather than with f .
Conversely, given the frequency spectrum, F (ω), the original signal f (t) can
be reconstructed by the inverse Fourier transform.

Other important and major examples include the Gabor transform and
the wavelet transform both of which transform a signal f (t) in the time-
frequency domain (t− ω plane). In other words, these new transforms convey
essential information about the nature and structure of a signal in the time-
frequency domain simultaneously. In 1946, Dennis Gabor, a Hungarian-British
physicist and engineer and a 1971 Nobel Prize winner in physics, introduced
the windowed Fourier transform (or the Gabor transform) of a signal f (t)
with respect to a window function g, denoted by f̃g (t, ω) and defined by

G [f ] (t, ω) = f̃g (t, ω)=

∞∫
−∞

f (τ) g (τ − t) e−iωtdτ

=
〈
f, gt,ω

〉
, (1.2.6)

where f and g ∈L2 (R) with the inner product 〈f, g〉.
Gabor (1900–1979) first recognized the major weaknesses of the Fourier

transform analysis of signals, and also realized the great importance of lo-
calized time and frequency concentrations in signal processing. All these mo-
tivated him to formulate a fundamental method of the Gabor transform for
decomposition of signal in terms of elementary signals (or wave transforms).
Gabor’s pioneering approach has now become one of the standard model-
s for time-frequency signal analysis. It is also important to point out that
the Gabor transform f̃g (t, ω) is referred to as the canonical coherent state
representation of f in quantum mechanics. In the 1960s, the term “coherent
states” was first used in quantum optics. For more information on the Gabor
and the wavelet transforms and their basic properties, the reader is referred
to Debnath (2002).



© 2007 by Taylor & Francis Group, LLC

2

Fourier Transforms and Their Applications

“The profound study of nature is the most fertile source of math-
ematical discoveries.”

Joseph Fourier

“The theory of Fourier series and integrals has always had ma-
jor difficulties and necessitated a large mathematical apparatus in
dealing with questions of convergence. It engendered the develop-
ment of methods of summation, although these did not lead to a
completely satisfactory solution of the problem. .... For the Fourier
transform, the introduction of distributions (hence, the space S )
is inevitable either in an explicit or hidden form. .... As a result
one may obtain all that is desired from the point of view of the
continuity and inversion of the Fourier transform.”

Laurent Schwartz

2.1 Introduction

Many linear boundary value and initial value problems in applied mathemat-
ics, mathematical physics, and engineering science can be effectively solved by
the use of the Fourier transform, the Fourier cosine transform, or the Fourier
sine transform. These transforms are very useful for solving differential or in-
tegral equations for the following reasons. First, these equations are replaced
by simple algebraic equations, which enable us to find the solution of the
transform function. The solution of the given equation is then obtained in
the original variables by inverting the transform solution. Second, the Fouri-
er transform of the elementary source term is used for determination of the
fundamental solution that illustrates the basic ideas behind the construction
and implementation of Green’s functions. Third, the transform solution com-
bined with the convolution theorem provides an elegant representation of the
solution for the boundary value and initial value problems.

We begin this chapter with a formal derivation of the Fourier integral for-

9
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mulas. These results are then used to define the Fourier, Fourier cosine, and
Fourier sine transforms. This is followed by a detailed discussion of the basic
operational properties of these transforms with examples. Special attention is
given to convolution and its main properties. Sections 2.10 and 2.11 deal with
applications of the Fourier transform to the solution of ordinary differential
equations and integral equations. In Section 2.12, a wide variety of partial
differential equations are solved by the use of the Fourier transform method.
The technique that is developed in this and other sections can be applied
with little or no modification to different kinds of initial and boundary value
problems that are encountered in applications. The Fourier cosine and sine
transforms are introduced in Section 2.13. The properties and applications
of these transforms are discussed in Sections 2.14 and 2.15. This is followed
by evaluation of definite integrals with the aid of Fourier transforms. Section
2.17 is devoted to applications of Fourier transforms in mathematical statis-
tics. The multiple Fourier transforms and their applications are discussed in
Section 2.18.

2.2 The Fourier Integral Formulas

A function f(x) is said to satisfy Dirichlet’s conditions in the interval −a<
x< a, if

(i) f(x) has only a finite number of finite discontinuities in −a< x<a and
has no infinite discontinuities.

(ii) f(x) has only a finite number of maxima and minima in −a<x< a.
From the theory of Fourier series we know that if f(x) satisfies the Dirichlet
conditions in −a< x<a, it can be represented as the complex Fourier series

f(x) =
∞∑

n=−∞
an exp(inπx/a), (2.2.1)

where the coefficients are

an =
1
2a

a∫
−a

f(ξ) exp(−inπξ/a)dξ. (2.2.2)

This representation is evidently periodic of period 2a in the interval. However,
the right hand side of (2.2.1) cannot represent f(x) outside the interval −a<
x< a unless f(x) is periodic of period 2a. Thus, problems on finite intervals
lead to Fourier series, and problems on the whole line −∞<x<∞ lead to the
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Fourier integrals. We now attempt to find an integral representation of a non-
periodic function f(x) in (−∞,∞) by letting a→∞. As the interval grows
(a→∞) the values kn = nπ

a become closer together and form a dense set. If
we write δk= (kn+1 − kn) = π

a and substitute coefficients an into (2.2.1), we
obtain

f(x) =
1
2π

∞∑
n=−∞

(δk)

⎡⎣ a∫
−a

f(ξ) exp(−iξkn)dξ
⎤⎦ exp(ixkn). (2.2.3)

In the limit as a→∞, kn becomes a continuous variable k and δk becomes
dk. Consequently, the sum can be replaced by the integral in the limit and
(2.2.3) reduces to the result

f(x) =
1
2π

∞∫
−∞

⎡⎣ ∞∫
−∞

f(ξ)e−ikξdξ

⎤⎦ eikxdk. (2.2.4)

This is known as the celebrated Fourier integral formula. Although the above
arguments do not constitute a rigorous proof of (2.2.4), the formula is correct
and valid for functions that are piecewise continuously differentiable in every
finite interval and is absolutely integrable on the whole real line.

A function f(x) is said to be absolutely integrable on (−∞,∞) if

∞∫
−∞

|f(x)|dx<∞ (2.2.5)

exists.
It can be shown that the formula (2.2.4) is valid under more general condi-

tions. The result is contained in the following theorem:

THEOREM 2.2.1
If f(x) satisfies Dirichlet’s conditions in (−∞,∞), and is absolutely inte-
grable on (−∞,∞), then the Fourier integral (2.2.4) converges to the function
1
2 [f(x+ 0) + f(x− 0)] at a finite discontinuity at x. In other words,

1
2
[f(x+ 0) + f(x− 0)] =

1
2π

∞∫
−∞

eikx

⎡⎣ ∞∫
−∞

f(ξ)e−ikξdξ

⎤⎦ dk. (2.2.6)

This is usually called the Fourier integral theorem.
If the function f(x) is continuous at point x, then f(x+ 0)= f(x− 0)=

f(x), then (2.2.6) reduces to (2.2.4).
The Fourier integral theorem was originally stated in Fourier’s famous trea-

tise entitled La Théorie Analytique da la Chaleur (1822), and its deep signifi-
cance was recognized by mathematicians and mathematical physicists. Indeed,
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this theorem is one of the most monumental results of modern mathematical
analysis and has widespread physical and engineering applications.

We express the exponential factor exp[ik(x− ξ)] in (2.2.4) in terms of
trigonometric functions and use the even and odd nature of the cosine and
the sine functions respectively as functions of k so that (2.2.4) can be written
as

f(x) =
1
π

∞∫
0

dk

∞∫
−∞

f(ξ) cos k(x− ξ)dξ. (2.2.7)

This is another version of the Fourier integral formula. In many physical
problems, the function f(x) vanishes very rapidly as |x|→∞, which ensures
the existence of the repeated integrals as expressed.

We now assume that f(x) is an even function and expand the cosine function
in (2.2.7) to obtain

f(x) = f(−x) =
2
π

∞∫
0

cos kx dk

∞∫
0

f(ξ) cos kξ dξ. (2.2.8)

This is called the Fourier cosine integral formula.
Similarly, for an odd function f(x), we obtain the Fourier sine integral

formula

f(x) =−f(−x)=
2
π

∞∫
0

sin kx dk

∞∫
0

f(ξ) sin kξ dξ. (2.2.9)

These integral formulas were discovered independently by Cauchy in his work
on the propagation of waves on the surface of water.

2.3 Definition of the Fourier Transform and Examples

We use the Fourier integral formula (2.2.4) to give a formal definition of the
Fourier transform.

DEFINITION 2.3.1 The Fourier transform of f(x) is denoted by F{f(x)}=
F (k), k ∈R, and defined by the integral

F{f(x)}=F (k) =
1√
2π

∞∫
−∞

e−ikxf(x)dx, (2.3.1)

where F is called the Fourier transform operator or the Fourier transfor-
mation and the factor 1√

2π
is obtained by splitting the factor 1

2π involved in
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(2.2.4). This is often called the complex Fourier transform. A sufficient condi-
tion for f(x) to have a Fourier transform is that f(x) is absolutely integrable
on (−∞,∞). The convergence of the integral (2.3.1) follows at once from the
fact that f(x) is absolutely integrable. In fact, the integral converges uniformly
with respect to k.

Thus, the definition of the Fourier transform is restricted to absolutely inte-
grable functions. This restriction is too strong for many physical applications.
Many simple and common functions, such as constant function, trigonometric
functions sin ax, cos ax, exponential functions, and xnH(x) do not have Fouri-
er transforms, even though they occur frequently in applications. The integral
in (2.3.1) fails to converge when f(x) is one of the above elementary function-
s. This is a very unsatisfactory feature of the theory of Fourier transforms.
However, this unsatisfactory feature can be resolved by means of a natural
extension of the definition of the Fourier transform of a generalized function,
f(x) in (2.3.1). We follow Lighthill (1958) and Jones (1982) to discuss briefly
the theory of the Fourier transforms of good functions.

The inverse Fourier transform, denoted by F−1{F (k)}= f(x), is defined
by

F−1{F (k)}= f(x) =
1√
2π

∞∫
−∞

eikx F (k) dk, (2.3.2)

where F−1 is called the inverse Fourier transform operator.

Clearly, both F and F−1 are linear integral operators. In applied math-
ematics, x usually represents a space variable and k(= 2π

λ ) is a wavenum-
ber variable where λ is the wavelength. However, in electrical engineering, x
is replaced by the time variable t and k is replaced by the frequency vari-
able ω(= 2πν) where ν is the frequency in cycles per second. The function
F (ω) = F{f(t)} is called the spectrum of the time signal function f(t). In
electrical engineering literature, the Fourier transform pairs are defined s-
lightly differently by

F{f(t)}=F (ν) =

∞∫
−∞

f(t)e−2πνitdt, (2.3.3)

and

F−1{F (ν)}= f(t) =

∞∫
−∞

F (ν)e2πiνtdν =
1
2π

∞∫
−∞

F (ω)eiωtdω, (2.3.4)

where ω= 2πν is called the angular frequency. The Fourier integral formula
implies that any function of time f(t) that has a Fourier transform can be
equally specified by its spectrum. Physically, the signal f(t) is represented as
an integral superposition of an infinite number of sinusoidal oscillations with
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different frequencies ω and complex amplitudes 1
2πF (ω). Equation (2.3.4) is

called the spectral resolution of the signal f(t), and F (ω)
2π is called the spectral

density. In summary, the Fourier transform maps a function ( or signal) of time
t to a function of frequency ω. In the same way as the Fourier series expansion
of a periodic function decomposes the function into harmonic components,
the Fourier transform generates a function (or signal) of a continuous variable
whose value represents the frequency content of the original signal. This led to
the successful use of the Fourier transform to analyze the form of time-varying
signals in electrical engineering and seismology.

Next we give examples of Fourier transforms.

Example 2.3.1
Find the Fourier transform of exp(−ax2). In fact, we prove

F (k) = F{exp(−ax2)}=
1√
2a

exp
(
−k

2

4a

)
, a > 0. (2.3.5)

Here we have, by definition,

F (k) =
1√
2π

∞∫
−∞

e−ikx−ax
2
dx

=
1√
2π

∞∫
−∞

exp

[
−a

(
x+

ik

2a

)2

− k2

4a

]
dx

=
1√
2π

exp(−k2/4a)

∞∫
−∞

e−ay
2
dy=

1√
2a

exp
(
−k

2

4a

)
,

in which the change of variable y= x+ ik
2a is used. The above result is correct,

but the change of variable can be justified by the method of complex analysis
because (ik/2a) is complex. If a= 1

2

F{e−x2/2}= e−k
2/2. (2.3.6)

This shows F{f(x)}= f(k). Such a function is said to be self-reciprocal un-
der the Fourier transformation. Graphs of f(x) = exp(−ax2) and its Fourier
transform is shown in Figure 2.1 for a= 1.

Example 2.3.2
Find the Fourier transform of exp(−a|x|), i.e.,

F{exp(−a|x|)}=

√
2
π
· a

(a2 + k2)
, a > 0. (2.3.7)
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Figure 2.1 Graphs of f(x) = exp(−ax2) and F (k) with a= 1.

Here we can write

F
{
e−a|x|

}
=

1√
2π

∞∫
−∞

e−a|x|−ikxdx

=
1√
2π

⎡⎣ ∞∫
0

e−(a+ik)xdx+

0∫
−∞

e(a−ik)xdx

⎤⎦
=

1√
2π

[
1

a+ ik
+

1
a− ik

]
=

√
2
π

a

(a2 + k2)
.

We note that f(x) = exp(−a|x|) decreases rapidly at infinity, it is not differ-
entiable at x= 0. Graphs of f(x) = exp(−a|x|) and its Fourier transform is
displayed in Figure 2.2 for a= 1.

Example 2.3.3

Find the Fourier transform of

f(x) =
(

1− |x|
a

)
H

(
1 − |x|

a

)
,

where H(x) is the Heaviside unit step function defined by

H(x) =
{

1, x> 0
0, x< 0

}
. (2.3.8)

Or, more generally,

H(x− a) =
{

1, x> a
0, x< a

}
, (2.3.9)
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Figure 2.2 Graphs of f(x) = exp(−a|x|) and F (k) with a= 1.

where a is a fixed real number. So the Heaviside function H(x− a) has a finite
discontinuity at x= a.

F{f(x)} =
1√
2π

a∫
−a

e−ikx
(

1− |x|
a

)
dx=

2√
2π

a∫
0

(
1 − x

a

)
cos kx dx

=
2a√
2π

1∫
0

(1 − x) cos(akx)dx=
2a√
2π

1∫
0

(1 − x)
d

dx

(
sinakx
ak

)
dx

=
2a√
2π

1∫
0

sin(akx)
ak

dx=
a√
2π

1∫
0

d

dx

⎡⎢⎢⎢⎣
sin2

(
akx

2

)
(
ak

2

)2

⎤⎥⎥⎥⎦ dx

=
a√
2π

sin2

(
ak

2

)
(
ak

2

)2 . (2.3.10)

Example 2.3.4

Find the Fourier transform of the characteristic function χ[−a,a](x), where

χ[−a,a](x) =H(a− |x|) =
{

1, |x|<a
0, |x|>a

}
. (2.3.11)
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We have

Fa(k) = F{χ[−a,a](x)} =
1√
2π

∞∫
−∞

e−ikxχ[−a,a](x) dx

=
1√
2π

a∫
−a

e−ikx dx=

√
2
π

(
sin ak
k

)
. (2.3.12)

Graphs of f(x) =χ[−a,a](x) and its Fourier transform are shown in Figure 2.3
for a= 1.
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Figure 2.3 Graphs of χ[−a,a](x) and Fa(k) with a= 1.

2.4 Fourier Transforms of Generalized Functions

The natural way to define the Fourier transform of a generalized function,
is to treat f(x) in (2.3.1) as a generalized function. The advantage of this is
that every generalized function has a Fourier transform and an inverse Fourier
transform, and that the ordinary functions whose Fourier transforms are of
interest form a subset of the generalized functions. We would not go into great
detail, but refer to the famous books of Lighthill (1958) and Jones (1982) for



© 2007 by Taylor & Francis Group, LLC

18 INTEGRAL TRANSFORMS and THEIR APPLICATIONS

the introduction to the subject of generalized functions.
A good function, g(x) is a function in C∞(R) that decays sufficiently rapidly

that g(x) and all of its derivatives decay to zero faster than |x|−N as |x|→∞
for all N > 0.

DEFINITION 2.4.1 Suppose a real or complex valued function g(x) is
defined for all x∈R and is infinitely differentiable everywhere, and suppose
that each derivative tends to zero as |x| →∞ faster that any positive power of(
x−1

)
, or in other words, suppose that for each positive integer N and n,

lim
|x|→∞

xN g(n)(x) = 0,

then g(x) is called a good function.

Usually, the class of good functions is represented by S. The good functions
play an important role in Fourier analysis because the inversion, convolution,
and differentiation theorems as well as many others take simple forms with no
problem of convergence. The rapid decay and infinite differentiability proper-
ties of good functions lead to the fact that the Fourier transform of a good
function is also a good function.

Good functions also play an important role in the theory of generalized func-
tions. A good function of bounded support is a special type of good function
that also plays an important part in the theory of generalized functions. Good
functions also have the following important properties. The sum (or difference)
of two good functions is also a good function. The product and convolution
of two good functions are good functions. The derivative of a good function
is a good function; xn g(x) is a good function for all non-negative integers
n whenever g(x) is a good function. A good function belongs to Lp (a class
of pth power Lebesgue integrable functions) for every p in 1 ≤ p ≤ ∞. The
integral of a good function is not necessarily good. However, if φ(x) is a good
function, then the function g defined for all x by

g(x) =
∫ x

−∞
φ(t) dt

is a good function if and only if
∫∞
−∞ φ(t) dt exists.

Good functions are not only continuous, but are also uniformly continuous
in R and absolutely continuous in R. However, a good function cannot be
necessarily represented by a Taylor series expansion in every interval. As an
example, consider a good function of bounded support

g(x) =
{

exp[−(1− x2)−1], if |x|< 1
0, if |x| ≥ 1

}
.
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The function g is infinitely differentiable at x= ±1, as it must be in order to
be good. It does not have a Taylor series expansion in every interval, because
a Taylor expansion based on the various derivatives of g for any point having
|x| > 1 would lead to zero value for all x.

For example, exp(−x2), x exp(−x2),
(
1 + x2

)−1 exp(−x2), and sech2x are
good functions, while exp(−|x|) is not differentiable at x= 0, and the function(
1 + x2

)−1 is not a good function as it decays too slowly as |x|→∞.
A sequence of good functions, {fn(x)} is called regular if, for any good

function g(x),

lim
n→∞

∫ ∞

−∞
fn(x) g(x) dx (2.4.1)

exists. For example, fn(x) = 1
n φ(x) is a regular sequence for any good function

φ(x), if

lim
n→∞

∫ ∞

−∞
fn(x) g(x) dx= lim

n→∞
1
n

∫ ∞

−∞
φ(x) g(x) dx = 0 .

Two regular sequences of good functions are equivalent if, for any good func-
tion g(x), the limit (2.4.1) exists and is the same for each sequence.

A generalized function, f(x), is a regular sequence of good functions, and
two generalized functions are equal if their defining sequences are equivalent.
Generalized functions are, therefore, only defined in terms of their action on
integrals of good functions if

〈f, g〉 =
∫ ∞

−∞
f(x) g(x) dx= lim

n→∞

∫ ∞

−∞
fn(x) g(x) dx= lim

n→∞ 〈fn, g〉 (2.4.2)

for any good function, g(x), where the symbol 〈f, g〉 is used to denote the
action of the generalized function f(x) on the good function g(x), or 〈f, g〉
represents the number that f associates with g. If f(x) is an ordinary function
such that

(
1 + x2

)−N
f(x) is integrable in (−∞, ∞) for some N , then the

generalized function f(x) equivalent to the ordinary function is defined as
any sequence of good functions {fn(x)} such that, for any good function g(x),

lim
n→∞

∫ ∞

−∞
fn(x) g(x) dx =

∫ ∞

−∞
f(x) g(x) dx (2.4.3)

For example, the generalized function equivalent to zero can be represented
by either of the sequences

{
φ(x)
n

}
and

{
φ(x)
n2

}
.

The unit function, I(x), is defined by∫ ∞

−∞
I(x) g(x) dx =

∫ ∞

−∞
g(x) dx (2.4.4)
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for any good function g(x). A very important and useful good function that
defines the unit function is

{
exp

(
− x2

4n

)}
. Thus, the unit function is the gen-

eralized function that is equivalent to the ordinary function f(x) = 1.
The Heaviside function, H(x), is defined by∫ ∞

−∞
H(x) g(x) dx =

∫ ∞

0

g(x) dx. (2.4.5)

The generalized function H(x) is equivalent to the ordinary unit function

H(x) =
{

0, x< 0
1, x> 0 (2.4.6)

since generalized functions are defined through the action on integrals of good
functions, the value of H(x) at x= 0 does not have significance here.

The sign function, sgn(x), is defined by∫ ∞

−∞
sgn(x) g(x) dx =

∫ ∞

0

g(x) dx−
∫ 0

−∞
g(x) dx (2.4.7)

for any good function g(x). Thus, sgn(x) can be identified with the ordinary
function

sgn(x) =
{−1, x< 0,

+1, x> 0. (2.4.8)

In fact, sgn(x) = 2 H(x)− I(x) can be seen as follows:∫ ∞

−∞
sgn(x) g(x) dx =

∫ ∞

−∞
[2H(x) − I(x)] g(x) dx

= 2
∫ ∞

−∞
H(x) g(x) dx−

∫ ∞

−∞
I(x) g(x) dx

= 2
∫ ∞

0

g(x) dx−
∫ ∞

−∞
g(x) dx

=
∫ ∞

0

g(x) dx−
∫ 0

−∞
g(x) dx

In 1926, Dirac introduced the delta function, δ(x), having the following
properties

δ(x) = 0, x �= 0,
(2.4.9)∞∫

−∞
δ(x)dx = 1.



© 2007 by Taylor & Francis Group, LLC

Fourier Transforms and Their Applications 21

The Dirac delta function, δ(x) is defined so that for any good function φ(x),

∞∫
−∞

δ(x)φ(x) dx= φ(0).

There is no ordinary function equivalent to the delta function.
The properties (2.4.9) cannot be satisfied by any ordinary functions in clas-

sical mathematics. Hence, the delta function is not a function in the classical
sense. However, it can be treated as a function in the generalized sense, and
in fact, δ(x) is called a generalized function or distribution. The concept of
the delta function is clear and simple in modern mathematics. It is very useful
in physics and engineering. Physically, the delta function represents a point
mass, that is a particle of unit mass located at the origin. In this context, it
may be called a mass-density function. This leads to the result for a point
particle that can be considered as the limit of a sequence of continuous dis-
tributions which become more and more concentrated. Even though δ(x) is
not a function in the classical sense, it can be approximated by a sequence of
ordinary functions. As an example, we consider the sequence

δn(x) =
√
n

π
exp(−nx2), n= 1, 2, 3, . . . . (2.4.10)

Clearly, δn(x)→ 0 as n→∞ for any x �= 0 and δn(0)→∞ as n→∞ as
shown in Figure 2.4. Also, for all n= 1, 2, 3, . . . ,

∞∫
−∞

δn(x)dx= 1

and

lim
n→∞

∞∫
−∞

δn(x)dx=

∞∫
−∞

δ(x)dx= 1

as expected. So the delta function can be considered as the limit of a sequence
of ordinary functions, and we write

δ(x) = lim
n→∞

√
n

π
exp(−nx2). (2.4.11)

Sometimes, the delta function δ(x) is defined by its fundamental property

∞∫
−∞

f(x)δ(x− a) dx= f(a), (2.4.12)
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Figure 2.4 The sequence of delta functions, δn(x).

where f(x) is continuous in any interval containing the point x= a. Clearly,

∞∫
−∞

f(a)δ(x− a) dx= f(a)

∞∫
−∞

δ(x− a) dx= f(a). (2.4.13)

Thus, (2.4.12) and (2.4.13) lead to the result

f(x)δ(x− a) = f(a)δ(x− a). (2.4.14)

The following results are also true

x δ(x) = 0 (2.4.15)
δ(x− a) = δ(a− x). (2.4.16)

Result (2.4.16) shows that δ(x) is an even function.
Clearly, the result

x∫
−∞

δ(y) dy=

{
1, x> 0
0, x< 0

}
=H(x)

shows that
d

dx
H(x) = δ(x). (2.4.17)
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The Fourier transform of the Dirac delta function is

F{δ(x)}=
1√
2π

∞∫
−∞

e−ikxδ(x) dx=
1√
2π
. (2.4.18)

Hence,

δ(x) = F−1

{
1√
2π

}
=

1
2π

∞∫
−∞

eikx dk. (2.4.19)

This is an integral representation of the delta function extensively used in
quantum mechanics. Also, (2.4.19) can be rewritten as

δ(k) =
1
2π

∞∫
−∞

eikx dx. (2.4.20)

The Dirac delta function, δ(x), is defined so that for any good function
g(x),

〈δ, g〉=
∫ ∞

−∞
δ(x) g(x) dx= g(0). (2.4.21)

Derivatives of generalized functions are defined by the derivatives of any
equivalent sequences of good functions. We can integrate by parts using any
member of the sequences and assuming g(x) vanishes at infinity. We can obtain
this definition as follows:

〈f ′, g〉 =
∫ ∞

−∞
f ′(x) g(x) dx

= [f(x) g(x)]∞−∞ −
∫ ∞

−∞
f(x) g′(x) dx=−〈f, g′〉 .

The derivative of a generalized function f is the generalized function f ′ defined
by

〈f ′, g〉 = −〈f, g′〉 (2.4.22)

for any good function g.
The differential calculus of generalized functions can easily be developed

with locally integrable functions. To every locally integrable function f , there
corresponds a generalized function (or distribution) defined by

〈f, φ〉 =
∫ ∞

−∞
f(x)φ(x) dx (2.4.23)

where φ is a test function in R→C with bounded support (φ is infinitely
differentiable with its derivatives of all orders exist and are continuous).
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The derivative of a generalized function f is the generalized function f ′

defined by

〈f ′, φ〉 = −〈f, φ′〉 (2.4.24)

for all test functions φ. This definition follows from the fact that

〈f ′, φ〉 =
∫ ∞

−∞
f ′(x)φ(x) dx

= [f(x)φ(x)]∞−∞ −
∫ ∞

−∞
f(x)φ′(x) dx=−〈f, φ′〉

which was obtained from integration by parts and using the fact that φ van-
ishes at infinity.

It is easy to check that H ′(x) = δ(x), for

〈H ′, φ〉=
∫ ∞

−∞
H ′(x)φ(x) dx=−

∫ ∞

−∞
H(x)φ′(x) dx

=−
∫ ∞

0

φ′(x) dx=− [φ(x)]∞0 =φ(0) = 〈δ, φ〉 .

Another result is

〈δ′, φ〉=−
∫ ∞

−∞
δ(x)φ′(x) dx=−φ′(0) .

It is easy to verify

f(x) δ(x) = f(0) δ(x) .

We next define |x|= x sgn(x) and calculate its derivative as follows. We have

d

dx
|x|= d

dx
{x sgn(x)}= x

d

dx
{sgn(x)} + sgn(x)

dx
dx

= x
d

dx
{2H(x)− I(x)} + sgn(x)

= 2x δ(x) + sgn(x) = sgn(x) (2.4.25)

which is, by sgn(x) = 2 H(x) − I(x) and x δ(x) = 0.
Similarly, we can show that

d

dx
{sgn(x)}= 2H ′(x) = 2δ(x). (2.4.26)

If we can show that (2.3.1) holds for good functions, it follows that it holds
for generalized functions.
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THEOREM 2.4.1
The Fourier transform of a good function is a good function.

PROOF The Fourier transform of a good function f(x) exists and is given
by

F {f(x)}=F (k) =
1√
2π

∫ ∞

−∞
e−ikx f(x) dx. (2.4.27)

Differentiating F (k) n times and integrating N times by parts, we get∣∣∣F (n)(k)
∣∣∣ ≤ ∣∣∣∣ (−1)N

(−ik)N
1√
2π

∫ ∞

−∞
e−ikx

dN

dxN
{(−ix)n f(x)} dx

∣∣∣∣
≤ 1

|k|N
1√
2π

∫ ∞

−∞

∣∣∣∣ dNdxN {xn f(x)}
∣∣∣∣ dx.

Evidently, all derivatives tend to zero as fast as |k|−N as |k|→∞ for any
N > 0 and hence, F (k) is a good function.

THEOREM 2.4.2
If f(x) is a good function with the Fourier transform (2.4.27), then the inverse
Fourier transform is given by

f(x) =
1√
2π

∫ ∞

−∞
eikx F (k) dk. (2.4.28)

PROOF For any ε > 0, we have

F
{
e−εx

2
F (−x)

}
=

1
2π

∫ ∞

−∞
e−ikx−εx

2
{∫ ∞

−∞
eixt f(t) dt

}
dx.

Since f is a good function, the order of integration can be interchanged to
obtain

F
{
e−εx

2
F (−x)

}
=

1
2π

∫ ∞

−∞
f(t) dt

∫ ∞

−∞
e−i(k−t)x−εx

2
dx

which is, by similar calculation used in Example 2.3.1,

=
1√
4πε

∫ ∞

−∞
exp

[
− (k − t)2

4ε

]
f(t) dt .

Using the fact that

1√
4πε

∫ ∞

−∞
exp

[
− (k− t)2

4ε

]
dt = 1,
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we can write

F
{
e−εx

2
F (−x)

}
− f(k) . 1

=
1√
4πε

∫ ∞

−∞
[f(t) − f(k)] exp

[
− (k− t)2

4ε

]
dt. (2.4.29)

Since f is a good function, we have∣∣∣∣f(t)− f(k)
t− k

∣∣∣∣ ≤ max
x∈R

|f ′(x)| .

It follows from (2.4.29) that∣∣∣F {
e−εx

2
F (−x)

}
− f(k)

∣∣∣
≤ 1√

4πε
max
x∈R

|f ′(x)|
∫ ∞

−∞
|t− k| exp

[
− (t− k)2

4ε

]
dt

=
1√
4πε

max
x∈R

|f ′(x)| 4ε
∫ ∞

−∞
|α| e−α2

dα→ 0

as ε→ 0, where α= t−k
2
√
ε
.

Consequently,

f(k) = F {F (−x)}=
1√
2π

∫ ∞

−∞
e−ikx F (−x) dx

=
1√
2π

∫ ∞

−∞
eikx F (x) dx

=
1
2π

∫ ∞

−∞
eikx dx

∫ ∞

−∞
e−iξx f(ξ) dξ.

Interchanging k with x, this reduces to the Fourier integral formula (2.2.4)
and hence, the theorem is proved.

Example 2.4.1
The Fourier transform of a constant function c is

F {c} =
√

2π.c.δ(k). (2.4.30)

In the ordinary sense

F {c} =
c√
2π

∫ ∞

−∞
e−ikx dx

is not a well defined (divergent) integral. However, treated as a generalized
function, c= c I(x) and we consider

{
exp

(
− x2

4n

)}
as an equivalent sequence
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to the unit function, I(x). Thus,

F

{
c exp

(
−x2

4n

)}
=

c√
2π

∫ ∞

−∞
exp

(
−ikx− x2

4n

)
dx

which is, by Example 2.3.1,

= c
√

2n exp(−nk2) =
√

2π.c.
√
n

π
exp(−nk2)

=
√

2π.c.δn(k) =
√

2π.c.δ(k) as n→∞,

since {δn(k)}=
{√

n
π exp

(−nk2
)}

is a sequence equivalent to the delta func-
tion defined by (2.4.10).

Example 2.4.2
Show that

F{e−axH(x)}=
1√

2π(ik + a)
, a > 0. (2.4.31)

We have, by definition,

F{e−axH(x)}=
1√
2π

∞∫
0

exp{−x(ik + a)}dx=
1√

2π(ik+ a)
.

Example 2.4.3
By considering the function (see Figure 2.5)

fa(x) = e−axH(x) − eaxH(−x), a > 0, (2.4.32)

find the Fourier transform of sgn(x). In Figure 2.5, the vertical axis (y-axis)
represents fa(x) and the horizontal axis represents the x-axis.

We have, by definition,

F{fa(x)} = − 1√
2π

0∫
−∞

exp{(a− ik)x}dx

+
1√
2π

∞∫
0

exp{−(a+ ik)x}dx

=
1√
2π

[
1

a+ ik
− 1
a− ik

]
=

√
2
π
· (−ik)
a2 + k2

.
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Figure 2.5 Graph of the function fa(x).

In the limit as a→ 0, fa(x)→ sgn(x) and then

F{sgn(x)}=

√
2
π
· 1
ik
.

Or,

F

{√
π

2
i sgn(x)

}
=

1
k
.

2.5 Basic Properties of Fourier Transforms

THEOREM 2.5.1

If F{f(x)}=F (k), then
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(a) (Shifting) F{f(x− a)}= e−ikaF{f(x)}, (2.5.1)

(b) (Scaling) F{f(ax)}=
1
|a| F (

k

a
), (2.5.2)

(c) (Conjugate) F{f(−x)}= F{f(x)}, (2.5.3)

(d) (Translation) F{eiaxf(x)}=F (k − a), (2.5.4)

(e) (Duality) F{F (x)}= f(−k), (2.5.5)

(f) (Composition)

∞∫
−∞

F (k)g(k)eikxdk=

∞∫
−∞

f(ξ)G(ξ − x)dξ, (2.5.6)

where G(k) = F{g(x)}.

PROOF (a) We obtain, from the definition,

F{f(x− a)} =
1√
2π

∞∫
−∞

e−ikxf(x− a)dx

=
1√
2π

∞∫
−∞

e−ik(ξ+a)f(ξ)dξ, (x− a= ξ)

= e−ikaF{f(x)}.

The proofs of results (b)–(d) follow easily from the definition of the Fourier
transform. We give a proof of the duality (e) and composition (f).

We have, by definition,

f(x) =
1√
2π

∞∫
−∞

eikxF (k)dk= F−1{F (k)}.

Interchanging x and k, and then replacing k by −k, we obtain

f(−k)=
1√
2π

∞∫
−∞

e−ikxF (x)dx= F{F (x)}.
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To prove (f), we have

∞∫
−∞

F (k)g(k) eikxdk =

∞∫
−∞

g(k) eikxdk
1√
2π

∞∫
−∞

e−ikξf(ξ)dξ

=

∞∫
−∞

f(ξ)dξ
1√
2π

∞∫
−∞

e−ik(ξ−x)g(k)dk

=

∞∫
−∞

f(ξ)G(ξ − x)dξ.

In particular, when x= 0
∞∫

−∞
F (k)g(k)dk =

∞∫
−∞

f(ξ)G(ξ)dξ.

THEOREM 2.5.2
If f(x) is piecewise continuously differentiable and absolutely integrable, then

(i) F (k) is bounded for −∞<k<∞,

(ii) F (k) is continuous for −∞<k<∞.

PROOF It follows from the definition that

|F (k)| ≤ 1√
2π

∞∫
−∞

|e−ikx||f(x)|dx

=
1√
2π

∞∫
−∞

|f(x)|dx=
c√
2π
,

where c=
∞∫

−∞
|f(x)|dx= constant. This proves result (i).

To prove (ii), we have

|F (k + h)− F (k)| ≤ 1√
2π

∞∫
−∞

|e−ihx − 1||f(x)|dx

≤
√

2
π

∞∫
−∞

|f(x)|dx.
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Since lim
h→0

|e−ihx − 1|= 0 for all x∈R, we obtain

lim
h→0

|F (k + h) − F (k)| ≤ lim
h→0

1√
2π

∞∫
−∞

|e−ihx − 1||f(x)|dx= 0.

This shows that F (k) is continuous.

THEOREM 2.5.3

(Riemann-Lebesgue Lemma). If F (k) = F{f(x)}, then

lim
|k|→∞

|F (k)|= 0. (2.5.7)

PROOF Since e−ikx =−e−ikx−iπ, we have

F (k) = − 1√
2π

∞∫
−∞

e−ik(x+
π
k )f(x)dx

= − 1√
2π

∞∫
−∞

e−ikxf
(
x− π

k

)
dx.

Hence,

F (k) =
1
2

⎧⎨⎩ 1√
2π

⎡⎣ ∞∫
−∞

e−ikxf(x)dx−
∞∫

−∞
e−ikxf

(
x− π

k

)
dx

⎤⎦⎫⎬⎭
=

1
2

1√
2π

∞∫
−∞

e−ikx
[
f(x)− f

(
x− π

k

)]
dx.

Therefore,

|F (k)| ≤ 1
2
√

2π

∞∫
−∞

∣∣∣f(x) − f
(
x− π

k

)∣∣∣ dx.
Thus, we obtain

lim
|k|→∞

|F (k)| ≤ 1
2
√

2π
lim

|k|→∞

∞∫
−∞

∣∣∣f(x) − f
(
x− π

k

)∣∣∣ dx= 0.
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THEOREM 2.5.4
If f(x) is continuously differentiable and f(x)→ 0 as |x|→∞, then

F{f ′(x)}= (ik)F{f(x)}= ik F (k). (2.5.8)

PROOF We have, by definition,

F{f ′(x)}=
1√
2π

∞∫
−∞

e−ikxf ′(x)dx

which is, integrating by parts,

=
1√
2π

[
f(x)e−ikx

]∞
−∞ +

ik√
2π

∞∫
−∞

e−ikxf(x)dx

= (ik)F (k).

If f(x) is continuously n-times differentiable and f (k)(x)→ 0 as |x|→∞ for
k= 1, 2, . . . , (n− 1), then the Fourier transform of the nth derivative is

F{f (n)(x)}= (ik)nF{f(x)}= (ik)nF (k). (2.5.9)

A repeated application of Theorem 2.5.4 to higher derivatives gives the
result.

The operational results similar to those of (2.5.8) and (2.5.9) hold for partial
derivatives of a function of two or more independent variables. For example,
if u(x, t) is a function of space variable x and time variable t, then

F

{
∂u

∂x

}
= ik U(k, t), F

{
∂2u

∂x2

}
=−k2 U(k, t) ,

F

{
∂u

∂t

}
=
dU

dt
, F

{
∂2u

∂t2

}
=
d2U

dt2
,

where U(k, t) = F {u(x, t)}.

DEFINITION 2.5.1 The convolution of two integrable functions f(x) and
g(x), denoted by (f ∗ g)(x), is defined by

(f ∗ g)(x) =
1√
2π

∞∫
−∞

f(x− ξ)g(ξ)dξ, (2.5.10)

provided the integral in (2.5.10) exists, where the factor 1√
2π

is a matter of
choice. In the study of convolution, this factor is often omitted as this factor
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does not affect the properties of convolution. We will include or exclude the
factor 1√

2π
freely in this book.

We give some examples of convolution.

Example 2.5.1
Find the convolution of

(a) f(x) = cosx and g(x) = exp(−a|x|), a > 0,
(b) f(x) =χ[a,b](x) and g(x) = x2,

where χ[a,b](x) is the characteristic function of the interval [a, b]⊆R defined
by

χ[a,b](x) =

{
1, a≤ x≤ b

0, otherwise

}
.

(a) We have, by definition,

(f ∗ g)(x) =

∞∫
−∞

f(x− ξ) g(ξ)dξ =

∞∫
−∞

cos(x− ξ) e−a|ξ|dξ

=

0∫
−∞

cos(x− ξ) eaξdξ +

∞∫
0

cos(x− ξ) e−aξdξ

=

∞∫
0

cos(x+ ξ) e−aξdξ +

∞∫
0

cos(x− ξ) e−aξdξ

= 2 cosx

∞∫
0

cos ξ e−aξdξ =
2a cosx
(1 + a2)

.

(b) We have

(f ∗ g)(x) =

∞∫
−∞

f(x− ξ) g(ξ)dξ =

∞∫
−∞

χ[a,b](x− ξ) g(ξ)dξ

=
∫ b

a

ξ2 dξ=
1
3
(
b3 − a3

)
.

THEOREM 2.5.5
(Convolution Theorem). If F{f(x)}=F (k) and F{g(x)}=G(k), then

F{f(x) ∗ g(x)}=F (k)G(k), (2.5.11)
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or,

f(x) ∗ g(x) = F−1{F (k)G(k)}, (2.5.12)

or, equivalently,

∞∫
−∞

f(x− ξ)g(ξ)dξ=

∞∫
−∞

eikxF (k)G(k)dk. (2.5.13)

PROOF We have, by the definition of the Fourier transform,

F{f(x) ∗ g(x)} =
1
2π

∞∫
−∞

e−ikxdx

∞∫
−∞

f(x− ξ)g(ξ)dξ

=
1
2π

∞∫
−∞

e−ikξg(ξ)dξ

∞∫
−∞

e−ik(x−ξ)f(x− ξ)dx

=
1
2π

∞∫
−∞

e−ikξg(ξ)dξ

∞∫
−∞

e−ikηf(η)dη=G(k)F (k),

where, in this proof, the factor 1√
2π

is included in the definition of the convo-

lution. This completes the proof.

The convolution has the following algebraic properties:
f ∗ g= g ∗ f (Commutative), (2.5.14)

f ∗ (g ∗ h) = (f ∗ g) ∗ h (Associative), (2.5.15)
(αf + βg) ∗ h=α (f ∗ h) + β (g ∗ h) (Distributive), (2.5.16)

f ∗
√

2πδ= f =
√

2πδ ∗ f (Identity), (2.5.17)

where α and β are constants.

We give proofs of (2.5.15) and (2.5.16). If f ∗ (g ∗ h) exists, then

[f ∗ (g ∗ h)] (x) =

∞∫
−∞

f(x− ξ)(g ∗ h)(ξ)dξ

=

∞∫
−∞

f(x− ξ)

∞∫
−∞

g(ξ − t)h(t) dt dξ
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=

∞∫
−∞

⎡⎣ ∞∫
−∞

f(x− ξ) g(ξ − t)dξ

⎤⎦ h(t)dt

=

∞∫
−∞

⎡⎣ ∞∫
−∞

f(x− t− η) g(η)dη

⎤⎦ h(t)dt (put ξ − t= η)

=

∞∫
−∞

[(f ∗ g) (x− t)]h(t)dt

= [(f ∗ g) ∗ h] (x),

where, in the above proof, under suitable assumptions, the interchange of the
order of integration can be justified.

Similarly, we prove (2.5.16) using the right-hand side of (2.5.16), that is,

α (f ∗ h) + β (g ∗ h) = α

∞∫
−∞

f(x− ξ)h(ξ)dξ + β

∞∫
−∞

g(x− ξ)h(ξ)dξ

=

∞∫
−∞

[αf(x− ξ) + βg(x− ξ)] h(ξ)dξ

= [(αf + βg) ∗ h] (x).

In view of the commutative property of the convolution, (2.5.13) can be writ-
ten as ∞∫

−∞
f(ξ)g(x− ξ)dξ=

∞∫
−∞

eikxF (k)G(k)dk. (2.5.18)

This is valid for all real x, and hence, putting x= 0 gives

∞∫
−∞

f(ξ)g(−ξ)dξ=

∞∫
−∞

f(x)g(−x)dx=

∞∫
−∞

F (k)G(k)dk. (2.5.19)

We substitute g(x) = f(−x) to obtain

G(k) = F{g(x)}= F
{
f(−x)

}
= F{f(x)}=F (k).

Evidently, (2.5.19) becomes

∞∫
−∞

f(x) f(x)dx=

∞∫
−∞

F (k) F (k)dk (2.5.20)
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or,
∞∫

−∞
|f(x)|2dx=

∞∫
−∞

|F (k)|2dk. (2.5.21)

This is well known as Parseval’s relation.
For square integrable functions f(x) and g(x), the inner product 〈f, g〉 is

defined by

〈f, g〉=

∞∫
−∞

f(x) g(x)dx (2.5.22)

so the norm ‖f‖2 is defined by

‖f‖2
2 = 〈f, f〉=

∞∫
−∞

f(x) f(x)dx=

∞∫
−∞

|f(x)|2dx. (2.5.23)

The function space L2(R) of all complex-valued Lebesgue square integrable
functions with the inner product defined by (2.5.22) is a complete normed
space with the norm (2.5.23). In terms of the norm, the Parseval relation
takes the form

‖f‖2 = ‖F‖2 = ‖Ff‖2. (2.5.24)

This means that the Fourier transform action is unitary. Physically, the quan-
tity ‖f‖2 is a measure of energy and ‖F‖2 represents the power spectrum of
f .

THEOREM 2.5.6
(General Parseval’s Relation). If F{f(x)}=F (k) and F{g(x)}=G(k) then

∞∫
−∞

f(x) g(x)dx=

∞∫
−∞

F (k)G(k)dk. (2.5.25)

PROOF We proceed formally to obtain

∞∫
−∞

F (k)G(k)dk =

∞∫
−∞

dk · 1
2π

∞∫
−∞

e−ikyf(y) dy

∞∫
−∞

e−ikxg(x) dx

=
1
2π

∞∫
−∞

f(y) dy

∞∫
−∞

g(x)dx

∞∫
−∞

eik(x−y)dk

=

∞∫
−∞

g(x) dx

∞∫
−∞

δ(x− y)f(y) dy=

∞∫
−∞

f(x)g(x) dx.
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In particular, when g(x) = f(x), the above result agrees with (2.5.20).

We now use an indirect method to obtain the Fourier transform of sgn(x),
that is,

F{sgn(x)}=

√
2
π

1
ik
. (2.5.26)

From (2.4.26), we find

F

{
d

dx
sgn(x)

}
= F{2H ′(x)}= 2F{δ(x)}=

√
2
π
,

which is, by (2.5.8),

ik F{sgn(x)}=

√
2
π
,

or

F{sgn(x)}=

√
2
π
· 1
ik
.

The Fourier transform of H(x) follows from (2.4.30) and (2.5.26):

F{H(x)} =
1
2
F{1 + sgn(x)}=

1
2
[F{1}+ F{sgn(x)}]

=
√
π

2

[
δ(k) +

1
iπk

]
. (2.5.27)

2.6 Poisson’s Summation Formula

A class of functions designated as Lp(R) is of great importance in the theory
of Fourier transformations, where p(≥ 1) is any real number. We denote the
vector space of all complex-valued functions f(x) of the real variable x. If f
is a locally integrable function such that |f |p ∈L(R), then we say f is p-th
power Lebesgue integrable. The set of all such functions is written Lp(R). The
number ||f ||p is called the Lp-norm of f and is defined by

||f ||p =
[∫ ∞

−∞
|f(x)|p dx

] 1
p

<∞. (2.6.1)

Suppose f is a Lebesgue integrable function on R. Since exp(−ikx) is contin-
uous and bounded, the product exp(−ikx) f(x) is locally integrable for any
k ∈R. Also, | exp(−ikx)| ≤ 1 for all k and x on R. Consider the inner product〈

f, eikx
〉

=
∫ ∞

−∞
f(x) e−ikx dx, k ∈R. (2.6.2)
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Clearly, ∣∣∣∣∫ ∞

−∞
f(x) e−ikx dx

∣∣∣∣≤ ∫ ∞

−∞
|f(x)| dx= ||f ||1<∞. (2.6.3)

This means that integral (2.6.2) exists for all k ∈R, and was used to define
the Fourier transform, F (k) = F{f(x)} without the factor 1√

2π
.

Although the theory of Fourier series is a very important subject, a detailed
study is beyond the scope of this book. Without rigorous analysis, we can
establish a simple relation between the Fourier transform of functions in L1(R)
and the Fourier series of related periodic functions in L1(−a, a) of period 2a.
If f(x)∈L1(−a, a) and is defined by

f(x) =
∞∑

n=−∞
cne

inx , (−a≤ x≤ a), (2.6.4)

where the Fourier coefficients cn is given by

cn =
1
2a

∫ a

−a
f(x) e−ikx dx. (2.6.5)

THEOREM 2.6.1
If f(x)∈L1(R), then the series

∞∑
n=−∞

f(x+ 2na) (2.6.6)

converges absolutely for almost all x in (−a, a) and its sum g(x)∈L1(−a, a)
with g(x+ 2a) = g(x) for x∈R.

If an denotes the Fourier coefficient of a function g, then

an =
1
2a

∫ a

−a
g(x) e−inx dx=

1
2a

∫ ∞

−∞
f(x) e−inx dx=

1
2a
F (n).

PROOF We have
∞∑

n=−∞

∫ a

−a
|f(x+ 2na)| dx = lim

N→∞

N∑
n=−N

∫ a

−a
|f(x+ 2na)| dx

= lim
N→∞

N∑
n=−N

∫ (2n+1)a

(2n−1)a

|f(t)| dt

= lim
N→∞

∫ (2N+1)a

−(2N+1)a

|f(t)| dt

=
∫ ∞

−∞
|f(t)| dt< ∞.
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It follows from Lebesgue’s theorem on monotone convergence that

∫ a

−a

[ ∞∑
n=−∞

|f(x+ 2na)|
]
dx =

∞∑
n=−∞

∫ a

−a
|f(x+ 2na)| dx< ∞.

Hence, the series
∑∞
n=−∞ f(x+ 2na) converges absolutely for almost all x

in (−a, a). If gN (x) =
∑N

n=−N f(x+ 2na), limN→∞ gN (x) = g(x), where g ∈
L1(−a, a), and g(x+ 2a)= g(x).

Moreover,

||g||1 =
∫ a

−a
|g(x)| dx=

∫ a

−a

∣∣∣∣∣
∞∑

n=−∞
f(x+ 2na)

∣∣∣∣∣ dx
≤
∫ a

−a

∞∑
n=−∞

|f(x+ 2na)| dx

=
∞∑

n=−∞

∫ a

−a
|f(x+ 2na)| dx

=
∫ ∞

−∞
|f(x)| dx= ||f ||1.

We consider the Fourier series of g(x) given by

g(x) =
∞∑

m=−∞
cm exp(imπx/a), (2.6.7)

where the coefficients cm for m= 0,±1,±2, ... are given by

cm =
1
2a

a∫
−a

g(x)exp(−imπx/a)dx. (2.6.8)

We replace g(x) by the limit of the sum

g(x) = lim
N→∞

N∑
n=−N

f(x+ 2na), (2.6.9)
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so that (2.6.8) reduces to

cm =
1
2a

lim
N→∞

N∑
n=−N

a∫
−a

f(x+ 2na)exp(−imπx/a) dx

=
1
2a

lim
N→∞

N∑
n=−N

(2n+1)a∫
(2n−1)a

f(y)exp(−imπy/a) dy

=
1
2a

lim
N→∞

(2N+1)a∫
−(2N+1)a

f(x)exp(−imπx/a) dx

=
√

2π
2a

F
(mπ
a

)
, (2.6.10)

where F
(
mπ
a

)
is the discrete Fourier transform of f(x).

Evidently,

∞∑
n=−∞

f(x+ 2na) = g(x) =
∞∑

n=−∞

√
2π

2a
F
(nπ
a

)
exp(inπx/a). (2.6.11)

We let x= 0 in (2.6.11) to obtain the Poisson summation formula

∞∑
n=−∞

f(2na)=
∞∑

n=−∞

√
2π

2a
F
(nπ
a

)
. (2.6.12)

When a= π, this formula becomes

∞∑
n=−∞

f(2πn) =
1√
2π

∞∑
n=−∞

F (n). (2.6.13)

When 2a= 1, formula (2.6.12) becomes

∞∑
n=−∞

f(n) =
√

2π
∞∑

n=−∞
F (2nπ). (2.6.14)

To obtain a more general formula, we assume that a is a given positive
constant, and write g(x) = f(ax) for all x. Then

f

(
a.

2πn
a

)
= g

(
2πn
a

)
,
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and we define the Fourier transform of f(x) without the factor 1√
2π

so that

F (n) =
∫ ∞

−∞
e−inx f(x) dx=

∫ ∞

−∞
e−inx f

(
a.
x

a

)
dx

=
∫ ∞

−∞
e−inx g

(x
a

)
dx

= a

∫ ∞

−∞
e−i(an)y g(y) dy

= aG(an).

Consequently, equality (2.6.13) reduces to
∞∑

n=−∞
g(

2πn
a

) =
a√
2π

∞∑
n=−∞

G(an). (2.6.15)

Putting b= 2π
a in (2.6.15) gives

∞∑
n=−∞

g(bn)=
√

2π b−1
∞∑

n=−∞
G(2πb−1n). (2.6.16)

When b= 2π, result (2.6.16) becomes (2.6.13). We apply these formulas to
prove the following series

(a)
∞∑

n=−∞

1
(n2 + b2)

=
π

b
coth(πb), (2.6.17)

(b)
∞∑

n=−∞
exp(−πn2t) =

1√
t

∞∑
n=−∞

exp
(
−πn

2

t

)
, (2.6.18)

(c)
∞∑

n=−∞

1
(x+ nπ)2

= cosec2(x). (2.6.19)

To prove (a), we write f(x) = (x2 + b2)−1 so that F (k) =
√

π
2

1
b exp(−b|k|).

We now use (2.6.14) to derive
∞∑

n=−∞

1
(n2 + b2)

=
π

b

∞∑
n=−∞

exp(−2|n|πb)

=
π

b

[ ∞∑
n=0

exp(−2nπb) +
∞∑
n=1

exp(2nπb)

]
which is, by writing r= exp(−2πb),

=
π

b

[ ∞∑
n=0

rn +
∞∑
n=1

(
1
r

)n]
=
π

b

(
r

1− r
+

1
1 − r

)
=
π

b

(
1 + r

1 − r

)
=
π

b
coth(πb).
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It follows from (2.6.14) that

∞∑
n=−∞

1
(n2 + b2)

=
π

b

(
1 + e−2πb

)
(1 − e−2πb)

.

Or,

2
∞∑
n=1

1
(n2 + b2)

+
1
b2

=
π

b

(
1 + e−2πb

)
(1 − e−2πb)

.

It turns out that

∞∑
n=1

1
(n2 + b2)

=
π

2b

[(
1 + e−2πb

)
(1 − e−2πb)

− 1
πb

]

=
π2

x

[
(1 + e−x)
(1 − e−x)

− 2
x

]
, (2πb= x)

=
π2

x2

[
x (1 + e−x)− 2 (1 − e−x)

(1 − e−x)

]
=
(π
x

)2
[
x3

(
1
2 − 1

3

)− x4

12 + ....

x− x2

2! + x3

3! − ....

]
.

In the limit as b→ 0 (x→ 0), we obtain the well-known result

∞∑
n=1

1
n2

=
π2

6
. (2.6.20)

To prove (b), we assume f(x) = exp(−πtx2) so that F (k) = 1√
2πt

exp
(
− k2

4πt

)
.

Thus, the Poisson formula (2.6.14) gives

∞∑
n=−∞

exp(−πtn2) =
1√
t

∞∑
n=−∞

exp(−πn2/t).

This identity plays an important role in number theory and in the theory of
elliptic functions. The Jacobi theta function Θ(s) is defined by

Θ(s) =
∞∑

n=−∞
exp(−πsn2), s> 0, (2.6.21)

so that (2.6.16) gives the functional equation for the theta function

√
sΘ(s) = Θ

(
1
s

)
. (2.6.22)
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The theta function Θ(s) also extends to complex values of s when Re(s)> 0
and the functional equation is still valid for complex s. The theta function is
closely related to the Riemann zeta function ζ(s) defined for Re(s)> 1 by

ζ(s) =
∞∑
n=1

1
ns
. (2.6.23)

An integral representation of ζ(s) can be found from the result∫ ∞

0

xs−1 e−nxdx=
Γ(s)
ns

, Re(s)> 0,

where the gamma function Γ(s) is defined by

Γ(s) =
∫ ∞

0

e−tts−1dt, Re(s)> 0.

Summing both sides of this result and interchanging the order of summation
and integration, which is permissible for Re(s)> 1, gives

Γ(s) ζ(s) =
∫ ∞

0

xs−1 dx

ex − 1
, Re(s)> 1. (2.6.24)

It turns out that ζ(s), Θ(s), and Γ(s) are related by the following identity:

ζ(s)Γ(s/2) =
1
2
πs/2

∫ ∞

0

xs/2−1 [Θ(x) − 1] dx, Re(s)> 1. (2.6.25)

Considering the complex integral in a suitable closed contour C

I =
1

2πi

∫
C

zs−1

e−z − 1
dz,

and using the Cauchy residue theorem with all zeros of (e−z − 1) at z= 2πin,
n=±1,±2, ...,±N gives

I =−2 sin
(πs

2

) ∞∑
n=1

(2πn)s−1 .

To prove (c), we use the Fourier transform of the function f(x) = (1− |x|)
H (1 − |x|) to obtain the result. In the limit as N→∞, the sum of the residues
is convergent so that the integral gives the relation

2sπs−1 sin
(πs

2

)
ζ(1 − s) =

ζ(s)
Γ(1− s)

. (2.6.26)

In view of another relation for the gamma function, Γ(1 + z)Γ(−z)=− π
sinπz ,

the relation (2.6.26) leads to a famous functional relation for ζ(s) in the form

πsζ(1 − s) = 21−sΓ(s) cos
(πs

2

)
ζ(s). (2.6.27)



© 2007 by Taylor & Francis Group, LLC

44 INTEGRAL TRANSFORMS and THEIR APPLICATIONS

2.7 The Shannon Sampling Theorem

An analog signal f(t) is a continuous function of time t defined in −∞< t<∞,
with the exception of perhaps a countable number of jump discontinuities.
Almost all analog signals f(t) of interest in engineering have finite energy. By
this we mean that f ∈ L2(−∞, ∞). The norm of f defined by

||f || =
[∫ ∞

−∞
|f(x)|2 dx

] 1
2

(2.7.1)

represents the square root of the total energy content of the signal f(t). The
spectrum of a signal f(t) is represented by its Fourier transform F (ω), where
ω is called the frequency. The frequency is measured by ν = ω

2π in terms of
Hertz.

A continuous signal f(t) is called band limited if its Fourier transform F (ω)
is zero except in a finite interval, that is, if

Fa(ω) = 0 for |ω|>a. (2.7.2)

Then a(> 0) is called the cutoff frequency.

In particular, if

F (ω) =
{

1, |ω| ≤ a
0, |ω|>a

}
(2.7.3)

then F (ω) is called a gate function and is denoted by Fa(ω), and the band
limited signal is denoted by fa(t). If a is the smallest value for which (2.7.2)
holds, it is called the bandwidth of the signal. Even if an analog signal f(t) is
not band-limited, we can reduce it to a band-limited signal by what is called
an ideal low-pass filtering. To reduce f(t) to a band-limited signal fa(t) with
bandwidth less than or equal to a, we consider

Fa(ω) =
{
F (ω), |ω| ≤ a

0, |ω|>a
}

(2.7.4)

and find the low-pass filter function fa(t) by the inverse Fourier transform

fa(t) =
1
2π

∫ ∞

−∞
eiωtFa(ω)dω=

1
2π

∫ a

−a
eiωtFa(ω)dω. (2.7.5)

This function fa(t) is called the Shannon sampling function. When a= π,
fπ(t) is called the Shannon scaling function. The band-limited signal fa(t) is
given by

fa(t) =
1
2π

∞∫
−∞

F (ω)eiωtdω=
1
2π

a∫
−a

eiωtdω=
sin at
πt

. (2.7.6)
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Figure 2.6 The gate function and its Fourier transform.

Both F (ω) and fa(t) are shown in Figure 2.6 for a= 2.
Consider the limit as a→∞ of the Fourier integral for −∞<ω<∞

1 = lim
a→∞

∞∫
−∞

e−iωtfa(t)dt= lim
a→∞

∞∫
−∞

e−iωt
sin at
πt

dt

=

∞∫
−∞

e−iωt
[

lim
a→∞

sin at
πt

]
dt=

∞∫
−∞

e−iωtδ(t)dt.

Clearly, the delta function δ(t) can be thought of as the limit of the sequence
of functions fa(t). More precisely,

δ(t) = lim
a→∞

(
sin at
πt

)
. (2.7.7)

We next consider the band-limited signal

fa(t) =
1
2π

a∫
−a

F (ω)eiωtdω=
1
2π

∞∫
−∞

F (ω)Fa(ω) eiωtdω,

which is, by the Convolution Theorem,

fa(t) =

∞∫
−∞

f(τ)fa(t− τ)dτ =

∞∫
−∞

sin a(t− τ)
π(t− τ)

f(τ)dτ. (2.7.8)

This integral represents the sampling integral representation of the band-
limited signal fa(t).
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Example 2.7.1
(Synthesis and Resolution of a Signal; Physical Interpretation of Convolu-
tion). In electrical engineering problems, a time-dependent electric, optical or
electromagnetic pulse is usually called a signal. Such a signal can be consid-
ered as a superposition of plane waves of all real frequencies so that it can be
represented by the inverse Fourier transform

f(t) = F−1{F (ω)}=
1
2π

∞∫
−∞

F (ω)eiωtdω, (2.7.9)

where F (ω) = F{f(t)}, the factor (1/2π) is introduced because the angular
frequency ω is related to linear frequency ν by ω= 2πν, and negative fre-
quencies are introduced for mathematical convenience so that we can avoid
dealing with the cosine and sine functions separately. Clearly, F (ω) can be
represented by the Fourier transform of the signal f(t) as

F (ω) =

∞∫
−∞

f(t)e−iωtdt. (2.7.10)

This represents the resolution of the signal into its angular frequency compo-
nents, and (2.7.9) gives a synthesis of the signal from its individual compo-
nents.

Consider a simple electrical device such as an amplifier with an input signal
f(t), and an output signal g(t). For an input of a single frequency ω, f(t) =
eiωt. The amplifer will change the amplitude and may also change the phase
so that the output can be expressed in terms of the input, the amplitude and
the phase modifying function Φ(ω) as

g(t) = Φ(ω)f(t), (2.7.11)

where Φ(ω) is usually known as the transfer function and is, in general, a
complex function of the real variable ω. This function is generally independent
of the presence or absence of any other frequency components. Thus, the total
output may be found by integrating over the entire input as modified by the
amplifier

g(t)=
1
2π

∞∫
−∞

Φ(ω)F (ω) eiωtdω. (2.7.12)

Thus, the total output signal can readily be calculated from any given input
signal f(t). On the other hand, the transfer function Φ(ω) is obviously charac-
teristic of the amplifier device and can, in general, be obtained as the Fourier
transform of some function φ(t) so that

Φ(ω) =

∞∫
−∞

φ(t)e−iωtdt. (2.7.13)
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The Convolution Theorem 2.5.5 allows us to rewrite (2.7.12) as

g(t) = F−1{Φ(ω)F (ω)}= f(t) ∗ φ(t) =

∞∫
−∞

f(τ)φ(t− τ)dτ. (2.7.14)

Physically, this result represents an output signal g(t) as the integral superpo-
sition of an input signal f(t) modified by φ(t− τ). Linear translation invariant
systems, such as sensors and filters, are modeled by the convolution equations
g(t) = f(t) ∗ φ(t), where φ(t) is the system impulse response function. In fact
(2.7.14) is the most general mathematical representation of an output (effect)
function in terms of an input (cause) function modified by the amplifier where
t is the time variable. Assuming the principle of causality, that is, every effect
has a cause, we must require τ < t. The principle of causality is imposed by
requiring

φ(t− τ) = 0 when τ > t. (2.7.15)

Consequently, (2.7.14) gives

g(t) =

t∫
−∞

f(τ)φ(t− τ)dτ. (2.7.16)

In order to determine the significance of φ(t), we use an impulse function
f(τ) = δ(τ) so that (2.7.16) becomes

g(t) =

t∫
−∞

δ(τ)φ(t− τ)dτ = φ(t)H(t). (2.7.17)

This recognizes φ(t) as the output corresponding to a unit impulse at t= 0,
and the Fourier transform of φ(t) is

Φ(ω) = F{φ(t)}=

∞∫
0

φ(t)e−iωtdt, (2.7.18)

with φ(t) = 0 for t< 0.

Example 2.7.2
(The Series Sampling Expansion of a Bandlimited Signal). Consider a band-
limited signal fa(t) with Fourier transform F (ω) = 0 for |ω|>a. We write the
Fourier series expansion of F (ω) on the interval −a<ω<a in terms of the
orthogonal set of functions

{
exp

(− inπω
a

)}
in the form

F (ω) =
∞∑

n=−∞
an exp

(
− inπ

a
ω

)
, (2.7.19)
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where the Fourier coefficients an are given by

an =
1
2a

a∫
−a

F (ω)exp
(
inπ

a
ω

)
dω=

1
2a

fa

(nπ
a

)
. (2.7.20)

Thus, the Fourier series expansion (2.7.19) becomes

F (ω) =
1
2a

∞∑
n=−∞

fa

(nπ
a

)
exp

(
− inπ

a
ω

)
. (2.7.21)

The signal function fa(t) is obtained by multiplying (2.7.21) by eiωt and in-
tegrating over (−a, a) so that

fa(t) =

a∫
−a

F (ω)eiωtdω

=
1
2a

a∫
−a

eiωtdω

[ ∞∑
n=−∞

fa

(nπ
a

)
exp

(
− inπ

a
ω

)]

=
1
2a

∞∑
n=−∞

fa

(nπ
a

) a∫
−a

exp
[
iω

(
t− nπ

a

)]
dω

=
∞∑

n=−∞
fa

(nπ
a

) sin a
(
t− nπ

a

)
a
(
t− nπ

a

)
=

∞∑
n=−∞

fa

(nπ
a

) sin (at− nπ)
(at− nπ)

. (2.7.22)

This result is the main content of the sampling theorem. It simply states that
a band-limited signal fa(t) can be reconstructed from the infinite set of dis-
crete samples of fa(t) at t= 0, ±π

a , .... . In practice, a discrete set of samples
is useful in the sense that most systems receive discrete samples {f(tn)} as
an input. The sampling theorem can be realized physically. Modern telephone
equipment employs sampling to send messages over wires. In fact, it seems
that sampling is audible on some transoceanic cable calls.

Result (2.7.22) can be obtained from the convolution theorem by using
discrete input samples

∞∑
n=−∞

π

a
fa

(nπ
a

)
δ
(
t− nπ

a

)
= f(t). (2.7.23)
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Hence, the sampling expansion (2.7.8) gives the band-limited signal

fa(t) =

∞∫
−∞

sin a(t− τ)
π(t− τ)

[ ∞∑
n=−∞

π

a
fa

(nπ
a

)
δ
(
τ − nπ

a

)]
dτ

=
∞∑

n=−∞
fa

(nπ
a

) ∞∫
−∞

sin a(t− τ)
a(t− τ)

δ
(
τ − nπ

a

)
dτ

=
∞∑

n=−∞
fa

(nπ
a

) sin a
(
t− nπ

a

)
a
(
t− nπ

a

) . (2.7.24)

In general, the output can be best described by taking the Fourier transform
of (2.7.14) so that

G(ω) =F (ω)Φ(ω), (2.7.25)

where Φ(ω) is called the transfer function of the system. Thus, the output can
be calculated from (2.7.25) by the Fourier inversion formula

g(t) =
1
2π

∫ ∞

−∞
F (ω)Φ(ω) eiωt dω, (2.7.26)

Obviously, the transfer function Φ(ω) is a characteristic of a linear system.
A linear system is a filter if it possesses signals of certain frequencies and
attenuates others. If the transfer function

Φ(ω) = 0 |ω| ≥ω0, (2.7.27)

then φ(t), the Fourier inverse of Φ(ω), is called a low-pass filter.

On the other hand, if the transfer function

Φ(ω) = 0 |ω| ≤ω1, (2.7.28)

then φ(t) is a high-pass filter. A bandpass filter possesses a band ω0 ≤ |ω| ≤ω1.
It is often convenient to express the system transfer function Φ(ω) in the
complex form

Φ(ω) =A(ω) exp[−iθ(ω)], (2.7.29)

where A(ω) is called the amplitude and θ(ω) is called the phase of the transfer
function. Obviously, the system impulse response φ(t) is given by the inverse
Fourier transform

φ(t) =
1
2π

∫ ∞

−∞
A(ω) exp[i{ωt− θ(ω)}] dω. (2.7.30)
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For a unit step function as the input f(t) =H(t), we have

F (ω) = Ĥ(ω) =
(
πδ(ω) +

1
iω

)
,

where Ĥ(ω) = F {H(t)} and the associated output g(t) is then given by

g(t) =
1
2π

∫ ∞

−∞
Φ(ω)Ĥ(ω)eiωt dω

=
1
2π

∫ ∞

−∞

(
πδ(ω) +

1
iω

)
A(ω) exp[i{ωt− θ(ω)}] dω

=
1
2
A(0) +

1
2π

∫ ∞

−∞

A(ω)
ω

exp
[
i
{
ωt− θ(ω) − π

2

}]
dω . (2.7.31)

We next give another characterization of a filter in terms of the amplitude
of the transfer function.

A filter is called distortionless if its output g(t) to an arbitrary input f(t)
has the same form as the input, that is,

g(t) =A0f(t− t0). (2.7.32)

Evidently,
G(ω) =A0e

−iωt0 F (ω) = Φ(ω)F (ω)

where
Φ(ω) =A0e

−iωt0

represents the transfer function of the distortionless filter. It has a constant
amplitude A0 and a linear phase shift θ(ω) =ωt0.

However, in general, the amplitude A(ω) of a transfer function is not con-
stant, and the phase θ(ω) is not a linear function.

A filter with constant amplitude, |θ(ω)|=A0 is called an all-pass filter. It
follows from Parseval’s formula that the energy of the output of such a filter
is proportional to the energy of its input.

A filter whose amplitude is constant for |ω|<ω0 and zero for |ω|>ω0 is
called an ideal low-pass filter. More explicitly, the amplitude is given by

A(ω) =A0Ĥ(ω0 − |ω|) =A0χ̂ω0(ω) , (2.7.33)

where χ̂ω0(ω) is a rectangular pulse. So, the transfer function of the low-pass
filter is

Φ(ω) =A0χ̂ω0(ω) exp(−iωt0) . (2.7.34)

Finally, the ideal high-pass filter is characterized by its amplitude given by

A(ω) =A0Ĥ(|ω| − ω0) =A0χ̂ω0(ω) , (2.7.35)
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where A0 is a constant. Its transfer function is given by

Φ(ω) =A0 [1 − χ̂ω0(ω)] exp(−iωt0) . (2.7.36)

Example 2.7.3
(Bandwidth and Bandwidth Equation). The Fourier spectrum of a signal (or
waveform) gives an indication of the frequencies that exist during the total
duration of the signal (or waveform). From the knowledge of the frequencies
that are present, we can calculate the average frequency and the spread about
that average. In particular, if the signal is represented by f(t), we can define
its Fourier spectrum by

F (ν) =
∫ ∞

−∞
e−2πiνt f(t) dt. (2.7.37)

Using |F (ν)|2 for the density in frequency, the average frequency is denoted
by <ν > and defined by

<ν >=
∫ ∞

−∞
ν |F (ν)|2 dν. (2.7.38)

The bandwidth is then the root mean square (RMS) deviation at about the
average, that is,

B2 =
∫ ∞

−∞
(ν−<ν >)2 dν. (2.7.39)

Expressing the signal in terms of its amplitude and phase

f(t) = a(t) exp{iθt}, (2.7.40)

the instantaneous frequency, ν(t) is the frequency at a particular time defined
by

ν(t) =
1
2π

θ′(t). (2.7.41)

Substituting (2.7.37) and (2.7.40) into (2.7.38) gives

<ν >=
1
2π

∫ ∞

−∞
θ′(t) a2(t) dt=

∫ ∞

−∞
ν(t) a2(t) dt. (2.7.42)

This formula states that the average frequency is the average value of the in-
stantaneous frequency weighted by the square of the amplitude of the signal.

We next derive the bandwidth equation in terms of the amplitude and phase
of the signal in the form

B2 =
1

(2π)2

∫ ∞

−∞

[
a′(t)
a(t)

]2

a2(t) dt+
∫ ∞

−∞

[
1
2π

θ′(t)−<ν >

]2

a2(t) dt.

(2.7.43)
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A straightforward but lengthy way to derive it is to substitute (2.7.40) into
(2.7.39) and simplify. However, we give an elegant derivation of (2.7.43) by
representing the frequency by the operator

ν =
1

2πi
d

dt
. (2.7.44)

We calculate the average by sandwiching the operator between the complex
conjugate of the signal and the signal. Thus,

<ν > =
∫ ∞

−∞
ν |F (ν)|2 dν =

∫ ∞

−∞
f̄(t)

[
1

2πi
d

dt

]
f(t) dt

=
1
2π

∫ ∞

−∞
a(t) {−ia′(t) + a(t)θ′(t)} dt

=
1
2π

∫ ∞

−∞
−1

2
i

[
d

dt
a2(t)

]
dt+

1
2π

∫ ∞

−∞
a2(t)θ′(t) dt (2.7.45)

=
1
2π

∫ ∞

−∞
θ′(t)a2(t) dt (2.7.46)

provided the first integral in (2.7.44) vanishes if a(t)→ 0 as |t|→∞.

It follows from the definition (2.7.39) of the bandwidth that

B2 =
∫ ∞

−∞
(ν−<ν >)2 |F (ν)|2 dν

=
∫ ∞

−∞
f̄(t)

[
1

2πi
d

dt
−<ν >

]2

f(t) dt

=
∫ ∞

−∞

∣∣∣∣[ 1
2πi

d

dt
−<ν >

]
f(t)

∣∣∣∣2 dt
=
∫ ∞

−∞

∣∣∣∣ 1
2πi

a′(t)
a(t)

+
1
2π
θ′(t)−<ν >

∣∣∣∣2 a2(t) dt

=
1

4π2

∫ ∞

−∞

[
a′(t)
a(t)

]2

a2(t) dt+
∫ ∞

−∞

[
1
2π

θ′(t)−<ν >

]2

a2(t) dt.

This completes the derivation.

Physically, the second term in equation (2.7.43) gives averages of all of the
deviations of the instantaneous frequency from the average frequency. In elec-
trical engineering literature, the spread of frequency about the instantaneous
frequency, which is defined as an average of the frequencies that exist at a
particular time, is called instantaneous bandwidth, given by

σ2
ν/t =

1
(2π)2

[
a′(t)
a(t)

]2

. (2.7.47)
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In the case of a chirp with a Gaussian envelope

f(t)=
(α
π

) 1
4

exp
[
−1

2
αt2 +

1
2
iβαt2 + 2πiν0t

]
, (2.7.48)

where its Fourier spectrum is given by

F (ν) = (απ)
1
4

(
1

α− iβ

) 1
2

exp
[−2π2(ν − ν0)2/(α− iβ)

]
. (2.7.49)

The energy density spectrum of the signal is

|F (ν)|2 = 2
(

απ

α2 + β2

) 1
2

exp
[
−4απ2(ν − ν0)2

α2 + β2

]
. (2.7.50)

Finally, the average frequency <ν > and the bandwidth square are respec-
tively given by

<ν >= ν0 and B2 =
1

8π2

(
α+

β2

α

)
. (2.7.51)

A large bandwidth can be achieved in two very qualitatively different ways.
The amplitude modulation can be made large by taking α large, and the
frequency modulation can be small by letting β→ 0. It is possible to make
the frequency modulation large by making β large and α very small. These
two extreme situations are physically very different even though they produce
the same bandwidth.

Example 2.7.4
Find the transfer function and the corresponding impulse response function
of the RLC circuit governed by the differential equation

L
d2q

dt2
+R

dq

dt
+

1
C
q = e (t) (2.7.52)

where q (t) is the charge, R, L, C are constants, and e (t) is the given voltage
(input).

Equation (2.7.25) provides the definition of the transfer function in the
frequency domain

Φ (ω) =
G (ω)
F (ω)

=
F {g (t)}
F {f (t)} , (2.7.53)

where φ (t) = F−1 {Φ (ω)} is called the impulse response function.
Taking the Fourier transfrom of (2.7.52) gives(

−Lω2 +Riω+
1
C

)
Q (ω) = E (ω) . (2.7.54)
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Thus, the transfer function is

Φ (ω) =
Q (ω)
E (ω)

=
−C

LCω2 − iRCω − 1

=
i

2Lβ

[
1

ω− i (α+ β)
− 1
ω − i (α− β)

]
, (2.7.55)

where

α=
R

2L
and β =

[(
R

2L

)2

− 1
LC

] 1
2

. (2.7.56)

The inverse Fourier transform of (2.7.55) yields the impulse response func-
tion

φ (t) =
1

2βL
(
eβt − e−βt

)
e−αtH (t) . (2.7.57)

2.8 Gibbs’ Phenomenon

We now examine the so-called the Gibbs jump phenomenon which deals with
the limiting behavior of a band-limited signal fω0(t) represented by the sam-
pling integral representation (2.7.8) at a point of discontinuity of f(t). This
phenomenon reveals the intrinsic overshoot near a jump discontinuity of a
function associated with the Fourier series. More precisely, the partial sums
of the Fourier series overshoot the function near the discontinuity, and the
overshoot continues no matter how many terms are taken in the partial sum.
However, the Gibbs phenomenon does not occur if the partial sums are re-
placed by the Cesaro means, the average of the partial sums.

In order to demonstrate the Gibbs phenomenon, we rewrite (2.7.8) in the
convolution form

fω0(t) =
∫ ∞

−∞
f(τ)

sinω0(t− τ)
π(t− τ)

dτ = (f ∗ δω0) (t) , (2.8.1)

where

δω0(t) =
sinω0t

πt
. (2.8.2)
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Clearly, at every point of continuity of f(t), we have

lim
ω0→∞ fω0(t) = lim

ω0→∞ (f ∗ δω0) (t) = lim
ω0→∞

∫ ∞

−∞
f(τ)

sinω0(t− τ)
π(t− τ)

dτ

=
∫ ∞

−∞
f(τ)

[
lim

ω0→∞
sinω0(t− τ)
π(t− τ)

]
dτ

=
∫ ∞

−∞
f(τ)δ(t− τ) dτ = f(t) . (2.8.3)

We now consider the limiting behavior of fω0(t) at the point of discontinuity
t= t0. To simplify the calculation, we set t0 = 0 so that we can write f(t) as
a sum of a continuous function, fc(t) and a suitable step function

f(t) = fc(t) + [f(0+)− f(0−)] H(t). (2.8.4)

Replacing f(t) by the right hand side of (2.8.4) in Equation (2.8.1) yields

fω0(t) =
∫ ∞

−∞
fc(τ)

sinω0(t− τ)
π(t− τ)

dτ

+ [f(0+)− f(0−)]
∫ ∞

−∞
H(τ)

sinω0(t− τ)
π(t− τ)

dτ

= fc(t) + [f(0+)− f(0−)] Hω0(t) , (2.8.5)

where

Hω0(t) =
∫ ∞

−∞
H(τ)

sinω0(t− τ)
π(t− τ)

dτ =
∫ ∞

0

sinω0(t− τ)
π(t− τ)

dτ

=
∫ ω0t

−∞

sinx
πx

dx (putting ω0(t− τ) = x)

=
(∫ 0

−∞
+
∫ ω0t

0

) (
sinx
πx

)
dx=

(∫ ∞

0

+
∫ ω0t

0

) (
sinx
πx

)
dx

=
1
2

+
1
π
si(ω0t) , (2.8.6)

and the function si(t) is defined by

si(t) =
∫ t

0

sinx
x

dx . (2.8.7)

Note that

Hω0

(
π

ω0

)
=

1
2

+
∫ π

0

sinx
πx

dx > 1 , Hω0

(
− π

ω0

)
=

1
2
−
∫ π

0

sinx
πx

dx < 0 .

Clearly, for a fixed ω0,
1
π si(ω0t) attains its maximum at t= π

ω0
in (0,∞) and

minimum at t=− π
ω0

, since for a larger t the integrand oscillates with decreas-
ing amplitudes. The function Hω0(t) is shown in Figure 2.7 since Hω0(0)= 1

2
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and fc(0) = f(0−) and

fω0(0) = fc(0) +
1
2

[f(0+)− f(0−)] =
1
2

[f(0+) + f(0−)] .

0.5
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t

H
0(t

)
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Figure 2.7 Graph of Hω0(t).

Thus, the graph ofHω0(t) shows that as ω0 increases, the time scale changes,
and the ripples remain the same. In the limit ω0 →∞, the convergence of
Hω0(t) = (H ∗ δω0) (t) to H(t) exhibits the intrinsic overshoot leading to the
classical Gibbs phenomenon.

Example 2.8.1

(The Square Wave Function and the Gibbs Phenomenon). Consider the single-
pulse square function defined by

f(x) =

⎧⎨⎩
1, −a< x<a
1
2 , x=±a
0, |x|>a

⎫⎬⎭ .

The graph of f(x) is given in Figure 2.8.
Thus,

F (k) = F {f(x)}=

√
2
π

(
sin ak
k

)
.
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a-a

f(
x)

x

1

0

Figure 2.8 The square wave function.

We next define a function fλ(x) by the integral

fλ(x) =
∫ λ

−λ
F (k) eikx dk

.
As |λ| →∞, fλ(x) will tend pointwise to f(x) for all x. Convergence occurs

even at x=± a because the function f(x) is defined to have a value “half way
up the step” at these points. Let us examine the behavior of fλ(x) as |λ|→∞
in a region just one side of one of the discontinuities, that is, for x∈ (0, a). For
a fixed λ, the difference, fλ(x) − f(x), oscillates above and below the value
0 as x→ a, attaining a maximum positive value at some point, say x= xλ.
Then the quantity fλ(xλ)− f(xλ) is called the overshoot.

As |λ|→∞, so the period of the oscillations tends to zero and so also xλ→ a;
however, the value of the overshoot fλ(xλ)− f(xλ) does not tend to zero but
instead tends to a finite limit. The existence of this non-zero, finite, limiting
value for the overshoot is known as the Gibbs phenomenon. This phenomenon
also occurs in an almost identical manner in the Fourier synthesis of periodic
functions using Fourier series.

2.9 Heisenberg’s Uncertainty Principle

If f ∈L2(R), then f and F (k) = F {f(x)} cannot both be essentially localized.
In other words, it is not possible that the widths of the graphs of |f(x)|2 and
|F (k)|2 can both be made arbitrarily small. This fact underlines the Heisen-
berg uncertainty principle in quantum mechanics and the bandwidth theorem
in signal analysis. If |f(x)|2 and |F (k)|2 are interpreted as weighting functions,
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then the weighted means (averages) <x> and <k> of x and k are given by

<x> =
1

||f ||22

∫ ∞

−∞
x |f(x)|2 dx, (2.9.1)

<k > =
1

||F ||22

∫ ∞

−∞
k |F (k)|2 dk. (2.9.2)

Corresponding measures of the widths of these weight functions are given by
the second moments about the respective means. Usually, it is convenient to
define widths �x and �k by

(�x)2 =
1

||f ||22

∫ ∞

−∞
(x−<x>)2 |f(x)|2 dx, (2.9.3)

(�k)2 =
1

||F ||22

∫ ∞

−∞
(k−<k>)2 |F (k)|2 dk. (2.9.4)

The essence of the Heisenberg principle and the bandwidth theorems lies in
the fact that the product (�x)(�k) will never less than 1

2 . Indeed,

(�x)(�k) ≥ 1
2
, (2.9.5)

where equality in (2.9.5) holds only if f(x) is a Gaussian function given by
f(x) =C exp(−ax2), a > 0.

We next state the Heisenberg inequality theorem as follows:

THEOREM 2.9.1
(Heisenberg Inequality). If f(x), x f(x) and k F (k) belong to L2(R) and

√
x|f(x)

|→ 0 as |x|→∞, then

(�x)2(�k)2 ≥ 1
4
, (2.9.6)

where (�x)2 and (�k)2 are defined by (2.9.3) and (2.9.4) respectively. Equal-
ity in (2.9.6) holds only if f(x) is a Gaussian function given by f(x)=C e−ax

2
,

a> 0.

PROOF If the averages are <x> and <k>, then the average location of
exp(−i < k > x)f(x+<x>) is zero. Hence, it is sufficient to prove the theorem
around the zero mean values, that is, <x>=<k>=0. Since ||f ||2 = ||F ||2,
we have

||f ||42(�x)2(�k)2 =
∫ ∞

−∞
|xf(x)|2dx

∫ ∞

−∞
|kF (k)|2dk.
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Using ikF (k)= F{f ′(x)} and the Parseval formula ||f ′(x)||2 = ||ikF (k)||2, we
obtain

||f ||42(�x)2(�k)2 =
∫ ∞

−∞
|xf(x)|2dx

∫ ∞

−∞
|f ′(x)|2dx

≥
∣∣∣∣∫ ∞

−∞

{
xf(x) f ′(x)

}
dx

∣∣∣∣2 , (see Debnath (2002))

≥
∣∣∣∣∫ ∞

−∞
x.

1
2

{
f ′(x) f(x) + f ′(x) f(x)

}∣∣∣∣2
=

1
4

[∫ ∞

−∞
x

(
d

dx
|f |2

)
dx

]2

=
1
4

{[
x|f(x)|2]∞−∞ −

∫ ∞

−∞
|f |2dx

}2

=
1
4
||f ||42 .

in which
√
xf(x)→ 0 as |x|→∞ was used to eliminate the integrated term.

This completes the proof.
If we assume f ′(x) is proportional to x f(x), that is, f ′(x) = b x f(x), where b
is a constant of proportionality, this leads to the Gaussian signals

f(x) =C exp(−ax2),

where C is a constant of integration and a=− b
2 > 0.

In 1924, Heisenberg first formulated the uncertainty principle between the
position and momentum in quantum mechanics. This principle has an impor-
tant interpretation as an uncertainty of both the position and momentum of
a particle described by a wave function ψ ∈L2(R). In other words, it is not
possible to determine the position and momentum of a particle exactly and
simultaneously.
In signal processing, time and frequency concentrations of energy of a signal
f are also governed by the Heisenberg uncertainty principle. The average or
expectation values of time t and frequency ω, are respectively defined by

< t>=
1

||f ||22

∫ ∞

−∞
t|f(t)|2dt, <ω >=

1
||F ||22

∫ ∞

−∞
ω|F (ω)|2dω, (2.9.7)

where the energy of a signal f(t) is well localized in time, and its Fourier
transform F (ω) has an energy concentrated in a small frequency domain.
The variances around these average values are given respectively by

σ2
t =

1
||f ||22

∫ ∞

−∞
(t−< t>)2|f(t)|2dt,

(2.9.8)

σ2
ω =

1
2π||F ||22

∫ ∞

−∞
(ω−<ω>)2|F (ω)|2dω.
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Remarks:

1. In a time-frequency analysis of signals, the measure of the resolution
of a signal f in the time or frequency domain is given by σt and σω .
Then, the joint resolution is given by the product (σt) (σω) which is
governed by the Heisenberg uncertainty principle. In other words, the
product (σt) (σω) cannot be arbitrarily small and is always greater than
the minimum value 1

2 which is attained for the Gaussian signal.

2. In many applications in science and engineering, signals with a high con-
centration of energy in the time and frequency domains are of special
interest. The uncertainty principle can also be interpreted as a mea-
sure of this concentration of the second moment of f2(t) and its energy
spectrum F 2(ω).

2.10 Applications of Fourier Transforms
to Ordinary Differential Equations

We consider the nth order linear ordinary differential equation with constant
coefficients

Ly(x) = f(x), (2.10.1)

where L is the nth order differential operator given by

L≡ anD
n + an−1D

n−1 + · · ·+ a1D+ a0, (2.10.2)

where an, an−1, . . . , a1, a0 are constants, D≡ d
dx and f(x) is a given function.

Application of the Fourier transform to both sides of (2.10.1) gives

[an(ik)n + an−1(ik)n−1 + · · ·+ a1(ik) + a0]Y (k) =F (k),

where F{y(x)}= Y (k) and F{f(x)}=F (k).
Or, equivalently

P (ik)Y (k) =F (k),

where

P (z)=
n∑
r=0

arz
r.

Thus,

Y (k) =
F (k)
P (ik)

=F (k)Q(k), (2.10.3)
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where Q(k) = 1
P (ik) .

Applying the Convolution Theorem 2.5.5 to (2.10.3) gives the formal solu-
tion

y(x) = F−1 {F (k)Q(k)}=
1√
2π

∞∫
−∞

f(ξ)q(x− ξ)dξ, (2.10.4)

provided q(x) = F−1{Q(k)} is known explicitly.
In order to give a physical interpretation of the solution (2.10.4), we consider

the differential equation with a suddenly applied impulse function f(x) = δ(x)
so that

L{G(x)}= δ(x). (2.10.5)

The solution of this equation can be written from the inversion of (2.10.3)
in the form

G(x) = F−1

{
1√
2π

Q(k)
}

=
1√
2π

q(x). (2.10.6)

Thus, the solution (2.10.4) takes the form

y(x) =

∞∫
−∞

f(ξ)G(x− ξ)dξ. (2.10.7)

Clearly, G(x) behaves like a Green’s function, that is, it is the response to a u-
nit impulse. In any physical system, f(x) usually represents the input function,
while y(x) is referred to as the output obtained by the superposition principle.
The Fourier transform of {√2πG(x)}= q(x) is called the admittance. In order
to find the reponse to a given input, we determine the Fourier transform of
the input function, multiply the result by the admittance, and then apply the
inverse Fourier transform to the product so obtained.

We illustrate these ideas by solving a simple problem in the electrical circuit
theory.

Example 2.10.1
(Electric Current in a Simple Circuit). The current I(t) in a simple circuit
containing the resistance R and inductance L satisfies the equation

L
dI

dt
+RI =E(t), (2.10.8)

where E(t) is the applied electromagnetic force and R and L are constants.
With E(t) =E0 exp(−a|t|), we use the Fourier transform with respect to

time t to obtain

(ikL+R)Î(k) =E0

√
2
π

a

(a2 + k2)
.
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Or,

Î(k) =
aE0

iL

√
2
π

1(
k − Ri

L

)
(k2 + a2)

,

where F{I(t)}= Î(k). The inverse Fourier transform gives

I(t) =
aE0

iπL

∞∫
−∞

exp(ikt)dk(
k− Ri

L

)
(k2 + a2)

. (2.10.9)

This integral can be evaluated by the Cauchy Residue Theorem. For t > 0

I(t) =
aE0

iπL
· 2πi

[
Residue atk=

Ri

L
+ Residue atk= ia

]
=

2aE0

L

[
e−

R
L t(

a2 − R2

L2

) − e−at

2a
(
a− R

L

)]

= E0

[
e−at

R− aL
− 2aLe−

R
L t

R2 − a2L2

]
. (2.10.10)

Similarly, for t< 0, the Residue Theorem gives

I(t) = −aE0

iπL
· 2πi[Residue atk=−ia]

= −2aE0

L

[ −Leat
(aL+R)2a

]
=

E0e
at

(aL+R)
. (2.10.11)

At t= 0, the current is continuous and therefore,

I(0)= lim
t→0

I(t) =
E0

R+ aL
.

If E(t) = δ(t), then Ê(k) = 1√
2π

and the solution is obtained by using the
inverse Fourier transform

I(t) =
1

2πiL

∞∫
−∞

eikt

k − iR
L

dk,

which is, by the Theorem of Residues,

=
1
L

[Residue atk= iR/L]

=
1
L

exp
(
−Rt
L

)
. (2.10.12)

Thus, the current tends to zero as t→∞ as expected.
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Example 2.10.2

Find the solution of the ordinary differential equation

−d
2u

dx2
+ a2u= f(x), −∞<x<∞ (2.10.13)

by the Fourier transform method.
Application of the Fourier transform to (2.10.13) gives

U(k) =
F (k)
k2 + a2

.

This can readily be inverted by the Convolution Theorem 2.5.5 to obtain

u(x) =
1√
2π

∞∫
−∞

f(ξ)g(x− ξ)dξ, (2.10.14)

where g(x) = F−1
{

1
k2+a2

}
= 1

a

√
π
2 exp(−a|x|) by Example 2.3.2. Thus, the

final solution is

u(x) =
1
2a

∞∫
−∞

f(ξ)e−a|x−ξ| dξ. (2.10.15)

Example 2.10.3

(The Bernoulli-Euler Beam Equation). We consider the vertical deflection
u(x) of an infinite beam on an elastic foundation under the action of a pre-
scribed vertical load W (x). The deflection u(x) satisfies the ordinary differ-
ential equation

EI
d4u

dx4
+ κu=W (x), −∞<x<∞. (2.10.16)

where EI is the flexural rigidity and κ is the foundation modulus of the
beam. We find the solution assuming that W (x) has a compact support and
u, u′, u′′, u′′′ all tend to zero as |x| →∞.

We first rewrite (2.10.16) as

d4u

dx4
+ a4u=w(x) (2.10.17)

where a4 = κ/EI andw(x) =W (x)/EI. Use of the Fourier transform to (2.10.17)
gives

U(k) =
W (k)
k4 + a4

.
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The inverse Fourier transform gives the solution

u(x) =
1√
2π

∞∫
−∞

W (k)
k4 + a4

eikx dk

=
1
2π

∞∫
−∞

eikx

k4 + a4
dk

∞∫
−∞

w(ξ)e−ikξ dξ

=

∞∫
−∞

w(ξ)G(ξ, x) dξ, (2.10.18)

where

G(ξ, x) =
1
2π

∞∫
−∞

eik(x−ξ)

k4 + a4
dk=

1
π

∞∫
0

cos k(x− ξ) dk
k4 + a4

. (2.10.19)

The integral can be evaluated by the Theorem of Residues or by using the
table of Fourier integrals. We simply state the result

G(ξ, x) =
1

2a3
exp

(
− a√

2
|x− ξ|

)
sin

[
a(x− ξ)√

2
+
π

4

]
. (2.10.20)

In particular, we find the explicit solution due to a concentrated load of unit
strength acting at some point x0, that is, w(x) = δ(x− x0). Then the solution
for this case becomes

u(x) =

∞∫
−∞

δ(ξ − x0)G(x, ξ) dξ =G(x, x0). (2.10.21)

Thus, the kernel G(x, ξ) involved in the solution (2.10.18) has the physical
significance of being the deflection, as a function of x, due to a unit point load
acting at ξ. Thus, the deflection due to a point load of strength w(ξ) dξ at ξ is
w(ξ) dξ ·G(x, ξ), and hence, (2.10.18) represents the superposition of all such
incremental deflections.

The reader is referred to a more general dynamic problem of an infinite
Bernoulli-Euler beam with damping and elastic foundation that has been
solved by Stadler and Shreeves (1970), and also by Sheehan and Debnath
(1972). These authors used the Fourier-Laplace transform method to deter-
mine the steady state and the transient solutions of the beam problem.
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2.11 Solutions of Integral Equations

The method of Fourier transforms can be used to solve simple integral equa-
tions of the convolution type. We illustrate the method by examples.

We first solve the Fredholm integral equation with convolution kernel in the
form ∞∫

−∞
f(t)g(x− t) dt+ λf(x) = u(x), (2.11.1)

where g(x) and u(x) are given functions and λ is a known parameter.
Application of the Fourier transform to (2.11.1) gives

√
2πF (k)G(k) + λF (k) =U(k).

Or,

F (k) =
U(k)√

2πG(k) + λ
. (2.11.2)

The inverse Fourier transform leads to a formal solution

f(x) =
1√
2π

∞∫
−∞

U(k)eikxdk√
2πG(k) + λ

. (2.11.3)

In particular, if g(x) = 1
x so that

G(k) =−i
√
π

2
sgn k,

then the solution becomes

f(x) =
1√
2π

∞∫
−∞

U(k)eikxdk
λ− iπ sgn k

. (2.11.4)

If λ= 1 and g(x) = 1
2

(
x
|x|
)

so that G(k) = 1√
2π

1
(ik) , solution (2.11.3) reduces

to the form

f(x) =
1√
2π

∞∫
−∞

(ik)
U(k)eikx dk

(1 + ik)

=
1√
2π

∞∫
−∞

F{u′(x)}F{√2π e−x}eikx dk

= u′(x) ∗
√

2π e−x =

∞∫
−∞

u′(ξ) exp(ξ − x) dξ. (2.11.5)
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Example 2.11.1
Find the solution of the integral equation

∞∫
−∞

f(x− ξ)f(ξ) dξ =
1

x2 + a2
. (2.11.6)

Application of the Fourier transform gives

√
2πF (k)F (k) =

√
π

2
e−a|k|

a
.

Or,

F (k) =
1√
2a

exp
{
−1

2
a|k|

}
. (2.11.7)

The inverse Fourier transform gives the solution

f(x) =
1√
2π

1√
2a

∞∫
−∞

exp
(
ikx− 1

2
a|k|

)
dk

=
1

2
√
πa

⎡⎣ ∞∫
0

exp
{
−k

(a
2

+ ix
)}

dk +

∞∫
0

exp
{
−k

(a
2
− ix

)}
dk

⎤⎦
=

1
2
√
πa

[
4a

(4x2 + a2)

]
=
√
a

π
· 2
(4x2 + a2)

.

Example 2.11.2
Solve the integral equation

∞∫
−∞

f(t) dt
(x− t)2 + a2

=
1

(x2 + b2)
, b > a> 0. (2.11.8)

Taking the Fourier transform, we obtain

√
2π F (k)F

{
1

x2 + a2

}
=
√
π

2
e−b|k|

b
,

or,
√

2π F (k)
√
π

2
· e

−a|k|

a
=
√
π

2
e−b|k|

b
.

Thus,

F (k) =
1√
2π

(a
b

)
exp{−|k|(b− a)}. (2.11.9)
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The inverse Fourier transform leads to the solution

f(x) =
a

2πb

∞∫
−∞

exp[ikx− |k|(b− a)]dk

=
a

2πb

⎡⎣ ∞∫
0

exp[−k{(b− a) + ix}]dk+

∞∫
0

exp[−k{(b− a) − ix}]
⎤⎦ dk

=
a

2πb

[
1

(b− a) + ix
+

1
(b− a)− ix

]
=
( a

πb

) (b− a)
(b− a)2 + x2

. (2.11.10)

Example 2.11.3
Solve the integral equation

f(t) + 4

∞∫
−∞

e−a|x−t|f(t)dt= g(x). (2.11.11)

Application of the Fourier transform gives

F (k) + 4
√

2πF (k) · 2a√
2π(a2 + k2)

=G(k)

F (k) =
(a2 + k2)

a2 + k2 + 8a
G(k). (2.11.12)

The inverse Fourier transform gives

f(x) =
1√
2π

∞∫
−∞

(a2 + k2)G(k)
a2 + k2 + 8a

eikxdk. (2.11.13)

In particular, if a= 1 and g(x) = e−|x| so that G(k) =
√

2
π

1
1+k2 , then solution

(2.11.13) becomes

f(x) =
1
π

∞∫
−∞

eikx

k2 + 32
dk. (2.11.14)

For x> 0, we use a semicircular closed contour in the lower half of the complex
plane to evaluate (2.11.14). It turns out that

f(x) =
1
3
e−3x. (2.11.15)
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Similarly, for x< 0, a semicircular closed contour in the upper half of the
complex plane is used to evaluate (2.11.14) so that

f(x) =
1
3
e3x, x< 0. (2.11.16)

Thus, the final solution is

f(x) =
1
3

exp(−3|x|). (2.11.17)

2.12 Solutions of Partial Differential Equations

In this section we illustrate how the Fourier transform method can be used
to obtain the solution of boundary value and initial value problems for linear
partial differential equations of different kinds.

Example 2.12.1
(Dirichlet’s Problem in the Half-Plane). We consider the solution of the Laplace
equation in the half-plane

uxx + uyy = 0, −∞<x<∞, y≥ 0, (2.12.1)

with the boundary conditions

u(x, 0) = f(x), −∞<x<∞, (2.12.2)
u(x, y)→ 0 as |x|→∞, y→∞. (2.12.3)

We introduce the Fourier transform with respect to x

U(k, y)=
1√
2π

∞∫
−∞

e−ikxu(x, y)dx (2.12.4)

so that (2.12.1)–(2.12.3) becomes

d2U

dy2
− k2U = 0, (2.12.5)

U(k, 0) =F (k), U(k, y)→ 0 as y→∞. (2.12.6ab)

Thus, the solution of this transformed system is

U(k, y) =F (k)e−|k|y. (2.12.7)
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Application of the Convolution Theorem 2.5.5 gives the solution

u(x, y) =
1√
2π

∞∫
−∞

f(ξ)g(x− ξ)dξ, (2.12.8)

where

g(x) = F−1{e−|k|y}=

√
2
π

y

(x2 + y2)
. (2.12.9)

Consequently, the solution (2.12.8) becomes

u(x, y) =
y

π

∞∫
−∞

f(ξ)dξ
(x− ξ)2 + y2

, y > 0. (2.12.10)

This is the well-known Poisson integral formula in the half-plane. It is noted
that

lim
y→0+

u(x, y) =

∞∫
−∞

f(ξ)
[

lim
y→0+

y

π
· 1
(x− ξ)2 + y2

]
dξ=

∞∫
−∞

f(ξ)δ(x− ξ)dξ,

(2.12.11)
where Cauchy’s definition of the delta function is used, that is,

δ(x− ξ) = lim
y→0+

y

π
· 1
(x− ξ)2 + y2

. (2.12.12)

This may be recognized as a solution of the Laplace equation for a dipole
source at (x, y) = (ξ, 0).

In particular, when
f(x) = T0H(a− |x|) (2.12.13)

the solution (2.12.10) reduces to

u(x, y) =
yT0

π

a∫
−a

dξ

(ξ − x)2 + y2

=
T0

π

[
tan−1

(
x+ a

y

)
− tan−1

(
x− a

y

)]
=
T0

π
tan−1

(
2ay

x2 + y2 − a2

)
. (2.12.14)

The curves in the upper half-plane for which the steady state temperature is
constant are known as isothermal curves. In this case, these curves represent
a family of circular arcs

x2 + y2 − αy= a2 (2.12.15)
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a
x

y

-a

Figure 2.9 A family of circular arcs.

with centers on the y-axis and the fixed end points on the x-axis at x=±a.
The graphs of the arcs are is displayed in Figure 2.9.

Another special case deals with

f(x) = δ(x). (2.12.16)

The solution for this case follows from (2.12.10) and is

u(x, y) =
y

π

∞∫
−∞

δ(ξ)dξ
(x− ξ)2 + y2

=
y

π

1
(x2 + y2)

. (2.12.17)

Further, we can readily deduce the solution of the Neumann problem in the
half-plane from the solution of the Dirichlet problem.

Example 2.12.2
(Neumann’s Problem in the Half-Plane). Find a solution of the Laplace equa-
tion

uxx + uyy = 0, −∞<x<∞, y > 0, (2.12.18)

with the boundary condition

uy(x, 0) = f(x), −∞<x<∞. (2.12.19)

This condition specifies the normal derivative on the boundary, and physically,
it describes the fluid flow or, heat flux at the boundary.

We define a new function υ(x, y) = uy(x, y) so that

u(x, y) =

y∫
υ(x, η)dη, (2.12.20)
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where an arbitrary constant can be added to the right-hand side. Clearly, the
function υ satisfies the Laplace equation

∂2υ

∂x2
+
∂2υ

∂y2
=
∂2uy
∂x2

+
∂2uy
∂y2

=
∂

∂y
(uxx + uyy) = 0,

with the boundary condition

υ(x, 0) = uy(x, 0) = f(x) for −∞<x<∞.

Thus, υ(x, y) satisfies the Laplace equation with the Dirichlet condition on
the boundary. Obviously, the solution is given by (2.12.10); that is,

υ(x, y) =
y

π

∞∫
−∞

f(ξ)dξ
(x− ξ)2 + y2

. (2.12.21)

Then the solution u(x, y) can be obtained from (2.12.20) in the form

u(x, y) =

y∫
υ(x, η)dη=

1
π

y∫
η dη

∞∫
−∞

f(ξ)dξ
(x− ξ)2 + η2

=
1
π

∞∫
−∞

f(ξ)dξ

y∫
η dη

(x− ξ)2 + η2
, y > 0

=
1
2π

∞∫
−∞

f(ξ) log[(x− ξ)2 + y2]dξ, (2.12.22)

where an arbitrary constant can be added to this solution. In other words, the
solution of any Neumann problem is uniquely determined up to an arbitrary
constant.

Example 2.12.3
(The Cauchy Problem for the Diffusion Equation). We consider the initial
value problem for a one-dimensional diffusion equation with no sources or
sinks

ut = κuxx, −∞<x<∞, t > 0, (2.12.23)

where κ is a diffusivity constant with the initial condition

u(x, 0)= f(x), −∞<x<∞. (2.12.24)

We solve this problem using the Fourier transform in the space variable x
defined by (2.12.4). Application of this transform to (2.12.23)–(2.12.24) gives

Ut = −κk2U, t > 0, (2.12.25)
U(k, 0) = F (k). (2.12.26)
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The solution of the transformed system is

U(k, t) =F (k) e−κk
2t. (2.12.27)

The inverse Fourier transform gives the solution

u(x, t) =
1√
2π

∞∫
−∞

F (k) exp[(ikx− κk2t)]dk

which is, by the Convolution Theorem 2.5.5,

=
1√
2π

∞∫
−∞

f(ξ)g(x− ξ)dξ, (2.12.28)

where

g(x) = F−1{e−κk2t}=
1√
2κt

exp
(
− x2

4κt

)
, by (2.3.5).

Thus, solution (2.12.28) becomes

u(x, t) =
1√

4πκt

∞∫
−∞

f(ξ) exp
[
− (x− ξ)2

4κt

]
dξ. (2.12.29)

The integrand involved in the solution consists of the initial value f(x) and
Green’s function (or, elementary solution) G(x− ξ, t) of the diffusion equation
for the infinite interval:

G(x− ξ, t) =
1√

4πκt
exp

[
− (x− ξ)2

4κt

]
. (2.12.30)

So, in terms of G(x− ξ, t), solution (2.12.29) can be written as

u(x, t) =

∞∫
−∞

f(ξ)G(x− ξ, t)dξ (2.12.31)

so that, in the limit as t→ 0+, this formally becomes

u(x, 0) = f(x) =

∞∫
−∞

f(ξ) lim
t→0+

G(x− ξ, t)dξ.

The limit of G(x− ξ, t) represents the Dirac delta function

δ(x− ξ) = lim
t→0+

1
2
√
πκt

exp
[
− (x− ξ)2

4 κt

]
. (2.12.32)
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Figure 2.10 Graphs of G(x, t) against x.

Graphs of G(x, t) are shown in Figure 2.10 for different values of κt.
It is important to point out that the integrand in (2.12.31) consists of the

initial temperature distribution f(x) and Green’s function G(x− ξ, t) which
represents the temperature response along the rod at time t due to an initial
unit impulse of heat at x= ξ. The physical meaning of the solution (2.12.31)
is that the initial temperature distribution f(x) is decomposed into a spec-
trum of impulses of magnitude f(ξ) at each point x= ξ to form the resulting
temperature f(ξ)G(x− ξ, t). Thus, the resulting temperature is integrated to
find solution (2.12.31). This is called the principle of integral superposition.

We make the change of variable

ξ − x

2
√
κt

= ζ, dζ =
dξ

2
√
κt

to express solution (2.12.29) in the form

u(x, t) =
1√
π

∞∫
−∞

f(x+ 2
√
κt ζ) exp(−ζ2)dζ. (2.12.33)

The integral solution (2.12.33) or (2.12.29) is called the Poisson integral rep-
resentation of the temperature distribution. This integral is convergent for all
time t> 0, and the integrals obtained from (2.12.33) by differentiation under
the integral sign with respect to x and t are uniformly convergent in the neigh-
borhood of the point (x, t). Hence, the solution u(x, t) and its derivatives of
all orders exist for t > 0.

Finally, we consider a special case involving discontinuous initial condition
in the form

f(x) = T0H(x) , (2.12.34)
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where T0 is a constant. In this case, solution (2.12.29) becomes

u(x, t) =
T0

2
√
πκt

∞∫
0

exp
[
− (x− ξ)2

4 κt

]
dξ. (2.12.35)

Introducing the change of variable η= ξ−x
2
√
κt

, we can express solution (2.12.35)
in the form

u(x, t) =
T0√
π

∞∫
−x/2√κt

e−η
2
dη=

T0

2
erfc

(
− x

2
√
κt

)

=
T0

2

[
1 + erf

(
x

2
√
κt

)]
. (2.12.36)

The solution given by equation (2.12.36) with T0 = 1 is shown in Figure 2.11.
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x
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t = 0.1
t = 0.5
t = 2.0

Figure 2.11 The time development of solution (2.12.36).

If f(x) = δ(x), then the fundamental solution (2.7.29) is given by

u(x, t) =
1√

4π κ t
exp

(
− x2

4κ t

)
.

Example 2.12.4
(The Cauchy Problem for the Wave Equation). Obtain the d’Alembert solu-
tion of the initial value problem for the wave equation

utt = c2uxx, −∞<x<∞, t > 0, (2.12.37)
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with the arbitrary but fixed initial data

u(x, 0)= f(x), ut(x, 0) = g(x), −∞<x<∞. (2.12.38ab)

Application of the Fourier transform F{u(x, t)}=U(k, t) to this system gives

d2U

dt2
+ c2k2U = 0,

U(k, 0)=F (k),
(
dU

dt

)
t=0

=G(k).

The solution of the transformed system is

U(k, t)=A eickt +B e−ickt,

where A and B are constants to be determined from the transformed data so
that A+B=F (k) and A−B= 1

ikcG(k). Solving for A and B, we obtain

U(k, t)=
1
2
F (k)(eickt + e−ickt) +

G(k)
2ick

(eickt − e−ickt). (2.12.39)

Thus, the inverse Fourier transform of (2.12.39) yields the solution

u(x, t) =
1
2

⎡⎣ 1√
2π

∞∫
−∞

F (k){eik(x+ct) + eik(x−ct)}dk
⎤⎦

+
1
2c

⎡⎣ 1√
2π

∞∫
−∞

G(k)
ik

{eik(x+ct) − eik(x−ct)}dk
⎤⎦ . (2.12.40)

We use the following results

f(x) = F−1{F (k)}=
1√
2π

∞∫
−∞

eikxF (k)dk,

g(x) = F−1{G(k)}=
1√
2π

∞∫
−∞

eikxG(k)dk,

to obtain the solution in the final form

u(x, t) =
1
2
[f(x− ct) + f(x+ ct)] +

1
2c

1√
2π

∞∫
−∞

G(k)dk

x+ct∫
x−ct

eikξdξ

=
1
2
[f(x− ct) + f(x+ ct)] +

1
2c

x+ct∫
x−ct

dξ

⎡⎣ 1√
2π

∞∫
−∞

eikξG(k)dk

⎤⎦
=

1
2
[f(x− ct) + f(x+ ct)] +

1
2c

x+ct∫
x−ct

g(ξ)dξ. (2.12.41)
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This is the well known d’Alembert’s solution of the wave equation.
The method and the form of the solution reveal several important features

of the wave equation. First, the method of solution essentially proves the
existence of the d’Alembert solution and the solution is unique provided f(x)
is twice continuously differentiable and g(x) is continuously differentiable.
Second, the terms involving f(x± ct) in (2.12.41) show that disturbances
are propagated along the characteristics with constant velocity c. Both terms
combined together suggest that the value of the solution at position x and at
time t depends only on the initial values of f(x) at x− ct and x+ ct and the
values of g(x) between these two points. The interval (x− ct, x+ ct) is called
the domain of dependence of the variable (x, t). Finally, the solution depends
continuously on the initial data, that is, the problem is well posed. In other
words, a small change in either f(x) or g(x) results in a correspondingly small
change in the solution u(x, t).

In particular, if f(x) = exp(−x2) and g(x)≡ 0, the time development of
solution (2.12.41) with c= 1 is shown in Figure 2.12. In this case, the solution
becomes

u(x, t) =
1
2
[e−(x−t)2 + e−(x+t)2 ]. (2.12.42)

As shown in Figure 2.12, the initial form f(x) = exp(−x2) is found to split
into two similar waves propagating in opposite direction with unit velocity.

Example 2.12.5
(The Schrödinger Equation in Quantum Mechanics). The time-dependent
Schrödinger equation of a particle of mass m is

i�ψt =
[
V (x) − �2

2m
∇2

]
ψ=Hψ, (2.12.43)

where h= 2π� is the Planck constant, ψ(x, t) is the wave function, V (x) is the
potential, ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 is the three-dimensional Laplacian, and H is
the Hamiltonian.

If V (x) = constant= V , we can seek a plane wave solution of the form

ψ(x, t) =A exp[i(κ · x− ωt)], (2.12.44)

where A is a constant amplitude, κ = (k, l,m) is the wavenumber vector, and
ω is the frequency.

Substituting this solution into (2.12.43), we conclude that this solution is
possible provided the following relation is satisfied:

i�(−iω)= V − �2

2m
(iκ)2, κ2 = k2 + l2 +m2.

Or,

�ω=V +
�2κ2

2m
. (2.12.45)
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Figure 2.12 The time development of solution (2.12.42).

This is called the dispersion relation and shows that the sum of the potential
energy V and the kinetic energy (�κ)2

2m is equal to the total energy �ω. Further,
the kinetic energy

K.E.=
1

2m
(�κ)2 =

p2

2m
, (2.12.46)

where p= �κ is the momentum of the particle.
The phase velocity, Cp and the group velocity, Cg of the wave are defined

by
Cp =

ω

κ
κ̂, Cg =∇κω(κ), (2.12.47ab)

where κ is the wavenumber vector and κ= |κ| and κ̂ is the unit wavenumber
vector.

In the one-dimensional case, the phase velocity is

Cp =
ω

k
(2.12.48)

and the group velocity is

Cg =
∂ω

∂k
=

�k

m
=
p

m
=
mυ

υ
= υ. (2.12.49)

This shows that the group velocity is equal to the classical particle velocity υ.
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We now use the Fourier transform method to solve the one-dimensional
Schrödinger equation for a free particle (V ≡ 0), that is,

i�ψt = − �2

2m
ψxx, −∞<x<∞, t > 0, (2.12.50)

ψ(x, 0) = ψ0(x), −∞<x<∞, (2.12.51)
ψ(x, t) → 0 as |x|→∞. (2.12.52)

Application of the Fourier transform to (2.12.50)–(2.12.52) gives

Ψt =− i�k
2

2m
Ψ, Ψ(k, 0)= Ψ0(k). (2.12.53)

The solution of this transformed system is

Ψ(k, t) = Ψ0(k) exp(−iαk2t), α=
�

2m
. (2.12.54)

The inverse Fourier transform gives the formal solution

ψ(x, t) =
1√
2π

∞∫
−∞

Ψ0(k) exp{ik(x− αkt)}dk

=
1
2π

∞∫
−∞

e−ikyψ(y, 0)dy

∞∫
−∞

exp{ik(x− αkt)}dk

=
1
2π

∞∫
−∞

ψ(y, 0)dy

∞∫
−∞

exp{ik(x− y − αkt)}dk. (2.12.55)

We rewrite the integrand of the second integral in (2.12.55) as follows

exp[ik(x − y− αkt)]

= exp

[
−iαt

{
k2 − 2k · x− y

2αt
+
(
x− y

2αt

)2

−
(
x− y

2αt

)2
}]

= exp

[
−iαt

{
k − x− y

2αt

}2
]

exp
[
i(x− y)2

4αt

]
= exp

[
i(x− y)2

4αt

]
exp(−iαtξ2), ξ= k − x− y

2αt
.
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Using this result in (2.12.55), we obtain

ψ(x, t) =
1
2π

∞∫
−∞

exp
[
i(x− y)2

4αt

]
ψ(y, 0)dy

∞∫
−∞

exp(−iαtξ2)dξ

=
1
2π

√
π

2αt
(1 − i)

∞∫
−∞

exp
[
i(x− y)2

4αt

]
ψ(y, 0)dy

=
(1 − i)
2
√

2απt

∞∫
−∞

exp
[
i(x− y)2

4αt

]
ψ(y, 0)dy. (2.12.56)

This is the integral solution of the problem.

Example 2.12.6
(Slowing Down of Neutrons). We consider the problem of slowing down neu-
trons in an infinite medium with a source of neutrons governed by

ut = uxx + δ(x)δ(t), −∞<x<∞, t > 0, (2.12.57)
u(x, 0) = δ(x), −∞<x<∞, (2.12.58)
u(x, t)→ 0 as |x|→∞ for t > 0, (2.12.59)

where u(x, t) represents the number of neutrons per unit volume per unit
time, which reach the age t, and δ(x)δ(t) is the source function.

Application of the Fourier transform method gives

dU

dt
+ k2U =

1√
2π

δ(t),

U(k, 0) =
1√
2π
.

The solution of this transformed system is

U(k, t) =
1√
2π

e−k
2t,

and the inverse Fourier transform gives the solution

u(x, t) =
1
2π

∞∫
−∞

eikx−k
2tdk=

1√
2π

F−1
{
e−k

2t
}

=
1√
4πt

exp
(
−x

2

4t

)
. (2.12.60)
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Example 2.12.7
(One-Dimensional Wave Equation). Obtain the solution of the one-dimensional
wave equation

utt = c2uxx, −∞<x<∞, t > 0, (2.12.61)

u(x, 0) = 0, ut(x, 0) = δ(x), −∞<x<∞. (2.12.62ab)

Making reference to Example 2.12.4, we find f(x)≡ 0 and g(x) = δ(x) so
that F (k) = 0 and G(k) = 1√

2π
. The solution for U(k, t) is given by

U(k, t) =
1

2c
√

2π

[
eickt

ik
− e−ickt

ik

]
.

Thus, the inverse Fourier transform gives

u(x, t) =
1

2c
√

2π
F−1

{
eickt

ik
− e−ickt

ik

}
=

1
2c
√

2π

[√
π

2
{sgn(x + ct) − sgn(x− ct)}

]
=

1
4c

[sgn(x + ct) − sgn(x − ct)]

=

⎧⎪⎪⎨⎪⎪⎩
1− 1
4c

= 0, |x|> ct> 0

1 + 1
4c

=
1
2c
, |x|< ct.

In other words, the solution can be written in the form

u(x, t) =
1
2c
H(c2t2 − x2).

Example 2.12.8
(Linearized Shallow Water Equations in a Rotating Ocean). The horizontal
equations of motion of a uniformly rotating inviscid homogeneous ocean of
constant depth h are

ut − fυ = −g ηx, (2.12.63)
υt + fu = 0, (2.12.64)
ηt + hux = 0, (2.12.65)

where f = 2Ω sin θ is the Coriolis parameter, which is constant in the present
problem, g is the acceleration due to gravity, η(x, t) is the free surface eleva-
tion, u(x, t) and υ(x, t) are the velocity fields. The wave motion is generated



© 2007 by Taylor & Francis Group, LLC

Fourier Transforms and Their Applications 81

by the prescribed free surface elevation at t= 0 so that the initial conditions
are

u(x, 0) = 0 = υ(x, 0), η(x, 0) = η0H(a− |x|), (2.12.66abc)

and the velocity fields and free surface elevation function vanish at infinity.
We apply the Fourier transform with respect to x defined by

F{f(x, t)}=F (k, t) =
1√
2π

∞∫
−∞

e−ikxf(x, t)dx (2.12.67)

to the system (2.12.63)–(2.12.65) so that the system becomes

dU

dt
− fV = −gikE

dV

dt
+ fU = 0

dE

dt
= −hikU

U(k, 0)= 0 =V (k, 0), E(k, 0) =

√
2
π
η0

(
sin ak
k

)
, (2.12.68abc)

where E(k, t) = F{η(x, t)}.
Elimination of U and V from the transformed system gives a single equation

for E(k, t) as
d3E

dt3
+ ω2 dE

dt
= 0, (2.12.69)

where ω2 = (f2 + c2k2) and c2 = gh. The general solution of (2.12.69) is

E(k, t) =A+B cosωt+C sinωt, (2.12.70)

where A, B, and C are arbitrary constants to be determined from (2.12.68c)
and (

d2E

dt2

)
t=0

=−c2k2E(k, 0) =−c2k2 ·
√

2
π
η0

sin ak
k

,

which gives

B=

√
2
π
η0

(
sin ak
k

)
·
(
c2k2

ω2

)
.

Also
(
dE
dt

)
t=0

= 0 gives C ≡ 0 and (2.12.68c) implies A+B=
√

2
πη0

sin ak
k .

Consequently, the solution (2.12.70) becomes

E(k, t) =

√
2
π
η0

(
sinak
k

)
f2 + c2k2 cosωt

(f2 + c2k2)
. (2.12.71)
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Similarly

U(k, t) =

√
2
π

η0 sin ak
ih

· c2 sinωt√
c2k2 + f2

, (2.12.72)

V (k, t) =
1
f

(
dU

dt
+ gik E

)
. (2.12.73)

The inverse Fourier transform gives the formal solution for η(x, t)

η(x, t) =
(η0
π

) ∞∫
−∞

sin ak
k

· f
2 + c2k2 cosωt
(f2 + c2k2)

eikxdk. (2.12.74)

Similar integral expressions for u(x, t) and υ(x, t) can be obtained.

Example 2.12.9
(Sound Waves Induced by a Spherical Body). We consider propagation of
sound waves in an unbounded fluid medium generated by an impulsive radial
acceleration of a sphere of radius a. Such waves are assumed to be spherically
symmetric and the associated velocity potential on the pressure field p(r, t)
satisfies the wave equation

∂2p

∂t2
= c2

[
1
r2

∂

∂r

(
r2
∂p

∂r

)]
, (2.12.75)

where c is the speed of sound. The boundary condition required for the prob-
lem is

1
ρ0

(
∂p

∂r

)
=−a0 δ(t) on r= a, (2.12.76)

where ρ0 is the mean density of the fluid and a0 is a constant.
Application of the Fourier transform of p(r, t) with respect to time t gives

1
r2

d

dr

(
r2
dP

dr

)
=−k2P (r, ω), (2.12.77)

dP

dr
=−a0ρ0√

2π
, on r= a, (2.12.78)

where F{p(r, t)}=P (r, ω) and k2 = ω2

c2 .
The general solution of (2.12.77)–(2.12.78) is

P (r, ω) =
A

r
eikr +

B

r
e−ikr, (2.12.79)

where A and B are arbitrary constants.
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The inverse Fourier transform gives the solution

p(r, t) =
1√
2π

∞∫
−∞

[
A

r
ei(ωt+kr) +

B

r
ei(ωt−kr)

]
dω. (2.12.80)

The first term of the integrand represents incoming spherical waves generated
at infinity and the second term corresponds to outgoing spherical waves due to
the impulsive radial acceleration of the sphere. Since there is no disturbance at
infinity, we impose the Sommerfeld radiation condition at infinity to eliminate
the incoming waves so that A= 0, and B is calculated using (2.12.78). Thus,
the inverse Fourier transform gives the formal solution

p(r, t) =
(
a0ρ0a

2

2πr

) ∞∫
−∞

exp
[
iω

{
t− r−a

c

}]
dω(

1 + iωa
c

) . (2.12.81)

We next choose a closed contour with a semicircle in the upper half plane
and the real ω-axis. Using the Cauchy theory of residues, we calculate the
residue contribution from the pole at ω= ic/a. Finally, it turns out that the
final solution is

u(r, t) =
(ρ0a0ca

r

)
exp

[
− c

a

(
t− r − a

c

)]
H

(
t− r − a

c

)
. (2.12.82)

Example 2.12.10
(The Linearized Korteweg-de Vries Equation). The linearized KdV equation
for the free surface elevation η(x, t) in an inviscid water of constant depth h
is

ηt + cηx +
ch2

6
ηxxx = 0, −∞<x<∞, t > 0, (2.12.83)

where c=
√
gh is the shallow water speed.

Solve equation (2.12.83) with the initial condition

η(x, 0) = f(x), −∞<x<∞. (2.12.84)

Application of the Fourier transform F{η(x, t)}=E(k, t) to the KdV sys-
tem gives the solution for E(k, t) in the form

E(k, t) =F (k) exp
[
ikct

(
k2h2

6
− 1

)]
.

The inverse transform gives

η(x, t) =
1√
2π

∞∫
−∞

F (k) exp
[
ik

{
(x− ct) +

(
cth2

6

)
k2

}]
dk. (2.12.85)
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In particular, if f(x) = δ(x), then (2.12.85) reduces to the Airy integral

η(x, t) =
1
π

∞∫
0

cos
[
k(x− ct) +

(
cth2

6

)
k3

]
dk (2.12.86)

which is, in terms of the Airy function,

=
(
cth2

2

)− 1
3

Ai

[(
cth2

2

)− 1
3

(x− ct)

]
, (2.12.87)

where the Airy function Ai(az) is defined by

Ai(az) =
1

2πa

∞∫
−∞

exp
[
i

(
kz +

k3

3a3

)]
dk=

1
πa

∞∫
0

cos
(
kz +

k3

3a3

)
dk.

(2.12.88)

Example 2.12.11
(Biharmonic Equation in Fluid Mechanics). Usually, the biharmonic equation
arises in fluid mechanics and in elasticity. The equation can readily be solved
by using the Fourier transform method. We first derive a biharmonic equation
from the Navier-Stokes equations of motion in a viscous fluid which is given
by

∂u
∂t

+ (u · ∇)u = F− 1
ρ
∇p+ ν∇2u, (2.12.89)

where u = (u, υ, w) is the velocity field, F is the external force per unit mass
of the fluid, p is the pressure, ρ is the density and ν is the kinematic viscosity
of the fluid.

The conservation of mass of an incompressible fluid is described by the
continuity equation

div u = 0. (2.12.90)

In terms of some representative length scale L and velocity scale U , it is
convenient to introduce the nondimensional flow variables

x′ =
x
L
, t′ =

Ut

L
, u′ =

u
U
, p′ =

p

ρU2
. (2.12.91)

In terms of these nondimensional variables, equation (2.12.89) without the
external force can be written, dropping the primes, as

∂u
∂t

+ (u · ∇)u =−∇p+
1
R
∇2u, (2.12.92)

where R=UL/ν is called the Reynolds number. Physically, it measures the
ratio of inertial forces of the order U2/L to viscous forces of the order νU/L2,



© 2007 by Taylor & Francis Group, LLC

Fourier Transforms and Their Applications 85

and it has special dynamical significance. This is one of the most fundamental
nondimensional parameters for the specification of the dynamical state of
viscous flow fields.

In the absence of the external force, F = 0, it is preferable to write the
Navier-Stokes equations (2.12.89) in the form (since u× ω = 1

2∇u2 − u · ∇u)

∂u
∂t

− u× ω =−∇
(
p

ρ
+

1
2
u2

)
− ν∇2u, (2.12.93)

where ω = curl u is the vorticity vector and u2 =u · u.
We can eliminate the pressure p from (2.12.93) by taking the curl of (2.12.93),

giving
∂ω

∂t
− curl(u× ω) = ν∇2ω (2.12.94)

which becomes, by div u = 0 and div ω = 0,

∂ω

∂t
= (ω · ∇)u− (u · ∇)ω + ν∇2ω. (2.12.95)

This is universally known as the vorticity transport equation. The left hand-
side represents the rate of change of vorticity. The first two terms on the
right-hand side represent the rate of change of vorticity due to stretching and
twisting of vortex lines. The last term describes the diffusion of vorticity by
molecular viscosity.

In case of two-dimensional flow, (ω · ∇)u = 0, equation (2.12.95) becomes

Dω

dt
=
∂ω

∂t
+ (u · ∇)ω = ν∇2ω, (2.12.96)

where u= (u, υ, 0) and ω = (0, 0, ζ), and ζ = υx − uy. Equation (2.12.96) shows
that only convection and conduction occur. In terms of the stream function
ψ(x, y) where

u=ψy, υ= −ψx, ω =−∇2ψ, (2.12.97)

which satisfy (2.12.90) identically, equation (2.12.96) assumes the form

∂

∂t

(∇2ψ
)
+
(
∂ψ

∂y

∂

∂x
− ∂ψ

∂x

∂

∂y

)
∇2ψ= ν∇4ψ. (2.12.98)

In case of slow motion (velocity is small) or in case of a very viscous fluid
(ν very large), the Reynolds number R is very small. For a steady flow in such
cases of an incompressible viscous fluid, ∂

∂t ≡ 0, while (u · ∇)ω is negligible
in comparison with the viscous term. Consequently, (2.12.98) reduces to the
standard biharmonic equation

∇4ψ= 0. (2.12.99)

Or, more explicitly,

∇2(∇2)ψ≡ψxxxx + 2ψxxyy + ψyyyy = 0. (2.12.100)
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We solve this equation in a semi-infinite viscous fluid bounded by an in-
finite horizontal plate at y= 0, and the fluid is introduced normally with a
prescribed velocity through a strip −a<x<a of the plate. Thus, the required
boundary conditions are

u≡ ∂ψ

∂y
= 0, υ≡ ∂ψ

∂x
=H(a− |x|)f(x) on y= 0, (2.12.101ab)

where f(x) is a given function of x.
Furthermore, the fluid is assumed to be at rest at large distances from the

plate, that is,

(ψx, ψy)→ (0, 0) as y→∞ for −∞<x<∞. (2.12.102)

To solve the biharmonic equation (2.12.100) with the boundary conditions
(2.12.101ab) and (2.12.102), we introduce the Fourier transform with respect
to x

Ψ(k, y)=
1√
2π

∞∫
−∞

e−ikxψ(x, y)dx. (2.12.103)

Thus, the Fourier transformed problem is(
d2

dy2
− k2

)2

Ψ(k, y) = 0, (2.12.104)

dΨ
dy

= 0, (ik)Ψ =F (k), y= 0, (2.12.105ab)

where

F (k) =
1√
2π

a∫
−a

e−ikxf(x)dx. (2.12.106)

In view of the Fourier transform of (2.12.102), the bounded solution of
(2.12.104) is

Ψ(k, y)= (A+B|k|y) exp(−|k|y), (2.12.107)

whereA andB can be determined from (2.12.105ab) so thatA=B= (ik)−1F (k).
Consequently, the solution (2.12.107) becomes

Ψ(k, y)= (ik)−1(1 + |k|y)F (k) exp(−|k|y). (2.12.108)

The inverse Fourier transform gives the formal solution

ψ(x, y) =
1√
2π

∞∫
−∞

F (k)G(k) exp(ikx)dk, (2.12.109)
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where
G(k) = (ik)−1(1 + |k|y) exp(−|k|y)

so that

g(x) = F−1{G(k)}= F−1{(ik)−1 exp(−|k|y)}
+yF−1{(ik)−1|k| exp(−|k|y)}

= F−1
s {k−1 exp(−ky)} + yF−1

s {e−ky},
which is, by (2.13.7) and (2.13.8),

=

√
2
π

tan−1

(
x

y

)
+

√
2
π

xy

(x2 + y2)
. (2.12.110)

Using the Convolution Theorem 2.5.5 in (2.12.109) gives the final solution

ψ(x, y) =
1
π

∞∫
−∞

f(x− ξ)
[
tan−1

(
ξ

y

)
+

yξ

ξ2 + y2

]
dξ. (2.12.111)

In particular, if f(x) = δ(x), then solution (2.12.111) becomes

ψ(x, y) =
1
π

[
tan−1

(
x

y

)
+

xy

x2 + y2

]
. (2.12.112)

The velocity fields u and υ can be determined from (2.12.112).

Example 2.12.12
(Biharmonic Equation in Elasticity). We derive the biharmonic equation in
elasticity from the two-dimensional equilibrium equations and the compati-
bility condition. In two-dimensional elastic medium, the strain components
exx, exy, eyy in terms of the displacement functions (u, υ, 0) are

exx=
∂u

∂x
, eyy =

∂υ

∂y
, exy =

1
2

(
∂u

∂y
+
∂υ

∂x

)
. (2.12.113)

Differentiating these results gives the compatibility condition

∂2exx
∂y2

+
∂2eyy
∂x2

= 2
∂2exy
∂x∂y

. (2.12.114)

In terms of the Poisson ratio ν and Young’s modulus E of the elastic ma-
terial, the strain component in the z direction is expressed in terms of stress
components

Eezz = σzz − ν(σxx + σyy). (2.12.115)

In the case of plane strain, ezz = 0, so that

σzz = ν(σxx + σyy). (2.12.116)
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Substituting this result in other stress-strain relations, we obtain the strain
components exx, exy, eyy that are related to stress components σxx, σxy, σyy
by

Eexx = σxx − ν(σyy + σzz) = (1 − ν2)σxx − ν(1 + ν)σyy , (2.12.117)
Eeyy = σyy − ν(σxx + σzz) = (1 − ν2)σyy − ν(1 + ν)σxx, (2.12.118)
Eexy = (1 + ν)σxy. (2.12.119)

Putting (2.12.117)-(2.12.119) into (2.12.114) gives

∂2

∂y2
[σxx − ν(σyy + σzz)] +

∂2

∂x2
[σyy − ν(σxx + σzz)]

= 2(1 + ν)
∂2σxy
∂x∂y

. (2.12.120)

The basic differential equations for the stress components σxx, σyy, σxy in
the medium under the action of body forces X and Y are

∂σxx
∂x

+
∂σxy
∂y

+ ρX = ρ
∂2u

∂t2
, (2.12.121)

∂σxy
∂x

+
∂σyy
∂y

+ ρY = ρ
∂2υ

∂t2
, (2.12.122)

where ρ is the mass density of the elastic material.
The equilibrium equations follow from (2.12.121)–(2.12.122) in the absence

of the body forces (X =Y = 0) as

∂

∂x
σxx +

∂

∂y
σxy = 0, (2.12.123)

∂

∂x
σxy +

∂

∂y
σyy = 0. (2.12.124)

It is obvious that the expressions

σxx =
∂2χ

∂y2
, σxy =− ∂2χ

∂x∂y
, σyy =

∂2χ

∂x2
(2.12.125)

satisfy the equilibrium equations for any arbitrary function χ(x, y). Substi-
tuting from equations (2.12.125) into the compatibility condition (2.12.120),
we see that χ must satisfy the biharmonic equation

∂4χ

∂x4
+ 2

∂4χ

∂x2∂y2
+
∂4χ

∂y4
= 0, (2.12.126)

which may be written symbolically as

∇4χ= 0. (2.12.127)
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The function χ was first introduced by Airy in 1862 and is known as the
Airy stress function.

We determine the stress distribution in a semi-infinite elastic medium boun-
ded by an infinite plane at x= 0 due to an external pressure to its surface.
The x-axis is normal to this plane and assumed positive in the direction into
the medium. We assume that the external surface pressure p varies along the
surface so that the boundary conditions are

σxx =−p(y), σxy = 0 on x= 0 for all y in (−∞,∞). (2.12.128)

We derive solutions so that stress components σxx, σyy, and σxy all vanish
as x→∞.

In order to solve the biharmonic equation (2.12.127), we introduce the Fouri-
er transform χ̃(x, k) of the Airy stress function with respect to y so that
(2.12.127)–(2.12.128) reduce to (

d2

dx2
− k2

)2

χ̃= 0, (2.12.129)

k2χ̃(0, k)= p̃(k), (ik)
(
dχ̃

dx

)
x=0

= 0, (2.12.130)

where p̃(k) = F{p(y)}. The bounded solution of the transformed problem is

χ̃(x, k) = (A+Bx) exp(−|k|x), (2.12.131)

where A and B are constants of integration to be determined from (2.12.130).
It turns out that A= p̃(k)/k2 and B= p̃(k)/|k| and hence, the solution be-
comes

χ̃(x, k) =
p̃(k)
k2

{1 + |k|x} exp(−|k|x). (2.12.132)

The inverse Fourier transform yields the formal solution

χ(x, y) =
1√
2π

∞∫
−∞

p̃(k)
k2

(1 + |k|x) exp(iky− |k|x)dk. (2.12.133)

The stress components are obtained from (2.12.125) in the form

σxx(x, y) = − 1√
2π

∞∫
−∞

k2χ̃(x, k) exp(iky)dk, (2.12.134)

σxy(x, y) = − 1√
2π

∞∫
−∞

(ik)
(
dχ̃

dx

)
exp(iky)dk, (2.12.135)

σyy(x, y) =
1√
2π

∞∫
−∞

d2χ̃

dx2
exp(iky)dk, (2.12.136)
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where χ̃(x, k) are given by (2.12.132). In particular, if p(y) =Pδ(y) so that
p̃(k) =P (2π)−

1
2 . Consequently, from (2.12.133)–(2.12.136) we obtain

χ(x, y) =
P

2π

∞∫
−∞

k−2(1 + |k|x) exp(iky − |k|x)dk

=
P

π

∞∫
0

k−2(1 + kx) cos ky exp(−kx)dk. (2.12.137)

σxx = −P
π

∞∫
0

(1 + kx)e−kx cos ky dk=− 2Px3

π(x2 + y2)2
. (2.12.138)

σxy = −Px
π

∞∫
0

k sin ky exp(−kx)dk=− 2Px2y

π(x2 + y2)2
. (2.12.139)

σyy = −P
π

∞∫
0

(1 − kx) exp(−kx) cos ky dk=− 2Pxy2

π(x2 + y2)2
. (2.12.140)

Another physically realistic pressure distribution is

p(y)=PH(|a| − y), (2.12.141)

where P is a constant, so that

p̃(k) =

√
2
π

P

k
sin ak. (2.12.142)

Substituting this value for p̃(k) into (2.12.133)–(2.12.136), we obtain the in-
tegral expression for χ, σxx, σxy, and σyy.

It is noted here that if a point force of magnitude P0 acts at the origin
located on the boundary, then we put P = (P0/2a) in (2.12.142) and find

p̃(k) = lim
a→0

√
2
π

P0

2

(
sinak
ak

)
=

P0√
2π
. (2.12.143)

Thus, the stress components can also be written in this case.
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2.13 Fourier Cosine and Sine Transforms with Examples

The Fourier cosine integral formula (2.2.8) leads to the Fourier cosine trans-
form and its inverse defined by

Fc{f(x)}=Fc(k) =

√
2
π

∞∫
0

cos kx f(x)dx, (2.13.1)

F−1
c {Fc(k)}= f(x) =

√
2
π

∞∫
0

cos kxFc(k)dk, (2.13.2)

where Fc is the Fourier cosine transform operator and F−1
c is its inverse

operator.
Similarly, the Fourier sine integral formula (2.2.9) leads to the Fourier sine

transform and its inverse defined by

Fs{f(x)}=Fs(k) =

√
2
π

∞∫
0

sinkxf(x)dx, (2.13.3)

F−1
s {Fs(k)}= f(x) =

√
2
π

∞∫
0

sinkx Fs(k)dk, (2.13.4)

where Fs is the Fourier sine transform operator and F−1
s is its inverse.

Example 2.13.1
Show that

(a) Fc{e−ax}=

√
2
π

a

(a2 + k2)
, (a> 0). (2.13.5)

(b) Fs{e−ax}=

√
2
π

k

(a2 + k2)
, (a> 0). (2.13.6)

We have

Fc{e−ax} =

√
2
π

∞∫
0

e−ax cos kx dx

=
1
2

√
2
π

∞∫
0

[e−(a−ik)x + e−(a+ik)x]dx

Fc{e−ax} =
1
2

√
2
π

[
1

a− ik
+

1
a+ ik

]
=

√
2
π

a

(a2 + k2)
.
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The proof of the other result is similar and hence left to the reader.

Example 2.13.2

Show that

F−1
s

{
1
k

exp(−sk)
}

=

√
2
π

tan−1
(x
s

)
. (2.13.7)

We have the standard definite integral

√
π

2
F−1
s {exp(−sk)}=

∞∫
0

exp(−sk) sin kx dk=
x

s2 + x2
. (2.13.8)

Integrating both sides with respect to s from s to ∞ gives

∞∫
0

e−sk

k
sin kx dk =

∞∫
s

xds

x2 + s2
=
[
tan−1 s

x

]∞
s

=
π

2
− tan−1

( s
x

)
= tan−1

(x
s

)
. (2.13.9)

Thus,

F−1
s

{
1
k

exp(−sk)
}

=

√
2
π

∞∫
0

1
k

exp(−sk) sinxk dk

=

√
2
π

tan−1
(x
s

)
.

Example 2.13.3

Show that

Fs{erfc(ax)}=

√
2
π

1
k

[
1− exp

(
− k2

4a2

)]
. (2.13.10)

We have

Fs{erfc(ax)} =

√
2
π

∞∫
0

erfc(ax) sin kx dx

=
2
√

2
π

∞∫
0

sin kx dx

∞∫
ax

e−t
2
dt.
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Interchanging the order of integration, we obtain

Fs{erf(ax)} =
2
√

2
π

∞∫
0

exp(−t2)dt
t/a∫
0

sinkx dx

=
2
√

2
πk

∞∫
0

exp(−t2)
{

1− cos
(
kt

a

)}
dt

=
2
√

2
πk

[√
π

2
−

√
π

2
exp

(
− k2

4a2

)]
.

Thus,

Fs{erfc(ax)}=

√
2
π

1
k

[
1− exp

(
− k2

4a2

)]
.

2.14 Properties of Fourier Cosine and Sine Transforms

THEOREM 2.14.1
If Fc{f(x)}=Fc(k) and Fs{f(x)}=Fs(k), then

Fc{f(ax)}=
1
a
Fc

(
k

a

)
, a > 0. (2.14.1)

Fs{f(ax)}=
1
a
Fs

(
k

a

)
, a > 0. (2.14.2)

Under appropriate conditions, the following properties also hold:

Fc{f ′(x)} = k Fs(k)−
√

2
π
f(0), (2.14.3)

Fc{f ′′(x)} = −k2 Fc(k)−
√

2
π
f ′(0), (2.14.4)

Fs{f ′(x)} = −k Fc(k), (2.14.5)

Fs{f ′′(x)} = −k2 Fs(k) +

√
2
π
k f(0). (2.14.6)

These results can be generalized for the cosine and sine transforms of higher
order derivatives of a function. They are left as exercises.
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THEOREM 2.14.2
(Convolution Theorem for the Fourier Cosine Transform). If Fc{f(x)}=
Fc(k) and Fc{g(x)}=Gc(k), then

F−1
c {Fc(k)Gc(k)}=

1√
2π

∞∫
0

f(ξ)[g(x+ ξ) + g(|x− ξ|)]dξ. (2.14.7)

Or, equivalently,
∞∫
0

Fc(k)Gc(k) cos kx dk=
1
2

∞∫
0

f(ξ)[g(x+ ξ) + g(|x− ξ|)]dξ. (2.14.8)

PROOF Using the definition of the inverse Fourier cosine transform, we
have

F−1
c {Fc(k)Gc(k)} =

√
2
π

∞∫
0

Fc(k)Gc(k) cos kx dk

=
(

2
π

) ∞∫
0

Gc(k) cos kx dk

∞∫
0

f(ξ) cos kξ dξ.

Hence,

F−1
c {Fc(k)Gc(k)}=

(
2
π

) ∞∫
0

f(ξ)dξ

∞∫
0

cos kx cos kξ Gc(k)dk

=
1
2

√
2
π

∞∫
0

f(ξ)dξ

√
2
π

∞∫
0

[cos k(x+ ξ) + cos k(|x− ξ|)]Gc(k)dk

=
1√
2π

∞∫
0

f(ξ)[g(x+ ξ) + g(|x− ξ|)]dξ,

in which the definition of the inverse Fourier cosine transform is used. This
proves (2.14.7).

It also follows from the proof of Theorem 2.14.2 that
∞∫
0

Fc(k)Gc(k) cos kx dk=
1
2

∞∫
0

f(ξ)[g(x+ ξ) + g(|x− ξ|)]dξ.

This proves result (2.14.8).
Putting x= 0 in (2.14.8), we obtain

∞∫
0

Fc(k)Gc(k)dk=

∞∫
0

f(ξ)g(ξ)dξ =

∞∫
0

f(x)g(x)dx.
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Substituting g(x) = f(x) gives, since Gc(k) =Fc(k),

∞∫
0

|Fc(k)|2dk=

∞∫
0

|f(x)|2dx. (2.14.9)

This is the Parseval relation for the Fourier cosine transform.
Similarly, we obtain

∞∫
0

Fs(k)Gs(k) cos kx dk

=

√
2
π

∞∫
0

Gs(k) cos kx dk

∞∫
0

f(ξ) sin kξ dξ

which is, by interchanging the order of integration,

=

√
2
π

∞∫
0

f(ξ)dξ

∞∫
0

Gs(k) sin kξ cos kx dk

=
1
2

∞∫
0

f(ξ)dξ

√
2
π

∞∫
0

Gs(k)[sin k(ξ + x) + sin k(ξ − x)]dk

=
1
2

∞∫
0

f(ξ)[g(ξ + x) + g(ξ − x)]dξ,

in which the inverse Fourier sine transform is used. Thus, we find

∞∫
0

Fs(k)Gs(k) cos kx dk=
1
2

∞∫
0

f(ξ)[g(ξ + x) + g(ξ − x)]dξ. (2.14.10)

Or, equivalently,

F−1
c {Fs(k)Gs(k)}=

1√
2π

∞∫
0

f(ξ)[g(ξ + x) + g(ξ − x)]dξ. (2.14.11)

Result (2.14.10) or (2.14.11) is also called the Convolution Theorem of the
Fourier cosine transform.

Putting x= 0 in (2.14.10) gives

∞∫
0

Fs(k)Gs(k)dk=

∞∫
0

f(ξ)g(ξ)dξ=

∞∫
0

f(x)g(x)dx.
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Replacing g(x) by f(x) gives the Parseval relation for the Fourier sine trans-
form

∞∫
0

|Fs(k)|2dk=

∞∫
0

|f(x)|2dx. (2.14.12)

2.15 Applications of Fourier Cosine and Sine
Transforms to Partial Differential Equations

Example 2.15.1

(One-Dimensional Diffusion Equation on a Half Line). Consider the initial-
boundary value problem for the one-dimensional diffusion equation in 0<x<
∞ with no sources or sinks:

∂u

∂t
= κ

∂2u

∂x2
, 0<x<∞, t > 0, (2.15.1)

where κ is a constant, with the initial condition

u(x, 0)= 0, 0<x<∞, (2.15.2)

and the boundary conditions

(a) u(0, t)= f(t), t≥ 0, u(x, t)→ 0 as x→∞, (2.15.3)

or,
(b) ux(0, t) = f(t), t≥ 0, u(x, t)→ 0 as x→∞. (2.15.4)

This problem with the boundary conditions (2.15.3) is solved by using the
Fourier sine transform

Us(k, t) =

√
2
π

∞∫
0

sin kx u(x, t) dx.

Application of the Fourier sine transform gives

dUs
dt

= −κ k2Us(k, t) +

√
2
π
κ k f(t), (2.15.5)

Us(k, 0) = 0. (2.15.6)
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The bounded solution of this differential system with Us(k, 0)= 0 is

Us(k, t) =

√
2
π
κ k

t∫
0

f(τ) exp[−κ(t− τ)k2] dτ. (2.15.7)

The inverse transform gives the solution

u(x, t) =

√
2
π
κ

t∫
0

f(τ)F−1
s {k exp[−κ(t− τ)k2]}dτ

=
x√
4πκ

t∫
0

f(τ) exp
[
− x2

4κ(t− τ)

]
dτ

(t− τ)3/2
(2.15.8)

in which F−1
s {k exp(−tκk2)}= x

2
√

2
· exp(−x2/4κt)

(κt)3/2 is used.

In particular, f(t) =T0 = constant, (2.15.7) reduces to

Us(k, t) =

√
2
π

T0

k
[1 − exp(−κ t k2)]. (2.15.9)

Inversion gives the solution

u(x, t) =
(

2T0

π

) ∞∫
0

sin kx
k

[1 − exp(−κ t k2)]dk. (2.15.10)

Making use of the integral

∞∫
0

e−k
2a2 sin kx

k
dk=

π

2
erf

( x
2a

)
, (2.15.11)

the solution becomes

u(x, t) =
2T0

π

[
π

2
− π

2
erf

(
x

2
√
κt

)]
= T0 erfc

(
x

2
√
κt

)
, (2.15.12)

where the error function, erf (x) is defined by

erf (x) =
2√
π

x∫
0

e−α
2
dα, (2.15.13)
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so that

erf (0) = 0, erf (∞) =
2√
π

∞∫
0

e−α
2
dα= 1, and erf (−x) =−erf (x),

and the complementary error function, erfc(x) is defined by

erfc(x) = 1 − erf (x) =
2√
π

∞∫
x

e−α
2
dα, (2.15.14)

so that
erfc(x) = 1 − erf(x), erfc(0) = 1, erfc(∞) = 0,

and
erfc(−x) = 1− erf (−x) = 1 + erf (x) = 2− erfc(x).

Equation (2.15.1) with boundary condition (2.15.4) is solved by the Fourier
cosine transform

Uc(k, t) =

√
2
π

∞∫
0

cos kxu(x, t)dx.

Application of this transform to (2.15.1) gives

dUc
dt

+ κk2Uc =−
√

2
π
κf(t). (2.15.15)

The solution of (2.15.15) with Uc(k, 0) = 0 is

Uc(k, t) =−
√

2
π
κ

t∫
0

f(τ) exp[−k2κ(t− τ)]dτ. (2.15.16)

Since

F−1
c {exp(−tκk2)}=

1√
2κt

exp
(
− x2

4κt

)
, (2.15.17)

the inverse Fourier cosine transform gives the final form of the solution

u(x, t) =−
√
κ

π

t∫
0

f(τ)√
t− τ

exp
[
− x2

4κ(t− τ)

]
dτ. (2.15.18)

Example 2.15.2
(The Laplace Equation in the Quarter Plane). Solve the Laplace equation

uxx + uyy = 0, 0<x, y <∞, (2.15.19)



© 2007 by Taylor & Francis Group, LLC

Fourier Transforms and Their Applications 99

with the boundary conditions

u(0, y)= a, u(x, 0) = 0, (2.15.20a)

∇u→ 0 as r=
√
x2 + y2 →∞, (2.15.20b)

where a is a constant.
We apply the Fourier sine transform with respect to x to find

d2Us
dy2

− k2 Us +

√
2
π
ka= 0.

The solution of this inhomogeneous equation is

Us(k, y) =Ae−ky +

√
2
π
· a
k
,

where A is a constant to be determined from Us(k, 0) = 0. Consequently,

Us(k, y)=
a

k

√
2
π

(1 − e−ky). (2.15.21)

The inverse transformation gives the formal solution

u(x, y) =
2a
π

∞∫
0

1
k

(1 − e−ky) sin kx dk

Or,

u(x, y) =
2a
π

⎡⎣ ∞∫
0

sin kx
k

dk −
∞∫
0

1
k
e−ky sin kx dk

⎤⎦
= a− 2a

π

(π
2
− tan−1 y

x

)
=

2a
π

tan−1
(y
x

)
, (2.15.22)

in which (2.13.9) is used.

Example 2.15.3
(The Laplace Equation in a Semi-Infinite Strip with the Dirichlet Data). Solve
the Laplace equation

uxx + uyy = 0, 0<x<∞, 0<y< b, (2.15.23)

with the boundary conditions

u(0, y) = 0, u(x, y)→ 0 as x→∞ for 0<y< b (2.15.24)
u(x, b) = 0, u(x, 0)= f(x) for 0<x<∞. (2.15.25)
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In view of the Dirichlet data, the Fourier sine transform with respect to
x can be used to solve this problem. Applying the Fourier sine transform to
(2.15.23)–(2.15.25) gives

d2 Us
dy2

− k2Us = 0, (2.15.26)

Us(k, b) = 0, Us(k, 0)=Fs(k). (2.15.27)

The solution of (2.15.26) with (2.15.27) is

Us(k, y) =Fs(k)
sinh[k(b− y)]

sinh kb
. (2.15.28)

The inverse Fourier sine transform gives the formal solution

u(x, y) =

√
2
π

∞∫
0

Fs(k)
sinh[k(b− y)]

sinh kb
sin kx dk

=
2
π

∞∫
0

⎡⎣ ∞∫
0

f(l) sinkl dl

⎤⎦ sinh[k(b− y)]
sinh kb

sin kx dk. (2.15.29)

In the limit as kb→∞, sinh[k(b−y)]
sinh kb ∼ exp(−ky), hence the above problem re-

duces to the corresponding problem in the quarter plane, 0<x<∞, 0<y<
∞. Thus, solution (2.15.29) becomes

u(x, y) =
2
π

∞∫
0

f(l)dl

∞∫
0

sin kl sin kx exp(−ky)dk

=
1
π

∞∫
0

f(l)dl

∞∫
0

{cos k(x− l)− cos k(x+ l)} exp(−ky)dk

=
1
π

∞∫
0

f(l)
[

y

(x− l)2 + y2
− y

(x+ l)2 + y2

]
dl. (2.15.30)

This is the exact integral solution of the problem. If f(x) is an odd function
of x, then solution (2.15.30) reduces to the solution (2.12.10) of the same
problem in the half plane.

2.16 Evaluation of Definite Integrals

The Fourier transform can be employed to evaluate certain definite integrals.
Although the method of evaluation may not be very rigorous, it is quite simple
and straightforward. The method can be illustrated by means of examples.
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Example 2.16.1
Evaluate the integral

I(a, b) =

∞∫
−∞

dx

(x2 + a2)(x2 + b2)
, a> 0, b> 0. (2.16.1)

If we write f(x) = e−a|x| and g(x) = e−b|x| then F (k) =
√

2
π

a
(k2+a2) , G(k) =√

2
π

b
(k2+b2) . The Convolution Theorem 2.5.5 gives (2.5.19), that is,

∞∫
−∞

F (k)G(k)dk=

∞∫
−∞

f(x)g(−x)dx.

Or, equivalently,
∞∫

−∞

dk

(k2 + a2)(k2 + b2)
=

π

2ab

∞∫
−∞

e−|x|(a+b)dx

=
π

ab

∞∫
0

e−(a+b)xdx=
π

ab(a+ b)
. (2.16.2)

This is the desired result.
Further ∞∫

0

dx

(x2 + a2)(x2 + b2)
=

π

2ab(a+ b)
. (2.16.3)

Example 2.16.2
Show that ∞∫

0

x−pdx
(a2 + x2)

=
π

2
a−(p+1) sec

(πp
2

)
. (2.16.4)

We write

f(x) = e−ax so that Fc(k) =

√
2
π

a

(a2 + k2)
.

g(x) = xp−1 so that Gc(k) =

√
2
π
k−pΓ(p) cos

(πp
2

)
.

Using Parseval’s result for the Fourier cosine transform gives
∞∫
0

Fc(k)Gc(k)dk=

∞∫
0

f(x)g(x)dx.
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Or,

2a
π

cos
(πp

2

)
Γ(p)

∞∫
0

k−pdk
k2 + a2

=

∞∫
0

xp−1e−axdx

=
1
ap

∞∫
0

e−ttp−1dt =
Γ(p)
ap

, (ax= t).

Thus,
∞∫
0

k−pdk
a2 + k2

=
π

2 ap+1
sec

(πp
2

)
.

Example 2.16.3
If a> 0, b > 0, show that

∞∫
0

x2 dx

(a2 + x2)(b2 + x2)
=

π

2(a+ b)
. (2.16.5)

We consider

Fs{e−ax}=

√
2
π

k

k2 + a2
=Fs(k)

Fs{e−bx}=

√
2
π

k

k2 + b2
=Gs(k).

Then the Convolution Theorem for the Fourier cosine transform gives

∞∫
0

Fs(k)Gs(k) cos kx dk=
1
2

∞∫
0

g(ξ)[f(ξ + x) + f(ξ − x)]dξ.

Putting x= 0 gives

∞∫
0

Fs(k)Gs(k)dk=

∞∫
0

g(ξ)f(ξ)dξ,

or,
∞∫
0

k2 dk

(k2 + a2)(k2 + b2)
=
π

2

∞∫
0

e−(a+b)ξdξ=
π

2(a+ b)
.
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Example 2.16.4
Show that ∞∫

0

x2dx

(x2 + a2)4
=

π

(2a)5
, a > 0. (2.16.6)

We write f(x) = 1
2(x2+a2) so that f ′(x) =− x

(x2+a2)2 , and F{f(x)}=F (k) =√
π
2

(
1
2a

)
exp(−a|k|).

Making reference to the Parseval relation (2.4.19), we obtain

∞∫
−∞

|f ′(x)|2dx=

∞∫
−∞

|F{f ′(x)}|2dk=

∞∫
−∞

|(ik)F{f(x)}|2dk.

Thus,

∞∫
−∞

x2

(x2 + a2)4
dx =

π

2

∞∫
−∞

k2 · 1
(2a)2

exp(−2a|k|)dk

=
π

(2a)2

∞∫
0

k2 exp(−2ak)dk=
2π

(2a)5
.

This gives the desired result.

2.17 Applications of Fourier Transforms
in Mathematical Statistics

In probability theory and mathematical statistics, the characteristic function
of a random variable is defined by the Fourier transform or by the Fourier-
Stieltjes transform of the distribution function of a random variable. Many
important results in probability theory and mathematical statistics can be
obtained, and their proofs can be simplified with rigor by using the methods
of characteristic functions. Thus, the Fourier transforms play an important
role in probability theory and mathematical statistics.

DEFINITION 2.17.1 (Distribution Function). The distribution function
F (x) of a random variable X is defined as the probability, that is, F (x) =
P (X <x) for every real number x.

It is immediately evident from this definition that the distribution function
satisfies the following properties:
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(i) F (x) is a non-decreasing function, that is, F (x1)≤F (x2) if x1 <x2.

(ii) F (x) is continuous only from the left at a point x, that is, F (x− 0)=
F (x), but F (x+ 0) �=F (x).

(iii) F (−∞) = 0 and F (+∞)= 1.

If X is a continuous variable and if there exists a non-negative function
f(x) such that for every real x the following relation holds:

F (x) =

x∫
−∞

f(x)dx, (2.17.1)

where F (x) is the distribution function of the random variable X , then the
function f(x) is called the probability density or simply the density function
of the random variable X .

It is immediately obvious that every density function f(x) satisfies the
following properties:

(i)

F (+∞) =

∞∫
−∞

f(x)dx= 1. (2.17.2a)

(ii) For every real a and b where a< b,

P (a≤X ≤ b) =F (b)− F (a) =

b∫
a

f(x)dx. (2.17.2b)

(iii) If f(x) is continuous at some point x, then F ′(x) = f(x).

It is noted that every real function f(x) which is non-negative, and in-
tegrable over the whole real line and satisfies (2.17.2ab), is the probability
density function of a continuous random variable X . On the other hand, the
function F (x) defined by (2.17.1) satisfies all properties of a distribution func-
tion.

DEFINITION 2.17.2 (Characteristic Function). If X is a continuous
random variable with the density function f(x), then the characteristic func-
tion, φ(t) of the random variable X or of the distribution function F (x) is
defined by the formula

φ(t) =E(exp(itX))=

∞∫
−∞

f(x) exp(itx)dx, (2.17.3)
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where E[g(X)] is called the expected value of the random variable g(X).
In problems of mathematical statistics, it is convenient to define the Fourier

transform of f(x) and its inverse in a slightly different way by

F{f(x)} = φ(t) =

∞∫
−∞

exp(itx)f(x)dx, (2.17.4)

F−1{φ(t)} = f(x) =
1
2π

∞∫
−∞

exp(−itx)φ(t)dt. (2.17.5)

Evidently, the characteristic function of F (x) is the Fourier transform of the
density function f(x). The Fourier transform of the distribution function fol-
lows from the fact that

F{F ′(x)}= F{f(x)}=φ(t),

or,
F{F (x)}= it−1φ(t). (2.17.6)

The composition of two distribution functions F1(x) and F2(x) is defined by

F (x) =F1(x) ∗ F2(x) =

∞∫
−∞

F1(x− y)F ′
2(y)dy. (2.17.7)

Thus, the Fourier transform of (2.17.7) gives

i t−1φ(t) = F

⎧⎨⎩
∞∫

−∞
F1(x− y)F ′

2(y)dy

⎫⎬⎭
= F{F1(x)}F{f2(x)}= it−1φ1(t)φ2(t),

whence an important result follows:

φ(t) =φ1(t)φ2(t), (2.17.8)

where φ1(t) and φ2(t) are the characteristic functions of the distribution func-
tions F1(x) and F2(x) respectively.

The nth moment of a random variable X is defined by

mn =E[Xn] =

∞∫
−∞

xnf(x)dx, n= 1, 2, 3, . . . . (2.17.9)

provided this integral exists. The first moment m1 (or simply m) is called the
expectation of X and has the form

m=E(X) =

∞∫
−∞

x f(x)dx. (2.17.10)
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Thus, the moment of any order n is calculated by evaluating the integral
(2.17.9). However, the evaluation of the integral is, in general, a difficult task.
This difficulty can be resolved with the help of the characteristic function
defined by (2.17.4). Differentiating (2.17.4) n times and putting t= 0 gives a
fairly simple formula

mn =

∞∫
−∞

xnf(x)dx= (−i)nφ(n)(0), (2.17.11)

where n= 1, 2, 3, . . . .
When n= 1, the expectation of a random variable X becomes

m1 =E(X) =

∞∫
−∞

xf(x)dx= (−i)φ′(0). (2.17.12)

Thus, the simple formula (2.17.11) involving the derivatives of the character-
istic function provides for the existence and the computation of the moment
of any arbitrary order.

Similarly, the variance σ2 of a random variable is given in terms of the
characteristic function as

σ2 =

∞∫
−∞

(x−m)2f(x)dx=m2 −m2
1

= {φ′(0)}2 − φ′′(0). (2.17.13)

Example 2.17.1
Find the moments of the normal distribution defined by the density function

f(x) =
1

σ
√

2π
exp

{
− (x−m)2

2σ2

}
. (2.17.14)

The characteristic function of the normal distribution is the Fourier transform
of f(x), which is

φ(t) =
1

σ
√

2π

∞∫
−∞

eitx exp
[
− (x−m)2

2σ2

]
dx.

We substitute x−m= y and use Example 2.3.1 to obtain

φ(t) =
exp(itm)
σ
√

2π

∞∫
−∞

eity exp
(
− y2

2σ2

)
dy= exp

(
itm− 1

2
t2σ2

)
. (2.17.15)
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Thus,

m1 = (−i)φ′(0) =m,

m2 = −φ′′(0) = (m2 + σ2),
m3 = m(m2 + 3σ2).

Finally, the variance of the normal distribution is

m2 −m2
1 = σ2. (2.17.16)

The above discussion reveals that characteristic functions are very useful
for investigation of certain problems in mathematical statistics. We close this
section by discussing more properties of characteristic functions.

THEOREM 2.17.1
(Addition Theorem). The characteristic function of the sum of a finite number
of independent random variables is equal to the product of their characteristic
functions.

PROOF Suppose X1, X2, . . . , Xn are n independent random variables and
Z =X1 +X2 + · · ·+Xn. Further, suppose φ1(t), φ2(t), . . . , φn(t), and φ(t) are
the characteristic functions of X1, X2, . . . , Xn and Z respectively.

Then we have

φ(t) =E[exp(itZ)] =E [exp {it (X1 +X2 + · · ·+Xn)}] ,

which is, by the independence of the random variables,

= E(eitX1 )E(eitX2 ) · · ·E(eitXn)
= φ1(t)φ2(t) · · ·φn(t). (2.17.17)

This proves the Addition Theorem.

Example 2.17.2
Find the expected value and the standard deviation of the sum of n indepen-
dent normal random variables.

Suppose X1, X2, . . . , Xn are n independent random variables with the nor-
mal distributions N(mr, σr), where r= 1, 2, . . . , n. The respective character-
istic functions of these distributions are

φr(t) = exp
[
itmr − 1

2
t2σ2

r

]
, r= 1, 2, 3, . . . , n. (2.17.18)
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Because of the independence ofX1, X2, . . . , Xn, the random variable Z =X1 +
X2 + · · ·+Xn has the characteristic function

φ(t) = φ1(t)φ2(t) · · ·φn(t)

= exp
[
it(m1 +m2 + · · ·+mn)− 1

2
(σ2

1 + σ2
2 + · · ·+ σ2

n)t2
]
. (2.17.19)

This represents the characteristic function of the normal distribution N(m1 +
· · ·+mn,

√
σ2

1 + · · ·+ σ2
n). Thus, the expected value of Z is (m1 +m2 + · · ·+

mn) and its standard deviation is (σ2
1 + σ2

2 + · · ·+ σ2
n)

1
2 .

Finally, we state the fundamental Central Limit Theorems without proof.

THEOREM 2.17.2

(The Lévy-Cramér Theorem). Suppose {Xn} is a sequence of random vari-
ables, Fn(x) and φn(t) are respectively the distribution and characteristic
functions of Xn. Then the sequence {Fn(x)} is convergent to a distribution
function F (x) if and only if the sequence {φn(t)} is convergent at every point
t on the real line to a function φ(t) continuous in some neighborhood of the
origin. The limit function φ(t) is then the characteristic function of the limit
distribution function F (x), and the convergence φn(t)→ φ(t) is uniform in
every finite interval on the t-axis.

THEOREM 2.17.3

(The Central Limit Theorem in Probability). Supose f(x) is a nonnegative
absolutely integrable function in R and has the following properties:

∞∫
−∞

f(x) dx= 1,

∞∫
−∞

x f(x) dx= 1,

∞∫
−∞

x2 f(x) dx= 1.

If fn = f ∗ f ∗ ... ∗ f is the convolution product of f with itself n times, then

lim
n→∞

b
√
n∫

a
√
n

fn(x) dx=
1√
2π

b∫
a

e−x
2
dx −∞<a< b<∞. (2.17.20)

For a proof of the theorem, we refer the reader to Chandrasekharan (1989).

All these ideas developed in this section can be generalized for the multi-
dimensional distribution functions by the use of multiple Fourier transforms.
We refer interested readers to Lukacs (1960).
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2.18 Multiple Fourier Transforms and Their
Applications

DEFINITION 2.18.1 Under the assumptions on f(x) similar to those
made for the one dimensional case, the multiple Fourier transform of f(x),
where x= (x1, x2, . . . , xn) is the n-dimensional vector, is defined by

F{f(x)}=F (κ) =
1

(2π)n/2

∞∫
−∞

· · ·
∞∫

−∞
exp{−i(κ · x)}f(x)dx, (2.18.1)

where κ = (k1, k2, . . . , kn) is the n-dimensional transform vector and κ · x=
(k1x1 + k2x2 + · · ·+ knxn).

The inverse Fourier transform is similarly defined by

F−1{F (κ)}= f(x) =
1

(2π)n/2

∞∫
−∞

· · ·
∞∫

−∞
exp{i(κ · x)}F (κ) dκ. (2.18.2)

In particular, the double Fourier transform is defined by

F{f(x, y)}=F (k, �) =
1
2π

∞∫
−∞

∞∫
−∞

exp{−i(κ · r)} f(x, y) dxdy, (2.18.3)

where r= (x, y) and κ = (k, �).
The inverse Fourier transform is given by

F−1{F (k, �)}= f(x, y) =
1
2π

∞∫
−∞

∞∫
−∞

exp{i(κ · r)}F (k, �) dk d�. (2.18.4)

Similarly, the three-dimensional Fourier transform and its inverse are de-
fined by the integrals

F{f(x, y, z)}=F (k, �,m)

=
1

(2π)3/2

∞∫
−∞

∞∫
−∞

∞∫
−∞

exp{−i(κ · r)} f(x, y, z) dx dy dz, (2.18.5)

F−1{F (k, �,m)}= f(x, y, z)

1
(2π)3/2

∞∫
−∞

∞∫
−∞

∞∫
−∞

exp{i(κ · r)}F (k, �,m) dk d� dm. (2.18.6)
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The operational properties of these multiple Fourier transforms are similar
to those of the one-dimensional case. In particular, results (2.4.7) and (2.4.8)
relating the Fourier transforms of derivatives to the Fourier transforms of
given functions are valid for the higher dimensional case as well. In higher
dimensions, they are applied to the transforms of partial derivatives of f(x)
under the assumptions that f and its partial derivatives vanish at infinity.

We illustrate the multiple Fourier transform method by the following ex-
amples of applications:

Example 2.18.1

(The Dirichlet Problem for the Three-Dimensional Laplace Equation in the
Half-Space). The boundary value problem for u(x, y, z) satisfies the following
equation and boundary conditions:

∇2u≡ uxx + uyy + uzz = 0, −∞<x, y <∞, z > 0, (2.18.7)
u(x, y, 0)= f(x, y) −∞<x, y <∞ (2.18.8)

u(x, y, z)→ 0 as r=
√
x2 + y2 + z2 →∞. (2.18.9)

We use the double Fourier transform defined by (2.18.3) to the system
(2.18.7)–(2.18.9) which reduces to

d2U

dz2
− κ2U = 0 for z > 0, (κ2 = k2 + l2)

U(k, �, 0) = F (k, �).

Thus, the solution of this transformed problem is

U(k, �, z)=F (k, �) exp(−|κ|z) =F (k, �)G(k, �), (2.18.10)

where κ = (k, �) and G(k, �) = exp(−|κ|z) so that

g(x, y) = F−1{exp(−|κ|z)}=
z

(x2 + y2 + z2)3/2
. (2.18.11)

Applying the Convolution Theorem to (2.18.10), we obtain the formal solution

u(x, y, z) =
1
2π

∞∫
−∞

∞∫
−∞

f(ξ, η)g(x− ξ, y− η, z) dξ dη

=
z

2π

∞∫
−∞

∞∫
−∞

f(ξ, η) dξ dη
[(x− ξ)2 + (y − η)2 + z2]3/2

. (2.18.12)
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Example 2.18.2
(The Two-Dimensional Diffusion Equation). We solve the two-dimensional
diffusion equation

ut =K∇2u, −∞<x, y <∞, t > 0, (2.18.13)

with the initial and boundary conditions

u(x, y, 0)= f(x, y) −∞<x, y <∞, (2.18.14)

u(x, y, t)→ 0 as r=
√
x2 + y2 →∞, (2.18.15)

where K is the diffusivity constant.
The double Fourier transform of u(x, y, t) defined by (2.18.3) is used to

reduce the system (2.18.13)–(2.18.14) into the form

dU

dt
= −κ2KU, t> 0,

U(k, �, 0) = F (k, �).

The solution of this system is

U(k, �, t)=F (k, �) exp(−tKκ2) =F (k, �)G(k, �), (2.18.16)

where
G(k, �) = exp(−Kκ2t),

so that

g(x, y) = F−1{exp(−tKκ2)}=
1

2Kt
exp

(
−x

2 + y2

4Kt

)
. (2.18.17)

Finally, the Convolution Theorem gives the formal solution

u(x, y, t) =
1

4πKt

∞∫
−∞

∞∫
−∞

f(ξ, η) exp
[
− (x− ξ)2 + (y − η)2

4Kt

]
dξ dη. (2.18.18)

Or, equivalently,

u(x, y, t) =
1

4πKt

∞∫
−∞

∞∫
−∞

f(r′) exp
{
−|r− r′|2

4Kt

}
dr′, (2.18.19)

where r′ = (ξ, η).
We make the change of variable (r′ − r) =

√
4KtR to reduce (2.18.19) in

the form

u(x, y, t) =
1

π
√

4Kt

∞∫
−∞

∞∫
−∞

f(r +
√

4KtR) exp(−R2) dR. (2.18.20)
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Similarly, the formal solution of the initial value problem for the three-dimensional
diffusion equation

ut =K(uxx + uyy + uzz), −∞<x, y, z <∞, t > 0 (2.18.21)
u(x, y, z, 0)= f(x, y, z), −∞<x, y, z <∞ (2.18.22)

is given by

u(x, y, z, t)=
1

(4πKt)3/2

∫ ∞∫
−∞

∫
f(ξ, η, ζ) exp

(
− r2

4Kt

)
dξ dη dζ, (2.18.23)

where
r2 = (x− ξ)2 + (y − η)2 + (z − ζ)2.

Or, equivalently,

u(x, y, z, t)=
1

(4πKt)3/2

∫ ∞∫
−∞

∫
f(r′) exp

{
−|r− r′|2

4Kt

}
dξ dη dζ, (2.18.24)

where r= (x, y, z) and r′ = (ξ, η, ζ).
Making the change of variable r′ − r=

√
4tKR, solution (2.18.24) reduces

to

u(x, y, z, t)=
1

π3/24Kt

∫ ∞∫
−∞

∫
f(r +

√
4KtR) exp(−R2) dR. (2.18.25)

This is known as the Fourier solution.

Example 2.18.3
(The Cauchy Problem for the Two-Dimensional Wave Equation). The initial
value problem for the wave equation in two dimensions is governed by

utt = c2(uxx + uyy), −∞<x, y <∞, t > 0, (2.18.26)

with the initial data

u(x, y, 0)= 0, ut(x, y, 0) = f(x, y), −∞<x, y <∞, (2.18.27ab)

where c is a constant. We assume that u and its first partial derivatives vanish
at infinity.

We apply the two-dimensional Fourier transform defined by (2.18.3) to the
system (2.18.26)–(2.18.27ab), which becomes

d2U

dt2
+ c2κ2U = 0, κ2 = k2 + �2,

U(k, �, 0) = 0,
(
dU

dt

)
t=0

=F (k, �).
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The solution of this transformed system is

U(k, �, t)=F (k, �)
sin(cκt)
cκ

. (2.18.28)

The inverse Fourier transform gives the formal solution

u(x, y, t) =
1

2πc

∞∫
−∞

∫
exp(iκ · r) sin(cκt)

κ
F (κ)dκ (2.18.29)

=
1

4iπc

∞∫
−∞

∞∫
−∞

F (κ)
κ

[
exp

{
iκ
(κ · r

κ
+ ct

)}
−exp

{
iκ
(κ · r

κ
− ct

)}]
dκ. (2.18.30)

The form of this solution reveals an interesting feature of the wave equation.
The exponential terms exp

{
iκ
(
ct± κ·r

κ

)}
involved in the integral solution

(2.18.30) represent plane wave solutions of the wave equation (2.18.26). Thus,
the solutions remain constant on the planes κ · r= constant that move par-
allel to themselves with velocity c. Evidently, solution (2.18.30) represents a
superposition of the plane wave solutions traveling in all possible directions.

Similarly, the solution of the Cauchy problem for the three-dimensional
wave equation

utt = c2(uxx + uyy + uzz), −∞<x, y, z <∞, t > 0, (2.18.31)

u(x, y, z, 0)= 0, ut(x, y, z, 0)= f(x, y, z), −∞<x, y, z <∞ (2.18.32ab)

is given by

u(r, t) =
1

2ic(2π)3/2

∫ ∞∫
−∞

∫
F (κ)
κ

[
exp

{
iκ
(κ · r

κ
+ ct

)}

−exp
{
iκ
(κ · r

κ
− ct

)}]
dκ, (2.18.33)

where r= (x, y, z) and κ = (k, �,m).
In particular, when f(x, y, z)= δ(x)δ(y)δ(z) so that F (κ) = (2π)−3/2, solu-

tion (2.18.33) becomes

u(r, t) =
1

(2π)3

∫ ∞∫
−∞

∫ (
sin cκt
cκ

)
exp(i(κ · r))dκ. (2.18.34)

In terms of the spherical polar coordinates (κ, θ, φ) where the polar axis (the
z-axis) is taken along the r direction with κ · r= κr cos θ, we write (2.18.34)
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in the form

u(r, t) =
1

(2π)3

2π∫
0

dφ

π∫
0

dθ

∞∫
0

exp(iκr cos θ)
sin cκt
cκ

· κ2 sin θ dκ

=
1

2π2cr

∞∫
0

sin(cκt) sin(κr) dκ

=
1

8π2cr

∞∫
−∞

[eiκ(ct−r) − eiκ(ct+r)] dκ.

Or,

u(r, t) =
1

4πcr
[δ(ct− r) − δ(ct+ r)]. (2.18.35)

For t > 0, ct+ r > 0 so that δ(ct+ r) = 0 and hence,

u(r, t) =
1

4πcr
δ(ct− r) =

1
4πc2r

δ(t− r

c
). (2.18.36)

Example 2.18.4
(The Three-Dimensional Poisson Equation). The solution of the Poisson e-
quation

−∇2u= f(r), (2.18.37)

where r= (x, y, z) is given by

u(r) =

∞∫
−∞

∞∫
−∞

∞∫
−∞

G(r, ξ)f(ξ)dξ, (2.18.38)

where the Green’s function G(r, ξ) of the operator, −∇2, is

G(r, ξ) =
1
4π

1
|r− ξ| . (2.18.39)

To obtain the fundamental solution, we need to solve the equation

−∇2 G(r, ξ) = δ(x− ξ)δ(y − η)δ(z − ζ), r �= ξ. (2.18.40)

Application of the three-dimensional Fourier transform defined by (2.18.5)
to (2.18.40) gives

κ2 Ĝ(κ, ξ) =
1

(2π)3/2
exp(−iκ · ξ), (2.18.41)
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where Ĝ(κ, ξ) = F{G(r, ξ)} and κ = (k, �,m).
The inverse Fourier transform gives the formal solution

G(r, ξ) =
1

(2π)3

∞∫
−∞

∞∫
−∞

∞∫
−∞

exp{iκ · (r− ξ)}dκ
κ2

=
1

(2π)3

∞∫
−∞

∞∫
−∞

∞∫
−∞

exp(iκ · x)
dκ

κ2
, (2.18.42)

where x= |r− ξ|.
We evaluate this integral using polar coordinates in the κ-space with the

axis along the x-axis. In terms of spherical polar coordinates (κ, θ, φ) so that
κ · x= κR cos θ where R= |x|. Thus, (2.18.42) becomes

G(r, ξ) =
1

(2π)3

2π∫
0

dφ

π∫
0

dθ

∞∫
0

exp(iκR cos θ)κ2 sin θ · dκ
κ2

=
1

(2π)2

∞∫
0

2
sin (κR)
κR

dκ=
1

4πR
=

1
4π|r− ξ| , (2.18.43)

provided R> 0.
In electrodynamics, the fundamental solution (2.18.43) has a well-known

interpretation. Physically, it represents the potential at point r generated by
the unit point charge distribution at point ξ. This is what can be expected
because δ(r− ξ) is the charge density corresponding to a unit point charge at
ξ.

The solution of (2.18.37) is then given by

u(r) =

∞∫
−∞

∞∫
−∞

∞∫
−∞

G(r, ξ)f(ξ)dξ =
1
4π

∞∫
−∞

∞∫
−∞

∞∫
−∞

f(ξ)dξ
|r− ξ| . (2.18.44)

The integrand in (2.18.44) consists of the given charge distribution f(r) at
r= ξ and Green’s function G(r, ξ). Physically, G(r, ξ) f(ξ) represents the re-
sulting potentials due to elementary point charges, and the total potential due
to a given charge distribution f(r) is then obtained by the integral superpo-
sition of the resulting potentials. This is called the principle of superposition.

Example 2.18.5
(The Two-Dimensional Helmholtz Equation). To find the fundamental solu-
tion of the two-dimensional Helmholtz equation

−∇2G+ α2G= δ(x− ξ)δ(y − η), −∞<x, y <∞. (2.18.45)
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It is convenient to make the change of variables x− ξ= x∗, y − η= y∗.
Consequently, (2.18.45) reduces to the form, dropping the asterisks,

Gxx +Gyy − α2G=−δ(x)δ(y). (2.18.46)

Application of the double Fourier transform Ĝ(κ) = F{G(x, y)} to (2.18.46)
gives

Ĝ(κ) =
1
2π

1
(κ2 + α2)

, (2.18.47)

where κ = (k, �) and κ2 = k2 + �2.
The inverse Fourier transform yields the solution

G(x, y) =
1

4π2

∞∫
−∞

∞∫
−∞

(κ2 + α2)−1 exp(iκ · x) dk d�. (2.18.48)

In terms of polar coordinates (x, y) = r(cos θ, sin θ), (k, �) = ρ(cosφ, sinφ), the
integral solution (2.18.48) becomes

G(x, y) =
1

4π2

∞∫
0

ρdρ

(ρ2 + α2)

2π∫
0

exp{irρ cos(φ− θ)}dφ,

which is, replacing the second integral by 2πJ0(rρ),

=
1
2π

∞∫
0

ρ J0(rρ)dρ
(ρ2 + α2)

. (2.18.49)

In terms of the original coordinates, the fundamental solution of (2.18.45) is
given by

G(r, ξ) =
1
2π

∞∫
0

ρ J0

[
ρ
{
(x− ξ)2 + (y − η)2

} 1
2
]
dρ

(ρ2 + α2)
. (2.18.50)

Accordingly, the solution of the inhomogeneous equation

(∇2 − α2)u=−f(x, y) (2.18.51)

is

u(x, y) =
∫ ∞

−∞

∫
G(r, ξ)f(ξ)dξ, (2.18.52)

where G(r, ξ) is given by (2.18.50).
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Since the integral solution (2.18.49) does not exist for α= 0, Green’s func-
tion for the two-dimensional Poisson equation (2.18.51) cannot be derived
from (2.18.49). Instead, we differentiate (2.18.49) with respect to r to obtain

∂G

∂r
=

1
2π

∞∫
0

ρ2J ′
0(rρ)dρ

(ρ2 + α2)

which is, for α= 0,

∂G

∂r
=

1
2π

∞∫
0

J ′
0(rρ)dρ=− 1

2πr
.

Integrating this result gives

G(r, θ) =− 1
2π

log r.

In terms of the original coordinates, the Green’s function becomes

G(r, ξ) =− 1
4π

log[(x− ξ)2 + (y − η)2]. (2.18.53)

This is Green’s function for the two-dimensional Poisson equation ∇2 =−f(x, y).
Thus, the solution of the Poisson equation is

u(x, y) =

∞∫
−∞

∞∫
−∞

G(r, ξ)f(ξ)dξ. (2.18.54)

Example 2.18.6
(Diffusion of Vorticity from a Vortex Sheet). We solve the two-dimensional
vorticity equation in the x, y plane given by

ζt = ν∇2ζ (2.18.55)

with the initial condition

ζ(x, y, 0) = ζ0(x, y), (2.18.56)

where ζ = υx − uy.
Application of the double Fourier transform defined by

ζ̂(k, �, t)=
1
2π

∞∫
−∞

∞∫
−∞

exp[−i(kx+ �y)]ζ(x, y, t)dx dy
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to (2.18.55)–(2.18.56) gives

dζ̂

dt
= −ν(k2 + �2)ζ̂ ,

ζ̂(k, �, 0) = ζ̂0(k, �).

Thus, the solution of the transformed system is

ζ̂(k, �, t)= ζ̂0(k, �)exp[−ν(k2 + �2)t]. (2.18.57)

The inversion theorem for Fourier transform gives the formal solution

ζ(x, y, t) =
1
2π

∞∫
−∞

∞∫
−∞

ζ̂0(k, �) exp[i(κ · r) − νκ2t] dk d�, (2.18.58)

where κ = (k, �) and κ2 = k2 + �2.

In particular, if ζ0(x, y) =V δ(x) represents a vortex sheet of constant strength
V per unit width in the plane x= 0, we find ζ̂0(k, �)= V δ(�) and hence,

ζ(x, y, t) =
V

2π

∞∫
−∞

exp{ikx− νk2t}dk

=
V

2
√
πνt

exp
(
− x2

4νt

)
. (2.18.59)

Apart from a constant, the velocity field is given by

u(x, t) = 0, υ(x, t) =
V√
π

erf
(

x

2
√
νt

)
. (2.18.60)
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2.19 Exercises

1. Find the Fourier transforms of each of the following functions:

(a) f(x) =
1

1 + x2
, (b) f(x) =

x

1 + x2
,

(c) f(x) = δ(n)(x), (d) f(x) = x exp(−a|x|), a > 0,

(e) f(x) = ex exp(−ex), (f) f(x) = x exp
(
−ax

2

2

)
, a > 0,

(g) f(x) = x2 exp
(
−1

2
x2

)
, (h) f(x) =

{
1 − |x|, |x| ≤ 1

0, |x|> 1

}
,

(i) f(x) =

{
1 − x2, |x| ≤ 1

0, |x|> 1

}
, (j) hn(x) = (−1)n exp

(
1
2
x2

)
×
(
d

dx

)n
exp(−x2),

(k) f(x) =χ[a,b](x) eiαx, (l) f(x) =
cos
sin

(ax2).

2. Show that

(a) F{δ(x− ct) + δ(x+ ct)}=

√
2
π

cos(kct),

(b) F{H(ct− |x|)}=

√
2
π

sin kct
k

,

(c) F
{
f
(x
a

+ b
)}

= a exp(iabk)F (ak),

(d) F{eibxf(ax)}=
1
a
F

(
k + b

a

)
.

3. Show that

(a) i
d

dk
F (k) = F{x f(x)},

(b) in
dn

dkn
F (k) = F{xn f(x)}.

4. Use exercise 3(b) to find the Fourier transform of f(x) = x2 exp(−ax2).

5. Prove the following:

(a) F
{
(a2 − x2)−

1
2H(a− |x|)

}
=
√
π

2
J0(ak), a> 0.
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(b) F{Pn(x) H(1− |x|)}= (−i)n 1√
k
Jn+ 1

2
(k),

where Pn(x) is the Legendre polynomial of degree n.
(c) If f(x) has a finite discontinuity at a point x= a, then

F{f ′(x)}= (ik) F (k)− 1√
2π

exp(−ika)[f ]a,

where [f ]a = f(a+ 0)− f(a− 0).

Generalize this result for F{f (n)(x)}.
6. Find the convolution (f ∗ g) (x) if

(a) f(x) = eax, g(x) =χ[0,∞](x), a �= 0,

(b) f(x) = sin bx, g(x) = exp(−a|x|), a > 0,

(c) f(x) =χ[a,b](x), g(x) = x2,

(d) f(x) = exp(−x2), g(x) = exp(−x2).

7. Prove the following results for the convolution:

(a) δ(x) ∗ f(x) = f(x), (b) δ′(x) ∗ f(x) = f ′(x),

(c)
d

dx
{f(x) ∗ g(x)}= f ′(x) ∗ g(x) = f(x) ∗ g′(x),

(d)
∫ ∞

−∞
(f ∗ g)(x)dx=

∫ ∞

−∞
f(u)du

∫ ∞

−∞
g(v)dv ,

(e)
d2

dx2
(f ∗ g) (x) = (f ′ ∗ g′) (x) = (f ′′ ∗ g) (x),

(f) (f ∗ g)(n+l) (x) = f (n) (x) ∗ g(l) (x),

(g) If f and g are both even or both odd, then (f ∗ g) (x) is even,

(h) If f is even or g is odd, or vice versa, then (f ∗ g) (x) is odd,

(i) If g(x) =
1
2a

H(a− |x|), then (f ∗ g) (x) is the average of the

function f(x) in [x− a, x+ a],

(j) If Gt(x) =
1√

4πkt

∞∫
−∞

f(ξ) exp
[
− (x− ξ)2

4kt

]
dξ,

then Gt(x) ∗Gs(x) =Gt+s(x).

8. Use the Fourier transform to solve the following ordinary differential
equations in −∞<x<∞:

(a) y′′(x) − y(x) + 2f(x) = 0, where f(x) = 0 when x<−a and when
x>a, and y(x) and its derivatives vanish at x=±∞,
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(b) 2y′′(x) + xy′(x) + y(x) = 0, (c) y′′(x) + x y′(x) + y(x) = 0,
(d) y′′(x) + x y′(x) + x y(x) = 0, (e) ÿ(t) + 2α ẏ(t) + ω2y(t) = f(t).

9. Solve the following integral equations for an unknown function f(x):

(a)

∞∫
−∞

φ(x− t)f(t)dt= g(x).

(b)

∞∫
−∞

exp(−at2)f(x− t)dt= exp(−bx2), a > b> 0.

(c)

∞∫
−∞

f(x− t)f(t)dt=
b

(x2 + b2)
.

(d)

∞∫
−∞

f(t)dt
(x− t2) + a2

=
√

2π
(x2 + b2)

for b> a> 0.

(e)
1
π

∞∮
−∞

f(t)dt
x− t

=φ(x),

where the integral in (e) is treated as the Cauchy Principal value.

10. Solve the Cauchy problem for the Klein-Gordon equation

utt − c2 uxx + a2 u= 0, −∞<x<∞, t > 0.

u(x, 0) = f(x),
(
∂u

∂t

)
t=0

= g(x) for −∞<x<∞.

11. Solve the telegraph equation

utt − c2 uxx + ut − aux = 0, −∞<x<∞, t > 0.

u(x, 0) = f(x),
(
∂u

∂t

)
t=0

= g(x) for −∞<x<∞.

Show that the solution is unstable when c2<a2. If c2>a2, show that
the bounded integral solution is

u(x, t) =
1√
2π

∞∫
−∞

A(k) exp[−k2(c2 − a2)t+ ik(x+ at)]dk

where A(k) is given in terms of the transformed functions of the initial
data. Hence, deduce the asymptotic solution as t→∞ in the form

u(x, t) =A(0)
√

π

2(c2 − a2)t
exp

[
− (x+ at)2

4(c2 − a2)t

]
.
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12. Solve the equation

utt + uxxxx= 0, −∞<x<∞, t > 0
u(x, 0) = f(x), ut(x, 0) = 0 for −∞<x<∞.

13. Find the solution of the dissipative wave equation

utt − c2 uxx + αut = 0, −∞<x<∞, t > 0,

u(x, 0) = f(x),
(
∂u

∂t

)
t=0

= g(x) for −∞<x<∞,

where α> 0 is the dissipation parameter.

14. Obtain the Fourier cosine transforms of the following functions:
(a) f(x) = x exp(−ax), a > 0, (b)f(x) = e−ax cos x, a> 0,

(c) f(x) =
1
x
, (d) K0(ax),

where K0(ax) is the modified Bessel function.

15. Find the Fourier sine transform of the following functions:

(a) f(x) = x exp(−ax), a > 0, (b) f(x) =
1
x

exp(−ax), a> 0,

(c) f(x) =
1
x
, (d) f(x) =

x

a2 + x2
.

16. (a) If F (k) = F{exp(−ax2)}, a> 0, show that F (k) satisfies the dif-
ferential equation

2a
dF

dk
+ k F (k) = 0 with F (0) =

1√
2a
.

(b) If Fc(k) = Fc{exp(−ax2)}, show that Fc(k) satisfies the equation

dFc
dk

+
(
k

2a

)
Fc = 0 with Fc(0) = 1.

17. Prove the following for the Fourier sine transform

(a)

∞∫
0

Fs(k)Gc(k) sin kx dk=
1
2

∞∫
0

g(ξ)[f(ξ + x) − f(ξ − x)]dξ,

(b)

∞∫
0

Fc(k)Gs(k) sin kx dk=
1
2

∞∫
0

f(ξ)[g(ξ + x) − g(ξ − x)]dξ.

18. Solve the integral equation
∞∫
0

f(x) sin kx dk=

{
1− k, 0≤ k < 1

0, k > 1

}
.
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19. Solve Example 2.15.1 with the boundary data

u(0, t)= 0, u(x, t)→ 0 as x→∞, for t > 0.

20. Apply the Fourier cosine transform to find the solution u(x, y) of the
problem

uxx + uyy = 0, 0<x<∞, 0<y <∞,

u(x, 0) =H(a− x), a >x; ux(0, y)= 0, 0<x, y <∞.

21. Use the Fourier cosine (or sine) transform to solve the following integral
equation:

(a)

∞∫
0

f(x) cos kx dx=
√

π

2k
, (b)

∞∫
0

f(x) sin kx dx=
a

a2 + k2
,

(c)

∞∫
0

f(x) sin kxdx=
π

2
J0(ak), (d)

∞∫
0

f(x) cos kx dx=
sin ak
k

.

22. Solve the diffusion equation in the semi-infinite line

ut = κuxx, 0≤ x<∞, t > 0,

with the boundary and initial data

u(0, t)= 0 for t > 0,
u(x, t)→ 0 as x→∞ for t > 0,
u(x, 0) = f(x) for 0<x<∞.

23. Use the Parseval formula to evaluate the following integrals with a> 0
and b > 0 :

(a)

∞∫
−∞

dx

(x2 + a2)2
,

(b)

∞∫
−∞

sin ax
x(x2 + b2)

dx

(c)

∞∫
−∞

sin2 ax

x2
dx,

(d)

∞∫
−∞

exp(−bx2)dx
(x2 + a2)

.

24. Show that
∞∫
0

sinax sin bx
x2

dx=
π

2
min(a, b).
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25. If f(x) = exp(−ax) and g(x) =H(t− x), show that

∞∫
0

sin tx
x(x2 + a2)

dx=
π

2a2
[1 − exp(−at)].

26. Use the Poisson summation formula to find the sum of each of the fol-
lowing series with non-zero a:

(a)
∞∑

n=−∞

1
(1 + n2a2)

, (b)
∞∑
n=1

sin an
n

,

(c)
∞∑
n=1

sin2 an

n2
, (d)

∞∑
n=−∞

a

n2 + a2
.

27. The Fokker-Planck equation (Reif, 1965) is used to describe the evolu-
tion of probability distribution functions u(x, t) in nonequilibrium sta-
tistical mechanics and has the form

∂u

∂t
=

∂

∂x

(
∂

∂x
+ x

)
u.

The fundamental solution of this equation is defined by the equation[
∂

∂t
− ∂

∂x

(
∂

∂x
+ x

)]
G(x, ξ; t, τ) = δ(x− ξ)δ(t− τ).

Show that the fundamental solution is

G(x, ξ; t, τ) = [2π{1− exp[−2(t− τ)]}]− 1
2 exp

[
−{x− ξ exp[−(t− τ)]}2

2[1− exp{−2(t− τ)}]
]
.

Hence, derive

lim
t→∞G(x, ξ; t, τ) =

1√
2π

exp
(
−1

2
x2

)
.

With the initial condition u(x, 0)= f(x), show that the function u(x, t)
tends to the normal distribution as t→∞, that is,

lim
t→∞ u(x, t) =

1√
2π

exp
(
−1

2
x2

) ∞∫
−∞

f(ξ)dξ.

28. The transverse vibration of an infinite elastic beam of mass m per unit
length and the bending stiffness EI is governed by

utt + a2 uxxxx= 0,
(
a2 =

EI

m

)
, −∞<x<∞, t > 0.
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Solve this equation subject to the boundary and initial data

u(0, t)= 0 for all t> 0,
u(x, 0) =φ(x), ut(x, 0) =ψ′′(x) for 0<x<∞.

Show that the Fourier transform solution is

U(k, t) = Φ(k) cos(atk2)−Ψ(k) sin(atk2).

Find the integral solution for u(x, t).

29. Solve the Lamb (1904) problem in geophysics that satisfies the Helmholtz
equation in an infinite elastic half-space

uxx + uzz +
ω2

c2 2
u= 0, −∞<x<∞, z > 0,

where ω is the frequency and c2 is the shear wave speed.

At the surface of the half-space (z= 0), the boundary condition relating
the surface stress to the impulsive point load distribution is

μ
∂u

∂z
=−Pδ(x) at z= 0,

where μ is one of the Lamé’s constants, P is a constant and

u(x, z)→ 0 as z→∞ for −∞<x<∞.

Show that the solution in terms of polar coordinates is

u(x, z) =
P

2iμ
H0

(2)

(
ωr

c2

)
∼ P

2iμ

(
2c2
πωr

) 1
2

exp
(
πi

4
− iωr

c2

)
for ωr >> c2.

30. Find the solution of the Cauchy-Poisson problem (Debnath, 1994, p. 83)
in an inviscid water of infinite depth which is governed by

φxx + φzz = 0, −∞<x<∞, −∞<z≤ 0, t > 0,
φz − ηt = 0

φt + gη = 0

}
on z= 0, t > 0,

φz → 0 as z→−∞,

φ(x, 0, 0) = 0 and η(x, 0) =Pδ(x),

where φ=φ(x, z, t) is the velocity potential, η(x, t) is the free surface
elevation, and P is a constant.

Derive the asymptotic solution for the free surface elevation in the limit
as t→∞.
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31. Obtain the solutions for the velocity potential φ(x, z, t) and the free
surface elevation η(x, t) involved in the two-dimensional surface waves in
water of finite (or infinite) depth h. The governing equation, boundary,
and free surface conditions and initial conditions (see Debnath 1994, p.
92) are

φxx + φzz = 0, −h≤ z≤ 0, −∞<x<∞, t > 0

φt + gη = −P
ρ
p(x) exp (i ω t)

φz − ηt = 0

⎫⎬⎭ z= 0, t > 0

φ(x, z, 0) = 0 = η(x, 0) for all x and z.

32. Solve the steady-state surface wave problem (Debnath, 1994, p. 47) on
a running stream of infinite depth due to an external steady pressure
applied to the free surface. The governing equation and the free surface
conditions are

φxx + φzz = 0, −∞<x<∞, −∞<z < 0, t > 0,

φx +Uφx + gη = −P
ρ
δ(x) exp (εt)

ηt +Uηx = φz

⎫⎬⎭ z= 0, (ε> 0),

φz → 0 as z→−∞.

where U is the stream velocity, φ(x, z, t) is the velocity potential, and
η(x, t) is the free surface elevation.

33. Use the Fourier sine transform to solve the following initial and bound-
ary value problem for the wave equation:

utt = c2uxx, 0<x<∞, t > 0,
u(x, 0) = 0, ut(x, 0) = 0 for 0<x<∞,

u(0, t)= f(t) for t > 0,

where f(t) is a given function.

34. Solve the following initial and boundary value problem for the wave
equation using the Fourier cosine transform:

utt = c2uxx, 0<x<∞, t > 0,
u(0, t)= f(t) for t > 0,
u(x, 0)= 0, ut(x, 0) = 0 for 0<x<∞,

where f(t) is a known function.
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35. Apply the Fourier transform to solve the initial value problem for the
dissipative wave equation

utt = c2uxx + αuxxt, −∞<x<∞, t > 0,
u(x, 0) = f(x), ut(x, 0) =αf ′′(x) for −∞<x<∞,

where α is a positive constant.

36. Use the Fourier sine transform to solve the initial and boundary value
problem for free vibrations of a semi-infinite string:

utt = c2uxx, 0<x<∞, t > 0,
u(0, t)= 0, t≥ 0,
u(x, 0)= f(x) and ut(x, 0) = g(x) for 0<x<∞.

37. The static deflection u(x, y) in a thin elastic disk in the form of a quad-
rant satisfies the boundary value problem

uxxxx + 2 uxxyy + uyyyy = 0, 0<x<∞, 0<y <∞,

u(0, y)= uxx(0, y)= 0 for 0<y <∞,

u(x, 0)=
ax

1 + x2
, uyy(x, 0) = 0 for 0<x<∞,

where a is a constant, and u(x, y) and its derivatives vanish as x→∞
and y→∞.

Use the Fourier sine transform to show that

u(x, y) =
a

2

∞∫
0

(2 + ky)exp[−(1 + y)k] sinkx dx

=
ax

x2 + (1 + y)2
+

axy(1 + y)
[x2 + (1 + y)2]2

38. In exercise 37, replace the conditions on y= 0 with the conditions

u(x, 0) = 0, uyy(x, 0) =
ax

(1 + x2)2
for 0<x<∞.

Show that the solution is

u(x, y) = −ax
4

∞∫
0

exp[−(1 + y)k] sinkx dk

= −1
4

axy

[x2 + (1 + y)2]
.
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39. In exercise 37, solve the biharmonic equation in 0<x<∞, 0<y < b
with the boundary conditions

u(0, y) = a sin y, uxx(0, y)= 0 for 0<y< b,
u(x, 0) = uyy(x, 0) = u(x, b) = uyy(x, b) = 0 for 0<x<∞,

and u(x, y), ux(x, y) vanish as x→∞.

40. Use the Fourier transform to solve the boundary value problem

uxx + uyy =−x exp(−x2), −∞<x<∞, 0<y<∞,

u(x, 0) = 0, for −∞<x<∞, u and its derivative vanish as y→∞.

Show that

u(x, y) =
1√
4π

∞∫
0

[1 − exp(−ky)] sin kx
k

exp
(
−k

2

4

)
dk.

41. Using the definition of the characteristic function for the discrete random
variable X

φ(t) =E[exp(itX)] =
∑
r

pr exp(itxr)

where pr =P (X = xr), show that the characteristic function of the bi-
nomial distribution

pr =
(
n

r

)
pr(1 − p)n−r

is
φ(t) = [1 + p(eit − 1)]n.

Find the moments.

42. Show that the characteristic function of the Poisson distribution

pr =P (X = r) =
λr

r!
e−λ, r= 0, 1, 2, . . .

is
φ(t) = exp[λ(eit − 1)].

Find the moments.

43. Find the characteristic function of

(a) The gamma distribution whose density function is

f(x) =
ap

Γ(p)
xp−1e−axH(x),
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(b) The beta distribution whose density function is

f(x) =

⎧⎪⎨⎪⎩
xp−1(1 − x)q−1

B(p, q)
for 0<x< 1,

0 for x< 0 and x> 1

⎫⎪⎬⎪⎭ ,

(c) The Cauchy distribution whose density function is

f(x) =
1
π

λ

[λ2 + (x− μ)2]
,

(d) The Laplace distribution whose density function is

f(x) =
1
2λ

exp
(
−|x− u|

λ

)
, λ> 0.

44. Find the density function of the random variable X whose characteristic
function is

φ(t) = (1− |t|)H(1 − |t|).

45. Find the characteristic function of uniform distribution whose density
function is

f(x) =

⎧⎨⎩
0, x< 0
1, 0≤ x≤ a
0, x> a

⎫⎬⎭ .

46. Solve the initial value problem (Debnath, 1994, p. 115) for the two-
dimensional surface waves at the free surface of a running stream of
velocity U. The problem satisfies the equation, boundary, and initial
conditions

φxx + φzz = 0, −∞<x<∞, −h≤ z≤ 0, t > 0,

φx + Uφx + gη=−P
ρ
δ(x) exp(i ω t)

ηt + Uηx − φz = 0

⎫⎬⎭ on z= 0, t > 0,

φ(x, z, 0) = η(x, 0) = 0, for all x and z.

47. Apply the Fourier tranform to solve the equation

uxxxx + uyy = 0, −∞<x<∞, y≥ 0,

satisfying the conditions

u(x, 0)= f(x), uy(x, 0) = 0 for −∞<x<∞,

u(x, y) and its partial derivatives vanish as |x| →∞.
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48. The transverse vibration of a thin membrane of great extent satisfies
the wave equation

c2(uxx + uyy) = utt, −∞<x, y <∞, t > 0,

with the initial and boundary conditions

u(x, y, t)→ 0 as |x| →∞, |y|→∞ for all t≥ 0,
u(x, y, 0)= f(x, y), ut(x, y, 0) = 0 for all x, y.

Apply the double Fourier transform method to solve this problem.

49. Solve the diffusion problem with a source q(x, t)

ut = κ uxx + q(x, t), −∞<x<∞, t > 0,
u(x, 0) = 0 for −∞<x<∞.

Show that the solution is

u(x, t) =
1√

4π t κ

t∫
0

(t− τ)−
1
2 dτ

∞∫
−∞

q(k, τ) exp
[
− (x− k)2

4κ(t− τ)

]
dk.

50. The function u(x, t) satisfies the diffusion problem in a half-line

ut = κuxx + q(x, t), 0≤ x<∞, t > 0,
u(x, 0) = 0, u(0, t) = 0 for x≥ 0 and t> 0.

Show that

u(x, t) =

√
2
π

t∫
0

dτ

∞∫
0

Qs(k, τ) exp[−κk2(t− τ)] sin kx dk,

where Qs(k, t) is the Fourier sine transform of q(x, t).

51. Apply the triple Fourier transform to solve the initial value problem

ut = κ(uxx + uyy + uzz), −∞<x, y, z <∞, t > 0,
u(x, 0) = f(x) for all x, y, z,

where x= (x, y, z).

52. Use the Fourier transform with respect to t and Laplace transform with
respect to x to solve the telegraph equation

utt + a ut + bu= c2 uxx, 0<x<∞, −∞< t<∞,

u(0, t)= f(t), ux(0, t) = g(t), for −∞< t<∞,

where a, b, c are constants and f(t) and g(t) are arbitrary functions of
time t.
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53. Determine the steady-state temperature distribution in a disk occupying
the semi-infinite strip 0<x<∞, 0<y< 1 if the edges x= 0 and y= 0
are insulated, and the edge y= 1 is kept at a constant temperature
T0 H(a− x). Assuming that the disk loses heat due to its surroundings
according to Newton’s law with proportionality constant h, solve the
boundary value problem

uxx + uyy − hu= 0, 0<x<∞, 0<y < 1,
u(x, 1) =T0 H(a− x), for 0<x<∞,

ux(0, y) = 0 = uy(x, 0) for 0<x<∞, 0<y < 1.

54. Use the double Fourier transform to solve the following equations:

(a) uxxxx− uyy + 2u= f(x, y),
(b) uxx + 2uyy + 3ux − 4u= f(x, y),

where f(x, y) is a given function.

55. Use the Fourier transform to solve the Rossby wave problem in an in-
viscid β-plane ocean bounded by walls at y= 0 and y= 1 where y and x
represent vertical and horizontal directions. The fluid is initially at rest
and then, at t= 0+, an arbitrary disturbance localized to the vicinity
of x= 0 is applied to generate Rossby waves. This problem satisfies the
Rossby wave equation

∂

∂t
[(∇2 − κ2)ψ] + βψx = 0, −∞<x<∞, 0≤ y≤ 1, t > 0,

with the boundary and initial conditions

ψx(x, y) = 0 for 0<x<∞, y= 0 and y= 1,
ψ(x, y, t) =ψ0(x, y) at t= 0 for all x and y.

56. Find the transfer function and the corresponding impulse response func-
tion of the input and output of the RC circuit governed by the equation

R
dq

dt
+

1
C
q (t) = e (t) ,

where R, C are constants, q (t) is the electric charge and e (t) is the
given voltage.

57. Prove the Poisson summation formula for the Fourier cosine transform
Fc {f(x)}=Fc(k) in the form

√
a

[
1
2
f(0) +

∞∑
n=1

f(na)

]
=
√
b

[
1
2
Fc(0) +

∞∑
n=1

Fc(nb)

]
,

where ab= 2π and a> 0.
Apply this formula to the following examples:
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(a) f(x) = e−x, Fc(k) =

√
2
π

(1 + k2)−1,

(b) f(x) = exp(−1
2
x2), Fc(k) = exp(−1

2
k2),

(c) f(x) = exp(−1
2
x2) cos αx, Fc(k) = exp

[
−1

2
(α2 + k2)

]
cosh(kα),

(d) f(x) =

{
2

1
2−ν

Γ(ν+ 1
2 )

(1 − x2)ν−
1
2 , 0≤ x< 1,

0, x≥ 1.

Fc(k) = k−νJν(k), k > 0; Fc(0)=
1

2νΓ(ν + 1)
.
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Laplace Transforms and Their Basic
Properties

“What we know is not much. What we do not know is immense.”
Pierre-Simon Laplace

“The algebraic analysis soon makes us forget the main object [of
our research] by focusing our attention on abstract combinations
and it is only at the end that we return to the original objective.
But in abandoning oneself to the operations of analysis, one is led
to the generality of this method and the inestimable advantage of
transforming the reasoning by mechanical procedures to results of-
ten inaccessible by geometry....No other language has the capacity
for the elegance that arises from a long sequence of expressions
linked one to the other and all stemming from one fundamental
idea.”

Pierre-Simon Laplace

“... For Laplace, on the contrary, mathematical analysis was an
instrument that he bent to his purposes for the most varied appli-
cations, but always subordinating the method itself to the content
of each question. Perhaps posterity will....”

Simeon-Denis Poisson

3.1 Introduction

In this chapter, we present the formal definition of the Laplace transform and
calculate the Laplace transforms of some elementary functions directly from
the definition. The existence conditions for the Laplace transform are stated
in Section 3.3. The basic operational properties of the Laplace transforms in-
cluding convolution and its properties, and the differentiation and integration
of Laplace transforms are discussed in some detail. The inverse Laplace trans-
form is introduced in Section 3.7, and four methods of evaluation of the inverse

133
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transform are developed with examples. The Heaviside Expansion Theorem
and the Tauberian theorems for the Laplace transform are discussed.

3.2 Definition of the Laplace Transform and Examples

We start with the Fourier Integral Formula (2.2.4), which expresses the rep-
resentation of a function f1(x) defined on −∞<x<∞ in the form

f1(x) =
1
2π

∞∫
−∞

eikxdk

∞∫
−∞

e−iktf1(t)dt. (3.2.1)

We next set f1(x)≡ 0 in −∞<x< 0 and write

f1(x) = e−cxf(x)H(x) = e−cxf(x), x> 0, (3.2.2)

where c is a positive fixed number, so that (3.2.1) becomes

f(x) =
ecx

2π

∞∫
−∞

eikxdk

∞∫
0

exp{−t(c+ ik)}f(t)dt. (3.2.3)

With a change of variable, c+ ik= s, i dk= ds we rewrite (3.2.3) as

f(x) =
ecx

2πi

c+i∞∫
c−i∞

exp{(s− c)x}ds
∞∫
0

e−stf(t)dt. (3.2.4)

Thus, the Laplace transform of f(t) is formally defined by

L {f(t)}= f̄(s) =

∞∫
0

e−stf(t)dt, Re s> 0, (3.2.5)

where e−st is the kernel of the transform and s is the transform variable which
is a complex number. Under broad conditions on f(t), its transform f̄(s) is
analytic in s in the half-plane, where Re s> a.

Result (3.2.4) then gives the formal definition of the inverse Laplace trans-
form

L −1{f̄(s)}= f(t) =
1

2πi

c+i∞∫
c−i∞

estf̄(s) ds, c> 0. (3.2.6)

Obviously, L and L −1 are linear integral operators.
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Using the definition (3.2.5), we can calculate the Laplace transforms of some
simple and elementary functions.

Example 3.2.1
If f(t) = 1 for t> 0, then

f̄(s) = L {1}=

∞∫
0

e−stdt=
1
s
. (3.2.7)

Example 3.2.2
If f(t) = eat, where a is a constant, then

L {eat}= f̄(s) =

∞∫
0

e−(s−a)tdt=
1

s− a
, s> a. (3.2.8)

Example 3.2.3
If f(t) = sin at, where a is a real constant, then

L {sinat} =

∞∫
0

e−st sin at dt=
1
2i

∞∫
0

[e−t(s−ia) − e−t(s+ia)] dt (3.2.9)

=
1
2i

[
1

s− ia
− 1
s+ ia

]
=

a

s2 + a2
.

Similarly,

L {cos at}=
s

s2 + a2
. (3.2.10)

Example 3.2.4
If f(t) = sinh at or coshat, where a is a real constant, then

L {sinhat} =

∞∫
0

e−st sinh at dt=
a

s2 − a2
, (3.2.11)

L {coshat} =

∞∫
0

e−st coshat dt=
s

s2 − a2
. (3.2.12)
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Example 3.2.5
If f(t) = tn, where n is a positive integer, then

f̄(s) = L {tn}=
n!
sn+1

. (3.2.13)

We recall (3.2.7) and formally differentiate it with respect to s. This gives

∞∫
0

t e−st dt=
1
s2
, (3.2.14)

which means that
L {t}=

1
s2
. (3.2.15)

Differentiating (3.2.14) with respect to s gives

L {t2}=

∞∫
0

t2e−st dt=
2
s3
. (3.2.16)

Similarly, differentiation of (3.2.7) n times yields

L {tn}=

∞∫
0

tne−st dt=
n!
sn+1

. (3.2.17)

Example 3.2.6
If a(>−1) is a real number, then

L {ta}=
Γ(a+ 1)
sa+1

, (s> 0). (3.2.18)

We have

L {ta}=

∞∫
0

tae−st dt,

which is, by putting st= x,

=
1

sa+1

∞∫
0

xae−xdx=
Γ(a+ 1)
sa+1

,
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where Γ(a) represents the gamma function defined by the integral

Γ(a) =

∞∫
0

xa−1e−xdx, a> 0. (3.2.19)

It can be shown that the gamma function satisfies the relation

Γ(a+ 1)= aΓ(a). (3.2.20)

Obviously, result (3.2.18) is an extension of (3.2.17). The latter is a special
case of the former when a is a positive integer.

In particular, when a=−1
2
, result (3.2.18) gives

L

{
1√
t

}
=

Γ
(

1
2

)
√
s

=
√
π

s
, where Γ

(
1
2

)
=
√
π. (3.2.21)

Similarly,

L
{√

t
}

=
Γ
(

3
2

)
s3/2

=
√
π

2
1
s3/2

, (3.2.22)

where

Γ
(

3
2

)
= Γ

(
1
2

+ 1
)

=
1
2

Γ
(

1
2

)
=

√
π

2
.

Example 3.2.7

If f(t) = erf
(

a

2
√
t

)
, then

L

{
erf

(
a

2
√
t

)}
=

1
s
(1 − e−a

√
s), (3.2.23)

where erf (t) is the error function defined by (2.5.13).
To prove (3.2.23), we begin with the definition (3.2.5) so that

L

{
erf

(
a

2
√
t

)}
=

∞∫
0

e−st

⎡⎢⎣ 2√
π

a/2
√
t∫

0

e−x
2
dx

⎤⎥⎦ dt,

which is, by putting x= a
2
√
t

or t= a2

4x2 and interchanging the order of inte-



© 2007 by Taylor & Francis Group, LLC

138 INTEGRAL TRANSFORMS and THEIR APPLICATIONS

gration,

=
2√
π

∞∫
0

e−x
2
dx

a2/4x2∫
0

e−stdt

=
2√
π

∞∫
0

e−x
2 1
s

{
1− exp

(
− a2s

4x2

)}
dx

=
1
s
· 2√

π

⎡⎣ ∞∫
0

e−x
2
dx−

∞∫
0

exp
{
−
(
x2 +

sa2

4x2

)}
dx

⎤⎦,
where the integral
∞∫
0

exp
{
−
(
x2 +

α2

x2

)}
dx =

1
2

⎡⎣ ∞∫
0

(
1 − α

x2

)
exp

[
−
(
x+

α

x

)2

+ 2α
]

+

∞∫
0

(
1 +

α

x2

)
exp

[
−
(
x− α

x

)2

− 2α
]⎤⎦dx,

which is, by putting y=
(
x± α

x

)
, dy=

(
1 ∓ α

x2

)
dx, and observing that the

first integral vanishes,

=
1
2
e−2α

∞∫
−∞

e−y
2
dy=

√
π

2
e−2α, α=

a
√
s

2
.

Consequently,

L

{
erf

(
a

2
√
t

)}
=

1
s

2√
π

[√
π

2
−

√
π

2
e−a

√
s

]
=

1
s
[1− e−a

√
s].

We use (3.2.23) to find the Laplace transform of the complementary error
function defined by (2.10.14) and obtain

L

{
erfc

(
a

2
√
t

)}
=

1
s
e−a

√
s. (3.2.24)

The proof of this result follows from erfc(x) = 1− erf (x) and L {1}= 1
s .

Example 3.2.8
If f(t) = J0(at) is a Bessel function of order zero, then

L {J0(at)}=
1√

s2 + a2
. (3.2.25)



© 2007 by Taylor & Francis Group, LLC

Laplace Transforms and Their Basic Properties 139

Using the series representation of J0(at), we obtain

L {J0(at)} = L

[
1 − a2t2

22
+

a4t4

22 · 42
− a6t6

22 · 42 · ·62
+ · · ·

]
=

1
s
− a2

22

2!
s3

+
a4

22 · 42
· 4!
s5

− a6

22 · 42 · 62
· 6!
s7

+ · · ·

=
1
s

[
1 − 1

2

(
a2

s2

)
+

1 · 3
2 · 4

(
a4

s4

)
− 1 · 3 · 5

2 · 4 · 6
(
a6

s6

)
+ · · ·

]
=

1
s

[(
1 +

a2

s2

)− 1
2
]

=
1√

a2 + s2
.

3.3 Existence Conditions for the Laplace Transform

A function f(t) is said to be of exponential order a(> 0) on 0≤ t<∞ if there
exists a positive constant K such that for all t > T

|f(t)| ≤Keat, (3.3.1)

and we write this symbolically as

f(t) =O(eat) as t→∞. (3.3.2)

Or, equivalently,

lim
t→∞ e−bt|f(t)| ≤K lim

t→∞ e−(b−a)t = 0, b > a. (3.3.3)

Such a function f(t) is simply called an exponential order as t→∞, and
clearly, it does not grow faster than Keat as t→∞.

THEOREM 3.3.1
If a function f(t) is continuous or piecewise continuous in every finite interval
(0, T ), and of exponential order eat, then the Laplace transform of f(t) exists
for all s provided Re s> a.

PROOF We have

|f̄(s)|=
∣∣∣∣∣∣
∞∫
0

e−stf(t)dt

∣∣∣∣∣∣ ≤
∞∫
0

e−st|f(t)|dt (3.3.4)

≤ K

∞∫
0

e−t(s−a)dt=
K

s− a
, for Re s> a.



© 2007 by Taylor & Francis Group, LLC

140 INTEGRAL TRANSFORMS and THEIR APPLICATIONS

Thus, the proof is complete.
It is noted that the conditions as stated in Theorem 3.3.1 are sufficient

rather than necessary conditions.
It also follows from (3.3.4) that lims→∞ |f̄(s)|= 0, that is, lims→∞ f̄(s) = 0.

This result can be regarded as the limiting property of the Laplace transform.
However, f̄(s) = s or s2 is not the Laplace transform of any continuous (or
piecewise continuous) function because f̄(s) does not tend to zero as s→∞.

Further, a function f(t) = exp(at2), a> 0 cannot have a Laplace transform
even though it is continuous but is not of the exponential order because

lim
t→∞ exp(at2 − st) =∞.

3.4 Basic Properties of Laplace Transforms

THEOREM 3.4.1 (Heaviside’s First Shifting Theorem).
If L {f(t)}= f̄(s), then

L {e−atf(t)}= f̄(s+ a), (3.4.1)

where a is a real constant.

PROOF We have, by definition,

L {e−atf(t)}=

∞∫
0

e−(s+a)tf(t)dt= f̄(s+ a).

Example 3.4.1
The following results readily follow from (3.4.1)

L {tne−at} =
n!

(s+ a)n+1
, (3.4.2)

L {e−at sin bt} =
b

(s+ a)2 + b2
, (3.4.3)

L {e−at cos bt} =
s+ a

(s+ a)2 + b2
. (3.4.4)
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THEOREM 3.4.2
If L {f(t)}= f̄(s), then the Second Shifting property holds:

L {f(t− a)H(t− a)}= e−as f̄(s) = e−asL {f(t)} , a > 0. (3.4.5)

Or, equivalently,

L {f(t)H(t− a)}= e−asL {f(t+ a)} . (3.4.6)

where H(t− a) is the Heaviside unit step function defined by (2.3.9).

It follows from the definition that

L {f(t− a)H(t− a)} =

∞∫
0

e−stf(t− a)H(t− a)dt

=

∞∫
a

e−stf(t− a)dt,

which is, by putting t− a= τ ,

= e−sa
∞∫
0

e−sτf(τ)dτ = e−saf̄(s).

We leave it to the reader to prove (3.4.6).
In particular, if f(t) = 1, then

L {H(t− a)}=
1
s

exp(−sa). (3.4.7)

Example 3.4.2
Use the shifting property (3.4.5) or (3.4.6) to find the Laplace transform of

(a) f(t) =

⎧⎨⎩
1, 0< t< 1
−1, 1< t< 2
0, t > 2

⎫⎬⎭ , (b) g(t) = sin tH(t− π).

To find L {f(t)}, we write f(t) as

f(t) = 1 − 2H(t− 1) +H(t− 2).

Hence,

f̄(s) = L {f(t)} = L {1} − 2 L {H(t− 1)} + L {H(t− 2)}
=

1
s
− 2 e−s

s
+
e−2s

s
.
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To obtain L {g(t)}, we use (3.4.6) so that

ḡ(s) = L {sin tH(t− π)} = −e−πsL {cos t}=−s e
−πs

s2 + 1
.

Scaling Property:

L {f(at)}=
1
|a| f̄

( s
a

)
, a �= 0. (3.4.8)

Example 3.4.3
Show that the Laplace transform of the square wave function f(t) defined by

f(t) =H(t) − 2H(t− a) + 2H(t− 2a)− 2H(t− 3a) + · · · (3.4.9)

is
f̄(s) =

1
s

tanh
(as

2

)
. (3.4.10)

The graph of f(t) is shown in Figure 3.1.

f(t) = H(t) − 2H(t− a)= 1− 2 · 0 = 1, 0< t<a
f(t) = H(t) − 2H(t− a) + 2H(t− 2a)

= 1 − 2 · 1 + 2 · 0 =−1, 0<a< t< 2a.

Thus,

f̄(s) =
1
s
− 2 · e

−as

s
+ 2 · e

−2as

s
− 2 · e

−3as

s
+ · · ·

=
1
s
[1 − 2r(1 − r + r2 − · · · )], where r= e−as

=
1
s

[
1 − 2r

1 + r

]
=

1
s

[
1 − 2e−as

1 + e−as

]
=

1
s

(
1 − e−as

1 + e−as

)
=

1
s

(
e

sa
2 − e−

as
2

e
sa
2 + e−

as
2

)
=

1
s

tanh
(as

2

)
.

Example 3.4.4
(The Laplace Transform of a Periodic Function). If f(t) is a periodic function
of period a, and if L {f(t)} exists, show that

L {f(t)}= [1− exp(−as)]−1

a∫
0

e−stf(t)dt. (3.4.11)
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-1

0

1

t

f(
t)

2a 3a 4a 5aa

Figure 3.1 Square wave function.

We have, by definition,

L {f(t)}=

∞∫
0

e−stf(t)dt=

a∫
0

e−stf(t)dt+

∞∫
a

e−stf(t)dt.

Letting t= τ + a in the second integral gives

f̄(s) =

a∫
0

e−stf(t)dt+ exp(−sa)
∞∫
0

e−sτf(τ + a)dτ,

which is, due to f(τ + a) = f(τ) and replacing the dummy variable τ by t in
the second integral,

=

a∫
0

e−stf(t)dt+ exp(−sa)
∞∫
0

e−stf(t)dt.

Finally, combining the second term with the left hand side, we obtain (3.4.11).
In particular, we calculate the Laplace transform of a rectified sine wave,

that is, f(t) = | sin at|. This is a periodic function with period
π

a
. We have

π
a∫

0

e−st sinat dt=
[
e−st(−a cos at− s sin at)

(s2 + a2)

]π
a

0

=
a
{
1 + exp

(− sπ
a

)}
(s2 + a2)

.
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Clearly, the property (3.4.11) gives

L {f(t)} =
a

(s2 + a2)
·
1 + exp

(
−sπ
a

)
1− exp

(
−sπ
a

)

=
a

(s2 + a2)

⎡⎢⎢⎣ exp
(sπ

2a

)
+ exp

(
−sπ

2a

)
exp

(
2π
2a

)
− exp

(
−sπ

2a

)
⎤⎥⎥⎦

=
a

s2 + a2
coth

(πs
2a

)
.

THEOREM 3.4.3 (Laplace Transforms of Derivatives).
If L {f(t)}= f̄(s), then

L {f ′(t)} = sL {f(t)} − f(0)= sf̄(s) − f(0), (3.4.12)
L {f ′′(t)} = s2L {f(t)} − sf(0)− f ′(0) = s2f̄(s) − s f(0)− f ′(0). (3.4.13)

More generally,

L {f (n)(t)}= snf̄(s) − sn−1f(0)− sn−2f ′(0)− · · · − sf (n−2)(0)− f (n−1)(0),
(3.4.14)

where f (r)(0) is the value of f (r)(t) at t= 0, r= 0, 1, ..., (n− 1).

PROOF We have, by definition,

L {f ′(t)}=

∞∫
0

e−stf ′(t)dt,

which is, integrating by parts,

=
[
e−stf(t)

]∞
0

+ s

∞∫
0

e−stf(t)dt

= sf̄(s) − f(0),

in which we assumed f(t) e−st→ 0 as t→∞.
Similarly,

L {f ′′(t)} = sL {f ′(t)} − f ′(0), by (3.4.12)
= s[s f̄(s) − f(0)]− f ′(0)
= s2f̄(s)− sf(0)− f ′(0),
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where we have assumed e−stf ′(t)→ 0 as t→∞.
A similar procedure can be used to prove the general result (3.4.14).
It may be noted that similar results hold when the Laplace transform is ap-

plied to partial derivatives of a function of two or more independent variables.
For example, if u(x, t) is a function of two variables x and t, then

L

{
∂u

∂t

}
= sū(x, s) − u(x, 0), (3.4.15)

L

{
∂2u

∂t2

}
= s2ū(x, s) − s u(x, 0)−

[
∂u

∂t

]
t=0

, (3.4.16)

L

{
∂u

∂x

}
=
dū

dx
, L

{
∂2u

∂x2

}
=
d2ū

dx2
. (3.4.17)

Results (3.4.12) to (3.4.14) imply that the Laplace transform reduces the op-
eration of differentiation into algebraic operation. In view of this, the Laplace
transform can be used effectively to solve ordinary or partial differential e-
quations.

Example 3.4.5
Use (3.4.14) to find L {tn}.

Here f(t) = tn, f ′(t) =ntn−1, · · · , f (n)(t) =n! and f(0)= f ′(0) = · · ·=
f (n−1)(0)= 0.

Thus,
L {n!}= snL {tn}.

Or,

L {tn}=
n!
sn

L {1}=
n!
sn+1

.

3.5 The Convolution Theorem and Properties of
Convolution

THEOREM 3.5.1 (Convolution Theorem).
If L {f(t)}= f̄(s) and L {g(t)}= ḡ(s), then

L {f(t) ∗ g(t)}= L {f(t)}L {g(t)}= f̄(s)ḡ(s). (3.5.1)

Or, equivalently,
L −1{f̄(s)ḡ(s)}= f(t)∗g(t), (3.5.2)
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where f(t)∗g(t) is called the convolution of f(t) and g(t) and is defined by
the integral

f(t) ∗ g(t) =

t∫
0

f(t− τ)g(τ)dτ. (3.5.3)

The integral in (3.5.3) is often referred to as the convolution integral (or
Faltung) and is denoted simply by (f ∗ g)(t).

PROOF We have, by definition,

L {f(t) ∗ g(t)}=

∞∫
0

e−stdt

t∫
0

f(t− τ)g(τ)dτ, (3.5.4)

where the region of integration in the τ − t plane is as shown in Figure 3.2.
The integration in (3.5.4) is first performed with respect to τ from τ = 0 to
τ = t of the vertical strip and then from t= 0 to ∞ by moving the vertical
strip from t= 0 outwards to cover the whole region under the line τ = t.

=0
0 t

= t _<t<

Figure 3.2 Region of integration.

We now change the order of integration so that we integrate first along the
horizontal strip from t= τ to ∞ and then from τ = 0 to ∞ by moving the
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horizontal strip vertically from τ = 0 upwards. Evidently, (3.5.4) becomes

L {f(t)∗g(t)}=

∞∫
0

g(τ)dτ

∞∫
t=τ

e−stf(t− τ)dτ,

which is, by the change of variable t− τ = x,

L {f(t)∗g(t)} =

∞∫
0

g(τ)dτ

∞∫
0

e−s(x+τ)f(x)dx

=

∞∫
0

e−sτg(τ)dτ

∞∫
0

e−sxf(x)dx= ḡ(s) f̄(s).

This completes the proof.

PROOF (Second Proof.) We have, by definition,

f̄(s)ḡ(s) =

∞∫
0

e−sσf(σ)dσ

∞∫
0

e−sμg(μ)dμ

=

∞∫
0

∞∫
0

e−s(σ+μ)f(σ)g(μ)dσ dμ, (3.5.5)

where the double integral is taken over the entire first quadrant R of the σ − μ
plane bounded by σ= 0 and μ= 0 as shown in Figure 3.3(a).

=0
0 t

= t
S

(b)

=0
0

R

(a)

=
0

Figure 3.3 Regions of integration.

We make the change of variables μ= τ , σ= t− μ= t− τ so that the axes σ= 0
and μ= 0 transform into the lines τ = 0 and τ = t, respectively, as shown in
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Figure 3.3(b) in the τ − t plane. Consequently, (3.5.5) becomes

f̄(s)ḡ(s) =

∞∫
0

e−stdt

τ=t∫
τ=0

f(t− τ)g(τ)dτ

= L

⎧⎨⎩
t∫

0

f(t− τ)g(τ)dτ

⎫⎬⎭
= L {f(t)∗g(t)}.

This proves the theorem.

Note: A more rigorous proof of the convolution theorem can be found in any
standard treatise (see Doetsch, 1950) on Laplace transforms. The convolution
operation has the following properties:

f(t)∗{g(t)∗h(t)}= {f(t)∗g(t)}∗h(t), (Associative), (3.5.6)
f(t)∗g(t) = g(t)∗f(t), (Commutative), (3.5.7)
f(t)∗{ag(t) + bh(t)}= af(t)∗g(t) + bf(t)∗h(t), (Distributive), (3.5.8)
f(t)∗{ag(t)}= {af(t)}∗g(t) = a{f(t)∗g(t)}, (3.5.9)
L {f1∗f2∗f3∗ · · · ∗fn}= f̄1(s)f̄2(s) · · · f̄n(s), (3.5.10)
L {f∗n}= {f̄(s)}n, (3.5.11)

where a and b are constants. f∗n = f∗f∗ · · · ∗f is sometimes called the nth
convolution.

Remark: By virtue of (3.5.6) and (3.5.7), it is clear that the set of all Laplace
transformable functions forms a commutative semigroup with respect to the
operation ∗. The set of all Laplace transformable functions does not form a
group because f∗g−1 does not, in general, have a Laplace transform.

We now prove the associative property. We have

f(t)∗{g(t)∗h(t)} =

t∫
0

f(τ)

t−τ∫
0

g(t− σ − τ)h(σ)dσ dτ (3.5.12)

=

t∫
0

h(σ)

t−σ∫
0

g(t− τ − σ)f(τ)dτ dσ

= h(t)∗{f(t)∗g(t)}= {f(t)∗g(t)}∗h(t), (3.5.13)

where (3.5.13) is obtained from (3.5.12) by interchanging the order of integra-
tion combined with the fact that 0≤ σ≤ t− τ and 0≤ τ ≤ t imply 0≤ τ ≤ t− σ
and 0≤ σ≤ t. Properties (3.5.10) and (3.5.11) follow immediately from the as-
sociative law of the convolution.
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To prove (3.5.7), we recall the definition of the convolution and make a
change of variable t− τ = t′. This gives

f(t)∗g(t) =

t∫
0

f(t− τ)g(τ)dτ =

t∫
0

g(t− t′)f(t′)dt′ = g(t)∗f(t).

The proofs of (3.5.8)–(3.5.9) are very simple and hence, may be omitted.

Example 3.5.1
Obtain the convolutions

(a) t∗eat,

(d) 1∗a
2
e−a

2/4t

√
πt3

,

(b) (sin at∗ sin at),

(e) cos t ∗ e2t,

(c)
1√
πt

∗eat,

(f) t ∗ t ∗ t.

We have

(a) t∗eat =
t∫

0

τea(t−τ)dτ = eat
t∫

0

τe−aτdτ =
1
a2

(eat − at− 1).

(b) sin at∗ sin at=

t∫
0

sin aτ sin a(t− τ)dτ =
1
2a

(sin at− at cos at).

(c)
1√
πt

∗eat = 1√
π

t∫
0

1√
τ
ea(t−τ)dτ ,

which is, by putting
√
aτ = x,

1√
πt

∗eat = 2eat√
πa

√
at∫

0

e−x
2
dx=

eat√
a

erf
(√

at
)
.

(d) We have

1∗a
2
e−a

2/4t

√
πt3

=
a

2
√
π

t∫
0

e−a
2/4τ

τ3/2
dτ,

which is, by letting
a

2
√
τ

= x,

=
2√
π

∞∫
a

2
√

t

e−x
2
dx= erfc

(
a

2
√
t

)
.
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(e) cos t ∗ e2t =
t∫

0

cos(t− τ) e2τ dτ =
1
2

t∫
0

e2τ
{
ei(t−τ) + e−i(t−τ)

}
dτ

=
[
ei(t−τ)+2τ

2(2− i)
+
e−i(t−τ)+2τ

2(2 + i)

]
=

2
5
e2t +

1
5

(sin t− 2 cos t) .

(f) (t ∗ t) ∗ t=
⎡⎣ t∫

0

(t− τ) τ dτ

⎤⎦ ∗ t= 1
6
t3 ∗ t

=
1
6

t∫
0

(t− τ) τ3 dτ =
t5

5!
.

Example 3.5.2
Using the Convolution Theorem 3.5.1, prove that

B(m,n) =
Γ(m)Γ(n)
Γ(m+ n)

, (3.5.14)

where Γ(m) is the gamma function, and B(m,n) is the beta function defined
by

B(m,n) =

1∫
0

xm−1(1 − x)n−1dx, (m> 0, n> 0). (3.5.15)

To prove (3.5.14), we consider

f(t) = tm−1 (m> 0) and g(t) = tn−1, (n> 0).

Evidently, f̄(s) =
Γ(m)
sm

and ḡ(s) =
Γ(n)
sn

.
We have

f ∗ g =

t∫
0

τm−1(t− τ)n−1dτ = L −1{f̄(s)ḡ(s)}

= Γ(m)Γ(n)L −1{s−(m+n)}
=

Γ(m)Γ(n)
Γ(m+ n)

tm+n−1.

Letting t= 1, we derive the result
1∫

0

τm−1(1 − τ)n−1dτ =
Γ(m)Γ(n)
Γ(m+ n)

,

which proves the result (3.5.14).
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3.6 Differentiation and Integration of Laplace
Transforms

THEOREM 3.6.1
If f(t) =O(eat) as t→∞, then the Laplace integral

∞∫
0

e−stf(t)dt, (3.6.1)

is uniformly convergent with respect to s provided s≥ a1 where a1>a.

PROOF Since

|e−stf(t)| ≤Ke−t(s−a) ≤Ke−t(a1−a) for all s≥ a1

and

∞∫
0

e−t(a1−a)dt exists for a1>a, by Weierstrass’ test, the Laplace integral

is uniformly convergent for all s> a1 where a1>a. This completes the proof.

In view of the uniform convergence of (3.6.1), differentiation of (3.2.5) with
respect to s within the integral sign is permissible. Hence,

d

ds
f̄(s) =

d

ds

∞∫
0

e−stf(t)dt=

∞∫
0

∂

∂s
e−stf(t)dt

= −
∞∫
0

tf(t)e−stdt=−L {tf(t)}. (3.6.2)

Similarly, we obtain

d2

ds2
f̄(s) = (−1)2L {t2f(t)}, (3.6.3)

d3

ds3
f̄(s) = (−1)3L {t3f(t)}. (3.6.4)

More generally,
dn

dsn
f̄(s) = (−1)nL {tnf(t)}. (3.6.5)
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Results (3.6.5) can be stated in the following theorem:

THEOREM 3.6.2 (Derivatives of the Laplace Transform).
If L {f(t)}= f̄(s), then

L {tnf(t)}= (−1)n
dn

dsn
f̄(s), (3.6.6)

where n= 0, 1, 2, 3,....

Example 3.6.1

Show that

(a) L {tne−at}=
n!

(s+ a)n+1
,

(c) L {t sinat}=
2as

(s2 + a2)2
,

(b) L {t cosat}=
s2 − a2

(s2 + a2)2
,

(d) L {t f ′(t)}=−
{
s
d

ds
f̄(s) + f̄(s)

}
.

(a) Application of Theorem 3.6.2 gives

L {tne−at}= (−1)n
dn

dsn
.

1
(s+ a)

= (−1)2n
n!

(s+ a)n+1
.

(b) L {t cosat}= (−1)
d

ds

(
s

s2 + a2

)
=

s2 − a2

(s2 + a2)2
.

Results (c) and (d) can be proved similarly.

THEOREM 3.6.3 (Integral of the Laplace Transform).
If L {f(t)}= f̄(s), then

L

{
f(t)
t

}
=

∞∫
s

f̄(s)ds. (3.6.7)

PROOF In view of the uniform convergence of (3.6.1), f̄(s) can be inte-
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grated with respect to s in (s,∞) so that

∞∫
s

f̄(s)ds =

∞∫
s

ds

∞∫
0

e−stf(t)dt

=

∞∫
0

f(t)dt

∞∫
s

e−stds

=

∞∫
0

f(t)
t
e−stdt= L

{
f(t)
t

}
.

This proves the theorem.

Example 3.6.2
Show that

(a) L

{
sin at
t

}
= tan−1

(a
s

)
, (b) L

{
e−a

2/4t

√
πt3

}
=

2
a

exp(−a√s).

(a) Using (3.6.7), we obtain

L

{
sin at
t

}
= a

∞∫
s

ds

s2 + a2
=
π

2
− tan−1

( s
a

)
= tan−1

(a
s

)
.

(b) L

{
1
t
· e

−a2/4t

√
πt

}
=

∞∫
s

f̄(s)ds=

∞∫
s

e−a
√
s

√
s
ds, by Table B-4 of Laplace

transforms,

which is, by putting a
√
s= x,

=
2
a

∞∫
a
√
s

e−xdx=
2
a

exp(−a√s).

THEOREM 3.6.4 (The Laplace Transform of an Integral).
If L {f(t)}= f̄(s), then

L

⎧⎨⎩
t∫

0

f(τ)dτ

⎫⎬⎭=
f̄(s)
s
. (3.6.8)
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PROOF We write

g(t)=

t∫
0

f(τ)dτ

so that g(0)= 0 and g′(t) = f(t). Then it follows from (3.4.10) that

f̄(s) = L {f(t)}= L {g′(t)}= s ḡ(s) = sL

{∫ t

0

f(τ)dτ
}
.

Dividing both sides by s, we obtain (3.6.8).
It is noted that the Laplace transform of an integral corresponds to the

division of the transform of its integrand by s. Result (3.6.8) can be used for
evaluation of the inverse Laplace transform.

Example 3.6.3
Use result (3.6.8) to find

(a) L

⎧⎨⎩
t∫

0

τne−aτdτ

⎫⎬⎭, (b) L {Si(at)}= L

⎧⎨⎩
t∫

0

sin aτ
τ

dτ

⎫⎬⎭.

(a) We know

L {tne−at}=
n!

(s+ a)n+1
.

It follows from (3.6.8) that

L

⎧⎨⎩
t∫

0

τne−aτdτ

⎫⎬⎭=
n!

s(s+ a)n+1
.

(b) Using (3.6.8) and Example 3.6.2(a), we obtain

L

⎧⎨⎩
t∫

0

sin aτ
τ

dτ

⎫⎬⎭=
1
s

tan−1
(a
s

)
.

3.7 The Inverse Laplace Transform and Examples

It has already been demonstrated that the Laplace transform f̄(s) of a given
function f(t) can be calculated by direct integration. We now look at the



© 2007 by Taylor & Francis Group, LLC

Laplace Transforms and Their Basic Properties 155

inverse problem. Given a Laplace transform f̄(s) of an unknown function
f(t), how can we find f(t)? This is essentially concerned with the solution of
the integral equation

∞∫
0

e−stf(t)dt= f̄(s). (3.7.1)

At this stage, it is rather difficult to handle the problem as it is. However,
in simple cases, we can find the inverse transform from Table B-4 of Laplace
transforms. For example

L −1

{
1
s

}
= 1, L −1

{
s

s2 + a2

}
= cos at.

In general, the inverse Laplace transform can be determined by using four
methods: (i) Partial Fraction Decomposition, (ii) the Convolution Theorem,
(iii) Contour Integration of the Laplace Inversion Integral, and (iv) Heavi-
side’s Expansion Theorem.

(i) Partial Fraction Decomposition Method
If

f̄(s) =
p̄(s)
q̄(s)

, (3.7.2)

where p̄(s) and q̄(s) are polynomials in s, and the degree of p̄(s) is less than
that of q̄(s), the method of partial fractions may be used to express f̄(s) as the
sum of terms which can be inverted by using a table of Laplace transforms.
We illustrate the method by means of simple examples.

Example 3.7.1
To find

L −1

{
1

s(s− a)

}
,

where a is a constant, we write

L −1

{
1

s(s− a)

}
= L −1

[
1
a

{
1

s− a
− 1
s

}]
=

1
a

[
L −1

{
1

s− a

}
− L −1

{
1
s

}]
=

1
a
(eat − 1).

Example 3.7.2
Show that

L −1

{
1

(s2 + a2)(s2 + b2)

}
=

1
b2 − a2

(
sin at
a

− sin bt
b

)
.
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We write

L −1

{
1

(s2 + a2)(s2 + b2)

}
=

1
b2 − a2

[
L −1

{
1

s2 + a2
− 1
s2 + b2

}]
=

1
(b2 − a2)

(
sinat
a

− sin bt
b

)
.

Example 3.7.3
Find

L −1

{
s+ 7

s2 + 2s+ 5

}
.

We have

L −1

{
s+ 7

(s+ 1)2 + 4

}
= L −1

{
s+ 1 + 6

(s+ 1)2 + 22

}
= L −1

{
s+ 1

(s+ 1)2 + 22

}
+ 3L −1

{
2

(s+ 1)2 + 22

}
= e−t cos 2t+ 3e−t sin 2t.

Example 3.7.4
Evaluate the following inverse Laplace transform

L −1

{
2s2 + 5s+ 7

(s− 2)(s2 + 4s+ 13)

}
.

We have

L −1

{
2s2 + 5s+ 7

(s− 2)(s2 + 4s+ 13)

}
= L −1

{
1

s− 2
+

s+ 2
(s+ 2)2 + 32

+
1

(s+ 2)2 + 32

}
= L −1

{
1

s− 2

}
+ L −1

{
s+ 2

(s+ 2)2 + 32

}
+

1
3
L −1

{
3

(s+ 2)2 + 32

}
= e2t + e−2t cos 3t+

1
3
e−2t sin 3t.

(ii) Convolution Theorem
We shall apply the convolution theorem for calculation of inverse Laplace

transforms.
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Example 3.7.5

L −1

{
1

s(s− a)

}
= 1∗eat =

t∫
0

eaτdτ =
(eat − 1)

a
.

Example 3.7.6

L −1

{
1

s2(s2 + a2)

}
= t∗sin at

a

=
1
a

t∫
0

(t− τ) sin aτ dτ

=
t

a

t∫
0

sin aτ dτ − 1
a

t∫
0

τ sin aτ dτ

=
1
a2

(
t− 1

a
sin at

)
.

Example 3.7.7

L −1

{
1

(s2 + a2)2

}
=

sin at
a

∗ sinat
a

=
1
a2

t∫
0

sin aτ sin a(t− τ)dτ

=
1

2a3
(sin at− at cosat).
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Example 3.7.8

L −1

{
1√

s(s− a)

}
=

1√
πt

∗ eat, (a> 0)

=
1√
π

t∫
0

1√
τ
ea(t−τ)dτ

=
2 eat√
πa

√
at∫

0

e−x
2
dx,

(
putting

√
aτ = x

)
=
eat√
a

erf (
√
at). (3.7.3)

Example 3.7.9

Show that

L −1

{
1
s
e−a

√
s

}
= erfc

(
a

2
√
t

)
. (3.7.4)

In view of Example 3.6.2(b), and the Convolution Theorem 3.5.1, we obtain

L −1

{
1
s
e−a

√
s

}
= 1∗a

2
e−a

2/4t

√
πt3

=
a

2
√
π

t∫
0

e−a
2/4τ

τ3/2
dτ,

which is, by putting
a

2
√
τ

= x,

=
2√
π

∞∫
a

2
√

t

e−x
2
dx= erfc

(
a

2
√
t

)
.

Example 3.7.10

Show that

L −1

{
1√
s+ a

}
=

1√
πt

− a exp(ta2)erfc(a
√
t). (3.7.5)
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We have

L −1

{
1√
s+ a

}
= L −1

{
1√
s
− a√

s(
√
s+ a)

}
= L −1

{
1√
s

}
− aL −1

{ √
s− a√

s(s− a2)

}
= L −1

{
1√
s

}
− aL −1

{
1

s− a2

}
+ a2L −1

{
1√

s(s− a2)

}
=

1√
πt

− a exp(a2t) + a exp(a2t) erf (a
√
t), by (3.7.3)

=
1√
πt

− a exp(a2t)erfc(a
√
t).

Example 3.7.11
If f(t) = L −1{f̄(s)}, then

L −1

{
1
s
f̄(s)

}
=

t∫
0

f(x)dx. (3.7.6)

We have, by the Convolution Theorem with g(t) = 1 so that ḡ(s) = 1
s ,

L −1

{
1
s
f̄(s)

}
=

t∫
0

f(t− τ)dτ,

which is, by putting t− τ = x,

=

t∫
0

f(x)dx.

(iii) Contour Integration of the Laplace Inversion Integral
In Section 3.2, in inverse Laplace transform is defined by the complex integral
formula

L −1{f̄(s)}= f(t) =
1

2πi

c+i∞∫
c−i∞

estf̄(s)ds, (3.7.7)

where c is a suitable real constant and f̄(s) is an analytic function of the
complex variable s in the right half-plane Re s> a.

The details of evaluation of (3.7.7) depend on the nature of the singularities
of f̄(s). Usually, f̄(s) is a single valued function with a finite or enumerably
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infinite number of polar singularities. Often it has branch points. The path of
integration is the straight line L (see Figure 3.4(a)) in the complex s-plane
with equation s= c+ iR, −∞<R<∞, Re s= c being chosen so that all the
singularities of the integrand of (3.7.7) lie to the left of the line L. This line
is called by Bromwich Contour. In practice, the Bromwich Contour is closed
by an arc of a circle of radius R as shown in Figure 3.4(a), and then the limit
as R→∞ is taken to expand the contour of integration to infinity so that all
the singularities of f̄(s) lie inside the contour of integration.

When f̄(s) has a branch point at the origin, we draw the modified contour of
integration by making a cut along the negative real axis and a small semicircle
γ surrounding the origin as shown in Figure 3.4(b).

c Re s

Im
s

A

B

c-iR

c+iR

L

R

(a)

0 c Re s
Im

s

A

B

c-iR

c+iR

L
R

(b)

0

L1

L2

Figure 3.4 The Bromwich contour and the contour of integration.

In either case, the Cauchy Residue Theorem is used to evaluate the integral∫
L

estf̄(s)ds+
∫
Γ

estf̄(s)ds=
∫
C

estf̄(s)ds

= 2πi× [sum of the residues of estf̄(s) at the poles inside C]. (3.7.8)

Letting R→∞, the integral over Γ tends to zero, and this is true in most
problems of interest. Consequently, result (3.7.7) reduces to the form

lim
R→∞

1
2πi

c+iR∫
c−iR

estf̄(s)ds= sum of the residues of estf̄(s) at the poles of f̄(s).

(3.7.9)
We illustrate the above method of evaluation by simple examples.
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Example 3.7.12
If f̄(s) = s

s2+a2 , show that

f(t) =
1

2πi

c+i∞∫
c−i∞

estf̄(s)ds= cos at.

Clearly, the integrand has two simple poles at s=±ia and the residues at
these poles are

R1 = Residue of estf̄(s) at s= ia

= lim
s→ia

(s− ia)
s est

(s2 + a2)
=

1
2
eiat.

R2 = Residue of estf̄(s) at s=−ia
= lim

s→−ia
(s+ ia)

s est

(s2 + a2)
=

1
2
e−iat.

Hence,

f(t) =
1

2πi

c+i∞∫
c−i∞

estf̄(s)ds=R1 +R2 =
1
2
(eiat + e−iat) = cos at,

as obtained earlier.
If ḡ(s) = estf̄(s) has a pole of order n at s= z, then the residue R1 of ḡ(s)

at this pole is given by the formula

R1 = lim
s→z

1
(n− 1)!

dn−1

dsn−1
[(s− z)nḡ(s)]. (3.7.10)

This is obviously true for a simple pole (n= 1) and for a double pole (n= 2).

Example 3.7.13
Evaluate

L −1

{
s

(s2 + a2)2

}
.

Clearly

ḡ(s) = estf̄(s) =
s est

(s2 + a2)2

has double poles at s=±ia. The residue formula (3.7.10) for double poles
gives

R1 = lim
s→ia

d

ds

[
(s− ia)2

s est

(s2 + a2)2

]
= lim

s→ia

d

ds

[
s est

(s+ ia)2

]
=
t eiat

4ia
.
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Similarly, the residue at the double pole at s=−ia is (−t e−iat)/4ia.
Thus,

f(t) = Sum of the residues=
t

4ia
(eiat − e−iat) =

t

2a
sin at, (3.7.11)

as given in Table B-4 of Laplace transforms.

Example 3.7.14

Evaluate

L −1

{
cosh(αx)
s cosh(α�)

}
, α=

√
s

a
.

We have

f(t) =
1

2πi

c+i∞∫
c−i∞

est
cosh(αx)
cosh(α�)

ds

s
.

Clearly, the integrand has simple poles at s= 0 and s= sn =−(2n+ 1)2
aπ2

4�2
,

where n= 0,1,2,....

R1 = Residue at the pole s= 0 is 1, and Rn = Residue at the pole s= sn is

exp(−snt) cosh
{
i(2n+ 1)

πx

2�

}
[
s
d

ds

{
cosh l

√
s

a

}]
s=sn

=
4(−1)n+1

(2n+ 1)π
exp

[
−
{

(2n+ 1)π
2�

}2

at

]
cos

{
(2n+ 1)

πx

2�

}
.

Thus,

f(t) = Sum of the residues at the poles

= 1 +
4
π

∞∑
n=0

(−1)n+1

(2n+ 1)
exp

[
−(2n+ 1)2

π2at

4�2

]
× cos

{
(2n+ 1)

πx

2�

}
, (3.7.12)

as given later by the Heaviside Expansion Theorem.
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Example 3.7.15

Show that

f(t) = L −1

{
e−a

√
s

s

}
=

1
2πi

c+i∞∫
c−i∞

1
s

exp(st− a
√
s)ds

= erfc
(

a

2
√
t

)
. (3.7.13)

The integrand has a branch point at s= 0. We use the contour of integration
as shown in Figure 3.4(b) which excludes the branch point at s= 0. Thus, the
Cauchy Fundamental Theorem gives

1
2πi

⎡⎣∫
L

+
∫
Γ

+
∫
L1

+
∫
L2

+
∫
γ

⎤⎦ exp(st− a
√
s)
ds

s
= 0. (3.7.14)

It is shown that the integral on Γ tends to zero as R→∞, and that on L
gives the Bromwich integral. We now evaluate the remaining three integrals
in (3.7.14). On L1, we have s= reiπ =−r and

∫
L1

exp(st− a
√
s)
ds

s
=

0∫
−∞

exp(st− a
√
s)
ds

s
=−

∞∫
0

exp{−(rt+ ia
√
r)} dr

r
.

On L2, s= re−iπ =−r and

∫
L2

exp(st− a
√
s)
ds

s
=

−∞∫
0

exp(st− a
√
s)
ds

s
=

∞∫
0

exp{−rt+ ia
√
r} dr

r
.

Thus, the integrals along L1 and L2 combined yield

−2i

∞∫
0

e−rt sin(a
√
r)
dr

r
=−4i

−∞∫
0

e−x
2t sinax

x
dx, (

√
r= x). (3.7.15)

Integrating the following standard integral with respect to β

∞∫
0

e−x
2α2

cos (2βx)dx=
√
π

2α
exp

(
−β

2

α2

)
, (3.7.16)
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we obtain

1
2

∞∫
0

e−x
2α2 sin 2βx

x
dx =

√
π

2α

β∫
0

exp
(
−β

2

α2

)
dβ

=
√
π

2

β/α∫
0

e−u
2
du, (β=αu)

=
π

4
erf

(
β

α

)
. (3.7.17)

In view of (3.7.17), result (3.7.15) becomes

−4i

∞∫
0

exp(−tx2)
sin ax
x

dx=−2πi erf
(

a

2
√
t

)
. (3.7.18)

Finally, on γ, we have s= reiθ , ds= ireiθdθ, and∫
γ

| exp(st− a
√
s)|ds

s
= i

−π∫
π

exp
(
rt cos θ− a

√
r cos

θ

2

)
dθ

= i

π∫
−π

dθ= 2πi, (3.7.19)

in which the limit as r→ 0 is used and integration from π to −π is interchanged
to make γ in the counterclockwise direction.

Thus, the final result follows from (3.7.14), (3.7.18), and (3.7.19) in the
form

L −1

{
e−a

√
s

s

}
=

1
2πi

c+i∞∫
c−i∞

exp(st− a
√
s)
ds

s

=
[
1 − erf

(
a

2
√
t

)]
= erfc

(
a

2
√
t

)
.

(iv) Heaviside’s Expansion Theorem
Suppose f̄(s) is the Laplace transform of f(t), which has a Maclaurin power
series expansion in the form

f(t) =
∞∑
r=0

ar
tr

r!
. (3.7.20)

Taking the Laplace transform, it is possible to write formally

f̄(s) =
∞∑
r=0

ar
sr+1

. (3.7.21)
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Conversely, we can derive (3.7.20) from a given expansion (3.7.21). This kind
of expansion is useful for determining the behavior of the solution for small
time. Further, it provides an alternating way to prove the Tauberian theorems.

THEOREM 3.7.1

(Heaviside’s Expansion Theorem). If f̄(s) =
p̄(s)
q̄(s)

, where p̄(s) and q̄(s) are poly-

nomials in s and the degree of q̄(s) is higher than that of p̄(s), then

L −1

{
p̄(s)
q̄(s)

}
=

n∑
k=1

p̄(αk)
q̄′(αk)

exp(tαk), (3.7.22)

where αk are the distinct roots of the equation q̄(s) = 0.

PROOF Without loss of generality, we can assume that the leading coef-
ficient of q̄(s) is unity and write distinct factors of q̄(s) so that

q̄(s) = (s− α1)(s− α2) · · · (s− αk) · · · (s− αn). (3.7.23)

Using the rules of partial fraction decomposition, we can write

f̄(s) =
p̄(s)
q̄(s)

=
n∑
k=1

Ak
(s− αk)

, (3.7.24)

where Ak are arbitrary constants to be determined. In view of (3.7.23), we
find

p̄(s) =
n∑
k=1

Ak(s− α1)(s− α2) · · · (s− αk−1)(s− αk+1) · · · (s− αn).

Substitution of s=αk gives

p̄(αk) =Ak(αk − α1)(αk − α2) · · · (αk − αk+1) · · · (αk − αn), (3.7.25)

where k= 1, 2, 3, . . . , n.
Differentiation of (3.7.23) yields

q̄′(s) =
n∑
k=1

(s− α1)(s− α2) · · · (s− αk−1)(s− αk+1) · · · (s− αn),

whence it follows that

q̄′(αk) = (αk − α1)(αk − α2) · · · (αk − αk−1)(αk − αk+1) · · · (αk − αn).
(3.7.26)
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From (3.7.25) and (3.7.26), we find

Ak =
p̄(αk)
q̄′(αk)

,

and hence,
p̄(s)
q̄(s)

=
n∑
k=1

p̄(αk)
q̄′(αk)

1
(s− αk)

. (3.7.27)

Inversion gives immediately

L −1

{
p̄(s)
q̄(s)

}
=

n∑
k=1

p̄(αk)
q̄′(αk)

exp(tαk).

This proves the theorem. We give some examples of this theorem.

Example 3.7.16
We consider

L −1

{
s

s2 − 3s+ 2

}
.

Here p̄(s) = s, and q̄(s) = s2 − 3s+ 2 = (s− 1)(s− 2). Hence,

L −1

{
s

s2 − 3s+ 2

}
=
p̄(2)
q̄′(2)

e2t +
p̄(1)
q̄′(1)

et = 2 e2t − et.

Example 3.7.17
Use Heaviside’s power series expansion to evaluate

L −1

{
1
s

sinhx
√
s

sinh
√
s

}
, 0<x< 1, s > 0.

We have

1
s

sinhx
√
s

sinh
√
s

=
1
s

(
ex

√
s − e−x

√
s

e
√
s − e−

√
s

)

=
1
s

e−(1−x)√s − e−(1+x)
√
s

1− e−2
√
s

=
1
s

[
e−(1−x)√s − e−(1+x)

√
s
](

1− e−2
√
s
)−1

=
1
s

[
e−(1−x)√s − e−(1+x)

√
s
] ∞∑
n=0

exp(−2n
√
s)

=
1
s

∞∑
n=0

[
exp{−(1− x+ 2n)

√
s} − exp{−(1 + x+ 2n)

√
s}] .
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Hence,

L −1

{
1
s

sinhx
√
s

sinh
√
s

}
= L −1

{
1
s

∞∑
n=0

[
exp{−(1− x+ 2n)

√
s} − exp{−(1 + x+ 2n)

√
s}]}

=
∞∑
n=0

[
erfc

(
1 − x+ 2n

2
√
t

)
− erfc

(
1 + x+ 2n

2
√
t

)]
.

Example 3.7.18

If α=
√
s

a
, show that

L −1

[
coshαx
s coshα�

]
= 1− 4

π

∞∑
k=0

(−1)k cos
{(

k +
1
2

)
πx

�

}
exp

[
−(2k + 1)2

aπ2t

4�2

]
(2k + 1)

.

(3.7.28)
In this case, we write

L −1{f̄(s)}= L −1

{
p̄(s)
q̄(s)

}
= L −1

{
coshαx
s coshα�

}
.

Clearly, the zeros of f̄(s) are at s= 0 and at the roots of coshα�= 0, that is,

at s= sk = a

(
k +

1
2

)2 (
πi

�

)2

, k= 0, 1, 2, . . . . Thus,

αk =
√
sk
a

=
(
k +

1
2

)
πi

�
, k= 0, 1, 2, . . . .

Here p̄(s) = cosh(αx), q̄(s) = s cosh(α�). In order to apply the Heaviside Ex-
pansion Theorem, we need

q̄′(s) =
d

ds
(s coshα�) = cosh(α�) +

1
2
α� sinh(α�).

For the zero s= 0, q̄′(0) = 1, and for the zeros at s= sk,

q̄′(sk) =
1
2

(
k +

1
2

)
πi · sinh

[(
k +

1
2

)
πi

]
= (2k + 1)

πi

4
· i sin

[(
k +

1
2

)
π

]
= −(2k+ 1)

π

4
· cos kπ= (−1)k+1(2k+ 1)

π

4
.
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Consequently,

L −1

{
coshαx
s coshα�

}
= 1 +

4
π

∞∑
k=0

(−1)k+1

(2k + 1)
cosh

[
(2k+ 1)

πix

2�

]
exp(tsk)

= 1− 4
π

∞∑
k=0

(−1)k

(2k + 1)
cos

[
(2k+ 1)

πx

2�

]
× exp

[
−
(
k +

1
2

)2
π2at

�2

]
.

3.8 Tauberian Theorems and Watson’s Lemma

These theorems give the behavior of object functions in terms of the behavior
of transform functions. Particularly, they determine the value of the object
functions f(t) for large and small values of time t. Tauberian theorems are
extremely useful and have frequent applications.

THEOREM 3.8.1 (The Initial Value Theorem).
If L {f(t)}= f̄(s) exists, then

lim
s→∞ f̄(s) = 0. (3.8.1)

In addition, if f(t) and its derivatives exist as t→ 0, we obtain the Initial
Value Theorem:

(i) lim
s→∞[sf̄(s)] = lim

t→0
f(t) = f(0) (3.8.2)

(ii) lim
s→∞[s2f̄(s) − sf(0)] = lim

t→0
f ′(t) = f ′(0), and (3.8.3)

(iii) lim
s→∞[sn+1f̄(s) − snf̄(s)− · · · − sf (n−1)(0)] = f (n)(0). (3.8.4)

Results (3.8.2)–(3.8.4), which are true under fairly general conditions, de-
termine the initial values f(0), f ′(0), . . . , f (n)(0) of the function f(t) and its
derivatives from the Laplace transform f̄(s).

PROOF To prove (3.8.1), we use the fact that the Laplace integral (3.2.5) is
uniformly convergent with respect to the parameter s. Hence, it is permissible
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to take the limit s→∞ under the sign of integration so that

lim
s→∞ f̄(s) =

∞∫
0

( lim
s→∞ e−st)f(t)dt= 0.

Next, we use the same argument to obtain

lim
s→∞ L {f ′(t)}=

∞∫
0

( lim
s→∞ e−st)f ′(t)dt= 0.

Then it follows from result (3.4.10) that

lim
s→∞[sf̄(s)− f(0)] = 0,

and hence, we obtain (3.8.2), that is,

lim
s→∞[sf̄(s)] = f(0) = lim

t→0
f(t).

A similar argument combined with Theorem 3.4.2 leads to (3.8.3) and
(3.8.4).

Example 3.8.1
Verify the truth of Theorem 3.8.1 for f̄(s) = (n+ 1)! s−(n+1) where n is a
positive integer. Clearly, f(t) = tn. Thus, we have

lim
s→∞ f̄(s) = lim

s→∞
(n+ 1)!
sn+1

= 0,

lim
s→∞ sf̄(s) = 0 = f(0).

Example 3.8.2
Find f(0) and f ′(0) when

(a) f̄(s) =
1

s(s2 + a2)
, (b) f̄(s) =

2s
s2 − 2s+ 5

.

(a) It follows from (3.8.2) and (3.8.3) that

f(0) = lim
s→∞[sf̄(s)] = lim

s→∞
1

s2 + a2
= 0.

f ′(0) = lim
s→∞[s2f̄(s)− sf(0)] = lim

s→∞
s

s2 + a2
= 0.



© 2007 by Taylor & Francis Group, LLC

170 INTEGRAL TRANSFORMS and THEIR APPLICATIONS

(b)
f(0) = lim

s→∞
2s2

s2 − 2s+ 5
= 2.

f ′(0) = lim
s→∞[s2f̄(s)− sf(0)] = lim

s→∞

[
2s3

s2 − 2s+ 5
− 2s

]
= 4.

THEOREM 3.8.2 (The Final Value Theorem).

If f̄(s) =
p̄(s)
q̄(s)

, where p̄(s) and q̄(s) are polynomials in s, and the degree of

p̄(s) is less than that of q̄(s), and if all roots of q̄(s) = 0 have negative real
parts with the possible exception of one root which may be at s= 0, then

(i) lim
s→0

f̄(s) =

∞∫
0

f(t)dt, and (3.8.5)

(ii) lim
s→0

[sf̄(s)] = lim
t→∞ f(t), (3.8.6)

provided the limits exist.
Result (3.8.6) is true under more general conditions, and known as the Final

Value Theorem. This theorem determines the final value of f(t) at infinity
from its Laplace transform at s= 0. However, if f̄(s) is more general than the
rational function as stated above, a statement of a more general theorem is
needed with appropriate conditions under which it is valid.

PROOF To prove (i), we use the same argument as employed in Theorem
3.8.1 and find

lim
s→0

f̄(s) =

∞∫
0

(
lim
s→0

exp(−st)
)
f(t)dt=

∞∫
0

f(t) dt.

As before, we can use result (3.4.12) to obtain

lim
s→0

L {f ′(t)} = lim
s→0

[sf̄(s) − f(0)] =

∞∫
0

(
lim
s→0

exp(−st)
)
f ′(t)dt

=

∞∫
0

f ′(t)dt= f(∞)− f(0)= lim
t→∞[f(t)− f(0)].

Thus, it follows immediately that

lim
s→0

[sf̄(s)] = lim
t→∞ f(t) = f(∞).
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Example 3.8.3
Find f(∞), if it exists, from the following functions:

(a) f̄(s) =
1

s(s2 + 2s+ 2)
,

(c) f̄(s) =
s+ a

s2 + b2
, (b �= 0),

(b) f̄(s) =
1

s− a
,

(d) f̄(s) =
s

s− 2
.

(a) Clearly, q̄(s) = 0 has roots at s= 0 and s=−1± i, and the conditions of
Theorem 3.8.2 are satisfied. Thus,

lim
s→0

[sf̄(s)] = lim
s→0

1
s2 + 2s+ 2

=
1
2

= f(∞).

(b) Here q̄(s) = 0 has a real positive root at s= a if a> 0, and a real negative
root if a< 0. Thus, when a< 0

lim
s→0

[sf̄(s)] = lim
s→0

s

s− a
= 0 = f(∞).

If a> 0, the Final Value Theorem does not apply. In fact,

f(t) = L −1

{
1

s− a

}
= eat→∞ as t→∞.

(c) Here q̄(s) = 0 has purely imaginary roots at s=±ib which do not have
negative real parts. The Final Value Theorem does not apply. In fac-
t, f(t) = cos bt+ a

b sin bt and lim
t→∞ f(t) does not exist. However, f(t) is

bounded and oscillatory for all t > 0.

(d) The Final Value Theorem does not apply as q̄(s) = 0 has a positive root
at s= 2.

Watson’s Lemma. If (i) f(t) =O(eat) as t→∞, that is, |f(t)| ≤K exp(at)
for t > T where K and T are constants, and (ii) f(t) has the expansion

f(t) = tα

[
n∑
r=0

art
r +Rn+1(t)

]
for 0< t<T and α>−1, (3.8.7)

where |Rn+1(t)|<Atn+1 for 0< t<T and A is a constant, then the Laplace
transform f̄(s) has the asymptotic expansion

f̄(s)∼
n∑
r=0

ar
Γ(α+ r + 1)
sα+r+1

+O

(
1

sα+n+2

)
as s→∞. (3.8.8)
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PROOF We have, for s> a,

f̄(s) =

T∫
0

e−stf(t)dt+

∞∫
T

e−stf(t)dt

=

T∫
0

e−st tα
(

n∑
r=0

art
r

)
dt+

T∫
0

e−st tαRn+1(t)dt

+

∞∫
T

e−stf(t)dt. (3.8.9)

The general term of the first integral in (3.8.9) can be written as

T∫
0

ar e
−sttα+rdt =

∞∫
0

ar e
−sttα+rdt−

∞∫
T

ar e
−sttα+rdt

= ar
Γ(α+ r + 1)
sα+r+1

+O(e−Ts). (3.8.10)

As s→∞, the second integral in(3.8.9) is less in magnitude than

A

T∫
0

e−sttα+n+1dt=O

(
1

sα+n+2

)
, (3.8.11)

and the magnitude of the third integral in (3.8.9) is∣∣∣∣∣∣
∞∫
T

e−stf(t)dt

∣∣∣∣∣∣≤K

∞∫
T

e−(s−a)tdt=K exp[−(s− a)T ], (3.8.12)

which is exponentially small as s→∞.
Finally, combining (3.8.10), (3.8.11), and (3.8.12), we obtain

f̄(s)∼
n∑
r=0

ar
Γ(α+ r + 1)
sα+r+1

+O

(
1

sα+n+2

)
as s→∞.

This completes the proof of Watson’s lemma.

This lemma is one of the most widely used methods for finding asymptotic
expansions. In order to further expand its applicability, this lemma has sub-
sequently been generalized and its converse has also been proved. The reader
is referred to Erdélyi (1956), Copson (1965), Wyman (1964), Watson (1981),
Ursell (1990), and Wong (1989).
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Example 3.8.4
Find the asymptotic expansion of the parabolic cylinder function Dν(s), which
is valid for Re(ν)< 0, given by

Dν(s) =
exp

(
−s

2

4

)
Γ(−ν)

∞∫
0

exp
[
−
(
st+

t2

2

)]
dt

tν+1
. (3.8.13)

To find the asymptotic behavior ofDν(s) as s→∞, we expand exp
(
−1

2
t2
)

as a power series in t in the form

exp
(
− 1

2
t2
)

=
∞∑
n=0

(−1)n
t2n

2n n!
. (3.8.14)

According to Watson’s lemma, as s→∞,

Dν(s)∼
exp

(
−s

2

4

)
Γ(−ν)

∞∑
n=0

(−1)n

2nn!

∞∫
0

t2n−ν−1e−stdt

=
exp

(
−s

2

4

)
Γ(−ν)

∞∑
n=0

(−1)n

2nn!
Γ(2n− ν)
s2n−ν

. (3.8.15)

This result is also valid for Re(ν)≥ 0.

3.9 Exercises

1. Find the Laplace transforms of the following functions:

(a) 2t+ a sinat, (b) (1 − 2t) exp(−2t),
(c) t cos at, (d) t3/2,

(e) H(t− 3) exp(t− 3), (f) H(t− a) sinh(t− a),
(g) (t− 3)2H(t− 3), (h) tH(t− a),

(i) (1 + 2 at) t−
1
2 exp(at), (j) a cos2 ωt.

2. If n is a positive integer, show that L {t−n} does not exist.

3. Use result (3.4.12) to find (a) L {cosat} and (b) L {sin at}.
4. Use the Maclaurin series for sin at and cos at to find the Laplace trans-

forms of these functions.
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5. Show that L

[
1
t
{exp(−at)− exp(−bt)}

]
= log

(
s+ b

s+ a

)
.

6. Show that L

⎧⎨⎩
t∫

0

s(u)
u

du

⎫⎬⎭=
1
s

∞∫
s

f̄(x)dx.

7. Obtain the inverse Laplace transforms of the following functions:

(a)
s

(s2 + a2)(s2 + b2)
,

(d)
1

(s− 1)2(s− 2)
,

(g)
1

s(s− a)2
,

(b)
1

s2(s2 + c2)
,

(e)
1

s2 + 2s+ 5
,

(h)
1

s2(s− a)2
,

(c)
1
s2

exp(−as),

(f)
1

s2(s+ 1)(s+ 2)
,

(i)
1

s2(s− a)
.

8. Use the Convolution Theorem to find the inverse Laplace transforms of
the following functions:

(a)
s2

(s2 + a2)2
, (b)

1
s
√
s+ 4

, (c)
f̄(s)
s
,

(d)
s

(s2 + a2)2
, (e)

(
ω

s2 + ω2

)
f̄(s), (f)

1
(s2 + a2)2

,

(g)
s

(s− a)(s2 + b2)
, (h)

1
(s+ 1)2

, (i)
1
s

exp(−a√s),

(j)
1

s2(s2 + a2)
, (k)

(s2 − a2)
(s2 + a2)2

, (l)
1
2

ln (1 +
a2

s2
).

9. Show that

(a) L {exp(−t2)}=
√
π

2
exp

(
s2

4

)(
1− erf

s

2

)
,

(b) L −1

{
1√

s−√
a

}
=
√
a exp(at) +

1√
πt

+
√
a exp(at)erf (

√
at),

(c) L −1

⎧⎪⎪⎨⎪⎪⎩
sinh

(sx
a

)
s2 cosh

(
sb

2a

)
⎫⎪⎪⎬⎪⎪⎭=

x

a
+

∞∑
n=0

(−1)n+1

(
4b
aπ2

)
(2n+ 1)−2

×
[
sin

{
(2n+ 1)

πx

b

}
cos

{
(2n+ 1)

πat

b

}]
,

(d) L −1

{
1√

s2 + a2

}
=

1
π

∫ 1

−1

eiatx√
1 − x2

dx.
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10. Show that

(a) L

{
1
t

(sinat− at cos at)
}

= tan−1
(a
s

)
− as

s2 + a2
,

(b) L

⎧⎨⎩
t∫

0

1
τ

(sin aτ − aτ cos aτ)dτ

⎫⎬⎭=
1
s

[
tan−1

(a
s

)
− as

s2 + a2

]
.

11. Using the Heaviside power series expansion, evaluate the inverse Laplace
transforms of the following functions:

(a)
1√

s2 + a2
,

(d)
1
s

cosech (x
√
s),

(b) tan−1
(a
s

)
,

(e)
1
s

exp
(
−1
s

)
,

(c) sinh−1

(
1
s

)
,

(f) sin−1
(a
s

)
.

12. If L {f(t)}= f̄(s), show that

(i) L −1

{
f̄(s)
s

}
=

t∫
0

f(τ)dτ,

(ii) L −1

{
f̄(s)
s2

}
=

t∫
0

⎧⎨⎩
t1∫

0

f(τ)dτ

⎫⎬⎭ dt1 =

t∫
0

(t− τ)f(τ)dτ,

(iii) L −1

{
f̄(s)
s3

}
=

t∫
0

t1∫
0

t2∫
0

f(τ)dτdt1 dt2 =

t∫
0

1
2
(t− τ)2f(τ)dτ,

and in general

(iv) L −1

{
f̄(s)
sn

}
=

t∫
0

t1∫
0

t2∫
0

· · ·
tn−1∫
0

f(τ)dτ dt1 · · · dtn−1

=

t∫
0

(t− τ)n−1

(n− 1)!
f(τ)dτ.

13. The staircase function f(t) = [t] represents the greatest integer less than
or equal to t. Find its Laplace transform.

14. Use the convolution theorem to prove the identity

t∫
0

J0(τ)J0(t− τ)dτ = sin t.
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15. Show that

(a) L {tH(t− a)}=
(

1
s2

+
a

s

)
exp(−sa),

(b) L {tn exp(at)}=n!(s− a)−(n+1).

16. If L {f(t)}= f̄(s) and f(t) has a finite discontinuity at t= a, show that

L {f ′(t)}= sf̄(s) − f(0)− exp(−sa)[f ]a,

where [f ]a = f(a+ 0)− f(a− 0).

17. If f(t) =H
(
t− π

2

)
sin t, find its Laplace transforms.

18. Establish the following results:

(a) L {sin2 at}=
2a2

s(s2 + 4a2)
,

(b) L {I0(x)}=
1√

s2 + a2
,

(c) L {| sinat|}=
a

s2 + a2
coth

(πs
2a

)
, s > 0,

(d) L

⎧⎨⎩
t∫

0

sin ax
x

dx

⎫⎬⎭=
1
s

tan−1
(a
s

)
,

(e) L

{
d

dt
(f∗g)

}
= g(0)f̄(s) + L {f∗g′}= sf̄(s)ḡ(s)

= L {f ′∗g}+ f(0)ḡ(s).

19. Establish the following results:

(a) L {t2f ′′(t)}= s2
d2

ds2
f̄(s) + 4s

d

ds
f̄(s) + 2f̄(s),

(b) L {tmf (n)(t)}= (−1)m
dm

dsm

[
snf̄(s)− sn−1f(0)− · · · − f (n−1)(0)

]
.

20. (a) Show that f(t) = sin(a
√
t) satisfies the differential equation

4t f ′′(t) + 2f ′(t) + a2f(t) = 0.

Use this differential equation to show that

(b) L {sin√
t}=

1
2

Γ
(

1
2

)
s−3/2 exp

(
− 1

4s

)
, s > 0,

(c) L

{
cos

√
t√

t

}
= Γ

(
1
2

)
1√
s

exp
(
− 1

4s

)
, s > 0.
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21. Establish the following results:

(a) L

⎧⎨⎩
∞∫
t

f(x)
x

dx

⎫⎬⎭=
1
s

s∫
0

f̄(x)dx,

(b) L

⎧⎨⎩
∞∫
0

f(x)
x

dx

⎫⎬⎭=
1
s

∞∫
0

f̄(x)dx.

22. Use exercise 21(a) to find the Laplace transform of

(a) the cosine integral defined by

Ci(t) =

t∫
∞

cosx
x

dx, t > 0,

(b) the exponential integral defined by

Ei(t)=

∞∫
t

e−x

x
dx, t > 0.

23. Show that

(a) L {t e−bt cos at}=
(s+ b)2 − a2

[(s+ b)2 + a2]2
,

(b) L

{
cos at− cos bt

t

}
=

1
2

log
(
s2 + a2

s2 + b2

)
,

(c) L {Ln(t)}=
1
s

(
s− 1
s

)n
, where Ln(t) are the Laguerre polyno-

mials of degree n.

24. If L {f(t)}= f̄(s) and L {g(x, t)}= h̄(s) exp{−xh̄(s)}, prove that

(a) L

⎧⎨⎩
∞∫
0

g(x, t)f(x)dx

⎫⎬⎭= h̄(s)f̄{h̄(s)}.

(b) L

⎧⎨⎩
∞∫
0

J0(2
√
xt)f(x)dx

⎫⎬⎭=
1
s
f̄

(
1
s

)
, when g(x, t) = J0(2

√
xt).

25. Use Exercise 24(b) to show that

(a)

∞∫
0

J0(2
√
xt) sin

(x
a

)
dx= a cos at, (a �= 0),
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(b)

∞∫
0

J0(2
√
xt)e−xxn dx=n! e−tLn(t).

26. Find the Laplace transform of the triangular wave function defined over
(0, 2a) by

f(t) =
{

t, 0< t<a
2a− t, a< t< 2a

}
.

27. Use the Initial Value Theorem to find f(0), and f ′(0) from the following
functions:

(a) f̄(s) =
s

s2 − 5s+ 12
,

(c) f̄(s) =
exp(−sa)
s2 + 3s+ 5

, a > 0,

(b) f̄(s) =
1

s(s2 + a2)
,

(d) f̄(s) =
s2 − 1

(s2 + 1)
.

28. Use the Final Value Theorem to find f(∞), if it exists, from the following
functions:

(a) f̄(s) =
1

s(s2 + as+ b)
,

(c) f̄(s) =
1

1 + as
,

(b) f̄(s) =
s+ 2
s2 + 4

,

(d) f̄(s) =
3

(s2 + 4)2
.

29. If L {f(t)}= f̄(s) and L {g(t)}= ḡ(s), establish Duhamel’s integrals:

L −1{sf̄(s) ḡ(s)}=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

f(0)g(t) +

t∫
0

f ′(τ)g(t− τ)dτ

g(0)f(t) +

t∫
0

g′(τ)f(t− τ)dτ

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
.

30. Using Watson’s lemma, find the asymptotic expansion of

(a) f̄(s) =

∞∫
0

(1 + t2)−1 exp(−st)dt, as s→∞,

(b) K0(s) =

∞∫
0

(t2 − 1)−
1
2 exp(−st)dt, as s→∞,

where K0(s) is the modified Bessel function.

31. Find the asymptotic expansion of f̄(s) as s→∞ when f(t) is given by
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(a) (1 + t)−1,

(c) log(1 + t),

(b) sin 2
√
t,

(d) J0(at).

32. Use the shifting property (3.4.5) or (3.4.6) to obtain the Laplace trans-
form of the following functions:

(a) f(t) = (t− a)nH(t− a), (b) f(t) = t2H(t− a),

(c) f(t) =

{
t, 0≤ t≤ a

0, t≥ a

}
, (d) f(x) =

{
w0

(
1− 2x

l

)
, 0<x< l

2

0, l
2 <x< l

}
,

(e) f(t) = cos 2tH(t− π), (f) f(t) =

{
2, 0≤ t≤ a

−2, t≥ a

}
.

33. For the square wave function f(t) given by f(t) = aH(t)− aH(t− a),
show that

f̄(s) =
a

s (1 + e−as)
.

34. If f(t) = aH(t)− 2aH(t− 1) + aH(t− 2), show that

f̄(s) =
a

s

(
1− 2 e−s + e−2s

)
.

35. If f(t)=

{
sin t
t , t �= 0

1, t= 0

}
, show that f̄(s) = tan−1

(
1
s

)
36. If fp(t) = tp−1 e−tH(t) , show that (fp∗fq) (t) exists if and only if p and

q are both positive.

Hence, derive the following results

(a) (fp∗fq) (t) =B(p, q) fp+q(t).
(b) f ′

p(t) = (p− 1) fp−1(t) − fp(t).

(c) (fp∗fq)′ (t) = (p− 1)B(p− 1, q) fp+q−1(t)−B(p, q) fp+q(t).
(d) (fp∗fq)′ (t) =B(p, q) [(p+ q − 1)fp+q−1(t)− fp+q(t)] .

37. A family {hp(t) : p> 0} of functions on R is called a convolution semi-
group if hp∗hq = hp+q for all p, q > 0. Show that hp(t) = fp(t)

Γ(p) defines a
convolution semi-group where fp(t) is defined in Exercise 36.

38. Using the change of variables, s= c+ iω, show that the inverse Laplace
transformation is a Fourier transformation, that is,

(i) f(t) = L −1
{
f̄(s)

}
= ect

2π

∞∫
−∞

f̄(c+ iω)eiωtdω.
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(ii) f(t) = 1
π e

ct Re
∞∫
0

f̄(c + iω) eiωtdω.

Hence, for real f(t), show that

(iii) Fc {ectf(t)}= 2 Re
[
f̄(c + iω)

]
,

(iv) Fs {ectf(t)}= 2 Im
[
f̄(c + iω)

]
.
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Applications of Laplace Transforms

“Mathematical sciences have attracted special attention since great
antiquity, they are attracting still more attention today because of
their influence on industry and the arts. The agreement of theory
and practice brings most beneficial results, and it is not exclusively
the practical side which gains; science is advancing under its influ-
ence as it discovers new objects of study and new aspects of the
mathematical sciences....”

P. L. Chebyshev

“... partial differential equations are the basis of all physical the-
orems. In the theory of sound in gases, liquids and solids, in the
investigations of elasticity, in optics, everywhere partial differen-
tial equations formulate basic laws of nature which can be checked
against experiments.”

Bernhard Riemann

4.1 Introduction

Many problems of physical interest are described by ordinary or partial d-
ifferential equations with appropriate initial or boundary conditions. These
problems are usually formulated as initial value problems, boundary value
problems, or initial-boundary value problems that seem to be mathematically
more rigorous andphysically realistic in applied and engineering sciences. The
Laplace transform method is particularly useful for finding solutions of these
problems. The method is very effective for the solution of the response of a
linear system governed by an ordinary differential equation to the initial data
and/or to an external disturbance (or external input function). More precisely,
we seek the solution of a linear system for its state at subsequent time t > 0
due to the initial state at t= 0 and/or to the disturbance applied for t> 0.

This chapter deals with the solutions of ordinary and partial differential
equations that arise in mathematical, physical, and engineering sciences. The

181
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applications of Laplace transforms to the solutions of certain integral equa-
tions and boundary value problems are also discussed in this chapter. It is
shown by examples that the Laplace transform can also be used effectively for
evaluating certain definite integrals. We also give a few examples of solutions
of difference and differential equations using the Laplace transform technique.
The effective use of the joint Laplace and Fourier transform is illustrated by
solving several initial-boundary value problems. Application of Laplace trans-
forms to the problem of summation of infinite series in closed form is presented
with examples. Finally, it is noted that the examples given in this chapter are
only representative of a wide variety of problems which can be solved by the
use of the Laplace transform method.

4.2 Solutions of Ordinary Differential Equations

As stated in the introduction of this chapter, the Laplace transform can be
used as an effective tool for analyzing the basic characteristics of a linear sys-
tem governed by the differential equation in response to initial data and/or
to an external disturbance. The following examples illustrate the use of the
Laplace transform in solving certain initial value problems described by ordi-
nary differential equations.

Example 4.2.1
(Initial Value Problem). We consider the first-order ordinary differential equa-
tion

dx

dt
+ px= f(t), t > 0, (4.2.1)

with the initial condition
x(t= 0)= a, (4.2.2)

where p and a are constants and f(t) is an external input function so that its
Laplace transform exists.

Application of the Laplace transform x̄(s) of the function x(t) gives

s x̄(s)− x(0) + p x̄(s) = f̄(s),

or

x̄(s) =
a

s+ p
+
f̄(s)
s+ p

. (4.2.3)

The inverse Laplace transform together with the Convolution Theorem leads
to the solution

x(t) = ae−pt +

t∫
0

f(t− τ)e−pτdτ. (4.2.4)
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Thus, the solution naturally splits into two terms—the first term corresponds
to the response of the initial condition and the second term is entirely due to
the external input function f(t).

In particular, if f(t) = q= constant, then the solution (4.2.4) becomes

x(t) =
q

p
+
(
a− q

p

)
e−pt. (4.2.5)

The first term of this solution is independent of time t and is usually called
the steady-state solution. The second term depends on time t and is called the
transient solution. In the limit as t→∞, the transient solution decays to zero
if p> 0 and the steady-state solution is attained. On the other hand, when
p< 0, the transient solution grows exponentially as t→∞, and the solution
becomes unstable.

Equation (4.2.1) describes the law of natural growth or decay process with
an external forcing function f(t) according as p> 0 or < 0. In particular, if
f(t) = 0 and p> 0, the resulting equation (4.2.1) occurs very frequently in
chemical kinetics. Such an equation describes the rate of chemical reactions.

Example 4.2.2

(Second Order Ordinary Differential Equation). The second order linear ordi-
nary differential equation has the general form

d2x

dt2
+ 2 p

dx

dt
+ qx= f(t), t > 0. (4.2.6)

The initial conditions are

x(t) = a,
dx

dt
= ẋ(t) = b at t= 0, (4.2.7ab)

where p, q, a and b are constants.
Application of the Laplace transform to this general initial value problem

gives

s2x̄(s) − s x(0) − ẋ(0) + 2p{s x̄(s) − x(0)} + qx̄(s) = f̄(s).

The use of (4.2.7ab) leads to the solution for x̄(s) as

x̄(s) =
(s+ p)a+ (b+ pa) + f̄(s)

(s+ p)2 + n2
, n2 = q − p2. (4.2.8)

The inverse transform gives the solution in three distinct forms depending on
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q > = <p2, and they are

x(t) = ae−pt cosnt+
1
n

(b+ pa)e−pt sinnt

+
1
n

t∫
0

f(t− τ)e−pτ sinnτdτ, when n2 = q − p2> 0, (4.2.9)

x(t) = ae−pt + (b+ pa) t e−pt

+

t∫
0

f(t− τ) τ e−pτdτ, when n2 = q − p2 = 0, (4.2.10)

x(t) = ae−pt coshmt+
1
m

(b+ pa) e−pt sinhmt

+
1
m

t∫
0

f(t− τ) e−pτ sinhmτdτ, when m2 = p2 − q > 0.(4.2.11)

Example 4.2.3

(Higher Order Ordinary Differential Equations). We solve the linear equation
of order n with constant coefficients as

f(D){x(t)}≡Dnx+ a1D
n−1x+ a2D

n−2x+ · · ·+ anx= φ(t), t > 0,
(4.2.12)

with the initial conditions

x(t) = x0, Dx(t) = x1, D2x(t) = x2, . . . , D
n−1x(t) = xn−1, at t= 0,

(4.2.13)

where D=
d

dt
is the differential operator and x0, x1, . . . , xn−1 are constants.

We take the Laplace transform of (4.2.12) to get

(sn x̄ − sn−1 x0 − sn−2 x1 − · · · − s xn−2 − xn−1

)
+a1

(
sn−1 x̄− sn−2 x0 − sn−3 x1 − · · · − xn−2

)
+a2

(
xn−2 x̄− sn−3 x0 − · · · − xn−3

)
+ · · ·+ an−1(s x̄− x0) + an x̄= φ̄(s). (4.2.14)
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Or,

(sn + a1s
n−1 + a2s

n−2 + · · ·+ an) x̄(s)

= φ̄(s) + (sn−1 + a1s
n−2 + · · ·+ an−1)x0

+(sn−2 + a1s
n−3 + · · ·+ an−2)x1 + · · ·+ (s+ a1)xn−2 + xn−1

= φ̄(s) + ψ̄(s), (4.2.15)

where ψ̄(s) is made up of all terms on the right hand side of (4.2.15) except
φ̄(s), and is a polynomial in s of degree (n− 1).

Hence,
f̄(s) x̄(s) = φ̄(s) + ψ̄(s),

where
f̄(s) = sn + a1s

n−1 + · · ·+ an.

Thus, the Laplace transform solution, x̄(s) is

x̄(s) =
φ̄(s) + ψ̄(s)

f̄(s)
. (4.2.16)

Inversion of (4.2.16) yields

x(t) = L −1

{
φ̄(s)
f̄(s)

}
+ L −1

{
ψ̄(s)
f̄(s)

}
. (4.2.17)

The inverse operation on the right can be carried out by partial fraction de-
composition, by the Heaviside Expansion Theorem, or by contour integration.

Example 4.2.4
(Third Order Ordinary Differential Equations). We solve

(D3 +D2 − 6D)x(t) = 0, D≡ d

dt
, t> 0, (4.2.18)

with the initial data

x(0) = 1, ẋ(0)= 0, and ẍ(0) = 5. (4.2.19)

The Laplace transform of equation (4.2.18) gives

[s3x̄− s2x(0) − s ẋ(0)− ẍ(0)] + [s2x̄− s x(0) − ẋ(0)]− 6[s x̄− x(0)] = 0.

In view of the initial conditions, we find

x̄(s) =
s2 + s− 1
s(s2 + s− 6)

=
s2 + s− 1

s(s+ 3)(s− 2)
.
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Or,

x̄(s) =
1
6
· 1
s

+
1
3
· 1
s+ 3

+
1
2
· 1
s− 2

.

Inverting gives the solution

x(t) =
1
6

+
1
3
e−3t +

1
2
e2t. (4.2.20)

Example 4.2.5
(System of First Order Ordinary Differential Equations). Consider the system

dx1

dt
= a11x1 + a12x2 + b1(t)

dx2

dt
= a21x1 + a22x2 + b2(t)

⎫⎪⎪⎬⎪⎪⎭ (4.2.21ab)

with the initial data

x1(0)= x10 and x2(0) = x20; (4.2.22ab)

where a11, a12, a21, a22 are constants.
Introducing the matrices

x≡
(
x1

x2

)
, dx

dt ≡

⎛⎜⎜⎝
dx1

dt

dx2

dt

⎞⎟⎟⎠ , A≡
(
a11 a12

a21 a22

)
,

b(t)≡
(
b1(t)

b2(t)

)
and x0 =

(
x10

x20

)
,

we can write the above system in a matrix differential system as

dx

dt
=Ax+ b(t), x(0) = x0. (4.2.23ab)

We take the Laplace transform of the system with the initial conditions to get

(s− a11)x̄1 − a12x̄2 = x10 + b̄1(s),
−a21x̄1 + (s− a22)x̄2 = x20 + b2(s).

The solutions of this algebraic system are

x̄1(s) =

∣∣∣∣∣x10 + b̄1(s) −a12

x20 + b̄2(s) s− a22

∣∣∣∣∣∣∣∣∣ s− a11 −a12

−a21 s− a22

∣∣∣∣ , x̄2(s) =

∣∣∣∣∣ s− a11 x10 + b̄1(s)
−a21 x20 + b̄2(s)

∣∣∣∣∣∣∣∣∣ s− a11 −a12

−a21 s− a22

∣∣∣∣ .

(4.2.24ab)
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Expanding these determinants, results for x̄1(s) and x̄2(s) can readily be
inverted, and the solutions for x1(t) and x2(t) can be found in closed forms.

Example 4.2.6
Solve the matrix differential system

dx

dt
=Ax, x(0) =

(
0
1

)
, (4.2.25)

where

x=
(
x1

x2

)
and A=

(
0 1

−2 3

)
.

This system is equivalent to

dx1

dt
− x2 = 0,

dx2

dt
+ 2x1 − 3x2 = 0,

with
x1(0) = 0 and x2(0) = 1.

Taking the Laplace transform of the coupled system with the given initial
data, we find

s x̄1 − x̄2 = 0,
2x̄1 + (s− 3)x̄2 = 1.

This system has the solutions

x̄1(s) =
1

s2 − 3s+ 2
=

1
s− 2

− 1
s− 1

,

x̄2(s) =
s

s2 − 3s+ 2
=

2
s− 2

− 1
s− 1

.

Inverting these results, we obtain

x1(t) = e2t − et, x2(t) = 2 e2t − et.

In matrix notation, the solution is

x(t) =
(
e2t − et

2 e2t − et

)
. (4.2.26)
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Example 4.2.7
(Second Order Coupled Differential System). Solve the system

d2x1

dt2
− 3x1 − 4x2 = 0

d2x2

dt2
+ x1 + x2 = 0

⎫⎪⎪⎬⎪⎪⎭ t > 0, (4.2.27)

with the initial conditions

x1(t) = x2(t) = 0;
dx1

dt
= 2 and

dx2

dt
= 0 at t= 0. (4.2.28)

The use of the Laplace transform to (4.2.27) with (4.2.28) gives

(s2 − 3)x̄1 − 4x̄2 = 2
x̄1 + (s2 + 1)x̄2 = 0.

Then

x̄1(s) =
2(s2 + 1)
(s2 − 1)2

=
(s+ 1)2 + (s− 1)2

(s2 − 1)2
=

1
(s− 1)2

+
1

(s+ 1)2
.

Hence, the inversion yields

x1(t) = t(et + e−t). (4.2.29)

x̄2(s) =
−2

(s2 − 1)2
=

1
2

[
1

s− 1
− 1
s+ 1

− 1
(s− 1)2

− 1
(s+ 1)2

]
,

which can be readily inverted to find

x2(t) =
1
2
(et − e−t − t et − t e−t). (4.2.30)

Example 4.2.8
(The Harmonic Oscillator in a Non-Resisting Medium). The differential e-
quation of the oscillator in the presence of an external driving force F f(t)
is

d2x

dt2
+ ω2x=F f(t), (4.2.31)

where ω is the frequency and F is a constant.
The initial conditions are

x(t) = a, ẋ(t) =U at t= 0, (4.2.32)
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where a and U are constants.
Taking the Laplace transform of (4.2.31) with the initial conditions, we

obtain
(s2 + ω2)x̄(s) = sa+U + F f̄(s).

Or,

x̄(s) =
as

s2 + ω2
+

U

s2 + ω2
+

F f̄(s)
s2 + ω2

. (4.2.33)

Inversion together with the convolution theorem yields

x(t) = a cosωt+
U

ω
sinωt+

F

ω

t∫
0

f(t− τ) sin ωτdτ (4.2.34)

= A cos(ωt− φ) +
F

ω

t∫
0

f(t− τ) sin ωτdτ, (4.2.35)

where A=
(
a2 +

U2

ω2

)1/2

and φ= tan−1

(
U

ωa

)
.

The solution (4.2.35) consists of two terms. The first term represents the
response to the initial data, and it describes free oscillations with amplitude
A, phase φ, and frequency ω, which is called the natural frequency of the
oscillator. The second term arises in response to the external force, and hence,
it represents the forced oscillations. In order to investigate some interesting
features of solution (4.2.35), we select the following cases of interest:

(i) Zero Forcing Function.
In this case, solution (4.2.35) reduces to

x(t) =A cos(ωt− φ). (4.2.36)

This represents simple harmonic motion with amplitude A, frequency ω and
phase φ. Evidently, the motion is oscillatory.

(ii) Steady Forcing Function, that is, f(t)= 1.
In this case, solution (4.2.35) becomes

x− F

ω2
=A cos(ωt− φ) − F

ω2
cosωt. (4.2.37)

In particular, when the particle is released from rest, U = 0, (4.2.37) takes the
form

x− F

ω2
=
(
a− F

ω2

)
cosωt. (4.2.38)

This corresponds to free oscillations with the natural frequency ω and displays

a shift in the equilibrium position from the origin to the point
F

ω2
.
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(iii) Periodic Forcing Function, that is, f(t) = cosω0t.
The transform solution can readily be found form (4.2.33) in the form

x̄(s) =
as

s2 + ω2
+

U

s2 + ω2
+

Fs

(s2 + ω2
0)(s2 + ω2)

=
as

s2 + ω2
+

U

s2 + ω2
+

Fs

(ω2
0 − ω2)

(
1

s2 + ω2
− 1
s2 + ω2

0

)
. (4.2.39)

Inversion yields the solution

x(t) = a cosωt+
U

ω
sin ωt+

F

(ω2
0 − ω2)

(cos ωt− cos ω0t) (4.2.40)

= A cos(ωt− φ) +
F

(ω2
0 − ω2)

cos ω0t, (4.2.41)

where A=

{(
a+

F

ω2
0 − ω2

)2

+
U2

ω2

}1/2

and tan φ=
U

ω
÷
(
a+

F

ω2
0 − ω2

)
.

It is noted that solution (4.2.41) consists of free oscillations of period
(

2π
ω

)
and forced oscillations of period

(
2π
ω0

)
, which is the same as that of the

external periodic force. If ω0<ω, the phase of the forced oscillations is the
same as that of the external periodic force. If ω0>ω, the forced term suffers
from a phase change by an amount π. In other words, the forced motion is in
phase or 180◦ out of phase with the external force according as ω > or <ω0.

When ω=ω0, result (4.2.40) can be written as

x(t) = a cosωt+
U

ω
sin ωt+

Ft

(ω0 + ω)

⎡⎢⎢⎣ sin
{

1
2
(ω − ω0)t

}
sin

{
1
2
(ω + ω0)t

}
1
2
(ω0 − ω)t

⎤⎥⎥⎦
= a cosωt+

U

ω
sinωt+

Ft

2ω
sinωt=A cos(ωt− φ) +

Ft

2ω
sinωt, (4.2.42)

where

A2 =
(
a2 +

U2

ω2

)
and tan φ=

U

aω
.

This solution clearly shows that the amplitude of the forced motion increases
with t. Thus, if the natural frequency is equal to the forcing frequency, the
oscillations become unbounded, which is physically undesirable. This phe-
nomenon is usually called resonance, and the corresponding frequency ω=ω0

is referred to as the resonant frequency of the system. It may be emphasized
that at the resonant frequency, the solution of the problem becomes mathe-
matically invalid for large times, and hence, it is physically unrealistic. In most
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dynamical systems, this kind of situation is resolved by including dissipating
and/or nonlinear effects.

Example 4.2.9
(Harmonic Oscillator in a Resisting Medium). The differential equation of
the oscillator in a resisting medium where the resistance is proportional to
velocity is given by

d2x

dt2
+ 2k

dx

dt
+ ω2x=F f(t), (4.2.43)

where k (> 0) is a constant of proportionality and the right hand side repre-
sents the external driving force. The initial state of the system is

x(t) = a,
dx

dt
=U at t= 0. (4.2.44)

In view of the initial conditions, the Laplace transform solution of equation
(4.2.43) is obtained as

x̄(s) =
a(s+ 2k) + U + F f̄(s)

(s2 + 2ks+ ω2)

=
a(s+ k) + (U + ak) + F̄ (s)

(s+ k)2 + n2
, (4.2.45)

where n2 =ω2 − k2.
Three possible cases deserve attention:

(i) k <ω (small damping).
In this case, n2 =ω2 − k2> 0 and the inversion of (4.2.45) along with the
Convolution Theorem yields

x(t) = a e−kt cosnt+
(U + ak)

n
e−kt sinnt+

F

n

t∫
0

f(t− τ)e−kτ sinnτdτ.

(4.2.46)
This is the most general solution of the problem for an arbitrary form of the
external driving force.

(ii) k=ω (critical damping) so that n2 = 0.
The solution for this case can readily be obtained from (4.2.45) by inversion
and has the form

x(t) = a e−kt + (U + ak) t e−kt + F

t∫
0

f(t− τ) τe−ktdτ. (4.2.47)

(iii) k >ω (large damping).
Set n2 =−(k2 − ω2) =−m2 so that m2 = k2 − ω2> 0.
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The transformed solution (4.2.45) assumes the form

x̄(s) =
a(s+ k) + (U + ak) + F f̄(s)

(s+ k)2 −m2
. (4.2.48)

After inversion, it turns out that

x(t) = a e−kt coshmt +
(
U + ak

m

)
e−kt sinhmt

+
F

m

t∫
0

f(t− τ)e−kτ sinhmτdτ. (4.2.49)

In order to examine the characteristic features of the problem, it is necessary
to specify the nature and functional form of f(t) involved in the external force
term. Suppose the external driving force is zero. The solution can readily be
written down in all three cases.

For 0<k<ω, the solution is

x(t) = e−kt
(
a cosnt+

U + ak

n
sinnt

)
=Ae−kt cos(nt− φ), (4.2.50)

where A=
{
a2 + (U+ak)2

n2

}1/2

and φ= tan−1

(
U + ak

an

)
.

Like the harmonic oscillator in a vacuum, the motion is oscillatory with the
time-dependent amplitude Ae−kt and the modified frequency

n= (ω2 − k2)1/2 =ω

(
1 − 1

2
k2

ω2
+ · · ·

)
, 0<k<ω.

This means that, when the resistance is small, the modified frequency (or the
undamped natural frequency) is obviously smaller than the natural frequen-
cy, ω. Although the small resistance produces an insignificant effect on the
frequency, the amplitude is radically modified. It should also be noted that
the amplitude decays exponentially to zero as time t→∞. The phase of the
motion is also changed by the small resistance. Thus, the motion is called the
damped oscillatory motion, and depicted by Figure 4.1.

At the critical case, ω= k, and hence, n= 0. The solution can readily be
found from (4.2.47) with F = 0, and has the form

x(t) = a e−kt + (ak +U) t e−kt. (4.2.51)

The motion ceases to be oscillatory and decays very rapidly as t→∞.
If damping is large with no external force, solution (4.2.49) reduces to

x(t) = a e−kt coshmt+

(
ak +U

m

)
e−kt sinhmt. (4.2.52)
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t
x(

t)

Figure 4.1 Damped oscillatory motion.

Using cosh
sinh mt= 1

2 (emt ± e−mt), we can write the solution as

x(t) =Ae−(k−m)t +B e−(k+m)t, (4.2.53)

where A= 1
2

(
a+ ak+U

m

)
and B=

1
2

(
a− ak + U

m

)
.

The above solution suggests that the motion is no longer oscillatory and in
fact, it decays very rapidly as t→∞.

Example 4.2.10
(Harmonic Oscillator in a Resisting Medium with an External Periodic Force),
The motion is governed by the equation

d2x

dt2
+ 2k

dx

dt
+ ω2x=F cosω0t, k > 0 (4.2.54)

with the initial data
x(0) = a and ẋ(0)=U.

The transformed solution for the case of small damping (k <ω) is

x̄(s) =
a(s+ k) + (U + ak)

(s+ k)2 + n2
+

Fs

{(s+ k)2 + n2}(s2 + ω2
0)

=
a(s+ k) + (U + ak)

(s+ k)2 + n2
+ F

[
As−B

(s+ k)2 + n2
− As−C

s2 + ω2
0

]
, (4.2.55)

where

A=
ω2

0 − ω2

(ω2 − ω2
0)2 + 4k2ω2

0

, B=
2kω2

(ω2 − ω2
0)2 + 4k2ω2

0

,



© 2007 by Taylor & Francis Group, LLC

194 INTEGRAL TRANSFORMS and THEIR APPLICATIONS

and

C =
2 k ω2

0

(ω2 − ω2
0)2 + 4k2ω2

0

with ω2 = n2 + k2.

The expression for x̄(s) can be inverted to obtain the solution

x(t) = (a+ FA) e−kt cosnt +
1
n

(U + ak − FAk − FB) e−kt sinnt

−AF cosω0t +
CF

ω0
sinω0t. (4.2.56)

It is convenient to write it in the form

x(t) =A1 cos(ω0t− φ1) +A2 e
−kt cos(nt− φ2), (4.2.57)

where

A2
1 = F 2

(
A2 +

C2

ω2
0

)
=

F 2

(ω2 − ω2
0)2 + 4k2ω2

0

, (4.2.58)

tan φ1 = − C

Aω0
=

2kω0

ω2 − ω2
0

, (4.2.59)

A2
2 = (a+ FA)2 +

1
n2

(U + ak − kFa− FB)2, (4.2.60)

and

tan φ2 =
U + ak − kFA− FB

n(a+ FB)
. (4.2.61)

This form of solution (4.2.57) lends itself to some interesting physical inter-
pretations. First, the displacement field x(t) essentially consists of the steady
state and the transient terms, which are independently modified by the damp-
ing and driving forces involved in the equation of motion. In the limit as t→∞,
the latter decays exponentially to zero. Consequently, the ultimate steady s-
tate is attained in the limit, and represented by the first term of (4.2.57). In
fact, the steady-state solution is denoted by xst(t) and given by

xst(t) =A1 cos(ω0t− φ1), (4.2.62)

where A1 is the amplitude, ω0 is the frequency, and φ1 represents the phase
lag given by

φ1 = tan−1

{
2kω0(
ω2 − ω2

0

)} when ω0<ω,

= π − tan−1

{
2kω0(
ω2

0 − ω2
)} when ω0>ω,

=
π

2
as ω0 →ω.
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It should be noted that the frequency of the steady-state solution is the same
as that of the external driving force, but the amplitude and the phase are
modified by the parameters ω, k and ω0. It is of interest to examine the nature
of the amplitude and the phase with respect to the forcing frequency ω0. For

a low frequency (ω0 → 0), A1 =
F

ω2
and φ1 = 0. As ω0 →ω, the amplitude of

the motion is still bounded and equal to
(

F

2kω

)
if k �= 0. The displacement

suffers from a phase lag of π/2. Further, we note that

dA1

dω0
=

2ω0F
(
ω2 − ω2

0 − 2k2
){

(ω2 − ω2
0)2 + 4k2ω2

0

}3/2
. (4.2.63)

It follows that A1 has a minimum at ω0 = 0 with minimum value
F

ω2
, and a

maximum at ω0 = (ω2 − 2k2)1/2 with maximum value
F

2k(ω2 − 2k2)1/2
pro-

vided 2k2<ω2. If 2k2>ω2, A1 has no maximum and gradually decreases.

The non-dimensional amplitude A∗ =
(

2A1ω
2

F

)
is plotted against the non-

dimensional frequency ω∗ =
ω0

ω
for a given value of k

ω (< 1) in Figure 4.2.

1 2
0

5

k = 1
10

*

A*

Figure 4.2 Amplitude versus frequency with damping.

In the absence of the damping term, the amplitude A1 becomes

A1 =
F∣∣ω2 − ω2

0

∣∣ ,
which is unbounded at ω0 =ω and shown in Figure 4.3.

This situation has already been encountered earlier, and the frequency ω0 =
ω was defined as the resonant frequency. The difficulty for the resonant case
has been resolved by the inclusion of small damping effect.
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1 2
0

5

k = 1
10

*

A*

Figure 4.3 Amplitude versus frequency without damping.

At the critical case (k2 =ω2), the solution is found from (4.2.55) by inversion
and has the form

x(t) =A1 cos(ω0t− φ) + (a+ FA) e−kt

+ t(U + ak − FAk − FB) e−kt. (4.2.64)

The transient term of this solution decays as t→∞ and the steady state is
attained.

The solution for the case of high damping (k2>ω2) is obtained from (4.2.55)
as

x(t) = (a+ FA) e−kt coshmt +
1
m

(U + ak − FAk − FB) e−kt sinhmt

− AF cosω0t+
CF

ω0
sinω0t (4.2.65)

where m2 =−n2 = k2 − ω2> 0. This result is somewhat similar to that of
(4.2.56) or (4.2.57) with the exception that the transient term decays very
rapidly as t→∞. Like previous cases, the steady state is reached in the limit.

Example 4.2.11
Obtain the solution of the Bessel equation

t
d2x

dt2
+
dx

dt
+ a2t x(t) = 0, x(0) = 1. (4.2.66)

Application of the Laplace transform gives

L

{
t
d2x

dt2

}
+ L

{
dx

dt

}
+ a2 L {t x(t)}= 0.

Or,

− d

ds

[
L

{
d2x

dt2

}]
+ s x̄(s)− x(0)− a2 dx̄

ds
= 0.
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Or,

− d

ds
[s2 x̄− s x(0) − ẋ(0)] + s x̄(s)− 1 − a2 dx̄

ds
= 0.

Thus,

(s2 + a2)
dx̄

ds
+ s x̄= 0.

Or,
dx̄

x̄
=− s ds

s2 + a2
.

Integration gives the solution for x̄(s)

x̄(s) =
A√

s2 + a2
,

where A is an integrating constant. By the inverse transformation, we obtain
the solution

x(t) =AJ0(at).

Example 4.2.12
Find the solution of the initial value problem

d2x

dt2
+ t

dx

dt
− 2x= 2, x(0) = ẋ(0) = 0.

Taking the Laplace transform yields

L

{
d2x

dt2

}
+ L

{
t
dx

dt

}
− 2 x̄(s) =

2
s
.

Or,

s2x̄− d

ds
{s x̄(s)} − 2x̄=

2
s

dx̄

ds
+
(

3
s
− s

)
x̄=− 2

s2
.

This is a first order linear equation, which can be solved by the method of the

integrating factor. The integrating factor is s3 exp
(
−1

2
s2
)
. Multiplying the

equation by the integrating factor and integrating, it turns out that

x̄(s) =
2
s3

+
A

s3
exp

(
s2

2

)
,
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where A is an integrating constant. As x̄(s)→∞ as s→∞, we must have

A≡ 0. Thus, x̄(s) =
2
s3
. Inverting, we get the solution

x(t) = t2.

Example 4.2.13
(Current and Charge in a Simple Electric Circuit). The current in a circuit
(see Figure 4.4) containing inductance L, resistance R, and capacitance C
with an applied voltage E(t) is governed by the equation

L
dI

dt
+RI +

1
C

t∫
0

Idt=E(t), (4.2.67)

where L, R, and C are constants and I(t) is the current that is related to the
accumulated charge Q on the condenser at time t by

Q(t) =

t∫
0

I(t)dt so that
dQ

dt
= I(t). (4.2.68)

L

R

CE(t)

I(t)

Q(t)

Figure 4.4 Simple electric circuit.

If the circuit is without a condenser (C→∞), equation (4.2.67) reduces to

L
dI

dt
+RI =E(t), t > 0. (4.2.69)

This can easily be solved with the initial condition I(t= 0)= I0. However, we
solve the system (4.2.67)–(4.2.68) with the initial data

I(t= 0) = 0, Q(t= 0)= 0. (4.2.70)
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Then, in the limit C→∞, the solution of the system reduces to that of
(4.2.69).

Application of the Laplace transform to (4.2.67) with (6.2.70) gives

Ī(s) =
1
L

sĒ(s)(
s2 + R

L s+ 1
CL

) =
1
L
· (s+ k − k)Ē(s)

(s+ k)2 + n2
, (4.2.71)

where k=
R

2L
, ω2 =

1
LC

and n2 =ω2 − k2.

Inversion of (4.2.71) gives the current field for three cases:

I(t) =
1
L

t∫
0

E(t− τ)
(

cosnτ − k

n
sinnτ

)
e−kτdτ, if ω2>k2 (4.2.72)

=
1
L

t∫
0

E(t− τ)(1 − kτ)e−kτdτ, if ω2 = k2 (4.2.73)

=
1
L

t∫
0

E(t− τ)
(

coshmτ − k

m
sinhmτ

)
e−kτdτ, if k2>ω2 (4.2.74)

where m2 =−n2.
In particular, if E(t) = constant =E0, then the solution can be obtained

directly from (4.2.71) by inversion as

I(t) =
E0

nL
exp

(
−Rt

2L

)
sinnt, if n2 =

1
CL

−
(
R

2L

)2

> 0, (4.2.75)

=
E0

L
t exp

(
−Rt

2L

)
, if

(
R

2L

)2

=
1
CL

, (4.2.76)

=
E0

mL
exp

(
−Rt

2L

)
sinhmt, if m2 =

(
R

2L

)2

− 1
CL

> 0. (4.2.77)

It may be observed that the solution for the case of low resistance (R2C < 4L),
or small damping, describes a damped sinusoidal current with slowly decaying

amplitude. In fact, the rate of damping is proportional to
R

L
, and when this

quantity is large, the attenuation of the current is very rapid. The frequency
of the oscillating current field is

n=
(

1
CL

− R2

4L2

)1/2

,

which is called the natural frequency of the current field. If
R2

4L2
<<

1
CL

, the
frequency n is approximately equal to

n∼ 1√
CL

.
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The case,
R2

4L2
=

1
CL

, corresponds to critical damping, and the solution for
this case decays exponentially with time.

The last case, R2C > 4L, corresponds to high resistance or high damping.
The current related to this case has the form

I(t) =
E0

2mL

[
e−( R

2L−m)t − e−( R
2L +m)t

]
. (4.2.78)

It may be recognized that the solution is no longer oscillatory and decays
exponentially to zero as t→∞. This is really expected in an electrical circuit
with a very high resistance. If C→∞, the circuit is free from a condenser and

m→ R

2L
. Consequently, solution (4.2.77) reduces to

I(t) =
E0

R

[
1− exp

(
−Rt
L

)]
. (4.2.79)

This is identical with the solution of equation (4.2.69).
We consider another special case where the alternating voltage is applied

to the circuit so that
E(t) =E0 sinω0t. (4.2.80)

The transformed solution for Ī(s) follows from (4.2.71) as

Ī(s) =
(
E0ω0

L

)
s

{(s+ k)2 + n2}(s2 + ω2
0

) . (4.2.81)

Using the rules of partial fractions, it turns out that

Ī(s) =
(
E0ω0

L

)[
As−B

(s+ k)2 + n2
− As−C

s2 + ω2
0

]
, (4.2.82)

where (A,B,C)≡ (ω2
0 − ω2, 2kω2, 2kω2

0)
(ω2 − ω2

0)2 + 4k2ω2
0

.

The inversion of (4.2.82) can be completed by Table B-4 of Laplace trans-
forms, and the solution for I(t) assumes three distinct forms according to
ω2> = <k2.

The solution for the case of low resistance (ω2>k2) is

I(t) =
(
E0ω0

L

)[
Ae−kt cosnt − 1

n
(Ak +B)e−kt sinnt

− A cosω0t+
C

ω0
sinω0t

]
, (4.2.83)

which has the equivalent form

I(t) =A1 sin(ω0t− φ1) +A2 e
−kt cos(nt− φ2), (4.2.84)
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where

A2
1 =

E2
0

L2

(
A2ω2

0 +C2
)
=

E2
0ω

2
0

L2
{(
ω2 − ω2

0

)2 + 4k2ω2
0

} , tanφ1 =
Aω0

C
,(4.2.85)

A2
2 =

(
E2

0ω
2
0

L2

)[
A2 +

1
n2

(Ak +B)2
]

and tanφ2 =− (Ak +B)
An

. (4.2.86)

The current field consists of the steady-state and transient components. The

latter decays exponentially in a time scale of the order
L

R
. Consequently, the

steady current field is established in the electric circuit and describes the
sinusoidal current with constant amplitude and phase lagging by an angle
φ1. The frequency of the steady oscillating current is the same as that of the
applied voltage.

In the critical situation (ω2 = k2), the current field is derived from (4.2.82)
by inversion and has the form

I(t) =A1 sin(ω0t− φ1) +
(
E0ω0

L

)[
Ae−kt − (Ak +B)te−kt

]
. (4.2.87)

This result suggests that the transient component of the current dies out
exponentially in the limit as t→∞. Eventually, the steady oscillating current
is set up in the circuit and described by the first term of (4.2.87). Finally, the
solution related to the case of high resistance (ω2<k2) can be found by direct
inversion of (4.2.82) and is given by

I(t) = A1 sin(ω0t− φ1)

+
(
E0ω0

L

)[
A cosh mt− 1

m
(Ak +B) sinhmt

]
e−kt. (4.2.88)

This solution is somewhat similar to (4.2.84) with the exception of the form
of the transient term which, of course, decays very rapidly as t→∞. Conse-
quently, the steady current field is estalished in the circuit and has the same
value as in (4.2.84).

Finally, we close this example by suggesting a similarity between this elec-
tric circuit system and the mechanical system as described in Example 4.2.9.
Differentiation of (4.2.67) with respect to t gives a second order equation for
the current field as

L
d2I

dt2
+R

dI

dt
+
I

C
=
dE

dt
. (4.2.89)

Also, an equation for the charge field Q(t) can be found from (4.2.67) and
(4.2.68) as

L
d2Q

dt2
+R

dQ

dt
+
Q

C
=E(t). (4.2.90)
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Writing 2k=
R

L
and ω2 =

1
LC

, the above equation can be put into the form

(
d2

dt2
+ 2k

d

dt
+ ω2

)(
I

Q

)
=

1
L

⎛⎝ dE

dt

E

⎞⎠ . (4.2.91ab)

These equations are very similar to equation (4.2.43) for a harmonic oscillator.

Example 4.2.14
(Current and Charge in an Electrical Network). An electrical network is a
combination of several interrelated simple electric circuits. Consider a more
general network consisting of two electric circuits coupled by the mutual in-
ductance M with resistances R1 and R2, capacitances C1 and C2, and self-
inductances L1 and L2 as shown in Figure 4.5. A time-dependent voltage E(t)
is applied to the first circuit at time t= 0, when charges and currents are zero.

R1 R2

L1 L2

M

I1(t) I2(t)

_+

C1

C2

Q1

Q2

Figure 4.5 Two coupled electric circuits.

The charge and current fields in the network are governed by the system of
ordinary differential equations

L1
dI1
dt

+R1I1 +M
dI2
dt

+
Q1

C1
=E(t), t > 0 (4.2.92)

M
dI1
dt

+ L2
dI2
dt

+R2I2 +
Q2

C2
= 0, t > 0 (4.2.93)

with
dQ1

dt
= I1 and

dQ2

dt
= I2.

The initial conditions are

I1 = 0, Q1 = 0, I2 = 0, Q2 = 0 at t= 0. (4.2.94)
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Eliminating the currents from (4.2.92) and (4.2.93), we obtain(
L1D

2 +R1D+
1
C1

)
Q1 +MD2Q2 =E(t), (4.2.95)

MD2Q1 +
(
L2D

2 +R2D+
1
C2

)
Q2 = 0, (4.2.96)

where D≡ d

dt
.

The Laplace transform can be used to solve this system for Q1 and Q2.
Similarly, we can find solutions for the current fields I1 and I2 independently
or from the charge fields. We leave it as an exercise for the reader.

In the absence of the external voltage (E = 0) with R1 =R2 = 0, L1 =L2 =
L and C1 =C2 =C, addition and subtraction of (4.2.95) and (4.2.96) give

Q̈+ + α2Q+ = 0, Q̈− + β2Q− = 0, (4.2.97ab)

where

Q+ = Q1 +Q2, Q− =Q1 −Q2,

α2 = [C(L+M)]−1, and β2 = [C(L −M)]−1.

Clearly, the system executes uncoupled simple harmonic oscillations with
frequencies α and β. Hence, the normal modes can be generated in this freely
oscillatory electrical system.

Finally, in the absence of capacitances (C1 →∞, C2 →∞), the above net-
work reduces to a simple one that consists of two electric circuits coupled by
the mutual inductance M with inductances L1 and L2, and resistances R1

and R2. As shown in Figure 4.6, an external voltage is applied to the first
circuit at time t= 0.

R1 R2

L1 L2

M

I1
I2

_+ E(t)

Figure 4.6 Two coupled electric circuits without capacitances.
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The current fields in the network are governed by a pair of coupled ordinary
differential equations

L1
dI1
dt

+R1I1 +M
dI2
dt

= E(t), t > 0, (4.2.98)

M
dI1
dt

+ L2
dI2
dt

+R2I2 = 0, t > 0, (4.2.99)

where I1(t) and I2(t) are the currents in the first and the second circuits,
respectively. The initial conditions are

I1(0)= I2(0) = 0. (4.2.100)

We shall not pursue the problem further because the transform method of
solution is a simple exercise.

Example 4.2.15
(Linear Dynamical Systems and Signals. In physical and engineering sciences,
a large number of linear dynamical systems with a time dependent input signal
f(t) that generates an output signal x(t) can be described by the ordinary
differential equation with constant coefficients

(Dn + an−1D
n−1 + · · ·+ a0)x(t) = (Dm + bm−1D

m−1 + · · ·+ b0) f(t),
(4.2.101)

where D≡ d

dt
is the differential operator, ar and br are constants.

We apply the Laplace transform to find the output x(t) so that (4.2.101)
becomes

p̄n(s) x̄(s)− R̄n−1 = q̄m(s) f̄(s) − S̄m−1, (4.2.102)

where

p̄n(s) = sn + an−1 s
n−1 + · · ·+ a0, q̄m(s) = sm + am−1 s

m−1 + · · ·+ b0,

R̄n−1(s) =
n−1∑
r=0

sn−r−1 x(r)(0), S̄m−1(s) =
m−1∑
r=0

sm−r−1 f (r)(0).

It is convenient to express (4.2.102) in the form

x̄(s) = h̄(s) f̄(s) + ḡ(s), (4.2.103)

where

h̄(s) =
q̄m(s)
p̄n(s)

and ḡ(s) =
R̄n−1(s) − S̄m−1(s)

p̄n(s)
, (4.2.104ab)

and h̄(s) is usually called the transfer function.
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The inverse Laplace transform combined with the Convolution Theorem
leads to the formal solution

x(t) =
∫ t

0

f(t− τ)h(τ)dτ + g(t). (4.2.105)

With zero initial data, ḡ(s) = 0, the transfer function takes the simple form

h̄(s) =
x̄(s)
f̄(s)

. (4.2.106)

If f(t) = δ(t) so that f̄(s) = 1, then the output function is

x(t) =
∫ t

0

δ(t− τ)h(τ)dτ = h(t), (4.2.107)

and h(t) is known as the impulse response.

Example 4.2.16

(Delay Differential Equations). In many problems, the derivatives of the un-
known function x(t) are related to its value at different times t− τ. This leads
us to consider differential equations of the form

dx

dt
+ a x(t− τ) = f(t), (4.2.108)

where a is a constant and f(t) is a given function. Equations of this type are
called delay differential equations. In general, initial value problems for these
equations involve the specification of x(t) in the interval t0 − τ ≤ t < t0, and
this information combined with the equation itself is sufficient to determine
x(t) for t > t0.

We show how equation (4.2.108) can be solved by the Laplace transform
when t0 = 0 and x(t) = x0 for t≤ 0. In view of the initial condition, we can
write

x(t− τ) = x(t− τ)H(t− τ)

so equation (4.2.108) is equivalent to

dx

dt
+ a x(t− τ)H(t− τ) = f(t). (4.2.109)

Application of the Laplace transform to (4.2.109) gives

s x̄(s)− x0 + a exp(−τs) x̄(s) = f̄(s).
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Or,

x̄(s) =
x0 + f̄(s)

{s+ a exp(−τs)} (4.2.110)

=
1
s
{x0 + f̄(s)}

[
1 +

a

s
exp(−τs)

]−1

=
1
s
{x0 + f̄(s)}

∞∑
n=0

(−1)n
(a
s

)n
exp(−nτs). (4.2.111)

The inverse Laplace transform gives the formal solution

x(t) = L −1

[
1
s
{x0 + f̄(s)}

∞∑
n=0

(−1)n
(a
s

)n
exp(−nτs)

]
. (4.2.112)

In order to write an explicit solution, we choose x0 = 0 and f(t)= t, and
hence, (4.2.112) becomes

x(t) = L −1

[
1
s3

∞∑
n=0

(−1)n
(a
s

)n
exp(−nτs)

]

=
∞∑
n=0

(−1)nan
(t− nτ)n+2

(n+ 2)!
H(t− nτ), t > 0. (4.2.113)

Example 4.2.17
(The Renewal Equation in Statistics). The random function X(t) of time t
represents the number of times some event has occurred between time 0 and
time t, and is usually referred to as a counting process. A random variable
Xn that records the time it assumes for X to get the value n from the n− 1
is referred to as an inter-arrival time. If the random variables X1, X2, X3, ...
are independent and identically distributed, then the counting process X(t) is
called a renewal process. We represent their common probability distribution
function by F (t) and the density function by f(t) so that F ′(t) = f(t). The
renewal function is defined by the expected number of times the event being
counted occurs by time t and is denoted by r(t) so that

r(t) =E{X(t)}=

∞∫
0

E{X(t)|X1 = x}f(x)dx, (4.2.114)

where E{X(t)|X1 = x} is the conditional expected value of X(t) under the
condition that X1 = x and has the value

E{X(t)|X1 = x}= [1 + r(t− x)]H(t− x). (4.2.115)
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Thus,

r(t) =

t∫
0

{1 + r(t− x)}f(x)dx.

Or,

r(t) =F (t) +

t∫
0

r(t− x) f(x)dx. (4.2.116)

This is called the renewal equation in mathematical statistics. We solve the
equation by taking the Laplace transform with respect to t, and the Laplace
transformed equation is

r̄(s) =F (s) + r̄(s) f̄(s).

Or,

r̄(s) =
F (s)

1− f̄(s)
. (4.2.117)

The inverse transform gives the formal solution of the renewal function

r(t) = L −t
{

F (s)
1− f̄(s)

}
. (4.2.118)

4.3 Partial Differential Equations, Initial
and Boundary Value Problems

The Laplace transform method is very useful in solving a variety of partial
differential equations with assigned initial and boundary conditions. The fol-
lowing examples illustrate the use of the Laplace transform method.

Example 4.3.1
(First-Order Initial-Boundary Value Problem). Solve the equation

ut + xux = x, x> 0, t > 0, (4.3.1)

with the initial and boundary conditions

u(x, 0) = 0 for x> 0, (4.3.2)
u(0, t) = 0 for t > 0. (4.3.3)
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We apply the Laplace transform of u(x, t) with respect to t to obtain

s ū(x, s) + x
dū

dx
=
x

s
, ū(0, s) = 0.

Using the integrating factor xs, the solution of this transformed equation is

ū(x, s) =Ax−s +
x

s(s+ 1)
,

where A is a constant of integration. Since ū(0, s) = 0, A= 0 for a bounded
solution. Consequently,

ū(x, s) =
x

s(s+ 1)
= x

(
1
s
− 1
s+ 1

)
.

The inverse Laplace transform gives the solution

u(x, t) = x(1 − e−t). (4.3.4)

Example 4.3.2
Find the solution of the equation

xut + ux = x, x> 0, t > 0 (4.3.5)

with the same initial and boundary conditions (4.3.2) and (4.3.3).
Application of the Laplace transform with respect to t to (4.3.5) with the

initial conditon gives
dū

dx
+ x s ū=

x

s
.

Using the integrating factor exp
(

1
2
x2s

)
gives the solution

ū(x, s) =
1
s2

+A exp
(
−1

2
s x2

)
,

where A is an integrating constant. Since ū(0, s)= 0, A=− 1
s2

and hence, the
solution is

ū(x, s) =
1
s2

[
1 − exp

(
−1

2
x2 s

)]
. (4.3.6)

Finally, we obtain the solution by inversion

u(x, t) = t−
(
t− 1

2
x2

)
H

(
t− x2

2

)
. (4.3.7)
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Or, equivalently,

u(x, t) =

⎧⎨⎩
t, 2t< x2

1
2
x2, 2t> x2

⎫⎬⎭ . (4.3.8)

Example 4.3.3
(The Heat Conduction Equation in a Semi-Infinite Medium). Solve the equa-
tion

ut = κuxx, x > 0, t > 0 (4.3.9)

with the initial and boundary conditions

u(x, 0) = 0, x> 0 (4.3.10)
u(0, t) = f(t), t > 0 (4.3.11)
u(x, t) → 0 as x→∞, t > 0. (4.3.12)

Application of the Laplace transform with respect to t to (4.3.9) gives

d2ū

dx2
− s

κ
ū= 0. (4.3.13)

The general solution of this equation is

ū(x, s) =A exp
(
−x

√
s

κ

)
+B exp

(
x

√
s

κ

)
. (4.3.14)

where A and B are integrating constants. For a bounded solution, B≡ 0, and
using ū(0, s) = f̄(s), we obtain the solution

ū(x, s) = f̄(s) exp
(
−x

√
s

κ

)
. (4.3.15)

The inversion theorem gives the solution

u(x, t) =
x

2
√
πκ

t∫
0

f(t− τ)τ−3/2 exp
(
− x2

4κτ

)
dτ, (4.3.16)

which is, by putting λ=
x

2
√
κτ

, or, dλ=− x

4
√
κ
τ−3/2dτ ,

=
2√
π

∞∫
x

2
√

κt

f

(
t− x2

4κλ2

)
e−λ

2
dλ.

(4.3.17)
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This is the formal solution of the problem.
In particular, if f(t) =T0 = constant, solution (4.3.17) becomes

u(x, t) =
2T0√
π

∞∫
x
κt

e−λ
2
dλ = T0erfc

(
x

2
√
κt

)
. (4.3.18)

Clearly, the temperature distribution tends asymptotically to the constant
value T0 as t→∞.

We consider another physical problem that is concerned with the determi-
nation of the temperature distribution in a semi-infinite solid when the rate
of flow of heat is prescribed at the end x= 0. Thus, the problem is to solve
diffusion equation (4.3.9) subject to conditions (4.3.10) and (4.3.12)

−k
(
∂u

∂x

)
= g(t) atx= 0, t > 0, (4.3.19)

where k is a constant that is called thermal conductivity.
Application of the Laplace transform gives the solution of the transformed

problem

ū(x, s) =
1
k

√
κ

s
ḡ(s) exp

(
−x

√
s

κ

)
. (4.3.20)

The inverse Laplace transform yields the solution

u(x, t) =
1
k

√
κ

π

t∫
0

g(t− τ) τ−
1
2 exp

(
− x2

4κt

)
dτ, (4.3.21)

which is, by the change of variable λ=
x

2
√
κτ

,

=
x

k
√
π

∞∫
x√
4κt

g

(
t− x2

4κλ2

)
λ−2e−λ

2
dλ. (4.3.22)

In particular, if g(t) = T0 = constant, the solution becomes

u(x, t) =
(
T0x

k
√
π

) ∞∫
x√
4κt

λ−2e−λ
2
dλ.

Integrating this result by parts gives the solution

u(x, t) =
T0

κ

[
2

√
kt

π
exp

(
− x2

4κt

)
− x erfc

(
x

2
√
κt

)]
. (4.3.23)
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Alternatively, the heat conduction problem (4.3.9)–(4.3.12) can be solved
by using fractional derivatives (see Chapter 5 or Debnath, 1978). We recall
(4.3.15) and rewrite it

∂ū

∂x
=−

√
s

κ
ū. (4.3.24)

In view of (3.9.21), this can be expressed in terms of fractional derivative of

order
1
2

as

∂u

∂x
=− 1√

κ
L −1

{√
s ū(x, s)

}
=− 1√

κ
0D

1
2
t u(x, t). (4.3.25)

Thus, the heat flux is expressed in terms of the fractional derivative. In par-
ticular, when u(0, t)= constant =T0, then the heat flux at the surface is

−k
(
∂u

∂x

)
x=0

=
k√
κ
D

1
2
t T0 =

kT0√
πκ t

. (4.3.26)

Example 4.3.4

(Diffusion Equation in a Finite Medium). Solve the diffusion equation

ut = κuxx, 0<x<a, t > 0, (4.3.27)

with the initial and boundary conditions

u(x, 0) = 0, 0<x<a, (4.3.28)
u(0, t) = U, t > 0, (4.3.29)
ux(a, t) = 0, t > 0, (4.3.30)

where U is a constant.
We introduce the Laplace transform of u(x, t) with respect to t to obtain

d2ū

dx2
− s

κ
ū= 0, 0<x<a, (4.3.31)

ū(0, s)=
U

s
,

(
dū

dx

)
x=a

= 0. (4.3.32ab)

The general solution of (4.3.31) is

ū(x, s) =A cosh
(
x

√
s

κ

)
+B sinh

(
x

√
s

κ

)
, (4.3.33)
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where A and B are constants of integration. Using (4.3.32ab), we obtain the
values of A and B so that the solution (4.3.33) becomes

ū(x, s) =
U

s
·
cosh

[
(a− x)

√
s

κ

]
cosh

(
a

√
s

κ

) . (4.3.34)

The inverse Laplace transform gives the solution

u(x, t) =UL −1

⎧⎪⎪⎨⎪⎪⎩
cosh(a− x)

√
s

κ

s cosh
(
a

√
s

κ

)
⎫⎪⎪⎬⎪⎪⎭ . (4.3.35)

The inversion can be carried out by the Cauchy Residue Theorem to obtain

u(x, t) = U

[
1 +

4
π

∞∑
n=1

(−1)n

2n− 1
cos

{
(2n− 1)(a− x)π

2a

}
× exp

{
−(2n− 1)2

( π
2a

)2

κt

}]
, (4.3.36)

which is, by expanding the cosine term,

= U

[
1 − 4

π

∞∑
n=1

1
(2n− 1)

sin
{(

2n− 1
2a

)
πx

}
× exp

{
−(2n− 1)2

( π
2a

)2

κt

}]
. (4.3.37)

This result can be obtained by the method of separation of variables.

Example 4.3.5
(Diffusion in a Finite Medium). Solve the one-dimensional diffusion equation
in a finite medium 0<z <a, where the concentration function C(z, t) satisfies
the equation

Ct = κCzz, 0<z < a, t> 0, (4.3.38)

and the initial and boundary data

C(z, 0) = 0 for 0<z <a, (4.3.39)
C(z, t) = C0 for z = a, t> 0, (4.3.40)

∂C

∂z
= 0 for z= 0, t > 0, (4.3.41)
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where C0 is a constant.
Application of the Laplace transform of C(z, t) with respect to t gives

d2C̄

dz2
−
( s
κ

)
C̄ = 0, 0<z <a,

C̄(a, s) =
C0

s
,

(
dC̄

dz

)
z=0

= 0.

The solution of this system is

C̄(z, s) =
C0 cosh

(
z

√
s

κ

)
s cosh

(
a

√
s

κ

) , (4.3.42)

which is, by writing α=
√
s

κ
,

=
C0

s

(eαz + e−αz)
(eαa + e−αa)

=
C0

s
[exp{−α(a− z)} + exp{−α(a+ z)}]

∞∑
n=0

(−1)n exp(−2nαa)

=
C0

s

{ ∞∑
n=0

(−1)n exp[−α{(2n+ 1)a− z}]

+
∞∑
n=0

(−1)n exp[−α{(2n+ 1)a+ z}]
}
. (4.3.43)

Using the result (3.7.4), we obtain the final solution

C(z, t) = C0

{ ∞∑
n=0

(−1)n
[
erfc

{
(2n+ 1)a− z

2
√
κt

}
+ erfc

{
(2n+ 1)a+ z

2
√
κt

}]}
. (4.3.44)

This solution represents as infinite series of complementary error functions.
The successive terms of this series are in fact the concentrations at depths
a− z, a+ z, 3a− z, 3a+ z, ... in the medium. The series converges rapidly for

all except large values of
(
κt

a2

)
.

Example 4.3.6
(The Wave Equation for the Transverse Vibration of a Semi-Infinite String).
Find the displacement of a semi-infinite string which is initially at rest in its
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equilibrium position. At time t= 0, the end x= 0 is constrained to move so
that the displacement is u(0, t) =Af(t) for t≥ 0, where A is a constant. The
problem is to solve the one-dimensional wave equation

utt = c2uxx, 0≤ x<∞, t > 0, (4.3.45)

with the boundary and initial conditions

u(x, t) =Af(t) at x= 0, t≥ 0, (4.3.46)

u(x, t)→ 0 as x→∞, t≥ 0, (4.3.47)

u(x, t) = 0 =
∂u

∂t
at t= 0 for 0<x<∞. (4.3.48ab)

Application of the Laplace transform of u(x, t) with respect to t gives

d2ū

dx2
− s2

c2
ū= 0, for 0≤ x<∞,

ū(x, s) =Af̄(s) at x= 0,
ū(x, s)→ 0 as x→∞.

The solution of this differential system is

ū(x, s) =Af̄(s) exp
(
−xs
c

)
. (4.3.49)

Inversion gives the solution

u(x, t) =Af
(
t− x

c

)
H
(
t− x

c

)
. (4.3.50)

In other words, the solution is

u(x, t) =

⎡⎣Af
(
t− x

c

)
, t >

x

c

0, t <
x

c

⎤⎦ . (4.3.51)

This solution represents a wave propagating at a velocity c with the charac-
teristic x= ct.

Example 4.3.7
(Potential and Current in an Electric Transmission Line). We consider a
transmission line which is a model of co-axial cable containing resistance R,
inductance L, capacitance C, and leakage conductance G. The current I(x, t)
and potential V (x, t) at a point x and time t in the line satisfy the coupled
equations
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L
∂I

∂t
+RI = −∂V

∂x
, (4.3.52)

C
∂V

∂t
+GV = −∂I

∂x
. (4.3.53)

If I or V is eliminated from these equations, both I and V satisfy the same
equation in the form

1
c2
utt − uxx + aut + bu= 0 (4.3.54)

where c2 = (LC)−1, a=LG+RC, and b=RG. Equation (4.3.54) is called the
telegraph equation.

Or, equivalently, the telegraph equation can be written in the form

utt = c2 uxx − (p+ q)ut − p q u (4.3.55)

where ac2 = R
C + G

C = p+ q and bc2 = pq.

For a lossless transmission line, R= 0 and G= 0, I or V satisfies the classical
wave equation

utt = c2uxx. (4.3.56)

The solution of this equation with the initial and boundary data is obtained
from Example 4.3.6 using the boundary conditions in the potential V (x, t):

(i) V (x, t) =V0f(t) at x= 0, t > 0. (4.3.57)

This corresponds to a signal at the end x= 0 for t> 0, and V (x, t)→ 0 as
x→∞ for t > 0.

A special case when f(t) =H(t) is also of interest. The solution for this
special case is given by

V (x, t) =V0f
(
t− x

c

)
H
(
t− x

c

)
. (4.3.58)

This represents a wave propagating at a speed c with the characteristic x= ct.
Similarly, the solution associated with the boundary data

(ii) V(x, t) = V0 cosωt at x = 0 for t> 0 (4.3.59)
V (x, t) → 0 as x→∞ for t> 0 (4.3.60)

can readily be obtained from Example 4.3.6.
For ideal submarine cable (or the Kelvin ideal cable), L= 0 and G= 0 e-

quation (4.3.54) reduces to the classical diffusion equation

ut = κuxx, (4.3.61)
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where κ= a−1 = (RC)−1.
The method of solution is similar to that discussed in Example 4.3.3. Using

the boundary data (i), the solution for the potential V (x, t) is given by

V (x, t) =V0 erfc
(

x

2
√
κt

)
. (4.3.62)

The current field is given by

I(x, t) =− 1
R

(
∂V

∂x

)
=
V0

R
(πκt)−1/2 exp

(
− x2

4κt

)
. (4.3.63)

For very large x, the asymptotic representation of the complementary error
function is

erfc(x)∼ 1
x
√
π

exp(−x2), x→∞. (4.3.64)

In view of this asymptotic representation, solution (4.3.62) becomes

V (x, t)∼ 2V0

x

(
κt

π

)1/2

exp
(
− x2

4κt

)
. (4.3.65)

For any t> 0, no matter how small, solution (4.3.62) reveals that V (x, t)> 0
for all x> 0, even though V (x, t)→ 0 as x→∞ Thus, the signal applied at
t= 0 propagates with the infinite speed although its amplitude is very small for
large x. Physically, the infinite speed is unrealistic and is essentially caused by
the neglect of the first term in equation (4.3.54). In a real cable, the presence
of some inductance would set a limit to the speed of propagation.

Instead of the Kelvin cable, a non-inductive leady cable (L= 0 and G �= 0)
is of interest. The equation for this case is obtained from (4.3.54) in the form

Vxx − a Vt − b V = 0, (4.3.66)

with zero initial conditions, and with the boundary data

V (0, t) =H(t) and V (x, t)→ 0 as x→∞. (4.3.67ab)

The Laplace transformed problem is

d2V

dx2
= (sa+ b)V , (4.3.68)

V (0, s)=
1
s
, V (x, s)→ 0 as x→∞. (4.3.69ab)

Thus, the solution is given by

V (x, s) =
1
s

exp[−x(sa+ b)1/2]. (4.3.70)
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With the aid of a standard table of the inverse Laplace transform, the
solution is given by

V (x, t) =
1
2
ex

√
b erfc

(
x

2

√
a

t
+

√
bt

a

)
+

1
2
e−x

√
b erfc

(
x

2

√
a

t
− bt

a

)
.

(4.3.71)
When G= 0 (b= 0), the solution becomes identical with (4.3.62).

For the Heaviside distortionless cable,
R

L
=
G

C
= k= constant, the potential

V (x, t) and the current I(x, t) satisfies the same equation

utt + 2kut + k2u= c2uxx, 0≤ x<∞, t > 0. (4.3.72)

We solve this equation with the initial data (4.3.48ab) and the boundary
condition (4.3.57). Application of the Laplace transform with respect to t to
(4.3.72) gives

d2V

dx2
=
(
s+ k

c

)2

V . (4.3.73)

The solution for V (x, s) with the transformed boundary condition (4.3.56) is

V (x, s) =V0f̄(s) exp
[
−
(
s+ k

c

)
x

]
. (4.3.74)

This can easily be inverted to obtain the final solution

V (x, t) =V0 exp
(
−kx
c

)
f
(
t− x

c

)
H
(
t− x

c

)
. (4.3.75)

This solution represents the signal that propagates with velocity c= (LC)−1/2

with exponentially decaying amplitude, but with no distortion. Thus, the sig-
nals can propagate along the Heaviside distortionless line over long distances
if appropriate boosters are placed at regular intervals in order to increase the
strength of the signal so as to counteract the effects of attenuation.

Example 4.3.8
Find the bounded solution of the axisymmetric heat conduction equation

ut = κ

(
urr +

1
r
ur

)
, 0≤ r < a, t > 0, (4.3.76)

with the initial and boundary data

u(r, 0) = 0 for 0< r< a, (4.3.77)
u(r, t) = f(t) at r= a for t > 0, (4.3.78)

where κ and T0 are constants.
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Application of the Laplace transform to (4.3.76) gives

d2ū

dr2
+

1
r

dū

dr
− s

κ
ū= 0.

Or,

r2
d2ū

dr2
+ r

dū

dr
− r2

( s
κ

)
ū= 0. (4.3.79)

This is the standard Bessel equation with the solution

ū(r, s) =AI0

(
r

√
s

κ

)
+BK0

(
r

√
s

κ

)
, (4.3.80)

where A and B are constants of integration and I0(x) and K0(x) are the
modified Bessel functions of zero order.

Since K0(αr) is unbounded at r= 0, for the bounded solution B≡ 0, and
hence, the solution is

ū(r, s) =AI0(kr), k=
√
s

κ
.

In view of the transformed boundary condition ū(a, s) = f̄(s), we obtain

ū(r, s) = f̄(s)
I0(kr)
I0(ka)

= f̄(s)ḡ(s), (4.3.81)

where ḡ(s) =
I0(kr)
I0(ka)

.

By Convolution Theorem 3.5.1, the solution takes the form

u(r, t) =

t∫
0

f(t− τ)g(τ)dτ, (4.3.82)

where

g(t) =
1

2πi

c+i∞∫
c−i∞

est
I0(kr)
I0(ka)

ds. (4.3.83)

This complex integral can be evaluated by the theory of residues where the
poles of the integrand are at the points s= sn =−κα2

n, n= 1, 2, 3, ... and αn
are the roots of J0(aα) = 0. The residue at pole s= sn is(

2iκαn
a

)
I0(irαn)
I ′0(iaαn)

exp(−κtα2
n) =

(
2καn
a

)
J0(rαn)
J1(aαn)

exp(−κ t α2
n),
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so that

g(t) =
(

2κ
a

) ∞∑
n=1

αnJ0(rαn)
J1(aαn)

exp(−κ t α2
n).

Thus, solution (4.3.82) becomes

u(r, t) =
(

2κ
a

) ∞∑
n=1

αnJ0(rαn)
J1(aαn)

t∫
0

f(t− τ) exp(−κ τ α2
n) dτ, (4.3.84)

where the summation is taken over the positive roots of J0(aα) = 0.
In particular, if f(t) =T0, then the solution (4.3.84) reduces to

u(r, t) =
(

2T0

a

) ∞∑
n=1

J0(rαn)
αnJ1(aαn)

(1− e−κ tα
2
n)

= T0

[
1 − 2

a

∞∑
n=1

J0(rαn)
αnJ1(aαn)

e−κ tα
2
n

]
. (4.3.85)

Example 4.3.9
(Inhomogeneous Partial Differential Equation). We solve the inhomogeneous
problem

uxt =−ω sinωt, t > 0 (4.3.86)

u(x, 0)= x, u(0, t)= 0. (4.3.87ab)
Application of the Laplace transform with respect to t gives

dū

dx
=

s

s2 + ω2
,

which admits the general solution

ū(x, s) =
sx

s2 + ω2
+A,

where A is a constant. Since ū(0, s) = 0, A= 0 and hence, the solution is ob-
tained by inversion as

u(x, t) = x cosωt. (4.3.88)

Example 4.3.10
(Inhomogeneous Wave Equation). Find the solution of

1
c2
utt − uxx = k sin

(πx
a

)
, 0<x<a, t > 0, (4.3.89)

u(x, 0) = 0 = ut(x, 0), 0<x<a, (4.3.90)
u(0, t) = 0 = u(a, t), t > 0, (4.3.91)
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where c, k, and a are constants.
Application of the Laplace transforms gives

d2ū

dx2
− s2

c2
ū = −k

s
sin

(πx
a

)
, (4.3.92)

ū(0, s) = 0 = ū(a, s). (4.3.93)

The general solution of equation (4.3.92) is

ū(x, s) =A exp
(sx
c

)
+B exp

(
−sx
c

)
+

k sin
(πx
a

)
a2s

(
s2 +

π2c2

a2

) . (4.3.94)

In view of (4.3.93), A=B= 0, and hence, the solution (4.3.94) becomes

ū(x, s) =
k

π2c2
sin

(πx
a

)⎡⎢⎣1
s
− s

s2 +
π2c2

a2

⎤⎥⎦ , (4.3.95)

which, by inversion, gives the solution,

u(x, t) =
k

(πc)2

[
1− cos

(
πct

a

)]
sin

(πx
a

)
. (4.3.96)

Example 4.3.11
(The Stokes Problem and the Rayleigh Problem in Fluid Dynamics). Solve the
Stokes problem, which is concerned with the unsteady boundary layer flows
induced in a semi-infinite viscous fluid bounded by an infinite horizontal disk
at z= 0 due to non-torsional oscillations of the disk in its own plane with a
given frequency ω.

We solve the boundary layer equation in fluid dynamics

ut = ν uzz, z > 0, t > 0, (4.3.97)

with the boundary and initial conditions

u(z, t)=U0 e
iωt on z= 0, t > 0, (4.3.98)

u(z, t)→ 0 as z→∞, t > 0, (4.3.99)
u(z, t)→ 0 at t≤ 0 for all z > 0, (4.3.100)

where u(z, t) is the velocity of fluid of kinematic viscosity ν and U0 is a
constant.
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The Laplace transform solution of the problem with the transformed bound-
ary conditions is

u(z, s)=
U0

(s− iω)
exp

(
−z

√
s

ν

)
. (4.3.101)

Using a standard table of inverse Laplace transforms, we obtain the solution

u(z, t) =
U0

2
eiωt[exp(−λz) erfc(ζ −

√
iωt)

+ exp(λz) erfc(ζ +
√
iωt)], (4.3.102)

where ζ = z/(2
√
νt) is called the similarity variable of the viscous boundary

layer theory and λ= (iω/ν)
1
2 . The result (4.3.101) describes the unsteady

boundary layer flow.
In view of the asymptotic formula for the complementary error function

erfc(ζ ∓
√
iωt)∼ (2, 0) as t→∞, (4.3.103)

the above solution for u(z, t) has the asymptotic representation

u(z, t)∼U0 exp(iωt− λz)=U0 exp
[
iωt−

( ω
2ν

) 1
2

(1 + i)z
]
. (4.3.104)

This is called the Stokes steady-state solution. This represents the propaga-
tion of shear waves which spread out from the oscillating disk with velocity
(ω/k) =

√
2νω and exponentially decaying amplitude. The boundary layer as-

sociated with the solution has thickness of the order
√
ν/ω in which the shear

oscillations imposed by the disk decay exponentially with distance z from the
disk. This boundary layer is called the Stokes layer. In other words, the thick-
ness of the Stokes layer is equal to the depth of penetration of vorticity which
is essentially confined to the immediate vicinity of the disk for high frequency
ω.

The Stokes problem with ω= 0 becomes the Rayleigh problem. In other
words, the motion is generated in the fluid from rest by moving the disk
impulsively in its own plane with constant velocity U0. In this case, the Laplace
transformed solution is

u(z, s)=
U0

s
exp

(
−z

√
s

ν

)
. (4.3.105)

Hence, the inversion gives the Rayleigh solution

u(z, t)=U0 erfc
(

z

2
√
νt

)
. (4.3.106)

This describes the growth of a boundary layer adjacent to the disk. The as-
sociated boundary layer is called the Rayleigh layer of thickness of the order
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δ∼√
νt, which grows with increasing time. The rate of growth is of the order

dδ/dt∼√
ν/t, which diminishes with increasing time.

The vorticity of the unsteady flow is given by

∂u

∂z
=

U0√
πνt

exp(−ζ2), (4.3.107)

which decays exponentially to zero as z >> δ.
Note that the vorticity is everywhere zero at t= 0. This implies that it is

generated at the disk and diffuses outward within the Rayleigh layer. The
total viscous diffusion time is Td∼

(
δ2/ν

)
.

Another physical quantity related to the Stokes and Rayleigh problems is
the skin friction on the disk defined by

τ0 =μ

(
∂u

∂z

)
z=0

, (4.3.108)

where μ= νρ is the dynamic viscosity and ρ is the density of the fluid. The
skin friction can readily be calculated from the flow field given by (4.3.104)
or (4.3.106).

4.4 Solutions of Integral Equations

DEFINITION 4.4.1 An equation in which the unknown function occurs
under an integral is called an integral equation.

An equation of the form

f(t) = h(t) + λ

b∫
a

k(t, τ)f(τ) dτ, (4.4.1)

in which f is the unknown function, h(t), k(t, τ); and the limits of integration
a and b are known; and λ is a constant, is called the linear integral equation of
the second kind or the linear Volterra integral equation. The function k(t, τ) is
called the kernel of the equation. Such an equation is said to be homogeneous or
inhomogeneous according to h(t) = 0 or h(t) �= 0. If the kernel of the equation
has the form k(t, τ) = g(t− τ), the equation is referred to as the convolution
integral equation.

In this section, we show how the Laplace transform method can be applied
successfully to solve the convolution integral equations. This method is simple
and straightforward, and can be illustrated by examples.
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To solve the convolution integral equation of the form

f(t)= h(t) + λ

t∫
0

g(t− τ)f(τ) dτ, (4.4.2)

we take the Laplace transform of this equation to obtain

f̄(s) = h̄(s) + λL

⎧⎨⎩
t∫

0

g(t− τ)f(τ) dτ

⎫⎬⎭ ,

which is, by the Convolution Theorem,

f̄(s) = h̄(s) + λf̄(s)ḡ(s).

Or,

f̄(s) =
h̄(s)

1− λḡ(s)
. (4.4.3)

Inversion gives the formal solution

f(t) = L −1

{
h̄(s)

1− λḡ(s)

}
. (4.4.4)

In many simple cases, the right-hand side can be inverted by using partial
fractions or the theory of residues. Hence, the solution can readily be found.

Example 4.4.1
Solve the integral equation

f(t)= a+ λ

t∫
0

f(τ) dτ. (4.4.5)

We take the Laplace transform of (4.4.5) to find

f̄(s) =
a

s− λ
,

whence, by inversion, it follows that

f(t)= a exp(λt). (4.4.6)

Example 4.4.2
Solve the integro-differential equation

f(t)= a sin t+ 2

t∫
0

f ′(τ) sin(t− τ) dτ, f(0) = 0. (4.4.7)
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Taking the Laplace transform, we obtain

f̄(s) =
a

s2 + 1
+ 2L {f ′(t)}L {sin t}

Or,

f̄(s) =
a

s2 + 1
+ 2

{sf̄(s)− f(0)}
s2 + 1

.

Hence, by the initial condition,

f̄(s) =
a

(s− 1)2
.

Inversion yields the solution

f(t) = a t exp(t). (4.4.8)

Example 4.4.3
Solve the integral equation

f(t) = a tn − e−bt − c

∫ t

0

f(τ) ec(t−τ) dτ. (4.4.9)

Taking the Laplace transform, we obtain

f̄(s) =
a n!
sn+1

− 1
s+ b

− f̄(s)
c

s− c

so that we have

f̄(s) =
(
s− c

s

)[
a n!
sn+1

− 1
s+ b

]
=

a n!
sn+1

− (ac)n!
sn+2

− 1
s

[
s+ b− c− b

s+ b

]
=

a n!
sn+1

− (ac)n!
sn+2

− 1
s

+
c+ b

b

[
1
s
− 1
s+ b

]
=

a n!
sn+1

− (ac)n!
sn+2

− 1
s

+
(
1 +

c

b

) 1
s
−
(
1 +

c

b

) 1
s+ b

=
a n!
sn+1

− (ac)n!
sn+2

+
c

bs
−
(
1 +

c

b

) 1
s+ b

Inversion yields the solution

f(t) = atn − n!ac
(n+ 1)!

tn+1 +
c

b
−
(
1 +

c

b

)
e−bt.
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4.5 Solutions of Boundary Value Problems

The Laplace transform technique is also very useful in finding solutions of
certain simple boundary value problems that arise in many areas of applied
mathematics and engineering sciences. We illustrate the method by solving
boundary value problems in the theory of deflection of elastic beams.

A horizontal beam experiences a vertical deflection due to the combined
effect of its own weight and the applied load on the beam. We consider a
beam of length � and its equilibrium position is taken along the horizontal
x-axis.

Example 4.5.1

(Deflection of Beams). The differential equation for the vertical deflection y(x)
of a uniform beam under the action of a transverse load W (x) per unit length
at a distance x from the origin on the x-axis of the beam is

El
d4y

dx4
=W (x), for 0<x< �, (4.5.1)

where E is Young’s modulus, I is the moment of inertia of the cross section
about an axis normal to the plane of bending and EI is called the flexural
rigidity of the beam.

Some physical quantities associated with the problem are y′(x),M(x) =
EIy′′(x) and S(x) =M ′(x) =EIy′′′(x), which respectively represent the slope,
bending moment, and shear at a point.

It is of interest to find the solution of (4.5.1) subject to a given loading func-
tion and simple boundary conditions involving the deflection, slope, bending
moment and shear. We consider the following cases:

(i) Concentrated load on a clamped beam of length �, that is,
W (x)≡Wδ(x− a),
y(0)= y′(0) = 0 and y(�) = y′(�) = 0,
where W is a constant and 0<a< �.

(ii) Distributed load on a uniform beam of length � clamped at x= 0 and
unsupported at x= �, that is,
W (x) =WH(x− a),
y(0)= y′(0) = 0, and M(�) =S(�) = 0.

(iii) A uniform semi-infinite beam freely hinged at x= 0 resting horizontally
on an elastic foundation and carrying a load W per unit length.
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In order to solve the problem, we use the Laplace transform ȳ(s) of y(x)
defined by

ȳ(s) =

∞∫
0

e−sxy(x) dx. (4.5.2)

In view of this transformation, equation (4.5.1) becomes

EI[s4ȳ(s)− s3y(0)− s2y′(0)− sy′′(0) − y′′′(0)] =W (s). (4.5.3)

The solution of the transformed deflection function ȳ(s) for case (i) is

ȳ(s) =
y′′(0)
s3

+
y′′′(0)
s4

+
W

EI

e−as

s4
. (4.5.4)

Inversion gives

y(x) = y′′(0)
x2

2
+ y′′′(0)

x3

6
+

W

6EI
(x− a)3H(x− a). (4.5.5)

y′(x) = y′′(0)x+
1
2
x2y′′′(0) +

W

2EI
(x− a)2H(x− a). (4.5.6)

The conditions y(�) = y′(�) = 0 require that

y′′(0)
�2

2
+ y′′′(0)

�3

6
+

W

6EI
(�− a)3 = 0,

y′′(0)�+ y′′′(0)
�2

2
+

W

2EI
(�− a)2 = 0.

These algebraic equations determine the value of y′′(0) and y′′′(0). Solving
these equations, it turns out that

y′′(0) =
Wa(�− a)2

EI �2
and y′′′(0) =−W (�− a)2(�+ 2a)

EI �3
.

Thus, the final solution for case (i) is

y(x) =
W

2EI

[
a(�− a)2x2

�2
− (�− a)2(�+ 2a)x3

3�3
+

(x− a)3H(x− a)
3

]
. (4.5.7)

It is now possible to calculate the bending moment and shear at any point of
the beam, and, in particular, at the ends.

The solution for case (ii) follows directly from (4.5.3) in the form

y(s) =
y′′(0)

s3
+
y′′′(0)
s4

+
W

EI

e−as

s5
. (4.5.8)

The inverse transformation yields

y(x) =
1
2
y′′(0)x2 +

1
6
y′′′(0)x3 +

W

24EI
(x− a)4H(x− a), (4.5.9)
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where y′′(0) and y′′′(0) are to be determined from the remaining boundary
conditions M(�) =S(�) = 0, that is, y′′(�) = y′′′(�) = 0.

From (4.5.9) with y′′(�) = y′′′(�) = 0, it follows that

y′′(0) + y′′′(0)�+
W

2EI
(�− a)2 = 0

y′′′(0) +
W

EI
(�− a) = 0

which give

y′′(0) =
W (�− a)(�+ a)

2EI
and y′′′(0) =−W

EI
(�− a).

Hence, the solution for y(x) for case (ii) is

y(x) =
W

2EI

[
(�2 − a2)x2

2
− (�− a)

x3

3
+
W

12
(x− a)4H(x− a)

]
. (4.5.10)

The shear, S, and the bending moment, M , at the origin, can readily be
calculated from the solution.

The differential equation for case (iii) takes the form

EI
d4y

dx4
+ ky=W, x> 0, (4.5.11)

where the second term on the left-hand side represents the effect of elastic
foundation and k is a positive constant.

Writing
(
k

EI

)
= 4ω4, equation (4.5.11) becomes

(
d4

dx4
+ 4ω4

)
y(x) =

W

EI
, x> 0. (4.5.12)

This has to be solved subject to the boundary conditions

y(0) = y′′(0) = 0, (4.5.13)
y(x) is finite asx→∞. (4.5.14)

Using the Laplace transform with respect to x to (4.5.12), we obtain

(s4 + 4ω4) ȳ(s) =
(
W

EI

)
1
s

+ sy′(0) + y′′′(0). (4.5.15)

In view of the Tauberian Theorem 3.8.2 (ii), that is,

lim
s→0

s ȳ(s) = lim
x→∞ y(x),
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it follows that ȳ(s) must be of the form

ȳ(s) =
W

EI

1
s(s4 + 4ω4)

, (4.5.16)

which gives

lim
x→∞ y(x) =

W

k
. (4.5.17)

We now write (4.5.16) as

ȳ(s) =
W

EI

1
4ω4

[
1
s
− s3

s4 + 4ω4

]
. (4.5.18)

Using the standard table of inverse Laplace transforms, we obtain

y(x) =
W

k
(1 − cosωx cosh ωx)

=
W

k

[
1 − 1

2
e−ωx cosωx− 1

2
eωx cosωx

]
. (4.5.19)

In view of (4.5.17), the final solution is

y(x) =
W

k

(
1 − 1

2
e−ωx cosωx

)
. (4.5.20)

4.6 Evaluation of Definite Integrals

The Laplace transform can be employed to evaluate easily certain definite
integrals containing a parameter. Although the method of evaluation may not
be very rigorous, it is quite simple and straightforward. The method is essen-
tially based upon the permissibility of interchange of the order of integration,
that is,

L

b∫
a

f(t, x) dx=

b∫
a

L f(t, x) dx, (4.6.1)

and may be well described by considering some important integrals.

Example 4.6.1
Evaluate the integral

f(t) =

∞∫
0

sin tx
x(a2 + x2)

dx. (4.6.2)
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We take the Laplace transform of (4.6.2) with respect to t and interchange
the order of integration, which is permissible due to uniform convergence, to
obtain

f̄(s) =

∞∫
0

dx

x(a2 + x2)

∞∫
0

e−st sin tx dt

=

∞∫
0

dx

(a2 + x2)(x2 + s2)

=
1

s2 − a2

∞∫
0

(
1

a2 + x2
− 1
x2 + s2

)
dx

=
1

s2 − a2

(
1
a
− 1
s

)
π

2

=
π

2
1

s(s+ a)
=
π

2

(
1
s
− 1
s+ a

)
.

Inversion gives the value of the given integral

f(t) =
π

2a
(1 − e−at). (4.6.3)

Example 4.6.2
Evaluate the integral

f(t)=

∞∫
0

sin2 tx

x2
dx. (4.6.4)

A procedure similar to the above integral with 2 sin2 tx= 1− cos(2 tx) gives

f̄(s) =
1
2

∞∫
0

1
x2

(
1
s
− s

4x2 + s2

)
dx=

2
s

∞∫
0

dx

4x2 + s2

=
1
s

∞∫
0

dy

y2 + s2
=

1
s2

[
tan−1 y

s

]∞
0

=± π

2s2

according as s> or < 0. The inverse transform yields

f(t) =
πt

2
sgn t. (4.6.5)
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Example 4.6.3

Show that
∞∫
0

x sinxt
x2 + a2

dx=
π

2
e−at, (a, t > 0). (4.6.6)

Suppose

f(t) =

∞∫
0

x sinxt
x2 + a2

dx.

Taking the Laplace transform with respect to t gives

f̄(s) =

∞∫
0

x2 dx

(x2 + a2)(x2 + s2)

=

∞∫
0

dx

x2 + s2
− a2

s2 − a2

∞∫
0

(
1

x2 + a2
− 1
x2 + s2

)
dx

=
π

2s

(
1− a

s+ a

)
=
π

2
1

(s+ a)
.

Taking the inverse transform, we obtain

f(t) =
π

2
e−at.

4.7 Solutions of Difference and Differential-Difference E-
quations

Like differential equations, the difference and differential-difference equations
describe mechanical, electrical, and electronic systems of interest. These e-
quations also arise frequently in problems of economics and business, and
particularly in problems concerning interest, annuities, amortization, loan-
s, and mortgages. Thus, for the study of the above systems or problems, it
is often necessary to solve difference or differential-difference equations with
prescribed initial data. This section is essentially devoted to the solution of
simple difference and differential-difference equations by the Laplace transfor-
m technique.
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Suppose {ur}∞r=1 is a given sequence. We introduce the difference operators
Δ, Δ2, Δ3, . . .,Δn defined by

Δur = ur+1 − ur, (4.7.1)
Δ2ur = Δ(Δur) = Δ(ur+1 − ur) = ur+2 − 2ur+1 + ur, (4.7.2)
Δ3ur = Δ2(ur+1 − ur) = ur+3 − 3 ur+2 + 3 ur+1 − ur. (4.7.3)

More generally,

Δnur = Δn−1(ur+1 − ur) =
n∑
k=0

(−1)k
(
n

k

)
ur+n−k. (4.7.4)

These expressions are usually called the first, second, third, and nth finite
differences respectively. Any equation expressing a relation between finite d-
ifferences is called a difference equation. The highest order finite difference
involved in the equation is referred to as its order. A difference equation
containing the derivatives of the unknown function is called the differential-
difference equation. Thus, the differential-difference equation has two distinct
orders—one is related to the highest order finite difference and the other is
associated with the highest order derivatives. Equations

Δur − ur = 0, (4.7.5)
Δ2ur − 2Δur = 0, (4.7.6)

are the examples of difference equations of the first and second order, respec-
tively. The most general linear nth order difference equation has the form

a0Δnur + a1Δn−1ur + · · ·+ an−1Δur + anur = f(n), (4.7.7)

where a0, a1, . . . , an and f(n) are either constants or functions of non-negative
integer n. Like ordinary differential equations, (4.7.7) is called a homogeneous
or inhomogeneous according to f(n) = 0 or �= 0.

The following equations

u′(t)− u(t− 1)= 0, (4.7.8)
u′(t) − au(t− 1)= f(t), (4.7.9)

are the examples of the differential-difference equations, where f(t) is a given
function of t. The study of the above equation is facilitated by introducing
the function

Sn(t) =H(t− n)−H(t− n− 1), n≤ t< n+ 1, (4.7.10)

where n is a non-negative integer and H(t) is the Heaviside unit step function.
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The Laplace transform of Sn(t) is given by

Sn(s) = L {Sn(t)}=

∞∫
0

e−st{H(t− n) −H(t− n− 1)} dt

=

n+1∫
n

e−stdt=
1
s
(1 − e−s)e−ns = S0(s) exp(−ns), (4.7.11)

where S0(s) is equal to 1
s (1 − e−s).

We next define the function u(t) by a series

u(t) =
∞∑
n=0

unSn(t), (4.7.12)

where {un}∞n=0 is a given sequence. It follows that u(t)= un in n≤ t< n+ 1
and represents a staircase function. Further

u(t+ 1) =
∞∑
n=0

unSn(t+ 1)=
∞∑
n=0

un[H(t+ 1− n)−H(t− n)]

=
∞∑
n=1

unSn−1(t) =
∞∑
n=0

un+1Sn(t). (4.7.13)

Similarly,

u(t+ 2)=
∞∑
n=0

un+2Sn(t). (4.7.14)

More generally,

u(t+ k) =
∞∑
n=0

un+kSn(t). (4.7.15)

The Laplace transform of u(t) is given by

ū(s) = L {u(t)}=

∞∫
0

e−stu(t) dt=
∞∑
n=0

un

∞∫
0

e−stSn(t) dt

=
1
s
(1 − e−s)

∞∑
n=0

un exp(−ns).

Thus,

ū(s) =
1
s
(1− e−s)ζ(s) = S̄0(s)ζ(s), (4.7.16)

where ζ(s) represents the Dirichlet function defined by

ζ(s) =
∞∑
n=0

un exp(−ns). (4.7.17)
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We thus deduce
u(t) = L −1{S̄0(s)ζ(s)}. (4.7.18)

In particular, if un = an is a geometric sequence, then

ζ(s) =
∞∑
n=0

(ae−s)n =
1

1 − ae−s
=

es

es − a
. (4.7.19)

Thus, we obtain from (4.7.16) that

L {an}= S̄0(s)ζ(s) = S̄0(s)
es

es − a
, (4.7.20)

so that

L −1

{
S̄0(s)

es

es − a

}
= an. (4.7.21)

From the identity,

∞∑
n=0

(n+ 1)(ae−s)n = (1 − ae−s)−2, (4.7.22)

it further follows that

L {(n+ 1)an}= S̄0(s)(1 − ae−s)−2 =
e2s S̄0(s)
(es − a)2

. (4.7.23)

Thus,

L −1

{
e2s S̄0(s)
(es − a)2

}
= (n+ 1)an. (4.7.24)

We deduce from (4.7.22) that

∞∑
n=0

nane−ns =
aes

(1 − ae−s)2
. (4.7.25)

Hence,

L {nan}= S̄0(s)
aes

(es − a)2
. (4.7.26)

Therefore,

L −1

{
aS̄0(s)es

(es − a)2

}
=nan. (4.7.27)

THEOREM 4.7.1
If ū(s) = L {u(t)}, then

L {u(t+ 1)}= es[ū(s) − u0S̄0(s)], u0 = u(0). (4.7.28)
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PROOF We have

L {u(t+ 1)} =

∞∫
0

e−stu(t+ 1) dt= es
∞∫
1

e−sτu(τ) dτ

= es

⎡⎣ū(s)−
1∫

0

e−sτu(τ) dτ

⎤⎦
= es

⎡⎣ū(s)− u(0)

1∫
0

e−sτ dτ

⎤⎦= es[ū(s)− u0S̄0(s)].

This proves the theorem.
In view of this theorem, we derive

L {u(t+ 2)} = es[L {u(t+ 1)} − u(1)S̄0(s)]
= e2s[ū(s) − u(0)S̄0(s)] − esu1S̄0(s)
= e2s[ū(s) − (u0 + u1e

−s)S̄0(s)], u(1) = u1. (4.7.29)

Similarly,

L {u(t+ 3)}= e3s[ū(s)− (u0 + u1e
−s + u2e

−2s)S̄0(s)]. (4.7.30)

More generally, if k is an integer,

L {u(t+ k)}= eks

(
ū(s)− S̄0(s)

k−1∑
r=0

ure
−rs

)
. (4.7.31)

Example 4.7.1
Solve the difference equation

Δun − un = 0, (4.7.32)

with the initial condition u0 = 1.
We take the Laplace transform of the equation to obtain

L {un+1} − 2L {un}= 0,

which is, by (4.7.28),

es[ū(s)− u0S̄0(s)]− 2 ū(s) = 0.

Thus,

ū(s) =
es S̄0(s)
es − 2

.
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Inversion with (4.7.21) gives the solution

un = 2n. (4.7.33)

Example 4.7.2
Show that the solution of the difference equation

Δ2un − 2Δun = 0 (4.7.34)

is
un =A+B 3n, (4.7.35)

where A=
1
2
(3u0 − u1) and B=

1
2
(u1 − u0).

The given equation is

un+2 − 4un+1 + 3un = 0.

Taking the Laplace transform, we obtain

e2s[ū(s) − (u0 + u1e
−s)S̄0(s)]− 4 es[ū(s)− u0S̄0(s)] + 3ū(s) = 0

or,
(e2s − 4es + 3)ū(s) = [u0(e2s − 4es) + u1e

s]S̄0(s).

Hence,

ū(s) = S̄0(s)
[
u0(e2s − 4es) + u1e

s

(es − 1)(es − 3)

]
= S̄0(s)

[
(3u0 − u1)es

2(es − 1)
+

(u1 − u0)es

2(es − 3)

]
.

The inverse Laplace transform combined with (4.7.21) gives

un =A+B 3n.

Example 4.7.3
Solve the difference equation

un+2 − 2λun+1 + λ2un = 0, (4.7.36)

with u0 = 0 and u1 = 1.
The Laplace transformed equation is

e2s[ū(s) − e−s S̄0(s)] − 2λū(s)es + λ2ū(s) = 0
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or,

ū(s) =
es S̄0(s)
(es − λ)2

.

The inverse transform gives the solution

un =
1
λ
nλn = nλn−1. (4.7.37)

Example 4.7.4
Solve the differential-difference equation

u′(t) = u(t− 1), u(0)= 1. (4.7.38)

Application of the Laplace transform gives

sū(s) − u(0) = e−s[ū(s)− u(0)S̄0(s)],

or,

ū(s)(s− e−s) = 1 +
e−s

s
(e−s − 1).

Or,

ū(s) =
{

1
s− e−s

− e−s

s(s− e−s)

}
+

e−2s

s(s− e−s)

=
1
s

+
e−2s

s2

(
1− e−s

s

)−1

=
1
s

+
e−2s

s2
+
e−3s

s3
+
e−4s

s4
+ · · ·+ e−ns

sn
+ · · · .

In view of the result

L −1

{
e−as

sn

}
=

(t− a)n−1

Γ(n)
H(t− a), (4.7.39)

we obtain the solution

u(t) = 1 +
(t− 2)

1!
+

(t− 3)2

2!
+ · · ·+ (t− n)n−1

(n− 1)!
, t > n. (4.7.40)

Example 4.7.5
Solve the differential-difference equation

u′(t) − αu(t− 1) = β, u(0) = 0. (4.7.41)
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Application of the Laplace transform yields

s ū(s)− u(0)− α e−s[ū(s)− u(0)S̄0(s)] =
β

s
.

Or,

ū(s) =
β

s(s− αe−s)
=
β

s2

(
1 − α

s
e−s

)−1

= β

[
1
s2

+
α e−s

s3
+
α2 e−2s

s4
+ · · ·+ αn e−ns

sn+2
+ · · ·

]
.

Inverting with the help of (4.7.39), we obtain the solution

u(t) = β

[
t+

α(t− 1)2

Γ(3)
+ α2 (t− 2)3

Γ(4)
+ · · ·+ αn(t− n)n+1

Γ(n+ 2)

]
, t > n. (4.7.42)

4.8 Applications of the Joint Laplace and Fourier Trans-
form

Example 4.8.1

(The Inhomogeneous Cauchy Problem for the Wave Equation). Use the joint
Fourier and Laplace transform method to solve the Cauchy problem for the
wave equation as stated in Example 2.12.4. with an inhomogeneous term,
q(x, t).

We define the joint Fourier and Laplace transform of u(x, t) by

Ū(k, s) =
1√
2π

∞∫
−∞

e−ikx dx

∞∫
0

e−stu(x, t) dt. (4.8.1)

The transformed inhomogeneous Cauchy problem has the solution in the form

Ū(k, s) =
sF (k) +G(k) + Q̄(k, s)

(s2 + c2k2)
, (4.8.2)

where Q̄(k, s) is the joint transform of the inhomogeneous term, q(x, t) present
on the right side of the wave equation.
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The joint inverse transform gives the solution as

u(x, t) =
1√
2π

∞∫
−∞

eikxL −1

[
sF (k) +G(k) + Q̄(k, s)

s2 + c2k2

]
dk

=
1√
2π

∞∫
−∞

[
F (k) cos ckt+

G(k)
ck

sin ckt
]
eikx dk

+
1
ck

∫ t

0

sin ck(t− τ)Q(k, τ) dτ

=
1

2
√

2π

∞∫
−∞

F (k)(eickt + e−ickt)eikx dk

+
1

2
√

2π

∞∫
−∞

G(k)
ick

(eickt − e−ickt)eikx dk

+
1√
2π

1
2c

∫ t

0

dτ

∫ ∞

−∞

Q(k, τ)
ik

[
eick(t−τ) + e−ick(t−τ)

]
eikxdk

=
1
2
[f(x− ct) + f(x+ ct)] +

1√
2π

1
2c

∞∫
−∞

G(k) dk

x+ct∫
x−ct

eikξ dξ

+
1
2c

∫ t

0

dτ

∫ ∞

−∞

1√
2π

Q(k, τ) dk
∫ x+c(t−τ)

x−c(t−τ)
eikξ dξ

=
1
2
[f(x− ct) + f(x+ ct)] +

1
2c

x+ct∫
x−ct

g(ξ) dξ

+
1
2c

∫ t

0

dτ

∫ x+c(t−τ)

x−c(t−τ)
q(ξ, τ) dξ. (4.8.3)

This is identical with the d’Alembert solution (2.12.41) when q(x, t)≡ 0.

Example 4.8.2
(Dispersive Long Water Waves in a Rotating Ocean). We use the joint Laplace
and Fourier transform to solve the linearized horizontal equations of motion
and the continuity equation in a rotating inviscid ocean. These equations in
a rotating coordinate system (see Proudman, 1953; Debnath and Kulchar,
1972) are given by

∂u
∂t

+ f k̂× u = −1
ρ
∇p+

1
ρh
τττ, (4.8.4)

∇ · u = − 1
h

∂ζ

∂t
, (4.8.5)
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where u = (u, υ) is the horizontal velocity field, k̂ is the unit vector normal
to the horizontal plane, f = 2Ω sinφ is the constant Coriolis parameter, ρ
is the constant density of water, ζ(x, t) is the vertical free surface elevation,
τ = (τx, τy) represents the components of wind stress in the x and y directions,
and the pressure is given by the hydrostatic equation

p= p0 + gρ(ζ − z), (4.8.6)

where z is the depth of water below the mean free surface and g is the accel-
eration due to gravity.

Equation (4.8.4)–(4.8.5) combined with (4.8.6) reduce to the form

∂u

∂t
− fυ=−g ∂ζ

∂x
+
τx

ρh
, (4.8.7)

∂υ

∂t
+ fu=−g ∂ζ

∂y
+
τy

ρh
, (4.8.8)

∂u

∂x
+
∂υ

∂y
=− 1

h

∂ζ

∂t
. (4.8.9)

It follows from (4.8.7)–(4.8.8) that

Du=−g
(

∂2

∂x∂t
+ f

∂

∂y

)
ζ +

1
ρh

(
∂τx

∂t
+ fτy

)
, (4.8.10)

Dυ=−g
(

∂2

∂y∂t
− f

∂

∂x

)
ζ +

1
ρh

(
∂τy

∂t
− fτx

)
, (4.8.11)

where the differential operator D is

D≡
(
∂2

∂t2
+ f2

)
. (4.8.12)

Elimination of u and υ from (4.8.9)–(4.8.11) gives(
∇2 − 1

c2
D

)
ζt =E(x, y, t), (4.8.13)

where c2 = gh and ∇2 is the horizontal Laplacian, and E(x, y, t) is a known
forcing function given by

E(x, y, t) =
1
ρc2

[
∂2τx

∂x∂t
+
∂2τy

∂y∂t
+ f

(
∂τy

∂x
− ∂τx

∂y

)]
. (4.8.14)

Further, we assume that the conditions are uniform in the y direction and
the wind stress acts only in the x direction so that τx and E are given functions
of x and t only. Consequently, equation (4.8.13) becomes[

∂2

∂x2
− 1
c2

(
∂2

∂t2
+ f2

)]
ζt =

1
ρc2

(
∂2τx

∂x∂t

)
.
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Integrating this equation with respect to t gives[
∂2

∂x2
− 1
c2

(
∂2

∂t2
+ f2

)]
ζ =

1
ρc2

(
∂τx

∂x

)
. (4.8.15)

Similarly, the velocity u(x, t) satisfies the equation[
∂2

∂x2
− 1
c2

(
∂2

∂t2
+ f2

)]
u=− 1

ρhc2

(
∂τx

∂t

)
. (4.8.16)

If the right-hand side of equations (4.8.15) and (4.8.16) is zero, these equa-
tions are known as the Klein-Gordon equations, which have received extensive
attention in quantum mechanics and in applied mathematics.

Equation (4.8.15) is to be solved subject to the following boundary and
initial conditions

|ζ| is bounded as |x|→∞, (4.8.17)
ζ(x, t) = 0 at t= 0 for all real x. (4.8.18)

Before we solve the initial value problem, we seek a plane wave solution of
the homogeneous equation (4.8.15) in the form

ζ(x, t) =A exp{i(ωt− kx)}, (4.8.19)

where A is a constant amplitude, ω is the frequency, and k is the wavenumber.
Such a solution exists provided the dispersion relation

ω2 = c2k2 + f2 (4.8.20)

is satisfied. Thus, the phase and the group velocities of waves are given by

Cp =
ω

k
=
(
c2 +

f2

k2

) 1
2

, Cg =
∂ω

∂k
=

c2k

(c2k2 + f2)
1
2
. (4.8.21ab)

Thus, the waves are dispersive in a rotating ocean (f �= 0). However, in a non-
rotating ocean (f = 0) all waves would propagate with constant velocity c,
and they are non-dispersive shallow water waves. Further, CpCg = c2 whence
it follows that the phase velocity has a minimum of c and the group velocity
a maximum. The short waves will be observed first at a given point, even
though they have the smallest phase velocity.

Application of the joint Laplace and Fourier transform to (4.8.15) together
with (4.8.17)–(4.8.18) give the transformed solution

ζ̃(k, s) =− Ac2

(s2 + a2)
f̃(k, s), a2 = (c2k2 + f2), (4.8.22)

where

f(x, t) =
1
ρc2

(
∂τx

∂x

)
H(t). (4.8.23)
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The inverse transforms combined with the Convolution Theorem of the Laplace
transform lead to the formal solution

ζ(x, t) =− Ac√
2π

∞∫
−∞

(
k2 +

f2

c2

)− 1
2

eikx dk

t∫
0

f̃(k, t− τ) sin aτ dτ. (4.8.24)

In general, this integral cannot be evaluated unless f(x, t) is prescribed. Even
if some particular form of f is given, an exact evaluation of (4.8.24) is almost
a formidable task. Hence, it is necessary to resort to asymptotic methods (see
Debnath and Kulchar, 1972).

To investigate the solution, we choose a particular form of the wind stress
distribution

τx

ρc2
=AeiωtH(t)H(−x), (4.8.25)

where A is a constant and ω is the frequency of the applied disturbance. Thus,

1
ρc2

(
∂τx

∂x

)
=−AeiωtH(t)δ(−x). (4.8.26)

In this case, solution (4.8.24) reduces to the form

ζ(x, t) =
Ac√
2π

t∫
0

eiω(t−τ)H(t− τ)F −1

⎡⎣ sinaτ√
k2 + f2

c2

⎤⎦ dτ
=
Ac

2

t∫
0

eiω(t−τ)H(t− τ)J0

{
f

c
(c2τ2 − x2)

1
2

}
×H(cτ − |x|) dτ, (4.8.27)

where J0(z) is the zero-order Bessel function of the first kind.
When ω≡ 0, this solution is identical with that of Crease (1956) who ob-

tained the solution using the Green’s function method. In this case, the solu-
tion becomes

ζ =
Ac

2

t∫
0

H(t− τ)J0

[
f

{
τ2 − x2

c2

} 1
2
]
H

(
τ − |x|

c

)
dτ. (4.8.28)

In terms of non-dimensional parameters fτ =α, ft= a, and fx
c = b, solution

(4.8.28) assumes the form

(
2f
Ac

)
ζ =

a∫
0

H(a− α)J0

[
(α2 − b2)

1
2

]
H(α− |b|) dα. (4.8.29)
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Or, equivalently, (
2f
Ac

)
ζ =

d∫
|b|

J0

[
(α2 − b2)

1
2

]
dα, (4.8.30)

where d= max(|b|, a). This is the basic solution of the problem.
In order to find the solution of (4.8.16), we first choose

1
ρc2

(
∂τx

∂t

)
=Aδ(t)H(−x), (4.8.31)

so that the joint Laplace and Fourier transform of this result is AF{H(−x)}.
Thus, the transformed solution of (4.8.16) is

¯̃u(k, s)=
Ac2

h
F{H(−x)} 1

(s2 + ω2)
, ω2 = (ck)2 + f2. (4.8.32)

The inverse transforms combined with the Convolution Theorem lead to the
solution

u(x, t) =
Ac

2h

∞∫
−∞

H(−ξ)J0

⎡⎣f {t2 −(
x− ξ

c

)2
} 1

2
⎤⎦

×H
(
t− (x− ξ)

c

)
dξ, (4.8.33)

which is, by the change of variable (x− ξ)f = cα, with a= ft and b= (fx/c),

=
Ac2

2hf

∞∫
b

J0

[
(a2 − α2)

1
2

]
H(a− |α|) dα. (4.8.34)

For the case b > 0, solution (4.8.34) becomes

u(x, t) =
Ac2

2hf
H(a− b)

a∫
b

J0

{
(a2 − α2)

1
2

}
dα. (4.8.35)

When b < 0, the velocity field is

u(x, t) =
Ac2

2hf

⎡⎣ a∫
−a

J0

{
(a2 − α2)

1
2

}
dα−H(a− |b|)

b∫
−a

J0

{
(a2 − α2)

1
2

}
dα

⎤⎦
=
gA

2f

⎡⎢⎣2 sina−H(a− |b|)
a∫

|b|

J0

{
(a2 − α2)

1
2

}
dα

⎤⎥⎦ , (4.8.36)
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which is, for a< |b|,
u(x, t) =

(
gA

2f

)
sin a. (4.8.37)

Finally, it can be shown that the velocity transverse to the direction of
propagation is

υ=
(
−gA

2f

) a∫
0

dβ

∞∫
b

J0

{
(β2 − α2)

1
2

}
H(β − |α|) dα. (4.8.38)

If b > 0, that is, x is outside the generating region, then

(
2f
gA

)
υ=−H(a− b)

a∫
b

dβ

β∫
b

J0

{
(β2 − α2)

1
2

}
dα,

which becomes, after some simplification,

=−
⎡⎣(1 − cos a)−

b∫
0

dα

a∫
α

J0

{
(β2 − α2)

1
2

}⎤⎦H(a− b). (4.8.39)

For b< 0, it is necessary to consider two cases: (i) a< |b| and (ii) a> |b|. In
the former case, (4.8.38) takes the form

(
2f
gA

)
υ=−

a∫
0

dβ

β∫
−β

J0

{
(β2 − α2)

1
2

}
dα=−2(1− cos b). (4.8.40)

In the latter case, the final form of the solution is

(
2f
gA

)
υ=−(1− cos b) +

|b|∫
0

dα

a∫
α

J0

{
(β2 − α2)

1
2

}
dβ. (4.8.41)

Finally, the steady-state solutions are obtained in the limit as t→∞(b→∞)

ζ =
Ac

2f
exp(−|b|),

u =
Ag

2f
sin ft,

υ =
Ag

2f

[
cos ft− exp(−b), b > 0

cos ft+ exp(−|b|)− 2, b < 0

]
. (4.8.42)

Thus, the steady-state solutions are attained in a rotating ocean. This shows
a striking contrast with the corresponding solutions in the non-rotating ocean
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where an ever-increasing free surface elevation is found. The terms sin ft and
cos ft involved in the steady-state velocity field represent inertial oscillations
with frequency f .

Example 4.8.3
(One-Dimensional Diffusion Equation on a Half Line). Solve the equation

ut = κuxx, 0<x<∞, t > 0, (4.8.43)

with the boundary data

u(x, t) = f(t) forx= 0

u(x, t)→ 0 asx→∞

}
t > 0 (4.8.44ab)

and the initial condition

u(x, t) = 0 at t= 0 for 0<x<∞. (4.8.45)

We use the joint Fourier sine and Laplace transform defined by

Us(k, s) =

√
2
π

∞∫
0

e−st dt

∞∫
0

u(x, t) sin kx dx, (4.8.46)

so that the solution of the transformed problem is

Us(k, s) =

√
2
π

(κk)
f̄(s)

(s+ k2κ)
. (4.8.47)

The inverse transform yields the solution

u(x, t) =
(

2κ
π

) ∞∫
0

k sin kx dk

t∫
0

f(t− τ) exp(−κτk2) dτ.

In particular, if f(t) = T0 = constant, then the solution becomes

u(x, t) =
2T0

π

∞∫
0

sinkx
k

(1 − e−κk
2t) dk. (4.8.48)

Making use of the integral (2.15.11) gives the solution

u(x, t) =
2T0

π

[
π

2
− π

2
erf

(
x

2
√
κt

)]
= T0 erfc

(
x

2
√
κt

)
. (4.8.49)
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This is identical with (2.15.12).

Example 4.8.4
(The Bernoulli-Euler Equation on an Elastic Foundation). Solve the equation

EI
∂4u

∂x4
+ κu+m

∂2u

∂t2
=Wδ(t)δ(x), −∞<x<∞, t > 0, (4.8.50)

with the initial data

u(x, 0) = 0 and ut(x, 0) = 0. (4.8.51)

We use the joint Laplace and Fourier transform (4.8.1) to find the solution of
the transformed problem in the form

U(k, s) =
W

m
√

2π
1

(s2 + a2k4 + ω2)
, (4.8.52)

where
a2 =

EI

m
and ω2 =

κ

m
.

The inverse Laplace transform gives

U(k, t) =
W

m
√

2π

(
sinαt
α

)
, α= (a2k4 + ω2)

1
2 . (4.8.53ab)

Then the inverse Fourier transform yields the formal solution

u(x, t) =
W

2πm

∞∫
−∞

eikx
(

sinαt
α

)
dk. (4.8.54)

Example 4.8.5
(The Cauchy-Poisson Wave Problem in Fluid Dynamics). We consider the
two-dimensional Cauchy-Poisson problem for an inviscid liquid of infinite
depth with a horizontal free surface. We assume that the liquid has con-
stant density ρ and negligible surface tension. Waves are generated on the
surface of water initially at rest for time t< 0 by the prescribed free surface
displacement at t= 0.

In terms of the velocity potential φ(x, z, t) and the free surface elevation
η(x, t), the linearized surface wave motion in Cartesian coordinates (x, y, z) is
governed by the following equation and free surface and boundary conditions:

∇2φ=φxx + φzz = 0, −∞<z≤ 0, −∞<x<∞, t > 0, (4.8.55)
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φz − ηt = 0
φt + gη= 0

}
on z= 0, t > 0, (4.8.56ab)

φz→ 0 as z→−∞. (4.8.57)

The initial conditions are

φ(x, 0, 0) = 0 and η(x, 0) = η0(x), (4.8.58)

where η0(x) is a given function with compact support.
We introduce the Laplace transform with respect to t and the Fourier trans-

form with respect to x defined by

[φ̃(k, z, s), η̃(k, s)] =
1√
2π

∞∫
−∞

e−ikx dx

∞∫
0

e−st[φ, η] dt. (4.8.59)

The use of joint transform to the above system gives

φ̃zz − k2φ̃= 0, −∞<z≤ 0, (4.8.60)

φ̃z = sη̃ − η̃0(k)

sφ̃+ gη̃= 0

⎫⎬⎭ on z= 0, (4.8.61ab)

φ̃z→ 0 as z→−∞. (4.8.62)

The bounded solution of (4.8.60) is

φ̃(k, s) = Ā exp(|k|z) (4.8.63)

where A=A(s) is an arbitrary function of s, and η̃0(k) = F{η0(x)}.
Substituting (4.8.63) into (4.8.61ab) and eliminating η̃ from the resulting

equations gives Ā. Hence, the solutions for φ̃ and η̃ are

[φ̃, η̃] =
[
−g η̃0 exp(|k|z)

s2 + ω2
,

s η̃0
s2 + ω2

]
, (4.8.64ab)

where the dispersion relation for deep water waves is

ω2 = g|k|. (4.8.65)
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The inverse Laplace and Fourier transforms give the solutions

φ(x, z, t) = − g√
2π

∞∫
−∞

sinωt
ω

exp(ikx+ |k|z) η̃0(k) dk (4.8.66)

η(x, t) =
1√
2π

∞∫
−∞

η̃0(k) cosωt eikx dk

=
1√
2π

∞∫
0

η̃0(k)[ei(kx−ωt) + ei(kx+ωt)] dk, (4.8.67)

in which η̃0(−k) = η̃0(k) is assumed.
Physically, the first and second integrals of (4.8.67) represent waves trav-

eling in the positive and negative directions of x respectively with phase ve-
locity

(ω
k

)
. These integrals describe superposition of all such waves over the

wavenumber spectrum 0<k<∞.
For the classical Cauchy-Poisson wave problem, η(x) = a δ(x) where δ(x)

is the Dirac delta function so that η̃0(k) =
(
a/

√
2π
)
. Thus, solution (4.8.67)

becomes

η(x, t) =
a

2π

∞∫
0

[
ei(kx−ωt) + ei(kx+ωt)

]
dk. (4.8.68)

The wave integrals (4.8.66) and (4.8.67) represent the exact solution for
the velocity potential φ and the free surface elevation η for all x and t > 0.
However, they do not lend any physical interpretations. In general, the exact
evaluation of these integrals is almost a formidable task. So it is necessary to
resort to asymptotic methods. It would be sufficient for the determination of
the principal features of the wave motions to investigate (4.8.67) or (4.8.68)
asymptotically for large time t and large distance x with (x/t) held fixed. The
asymptotic solution for this kind of problem is available in many standard
books (for example, see Debnath, 1994, p 85). We state the stationary phase
approximation of a typical wave integral, for t→∞,

η(x, t) =

b∫
a

f(k) exp[itW (k)] dk (4.8.69)

∼ f(k1)
[

2π
t|W ′′(k1)|

] 1
2

exp
[
i
{
tW (k1) +

π

4
sgnW ′′(k1)

}]
, (4.8.70)

where W (k) =
kx

t
− ω(k), x> 0 and k= k1 is a stationary point that sat-

isfies the equation

W ′(k1) =
x

t
− ω′(k1) = 0, a < k1<b. (4.8.71)
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Application of (4.8.70) to (4.8.67) shows that only the first integral in
(4.8.67) has a stationary point for x> 0. Hence, the stationary phase ap-
proximation gives the asymptotic solution, as t→∞, x > 0,

η(x, t) ∼
[

1
t|ω′′(k1)|

] 1
2

η̃0(k1) exp[i{(k1x− tω(k1)}

+
iπ

4
sgn{−ω′′(k1)}], (4.8.72)

where k1 = (gt2/4x2) is the root of the equation ω′(k) =
x

t
.

On the other hand, when x< 0, only the second integral of (4.8.67) has a
stationary point k1 = (gt2/4x2), and hence, the same result (4.8.70) can be
used to obtain the asymptotic solution for t→∞ and x< 0 as

η(x, t) ∼
[

1
t|ω′′(k1)|

] 1
2

η̃0(k1) exp[i{tω(k1) − k1|x|}

+
iπ

4
sgnω′′(k1)]. (4.8.73)

In particular, for the classical Cauchy-Poisson solution (4.8.68), the asymp-
totic representation for η(x, t) follows from (4.8.73) in the form

η(x, t)∼ at

2
√

2π

√
g

x3/2
cos

(
gt2

4x

)
, gt2>> 4x (4.8.74)

and a similar result for x< 0 and t→∞.

4.9 Summation of Infinite Series

With the aid of Laplace transforms, Wheelon (1954) first developed a direct
method to the problem of summing infinite series in closed form. His method
is essentially based on the operation that is contained in the summation of
both sides of a Laplace transform with respect to the transform variable s,
which is treated as the dummy index of summation n. This is followed by an
interchange of summation and integration that leads to the desired sum as the
integral of a geometric or exponential series, which can be summed in closed
form. We next discuss this procedure in some detail.

If f̄(s) = L {f(x)}, then

∞∑
n=1

an f̄(n) =
∞∑
n=1

an

∞∫
0

f(x)e−nx dx. (4.9.1)
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In many cases, it is possible to interchange the order of summation and
integration so that (4.9.1) gives

∞∑
n=1

an f̄(n) =

∞∫
0

f(t)b(t) dt, (4.9.2)

where

b(t)=
∞∑
n=1

an exp(−nt). (4.9.3)

We now assume f(t) =
1

Γ(p)
tp−1 exp(−xt) so that f̄(n) = (n+ x)−p. Conse-

quently, (4.9.2) becomes

∞∑
n=1

an f̄(n) =
∞∑
n=1

an
(n+ x)p

=
1

Γ(p)

∞∫
0

b(t) tp−1 exp(−xt) dt. (4.9.4)

This shows that a general series has been expressed in terms of an integral.
We next illustrate the method by simple examples.

Example 4.9.1
Show that the sum of the series

∞∑
n=1

1
n2

=
π2

6
. (4.9.5)

Putting x= 0, p= 2, and an = 1 for all n, we find, from (4.9.3) and (4.9.4),

b(t) =
∞∑
n=1

exp(−nt) =
1

et − 1
, (4.9.6)

and
∞∑
n=1

1
n2

=

∞∫
0

t dt

et − 1
= ζ(2) =

π2

6
, (4.9.7)

in which the following standard result is used
∞∫
0

tp−1

eat − 1
dt=

Γ(p)
ap

ζ(p), (4.9.8)

where ζ(p) is the Riemann zeta function defined below by (4.9.10).
Similarly, we can show

∞∑
n=1

1
n3

=
1

Γ(3)

∞∫
0

t2 dt

et − 1
= ζ(3). (4.9.9)
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More generally, we obtain, from (4.9.8),

∞∑
n=1

1
np

=
1

Γ(p)

∞∫
0

tp−1 dt

et − 1
= ζ(p). (4.9.10)

Example 4.9.2
Show that ∞∑

n=1

1
n

exp(−an) =− log(1 − e−a). (4.9.11)

We put x= 0, p= 1, and an = exp(−an) so that

b(t) =
∞∑
n=1

exp[−n(t+ a)] =
1

ea+t − 1
. (4.9.12)

Then result (4.9.4) gives

∞∑
n=1

1
n

exp(−an)=

∞∫
0

dt

ea+t − 1
, exp(−t) = x,

=

1∫
0

dx

ea − x
=− log(1 − e−a).

Example 4.9.3
Show that ∞∑

n=1

1
(n2 + x2)

=
1

2x2
(πx coth πx− 1). (4.9.13)

We set
f(t) =

1
x

sinxt, f̄(n) =
1

n2 + x2
, and an = 1 for all n.

Clearly

b(t) =
∞∑
n=1

exp(−nt) =
1

et − 1
.

Thus,
∞∑
n=1

1
(n2 + x2)

=
1
x

∞∫
0

sinxt
et − 1

dt=
1

2x2
(πx coth πx− 1).
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4.10 Transfer Function and Impulse Response Function
of a Linear System

Many science and engineering systems are described by initial value problems
that are governed by linear ordinary differential equations. In general, a linear
system is governed by an nth order linear ordinary differential equation with
constant coefficients in the form

L (D) [x (t)] ≡ an x
(n) (t) + an−1 x

(n−1) (t) + . . .+ a0 x (t) = f (t) , (4.10.1)

where an, an−1, . . ., a0 are real constants with an �= 0 and the initial conditions
are

x (0) = x0, x′ (0) = x1, . . . , x(n−1) (0)= xn−1. (4.10.2)

The solution, x (t) of the system (4.10.1)–(4.10.2) is called the output or the
response function, and the given f (t) is called the input function (or driving
function) of time t.

The transfer function h (s) of a linear system is defined as the ratio of the
Laplace transform of the output function x (t) to the Laplace transform of the
input function f (t), under the assumption that all initial conditions are zero.

More generally, however, the Laplace transform of the system (4.10.1)–
(4.10.2) gives

an

[
sn x (s)− sn−1x (0)− . . .− x(n−1) (0)

]
+an−1

[
sn−1 x (s)− sn−2 x (0)− . . .− x(n−2)

]
+ . . .+ a1 [s x (s)− x (0)] + a0 x (s) = f (s) . (4.10.3)

Or, equivalently,(
an s

n + an−1 s
n−1 + . . .+ a0

)
x (s) = f (s) + g (s) ,

or,

pn (s)x (s) = f (s) + g (s) , (4.10.4)

where

pn (s) =
(
ans

n + an−1s
n−1 + . . .+ a1s+ a0

)
(4.10.5)

is a polynomial of degree n, g (s) is a polynomial of degree less than or equal to
(n− 1) consisting of the various products of the coefficients ar (r= 1, 2, . . . , n)
and the given initial conditions x0, x1, . . ., xn−1.
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The transfer function (or system function) is denoted by h (s) and defined
by

h (s) =
1

pn (s)
=

1
an sn + an−1 sn−1 + . . .+ a0

. (4.10.6)

Consequently, equation (4.10.4) becomes

x (s) =
f (s)
pn (s)

+
g (s)
pn (s)

= h (s)
[
f (s) + g (s)

]
. (4.10.7)

The inverse Laplace transform of (4.10.7) provides the response function
x (t) of the system which is the superposition of two responses as follows:

x (t) = L −1
{
h (s) g (s)

}
+ L −1

{
h (s) f (s)

}
(4.10.8)

=
∫ t

0

h (t− τ) g (τ) dτ +
∫ t

0

h (t− τ) f (τ) dτ (4.10.9)

= x0 (t) + x1 (t) , (4.10.10)

where

x0 (t) = L −1
{
h (s) g (s)

}
, x1 (t) = L −1

{
h (s) f (s)

}
,

and

h (t) = L −1
{
h (s)

}
= L −1

{
1

pn (s)

}
, (4.10.11)

are often called the impulse response function of the linear system.
If the input is f (t)≡ 0, the solution of the problem is x0 (t), which is called

the zero-input response of the system. On the other hand, x1 (t) is the output
due to the input f (t) and is called the zero-state response of the system. If
all initial conditions are zero, that is, x0 = x1 = . . .= xn−1 = 0, then g (s) = 0
and so, the unique solution of the nonhomogeneous equation (4.10.1) is x1(t).

For example, h (t) = L −1
{
h (s)

}
describes the solution for a mass-spring

system when it is struck by a hammer. For an electric circuit, the function
z (s) =

[
s h (s)

]−1
is called the impendence of the circuit.

The polynomial pn (s) =
(
ans

n + an−1s
n−1 + . . .+ a0

)
in s of degree n is

called the characteristic polynomial of the system, and pn (s) = 0 is called the
characteristic equation of the system. Since the coefficients of pn (s) are real,
it follows that roots of the characteristic equation are all real or, if complex,
they must occur in complex conjugate pairs. If h (s) is expressed in partial
fractions, the system is said to be stable provided all roots of the characteristic
equation have negative real parts. From a physical point of view, when every
root of pn (s) = 0 has a negative real part, any bounded input to a system
that is stable will lead to an output that is also bounded for all time t.
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We close this section by adding the following examples:

Example 4.10.1
Find the transfer function for each of the following linear systems. Determine
the order of each system and find which is stable.

(a) L
dI

dt
+R I +

1
C

∫ t

0

I (τ) dτ =E (t) , (4.10.12)

(b) x′′ (t) + 2 x′ (t) + 5 x (t) = 3f ′ (t) + 2f (t) , (4.10.13)
(c) x′′′ (t) + x′′ (t) + 3 x′ (t) − 5x (t) = 6f ′′ (t) − 13f ′ (t) + 6f (t) ,

where L, R, and C are constants. (4.10.14)

(a) This current equation is solved in Example 4.2.13. The Laplace trans-
formed equation with the zero initial condition is given by(

Ls+R+
1
Cs

)
I (s) = E (s)

so that the transfer equation is

h (s) =
1(

Ls+R+ 1
Cs

) =
1
L

s(
s2 + R

L s+ 1
CL

) .
The system is of order 2 and its characteristic equation is

s2 +
R

L
s+

1
CL

= 0.

Or,

(s+ k)2 + n2 = 0

where

k =
R

2L
, n2 =

1
CL

− R2

4L2
.

The roots of the characteristic equation are complex and they are s=−k+ i n
with the negative real part. So, the system is stable.

(b) We take the Laplace transform of the equation (4.10.13) with zero initial
conditions so that (

s2 + 2s+ 5
)
x (s) = (3s+ 2) f (s) .

Thus, the transfer function is

h (s) =
x (s)
f (s)

=
(3s+ 2)

s2 + 2s+ 5
.
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The system is of order 2 and its characteristic equation is

s2 + 2s+ 5 = 0

with complex roots s=−1 +2i. Since the real part of these roots is negative,
the system is stable.
(c) Similarly,

h (s) =
x (s)
f (s)

=

(
6s2 − 13s+ 6

)
(s3 + s2 + 3s− 5)

.

The system is of order 3 and its characteristic equation is

s3 + s2 + 3s− 5 = 0

with roots s1 = 1, s2, s3 =−1 +2i. Since the real parts of all roots are not
negative, the system is unstable.

Example 4.10.2
Find the transfer function, the impulse response function, and the solution of
a linear system described by

x′′ (t) + 2a x′ (t) +
(
a2 + 4

)
x (t) = f (t) (4.10.15)

x (0) = 1, x′ (0) = −a. (4.10.16ab)

According to formula (4.10.4), the transfer function of this system is

h (s) =
1

(s2 + 2as+ a2 + 4)
=

1
(s+ a)2 + 22

.

The inverse Laplace transform of the transform function h (s) is the impulse
response function

h (t) = L −1
{
h (s)

}
=

1
2
L −1

{
2

(s2 + a)2 + 22

}
=

1
2
e−at sin 2t. (4.10.17)

Solving the homogeneous initial value problem gives

x0 (t) = e−at cos (2t) . (4.10.18)

The solution of the problem (4.10.15)–(4.10.16ab) is

x (t) = x0 (t) + h (t) ∗ f (t)

= e−at cos (2t) +
∫ t

0

e−at f (t− τ) sin 2τ dτ. (4.10.19)
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Example 4.10.3
Consider a linear system governed by the differential equation

a2 x
′′ (t) + a1 x

′ (t) + a0 x (t) = H (t) , (4.10.20)

where H (t) is the Heaviside unit step function.
Derive Duhamel’s formulas

(a) x (t) =
∫ t

0

A′ (t− τ) f (τ) dτ, (4.10.21)

(b) x (t) =
∫ t

0

A (τ) f ′ (t− τ) dτ +A (t) f (0) . (4.10.22)

The transfer function for this system (4.10.20) is

h (s) =
x (s)
f (s)

= s x (s) . (4.10.23)

Or,

x (s) =
h (s)
s

. (4.10.24)

The output function in this special case is called the indicial admittance
and is denoted by A (t) so that

A (s) =
h (s)
s

. (4.10.25)

We next derive Duhamel’s formulas. We have, from (4.10.7) with g (s) = 0,

x (s) = s

[
h (s)
s

]
f (s) = s A (s) f (s) . (4.10.26)

Using the convolution theorem gives

x (t) = L −1
{
sA (s) · f (s)

}
=
∫ t

0

A′ (t− τ) f (τ) dτ =
d

dt

∫ t

0

A (τ) f (t− τ) dτ

which is, by Leibniz’s rule,

=
∫ t

0

A (τ) f ′ (t− τ) dτ + A (t) f (0) ,

where the initial conditions A (0)=A′ (0) = 0 are used.
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4.11 Exercises

1. Using the Laplace transform, solve the following initial value problems

(a)
dx

dt
+ ax= e−bt, t > 0, a �= b with x(0) = 0.

(b)
dx

dt
− x= t2, t > 0, x(0) = 0.

(c)
dx

dt
+ 2x= cos t, t > 0, x(0) = 1.

(d)
dx

dt
− 2x= 4, t > 0, x(0) = 0.

2. Solve the initial value problem for the radioactive decay of an element

dx

dt
=−kx, (k > 0), t > 0, x(0) = x0.

Prove that the half-life time T of the element, which is defined as the
time taken for half a given amount of the element to decay, is

T =
1
k

log 2.

3. Find the solutions of the following systems of equations with the initial
data:

(a)
dx

dt
= x− 2y,

dy

dt
= y − 2x, x(0) = 1, y(0)= 0.

(b)
dx1

dt
= x1 + 2x2 + t,

dx2

dt
= x2 + 2x1 + t; x1(0) = 2, x2(0) = 4.

(c)
dx

dt
= 6x− 7y+ 4z,

dy

dt
= 3x− 4y+ 2z,

dz

dt
=−5x+ 5y − 3z,

with x(0) = 5, y(0)= z(0) = 0.

(d)
dx

dt
= 2x− 3y,

dy

dt
= y − 2x; x(0) = 2, y(0) = 1.

(e)
dx

dt
+ x= y,

dy

dt
− y= x, x(0) = y(0) = 1.

(f)
dx

dt
+
dy

dt
+ x= 0,

dx

dt
+ 2

dy

dt
− x= e−at, x(0) = y(0) = 1.

4. Solve the matrix differential system

dx

dt
=Ax with x(0) =

(
x0

0

)
,

where x(t) =
(
x1(t)
x2(t)

)
and A=

(−3 −2
3 2

)
.



© 2007 by Taylor & Francis Group, LLC

Applications of Laplace Transforms 257

5. Find the solution of the autonomous system described by

dx

dt
= x,

dy

dt
= x+ 2y with x(0) = x0, y(0) = y0.

6. Solve the differential systems

(a)
d2x

dt2
− 2k

dy

dt
+ lx= 0

d2y

dt2
+ 2k

dx

dt
+ ly= 0

⎫⎪⎪⎬⎪⎪⎭ t > 0

with the initial conditions

x(0) = a, ẋ(0) = 0; y(0) = 0, ẏ(0) = υ,

where k, l, a, and υ are constants.

(b)
d2x

dt2
= y− 2 x

d2y

dt2
= x− 2 y

⎫⎪⎪⎬⎪⎪⎭ t > 0

with the initial conditions

x(0) = y(0)= 1, and ẋ(0) = ẏ(0) = 0.

7. The glucose concentration in the blood during continuous intravenous
injection of glucose is C(t), which is in excess of the initial value at the
start of the infusion. The function C(t) satisfies the initial value problem

dC

dt
+ k C =

α

V
, t > 0, C(0) = 0,

where k is the constant velocity of elimination, α is the rate of infusion
(in mg/min), and V is the volume in which glucose is distributed. Solve
this problem.

8. The blood is pumped into the aorta by the contraction of the heart. The
pressure p(t) in the aorta satisfies the initial value problem

dp

dt
+
c

k
p= cA sinωt, t > 0; p(0)= p0

where c, k, A, and p0 are constants. Solve this initial value problem.
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9. The zero-order chemical reaction satisfies the initial value problem

dc

dt
=−k0, t > 0, with c= c0 at t= 0

where k0 is a positive constant and c(t) is the concentration of a reacting
substance at time t. Show that

c(t) = c0 − k0 t.

10. Solve the equation governing the first order chemical reaction

dc

dt
=−k1c with c(t) = c0 at t= 0 (k1> 0).

11. Obtain the solutions of the systems of differential equations governing
the consecutive chemical reactions of the first order

dc1
dt

=−k1c1,
dc2
dt

= k1c1 − k2c2,
dc3
dt

= k2c2, t > 0,

with the initial conditions

c1(0) = c1, c2(0)= c3(0) = 0,

where c1(t) is the concentration of a substance A at time t, which breaks
down to form a new substance A2 with concentration c2(t), and c3(t) is
the concentration of a new element originated from A2.

12. Solve the following initial value problems

(a) ẍ+ ω2x= cosnt, (ω �= n) x(0) = 1, ẋ(0) = 0.

(b) ẍ+ x= sin 2t, x(0) = ẋ(0) = 0.

(c)
d3x

dt3
+
d2x

dt2
= 3e−4t, x(0) = 0, ẋ(0) =−1, ẍ(0) = 1.

(d)
d4x

dt4
= 16x, x(t) = ẍ(t) = 0, ẋ(t) =˙̈x(t) = 1 at t= 0.

(e) (D4 + 2D3 −D2 − 2D+ 10)x(t) = 0, t > 0,

x(0) =−1, ẋ(0) = 3, ẍ(0) =−1, ˙̈x(0) = 4.

(f)
d2x

dt2
+ b

dx

dt
= δ(t− a), x(0) =α, ẋ(0) = β.

(g) C
d2v

dt2
+

1
R

dv

dt
+
v

L
=
di

dt
, v(0) = v̇(0) = 0; i(t) =H(t− 1)−H(t),

where R, L, andC are constants.

(h)
d2x

dt2
+ 2 t

dx

dt
− 4 x= 2, x(0) = 0 = ẋ(0).
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(i)
d2x

dt2
− 2 a

dx

dt
+ a2 x= t− (t− a)H(t− a)− aH(t− a),

x(0) = 0 = ẋ(0).

13. Solve the following systems of equations:

(a) ẍ− 2ẏ− x= 0, ÿ + 2ẋ− y= 0,

x(t) = y(t) = 0, ẋ(t) = ẏ(t) = 1 at t= 0.
(b) ẍ1 + 3ẋ1 − 2x1 + ẋ2 − 3x2 = 2e−t, 2ẋ1 − x1 + ẋ2 − 2x2 = 0,

with x1(0) = ẋ1(0) = 0 and x2(0) = 4.

14. With the aid of the Laplace transform, investigate the motion of a par-
ticle governed by the equations of motion ẍ− ωẏ= 0, ÿ+ ωẋ=ω2a and
the initial conditions x(0) = y(0) = ẋ(0) = ẏ(0)= 0.

15. Show that the solution of the equation

d2y

dx2
+ (a+ b)

dy

dx
+ aby= e−ax, x> 0

with the initial data y(x) =
1
a2

and
dy

dx
= 0 at x= 0 is

y(x) =
1

a2(a− b)
(ae−bx − be−ax − xa2e−ax) +

e−bx − e−ax

(a− b)2
.

16. The motion of an electron of charge −e in a static electric field E=
(E, 0, 0) and a static magnetic field H = (0, 0, H) is governed by the
vector equation

mr̈=−eE +
e

c
(ṙ×H), t > 0,

with zero initial velocity and displacement (r= ṙ= 0 at t= 0) where r=
(x, y, z) and c is the velocity of light. Show that the displacement fields
are

x(t) =
eE

mω2
(cosωt− 1), y(t) =

eE

mω2
(sinωt− ωt), z(t) = 0,

where ω=
eH

mc
. Hence, calculate the velocity field.

17. An electron of mass m and charge −e is acted on by a periodic electric
field E sinω0t along the x-axis and a constant magnetic field H along the
z-axis. Initially, the electron is emitted at the origin with zero velocity.
With the same ω as given in exercise 16, show that

x(t) =
eE

mω(ω2 − ω2
0)

(ω0 sin ωt− ω sin ω0t) ,

y(t) =
eE

mω (ω2 − ω2
0)ω0

{
(ω2 − ω2

0) +
(
ω2

0 cos ωt− ω2 cos ω0t
)}
.
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18. The stress-strain relation and equation of motion for a viscoelastic rod
in the absence of external force are

∂e

∂t
=

1
E

∂σ

∂t
+
σ

η
,

∂σ

∂x
= ρ

∂2u

∂t2
,

where e is the strain, η is the coefficient of viscosity, and the displacement

u(x, t) is related to the strain by e=
∂u

∂x
. Prove that the stress σ(x, t)

satisfies the equation

∂2σ

∂x2
− ρ

η

∂σ

∂t
=

1
c2
∂2σ

∂t2
.

Show that the stress distribution in a semi-infinite viscoelastic rod sub-
ject to the boundary and initial conditions

u̇(0, t) = UH(t), σ(x, t)→ 0 as x→∞,

σ(x, 0) = 0, u̇(x, 0) = 0, for 0<x<∞,

is given by

σ(x, t) =−Uρ c exp
(
−Et

2η

)
I0

[
E

2η

(
t2 − x2

c2

)1/2
]
H
(
t− x

c

)
.

19. An elastic string is stretched between x= 0 and x= � and is initially at
rest in the equilibrium position. Find the Laplace transform solution for
the displacement subject to the boundary conditions y(0, t)= f(t) and
y(l, t)= 0, t > 0.

20. The end x= 0 of a semi-infinite submarine cable is maintained at a
potential V0H(t). If the cable has no initial current and potential, de-
termine the potential V (x, t) at a point x and at time t.

21. A semi-infinite lossless transmission line has no initial current or poten-
tial. A time-dependent electromagnetic force, V0(t)H(t) is applied at the
end x= 0. Find the potential V (x, t). Hence, determine the potential for
cases (i) V0(t) =V0 = constant, and (ii) V0(t) = V0 cosωt.

22. Solve the Blasius problem of an unsteady boundary layer flow in a semi-
infinite body of viscous fluid enclosed by an infinite horizontal disk at
z= 0. The governing equation and the boundary and initial conditions
are

∂u

∂t
= ν

∂2u

∂z2
, z > 0, t > 0,

u(z, t) = Ut on z= 0, t > 0,
u(z, t) → 0 as z→∞, t > 0,
u(z, t) = 0 at t≤ 0, z > 0.

Explain the significance of the solution.
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23. Obtain the solution of the Stokes-Ekman problem of an unsteady bound-
ary layer flow in a semi-infinite body of viscous fluid bounded by an
infinite horizontal disk at z= 0, when both the fluid and the disk ro-
tate with a uniform angular velocity Ω about the z-axis. The governing
boundary layer equation, the boundary and the initial conditions are

∂q

∂t
+ 2Ωiq= ν

∂2q

∂z2
, z > 0,

q(z, t) = aeiωt + be−iωt on z= 0, t > 0,
q(z, t)→ 0 as z→∞, t > 0,
q(z, t) = 0 at t≤ 0 for all z > 0,

where q= u+ iυ, ω is the frequency of oscillations of the disk and a, b
are complex constants. Hence, deduce the steady-state solution and de-
termine the structure of the associated boundary layers.

24. Show that, when ω= 0 in exercise 23, the steady flow field is given by

q(z, t)∼ (a+ b) exp

{(
−2iΩ

ν

)1/2

z

}
.

Hence, determine the thickness of the Ekman layer.

25. Solve the following integral and integro-differential equations:

(a) f(t) = sin 2t+

t∫
0

f(t− τ) sin τ dτ .

(b) f(t) =
t

2
sin t+

t∫
0

f(τ) sin(t− τ) dτ.

(c)

t∫
0

f(τ)J0[a(t− τ)] dτ = sin at.

(d) f(t) = sin t+

t∫
0

f(τ) sin{2(t− τ)} dτ.

(e) f(t) = t2 +

t∫
0

f ′(t− τ) exp(−aτ) dτ, f(0)= 0.

(f) x(t) = 1 + a2

t∫
0

(t− τ)x(τ) dτ.
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(g) x(t) = t+
1
a

t∫
0

(t− τ)3 x(τ) dτ.

26. Prove that the solution of the integro-differential equation

f(t) =
2√
π

⎡⎣√t+√
a

t∫
0

(t− τ)1/2f ′(τ) dτ

⎤⎦ , f(0)= 0

is

f(t) =
eat√
a
[1 + erf

√
at]− 1√

a
.

27. Solve the integro-differential equations

(a) d2x
dt2 = exp(−2t)−

t∫
0

exp{−2(t− τ)} (dxdτ ) dτ, x(0) = 0 and ẋ(0)= 0.

(b) dx
dt =

t∫
0

x(τ) cos(t− τ)dτ, x(0) = 1.

28. Using the Laplace transform, evaluate the following integrals:

(a)

∞∫
0

sin tx
x(x2 + a2)

dx, (a, t > 0),

(c)

∞∫
−∞

cos tx
x2 + a2

dx, (a, t > 0),

(e)

∞∫
0

exp(−tx2)dx, t> 0,

(b)

∞∫
0

sin tx
x

dx,

(d)

∞∫
−∞

x sinxt
x2 + a2

dx, (a, t > 0),

(f)

∞∫
0

cos(tx2) dx.

29. Show that

(a)

∞∫
0

e−ax
(

cos px− cos qx
x

)
dx=

1
2

log
(
a2 + q2

a2 + p2

)
, (a> 0).

(b)

∞∫
0

e−ax
(

sin qx− sin px
x

)
dx= tan−1

( q
a

)
− tan−1

(p
a

)
, a > 0.

30. Establish the following results:

(a)

∞∫
−∞

cos tx dx
(x2 + a2)(x2 + b2)

=
π

a2 − b2

(
e−bt

b
− e−at

a

)
, a, b, t> 0.
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(b)

∞∫
0

sin(π tx)
x(1 + x2)

dx=
π

2
(1 − e−πt), t > 0.

(c)

∞∫
0

cos(tu2) du=

∞∫
0

sin(tu2) du=
1
2

( π
2t

)1/2

, t > 0.

31. In Example 4.5.1(i), write the solution when the point load is applied
at the mid point of the beam.

32. A uniform horizontal beam of length 2� is clamped at the end x= 0 and
freely supported at x= 2�. It carries a distributed load of constant value

W in
�

2
<x<

3�
2

and zero elsewhere. Obtain the deflection of the beam
which satisfies the boundary value problem

EI
d4y

dx4
= W

[
H

(
x− �

2

)
−H

(
x− 3�

2

)]
, 0<x< 2�,

y(0) = 0 = y′(0), y′′(2�)= 0 = y′′′(2�).

33. Solve exercise 32 if the beam carries a constant distributed load W per
unit length in 0<x< � and zero in �<x< 2�. Find the bending moment

and shear at x=
�

2
.

34. A horizontal cantilever beam of length 2� is deflected under the combined
effect of its own constant weight W and a point load of magnitude
P located at the midpoint. Obtain the deflection of the beam which
satisfies the boundary value problem

EI
d4y

dx4
= W [H(x) −H(x− 2�)] + P δ(x− �), 0<x< 2�,

y(0) = 0 = y′(0), y′′(2�)= 0 = y′′′(2�).

Find the bending moment and shear at x=
�

2
.

35. Using the Laplace transform, solve the following difference equations:

(a) Δun − 2un = 0, u0 = 1,

(b) Δ2un − 2un+1 + 3un = 0, u0 = 0 and u1 = 1,

(c) un+2 − 4un+1 + 4un = 0, u0 = 1 and u1 = 4,

(d) un+2 − 5un+1 + 6un = 0, u0 = 1 and u1 = 4,

(e) Δ2un + 3un = 0, u0 = 0, u1 = 1,

(f) un+2 − 4un+1 + 3un = 0,

(g) un+2 − 9un = 0, u0 = 1 andu1 = 3,
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(h) Δun − (a− 1)un = 0, u0 = constant.

36. Show that the solution of the difference equation

un+2 + 4un+1 + un = 0, with u0 = 0 and u1 = 1,

is
un =

1
2
√

3

[(√
3 − 2

)n
+ (−1)n+1

(
2 +

√
3
)n]

.

37. Show that the solution of the differential-difference equation

u̇(t) − u(t− 1) = 2, u(0) = 0

is

u(t) = 2
[
t− (t− 1)2

2!
+

(t− 2)3

3!
+ · · ·+ (t− n)n+1

(n+ 1)!

]
, t > n.

38. Obtain the solution of the differential-difference equation

u̇= u(t− 1), u(0)= 1, 0< t<∞ with u(t) = 1 when − 1≤ t < 0.

39. Use the Laplace transform to solve the initial-boundary value problem

utt − uxx = k2 uxxtt, 0<x<∞, t > 0,

u(x, 0) = 0,
(
∂u

∂x

)
t=0

= 0, for x> 0,

u(x, t)→ 0 as x→∞, t > 0,
u(0, t) = 1 for t > 0.

Hence, show that (
∂u

∂x

)
x=0

=−1
k
J0

(
t

k

)
.

40. Solve the telegraph equation

utt − c2uxx + 2aut = 0, −∞<x<∞, t > 0,
u(x, 0) = 0, ut(x, 0) = g(x).

41. Use the joint Laplace and Fourier transform to solve Example 2.12.3 in
Chapter 2.

42. Use the Laplace transform to solve the initial-boundary value problem

ut = c2uxx, 0<x<a, t> 0,

u(x, 0)= x+ sin
(

3πx
a

)
for 0<x<a,

u(0, t)= 0 = u(a, t) for t> 0.
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43. Solve the diffusion equation

ut = kuxx, −a<x< a, t > 0,
u(x, 0) = 1 for − a< x<a,

u(−a, t)= 0 = u(a, t) for t > 0.

44. Use the joint Laplace and Fourier transform to solve the initial value
problem for water waves which satisfies (see Debnath, 1994, p. 92)

∇2φ= φxx + φzz = 0, −∞<z < 0, −∞<x<∞, t > 0
φz = ηt

φt + gη=−P
ρ
p(x)eiωt

⎫⎪⎬⎪⎭ on z= 0, t > 0,

φ(x, z, 0) = 0 = η(x, 0) for allx and z,

where P and ρ are constants.

45. Show that

(a)
∞∑
n=0

an√
n2 + x2

=

∞∫
0

b(t)J0(xt) dt, where b(t) is given by (4.9.3).

(b)
∞∑
n=0

1
n2 − a2

=
1

2a2
(1 − πa cot πa).

46. Show that

(a)
∞∑
n=1

(−1)n cosnx
(n2 − a2)

=
1

2a2

[
1 − πa cos ax

sin aπ

]
.

(b)
∞∑
n=1

log
(

1 +
a2

n2

)
= log

(
sinhπa
πa

)
.

47. (a) If f(t) = 1 in Example 4.3.3, show that

u(x, t) =
x√
4πκ

∫ t

o

τ−
3
2 exp

(
− x2

4 κ τ

)
dτ = u0(x, t) (say)

(b) Hence or otherwise derive theDuhamel ′s formula from (4.3.16) :

u(x, t) =
∫ t

o

f(t− τ)
(
∂u0

∂τ

)
dτ,

where
∂u0

∂t
=

x√
4πκ

τ−
3
2 exp

(
− x2

4 κ t

)
.
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48. Consider a progressive plane wave solution that propagates to the right
with the phase velocity

(
ω
k

)
of the telegraph equation (4.3.55)

(a) Derive the dispersion relation

ω2 + i (p+ q)ω− (
c2k2 + p q

)
= 0.

(b) If 4p q �= (p+ q)2, show that the plane wave solution is given by

u(x, t) = A exp
[
−1

2
(p+ q) t

]
exp [i(kx± σt)] ,

where σ =
1
2

√
4c2k2 + 4p q − (p+ q)2.

(c) If 4p q= (p+ q)2, show that the plane wave solution is given by

u(x, t) =A exp
[
−1

2
(p+ q) t

]
exp [ik(x± ct)] .

Explain the physical significance of the solutions given in cases (b) and
(c).

49. (a) Use the substitution v(x, t) = exp
[
1
2 (p+ q) t

]
u(x, t) into (4.3.55)

to show that v(x, t) satisfies the wave equation

vtt − c2 vxx =
1
4

(p− q)2 v.

(b) Show that the undistorted wave solution exists if p= q and that a
progressive wave of the form exp(−at)f(x± ct) propagates in either
direction where f is an arbitrary twice differentiable function of its
argument.

50. (a) Use the joint Laplace and Fourier transform to solve the inhomo-
geneous diffusion problem

ut − κuxx = q(x, t) x∈R, t > 0,
u(x, 0) = f(x), for all x∈R.

(b) Solve the initial-boundary value problem for the diffusion equation

ut − κuxx = 0, 0<x< l, t > 0
u(x, 0) = 0, and u(0, t)= 1 = u(l, t).

51. Use the Laplace transform to solve for the small displacement y(x, t) of
a semi-infinite string fixed at x= 0 under the action of gravity g that
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satisfies the wave equation and the initial-boundary conditions

∂2y

∂t2
− c2

∂2y

∂x2
= −g, 0<x<∞, t > 0,

y(x, 0) = 0 = yt(x, 0), x≥ 0,
∂y

∂x
→ 0 as x→∞.

52. Use the Laplace transform to solve the boundary layer equation (4.3.97)
subject to the boundary and initial conditions

u(z, t) = U0 f(t), on z = 0, t> 0,
u(z, t) → 0 as z→∞, t > 0,
u(z, t) → 0 at t≤ 0 for all z > 0.

Consider the special case where f(t) = sinωt.

53. Find the transfer function, the impulse response function and a formula
for the solution of the following systems:

(a) x′′(t) + 2 x′(t) + 5 x(t) = f(t), x(0) = 2, x′(0) =−2.

(b) x′′(t) − 2 x′(t) + 5 x(t) = f(t), x(0) = 0, x′(0) = 2.

(c) x′′(t) + 9 x′(t) = f(t), x(0) = 2, x′(0) =−3.

(d) x′′(t) − 2 x′(t) + 5 x(t) = f(t), x(0) = x0, x
′(0) = x1.

54. Determine the transfer function for each of the following systems. Obtain
the order of each system and find which is stable.

(a) x′′(t) + 2 x′(t) + 2 x(t) = 3 f ′(t) + 2 f(t).

(b) 4 x′′(t) + 16 x′(t) + 25 x(t)= 2 f ′(t) + 3 f(t).

(c) 36 x′′(t) + 12 x′(t) + 37 x(t) = 2 f ′′(t) + f ′(t)− 6 f(t).

(d) x′′(t) − 6 x′(t) + 10 x(t) = 2 f ′(t) + 5 f(t).

55. Examine the stability of a system for real constants a and b with zero
initial data

x′′′(t) − a x′′(t) + b2 x′(t) − ab2x(t) = f(t),

where x(t) is the output corresponding to input f(t).

Discuss three cases: (a) a> 0, (b) a≤ 0, b �= 0, (c) a �= 0, b= 0.
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5

Fractional Calculus and Its Applications

“In his discovery of calculus, Leibniz first introduced the idea of
a symbolic method and used the symbol dny

dxn =Dny for the nth
derivative, where n is a non-negative integer. L’Hospital asked
Leibniz about the possibility that n be a fraction. ‘What if n= 1

2 .’
Leibniz (1695) replied, ‘It will lead to a paradox.’ But he added
prophetically, ‘From this apparent paradox, one day useful conse-
quences will be drawn’.”

Gottfried Wilhelm Leibniz

“The mathematician’s best work is art, a high perfect art, as dar-
ing as the most secret dreams of imagination, clear and limpid.
Mathematical genius and artistic genius touch one another.”

Gȯsta Mittag-Leffler

5.1 Introduction

This chapter deals with fractional derivatives and fractional integrals and
their basic properties. Several methods including the Laplace transform are
discussed to introduce the Riemann-Liouville fractional integrals. Attention is
given to the Weyl fractional integral and its properties. Finally, the fractional
derivative is applied to solve the celebrated Abel integral equation. This is
followed by brief comments on the Heaviside operational calculus and modern
applications of fractional calculus to science and engineering. This chapter is
based on two articles of Debnath (2003, 2004) and hence, the reader is referred
to these articles for all references cited in this chapter.

269
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5.2 Historical Comments

Historically, Isaac Newton (1642-1727) and Gottfried Wihelm Leibniz (1646-
1716) independently discovered calculus in the seventieth century. In recogni-
tion of this remarkable discovery, John Von Neumann’s (1903-1957) thought
seems to worth quoting. “...the calculus was the first achievement of modern
mathematics and it is difficult to overestimate its importance. I think it de-
fines more equivocally than anything else the inception of modern mathemat-
ics, and the system of mathematical analysis, which is its logical development,
still constitute the greatest technical advance in exact thinking.” In his dis-
covery of calculus, Leibniz first introduced the idea of a symbolic method and
used the symbol d

ny
dxn =Dny for the nth derivative, where n is a non-negative

integer. L’Hospital asked Leibniz about the possibility that n be a fraction.
“What if n= 1

2 .” Leibniz (1695) replied, “It will lead to a paradox.” But
he added prophetically, “From this apparent paradox, one day useful conse-
quences will be drawn.” Can the meaning of derivatives of integral order Dny
be extended to have meaning where n is any number — rational, irrational,
or complex? In his 700-page long book on calculus published in 1819, Lacroix
developed the formula for the nth derivative of y= xm, m is a positive integer,

Dny=
m!

(m− n)!
xm−n, (5.2.1)

where n (≤m) is an integer. Replacing the factorial symbol by the gamma
function, he further obtained the formula for the fractional derivative

Dαxβ =
Γ (β + 1)

Γ (β − α+ 1)
xβ−α, (5.2.2)

where α and β are fractional numbers. In particular, he calculated

D
1
2 x=

Γ (2)
Γ
(

3
2

)x 1
2 = 2

√
x

π
. (5.2.3)

On the other hand, in 1832, Joseph Liouville (1809-1882) formally extended
the formula for the derivative of integral order n

Dneax = aneax (5.2.4)

to the derivative of arbitrary order α

Dαeax = aαeax. (5.2.5)

Using the series expansion of a function f (x), Liouville derived the formula

Dαf (x) =
∞∑
n=0

cn a
α
n e

anx, (5.2.6)
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where

f (x) =
∞∑
n=0

cn exp (anx) , Re an> 0. (5.2.7)

Formula (5.2.6) is referred to as Liouville’s first formula for fractional deriva-
tive. It can be used as a formula for derivative of arbitrary order α, which may
be rational, irrational or complex. However, it can only be used for functions
of the form (5.2.7). In order to extend his first definition (5.2.6), Liouville
formulated another definition of a fractional derivative based on the gamma
function (see Debnath and Speight (1971))

Γ (β)x−β =
∫ ∞

0

tβ−1e−xtdt, β > 0, (5.2.8)

Dαx−β = (−1)α
Γ (α+ β)

Γ (β)
x−α−β , β > 0. (5.2.9)

This is called the Liouville’s second definition of fractional derivative. He suc-
cessfully applied both his definitions to problems in potential theory. However,
Liouville’s first definition is restricted to a certain class of function in the form
(5.2.7), and his second definition is useful only for rational functions. Neither
of his definitions was found to be suitable for a wide class of functions. Ac-
cording to (5.2.9), the derivative of a constant function (β= 0) is zero because
Γ (0) =∞. On the other hand, the Lacroix definition (5.2.2) gives a nonzero
value for the fractional derivative of a constant function (β= 0) in the form

Dα1 =
x−α

Γ (1− α)
�= 0. (5.2.10)

Peacock (1833) favored Lacroix formula (5.2.2) for fractional derivatives, but
other mathematicians preferred Liouville’s definitions. This led to a discrep-
ancy between the two definitions of a fractional derivative. In spite of a lot of
subsequent progress on the subject of fractional calculus, this controversy has
hardly been resolved.

In 1822, Fourier obtained the following integral representations for f (x)
and its derivatives.

f (x) =
1
2π

∫ ∞

−∞
f (ξ) dξ

∫ ∞

−∞
cos t (x− ξ) dt, (5.2.11)

and

Dnf (x) =
1
2π

∫ ∞

−∞
f (ξ) dξ

∫ ∞

−∞
tn cos

{
t (x− ξ) +

nπ

2

}
dt. (5.2.12)

Replacing integer n by arbitrary real α yields formally

Dαf (x) =
1
2π

∫ ∞

−∞
f (ξ) dξ

∫ ∞

−∞
tα cos

{
t (x− ξ) +

πα

2

}
dt. (5.2.13)
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Greer (1858-1859) derived formulas for the fractional derivatives of trigono-
metric functions based on (5.2.4) in the form

Dαeiax = iαaαeiax = iαaα (cos ax+ i sinax)

= aα
(
cos

πα

2
+ i sin

πα

2

)
(cos ax+ i sinax) (5.2.14)

so that the fractional derivatives of trigonometric functions are given by

Dα (cos ax) = aα
(
cos

πα

2
cos ax− sin

πα

2
sin ax

)
= aα cos

(
ax+

πα

2

)
, (5.2.15)

Dα (sin ax) = aα
(
cos ax sin

πα

2
+ sinax cos

πα

2

)
= aα sin

(
ax+

πα

2

)
. (5.2.16)

When α= 1
2 and a= 1, Greer’s formulas are as follows:

D
1
2 cosx = cos

(
x+

π

4

)
, D

1
2 sinx= sin

(
x+

π

4

)
. (5.2.17)

Similarly, fractional derivatives for hyperbolic functions can be obtained.

5.3 Fractional Derivatives and Integrals

The idea of fractional derivative or fractional integral can be described in
different ways. First, we consider a linear nonhomogenerous nth order ordinary
differential equation

Dny = f (x) , b≤ x≤ c. (5.3.1)

Then
{
1, x, x2, ...xn−1

}
is a fundamental set of the corresponding homoge-

neous equation, Dny= 0. If f (x) is any continuous on b≤ x≤ c, then for any
a ∈ (b, c),

y (x) =
∫ x

a

(x− t)n−1

(n− 1)!
f (t) dt (5.3.2)

is the unique solution of equation (5.3.1) with the initial data

y(k) (a) = 0, 0≤ k≤ n− 1.

Or, equivalently,

y = aD
−n
x f (x) =

1
Γ (n)

∫ x

a

(x− t)n−1
f (t) dt. (5.3.3)
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Replacing n by α, whereReα> 0 in the above formula, we obtain the Riemann-
Liouville definition of fractional integral that was reported by Liouville in 1832
and by Riemann in 1876 as

aD
−α
x f (x) = aJ

α
x f (x) =

1
Γ (α)

∫ x

a

(x− t)α−1 f (t) dt, (5.3.4)

where aD
−α
x = aJ

α
x is the Riemann-Liouville integral operator. When a= 0,

(5.3.4) is the Riemann definition of fractional integral, and if a=−∞, (5.3.4)
represents the Liouville definition. Integrals of this type were found to arise
in the theory of linear ordinary differential equations where they are known
as Euler transforms of the first kind.

If a= 0 and x> 0, then the Laplace transform solution of the initial value
problem

Dny (x) = f (x) , x> 0, y(k) (0) = 0, 0≤ k≤n− 1,

is

y (s) = s−n f (s) ,

where y (s) is the Laplace transform of y(x) defined by (3.2.5).
The inverse Laplace transform gives the solution of the initial value problem

y (x) = 0D
−n
x f (x) = L −1

{
s−n f (s)

}
=

1
Γ (n)

∫ x

0

(x− t)n−1
f (t) dt.

This is the Riemann-Liouville integral formula for an integer n. Replacing n
by real α gives the Riemann-Liouville fractional integral (5.3.4) with a= 0.

We consider a definite integral in the form

fn (x) =
1

(n− 1)!

∫ x

a

(x− t)n−1 f (t) dt (5.3.5)

with f0 (x) = f (x) so that

aDxfn (x) =
1

(n− 2)!

∫ x

a

(x− t)n−2
f (t) dt= fn−1 (x) , (5.3.6)

and hence,

fn (x) =
∫ x

a

fn−1 (t) dt= aJxfn−1 (x) = aJ
2
xfn−2 (x)

= ...= aJ
n
x f (x) . (5.3.7)

Thus, for a positive integer n, it follows that

aJ
n
x f (x) =

1
(n− 1)!

∫ x

a

(x− t)n−1
f (t) dt. (5.3.8)
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Replacing n by α where Reα> 0 in (5.3.8) leads to the definition of the
Riemann-Liouville fractional integral

aJ
α
x f (x) =

1
Γ (α)

∫ x

a

(x− t)α−1 f (t) dt. (5.3.9)

Thus, this fractional-order integral formula is a natural extension of an iterat-
ed integral. The fractional integral formula (5.3.9) can also be obtained from
the Euler integral formula∫ x

0

(x− t)r tsdt =
Γ (r + 1)Γ (s+ 1)

Γ (r + s+ 2)
xr+s+1, r, s >−1. (5.3.10)

Replacing r by n− 1 and s by n gives∫ x

0

(x− t)n−1
tndt =

Γ (n)
(n+ 1) ... (2n)

x2n = Γ (n) 0D
−n
x xn. (5.3.11)

Consequently, (5.3.8) follows from (5.3.11) when f (t) = tn and a= 0. In gen-
eral, (5.3.11) gives (5.3.8) replacing tn by f (t). Hence, when n is replaced by
α, we derive (5.3.9).

It may be interesting to point out that Euler’s integral expression for the
2F1 (a, b, c;x) hypergeometric series can now be expressed as a fractional in-
tegral of order (c− b) as

2F1 (a, b, c;x) =
Γ (c)x1−c

Γ (b) Γ (c− b)

∫ x

0

tb−1 (x− t)c−b−1 (1 − t)−a dt

=
Γ (c)
Γ (b)

x1−c
0J

c−b
x f (x) , (5.3.12)

where f (t) = tb−1 (1− t)−a .
In complex analysis, the Cauchy integral formula for the nth derivative of

an analytic function f (z) is given by

Dnf (z) =
n!
2πi

∫
C

f (t) dt
(t− z)n+1 , (5.3.13)

where C is a closed contour on which f (z) is analytic, and t= z is any point
inside C, and t= z is a pole.

If n is replaced by an arbitrary number α and n! by Γ (α+ 1), then a
derivative of arbitrary order α can be defined by

Dαf (z) =
Γ (α+ 1)

2πi

∫
C

f (t) dt
(t− z)α+1 , (5.3.14)

where t= z is no longer a pole but a branch point. In (5.3.14) C is no longer
an appropriate contour, and it is necessary to make a branch cut along the
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real axis from the point z = x> 0 to negative infinity. Thus, we can define a
derivative of arbitrary order α by a loop integral

aD
α
xf (z) =

Γ (α+ 1)
2πi

∫ x

a

(t− z)−α−1 f (t) dt, (5.3.15)

where (t− z)−α−1 = exp [− (α+ 1) ln (t− z)] and ln (t− z) is real when t−
z > 0. Using the classical method of contour integration along the branch cut
contour D, it can be shown that

0D
α
z f (z) =

Γ (α+ 1)
2πi

∫
D

(t− z)−α−1
f (t) dt

=
Γ (α+ 1)

2πi
[1− exp {−2πi (α+ 1)}]

∫ z

0

(t− z)−α−1
f (t) dt

=
1

Γ (−α)

∫ z

0

(t− z)−α−1 f (t) dt (5.3.16)

which agrees with the Riemann-Liouville definition (5.3.4) with z= x, and
a= 0 when α is replaced −α.

On the other hand, the Weyl fractional integral of order α was introduced
by Weyl (1917) by

xW
−α
∞ f (x) =

1
Γ (α)

∫ ∞

x

(t− x)α−1
f (t) dt, Reα> 0. (5.3.17)

The major difference between this definition and the Riemann-Liouville defi-
nition are the limits of integration with the kernel here being (t− x)α−1.

If Dny= f (x) is the nth order nonhomogeneous differential equations and
its adjoint equation is (−1)nDny= f (x) whose solution with the initial con-
ditions Dky (c) = 0, 0≤ k≤ n− 1 is given by

y (x) = xW
−n
c f (x) =

1
Γ (n)

∫ c

x

(t− x)n−1
f (t) dt. (5.3.18)

Replacing n by α so that Reα> 0, and c=∞, we can define the Weyl adjoint
fractional integral by (5.3.18). For a class of good functions G consisting of
functions f which are everywhere differentiable any number of times and all of
its derivatives are 0

(
x−N

)
as x→∞ for allN (see Lighthill, 1958), xW−α∞ f (x)

defined by (5.3.17) exists. Putting t− x= ξ in (5.3.17) gives

xW
−α
∞ f (x) =

1
Γ (α)

∫ ∞

0

ξα−1f (ξ + x) dξ. (5.3.19)

Application of the operator Dn to both sides of (5.3.19), dropping the sub-
scripts x and ∞ in the Weyl operator, gives

DnW−αf (x) = W−αDnf (x) . (5.3.20)
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Similarly, we can prove

EnW−αf (x) = W−αEnf (x) , (5.3.21)

where En = (−1)nDn.
If f ∈G, an n-fold integration of (5.3.17) by parts gives

W−αf (x) = W−(α+n) [Enf (x)] (5.3.22)

= En
[
W−(α+n)f (x)

]
by (5.3.21). (5.3.23)

In order to define the Weyl fractional derivatives, we assume that ν > 0
and n is the smallest integer greater than ν so that β=n− ν > 0. If, for any
function f , W−βf exists and has continuous derivatives. We then define the
Weyl fractional derivative of f of order ν by

W νf (x) = W−(β−n)f (x) =En
[
W−(β−n+n)f (x)

]
, by (5.3.23)

= En
[
W−βf (x)

]
=En

[
W−(n−ν)f (x)

]
. (5.3.24)

= En
[

1
Γ (n− ν)

∫ ∞

x

(t− x)n−ν−1 f (t) dt
]
. (5.3.25)

It may be relevant to mention that Liouville’s classical problem of potential
theory can be described by an integral equation involving the Weyl fractional
integral as

(πx)
1
2 W− 1

2 f (x) = W−1f (x) , (5.3.26)

where the force field φ (r) = rf
(
r2
)
, r=

√
x. Using a series expansion f (x),

Liouville (1832) obtained the desired law of force as

φ (r) =
a

r2
, (5.3.27)

where a is any constant.
Grünwald (1867) introduced the idea of fractional derivative as the limit of

a sum given by

Dαf (x) = lim
h→0

1
hα

n∑
r=0

(−1)r
Γ (α+ 1) f (x− rh)

Γ (r + 1)Γ (α− r + 1)
(5.3.28)

provided the limit exists. Using the identity

(−1)r
Γ (α+ 1)

Γ (α− r + 1)
=

Γ (r − α)
Γ (−α)

, (5.3.29)

the result (5.3.28) becomes

Dαf (x) = lim
h→0

h−α

Γ (−α)

n∑
r=0

Γ (r− α)
Γ (r+ 1)

f (x− rh) . (5.3.30)
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When α is equal to an integer m, definition (5.3.28) reduces to the derivative
of integral order m as

Dmf (x) = lim
h→0

1
hm

n∑
r=0

(−1)r
(
m
r

)
f (x− rh) , (5.3.31)

where
(
m
r

)
is the usual binomial coefficient.

Result (5.3.31) follows from the classical definitions of f ′ (x), f ′′ (x), ... as

Df (x) = lim
h→0

f (x) − f (x− h)
h

= lim
h→0

Δf (x)
h

, (5.3.32)

D2f (x) = lim
h→0

f ′ (x) − f ′ (x− h)
h

= lim
h→0

Δ2f (x)
h2

, (5.3.33)

where

Δf (x− rh) = f (x− rh) − f (x− (r + 1)h) . (5.3.34)

On the other hand, Marchaud (1927) formulated the fractional derivative
of arbitrary order α in the form

Dαf (x) =
f (x)

Γ (1 − α) xα
+

α

Γ (1 − α)

∫ x

0

f (x) − f (t)
(x− t)α+1 dt, (5.3.35)

where 0<α< 1. It has been shown by Samko et al. (1987) that (5.3.35) and
(5.3.28) are equivalent.

Replacing m by −m in (5.3.31), it can be shown inductively that

0D
−m
x f (x) = lim

h→0
hm

n∑
r=0

[
m
r

]
f (t− rh)

=
1

Γ (m)

∫ x

0

(x− t)m−1
f (t) dt, (5.3.36)

where [
m
r

]
=
m (m+ 1) ... (m+ r + 1)

r!
. (5.3.37)

It is important to point out that Hargreave (1848) extended the Leibniz
product rule for the nth derivative to the fractional order n=α in the form

Dα [f (x) g (x)] =
∞∑
r=0

Γ (α+ 1)
r! Γ (α− r + 1)

Dα−rf (x)Drg (x) , (5.3.38)

provided the series converges, where Dr is the differential operator of integral
order r and Dα−r is a fractional operator.
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In a series of papers, Osler (1970, 1971, 1972) and others thoroughly studied
the Leibniz product rule of derivatives of arbitrary order α and proved a
general result

Dα [f (x) g (x)] =
∞∑

r=−∞

Γ (α+ 1)
Γ (α− γ − r + 1)Γ (γ + r + 1)

×Dα−γ−rf (x)Dr+γg (x) , (5.3.39)

where γ is arbitrary. When γ= 0, Osler’s result (5.3.39) reduces to (5.3.38).
Osler also proved a generalization of the Leibniz product rule (5.3.38) in the
integral form

Dα [f (x) g (x)] =
∫ ∞

−∞

Γ (α+ 1)
Γ (α− γ − r + 1)Γ (γ + r+ 1)

×Dα−γ−rf (r) Dγ+rg (r) dr. (5.3.40)

This is a very useful formula for evaluating many definite integrals including
a generalized version of Parseval’s formula in Fourier analysis.

Using the Cauchy integral formula for fractional derivatives, Nishimoto
(1991) gave a new proof of the Leibniz product formula Dα

z [f (z) g (z)] for
analytic functions f (z) and g (z). Watanabe (1931) also derived the Leibniz
product rule by using formula (5.3.38). It may be important to point out Nishi-
moto’s (1991) formula for the fractional derivatives and integrals of logarithm
function

Dα (log az) = −e−iπαΓ (α) z−α, D−α (z−α)=−e
−iπα

Γ (α)
log z, (5.3.41)

where a �= 0, |arg a|< π
2 , z and α are complex numbers.

In addition to definition (5.3.15), it is revelant to mention Nishimoto’s def-
inition (1991) and properties of fractional calculus of functions of a single
complex variable and several complex variables. On the other hand, in their
paper, Hardy and Littlewood (1928, 1932) proved the formula

Dαf (z) =
Γ (α+ 1)

2πi

∫
C

f (t)
(t− z)α+1 dt, (5.3.42)

where |z|< 1 and C is the Hardy-Littlewood loop from t= 0 round t= z in a
positive sense.

The Riemann-Liouville integral operator aD
α
x defined by (5.3.9) satisfies

the following properties:

0D
0
xf (x) = If (x) = f (x) (Identity), (5.3.43)

aD
α
x [cf (x) + dg (x)] = c aD

α
x f (x) + d aD

α
xg (x) (Linearity), (5.3.44)

where c and d are arbitrary constants.



© 2007 by Taylor & Francis Group, LLC

Fractional Calculus and Its Applications 279

1
2

3
4

5

0
0.5

1
1.5

2
0 0

5 5

10 10

15 15

20 20

25 25

x valuesvalues

D
er

iv
at

iv
e

Figure 5.1 Fractional derivative of Dαx2 for 0≤α≤ 2.

Computational results of fractional derivative of x2 for 0≤α≤ 2 are shown
in the Figure 5.1.

Computational results of fractional derivative of sinx and cosx are shown
in Figure 5.2 and Figure 5.3, respectively (Bhatta 2006).

5.4 Applications of Fractional Calculus

It may be important to point out that the first application of fractional calcu-
lus was made by Abel (1802-1829) in the solution of an integral equation that
arises in the formulation of the tautochronous problem. This problem deals
with the determination of the shape of a frictionless plane curve through the
origin in a vertical plane along which a particle of mass m can fall in a time
that is independent of the starting position. If the sliding time is constant T ,
then the Abel integral equation (1823) is

√
2g T =

∫ η

0

(η − y)−
1
2 f ′ (y) dy, (5.4.1)

where g is the acceleration due to gravity, (ξ, η) is the initial position and s=
f (y) is the equation of the sliding curve. It turns out that (5.4.1) is equivalent
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Figure 5.2 Fractional derivative of Dα sinx for 0≤α≤ 1.

to the fractional integral equation

T
√

2g = Γ
(

1
2

)
0D

− 1
2

η f ′ (η) . (5.4.2)

Or, equivalently,

f ′ (η) = T

√
2g
π

0D
1
2
η 1 =

√
2a
η
, (5.4.3)

where a=
(
gT 2

π2

)
. Finally, the solution is

f (η) =
√

8aη= 4a sinψ, (5.4.4)

where dη
ds = sinψ. This curve is the cycloid with the vertex at the origin and

the tangent at the vertex as the x-axis. The solution of the Abel problem is
based on the fact that the derivative of a constant is not always equal to zero.

During the last decades of the nineteenth century, Heaviside successfully
developed his operational calculus without rigorous mathematical arguments.
In 1892 he introduced the idea of fractional derivatives in his study of elec-
tric transmission lines. Based on the symbolic operator form solution of heat
equation due to Gregory (1846), Heaviside introduced the letter p for the
differential operator d

dt and gave the solution of the diffusion equation

∂2u

∂x2
= a2p (5.4.5)
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Figure 5.3 Fractional derivative of Dα cosx for 0≤α≤ 1.

for the temperature distribution u (x, t) in the symbolic form

u (x, t) = A exp (ax
√
p) +B exp (−ax√p) , (5.4.6)

in which p≡ d
dx was treated as constant, where a, A, and B are also constants.

Indeed, Heaviside gave an interpretation of
√
p=D

1
2 so that 0D

1
2
t 1 = 1√

πt
,

which is in complete agreement with (5.2.10) The development of the Heavi-
side operational calculus was somewhat similar to that of calculus. Both New-
ton and Leibniz who discovered calculus did not provide a rigorous formulation
of it. The rigorous theory had been developed in the nineteenth century, even
though it is the transition of the non-rigorous development of the calculus
that is still admired. It is well known that twentieth-century mathematicians
have provided a rigorous foundation of the Heaviside operational calculus. In
his book, Davis (1936) described the theory of linear operators with fractional
calculus and its applications. He also states “The period of the formal devel-
opment of operational methods may be regarded as having ended by 1900.
The theory of integral equations was just beginning to stir the imagination of
mathematicians and to reveal the possibilities of operational methods.”

During the second half of the twentieth century, considerable amount of
research in fractional calculus was published in engineering literature. Indeed,
recent advances of fractional calculus are dominated by modern examples of
applications in differential and integral equations, physics, signal processing,
fluid mechanics, viscoelasticity, mathematical biology and electrochemistry.
There is no doubt that fractional calculus has become an exciting new math-
ematical method of solution of diverse problems in mathematics, science, and
engineering. In a recent article by Debnath (2003), he presented numerous new
and recent applications of fractional calculus in mathematics, science, and en-
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gineering. For more details, the reader is referred to the paper by Debnath
(2003).

5.5 Exercises

1. Show that

(a)
∫ ∞

0

√
x e−x

3
dx=

√
π

3
(b)

∫ ∞

0

x4 e−x
3
dx=

1
3

Γ
(

5
3

)
2. If f(x) =

√
x , show that

(a)
d

1
2 f

dx
1
2

=
√
π

2
(b)

d−
1
2 f

dx−
1
2

=
√
πx

2

3. If f(x) = x , show that

(a)
d

1
2 f

dx
1
2

= 2
√
x

π
(b)

d−
1
2 f

dx−
1
2

=
4x3/2

3
√
π

4. If f(x) = x3/2 , show that

(a)
d

1
2 f

dx
1
2

=
3
4
√
πx (b)

d−
1
2 f

dx−
1
2

=
3
8
√
πx2

5. If f(x) = x2 , show that

(a)
d

1
2 f

dx
1
2

=
8x3/2

3
√
π

(b)
d−

1
2 f

dx−
1
2

=
16x5/2

15
√
π

6. If f(x) = sin(
√
x) , show that

(a)
d

1
2 f

dx
1
2

=
√
π

2
J0(

√
x) (b)

d−
1
2 f

dx−
1
2

=
√
πx J1(

√
x)

7. If f(x) = sinh(
√
x) , show that

(a)
d

1
2 f

dx
1
2

=
√
π

2
I0(

√
x) (b)

d−
1
2 f

dx−
1
2

=
√
πx I1(

√
x)

8. If f(x) = J0(
√
x) , show that

(a)
d

1
2 f

dx
1
2

=
cos(

√
x)√

πx
(b)

d−
1
2 f

dx−
1
2

=
2 sin(

√
x)√

π



6

Applications of Integral Transforms to
Fractional Differential and Integral Equations

“In every mathematical investigation, the question will arise whether
we can apply our mathematical results to the real world.”

V. I. Arnold

“All of Abel’s works carry the imprint of an ingenuity and force of
thought which is unusual and sometimes amazing, even if the youth
of the author is not taken into consideration. One may say that he
was able to penetrate all obstacles down to the very foundations of
the problems, with a force which appeared irresistible; he attacked
the problems with extraordinary energy; he regarded them from
above and was able to soar so high over their present state that
all difficulties seemed to vanish under the victorious onslaught of
his genius.... But it was not only his great talent which created the
respect for Abel and made his loss infinitely regrettable. He distin-
guished himself equally by the purity and nobility of his character
and by a rare modesty which made his person cherished to the
same unusual degree as was his genius.”

August Leopold Crelle

6.1 Introduction

In the proceeding chapter, the basic ideas of fractional calculus and its applica-
tions have been presented. This chapter is essentially devoted to applications
of Laplace, Fourier and Hankel transforms to fractional integral equations,
fractional ordinary and partial differential equations. Many examples of ap-
plications are presented in some detail. Included are also Green’s functions of
fractional differential equations. Most of the applications involving the partial
differential equations are based on authors’ recent papers, which are listed in
the Bibliography.

283
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6.2 Laplace Transforms of Fractional Integrals
and Fractional Derivatives

The Riemann-Liouville fractional integral is usually defined by

D−αf(t) = 0D
−α
t f(t) =

1
Γ(α)

t∫
0

(t− x)α−1f(x)dx, Reα> 0. (6.2.1)

Clearly, D−α is a linear integral operator.
A simple change of variable (t− x)α = u in (6.2.1) allows us to prove the

following result

D[D−αf(t)] =D−α[Df(t)] + f(0)
tα−1

Γ(α)
. (6.2.2)

Clearly, the integral in (6.2.1) is a convolution, and hence, the Laplace trans-
form of (6.2.1) gives

L {D−αf(t)} = L {f(t)∗g(t)}= L {f(t)}L {g(t)}, (6.2.3)
= s−αf̄(s), α> 0. (6.2.4)

where g(t) =
tα−1

Γ(α)
and ḡ(s) = s−α.

The result (6.2.4) is also valid for α= 0, and

lim
α→0

L

{
tα−1

Γ(α)

}
= lim
α→0

s−α = 1. (6.2.5)

Using (6.2.4), it can readily be verified that the fractional integral operator
satisfies the laws of exponents

D−α[D−βf(t)] =D−(β+α)f(t) =D−β[D−αf(t)]. (6.2.6)

Formula (6.2.4) can be used for evaluating the fractional integral of a given
function using the inverse Laplace transform. The following examples illus-
trate this point.

L {D−αtβ}=
Γ(β + 1)
sα+β+1

, β >−1. (6.2.7)

Or, equivalently,

D−αtβ = L −1

{
Γ(β + 1)
sα+β+1

}
=

Γ(β + 1)
Γ(α+ β + 1)

tα+β . (6.2.8)
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In particular, if α= 1
2 and β(= n) is an integer, then (6.2.8) gives

D−1/2tn =
Γ(n+ 1)

Γ
(
n+

1
2

+ 1
) · tn+ 1

2 , n>−1. (6.2.9)

It also follows from (6.2.4) that

L {D−αeat}=
1

sα(s− a)
, a > 0. (6.2.10)

Or,

D−αeat = L −1

{
1

sα(s− a)

}
(6.2.11)

= L −1

{
1

sα+1

(
1 +

a

s− a

)}
=

tα

Γ(α+ 1)
+ aE(t, α+ 1, a), (6.2.12)

where E(t, α, a) is defined by

E(t, α, a) =
1

Γ(α)

t∫
0

ξα−1 exp{a(t− ξ)}dξ. (6.2.13)

In particular, if α= 1
2 then

D−1/2eat = L −1

{
1√

s(s− a)

}
=

1√
πt

∗ eat,

which is, by Example 3.7.8,

=
eat√
a
erf(

√
at). (6.2.14)

The following results follow readily from (6.2.4):

L {D−α sin at} =
a

sα(s2 + a2)
, α> 0. (6.2.15)

L {D−α cos at} =
s

sα(s2 + a2)
, α> 0. (6.2.16)

L {D−αeattβ−1} =
Γ(β)

sα(s− a)β
, α> 0, β > 0. (6.2.17)

The inverse Laplace transforms of these results combined with the Convo-
lution Theorem lead to fractional integrals of functions involved.
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One of the consequences of (6.2.1) is that

lim
α→0

D−αf(t)= f(t). (6.2.18)

This follows from the inverse Laplace transform of (6.2.4) combined with the
limit as α→ 0.

We now evaluate the Laplace transform of the fractional integral of the
derivative and then the Laplace transform of the derivative of the integral. In
view of (6.2.4), it follows that

L {D−α[Df(t)]} = s−αL {Df(t)}
= s−α[sf̄(s)− f(0)], α> 0. (6.2.19)

Although this result is proved for α> 0, it is valid even if α= 0.
On the other hand, the Laplace transform of (6.2.2) gives

L {D[D−αf(t)]} = L {D−αD[f(t)]} + f(0)L
{
tα−1

Γ(α)

}
= s−α[sf̄(s) − f(0)] + s−αf(0)
= s1−αf̄(s), α≥ 0. (6.2.20)

Obviously, if α= 0, this result does not agree with that obtained from (6.2.19)
as α→ 0. This disagreement is due to the fact that “L ” and “lim” do not
commute, as is seen from (6.2.5).

Another consequence of (6.2.1) is that the fractional derivative Dαf(t) can
be defined as the solution φ(t) of the integral equation

D−αφ(t) = f(t). (6.2.21)

The Laplace transform of this result gives the solution for φ̄(s) as

φ̄(s) = sαf̄(s). (6.2.22)

Inversion gives the fractional derivative of f(t) as

φ(t) =Dαf(t) = L −1{sαf̄(s)}, (6.2.23)

leading to the result

Dαf(t)=
1

Γ(−α)

t∫
0

(t− x)−α−1f(x)dx, α> 0. (6.2.24)

This is the Cauchy integral formula, which is often used to define the fractional
derivative. However, formula (6.2.23) can be used for finding the fractional
derivatives. If f(t) = tβ , it is seen from (6.2.23) that

Dαtβ = L −1

{
Γ(β + 1)
sβ−α+1

}
=

Γ(β + 1)
Γ(β − α+ 1)

tβ−α. (6.2.25)
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In particular, if α= 1
2 and β(= n) is an integer,

D1/2tn =
Γ(n+ 1)
Γ
(
n+ 1

2

) tn− 1
2 , n >−1.

D1/2eat = L −1

{ √
s

s− a

}
= L −1

{
1√
s

+
a√

s(s− a)

}
,

(6.2.26)

which is, by (3.2.21) and (3.7.3),

=
1√
πt

+
√
a exp(at)erf (

√
at). (6.2.27)

Example 6.2.1
Show that

D−αJ0(a
√
t) =

(
2
a

)α
tα/2Jα(a

√
t). (6.2.28)

We apply the Laplace transform to the left-hand side of (6.2.28) and use
(6.2.22) to obtain

L
{
D−αJ0(a

√
t)
}

= s−αL
{
J0(a

√
t)
}

= s−(1+α) exp
(
−a

2

4s

)
.

The inverse Laplace transform gives

D−αJ0(a
√
t) = L −1

{
s−(1+α) exp

(
−a

2

4s

)}
=
(

2
a

)α
tα/2Jα(a

√
t).

6.3 Fractional Ordinary Differential Equations

We first define a fractional differential equation with constant coefficients of
order (n, q) as

[Dnα + an−1D
(n−1)α + · · ·+ a0D

0]x(t) = 0, t≥ 0, (6.3.1)

where α=
1
q
. If q= 1, then α= 1 and this equation is simply an ordinary

differential equation of order n. Symbolically, we write (6.3.1) as

f(Dα)x(t) = 0, (6.3.2)
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where f(Dα) is a fractional differential operator.
We next use the Laplace transform method to solve a simple fractional

differential equation with constant coefficients of order (2, 2) in the form

f
(
D

1
2

)
x(t) =

(
D1 + a1D

1
2 + a0D

0
)
x(t) = 0. (6.3.3)

Application of the Laplace transform to this equation gives

[s x̄(s) − x(0)] + a1

[√
s x̄(s)−D− 1

2 x(0)
]

+ a0 x̄(s) = 0.

Or,

x̄(s) =
x(0) + a1D

− 1
2x(0)

(s+ a1
√
s+ a0)

=
A

f(
√
s)
, (6.3.4)

where f(x) = x2 + a1 x+ a0 is an associated indicial equation and A is as-
sumed to be a non-zero finite constant defined by

A= x(0) + a1D
− 1

2 {x(0)}. (6.3.5)

We next write the following partial fractions for the right hand side of
(6.3.4) so that

x̄(s) =
A

a− b

(
1√
s− a

− 1√
s− b

)
=

A

a− b

( √
s

s− a2
+

a

s− a2
−

√
s

s− b2
− b

s− b2

)
, (6.3.6)

where a and b are two distinct roots of f(x) = 0.

Using the inverse Laplace transform formula (6.2.11) with α=−1
2

and α=

0, we invert (6.3.6) to obtain the formal solution

x(t) =
A

a− b

[
E

(
t,−1

2
, a2

)
+ aE(t, 0, a2)

−E
(
t,−1

2
, b2

)
− bE(t, 0, b2)

]
. (6.3.7)

For equal roots (a= b) of f(x) = 0, we find

x̄(s) =
A

(
√
s− a)2

=A

[ √
s

(s− a2)
+

a

(s− a2)

]2

. (6.3.8)

In view of the result

L −1

{
1

sα(s− a)2

}
= t E(t, α, a) − αE(t, α+ 1, a), (6.3.9)
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the inverse Laplace transform of (6.3.8) gives the solution as

x(t) = A
[
(1 + 2a2t)E(t, 0, a2)

+aE
(
t,

1
2
, a2

)
+ 2atE

(
t,−1

2
, a2

)]
. (6.3.10)

Kempfle and Gaul (1996) developed the criteria for the existence, conti-
nuity and causality of global solutions of the fractional order linear ordinary
differential equation of the form

L (D)x (t) = f (t) , t∈R (6.3.11)

with given initial or boundary data, where L (D) is a fractional differential
operator

L (D) ≡ Dαn + an−1D
αn−1 + ...+ a1D

α1 + a0, (6.3.12)

where D≡ d
dt , 0≤α1 ≤ ...≤αn, αk are non-integers, an−1, an−2, ..., a1, a0

are real constants and f (t) is a given forcing function.
Application of the Fourier transform of x (t) with respect to t gives the

physical solution in the form

x (t) = {L (D)}−1 · f (t) =G (t) ∗ f (t)

=
∫ ∞

−∞
f (t− τ)G (τ) dτ

=
1
2π

∫ ∞

−∞
f (t− τ) dτ

∫ ∞

−∞

eiωτ

p̃ (ω)
dω, (6.3.13)

where ∗ denotes the Fourier convolution,G (t) is the impulse response function
given by

G (t) =
1
2π

∫ ∞

−∞

eiωt

p̃ (ω)
dω, ω ∈R, (6.3.14)

and

p̃ (ω) = (iω)αn + an−1 (iω)αn−1 + ...+ a1 (iω)α1 + a0. (6.3.15)

The solution (6.3.14) exists provided 1
p̃(ω) ∈L2 (R) or p̃ (ω) has no real zeros

and degL> 1
2 .

According to the well-known stability criteria for a linear system (iω→ s),
equation (6.3.13) has the solution provided

q (s) = p̃ (−is)= sαn + an−1s
αn−1 + ...+ a1s

α1 + a0 (6.3.16)

has no zeros in the right half s-plane. For simplicity, if q (s) is restricted to
the principal branch with its zeros at sk =−σk + iΩk, integral (6.3.14) can be
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evaluated by using the Cauchy residue theory so that (6.3.14) yields

G (t) =
∞∑
k=1

Ake
−σkt cos (Ωkt+ εk)− 1

π

∫ ∞

0

e−rtdr
q (r)

, (6.3.17)

where the first series solution represents phase-shifted oscillations and the
second integral term is the relaxation function which becomes dominant as
t→∞.

6.4 Fractional Integral Equations

(a) Abel’s integral equation of the first kind is given by∫ t

0

(t− τ)α−1
f (τ) dτ = g (t) , 0<α< 1, (6.4.1)

where g (t) is given function. This equation can be expressed in terms of
fractional integral

Γ (α) 0J
α
t f (t) = g (t) . (6.4.2)

Application of the Laplace transform to (6.4.1) or (6.4.2) gives the solution

f (s) =
1

Γ (α)
sα g (s) =

1
Γ (α)

s

[
1

s1−α
· g (s)

]
, (6.4.3)

which leads to the solution of (6.4.1) in the form

f (t) =
1

Γ (α)
1

Γ (1 − α)
d

dt

∫ t

0

(t− τ)−α g (τ) d (τ) . (6.4.4)

(b) Abel’s integral equation of the second kind is given by

f (t) +
a

Γ (α)

∫ t

0

(t− τ)α−1 f (τ) dτ = g (t) α> 0, (6.4.5)

where a is real or complex parameter and g (t) is a given function.
Application of the Laplace transform to (6.4.5) leads to the transform so-

lution

f (s) =
(

sα

sα + a

)
g (s) =

[
s · sα−1

sα + a
· g (s)

]
(6.4.6)

whence the inverse Laplace gives the solution

f (t) =
d

dt

∫ t

0

Eα,1 (−aτα) g (t− τ) dτ, (6.4.7)
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where the Mittag-Leffler function, Eα,β (z) is given by

Eα,β(z) =
∞∑
n=0

zn

Γ(αn+ β)
, α, β > 0. (6.4.8)

(c) Poisson’s integral equation is given by∫ π
2

0

φ (r cos θ) sin2α+1 θ dθ = h (r) . (6.4.9)

Substituting x= r cos θ into (6.4.9) gives∫ r

0

(
1 − x2

r2

)α
φ (x) dx = rh (r) ,

which is, by replacing 1
r by

√
z, and 1√

z
h
(

1√
z

)
by Ψ (z),

∫ 1√
z

0

(
1
z
− x2

)α
φ (x) dx = z−αΨ (z) .

Invoking substitution of x2 = τ and 1
z = t yields the Abel integral equation∫ √

t

0

(t− τ)α f (τ) dτ = g (t) , (6.4.10)

where

f (τ) =
φ (

√
τ )√
τ

and g (t) = 2 tαΨ
(

1
t

)
.

Thus, the solution of (6.4.10) is

f (t) =
1

Γ (α+ 1) 0D
α
t g (t) (6.4.11)

so that the solution of the Poisson equation (6.4.9) is

φ
(√

t
)

=
2
√
t

Γ (1 + α) 0D
α
t t

α+ 1
2h

(√
t
)
. (6.4.12)

Example 6.4.1
Consider the Abel integral equation

g(t) =

t∫
0

f ′(t)(t− τ)−α dτ, 0<α< 1. (6.4.13)
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Application of the Laplace transform gives

ḡ(s) = L {f ′(t)}L {t−a}.

Or,

f̄(s) =
f(0)
s

+
ḡ(s)

Γ(1− α)
s−a.

Inverting, we find

f(t) = f(0) +
1

Γ(α)Γ(1 − α)

t∫
0

g(τ)(t− τ)α−1 dτ. (6.4.14)

This is the required solution of Abel’s equation.

Example 6.4.2
Solve the Abel integral equation

g(t) =

t∫
0

(t− x)−αf(x)dx, 0<α< 1. (6.4.15)

Clearly, it follows from (6.2.1) that

g(t) = Γ(1 − α)Dα−1f(t).

Or,
D1−αg(t) = Γ(1− α)f(t).

Hence,

f(t) =
1

Γ(1 − α)
D ·D−αg(t)

=
1

Γ(1 − α)
· 1
Γ(α)

·D
t∫

0

(t− x)α−1g(x)dx

=
1

Γ(α)Γ(1 − α)
· d
dt

t∫
0

(t− x)α−1g(x)dx. (6.4.16)

Example 6.4.3
(Abel’s Problem of Tautochronous Motion). The problem is to determine the
form of a frictionless plane curve through the origin in a vertical plane along
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which a particle of mass m can fall in a time that does not depend on the
initial position.

Suppose the particle is placed on a curve at the point (ξ, η), where η is
measured positive upward. Let the particle be allowed to fall to the origin
under the action of gravity. Suppose (x, y) is any position of the particle during
its descent as shown in Figure 6.1. According to the principle of conservation
of energy, the sum of the kinetic and potential energies is constant, that is,

1
2
mυ2 +mgy=mgη= constant. (6.4.17)

This gives the velocity of the particle at any position (x, y)

υ2 =
(
ds

dt

)2

= 2g(η − y), (6.4.18)

where s is the length of the arc of the curve measured from the origin and t
is the time.

0 x

y

g

(x, y)

( , )
P

Figure 6.1 Abel’s problem.

Integrating (6.4.18) from y= η to 0 gives

τ∫
0

dt=− 1√
2g

0∫
η

ds√
η − y

=
1√
2g

η∫
0

f ′(y) dy√
η − y

,

where s= f(y) represents the equation of the curve with f(0)= 0. Thus, we
obtain √

2g T =

η∫
0

f ′(y) dy√
η − y

. (6.4.19)
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This is the Abel integral equation (6.4.13) with α= 1
2 and g(η) =T

√
2g=

constant. Thus, the solution (6.4.14) becomes

f(η) =
T
√

2g
π

η∫
0

(η − y)
1
2−1 dy,

which is, putting y= η sin2 θ and a=
gT 2

π2
,

f(η) = 2
√

2aη . (6.4.20)

If ψ is the angle made by the tangent to the curve at a point (x, y), then
dy

ds
= sinψ and

dx

ds
= cosψ so that

cosecψ=
ds

dy
= f ′(y) =

√
2a
y
.

Or,
s= f(y) = 2

√
2ay= 4a sinψ. (6.4.21)

This is the equation of the curve and represents the cycloid with the vertex
at the origin and the tangent at the vertex as the x-axis.

Alternatively, equation (6.4.19) can be expressed in terms of a half-order
fractional derivative of one as given by (5.4.3) that was solved by using frac-
tional derivatives with solution (5.4.4). The solution is the same as (6.4.21).

Example 6.4.4
(Abel’s Equation and Fractional Derivatives in a Problem of Fluid Flow). We
consider the flow of water along the x direction through a symmetric dam in
a vertical yz plane with the y-axis along the face of the dam. The problem is
to determine the form y= f(z) of the opening of the dam so that the quantity
of water per unit time is proportional to a given power of the depth of the
stream. It follows from Bernoulli’s equation of fluid mechanics that the fluid
velocity υ at a given height z above the base of the dam is given by

υ2 = 2g(h− z). (6.4.22)

The volume flux dQ through an elementary cross section dA of the opening of
the dam is dQ= υdA= 2

√
2g(h− z)1/2f(z)dz so that the total volume flux is

Q(h) = a

h∫
0

(h− z)
1
2 f(z) dz, a= 2

√
2g. (6.4.23)
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This is the Abel integral equation and hence can be written as the fractional
integral

Q(h) = aΓ
(

3
2

)
D

−3/2
h f(h). (6.4.24)

Multiplying this result by D
3/2
h with a given Q(h) = hβ , we obtain, by

(6.2.24),

f(h) =
1

aΓ
(

3
2

)D3/2
h hβ =

2a√
π

Γ(β + 1)
Γ
(
β − 1

2

)hβ−3/2, (6.4.25)

where β >−1. In particular, the shape y= f(z) is either a parabola or a

rectangle depending on whether, β=
7
2

or
3
2
. There are also other shapes of

the opening of the dam depending on the value of β.

6.5 Initial Value Problems for Fractional Differential
Equations

(a) We consider the following fractional differential equation

0D
α
t y (t) + ω2y (t) = f (t) , t > 0 (6.5.1)

with the initial conditions[
0D

α−k
t y (t)

]
t=0

= ck, k= 1, 2, ..., n, (6.5.2)

where n− 1<α<n.
Application of the Laplace transform to (6.5.1)–(6.5.2) gives

(
sα + ω2

)
y (s) = f (s) +

n∑
k=1

cks
k−1. (6.5.3)

Thus, the Laplace transform solution is

y (s) =
n∑
k=1

ck
sk−1

(sα + ω2)
+

f (s)
sα + ω2

. (6.5.4)

The inverse Laplace transform gives the solution of the initial value problem

y (t) =
n∑
k=1

ckt
α−kEα,α−k+1

(−ω2tα
)

+
∫ t

0

f (t− τ) τα−1Eα,α
(−ω2τα

)
dτ, (6.5.5)
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where Eα,β (z) is the Mittag-Leffler type function defined by the series

Eα,β (z) =
∞∑
m=0

zm

Γ (αm+ β)
, α> 0, β > 0, (6.5.6)

and the inverse Laplace transform is

L −1

{
m! sα−β

(sα+̄a)m+1

}
= tαm+β−1E

(m)
α,β (+atα) , (6.5.7)

with

E
(m)
α,β (z) =

dm

dzm
Eα,β (z) . (6.5.8)

(i) When α= 1, n= 1 so that the initial condition is y (0)= c1 and the
solution (6.5.5) reduces to the form

y (t) = c1E1,1

(−ω2t
)
+
∫ t

0

f (t− τ)E1,1

(−ω2τ
)
dτ, (6.5.9)

where E1,1 (z)= ez. Consequently, the solution assumes the standard form

y (t) = c1e
−ω2t +

∫ t

0

f (t− τ) e−ω
2τdτ. (6.5.10)

(ii) When α= 2, n= 2 so that the initial data are y (0) = c2 and y′ (0)= c1.
In this case, the solution (6.5.5) reduces to the form

y (t) = c1tE2,2

(
i2ω2t2

)
+ c2E2,1

(
i2ω2t2

)
+
∫ t

0

f (t− τ) τE2,2

(
i2ω2τ2

)
dτ, (6.5.11)

where

E2,2

(
i2z2

)
=

sinh (iz)
iz

=
sin z
iz

,

E2,1

(
i2z2

)
= cosh (iz)= cos z.

Consequently, the solution (6.5.11) reduces to the standard form

y (t) =
c1
ω

sinωt+ c2 cosωt+
1
ω

∫ t

0

f (t− τ) sinωτdτ. (6.5.12)

It is noted that equation (6.5.1) describes fractional relaxation when 0<
α≤ 1 and fractional oscillation when 1<α≤ 2. It is easy to recognize the
remarkable difference between the classical solutions for cases α= 1 and α=
2. On the other hand, the solution of the fractional equation (6.5.1) show
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remarkably different features. The classical solution corresponding to α= 1
decays exponentially as t→∞, and the fractional solution (0<α< 1) exhibits
a faster decay as t→ 0+ and much slower decay (algebraic decay compared
to exponential decay) as t→∞.
(b) Fractional Simple Harmonic Oscillator
The initial value problem for the fractional simple harmonic oscillator is given
by

d2y

dt2
+ b

dαy

dtα
+ ω2y (t) = f (t) , t > 0, 0<α< 2, (6.5.13)

y (0) = c0 and y′0 (0) = c1, (6.5.14)

where b, ω, c0 and c1 are constants and dαy
dtα represents Caputo’s fractional

derivative (see Caputo, 1967).
Two special cases are of interest: (i) 0<α< 1 and (ii) 1<α< 2 and α= 1.
Application of the Laplace transform gives the following transform solu-

tions:

(i) y (s) = c0y0 (s) + c1yδ (s) + f (s) .yδ (s) , 0<α< 1 (6.5.15)

(ii) y (s) = c0y0 (s) + c1
y0 (s)
s

+ f (s) .yδ (s) , 1<α< 2 (6.5.16)

where

y0 (s) =

(
s+ bsα−1

)
g (s)

, yδ (s) =
1

g (s)
, 0<α< 2, (6.5.17)

g (s) =
(
s2 + bsα + ω2

)
,

y0 (s)
s

=
(
1 + bsα−2

)
yδ (s) . (6.5.18)

Using the following properties of the Laplace transform

y0 (0) = lim
s→∞ s y0 (s) = 1, (6.5.19)

yδ (s) =− 1
ω2

[s y0 (s)− 1] =− 1
ω2

L {y′0 (t)} , (6.5.20)

L

{∫ t

0

y0 (τ) dτ
}

=
1
s
y0 (s) , (6.5.21)

the inverse Laplace transform of (6.5.15)–(6.5.16) yields the closed form solu-
tions:

(i) y (t) = c0y0 (t) − c1
ω2
y′0 (t) +

∫ t

0

f (t− τ) yδ (τ) dτ, 0<α< 1 (6.5.22)

(ii) y (t) = c0y0 (t) + c1

∫ t

0

y0 (τ) dτ +
∫ t

0

f (t− τ) yδ (τ) dτ, 1<α< 2 (6.5.23)

where yδ (t) =− 1
ω2 y

′
0 (t) represents the impulse response solution of the e-

quation (6.5.13) and this solution can be obtained from (6.5.23) by putting
c0 = c1 = 0 and f (t) = δ (t).
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In particular, when α= 1, equation (6.5.13) represents the classical solution
for the damped simple harmonic oscillator. In order to simplify the solution,
we write b= 2k and find

y0 (s) =
(s+ 2k)

(s+ k)2 + (ω2 − k2)
, yδ (s) =

1

(s+ k)2 + (ω2 − k2)
. (6.5.24)

The inverse Laplace transform yields the solution in three distinct cases: (i)
ω >k, (ii) ω= k, and (iii) ω <k. The final closed form solutions are given by

y (t) = c0e
−kt

(
cosσt+

k

σ
sinσt

)
+
c1
σ
e−kt sinσt

+
1
σ

∫ t

0

f (t− τ) e−kτ sinστdτ, ω >k (6.5.25)

y (t) = c0 (1 + kt) e−kt + c1t e
−kt +

∫ t

0

f (t− τ) τc−kτdτ, ω= k (6.5.26)

y (t) = c0 e
−kt

(
cosh μt+

k

μ
sinh μt

)
+
c1
μ
e−kt sinh μt

+
1
μ

∫ t

0

f (t− τ) e−kτ sinh μτ dτ, ω <k, (6.5.27)

where σ2 =ω2 − k2 and μ2 = k2 − ω2.

As expected, all solutions exhibit an exponential decay as t→∞.

6.6 Green’s Functions of Fractional Differential
Equations

(a) We consider the linear system governed by the fractional order differential
equation with constant coefficients and zero initial conditions

0D
α
t y (t) = f (t) . (6.6.1)

Application of the Laplace transform gives

y (s) = s−α f (s) . (6.6.2)

So, the solution given by

y (t) = L −1
{
s−α f (s)

}
=
∫ t

0

G (t− τ) f (τ) dτ, (6.6.3)
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where

G (t) = L −1

{
1
sα

}
=
tα−1

Γ (α)
(6.6.4)

is called the Green’s function of (6.6.1).
(b) We next consider a more general fractional order differential equation with
constant coefficients and zero initial conditions in the form

0D
α
t y (t) + ω2y (t) = f (t) . (6.6.5)

Application of the Laplace transform to (6.6.5) gives the solution

y (t) = L −1

{
1

sα + ω2
· f (s)

}
=
∫ t

0

G (t− τ) f (τ) dτ, (6.6.6)

where the Green’s function G (t) is given by

G (t) = L −1

{
1

sα + ω2

}
= tα−1Eα,α

(−ω2tα
)
. (6.6.7)

Similarly, the Green’s function for the n-term fractional-order differential
equation with constant coefficients and zero initial conditions in the form

[anDαn + an−1D
αn−1 + ...+ a1D

α1 + a0D
α0 ] y (t) = f (t) , (6.6.8)

can be obtained from the inverse Laplace transform

G (t) = L −1

⎡⎣( n∑
k=o

aks
αn

)−1
⎤⎦ . (6.6.9)

6.7 Fractional Partial Differential Equations

(a) The Fractional Diffusion Equation is given by

∂αu

∂tα
= κ

∂2u

∂x2
, x∈R, t> 0, (6.7.1)

with the boundary and initial conditions

u (x, t)→ 0 as |x| →∞, (6.7.2)[
0D

α−1
t u (x, t)

]
t=0

= f (x) forx∈R, (6.7.3)

where κ is a diffusivity constant and 0<α≤ 1.
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Application of the Fourier transform to (6.7.1) with respect x and using the
boundary condition (6.7.2) yields

Dα
t ũ (k, t) = −κk2ũ, (6.7.4)[

0D
α−1
t ũ (x, t)

]
t=0

= f̃ (k) , (6.7.5)

where ũ (k, t) is the Fourier transform of u (x, t) is defined by

ũ (k, t) =
1√
2π

∫ ∞

−∞
e−ikxu (x, t) dx. (6.7.6)

The Laplace transform solution of (6.7.4) and (6.7.5) is

˜̄u (k, s) =
f̃ (k)

(sα + κ k2)
. (6.7.7)

The inverse Laplace transform of (6.7.7) gives

ũ (k, t) = f̃ (k) tα−1Eα,α
(−κk2tα

)
, (6.7.8)

where Eα,β is the Mittag-Leffler type function defined by (6.5.6).
Finally, the inverse Fourier transform leads to the solution of the diffusion

problem as

u (x, t) =
∫ ∞

−∞
G (x− ξ, t) f (ξ) dξ, (6.7.9)

where

G (x, t) =
1
π

∫ ∞

−∞
tα−1Eα,α

(−κk2tα
)
cos kx dk. (6.7.10)

This integral for G (x, t) can be evaluated by using the Laplace transform of
G (x, t) as

G (x, s) =
1
π

∫ ∞

−∞

cos kx dk
sα + κk2

=
1√
4κ

s−α/2 exp
(
− |x|√

κ
sα/2

)
, (6.7.11)

whence the inverse Laplace transform gives the explicit solution

G (x, t) =
1√
4κ

t
α
2 −1W

(
−ξ,−α

2
,
α

2

)
, (6.7.12)

where ξ= |x|√
κ tα/2 , and W (z, α, β) is the Wright function defined by

W (z, α, β) =
∞∑
n=0

zn

n! Γ (αn+ β)
. (6.7.13)
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Figure 6.2 Graphs of (6.7.14) for different κt.

It is important to note that when α= 1, the initial value problem (6.7.1)–
(6.7.3) reduces to the classical diffusion problem and solution (6.7.9) reduces
to the classical fundamental solution because

G (x, t) =
1√
4κt

W

(
− x√

κt
,−1

2
,
1
2

)
=

1√
4πκt

exp
(
− x2

4κt

)
. (6.7.14)

It is noted that the order α of the derivative with respect to time t in equa-
tion (6.7.1) can be of arbitrary real order including α= 2 so that it may be
called the fractional diffusion-wave equation. For α= 2, it becomes the classi-
cal wave equation. The equation (6.7.1) with 1<α≤ 2 will be solved next in
some detail.

(b) The Nonhomogeneous Fractional Wave Equation is given by

∂αu

∂tα
− c2

∂2u

∂x2
= q (x, t) , x∈R, t> 0 (6.7.15)

with the initial condition

u (x, 0) = f (x) , ut (x, 0) = g (x) , x∈R, (6.7.16)

where c is a constant and 1<α≤ 2.
Application of the joint Laplace transform with respect to t and Fourier

transform with respect to x gives the transform solution

˜̄u (k, s) =
f (k) sα−1

sα + c2k2
+
g̃ (k) sα−2

sα + c2k2
+

˜̄q (k, s)
sα + c2k2

, (6.7.17)
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where k is the Fourier transform variable and s is the Laplace transform
variable.

The inverse Laplace transform produces the following result

ũ (k, t) = f̃ (k)L −1

{
sα−1

sα + c2k2

}
+ g̃ (k)L −1

{
sα−2

sα + c2k2

}
+L −1

{ ˜̄q (k, s)
sα + c2k2

}
(6.7.18)

which is, by (6.5.7),

= f̃ (k)Eα,1
(−c2k2tα

)
+ g̃ (k) tEα,2

(−c2k2tα
)

+
∫ t

0

q̃ (k, t− τ) τα−1Eα,α
(−c2k2τα

)
dτ. (6.7.19)

Finally, the inverse Fourier transform gives the formal solution

u (x, t) =
1√
2π

∫ ∞

−∞
f̃ (k)Eα,1

(−c2k2tα
)
eikxdk

+
1√
2π

∫ ∞

−∞
t g̃ (k)Eα,2

(−c2k2τα
)
eikxdk

+
1√
2π

∫ t

0

τα−1dτ

∫ ∞

−∞
q̃ (k, t− τ)Eα,α

(−c2k2tα
)
eikxdk. (6.7.20)

In particular, when α= 2, the fractional wave equation (6.7.15) reduces to
the classical wave equation. In this particular case, we obtain

E2,1

(−c2k2tα
)

= cosh (ickt)= cos (ckt) , (6.7.21)

tE2,2

(−c2k2tα
)

= t · sinh (ickt)
ickt

=
1
ck

sin(ckt). (6.7.22)

Consequently, solution (6.7.20) reduces to the classical solution (see Debnath,
2005) of the wave equation (6.7.15) with α= 2 in the form

u (x, t) =
1√
2π

∫ ∞

−∞
f̃ (k) cos (ckt) eikxdk +

1√
2π

∫ ∞

−∞
g̃ (k)

sin (ckt)
ck

eikxdk

+
1√
2π c

∫ t

0

dτ

∫ ∞

−∞
q̃ (k, τ)

sin ck (t− τ)
k

eikxdk (6.7.23)

=
1
2

[f (x− ct) + f (x+ ct)]

+
1
2c

∫ x+ct

x−ct
g (ξ) dξ +

1
2c

∫ t

0

dτ

∫ x+c(t−τ)

x−c(t−τ)
q (ξ, τ) dξ. (6.7.24)

We now derive the solution of the inhomogeneous fractional diffusion e-
quation (6.7.15) with c2 = κ and g (x)≡ 0. In this case, the joint transform
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solutions (6.7.17) becomes

˜̄u (k, s) =
f̃ (k) sα−1

(sα + κk2)
+

˜̄q (k, s)
(sα + κk2)

, (6.7.25)

which is inverted by (6.5.7) to obtain

ũ(k, t) = f̃ (k)Eα,1
(−κk2tα

)
+
∫ t

0

(t− τ)α−1
Eα,α

(−κk2 (t− τ)α
)
q̃ (k, τ) dτ.

(6.7.26)
Finally, the inverse Fourier transform gives the exact solution for the temper-
ature distribution

u (x, t) =
1√
2π

∫ ∞

−∞
f̃ (k)Eα,1

(−κk2tα
)
eikxdk

+
1√
2π

∫ t

0

dτ

∫ ∞

−∞
(t− τ)α−1Eα,α

(−κk2 (t− τ)α
)

×q̃ (k, τ) eikxdk. (6.7.27)

Application of the convolution theorem of the Fourier transform gives the
final solution in the form

u (x, t) =
∫ ∞

−∞
G1 (x− ξ, t) f (ξ) dξ

+
∫ t

0

(t− τ)α−1
dτ

∫ ∞

−∞
G2 (x− ξ, t− τ) q (ξ, τ) dξ, (6.7.28)

where

G1 (x, t) =
1
2π

∫ ∞

−∞
eikxEα,1

(−κk2tα
)
dk, (6.7.29)

and

G2 (x, t) =
1
2π

∫ ∞

−∞
eikxEα,α

(−κk2tα
)
dk. (6.7.30)

In particular, when α= 1, the classical solution of the nonhomogeneous
diffusion equation is obtained in the form

u (x, t) =
∫ ∞

−∞
G1 (x− ξ, t) f (ξ) dξ

+
∫ t

0

dτ

∫ ∞

−∞
G2 (x− ξ, t− τ) · q (ξ, τ) dξ, (6.7.31)

where

G1 (x, t) = G2 (x, t) =
1√

4πκt
exp

(
− x2

4κt

)
. (6.7.32)
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(c) We consider the fractional-order diffusion equation in a semi-infinite medi-
um x> 0, when the boundary is kept at a temperature u0f (t) and the initial
temperature is zero in the whole medium. Thus, the initial-boundary value
problem is described by the equation

∂αu

∂tα
= κ

∂2u

∂x2
, 0<x<∞, t > 0, (6.7.33)

with

u (x, t= 0)= 0, x> 0, (6.7.34)

u (x= 0, t) = u0f (t) , t > 0 and u (x, t)→ 0 as x→∞. (6.7.35)

Application of the Laplace transform with respect to t gives

d2u

dx2
+
(
sα

κ

)
u (x, s) , x > 0, (6.7.36)

u (x= 0, s)= u0f (s) , u (x, s)→ 0 as x→∞. (6.7.37)

Evidently, the solution of this transformed boundary value problem is

u (x, s) = u0 f (s) exp (−ax) , a= (sα/κ)
1
2 . (6.7.38)

Thus, the solution is given by

u (x, t) = u0

∫ t

0

f (t− τ) g (x, τ) dτ = u0f (t) ∗ g (x, t) , (6.7.39)

where

g (x, t) = L −1 {exp (−ax)} .
In this case, α= 1 and f (t) = 1, solution (6.7.38) becomes

u (x, s) =
(u0

s

)
exp

(
−x

√
s

κ

)
, (6.7.40)

which yields the classical solution in terms of the complementary error func-
tion

u (x, t) = u0 erfc
(

x

2
√
κt

)
. (6.7.41)

In the classical case (α= 1) and the more general solution is given by

u (x, t) = u0

∫ t

0

f (t− τ) g (x, τ) dτ = u0f (t) ∗ g (x, t) , (6.7.42)
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where

g (x, t) = L −1

{
exp

(
−x

√
s

κ

)}
=

x

2
√
πκt3

exp
(
− x2

4κt

)
. (6.7.43)

(d) The Fractional Stokes and Rayleigh Problems in Fluid Dynamics
The classical Stokes problem deals with the unsteady boundary layer flows
induced in a semi-infinite viscous fluid bounded by an infinite horizontal disk
at z= 0 due to non-torsional oscillations of the disk in its own plane with a
given frequency ω. When ω= 0, the Stokes problem reduces to the classical
Rayleigh problem where the unsteady boundary layer flow is generated in the
fluid from rest by moving the disk impulsively in its own plane with constant
velocity U .

We consider the unsteady fractional boundary layer equation (see Debnath
(2003)) for the fluid velocity u (z, t)

∂αu

∂tα
= ν

∂2u

∂t2
, 0<z <∞, t > 0, (6.7.44)

with the given boundary and initial conditions

u (0, t)=Uf (t) , u (z, t)→ 0 as z→∞, t > 0, (6.7.45)
u (z, 0)= 0 for all z > 0, (6.7.46)

where ν is the kinematic viscosity, U is a constant velocity and f (t) is an
arbitrary function of time t.

Application of the Laplace transform with respect to t gives

sα u (z, s) = ν
d2u

dz2
, 0<z <∞, (6.7.47)

u (0, s) = U f (s) , u (z, s)→ 0 as z→∞. (6.7.48)

Using the Fourier sine transform with respect to z yields

Us (k, s) =

(√
2
π
ν U

)
k f (s)

(sα + νk2)
. (6.7.49)

The inverse Fourier sine transform of (6.7.49) leads to the solution

u (z, s) =
(

2
π
νU

)
f (s)

∫ ∞

0

k sin kz
(sα + νk2)

dk, (6.7.50)

and the inverse Laplace transform gives the solution for the velocity field

u (z, t) =
(

2
π
ν U

)∫ ∞

0

k sin kz dk

×
∫ t

0

f (t− τ) τα−1Eα,α
(−νk2τα

)
dτ. (6.7.51)
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When f (t) = exp (iωt), the solution of the fractional Stokes problem is

u (z, t) =
(

2νU
π

)
eiωt

∫ ∞

0

k sinkzdk

×
∫ t

0

e−iωττα−1Eα,α
(−νk2τα

)
dτ. (6.7.52)

When α= 1, solution (6.7.52) reduces to the classical Stokes solution in the
form

u (z, t) =
(

2νU
π

)∫ ∞

0

(
1 − e−νtk

2
) k sinkz

(iω+ νk2)
dk. (6.7.53)

For the fractional Rayleigh problem, f (t) = 1 and the solution follows from
(6.7.51) in the form

u (z, t) =
(

2νU
π

)∫ ∞

0

k sin kzdk
∫ t

0

τα−1Eα,α
(−νk2τα

)
dτ. (6.7.54)

This solution reduces to the classical Rayleigh solution when α= 1 as

u (z, t) =
(

2νU
π

)∫ ∞

0

k sinkzdk
∫ t

0

E1,1

(−ντk2
)
dτ

=
(

2νU
π

)∫ ∞

0

k sinkzdk
∫ t

0

exp
(−ντk2

)
dτ

=
(

2U
π

)∫ ∞

0

(
1 − e−νtk

2
) sin kz

k
dk,

which is, by (2.15.10),

=
(

2U
π

)[
π

2
− π

2
erf

(
z

2
√
νt

)]
=Uerfc

(
z

2
√
νt

)
, (6.7.55)

where erfc (x) is the complimentary error function.

(e) The Fractional Unsteady Couette Flow
We consider the unsteady viscous fluid flow between the plate at z= 0 at rest
and the plate z= h in motion parallel to itself with a variable velocity U (t)
in the x-direction. The fluid velocity u (z, t) satisfies the fractional equation
of motion (see Debnath(2003))

∂αu

∂tα
= P (t) + ν

∂2u

∂t2
, 0≤ z≤ h, t > 0, (6.7.56)

with the boundary and initial conditions

u (0, t)= 0 and u (h, t) =U (t) , t > 0, (6.7.57)
u (z, t)= 0 at t≤ 0 for 0≤ z≤ h, (6.7.58)
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where − 1
ρ px =P (t) and ν is the kinematic viscosity of the fluid.

We apply the joint Laplace transform with respect to t and the finite Fourier
sine transform with respect to z defined by

¯̃us (n, s) =
∫ ∞

0

e−stdt
∫ h

0

u (z, t) sin
(nπz
h

)
dz, (6.7.59)

to the system (6.7.56) - (6.7.58) so that the transform solution is

¯̃us (n, s) =
P (s) 1

a [1 − (−1)n]
(sα + νa2)

+
νa (−1)n+1

U (s)
(sα + νa2)

, (6.7.60)

where a=
(
nπ
h

)
, n is the finite Fourier sine transform variable.

Thus, the inverse Laplace transform yields

ũs (n, t) =
1
a

[1− (−1)n]
∫ t

0

P (t− τ) τα−1Eα,α
(−νa2τα

)
dτ

+ νa (−1)n+1
∫ t

0

U (t− τ) τα−1Eα,α
(−νa2τα

)
dτ. (6.7.61)

Finally, the inverse finite Fourier sine transform leads to the solution

u (z, t) =
2
h

∞∑
n=1

ũs (n, t) sin
(nπz
h

)
. (6.7.62)

If, in particular, P (t) =constant and U (t) =constant, then solution (6.7.62)
reduces to the solution of the generalized Couette flow.

(f) Fractional Axisymmetric Wave-Diffusion Equation
The fractional axisymmetric equation in an infinite domain

∂αu

∂tα
= a

(
∂2u

∂r2
+

1
r

∂u

∂r

)
, 0< r<∞, t > 0, (6.7.63)

is called the diffusion or wave equation according as a= κ or a= c2.
For the fractional diffusion equation, we prescribe the initial condition

u (r, 0) = f (r) , 0< r<∞. (6.7.64)

Application of the joint Laplace transform with respect to t and Hankel trans-
form (7.4.3) of zero order (see Chapter 7) with respect to r to (6.7.63)–(6.7.64)
gives the transform solution

¯̃u (k, s) =
sα−1f̃ (k)
(sα + κk2)

, (6.7.65)

where k, s are the Hankel and Laplace transform variables, respectively.
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The joint inverse transform leads to the solution

u (r, t) =
∫ ∞

0

rJ0 (kr) f̃ (k)Eα,1
(−κk2tα

)
dk, (6.7.66)

where J0 (kr) is the Bessel function of the first kind of order zero and f̃ (k) is
the Hankel transform of f (r).

On the other hand, we can solve the wave equation (6.7.63) with a= c2 and
the initial conditions

u (r, 0) = f (r) , ut (r, 0) = g (r) for 0< r<∞, (6.7.67)

provided the Hankel transforms of f (r) and g (r) exist.
Application of the joint Laplace and Hankel transform leads to the trans-

form solution

¯̃u (k, s) =
sα−1f̃ (k)

(sα + c2k2)
+

sα−2g̃ (k)
(sα + c2k2)

. (6.7.68)

The joint inverse transformation gives the solution

u (r, t) =
∫ ∞

0

kJ0 (k, r) f̃ (k)Eα,1
(−c2k2tα

)
dk

+
∫ ∞

0

kJ0 (k, r) g̃ (k) tEα,2
(−c2k2tα

)
dk. (6.7.69)

When α= 2, solution (6.7.69) is in total agreement with that of the classical
axisymmetric wave equation (see Example 7.4.1 in Chapter 7).

In a finite domain 0≤ r≤ a, the fractional diffusion equation (6.7.63) can
be solved by using the joint Laplace and finite Hankel transform with the
boundary and initial data

u (r, t) = f (t) on r= a, t > 0, (6.7.70)
u (r, 0) = 0 for all r in (0, a) . (6.7.71)

Application of the joint Laplace and finite Hankel transform of zero order (see
Chapter 13) yields the solution

u (r, t) =
2
a2

∞∑
i=1

ũ (ki, t)
J0 (rki)
J2

1 (aki)
, (6.7.72)

where

ũ (ki, t) = (aκ ki)J1 (aki)
∫ t

0

f (t− τ) τα−1Eα,α
(−κk2

i τ
α
)
dτ. (6.7.73)
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Similarly, the fractional wave equation (6.7.63) with a= c2 in a finite domain
0≤ r≤ a with the boundary and initial data

u (r, t) = 0 on r= a, t> 0, (6.7.74)
u (r, 0) = f (r) and ut (r, 0)= g (r) for 0<r <a, (6.7.75)

can be solved by means of the joint Laplace and the finite Hankel transform
(13.2.8). The solution of this problem is

u (r, t) =
2
a2

∞∑
i=1

ũ (ki, t)
J0 (rki)
J2

1 (aki)
, (6.7.76)

where

ũ (ki, t) = f̃ (ki)Eα,1
(−c2ki2tα)+ g̃ (ki)Eα,2

(−c2k2
i t
α
)
. (6.7.77)

(g) The Fractional Schrödinger Equation in Quantum Mechanics
The one-dimensional fractional Schrödinger equation (see Debnath(2003)) for
a free particle of mass m is

i�
∂αψ

∂tα
= − �2

2m
∂2ψ

∂x2
, −∞<x<∞, t > 0, (6.7.78)

ψ (x, 0) = ψ0 (x) , −∞<x<∞, (6.7.79)
ψ (x, t) → 0 as |x|→∞, (6.7.80)

where ψ (x, t) is the wave function, h= 2π� = 6.625 × 10−27erg sec = 4.14 ×
10−21MeV sec is the Planck constant and ψ0 (x) is an arbitrary function.

Application of the joint Laplace and Fourier transform to (6.7.78)–(6.7.80)
gives the solution in the transform space in the form

ψ̃ (k, s) =
sα−1ψ̃0 (k)
sα + ak2

,

(
a=

i�

2m

)
, (6.7.81)

where k, s represent the Fourier and the Laplace transforms variables.
The use of the joint inverse transform yields the solution

ψ (x, t) =
1√
2π

∫ ∞

−∞
eikxψ̃0 (k)Eα,1

(−ak2tα
)
dk (6.7.82)

= F−1
{
ψ̃0 (k)Eα,1

(−ak2tα
)}
, (6.7.83)

which is, by the convolution theorem of the Fourier transform,

=
∫ ∞

−∞
G (x− ξ, t)ψ0 (ξ) dξ. (6.7.84)
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where

G (x, t) =
1√
2π

F−1
{
Eα,1

(−ak2tα
)}

=
1
2π

∫ ∞

−∞
eikxEα,1

(−ak2tα
)
dk. (6.7.85)

When α= 1, the solution of the Schrödinger equation (6.7.78) becomes

ψ (x, t) =
∫ ∞

−∞
G (x− ξ, t)ψ0 (ξ) dξ, (6.7.86)

where the Green’s function G (x, t) is given by

G (x, t) =
1
2π

∫ ∞

−∞
eikxE1,1

(−ak2t
)
dk

=
1
2π

∫ ∞

−∞
exp

(
ikx− atk2

)
=

1√
4πat

exp
(
− x2

4at

)
. (6.7.87)

(h) Linear Inhomogeneous Fractional Evolution Equation
The fairly general linear inhomogeneous fractional evolution equation is given
by (see Debnath and Bhatta (2004))

∂αu

∂tα
+ c

∂u

∂x
− ν

∂2u

∂x2
+ b3

∂3u

∂x3
+ ....+ bn

∂nu

∂xn
= q (x, t) , x∈R, t> 0, (6.7.88)

where c, ν, and b3, ..., bn are constants and 0<α≤ 1. We solve this fractional
evolution equation with the following initial and boundary conditions

u (x, 0) = f (x) x∈R (6.7.89)
u (x, t) → 0 as |x| →∞, t > 0. (6.7.90)

Application of the joint Laplace transform with respect to t and Fourier
transform with respect to x gives the transform solution

˜̄u (k, s) =
f (k) sα−1

sα + a2
+

˜̄q (k, s)
sα + a2

, (6.7.91)

where k is the Fourier transform variable s is the Laplace transform variable,
and a2 is given by

a2 = ikc+ k2ν + (ik)3b3 + (ik)4b4 + ....+ (ik)nbn. (6.7.92)

We use the following inverse Laplace transform formula

L −1

{
m! sα−β

(sα+̄a)m+1

}
= tαm+β−1E

(m)
α,β (+atα) , (6.7.93)
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where Eα,β (z) and E
(m)
α,β (z) are defined by (6.5.6) and (6.5.8) respectively.

The inverse Laplace transform yields the following result

ũ (k, t) = f̃ (k)L −1

{
sα−1

sα + a2

}
+ L −1

{ ˜̄q (k, s)
sα + a2

}
, (6.7.94)

which can be written as

ũ (k, t) = f̃ (k)Eα,1
(−a2tα

)
+
∫ t

0

q̃ (k, t− τ) τα−1Eα,α
(−a2τα

)
dτ. (6.7.95)

Finally, the inverse Fourier transform gives the formal solution

u (x, t) =
1√
2π

∫ ∞

−∞
f̃ (k)Eα,1

(−a2tα
)
eikxdk

+
1√
2π

∫ t

0

τα−1dτ

∫ ∞

−∞
q̃ (k, t− τ)Eα,α

(−a2tα
)
eikxdk, (6.7.96)

where a2 is given by (6.7.92). The solution in equation (6.7.96) is fairly general
and contains solutions of many special evolution equations including the frac-
tional wave equation, Korteweg de Vries (KdV) equation, and KdV-Burgers
equation (see Debnath and Bhatta, 2004).

(i) Linear Inhomogeneous Fractional Telegraph Equation
Here we solve the one-dimensional linear inhomogeneous fractional telegraph
equation given by

∂αu

∂tα
− c2

∂2u

∂x2
+ a

∂u

∂t
+ bu = q (x, t) , x∈R, t> 0 (6.7.97)

where a, b, and c are constants and 1<α≤ 2.
We solve this fractional evolution equation with the following initial and
boundary conditions

u (x, t) = f (x) ,
∂u(x, t)
∂t

= g(x) at t= 0, x∈R (6.7.98)

u (x, t) → 0 as |x|→∞, t > 0 (6.7.99)

Applying the joint transform of Laplace and Fourier and taking the inverse
Laplace tansform, we have

ũ (k, t) = f̃ (k)Eα,1
(−λ2tα

)
+ tg̃ (k)Eα,1

(−λ2tα
)

+
∫ t

0

q̃ (k, t− τ) τα−1Eα,α
(−λ2τα

)
dτ, (6.7.100)

where
λ2 = c2k2 + aik+ b. (6.7.101)
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Application of the inverse Fourier transform to equation (6.7.100) yields the
solution u(x, t) as

u (x, t) =
1√
2π

∫ ∞

−∞
f̃ (k)Eα,1

(−λ2tα
)
eikxdk

+
1√
2π

∫ ∞

−∞
tg̃ (k)Eα,2

(−λ2tα
)
eikxdk

+
1√
2π

∫ t

0

τα−1dτ

∫ ∞

−∞
q̃ (k, t− τ)Eα,α

(−λ2tα
)
eikxdk.(6.7.102)

In the limit as a→ 0, the telegraph equation reduces to the Klein-Gordon
equation and its solution is in perfect agreement with each other (see Debnath
and Bhatta, 2004).

6.8 Exercises

1. Consider linear inhomogeneous fractional differential equation

∂αu

∂tα
+ c

∂u

∂x
= q (x, t) , x∈R, t> 0

where c is a constant, 0<α≤ 1, and q, source term, is a function of x
and t.

Assuming the initial and boundary conditions

u (x, 0) = f (x) , x∈R
u (x, t) → 0 as |x|→∞, t > 0

show that the solution u(x, t) is given by

u (x, t) =
1√
2π

∫ ∞

−∞
f̃ (k)Eα,1 (−icktα) eikxdk

+
1√
2π

∫ t

0

τα−1dτ

∫ ∞

−∞
q̃ (k, t− τ)Eα,α (−icktα) eikxdk.

In particular, when α= 1, the solution becomes

u(x, t) = f(x− ct) +
1√
2π

∫ t

0

dτ

∫ ∞

−∞
q̃ (k, τ) eik{x−c(t−τ)}dk

= f(x− ct) +
∫ t

0

q{x− c(t− τ), τ} dτ.
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2. Consider linear inhomogeneous fractional Burgers equation

∂αu

∂tα
+ c

∂u

∂x
− ν

∂2u

∂x2
= q (x, t) , x∈R, t> 0,

where c is a constant, 0<α≤ 1, ν is the kinematic viscosity and q(x, t)
is a source term.

Assuming the initial and boundary conditions

u (x, 0) = f (x) , x∈R,
u (x, t) → 0 as |x|→∞, t > 0,

show that the solution u(x, t) is given by

u (x, t) =
1√
2π

∫ ∞

−∞
f̃ (k)Eα,1

(−a2tα
)
eikxdk

+
1√
2π

∫ t

0

τα−1dτ

∫ ∞

−∞
q̃ (k, t− τ)Eα,α

(−a2tα
)
eikxdk,

where a2 =
(
ick + νk2

)
.

3. Consider linear inhomogeneous fractional KdV equation

∂αu

∂tα
+ c

∂u

∂x
+ b

∂3u

∂x3
= q (x, t) , x∈R, t> 0

where b and c are constants, 0<α≤ 1.

Assuming the initial and boundary conditions

u (x, 0) = f (x) , x∈R,
u (x, t) → 0 as |x|→∞, t > 0,

show that the solution u(x, t) is given by

u (x, t) =
1√
2π

∫ ∞

−∞
f̃ (k)Eα,1

(−a2tα
)
eikxdk

+
1√
2π

∫ t

0

τα−1dτ

∫ ∞

−∞
q̃ (k, t− τ)Eα,α

(−a2tα
)
eikxdk,

where a2 =
(
ick − ik3b

)
.

4. Consider linear inhomogeneous fractional KdV-Burgers equation

∂αu

∂tα
+ c

∂u

∂x
− ν

∂2u

∂x2
+ b

∂3u

∂x3
= q (x, t) , x∈R, t> 0,
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where b, c and ν are constants, 0<α≤ 1.

Assuming the initial and boundary conditions

u (x, 0) = f (x) , x∈R,
u (x, t) → 0 as |x|→∞, t > 0,

show that the solution u(x, t) is given by

u (x, t) =
1√
2π

∫ ∞

−∞
f̃ (k)Eα,1

(−a2tα
)
eikxdk

+
1√
2π

∫ t

0

τα−1dτ

∫ ∞

−∞
q̃ (k, t− τ)Eα,α

(−a2tα
)
eikxdk,

where a2 =
(
ick + k2ν − ik3b

)
.

5. Consider linear inhomogeneous fractional Klein-Gordon equation

∂αu

∂tα
− c2

∂2u

∂x2
+ d2u= q (x, t) , x∈R, t> 0,

where c and d are constants, 1<α≤ 2.

Assuming the initial and boundary conditions

u (x, t) = f (x) ,
∂u(x, t)
∂t

= g(x) at t= 0, x∈R,
u (x, t) → 0, as |x| →∞, t > 0,

show that the solution u(x, t) is given by

u (x, t) =
1√
2π

∫ ∞

−∞
f̃ (k)Eα,1

(−a2tα
)
eikxdk

+
1√
2π

∫ ∞

−∞
tg̃ (k)Eα,2

(−a2tα
)
eikxdk

+
1√
2π

∫ t

0

τα−1dτ

∫ ∞

−∞
q̃ (k, t− τ)Eα,α

(−a2tα
)
eikxdk,

where a2 =
(
c2k2 + d2

)
.
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7

Hankel Transforms and Their Applications

“In most sciences one generation tears down what another has
built, and what one has established, another undoes. In mathemat-
ics alone each generation adds a new storey to the old structure.”

Hermann Hankel

“I have always regarded mathematics as an object of amusement
rather than of ambition, and I can assure you that I enjoy the
works of others much more than my own.”

Joseph-Louis Lagrange

7.1 Introduction

Hermann Hankel (1839-1873), a German mathematician, is remembered for
his numerous contributions to mathematical analysis including the Hankel
transformation, which occurs in the study of functions which depend only on
the distance from the origin. He also studied functions, now named Hankel
functions or Bessel functions of the third kind. The Hankel transform involv-
ing Bessel functions as the kernel arises naturally in axisymmetric problems
formulated in cylindrical polar coordinates. This chapter deals with the defini-
tion and basic operational properties of the Hankel transform. A large number
of axisymmetric problems in cylindrical polar coordinates are solved with the
aid of the Hankel transform. The use of the joint Laplace and Hankel trans-
forms is illustrated by several examples of applications to partial differential
equations.

315
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7.2 The Hankel Transform and Examples

We introduce the definition of the Hankel transform from the two-dimensional
Fourier transform and its inverse given by

F {f(x, y)} = F (k, l) =
1
2π

∞∫
−∞

∞∫
−∞

exp{−i(κ · r)}f(x, y) dx dy, (7.2.1)

F −1 {F (k, l)} = f(x, y) =
1
2π

∞∫
−∞

∞∫
−∞

exp{i(κ · r)}F (k, l) dk dl, (7.2.2)

where r = (x, y) and κ = (k, l). Introducing polar coordinates (x, y)=r(cos θ,
sin θ) and (k, l)= κ(cosφ, sinφ), we find κ · r= κr cos(θ − φ) and then

F (κ, φ) =
1
2π

∞∫
0

r dr

2π∫
0

exp[−iκ r cos(θ− φ)]f(r, θ)dθ. (7.2.3)

We next assume f(r, θ) = exp(inθ)f(r), which is not a very severe restric-
tion, and make a change of variable θ− φ=α− π

2 to reduce (7.2.3) to the
form

F (κ, φ) =
1
2π

∞∫
0

rf(r)dr

×
2π+φ0∫
φ0

exp
[
in
(
φ− π

2

)
+ i(nα− κr sinα)

]
dα, (7.2.4)

where φ0 =
(π

2
− φ

)
.

Using the integral representation of the Bessel function of order n

Jn(κr) =
1
2π

2π+φ0∫
φ0

exp[i(nα− κr sinα)]dα (7.2.5)

integral (7.2.4) becomes

F (κ, φ) = exp
[
in
(
φ− π

2

)] ∞∫
0

rJn(κr)f(r)dr (7.2.6)

= exp
[
in
(
φ− π

2

)]
f̃n(κ), (7.2.7)
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where f̃n(κ) is called the Hankel transform of f(r) and is defined formally by

Hn {f(r)}= f̃n(κ) =

∞∫
0

rJn(κr)f(r) dr. (7.2.8)

Similarly, in terms of the polar variables with the assumption f(x, y) =
f(r, θ) = einθf(r) with (7.2.7), the inverse Fourier transform (7.2.2) becomes

einθf(r) =
1
2π

∞∫
0

κ dκ

2π∫
0

exp[iκr cos(θ − φ)]F (κ, φ)dφ

=
1
2π

∞∫
0

κ f̃n(κ)dκ

2π∫
0

exp
[
in
(
φ− π

2

)
+ iκr cos(θ − φ)

]
dφ,

which is, by the change of variables θ− φ=−
(
α+

π

2

)
and θ0 =−

(
θ+

π

2

)
,

=
1
2π

∞∫
0

κf̃n(κ)dκ

2π+θ0∫
θ0

exp[in(θ+ α) − iκr sinα]dα

= einθ
∞∫
0

κJn(κr)f̃n(κ)dκ, by (7.2.5). (7.2.9)

Thus, the inverse Hankel transform is defined by

H −1
n

[
f̃n(κ)

]
= f(r) =

∞∫
0

κJn(κr)f̃n(κ)dκ. (7.2.10)

Instead of f̃n(κ), we often simply write f̃(κ) for the Hankel transform speci-
fying the order. Integrals (7.2.8) and (7.2.10) exist for certain large classes of
functions, which usually occur in physical applications.

Alternatively, the famous Hankel integral formula (Watson, 1944, p. 453)

f(r) =

∞∫
0

κ Jn(κr)dκ

∞∫
0

pJn(κp)f(p)dp, (7.2.11)

can be used to define the Hankel transform (7.2.8) and its inverse (7.2.10).
In particular, the Hankel transforms of the zero order (n= 0) and of order

one (n= 1) are often useful for the solution of problems involving Laplace’s
equation in an axisymmetric cylindrical geometry.

Example 7.2.1
Obtain the zero-order Hankel transforms of
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(a) r−1 exp(−ar), (b)
δ(r)
r
, (c) H(a− r),

where H(r) is the Heaviside unit step function.
We have

(a) f̃(κ) = H0

{
1
r

exp(−ar)
}

=

∞∫
0

exp(−ar)J0(κr)dr=
1√

κ2 + a2
.

(b) f̃(κ) = H0

{
δ(r)
r

}
=

∞∫
0

δ(r)J0(κr)dr= 1.

(c) f̃(κ) = H0{H(a− r)} =

a∫
0

rJ0(κr)dr=
1
κ2

aκ∫
0

pJ0(p)dp

=
1
κ2

[pJ1(p)]aκ0 =
a

κ
J1(aκ).

Example 7.2.2
Find the first order Hankel transforms of

(a) f(r) = e−ar, (b) f(r) =
1
r
e−ar, (c) f(r) =

sin ar
r

.

We can write

(a) f̃(κ) = H1{e−ar}=

∞∫
0

re−arJ1(κr)dr=
κ

(a2 + κ2)
3
2
.

(b) f̃(κ) = H1

{
a−ar

r

}
=

∞∫
0

e−arJ1(κr)dr=
1
κ

[
1 − a(κ2 + a2)−

1
2

]
.

(c) f̃(κ) = H1

{
sinar
r

}
=

∞∫
0

sin ar J1(κr) dr=
aH(κ− a)
κ(κ2 − a2)

1
2
.

Example 7.2.3
Find the nth (n>−1) order Hankel transforms of

(a) f(r) = rnH(a− r), (b) f(r) = rn exp(−ar2).
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Here we have, for n>−1,

(a) f̃(κ) = Hn [rnH(a− r)] =

a∫
0

rn+1Jn(κr)dr=
an+1

κ
Jn+1(aκ).

(b) f̃(κ) = Hn

[
rn exp(−ar2)]=

∞∫
0

rn+1Jn(κr) exp(−ar2)dr

=
κn

(2a)n+1
exp

(
−κ

2

4a

)
.

7.3 Operational Properties of the Hankel Transform

THEOREM 7.3.1

(Scaling). If Hn{f(r)}= f̃n(κ), then

Hn{f(ar)}=
1
a2
f̃n

(κ
a

)
, a > 0. (7.3.1)

PROOF We have, by definition,

Hn{f(ar)} =

∞∫
0

rJn(κr)f(ar)dr

=
1
a2

∞∫
0

sJn

(κ
a
s
)
f(s)ds=

1
a2
f̃n

(κ
a

)
.

THEOREM 7.3.2

(Parseval’s Relation). If f̃(κ) = Hn{f(r)} and g̃(κ) = Hn{g(r)}, then

∞∫
0

rf(r)g(r)dr =

∞∫
0

κf̃(κ)g̃(κ)dκ. (7.3.2)
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PROOF We proceed formally to obtain

∞∫
0

κf̃(κ)g̃(κ)dκ=

∞∫
0

κf̃(κ)dκ

∞∫
0

rJn(κr)g(r)dr,

which is, interchanging the order of integration,

=

∞∫
0

rg(r)dr

∞∫
0

κJn(κr)f̃ (κ)dκ

=

∞∫
0

rg(r)f(r)dr.

THEOREM 7.3.3
(Hankel Transforms of Derivatives) If f̃n(κ) = Hn{f(r)}, then

Hn{f ′(r)} =
κ

2n

[
(n− 1)f̃n+1(κ)− (n+ 1)f̃n−1(κ)

]
, n≥ 1, (7.3.3)

H1{f ′(r)} = −κf̃0(κ), (7.3.4)

provided [rf(r)] vanishes as r→ 0 and r→∞.

PROOF We have, by definition,

Hn{f ′(r)}=

∞∫
0

rJn(κr)f ′(r)dr

which is, integrating by parts,

= [rf(r)Jn(κr)]∞0 −
∞∫
0

f(r)
d

dr
[rJn(κr)]dr. (7.3.5)

We now use the properties of the Bessel function

d

dr
[rJn(κr)] = Jn(κr) + rκJ ′

n(κr) = Jn(κr) + rκJn−1(κr) − nJn(κr)

= (1 − n)Jn(κr) + rκJn−1(κr). (7.3.6)

In view of the given condition, the first term of (7.3.5) vanishes as r→ 0
and r→∞, and the derivative within the integral in (7.3.5) can be replaced



© 2007 by Taylor & Francis Group, LLC

Hankel Transforms and Their Applications 321

by (7.3.6) so that (7.3.5) becomes

Hn{f ′(r)}= (n− 1)

∞∫
0

f(r)Jn(κr)dr − κf̃n−1(κ). (7.3.7)

We next use the standard recurrence relation for the Bessel function

Jn(κr) =
κr

2n
[Jn−1(κr) + Jn+1(κr)]. (7.3.8)

Thus, (7.3.7) can be rewritten as

Hn[f ′(r)] = −κf̃n−1(κ) + κ

(
n− 1
2n

)⎡⎣ ∞∫
0

rf(r){Jn−1(κr) + Jn+1(κr)}dr
⎤⎦

= −κf̃n−1(κ) + κ

(
n− 1
2n

)[
f̃n−1(κ) + f̃n+1(κ)

]
=
( κ

2n

) [
(n− 1)f̃n+1(κ)− (n+ 1)f̃n−1(κ)

]
.

In particular, when n= 1, (7.3.4) follows immediately.
Similarly, repeated applications of (7.3.3) lead to the following result

Hn{f ′′(r)} =
κ

2n
[
(n− 1)Hn+1{f ′(r)} − (n+ 1)Hn−1{f ′(r)}]

=
κ2

4

[(
n+ 1
n− 1

)
f̃n−2(κ)− 2

(
n2 − 3
n2 − 1

)
f̃n(κ)

+
(
n− 1
n+ 1

)
f̃n+2(κ)

]
. (7.3.9)

THEOREM 7.3.4
If Hn{f(r)}= f̃n(κ), then

Hn

{(
∇2 − n2

r2

)
f(r)

}
= Hn

{
1
r

d

dr

(
r
df

dr

)
− n2

r2
f(r)

}
=−κ2f̃n(κ),

(7.3.10)
provided both rf ′(r) and rf(r) vanish as r→ 0 and r→∞.

PROOF We have, by definition (7.2.8),

Hn

{
1
r

d

dr

(
r
df

dr

)
− n2

r2
f(r)

}
=

∞∫
0

Jn(κr)
[
d

dr

(
r
df

dr

)]
dr

−
∞∫
0

n2

r2
[rJn(κr)]f(r)dr,
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which is, invoking integration by parts,

=
[(
r
df

dr

)
Jn(κr)

]∞
0

− κ

∞∫
0

r
df

dr
J ′
n(κr)dr −

∞∫
0

n2

r2
[rJn(κr)]f(r)dr,

which is, by replacing the first term with zero because of the given assumption,
and by invoking integration by parts again,

=−[κrf(r)J ′
n(κr)

]∞
0

+

∞∫
0

d

dr

[
κrJ ′

n(κr)
]
f(r)dr −

∞∫
0

n2

r2
[rJn(κr)]f(r)dr.

We use the given assumptions and Bessel’s differential equation,

d

dr

[
κr J ′

n(κr)
]
+ r

(
κ2 − n2

r2

)
Jn(κr) = 0, (7.3.11)

to obtain

Hn

{(
∇2 − n2

r2

)
f(r)

}
=−

∞∫
0

(
κ2 − n2

r2

)
rf(r)Jn(κr)dr

−
∞∫
0

n2

r2
[rf(r)] Jn(κr) dr

=−κ2

∞∫
0

rJn(κr)f(r)dr =−κ2Hn[f(r)] =−κ2f̃n(κ).

This proves the theorem.
In particular, when n= 0 and n= 1, we obtain

H0

{
1
r

d

dr

(
r
df

dr

)}
= −κ2f̃0(κ), (7.3.12)

H1

{
1
r

d

dr

(
r
df

dr

)
− 1
r2
f(r)

}
= −κ2f̃1(κ). (7.3.13)

Results (7.3.10), (7.3.12), and (7.3.13) are widely used for finding solutions
of partial differential equations in axisymmetric cylindrical configurations. We
illustrate this point by considering several examples of applications.

7.4 Applications of Hankel Transforms to Partial
Differential Equations

The Hankel transforms are extremely useful in solving a variety of partial
differential equations in cylindrical polar coordinates. The following examples
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illustrate applications of the Hankel transforms. The examples given here are
only representative of a whole variety of physical problems that can be solved
in a similar way.

Example 7.4.1
(Free Vibration of a Large Circular Membrane). Obtain the solution of the free
vibration of a large circular elastic membrane governed by the initial value
problem

c2
(
∂2u

∂r2
+

1
r

∂u

∂r

)
=
∂2u

∂t2
, 0<r <∞, t > 0, (7.4.1)

u(r, 0)= f(r), ut(r, 0) = g(r), for 0≤ r <∞, (7.4.2ab)

where c2 = (T/ρ)= constant, T is the tension in the membrane, and ρ is the
surface density of the membrane.

Application of the zero-order Hankel transform with respect to r

ũ(κ, t) =

∞∫
0

r J0(κr)u(r, t)dr, (7.4.3)

to (7.4.1)–(7.4.2ab) gives
d2ũ

dt2
+ c2κ2ũ= 0, (7.4.4)

ũ(κ, 0) = f̃(κ), ũt(κ, 0)= g̃(κ). (7.4.5ab)

The general solution of this transformed system is

ũ(κ, t) = f̃(κ) cos(cκt) + (cκ)−1 g̃(κ) sin(cκt). (7.4.6)

The inverse Hankel transform leads to the solution

u(r, t) =

∞∫
0

κ f̃(κ) cos(cκt)J0(κr)dκ

+
1
c

∞∫
0

g̃(κ) sin(cκt)J0(κr)dκ. (7.4.7)

In particular, we consider

u(r, 0)= f(r) =Aa(r2 + a2)−
1
2 , ut(r, 0) = g(r) = 0, (7.4.8ab)

so that g̃(κ)≡ 0 and

f̃(κ) =Aa

∞∫
0

r(a2 + r2)−
1
2 J0(κr)dr=

Aa

κ
e−aκ, by Example 7.2.1(a).
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Thus, the formal solution (7.4.7) becomes

u(r, t) = Aa

∞∫
0

e−aκJ0(κr) cos(cκt)dκ=AaRe

∞∫
0

exp[−κ(a+ ict)]J0(κr)dκ

= AaRe
{
r2 + (a+ ict)2

}− 1
2 , by Example 7.2.1(a). (7.4.9)

Example 7.4.2
(Steady Temperature Distribution in a Semi-Infinite Solid with a Steady Heat
Source). Find the solution of the Laplace equation for the steady temperature
distribution u(r, z) with a steady and symmetric heat source Q0q(r):

urr +
1
r
ur + uzz = −Q0q(r), 0< r<∞, 0<z <∞, (7.4.10)

u(r, 0) = 0, 0<r <∞, (7.4.11)

where Q0 is a constant. This boundary condition represents zero temperature
at the boundary z= 0.

Application of the zero-order Hankel transform to (7.4.10) and (7.4.11) gives

d2ũ

dz2
− κ2ũ=−Q0q̃(κ), ũ(κ, 0)= 0.

The bounded general solution of this system is

ũ(κ, z) =A exp(−κz) +
Q0

κ2
q̃(κ),

where A is a constant to be determined from the transformed boundary con-
dition. In this case

A=−Q0

κ2
q̃(κ).

Thus, the formal solution is

ũ(κ, z)=
Q0 q̃(κ)
κ2

(1 − e−κz). (7.4.12)

The inverse Hankel transform yields the exact integral solution

u(r, z)=Q0

∞∫
0

q̃(κ)
κ

(1 − e−κz)J0(κr)dκ. (7.4.13)
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Example 7.4.3
(Axisymmetric Diffusion Equation). Find the solution of the axisymmetric
diffusion equation

ut = κ

(
urr +

1
r
ur

)
, 0< r<∞, t > 0, (7.4.14)

where κ(> 0) is a diffusivity constant and

u(r, 0)= f(r), for 0<r <∞. (7.4.15)

We apply the zero-order Hankel transform defined by (7.4.3) to obtain

dũ

dt
+ k2κũ= 0, ũ(k, 0) = f̃(k),

where k is the Hankel transform variable. The solution of this transformed
system is

ũ(k, t) = f̃(k) exp(−κk2t). (7.4.16)

Application of the inverse Hankel transform gives

u(r, t) =

∞∫
0

kf̃(k)J0(kr)e−κk
2tdk=

∞∫
0

k

⎡⎣ ∞∫
0

lJ0(kl)f(l)dl

⎤⎦ e−κk2tJ0(kr)dk

which is, interchanging the order of integration,

=

∞∫
0

l f(l)dl

∞∫
0

k J0(kl)J0(kr) exp(−κk2t)dk. (7.4.17)

Using a standard table of integrals involving Bessel functions, we state

∞∫
0

kJ0(kl)J0(kr) exp(−k2κt)dk=
1

2κt
exp

[
− (r2 + l2)

4κt

]
I0

(
rl

2κt

)
, (7.4.18)

where I0(x) is the modified Bessel function and I0(0) = 1. In particular, when
l= 0, J0(0) = 1 and integral (7.4.18) becomes

∞∫
0

kJ0(kr) exp(−k2κt)dk=
1

2κt
exp

(
− r2

4κt

)
. (7.4.19)

We next use (7.4.18) to rewrite (7.4.17) as

u(r, t) =
1

2κt

∞∫
0

lf(l)I0

(
rl

2κt

)
exp

[
− (r2 + l2)

4κt

]
dl. (7.4.20)
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We now assume f(r) to represent a heat source concentrated in a circle of
radius a and allow a→ 0 so that the heat source is concentrated at r= 0 and

lim
a→0

2π

a∫
0

rf(r)dr = 1.

Or, equivalently,

f(r) =
1
2π

δ(r)
r
,

where δ(r) is the Dirac delta function.
Thus, the final solution due to the concentrated heat source at r= 0 is

u(r, t) =
1

4πκt

∞∫
0

δ(l)I0

(
rl

2κt

)
exp

[
−r

2 + l2

4κt

]
dl

=
1

4πκt
exp

(
− r2

4κt

)
. (7.4.21)

Example 7.4.4
(Axisymmetric Acoustic Radiation Problem). Obtain the solution of the wave
equation

c2
(
urr +

1
r
ur + uzz

)
= utt, 0<r<∞, z > 0, t > 0, (7.4.22)

uz = F (r, t) on z= 0, (7.4.23)

where F (r, t) is a given function and c is a constant. We also assume that the
solution is bounded and behaves as outgoing spherical waves.

We seek a steady-state solution for the acoustic radiation potential u=
eiωtφ(r, z) with F (r, t) = eiωtf(r), so that φ satisfies the Helmholtz equation

φrr +
1
r
φr + φzz +

(
ω2

c2

)
φ= 0, 0<r <∞, z > 0, (7.4.24)

with the boundary condition

φz = f(r) on z= 0, (7.4.25)

where f(r) is a given function of r.
Application of the Hankel transform H0{φ(r, z)}= φ̃(k, z) to (7.4.24)-(7.4.25)

gives
φ̃zz = κ2φ̃, z > 0,

φ̃z = f̃(k), on z= 0,
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where

κ=
(
k2 − ω2

c2

) 1
2

.

The solution of this differential system is

φ̃(k, z) =− 1
κ
f̃(k) exp(−κz), (7.4.26)

where κ is real and positive for k >ω/c, and purely imaginary for k <ω/c.
The inverse Hankel transform yields the formal solution

φ(r, z) =−
∞∫
0

k

κ
f̃(k) J0(kr) exp(−κz)dk. (7.4.27)

Since the exact evaluation of this integral is difficult for an arbitrary f̃(k), we
choose a simple form of f(r) as

f(r) =AH(a− r), (7.4.28)

where A is a constant, and hence, f̃(k) = Aa
k J1(ak).

Thus, the solution (7.4.27) takes the form

φ(r, z) =−Aa
∞∫
0

1
κ
J1(ak)J0(kr) exp(−κz)dk. (7.4.29)

For an asymptotic evaluation of this integral, it is convenient to express
(7.4.29) in terms ofR which is the distance from the z-axis so thatR2 = r2 + z2

and z=R cos θ. Using the asymptotic result for the Bessel function

J0(kr)∼
(

2
πkr

) 1
2

cos
(
kr − π

4

)
as r→∞, (7.4.30)

where r=R sin θ. Consequently, (7.4.29) combined with u= exp(iωt)φ be-
comes

u∼−Aa
√

2eiωt√
πR sin θ

∞∫
0

1
κ
√
k
J1(ak) cos

(
kR sin θ − π

4

)
exp(−κz)dk.

This integral can be evaluated asymptotically for R→∞ using the stationary
phase approximation formula to obtain the final result

u∼− Aac

ωR sin θ
J1(ak1) exp

[
i

(
ωt− ωR

c

)]
, (7.4.31)
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where k1 =ω/(c sin θ) is the stationary point. Physically, this solution repre-
sents outgoing spherical waves with constant velocity c and decaying ampli-
tude as R→∞.

Example 7.4.5

(Axisymmetric Biharmonic Equation). We solve the axisymmetric boundary
value problem

∇4u(r, z) = 0, 0≤ r <∞, z > 0 , (7.4.32)

with the boundary data

u(r, 0) = f(r), 0≤ r <∞, (7.4.33)
∂u

∂z
= 0 on z= 0, 0≤ r <∞, (7.4.34)

u(r, z) → 0 as r→∞, (7.4.35)

where the axisymmetric biharmonic operator is

∇4 =∇2(∇2) =
(
∂2

∂r2
+

1
r

∂

∂r
+

∂2

∂z2

)(
∂2

∂r2
+

1
r

∂

∂r
+

∂2

∂z2

)
. (7.4.36)

The use of the Hankel transform H0{u(r, z)}= ũ(k, z) to this problem gives(
d2

dz2
− k2

)2

ũ(k, z) = 0, z > 0, (7.4.37)

ũ(k, 0) = f̃(k),
dũ

dz
= 0 on z= 0. (7.4.38)

The bounded solution of (7.4.37) is

ũ(k, z)= (A+ zB) exp(−kz), (7.4.39)

where A and B are integrating constants to be determined by (7.4.38) as
A= f̃(k) and B= kf̃(k). Thus, solution (7.4.39) becomes

ũ(k, z)= (1 + kz)f̃(k) exp(−kz). (7.4.40)

The inverse Hankel transform gives the formal solution

u(r, z)=

∞∫
0

k(1 + kz)f̃(k)J0(kr) exp(−kz)dk. (7.4.41)



© 2007 by Taylor & Francis Group, LLC

Hankel Transforms and Their Applications 329

Example 7.4.6
(The Axisymmetric Cauchy-Poisson Water Wave Problem). We consider the
initial value problem for an inviscid water of finite depth h with a free hori-
zontal surface at z= 0, and the z-axis positive upward. We assume that the
liquid has constant density ρ with no surface tension. The surface waves are
generated in water, which is initially at rest for t < 0 by the prescribed free
surface elevation. In cylindrical polar coordinates (r, θ, z), the axisymmetric
water wave equations for the velocity potential φ(r, z, t) and the free surface
elevation η(r, t) are

∇2φ=φrr +
1
r
φr + φzz = 0, 0≤ r <∞, −h≤ z≤ 0, t > 0, (7.4.42)

φz − ηt = 0

φt + gη= 0

⎫⎬⎭ on z= 0, t > 0, (7.4.43ab)

φz = 0 on z=−h, t> 0. (7.4.44)

The initial conditions are

φ(r, 0, 0)= 0 and η(r, 0) = η0(r), for 0≤ r <∞, (7.4.45)

where g is the acceleration due to gravity and η0(r) is the given free surface
elevation.

We apply the joint Laplace and the zero-order Hankel transform defined by

φ̃(k, z, s)=

∞∫
0

e−stdt

∞∫
0

rJ0(kr)φ(r, z, t)dr, (7.4.46)

to (7.4.42)–(7.4.44) so that these equations reduce to(
d2

dz2
− k2

)
φ̃= 0,

dφ̃

dz
− s η̃=−η̃0(k)

s φ̃+ g η̃= 0

⎫⎪⎪⎬⎪⎪⎭ on z= 0,

φ̃z = 0 on z=−h,
where η̃0(k) is the Hankel transform of η0(r) of order zero.

The solutions of this system are

φ̃(k, z, s) = − g η̃0(k)
(s2 + ω2)

coshk(z + h)
coshkh

, (7.4.47)

η̃(k, s) =
s η̃0(k)

(s2 + ω2)
, (7.4.48)
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where
ω2 = gk tanh(kh), (7.4.49)

is the famous dispersion relation between frequency ω and wavenumber k for
water waves in a liquid of depth h. Physically, this dispersion relation describes
the interaction between the inertial and gravitational forces.

Application of the inverse transforms gives the integral solutions

φ(r, z, t) = −g
∞∫
0

kJ0(kr)η̃0(k)
(

sinωt
ω

)
coshk(z + h)

coshkh
dk, (7.4.50)

η(r, t) =

∞∫
0

kJ0(kr)η̃0(k) cosωt dk. (7.4.51)

These wave integrals represent exact solutions for φ and η at any r and t, but
the physical features of the wave motions cannot be described by them. In
general, the exact evaluation of the integrals is almost a formidable task. In
order to resolve this difficulty, it is necessary and useful to resort to asymptotic
methods. It will be sufficient for the determination of the basic features of the
wave motions to evaluate (7.4.50) or (7.4.51) asymptotically for a large time
and distance with (r/t) held fixed. We now replace J0(kr) by its asymptotic
formula (7.4.30) for kr→∞, so that (7.4.51) gives

η(r, t) ∼
(

2
πr

) 1
2

∞∫
0

√
k η̃0(k) cos

(
kr− π

4

)
cosωt dk

= (2πr)−
1
2 Re

∞∫
0

√
k η̃0(k) exp

[
i
(
ωt− kr +

π

4

)]
dk. (7.4.52)

Application of the stationary phase method to (7.4.52) yields the solution

η(r, t)∼
[

k1

rt|ω′′(k1)|
] 1

2

η̃0(k1) cos[t ω(k1)− k1r], (7.4.53)

where the stationary point k1 =
(
gt2/4r2

)
is the root of the equation

ω′(k) =
r

t
. (7.4.54)

For sufficiently deep water, kh→∞, the dispersion relation becomes

ω2 = gk. (7.4.55)

The solution of the axisymmetric Cauchy-Poisson problem is based on a pre-
scribed initial displacement of unit volume that is concentrated at the origin,
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which means that η0(r) = (a/2πr)δ(r) so that η̃0(k) =
a

2π
. Thus, the asymp-

totic solution is obtained from (7.4.53) in the form

η(r, t)∼ agt2

4π
√

2 r3
cos

(
gt2

4r

)
, gt2>> 4r. (7.4.56)

It is noted that solution (7.4.53) is no longer valid when ω′′(k1) = 0. This
case can be handled by a modification of the asymptotic evaluation (see Deb-
nath, 1994, p. 91).

A wide variety of other physical problems solved by the Hankel transform,
and/or by the joint Hankel and Laplace transform are given in books by
Sneddon (1951, 1972) and by Debnath (1994), and in research papers by
Debnath (1969, 1983, 1989), Mohanti (1979), and Debnath and Rollins (1992)
listed in the Bibliography.

7.5 Exercises

1. Show that

(a) H0{(a2 − r2)H(a− r)}=
4a
κ3
J1(κa)− 2a2

κ2
J0(aκ),

(b) Hn{rne−ar}=
a√
π
· 2n+1Γ

(
n+

3
2

)
κn(a2 + κ2)−(n+ 3

2 ),

(c) Hn

{
2n
r
f(r)

}
= kHn−1 {f(r)} + kHn+1 {f(r)}.

2. (a) Show that the solution of the boundary value problem

urr +
1
r
ur + uzz = 0, 0<r <∞, 0<z <∞,

u(r, z)=
1√

a2 + r2
on z = 0, 0< r<∞,

is

u(r, z) =

∞∫
0

e−κ(z+a)J0(κr)dκ=
1√

(z + a)2 + r2
.

(b) Obtain the solution of the equation in 2(a) with u(r, 0)= f(r) =
H(a− r), 0< r<∞.
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3. (a) The axisymmetric initial value problem is governed by

ut = κ

(
urr +

1
r
ur

)
+ δ(t)f(r), 0<r <∞, t > 0,

u(r, 0) = 0 for 0< r<∞.

Show that the formal solution of this problem is

u(r, t) =

∞∫
0

kJ0(kr)f̃ (k) exp(−k2κt)dk.

(b) For the special case when f(r) =
(
Q

πa2

)
H(a− r), show that the

solution is

u(r, t)=
(
Q

πa

) ∞∫
0

J0(kr)J1(ak) exp(−k2κt)dk.

4. If f(r) =A(a2 + r2)−
1
2 where A is a constant, show that the solution of

the biharmonic equation described in Example 7.4.5 is

u(r, z) =A
{r2 + (z + a)(2z + a)}

[r2 + (z + a)2]3/2
.

5. Show that the solution of the boundary value problem

urr +
1
r
ur + uzz = 0, 0≤ r <∞, z > 0,

u(r, 0) = u0 for 0≤ r≤ a, u0 is a constant,

u(r, z)→ 0 as z→∞,

is

u(r, z) = a u0

∞∫
0

J1(ak)J0(kr) exp(−kz)dk.

Find the solution of the problem when u0 is replaced by an arbitrary
function f(r), and a by infinity.

6. Solve the axisymmetric biharmonic equation for the small-amplitude
free vibration of a thin elastic disk

b2
(
∂2

∂r2
+

1
r

∂

∂r

)2

u+ utt = 0, 0< r<∞, t > 0,

u(r, 0) = f(r), ut(r, 0) = 0 for 0<r<∞,
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where b2 =
(
D

2σh

)
is the ratio of the flexural rigidity of the disk and its

mass 2hσ per unit area.

7. Show that the zero-order Hankel transform solution of the axisymmetric
Laplace equation

urr +
1
r
ur + uzz = 0, 0< r<∞, −∞<z <∞,

with the boundary data

lim
r→0

(r2u)= 0, lim
t→0

(2πr)ur =−f(z), −∞<z <∞,

is

ũ(k, z)=
1

4πk

∞∫
−∞

exp{−k|z − ζ|}f(ζ)dζ.

Hence, show that

u(r, z)=
1
4π

∞∫
−∞

{
r2 + (z − ζ)2

}− 1
2 f(ζ)dζ.

8. Solve the nonhomogeneous diffusion problem

ut = κ

(
urr +

1
r
ur

)
+Q(r, t), 0<r <∞, t > 0,

u(r, 0)= f(r) for 0<r<∞,

where κ is a constant.

9. Solve the problem of the electrified unit disk in the x−y plane with
center at the origin. The electric potential u(r, z) is axisymmetric and
satisfies the boundary value problem

urr +
1
r
ur + uzz = 0, 0<r<∞, 0<z <∞,

u(r, 0)= u0, 0≤ r < a,

∂u

∂z
= 0, on z= 0 for a< r <∞,

u(r, z)→ 0 as z→∞ for all r,

where u0 is constant. Show that the solution is

u(r, z)=
(

2au0

π

) ∞∫
0

J0(kr)
(

sinak
k

)
e−kzdk.
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10. Solve the axisymmetric surface wave problem in deep water due to an
oscillatory surface pressure. The governing equations are

∇2φ= φrr +
1
r
φr + φzz = 0, 0≤ r <∞, −∞<z≤ 0,

φt + gη=−P
ρ
p(r) exp(iωt)

φz − ηt = 0

⎫⎬⎭ on z= 0, t > 0,

φ(r, z, 0)= 0 = η(r, 0), for 0≤ r <∞, −∞<z≤ 0.

11. Solve the Neumann problem for the Laplace equation

urr +
1
r
ur + uzz = 0, 0<r <∞, 0<z <∞

uz(r, 0) =− 1
πa2

H(a− r), 0< r<∞
u(r, z)→ 0 as z→∞ for 0<r <∞.

Show that
lim
a→0

u(r, z)=
1
2π

(r2 + z2)−
1
2 .

12. Solve the Cauchy problem for the wave equation in a dissipating medium

utt + 2κut = c2
(
urr +

1
r
ur

)
, 0<r <∞, t > 0,

u(r, 0)= f(r), ut(r, 0) = g(r) for 0<r<∞,

where κ is a constant.

13. Use the joint Laplace and Hankel transform to solve the initial-boundary
value problem

c2
(
urr +

1
r
ur + uzz

)
= utt, 0<r<∞, 0<z <∞, t > 0,

uz(r, 0, t) =H(a− r)H(t), 0< r<∞, t > 0,
u(r, z, t)→ 0 as r→∞ and u(r, z, t)→ 0 as z→∞,

u(r, z, 0)= 0 = ut(r, z, 0),

and show that

ut(r, z, t) =−acH
(
t− z

c

) ∞∫
0

J1(ak) J0

{
ck

√
t2 − z2

c2

}
J0(kr)dk.
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14. Find the steady temperature u(r, z) in a beam 0≤ r <∞, 0≤ z≤ a when
the face z= 0 is kept at temperature u(r, 0) = 0, and the face z= a is
insulated except that heat is supplied through a circular hole such that

uz(r, a) =H(b− r).

The temperature u(r, z) satisfies the axisymmetric equation

urr +
1
r
ur + uzz = 0, 0≤ r <∞, 0≤ z≤ a.

15. Find the integral solution of the initial-boundary value problem

urr +
1
r
ur + uzz = ut, 0≤ r <∞, 0≤ z <∞, t > 0,

u(r, z, 0)= 0 for all r and z,(
∂u

∂r

)
r=0

= 0, for 0≤ z <∞, t > 0,

(
∂u

∂z

)
z=0

=−H(a− r)√
a2 + r2

, for 0< r<∞, 0< t<∞,

u(r, z, t)→ 0 as r→∞ or z→∞.

16. Heat is supplied at a constant rate Q per unit area per unit time over
a circular area of radius a in the plane z= 0 to an infinite solid of
thermal conductivityK, the rest of the plane is kept at zero temperature.
Solve for the steady temperature field u(r, z) that satisfies the Laplace
equation

urr +
1
r
ur + uzz = 0, 0< r<∞, −∞<z <∞,

with the boundary conditions

u→ 0 as r→∞, u→ 0 as |z|→∞,

−Kuz =
(

2Q
π a2

)
H(a− r) when z= 0.

17. The velocity potential φ(r, z) for the flow of an inviscid fluid through
a circular aperture of unit radius in a plane rigid screen satisfies the
Laplace equation

φrr +
1
r
φr + φzz = 0, 0<r <∞

with the boundary conditions

φ= 1 for 0< r< 1

φz = 0 for r > 1

}
on z= 0.

Obtain the solution of this boundary value problem.



© 2007 by Taylor & Francis Group, LLC

336 INTEGRAL TRANSFORMS and THEIR APPLICATIONS

18. Solve the Cauchy-Poisson wave problem (Debnath, 1989) for a viscous
liquid of finite or infinite depth governed by the equations, free surface,
boundary, and initial conditions

φrr +
1
r
φr + φzz = 0,

ψt = ν

(
ψrr +

1
r
ψr − 1

r2
ψ + ψzz

)
,

where φ(r, z, t) and ψ(r, z, t) represent the potential and stream func-
tions, respectively, 0≤ r <∞, −h≤ z≤ 0 (or −∞<z≤ 0) and t > 0.

The free surface conditions are

ηt −w= 0

μ(uz +wr) = 0

φt + gη + 2ν wz = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ on z= 0, t > 0

where η= η(r, t) is the free surface elevation, u=φr + ψz and w=φz −
ψ

r
− ψr are the radial and vertical velocity components of liquid par-

ticles, μ= ρν is the dynamic viscosity, ρ is the density, and ν is the
kinematic viscosity of the liquid.

The boundary conditions at the rigid bottom are

u=φr + ψz = 0

w= φz − 1
r
(rψ)r = 0

⎫⎪⎬⎪⎭ on z=−h.

The initial conditions are

η= a
δ(r)
r
, φ=ψ= 0 at t= 0,

where a is a constant and δ(r) is the Dirac delta function.

If the liquid is of infinite depth, the bottom boundary conditions are

(φ, ψ)→ (0, 0) as z→−∞.

19. Use the joint Hankel and Laplace transform method to solve the initial-
boundary value problem

urr +
1
r
ur − utt − 2ε ut = a

δ(r)
r

δ(t), 0<r <∞, t > 0,

u(r, t)→ 0 as r→∞,

u(0, t) is finite for t> 0,

u(r, 0) = 0 = ut(r, 0) for 0<r <∞.
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20. Surface waves are generated in an inviscid liquid of infinite depth due
to an explosion (Sen, 1963) above it, which generates the pressure field
p(r, t). The velocity potential u= φ(r, z, t) satisfies the Laplace equation

urr +
1
r
ur + uzz = 0, 0< r<∞, t > 0,

and the free surface condition

utt + g uz =
1
ρ

(
∂p

∂t

)
[H(r) −H{r, r0(t)}] on z= 0,

where ρ is the constant density of the liquid, r0(t) is the extent of the
blast, and the liquid is initially at rest.

Solve this problem.

21. The electrostatic potential u(r, z) generated in the space between two
horizontal disks at z=± a by a point charge q at r= z= 0 is described
by a singular function at r= z= 0 is

u(r, z)=φ(r, z) + q(r2 + z2)−
1
2 ,

where φ(r, z) satisfies the Laplace equation

φrr +
1
r
φr + φzz = 0, 0<r <∞

with the boundary conditions

φ(r, z) =−q(r2 + z2)−
1
2 at z=± a.

Obtain the solution for φ(r, z) and then u(r, z).

22. Show that

(a) Hn

[
e−arf(r)

]
= L {rf(r)Jn(kr)} ,

(b) H0

[
e−ar

2
J0(br)

]
=
a

2
exp

(
k2 − b2

4a

)
I0

(
bk

2a

)
,

(c) Hn

[
rn−1e−ar

]
=

(2k)n(n− 1
2 )!√

π(k2 + a2)n+ 1
2
,

(d) Hn

[
f(r)
r

]
=
(
k

2n

)[
f̃n−1(k) + f̃n+1(k)

]
,

(e) Hn

[
rn−1 d

dr

{
r1−nf(r)

}]
=−kf̃n−1(k),

(f) Hn

[
r−(n+1) d

dr

{
rn+1f(r)

}]
= kf̃n+1(k).
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8

Mellin Transforms and Their Applications

“One cannot understand ... the universality of laws of nature, the
relationship of things, without an understanding of mathematics.
There is no other way to do it.”

Richard P. Feynman

“The research worker, in his efforts to express the fundamental laws
of Nature in mathematical form, should strive mainly for mathe-
matical beauty. He should take simplicity into consideration in a
subordinate way to beauty. ... It often happens that the require-
ments of simplicity and beauty are the same, but where they clash
the latter must take precedence.”

Paul Dirac

8.1 Introduction

This chapter deals with the theory and applications of the Mellin transform.
We derive the Mellin transform and its inverse from the complex Fourier trans-
form. This is followed by several examples and the basic operational properties
of Mellin transforms. We discuss several applications of Mellin transforms to
boundary value problems and to summation of infinite series. The Weyl trans-
form and the Weyl fractional derivatives with examples are also included.

Historically, Riemann (1876) first recognized the Mellin transform in his
famous memoir on prime numbers. Its explicit formulation was given by C-
ahen (1894). Almost simultaneously, Mellin (1896, 1902) gave an elaborate
discussion of the Mellin transform and its inversion formula.

339
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8.2 Definition of the Mellin Transform and Examples

We derive the Mellin transform and its inverse from the complex Fourier
transform and its inverse, which are defined respectively by

F {g(ξ)}=G(k) =
1√
2π

∞∫
−∞

e−ikξg(ξ)dξ, (8.2.1)

F −1{G(k)}= g(ξ) =
1√
2π

∞∫
−∞

eikξG(k)dk. (8.2.2)

Making the changes of variables exp(ξ) = x and ik= c− p, where c is a
constant, in results (8.2.1) and (8.2.2) we obtain

G(ip− ic) =
1√
2π

∞∫
0

xp−c−1g(log x)dx, (8.2.3)

g(log x) =
1√
2π

c+i∞∫
c−i∞

xc−pG(ip− ic)dp. (8.2.4)

We now write
1√
2π

x−cg(log x)≡ f(x) and G(ip− ic)≡ f̃(p) to define the

Mellin transform of f(x) and the inverse Mellin transform as

M {f(x)}= f̃(p) =

∞∫
0

xp−1f(x)dx, (8.2.5)

M −1{f̃(p)}= f(x) =
1

2πi

c+i∞∫
c−i∞

x−pf̃(p)dp, (8.2.6)

where f(x) is a real valued function defined on (0,∞) and the Mellin transform
variable p is a complex number. Sometimes, the Mellin transform of f(x) is
denoted explicitly by f̃(p) = M [f(x), p]. Obviously, M and M −1 are linear
integral operators.

Example 8.2.1
(a) If f(x) = e−nx, where n> 0, then

M {e−nx}= f̃(p) =

∞∫
0

xp−1e−nxdx,
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which is, by putting nx= t,

=
1
np

∞∫
0

tp−1e−tdt=
Γ(p)
np

. (8.2.7)

(b) If f(x) =
1

1 + x
, then

M

{
1

1 + x

}
= f̃(p) =

∞∫
0

xp−1 · dx

1 + x
,

which is, by substituting x=
t

1 − t
or t=

x

1 + x
,

=

1∫
0

tp−1(1 − t)(1−p)−1dt=B(p, 1 − p)= Γ(p)Γ(1 − p),

which is, by a well-known result for the gamma function,

= π cosec(pπ), 0<Re(p)< 1. (8.2.8)

(c) If f(x) = (ex − 1)−1, then

M

{
1

ex − 1

}
= f̃(p) =

∞∫
0

xp−1 1
ex − 1

dx,

which is, by using
∞∑
n=0

e−nx =
1

1 − e−x
and hence,

∞∑
n=1

e−nx =
1

ex − 1
,

=
∞∑
n=1

∞∫
0

xp−1e−nxdx=
∞∑
n=1

Γ(p)
np

= Γ(p)ζ(p), (8.2.9)

where ζ(p) =
∞∑
n=1

1
np

, (Re p> 1) is the famous Riemann zeta function.

(d) If f(x) =
2

e2x − 1
, then

M

{
2

e2x − 1

}
= f̃(p) = 2

∞∫
0

xp−1 dx

e2x − 1
= 2

∞∑
n=1

∞∫
0

xp−1e−2nxdx

= 2
∞∑
n=1

Γ(p)
(2n)p

= 21−p Γ(p)
∞∑
n=1

1
np

= 21−p Γ(p)ζ(p). (8.2.10)
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(e) If f(x) =
1

ex + 1
, then

M

{
1

ex + 1

}
= (1 − 21−p)Γ(p) ζ(p). (8.2.11)

This follows from the result[
1

ex − 1
− 1
ex + 1

]
=

2
e2x − 1

combined with (8.2.9) and (8.2.10).

(f) If f(x) =
1

(1 + x)n
, then

M

{
1

(1 + x)n

}
=

∞∫
0

xp−1(1 + x)−ndx,

which is, by putting x=
t

1 − t
or t=

x

1 + x
,

=

1∫
0

tp−1(1 − t)n−p−1dt

= B(p, n− p) =
Γ(p)Γ(n− p)

Γ(n)
, (8.2.12)

where B(p, q) is the standard beta function.
Hence,

M −1{Γ(p)Γ(n− p)}=
Γ(n)

(1 + x)n
.

(g) Find the Mellin transform of cos kx and sinkx.
It follows from Example 8.2.1(a) that

M [e−ikx] =
Γ(p)
(ik)p

=
Γ(p)
kp

(
cos

pπ

2
− i sin

pπ

2

)
.

Separating real and imaginary parts, we find

M [cos kx] = k−p Γ(p) cos
(πp

2

)
, (8.2.13)

M [sin kx] = k−p Γ(p) sin
(πp

2

)
. (8.2.14)

These results can be used to calculate the Fourier cosine and Fourier sine
transforms of xp−1. Result (8.2.13) can be written as

∞∫
0

xp−1 cos kx dx=
Γ(p)
kp

cos
(πp

2

)
.
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Or, equivalently,

Fc

{√
π

2
xp−1

}
=

Γ(p)
kp

cos
(πp

2

)
.

Or,

Fc {xp−1}=

√
2
π

Γ(p)
kp

cos
(πp

2

)
. (8.2.15)

Similarly,

Fs {xp−1}=

√
2
π

Γ(p)
kp

sin
(πp

2

)
. (8.2.16)

8.3 Basic Operational Properties of Mellin Transforms

If M {f(x)}= f̃(p), then the following operational properties hold:

(a) (Scaling Property).

M {f(ax)}= a−pf̃(p), a> 0. (8.3.1)

PROOF By definition, we have,

M {f(ax)}=

∞∫
0

xp−1f(ax)dx,

which is, by substituting ax= t,

=
1
ap

∞∫
0

tp−1f(t)dt=
f̃(p)
ap

.

(b) (Shifting Property).

M [xa f(x)] = f̃(p+ a). (8.3.2)

Its proof follows from the definition.

(c) M {f(xa)}=
1
a
f̃
(p
a

)
, (8.3.3)
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M

{
1
x
f

(
1
x

)}
= f̃(1 − p), (8.3.4)

M {(log x)n f(x)}=
dn

dpn
f̃(p), n= 1, 2, 3, . . . . (8.3.5)

The proofs of (8.3.3) and (8.3.4) are easy and hence, left to the reader.
Result (8.3.5) can easily be proved by using the result

d

dp
xp−1 = (log x)xp−1. (8.3.6)

(d) (Mellin Transforms of Derivatives).

M [f ′(x)] =−(p− 1)f̃(p− 1), (8.3.7)

provided [xp−1f(x)] vanishes as x→ 0 and as x→∞.

M [f ′′(x)] = (p− 1)(p− 2)f̃(p− 2). (8.3.8)

More generally,

M [f (n)(x)] = (−1)n
Γ(p)

Γ(p− n)
f̃(p− n)

= (−1)n
Γ(p)

Γ(p− n)
M [f(x), p− n], (8.3.9)

provided xp−r−1f (r)(x) = 0 as x→ 0 for r= 0, 1, 2, . . . , (n− 1).

PROOF We have, by definition,

M [f ′(x)] =

∞∫
0

xp−1f ′(x) dx,

which is, integrating by parts,

= [xp−1f(x)]∞0 − (p− 1)

∞∫
0

xp−2f(x) dx

= −(p− 1)f̃(p− 1).

The proofs of (8.3.8) and (8.3.9) are similar and left to the reader.

(e) If M {f(x)}= f̃(p), then

M {xf ′(x)}=−pf̃(p), (8.3.10)
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provided xpf(x) vanishes at x= 0 and as x→∞.

M {x2f ′′(x)}= (−1)2p(p+ 1)f̃(p). (8.3.11)

More generally,

M {xnf (n)(x)}= (−1)n
Γ(p+ n)

Γ(p)
f̃(p). (8.3.12)

PROOF We have, by definition,

M {xf ′(x)}=

∞∫
0

xpf ′(x)dx,

which is, integrating by parts,

= [xpf(x)]∞0 − p

∞∫
0

xp−1f(x)dx=−pf̃(p).

Similar arguments can be used to prove results (8.3.11) and (8.3.12).

(f) (Mellin Transforms of Differential Operators).
If M {f(x)}= f̃(p), then

M

[(
x
d

dx

)2

f(x)

]
= M [x2f ′′(x) + xf ′(x)] = (−1)2 p2f̃(p), (8.3.13)

and more generally,

M

[(
x
d

dx

)n
f(x)

]
= (−1)npnf̃(p). (8.3.14)

PROOF We have, by definition,

M

[(
x
d

dx

)2

f(x)

]
= M [x2f ′′(x) + x f ′(x)]

= M [x2f ′′(x)] + M [x f ′(x)]
= −pf̃(p) + p(p+ 1)f̃(p) by (8.3.10) and (8.3.11)
= (−1)2 p2 f̃(p).
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Similar arguments can be used to prove the general result (8.3.14).

(g) (Mellin Transforms of Integrals).

M

⎧⎨⎩
x∫

0

f(t)dt

⎫⎬⎭=−1
p
f̃(p+ 1). (8.3.15)

In general,

M {In f(x)}= M

⎧⎨⎩
x∫

0

In−1f(t)dt

⎫⎬⎭= (−1)n
Γ(p)

Γ(p+ n)
f̃(p+ n), (8.3.16)

where In f(x) is the nth repeated integral of f(x) defined by

Inf(x) =

x∫
0

In−1f(t)dt. (8.3.17)

PROOF We write

F (x) =

x∫
0

f(t)dt

so that F ′(x) = f(x) with F (0) = 0. Application of (8.3.7) with F (x) as defined
gives

M {f(x) =F ′(x), p}=−(p− 1)M

⎧⎨⎩
x∫

0

f(t)dt, p− 1

⎫⎬⎭ ,

which is, replacing p by p+ 1,

M

⎧⎨⎩
x∫

0

f(t) dt, p

⎫⎬⎭=−1
p
M {f(x), p+ 1}=−1

p
f̃(p+ 1).

An argument similar to this can be used to prove (8.3.16).

(h) (Convolution Type Theorems).
If M {f(x)}= f̃(p) and M {g(x)}= g̃(p), then

M [f(x) ∗ g(x)] = M

⎡⎣ ∞∫
0

f(ξ) g
(
x

ξ

)
dξ

ξ

⎤⎦= f̃(p)g̃(p), (8.3.18)

M [f(x) ◦ g(x)] = M

⎡⎣ ∞∫
0

f(xξ) g(ξ)dξ

⎤⎦= f̃(p)g̃(1 − p). (8.3.19)
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PROOF We have, by definition,

M [f(x) ∗ g(x)] = M

⎡⎣ ∞∫
0

f(ξ) g
(
x

ξ

)
dξ

ξ

⎤⎦
=

∞∫
0

xp−1dx

∞∫
0

f(ξ) g
(
x

ξ

)
dξ

ξ

=

∞∫
0

f(ξ)
dξ

ξ

∞∫
0

xp−1g

(
x

ξ

)
dx,

(
x

ξ
= η

)
,

=

∞∫
0

f(ξ)
dξ

ξ

∞∫
0

(ξη)p−1g(η) ξ dη

=

∞∫
0

ξp−1f(ξ)dξ

∞∫
0

ηp−1g(η)dη= f̃(p)g̃(p).

Similarly, we have

M [f(x) ◦ g(x)] = M

⎡⎣ ∞∫
0

f(xξ) g(ξ)dξ

⎤⎦
=

∞∫
0

xp−1dx

∞∫
0

f(xξ) g(ξ)dξ, (xξ= η),

=

∞∫
0

g(ξ)dξ

∞∫
0

ηp−1ξ1−pf(η)
dη

ξ

=

∞∫
0

ξ1−p−1g(ξ)dξ

∞∫
0

ηp−1f(η)dη= g̃(1 − p)f̃(p).

Note that, in this case, the operation ◦ is not commutative.
Clearly, putting x= s,

M −1{f̃(1 − p)g̃(p)}=

∞∫
0

g(st)f(t)dt.

Putting g(t) = e−t and g̃(p) = Γ(p), we obtain the Laplace transform of f(t)

M −1 {f̃(1 − p)Γ(p)}=

∞∫
0

e−stf(t)dt= L {f(t)}= f̄(s). (8.3.20)
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(i) (Parseval’s Type Property).
If M {f(x)}= f̃(p) and M {g(x)}= g̃(p), then

M [f(x)g(x)] =
1

2πi

c+i∞∫
c−i∞

f̃(s)g̃(p− s)ds. (8.3.21)

Or, equivalently,

∞∫
0

xp−1f(x)g(x)dx=
1

2πi

c+i∞∫
c−i∞

f̃(s)g̃(p− s)ds. (8.3.22)

In particular, when p= 1, we obtain the Parseval formula for the Mellin trans-
form,

∞∫
0

f(x)g(x)dx=
1

2πi

c+i∞∫
c−i∞

f̃(s)g̃(1 − s)ds. (8.3.23)

PROOF By definition, we have

M [f(x)g(x)] =

∞∫
0

xp−1f(x)g(x)dx

=
1

2πi

∞∫
0

xp−1g(x)dx

c+i∞∫
c−i∞

x−sf̃(s)ds

=
1

2πi

c+i∞∫
c−i∞

f̃(s)ds

∞∫
0

xp−s−1g(x)dx

=
1

2πi

c+i∞∫
c−i∞

f̃(s)g̃(p− s)ds.

When p= 1, the above result becomes (8.3.23).
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8.4 Applications of Mellin Transforms

Example 8.4.1
Obtain the solution of the boundary value problem

x2uxx + xux + uyy = 0, 0≤ x<∞, 0<y < 1 (8.4.1)

u(x, 0) = 0, u(x, 1) =

⎧⎨⎩A, 0≤ x≤ 1

0, x > 1

⎫⎬⎭ , (8.4.2)

where A is a constant.

We apply the Mellin transform of u(x, y) with respect to x defined by

ũ(p, y) =

∞∫
0

xp−1u(x, y) dx

to reduce the given system into the form

ũyy + p2ũ= 0, 0<y < 1

ũ(p, 0)= 0, ũ(p, 1) =A

1∫
0

xp−1dx=
A

p
.

The solution of the transformed problem is

ũ(p, y) =
A

p

sin py
sin p

, 0< Re p< 1.

The inverse Mellin transform gives

u(x, y) =
A

2πi

c+i∞∫
c−i∞

x−p

p

sin py
sin p

dp, (8.4.3)

where ũ(p, y) is analytic in the vertical strip 0<Re (p) = c<π. The integrand
of (8.4.3) has simple poles at p=nπ, n= 1, 2, 3, . . . which lie inside a semi-
circular contour in the right half plane. Evaluating (8.4.3) by theory of residues
gives the solution for x> 1 as

u(x, y) =
A

π

∞∑
n=1

1
n

(−1)n x−nπ sin nπy. (8.4.4)
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Example 8.4.2
(Potential in an Infinite Wedge). Find the potential φ(r, θ) that satisfies the
Laplace equation

r2φrr + rφr + φθθ = 0 (8.4.5)

in an infinite wedge 0<r <∞, −α< θ <α as shown in Figure 8.1 with the
boundary conditions

φ(r, α) = f(r), φ(r, −α) = g(r) 0≤ r <∞, (8.4.6ab)

φ(r, θ)→ 0 as r→∞ for all θ in − α< θ <α. (8.4.7)

0 x

y

-

=

= -

Figure 8.1 An infinite wedge.

We apply the Mellin transform of the potential φ(r, θ) defined by

M [φ(r, θ)] = φ̃(p, θ) =

∞∫
0

rp−1φ(r, θ) dr

to the differential system (8.4.5)–(8.4.7) to obtain

d2φ̃

dθ2
+ p2φ̃= 0, (8.4.8)

φ̃(p, α) = f̃(p), φ̃(p, −α) = g̃(p). (8.4.9ab)

The general solution of the transformed equation is

φ̃(p, θ) =A cos pθ+B sin pθ, (8.4.10)
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where A and B are functions of p and α. The boundary conditions (8.4.9ab)
determine A and B, which satisfy

A cos pα+B sin pα = f̃(p),
A cos pα−B sin pα = g̃(p).

These give A=
f̃(p) + g̃(p)

2 cospα
, B =

f̃(p) − g̃(p)
2 sin pα

.

Thus, solution (8.4.10) becomes

φ̃(p, θ) = f̃(p).
sin p(α+ θ)
sin(2 pα)

+ g̃(p)
sin p(α− θ)
sin(2 pα)

= f̃(p)h̃(p, α+ θ) + g̃(p)h̃(p, α− θ), (8.4.11)

where
h̃(p, θ) =

sin pθ
sin(2 pα)

.

Or, equivalently,

h(r, θ) = M −1

{
sin pθ

sin 2 pα

}
=
(

1
2α

)
rn sinnθ

(1 + 2 rn cosnθ+ r2n)
, (8.4.12)

where
n=

π

2α
or, 2α=

π

n
.

Application of the inverse Mellin transform to (8.4.11) gives

φ(r, θ) = M −1
{
f̃(p)h̃(p, α+ θ)

}
+ M −1

{
g̃(p)h̃(p, α− θ)

}
,

which is, by the convolution property (8.3.18),

φ(r, θ) =
rn cosnθ

2α

⎡⎣ ∞∫
0

ξn−1f(ξ)dξ
ξ2n − 2(rξ)n sinnθ+ r2n

+

∞∫
0

ξn−1g(ξ)dξ
ξ2n + 2(rξ)n sinnθ+ r2n

⎤⎦ , |α|< π

2n
. (8.4.13)

This is the formal solution of the problem.

In particular, when f(r) = g(r), solution (8.4.11) becomes

φ̃(p, θ) = f̃(p)
cos pθ
cos pα

= f̃(p)h̃(p, θ), (8.4.14)

where
h̃(p, θ) =

cos pθ
cos pα

= M {h(r, θ)}.
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Application of the inverse Mellin transform to (8.4.14) combined with the
convolution property (8.3.18) yields the solution

φ(r, θ) =

∞∫
0

f(ξ)h
(
r

ξ
, θ

)
dξ

ξ
, (8.4.15)

where

h(r, θ) = M −1

{
cos pθ
cos pα

}
=
(
rn

α

)
(1 + r2n) cos(nθ)

(1 + 2r2n cos 2nθ+ r2n)
, (8.4.16)

and n=
π

2α
.

Some applications of the Mellin transform to boundary value problems are
given by Sneddon (1951) and Tranter (1966).

Example 8.4.3
Solve the integral equation

∞∫
0

f(ξ) k(xξ)dξ = g(x), x> 0. (8.4.17)

Application of the Mellin transform with respect to x to equation (8.4.17)
combined with (8.3.19) gives

f̃(1 − p)k̃(p) = g̃(p),

which gives, replacing p by 1 − p,

f̃(p) = g̃(1 − p)h̃(p),

where
h̃(p) =

1
k̃(1 − p)

.

The inverse Mellin transform combined with (8.3.19) leads to the solution

f(x) = M −1
{
g̃(1 − p)h̃(p)

}
=

∞∫
0

g(ξ)h(xξ)dξ, (8.4.18)

provided h(x) = M −1
{
h̃(p)

}
exists. Thus, the problem is formally solved.

If, in particular, h̃(p) = k̃(p), then the solution of (8.4.18) becomes

f(x) =

∞∫
0

g(ξ) k(xξ)dξ, (8.4.19)
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provided k̃(p)k̃(1 − p) = 1.

Example 8.4.4
Solve the integral equation

∞∫
0

f(ξ) g
(
x

ξ

)
dξ

ξ
= h(x), (8.4.20)

where f(x) is unknown and g(x) and h(x) are given functions.
Applications of the Mellin transform with respect to x gives

f̃(p) = h̃(p)k̃(p), k̃(p) =
1
g̃(p)

.

Inversion, by the convolution property (8.3.18), gives the solution

f(x) = M −1
{
h̃(p)k̃(p)

}
=

∞∫
0

h(ξ) k
(
x

ξ

)
dξ

ξ
. (8.4.21)

8.5 Mellin Transforms of the Weyl Fractional
Integral and the Weyl Fractional Derivative

DEFINITION 8.5.1 The Mellin transform of the Weyl fractional integral
of f(x) is defined by

W−α[f(x)] =
1

Γ(α)

∞∫
x

(t− x)α−1f(t)dt, 0<Reα< 1, x > 0. (8.5.1)

Often xW
−α∞ is used instead of W−α to indicate the limits to integration.

Result (8.5.1) can be interpreted as the Weyl transform of f(t), defined by

W−α[f(t)] =F (x, α) =
1

Γ(α)

∞∫
x

(t− x)α−1f(t)dt. (8.5.2)

We first give some simple examples of the Weyl transform.



© 2007 by Taylor & Francis Group, LLC

354 INTEGRAL TRANSFORMS and THEIR APPLICATIONS

If f(t)= exp(−at), Re a> 0, then the Weyl transform of f(t) is given by

W−α[exp(−at)] = 1
Γ(α)

∞∫
x

(t− x)α−1 exp(−at)dt,

which is, by the change of variable t− x= y,

=
e−ax

Γ(α)

∞∫
0

yα−1 exp(−ay)dy

which is, by letting ay= t,

W−α[f(t)] =
e−ax

aα
1

Γ(α)

∞∫
0

tα−1e−tdt=
e−ax

aα
. (8.5.3)

Similarly, it can be shown that

W−α[t−μ] =
Γ(μ− α)

Γ(μ)
xα−μ, 0<Reα<Reμ. (8.5.4)

Making reference to Gradshteyn and Ryzhik (2000, p. 424), we obtain

W−α[sin at] = a−α sin
(
ax+

πα

2

)
, (8.5.5)

W−α[cos at] = a−α cos
(
ax+

πα

2

)
, (8.5.6)

where 0<Reα< 1 and a> 0.
It can be shown that, for any two positive numbers α and β, the Weyl

fractional integral satisfies the laws of exponents

W−α[W−βf(x)] =W−(β+α)[f(x)] =W−β [W−αf(x)]. (8.5.7)

Invoking a change of variable t− x= y in (8.5.1), we obtain

W−α[f(x)] =
1

Γ(α)

∞∫
0

yα−1f(x+ y)dy. (8.5.8)

We next differentiate (8.5.8) to obtain, D=
d

dx
,

D[W−αf(x)] =
1

Γ(α)

∞∫
0

tα−1 ∂

∂x
f(x+ t)dt

=
1

Γ(α)

∞∫
0

tα−1Df(x+ t)dt

= W−α[Df(x)]. (8.5.9)
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A similar argument leads to a more general result

Dn[W−αf(x)] =W−α[Dnf(x)], (8.5.10)

where n is a positive integer.
Or, symbolically,

DnW−α =W−αDn. (8.5.11)

We now calculate the Mellin transform of the Weyl fractional integral by
putting h(t) = tαf(t) and g

(x
t

)
= 1

Γ(α)

(
1− x

t

)α−1
H
(
1 − x

t

)
, whereH

(
1 − x

t

)
is the Heaviside unit step function so that (8.5.1) becomes

F (x, α) =

∞∫
0

h(t) g
(x
t

) dt
t
, (8.5.12)

which is, by the convolution property (8.3.18),

F̃ (p, α) = h̃(p)g̃(p),

where
h̃(p) = M {xαf(x)}= f̃(p+ α),

and

g̃(p) = M

{
1

Γ(α)
(1− x)α−1H(1 − x)

}

=
1

Γ(α)

1∫
0

xp−1(1 − x)α−1dx=
B(p, α)
Γ(α)

=
Γ(p)

Γ(p+ α)
.

Consequently,

F̃ (p, α) = M [W−αf(x), p] =
Γ(p)

Γ(p+ α)
f̃(p+ α). (8.5.13)

It is important to note that this result is an obvious extension of result 7(b)
in Exercise 8.8

DEFINITION 8.5.2 If β is a positive number and n is the smallest
integer greater than β such that n− β=α> 0, the Weyl fractional derivative
of a function f(x) is defined by

W β [f(x)] = EnW−(n−β)[f(x)]

=
(−1)n

Γ(n− β)
dn

dxn

∞∫
x

(t− x)n−β−1f(t)dt, (8.5.14)



© 2007 by Taylor & Francis Group, LLC

356 INTEGRAL TRANSFORMS and THEIR APPLICATIONS

where E =−D.
Or, symbolically,

W β =EnW−α=EnW−(n−β). (8.5.15)

It can be shown that, for any β,

W−βW β = I =W βW−β. (8.5.16)

And, for any β and γ, the Weyl fractional derivative satisfies the laws of
exponents

W β [W γf(x)] =W β+γ [f(x)] =W γ [W βf(x)]. (8.5.17)

We now calculate the Weyl fractional derivative of some elementary functions.
If f(x) = exp(−ax), a> 0, then the definition (8.5.14) gives

W βe−ax =En[W−(n−β)e−ax]. (8.5.18)

Writing n− β =α> 0 and using (8.5.3) yields

W βe−ax = En[W−αe−ax] =En[a−αe−ax]
= a−α(ane−ax) = aβe−ax. (8.5.19)

Replacing β by −α in (8.5.19) leads to result (8.5.3) as expected.
Similarly, we obtain

W βx−μ =
Γ(β + μ)

Γ(μ)
x−(β+μ). (8.5.20)

It is easy to see that

W β(cos ax) =E[W−(1−β) cos ax],

which is, by (8.5.6),

= aβ cos
(
ax− 1

2
πβ

)
. (8.5.21)

Similarly,

W β(sin ax) = aβ sin
(
ax− 1

2
πβ

)
, (8.5.22)

provided α and β lie between 0 and 1.
If β is replaced by −α, result (8.5.20)–(8.5.22) reduce to (8.5.4)–(8.5.6)

respectively.
Finally, we calculate the Mellin transform of the Weyl fractional derivative

with the help of (8.3.9) and find

M [W βf(x)] = M [EnW−(n−β)f(x)] = (−1)nM [DnW−(n−β)f(x)]

=
Γ(p)

Γ(p− n)
M [W−(n−β)f(x), p− n],
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which is, by result (8.5.13),

=
Γ(p)

Γ(p− n)
· Γ(p− n)
Γ(p− β)

f̃(p− β)

=
Γ(p)

Γ(p− β)
M [f(x), p− β]

=
Γ(p)

Γ(p− β)
f̃(p− β). (8.5.23)

Example 8.5.1
(The Fourier Transform of the Weyl Fractional Integral).

F{W−αf(x)}= exp
(
−πiα

2

)
k−αF{f(x)}. (8.5.24)

We have, by definition,

F{W−αf(x)} =
1√
2π

1
Γ(α)

∞∫
−∞

e−ikxdx

∞∫
x

(t− x)α−1f(t)dt

=
1√
2π

∞∫
−∞

f(t)dt · 1
Γ(α)

t∫
−∞

exp(−ikx)(t− x)α−1dx.

Thus,

F{W−αf(x)} =
1√
2π

∞∫
−∞

e−iktf(t)dt · 1
Γ(α)

∞∫
0

eikτ τα−1dτ, (t− x= τ)

= F{f(x)} 1
Γ(α)

M {eikτ}

= exp
(
−πiα

2

)
k−αF{f(x)}.

In the limit as α→ 0

lim
α→0

F{W−αf(x)}= F{f(x)}.

This implies that
W 0{f(x)}= f(x).

We conclude this section by proving a general property of the Riemann-
Liouville fractional integral operator D−α, and the Weyl fractional integral
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operator W−α. It follows from the definition (6.2.1) that D−αf(t) can be
expressed as the convolution

D−αf(x) = gα(t) ∗ f(t), (8.5.25)

where

gα(t) =
tα−1

Γ(α)
, t > 0.

Similarly, W−αf(x) can also be written in terms of the convolution

W−αf(x) = gα(−x)∗f(x). (8.5.26)

Then, under suitable conditions,

M [D−αf(x)] =
Γ(1 − α− p)

Γ(1 − p)
f̃(p+ α), (8.5.27)

M [W−αf(x)] =
Γ(p)

Γ(α+ p)
f̃(p+ α). (8.5.28)

Finally, a formal computation gives
∞∫
0

{D−αf(x)}g(x)dx =
1

Γ(α)

∞∫
0

g(x)dx

x∫
0

(x− t)α−1f(t)dt

=

∞∫
0

f(t)dt · 1
Γ(α)

∞∫
t

(x− t)α−1g(x)dx

=

∞∫
0

f(t)[W−αg(t)] dt,

which is, using the inner product notation,

〈D−αf, g〉= 〈f, W−αg〉. (8.5.29)

This show that D−α and W−α behave like adjoint operators. Obviously, this
result can be used to define fractional integrals of distributions. This result is
taken from Debnath and Grum (1988).

8.6 Application of Mellin Transforms to Summation of
Series

In this section we discuss a method of summation of series that is particularly
associated with the work of Macfarlane (1949).
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THEOREM 8.6.1
If M {f(x)}= f̃(p), then

∞∑
n=0

f(n+ a) =
1

2πi

c+i∞∫
c−i∞

f̃(p) ξ(p, a)dp, (8.6.1)

where ξ(p, a) is the Hurwitz zeta function defined by

ξ(p, a) =
∞∑
n=0

1
(n+ a)p

, 0≤ a≤ 1, Re(p)> 1. (8.6.2)

PROOF If follows from the inverse Mellin transform that

f(n+ a) =
1

2πi

c+i∞∫
c−i∞

f̃(p)(n+ a)−p dp. (8.6.3)

Summing this over all n gives

∞∑
n=0

f(n+ a) =
1

2πi

c+i∞∫
c−i∞

f̃(p) ξ(p, a) dp.

This completes the proof.
Similarly, the scaling property (8.3.1) gives

f(nx) = M −1{n−p f̃(p)}=
1

2πi

c+i∞∫
c−i∞

x−p n−pf̃(p)dp.

Thus,

∞∑
n=1

f(nx) =
1

2πi

c+i∞∫
c−i∞

x−pf̃(p) ζ(p)dp= M −1{f̃(p) ζ(p)}, (8.6.4)

where ζ(p) =
∞∑
n=1

n−p is the Riemann zeta function.

When x= 1, result (8.6.4) reduces to

∞∑
n=1

f(n)=
1

2πi

c+i∞∫
c−i∞

f̃(p) ζ(p)dp. (8.6.5)

This can be obtained from (8.6.1) when a= 0.
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Example 8.6.1
Show that ∞∑

n=1

(−1)n−1n−p = (1 − 21−p) ζ(p). (8.6.6)

Using Example 8.2.1(a), we can write the left-hand side of (8.6.6) multiplied
by tn as

∞∑
n=1

(−1)n−1n−ptn =
∞∑
n=1

(−1)n−1tn · 1
Γ(p)

∞∫
0

xp−1e−nxdx

=
1

Γ(p)

∞∫
0

xp−1dx

∞∑
n=1

(−1)n−1tnxe−nx

=
1

Γ(p)

∞∫
0

xp−1 · te−x

1 + te−x
· dx

=
1

Γ(p)

∞∫
0

xp−1 · t

ex + t
dx.

In the limit as t→ 1, the above result gives

∞∑
n=1

(−1)n−1n−p =
1

Γ(p)

∞∫
0

xp−1 1
ex + 1

dx

=
1

Γ(p)
M

{
1

ex + 1

}
= (1− 21−p) ζ(p),

in which result (8.2.11) is used.

Example 8.6.2
Show that ∞∑

n=1

(
sinan
n

)
=

1
2
(π − a), 0<a< 2π. (8.6.7)

The Mellin transform of f(x) =
(

sinax
x

)
gives

M

[
sin ax
x

]
=

∞∫
0

xp−2 sinax dx

= Fs

{√
π

2
xp−2

}
= −Γ(p− 1)

ap−1
cos

(πp
2

)
.
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Substituting this result into (8.6.5) gives

∞∑
n=1

(
sin an
n

)
=− 1

2πi

c+i∞∫
c−i∞

Γ(p− 1)
ap−1

ζ(p) cos
(πp

2

)
dp. (8.6.8)

We next use the well-known functional equation for the zeta function

(2π)p ζ(1 − p)= 2Γ(p) ζ(p) cos
(πp

2

)
(8.6.9)

in the integrand of (8.6.8) to obtain

∞∑
n=1

(
sin an
n

)
=−a

2
· 1
2πi

c+i∞∫
c−i∞

(
2π
a

)p
ζ(1 − p)
p− 1

dp.

The integral has two simple poles at p= 0 and p= 1 with residues 1 and −π/a,
respectively, and the complex integral is evaluated by calculating the residues
at these poles. Thus, the sum of the series is

∞∑
n=1

(
sinan
n

)
=

1
2
(π − a).

8.7 Generalized Mellin Transforms

In order to extend the applicability of the classical Mellin transform, Naylor
(1963) generalized the method of Mellin integral transforms. This generalized
Mellin transform is useful for finding solutions of boundary value problems in
regions bounded by the natural coordinate surfaces of a spherical or cylindrical
coordinate system. They can be used to solve boundary value problems in
finite regions or in infinite regions bounded internally.

The generalized Mellin transform of a function f(r) defined in a< r <∞ is
introduced by the integral

M−{f(r)}=F−(p) =

∞∫
a

(
rp−1 − a2p

rp+1

)
f(r) dr. (8.7.1)

The inverse transform is given by

M −1
− {F−(p)}= f(r) =

1
2πi

∫
L

r−p F (p) dp, r > a, (8.7.2)
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where L is the line Re p= c, and F (p) is analytic in the strip |Re(p)|= |c|<γ.
By integrating by parts, we can show that

M−

[
r2
∂2f

∂r2
+ r

∂f

∂r

]
= p2 F−(p) + 2 p apf(a), (8.7.3)

provided f(r) is appropriately behaved at infinity. More precisely,

lim
r→∞

[
(rp − a2p r−p)rfr − p(rp + a2pr−p)f

]
= 0. (8.7.4)

Obviously, this generalized transform seems to be very useful for finding the
solution of boundary value problems in which f(r) is prescribed on the internal
boundary at r= a.

On the other hand, if the derivative of f(r) is prescribed at r= a, it is
convenient to define the associated integral transform by

M+[f(r)] =F+(p) =

∞∫
a

(
rp−1 +

a2p

rp+1

)
f(r) dr, |Re(p)|<r, (8.7.5)

and its inverse given by

M −1
+ [f(p)] = f(r) =

1
2πi

∫
L

r−p F+(p)dp, r > a. (8.7.6)

In this case, we can show by integration by parts that

M+

[
r2
∂2f

∂r2
+ r

∂f

∂r

]
= p2F+(p) − 2 ap+1f ′(a), (8.7.7)

where f ′(r) exists at r= a.

THEOREM 8.7.1

(Convolution). If M+{f(r)}=F+(p), and M+{g(r)}=G+(p), then

M+{f(r) g(r)}=
1

2πi

∫
L

F+(ξ)G+(p− ξ) dξ. (8.7.8)

Or, equivalently,

f(r)g(r) = M −1
+

⎡⎣ 1
2πi

∫
L

F+(ξ)G+(p− ξ)dξ

⎤⎦ . (8.7.9)



© 2007 by Taylor & Francis Group, LLC

Mellin Transforms and Their Applications 363

PROOF We assume that F+(p) and G+(p) are analytic in some strip
|Re(p)|<γ. Then

M+{f(r) g(r)} =

∞∫
a

(
rp−1 +

a2p

rp+1

)
f(r)g(r)dr

=

∞∫
a

rp−1f(r)g(r)dr +

∞∫
a

a2p

rp+1
f(r)g(r)dr. (8.7.10)

=
1

2πi

∫
L

F+(ξ)dξ

∞∫
a

rp−ξ−1g(r)dr

+
1
2π

∞∫
a

a2p

rp+1
g(r)dr

∫
L

r−ξF+(ξ) dξ. (8.7.11)

Replacing ξ by −ξ in the first integral term and using F+(ξ) = a2ξF+(−ξ),
which follows from the definition (8.7.5), we obtain∫

L

r−ξ F+(ξ)dξ =
∫
L

rξ a−2ξ F+(ξ)dξ. (8.7.12)

The path of integration L, Re(ξ) = c, becomes Re(ξ) =−c, but these paths
can be reconciled if F (ξ) tends to zero for large Im(ξ).

In view of (8.7.11), we have rewritten
∞∫
a

a2p

rp+1
f(r) g(r)dr =

1
2πi

∫
L

F+(ξ)dξ

∞∫
a

a2p−2ξ

rp−ξ+1
g(r) dr. (8.7.13)

This result is used to rewrite (8.7.10) as

M+{f(r)g(r)} =

∞∫
a

(
rp−1 +

a2p

rp+1

)
f(r)g(r)dr

=

∞∫
a

rp−1f(r) g(r) dr +

∞∫
a

a2p

rp+1
f(r) g(r) dr

=
1

2πi

∫
L

F+(ξ) dξ

∞∫
a

rp−ξ−1g(r) dr

+
1

2πi

∫
L

F+(ξ)dξ

∞∫
a

a2p−2ξ

rp−ξ+1
g(r) dr

=
1

2πi

∫
L

F+(ξ)G+(p− ξ) dξ.
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This completes the proof.

If the range of integration is finite, then we define the generalized finite
Mellin transform by

M a
−{f(r)}=F a−(p) =

a∫
0

(
rp−1 − a2p

rp+1

)
f(r)dr, (8.7.14)

where Re p< γ.
The corresponding inverse transform is given by

f(r) =− 1
2πi

∫
L

( r

a2

)p
F a−(p)dp, 0<r <a,

which is, by replacing p by −p and using F a−(−p) =−a−2p F a−(p),

=
1

2πi

∫
L

r−p F a−(p)dp, 0< r<a, (8.7.15)

where the path L is Re p=−c with |c|<γ.
It is easy to verify the result

M a
−{r2frr + rf−r} =

a∫
0

(
rp−1 − a2p

rp+1

)
{r2frr + rfr}dr

= p2 F a−(p) − 2 p ap f(a). (8.7.16)

This is a useful result for applications.
Similarly, we define the generalized finite Mellin transform-pair by

M a
+{f(r)}=F a+(p) =

a∫
0

(
rp−1 +

a2p

rp+1

)
f(r) dr, (8.7.17)

f(r) =
(
M a

+

)−1 [
F a+(p)

]
=

1
2πi

∫
L

r−pF a+(p) dp, (8.7.18)

where |Re p|<γ.
For this finite transform, we can also prove

M a
+

[
r2frr + r fr

]
=

a∫
0

(
rp−1 +

a2p

rp+1

)(
r2frr + r fr

)
dr

= p2F a+(p) + 2 ap−1 f ′(a). (8.7.19)

This result also seems to be useful for applications. The reader is referred
to Naylor (1963) for applications of the above results to boundary value prob-
lems.
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8.8 Exercises

1. Find the Mellin transform of each of the following functions:

(a) f(x) =H(a− x), a> 0,

(c) f(x) =
1

1 + x2
,

(e) f(x) = xzH(x− x0),

(g) f(x) =Ei(x),

(b) f(x) = xme−nx, m,n> 0,

(d) f(x) = J2
0 (x),

(f) f(x) = [H(x− x0) −H(x)]xz ,

(h) f(x) = exEi(x),

where the exponential integral is defined by

Ei(x) =

∞∫
x

t−1 e−t dt=

∞∫
1

ξ−1 e−ξ x dξ.

2. Derive the Mellin transform-pairs from the bilateral Laplace transform
and its inverse given by

ḡ(p) =

∞∫
−∞

e−ptg(t)dt, g(t) =
1

2πi

c+i∞∫
c−i∞

ept ḡ(p)dp.

3. Show that

M

[
1

ex + e−x

]
= Γ(p)L(p),

where L(p)=
1
1p

− 1
3p

+
1
5p

− · · · is the Dirichlet L-function.

4. Show that

M

{
1

(1 + ax)n

}
=

Γ(p)Γ(n− p)
ap Γ(n)

.

5. Show that

M {x−nJn(ax)}=
1
2

(a
2

)n−p Γ
(p

2

)
Γ
(
n− p

2
+ 1

) , a > 0, n >−1
2
.

6. Show that

(a) M −1
[
cos

(πp
2

)
Γ(p) f̃(1− p)

]
= Fc

{√
π

2
f(x)

}
,
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(b) M −1
[
sin

(πp
2

)
Γ(p) f̃(1 − p)

]
= Fs

{√
π

2
f(x)

}
.

7. If I∞n f(x) denotes the nth repeated integral of f(x) defined by

I∞n f(x) =

∞∫
x

I∞n−1f(t)dt,

show that

(a) M

⎡⎣ ∞∫
x

f(t)dt, p

⎤⎦=
1
p
f̃(p+ 1),

(b) M [I∞n f(x)] =
Γ(p)

Γ(p+ n)
f̃(p+ n).

8. Show that the integral equation

f(x) = h(x) +

∞∫
0

g(xξ) f(ξ) dξ

has the formal solution

f(x) =
1

2πi

c+i∞∫
c−i∞

[
h̃(p) + g̃(p) h̃(1 − p)

1 − g̃(p) g̃(1 − p)

]
x−p dp.

9. Find the solution of the Laplace integral equation

∞∫
0

e−xξ f(ξ) dξ=
1

(1 + x)n
.

10. Show that the integral equation

f(x) = h(x) +

∞∫
0

f(ξ) g
(
x

ξ

)
dξ

ξ

has the formal solution

f(x) =
1

2πi

c+i∞∫
c−i∞

x−p h̃(p)
1 − g̃(p)

dp.
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11. Show that the solution of the integral equation

f(x) = e−ax +

∞∫
0

exp
(
−x
ξ

)
f(ξ)

dξ

ξ

is

f(x) =
1

2πi

c+i∞∫
c−i∞

(ax)−p
{

Γ(p)
1 − Γ(p)

}
dp.

12. Assuming (see Harrington, 1967)

M
[
f(reiθ)

]
=

∞∫
0

rp−1f(reiθ) dr, p is real,

and putting reiθ = ξ, M {f(ξ)}=F (p) show that

(a) M [f(reiθ); r→ p] = exp(−ipθ)F (p).

Hence, deduce

(b) M −1 {F (p) cos pθ}= Re[f(reiθ)],

(c) M −1 {F (p) sin pθ}=−Im[f(reiθ)].

13. (a) If M [exp(−r)] = Γ(p), show that

M
[
exp(−reiθ)]= Γ(p) e−i pθ,

(b) If M [log(1 + r)] =
π

p sinπp
, then show that

M
[
Re log (1 + reiθ)

]
=
π cos pθ
p sinπp

.

14. Use M −1

{
π

sin pπ

}
=

1
1 + x

= f(x), and Exercises 12(b) and 12(c), re-

spectively, to show that

(a) M −1

{
π cos pθ
sin pπ

; p→ r

}
=

1 + r cos θ
1 + 2r cos θ+ r2

,

(b) M −1

{
π sin pθ
sin pπ

; p→ r

}
=

r sin θ
1 + 2r cos θ+ r2

.

15. Find the inverse Mellin transforms of

(a) Γ(p) cos pθ, where− π

2
<θ<

π

2
, (b) Γ(p) sin pθ.
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16. Obtain the solution of Example 8.4.2 with the boundary data

(a) φ(r, α) =φ(r, −α) =H(a− r).

(b) Solve equation (8.4.5) in 0< r<∞, 0<θ<α with the boundary
conditions φ(r, 0) = 0 and φ(r, α) = f(r).

17. Show that

(a)
∞∑
n=1

cos kn
n2

=
[
k2

4
− πk

2
+
π2

6

]
, and (b)

∞∑
n=1

1
n2

=
π2

6
.

18. If f(x) =
∞∑
n=1

ane
−nx, show that

M {f(x)}= f̃(p) = Γ(p) g(p),

where g(p) =
∞∑
n=1

an n
−p is the Dirichlet series.

If an = 1 for all n, derive

f̃(p) = Γ(p) ζ(p).

Show that

M

{
exp(−ax)
1− e−x

}
= Γ(p) ξ(p, a).

19. Show that

(a)
∞∑
n=1

(−1)n−1

np
= (1 − 21−p) ζ(p).

Hence, deduce

(b)
∞∑
n=1

(−1)n−1

n2
=
π2

12
, (c)

∞∑
n=1

(−1)n−1

n4
=
(

7
8

)
π4

90
.

20. Find the sum of the following series

(a)
∞∑
n=1

(−1)n−1

n2
cos kn, (b)

∞∑
n=1

(−1)n−1

n
sin kn.

21. Show that the solution of the boundary value problem

r2φrr + rφr + φθθ = 0, 0<r <∞, 0<θ<π

φ(r, 0) =φ(r, π) = f(r),
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is

φ(r, θ) =
1

2πi

c+i∞∫
c−i∞

r−p
f̃(p) cos

{
p
(
θ− π

2

)}
dp

cos
(πp

2

) .

22. Evaluate ∞∑
n=1

cos an
n3

=
1
12

(a3 − 3πa2 + 2π2a).

23. Prove the following results:

(a) M

⎡⎣ ∞∫
0

ξnf(xξ) g(ξ)dξ

⎤⎦= f̃(p) g̃(1 + n− p),

(b) M

⎡⎣ ∞∫
0

ξnf

(
x

ξ

)
g(ξ)dξ

⎤⎦= f̃(p) g̃(p+ n+ 1).

24. Show that

(a) W−α[e−x] = e−x, α > 0,

(b) W
1
2

[
1√
x

exp
(−√

x
)]

=
K1(

√
x)√

πx
, x> 0,

whereK1(x) is the modified Bessel function of the second kind and order
one.

25. (a) Show that the integral (Wong, 1989, pp. 186–187)

I(x) =

π/2∫
0

J2
ν (x cos θ) dθ, ν >−1

2
,

can be written as a Mellin convolution

I(x) =

∞∫
0

f(xξ) g(ξ) dξ,

where

f(ξ) = J2
ν (ξ) and g(ξ) =

{
(1 − ξ2)−

1
2 , 0<ξ < 1

0, ξ≥ 1

}
.

(b) Prove that the integration contour in the Parseval identity

I(x) =
1

2πi

c+i∞∫
c−i∞

x−p f̃(p) g̃(1− p) dp, −2ν < c< 1,

cannot be shifted to the right beyond the vertical line Re p= 2.
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26. If f(x) =

∞∫
0

exp(−x2t2) · sin t
t2

J1(t)dt, show that

M {f(x)}=
Γ
(
p+

3
2

)
Γ
(

1− p

2

)
pΓ(p+ 3)

.

27. Prove the following relations to the Laplace and the Fourier transforms:

(a) M [f(x), p] = L [f(e−t), p],

(b) M [f(x); a+ iω] = F [f(e−t)e−at;ω],

where L is the two-sided Laplace transform and F is the Fourier trans-
form without the factor (2π)−

1
2 .

28. Prove the following properties of convolution:

(a) f ∗ g= g ∗ f,

(c) f(x) ∗ δ(x− 1) = f(x),

(b) (f ∗ g) ∗ h= f ∗ (g ∗ h),

(d) δ(x− a) ∗ f(x) = a−1f
(x
a

)
,

(e) δ n(n− 1) ∗ f(x) =
(
d

dx

)n
(xnf(x)),

(f)
(
x
d

dx

)n
(f ∗ g) =

[(
x
d

dx

)n
f

]
∗ g= f ∗

[(
x
d

dx

)n
g

]
.

29. If M {f(r, θ)}= f̃(p, θ) and ∇2f(r, θ) = frr + 1
rfr + 1

r2 fθθ, show that

M
{∇2f(r, θ)

}
=
[
d2

dθ2
+ (p− 2)2

]
f̃(p− 2, θ).
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9

Hilbert and Stieltjes Transforms

“The organic unity of mathematics is inherent in the nature of this
science, for mathematics is the foundation of all exact knowledge
of natural phenomena.”

David Hilbert

“Mathematics knows no races or geographic boundaries; for math-
ematics the cultural world is one country.”

David Hilbert

9.1 Introduction

In his 1912 famous paper on integral equations, David Hilbert (1862−1943)
introduced an integral transformation, which is now known as the Hilbert
transform. Although it was named after Hilbert, the Hilbert transform and its
basic properties were developed mainly by G.H. Hardy (1924) and simultane-
ously by E.C. Titchmarsh during 1925-1930. On the other hand, T.J. Stieltjes
(1856−1894) introduced the Stieltjes transform in his studies on continued
fractions. This transform was also involved in Stieltjes’ moment problems.

Both the Hilbert and Stieltjes transforms arise in many problems in ap-
plied mathematics, mathematical physics, and engineering science. The former
plays an important role in fluid mechanics, aerodynamics, signal processing,
and electronics, while the latter arises in the moment problem. This chap-
ter deals with definitions of Hilbert and Stieltjes transforms with examples.
This is followed by a discussion of basic operational properties of these trans-
forms. Finally, examples of applications of Hilbert and Stieltjes transforms to
physical problems are discussed.

371
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9.2 Definition of the Hilbert Transform and Examples

If f(t) is defined on the real line −∞< t<∞, its Hilbert transform, denoted
by f̂HHH(x), is defined by

HHH{f(t)}= f̂HHH(x) =
1
π

∞∮
−∞

f(t)
t− x

dt, (9.2.1)

where x is real and the integral is treated as a Cauchy principal value, that
is,

∞∮
−∞

f(t)dt
t− x

= lim
ε→0

⎡⎣ x−ε∫
−∞

+

∞∫
x+ε

⎤⎦ f(t)dt
t− x

. (9.2.2)

To derive the inverse Hilbert transform, we rewrite (9.2.1) as

f̂HHH(x) =
1√
2π

∞∫
−∞

f(t)g(x− t)dt= (f ∗ g)(x), (9.2.3)

where g(x) =

√
2
π

(
− 1
x

)
. Application of the Fourier transform with respect

to x gives

F (k) =
F̂HHH(k)
G(k)

, G(k) = i sgnk. (9.2.4)

Taking the inverse Fourier transform, we obtain the solution for f(x) as

f(x) =− 1√
2π

∞∫
−∞

(i sgn k)F̂HHH(k)exp(ikx)dk

which is, by the Convolution Theorem 2.5.5,

=
1
π

∞∮
−∞

f̂HHH(ξ)
x− ξ

dξ=−HHH
{
f̂HHH(ξ)

}
. (9.2.5)

Obviously, −HHH2{f(t)}=−HHH [HHH{f(t)}] = f(x) and hence, HHH−1 =−HHH. Thus,
the inverse Hilbert transform is given by

f(t) =HHH−1
{
f̂HHH(x)

}
=−HHH

{
f̂HHH(x)

}
=− 1

π

∞∮
−∞

f̂HHH(x)dx
x− t

. (9.2.6)
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Example 9.2.1

Find the Hilbert transform of a rectangular pulse given by

f(t) =

{
1, for |t|<a
0, for |t|>a

}
. (9.2.7)

We have, by definition,

f̂HHH(x) =
1
π

a∫
−a

dt

t− x
.

If |x|<a, the integrand has a singularity at t= x, and hence,

f̂HHH(x) =
1
π

lim
ε→0

⎡⎣ x−ε∫
−a

dt

t− x
+

a∫
x+ε

dt

t− x

⎤⎦
=

1
π

lim
ε→0

{
[log |t− x|]x−ε−a + [log |t− x|]ax+ε

}
=

1
π

lim
ε→0

{log |ε| − log |a+ x|+ log |a− x| − log |ε|}

=
1
π

log
∣∣∣∣a− x

a+ x

∣∣∣∣ for |x|<a.

On the other hand, if |x|>a, the integrand has no singularity in −a< t<a,
and hence,

f̂HHH(x) =
1
π

a∫
−a

dt

t− x
=

1
π

[log |t− x|]a−a =
1
π

log
∣∣∣∣a− x

a+ x

∣∣∣∣ for |x|>a.

Finally, we obtain the Hilbert transform of f(t) defined by (9.2.7) as

f̂HHH(x) =
1
π

log
∣∣∣∣a− x

a+ x

∣∣∣∣. (9.2.8)

Example 9.2.2

Find the Hilbert transform of

f(t) =
t

(t2 + a2)
, a> 0. (9.2.9)
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We have, by definition,

f̂HHH(x) =
1
π

∞∮
−∞

t dt

(t2 + a2)(t− x)

=
1

π(a2 + x2)

∞∮
−∞

[
a2

t2 + a2
+

x

t− x
− xt

t2 + a2

]
dt

=
1
π

1
(a2 + x2)

⎡⎣a2

∞∫
−∞

dt

t2 + a2
+ x

∞∮
−∞

dt

(t− x)
− x

∞∫
−∞

t dt

(t2 + a2)

⎤⎦.
The second and third integrals as the Cauchy principal value vanish and

hence, only the first integral makes a non-zero contribution. Thus, we obtain

f̂HHH(x) =
1
π

1
(a2 + x2)

· (aπ) =
a

(a2 + x2)
. (9.2.10)

Example 9.2.3
Find the Hilbert transform of

(a) f(t) = cosωt and (b) f(t) = sinωt.
It follows from the definition of the Hilbert transform that

f̂HHH(x) =
1
π

∞∫
−∞

cosωt
(t− x)

dt =
1
π

∞∫
−∞

cos{ω(t− x) + ωx}dt
(t− x)

=
1
π

∞∫
−∞

(t− x)−1[cosω(t− x) cosωx− sinω(t− x) sinωx]dt

=
cosωx
π

∞∫
−∞

cosω(t− x)
t− x

dt− sinωx
π

∞∫
−∞

sinω(t− x)dt
t− x

,

which is, in terms of the new variable T = t− x,

=
cosωx
π

∞∫
−∞

cosωT
T

dT − sinωx
π

∞∫
−∞

sinωT
T

dT. (9.2.11)

Obviously, the first integral vanishes because its integrand is an odd function
of T . On the other hand, the second integral makes a non-zero contribution
so that (9.2.11) gives

HHH{cosωt}= f̂HHH(x) =− sinωx
π

· π=− sinωx. (9.2.12)
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Similarly, it can be shown that

HHH{sinωt}= cosωx. (9.2.13)

9.3 Basic Properties of Hilbert Transforms

THEOREM 9.3.1
If HHH{f(t)}= f̂HHH(x), then the following properties hold:

(a) HHH{f(t+ a)}= f̂HHH(x+ a), (9.3.1)

(b) HHH{f(at)}= f̂HHH(ax), a> 0, (9.3.2)

(c) HHH{f(−at)}=−f̂HHH(−ax), (9.3.3)

(d) HHH{f ′(t)}=
d

dx
f̂HHH(x), (9.3.4)

(e) HHH{t f(t)}= x f̂HHH(x) +
1
π

∞∫
−∞

f(t)dt, (9.3.5)

(f) F [HHH{f(t)}] = (−i sgn k)F {f(x)}, (9.3.6)
(g) ‖HHH{f(t)}‖= ‖f(t)‖, (9.3.7)

where ‖f‖=
√
<f, f > denotes the norm in L2(R),

(h) HHH [f ](x) = f̂HHH(x), HHH [f̂HHH ](x) =−f (Reciprocity relations), (9.3.8)

(i) <f, HHHg>=<−HHHf, g > and <HHHf, g >=<f,−HHHg>, (9.3.9)

(Parseval’s formulas).

PROOF (a) We have, by definition,

HHH{f(t+ a)}=
1
π

∞∮
−∞

f(t+ a)dt
t− x

(t+ a= u)

=
1
π

∞∮
−∞

f(u)du
u− (x+ a)

= f̂HHH(x+ a).
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(b) HHH{f(at)} =
1
π

∞∮
−∞

f(at)dt
t− x

(at= u, a> 0)

=
1
π

∞∮
−∞

f(u)du
u− ax

= f̂HHH(ax).

Similarly, result (c) can be proved.

(d) HHH{f ′(t)}=
1
π

∞∮
−∞

f ′(t)dt
t− x

which is, integrating by parts,

=
1
π

[
f(t)
t− x

]∞
−∞

+
1
π

∞∮
−∞

f(t) dt
(t− x)2

=
d

dx
f̂HHH(x).

Proofs of (e)–(i) are similar and hence, are left to the reader.

THEOREM 9.3.2
If f(t) is an even function of t, then, an alternative form of the Hilbert trans-
form is

f̂HHH(x) =
x

π

∞∮
−∞

f(t)− f(x)
(t2 − x2)

dt. (9.3.10)

PROOF As the Cauchy principal value, we have

∞∮
−∞

dt

t− x
= 0.

Consequently,

f̂HHH(x) =
1
π

∞∮
−∞

f(t)− f(x)
t− x

dt=
1
π

∞∮
−∞

(t+ x){f(t) − f(x)}
(t2 − x2)

dt

=
1
π

∞∮
−∞

t{f(t)− f(x)}
(t2 − x2)

dx+
x

π

∞∮
−∞

{f(t)− f(x)}dt
(t2 − x2)

. (9.3.11)

Since f(t) is an even function, the integrand of the first integral of (9.3.11) is
an odd function; hence, the first integral vanishes, and (9.3.11) gives (9.3.10).
Since result (9.2.3) reveals that the Hilbert transform can be written as a
convolution transform, we state the following.
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THEOREM 9.3.3
If f and g ∈ L1(R) are such that their Hilbert transforms are also in L1(R),
then

HHH(f ∗ g)(x) = (HHHf ∗ g) (x) = (f ∗HHHg) (x) (9.3.12)

and
(f ∗ g)(x) =− (HHHf ∗HHHg) (x). (9.3.13)

PROOF We have, by definition

HHH(f ∗ g)(x) =
1
π

1√
2π

∞∫
−∞

dt

t− x

⎡⎣ ∞∫
−∞

f(y)g(t− y)dy

⎤⎦ , (t− y= ξ),

=
1

π
√

2π

∞∫
−∞

f(y)dy

⎡⎣ ∞∫
−∞

g(ξ)dξ
ξ − (x− y)

⎤⎦ ,
=

1√
2π

∞∫
−∞

f(y)(HHHg)(x− y)dy= (f ∗HHHg)(x).

Similarly, we can prove the second result in (9.3.12).
To prove (9.3.13), we replace g by HHHg in (9.3.12) and then use HHH2g=−g.

Another version of the Hilbert transform and its inversion formula is stated
in the following theorem:

THEOREM 9.3.4
If f ∈ L2(R), then the Hilbert transform (HHHf)(x) ∈ L2(R) is given by

(HHHf)(x) =− 1
π

d

dx

∞∫
−∞

f(t) ln
(
1 − x

t

)
dt (9.3.14)

almost everywhere. Further, the following inversion formula

f(t) =
1
π

d

dt

∞∫
−∞

(HHHf)(x) ln
(

1 − t

x

)
dx, (9.3.15)

holds everywhere with ‖f‖= ‖HHHf‖, that is,
∞∫

−∞
|f(x)|2 dx=

∞∫
−∞

|(HHHf)(x)|2 dx. (9.3.16)



© 2007 by Taylor & Francis Group, LLC

378 INTEGRAL TRANSFORMS and THEIR APPLICATIONS

If the differentiation is performed under the integral signs in (9.3.14) and
(9.3.15), we obtain the Hilbert transform pair (9.2.1) and (9.2.6).

We close this section by adding a comment. A more rigorous mathematical
treatment of classical Hilbert transforms can be found in a treatise by Titch-
marsh (1959). Further results and references of related work on Hilbert trans-
forms and their applications are given by Kober (1943a,b), Gakhov (1966),
Newcomb (1962), and Muskhelishvili (1953).

Several authors including Okikiolu (1965) and Kober (1967) introduced the
modified Hilbert transform of a function f(t), which is defined by

HHHα[f(t)] = f̂HHHα(x) =
cosec

(πα
2

)
2 Γ(α)

∞∮
−∞

(t− x)α−1f(t)dt, (9.3.17)

where x is real and 0<α< 1, and the integral is treated as the Cauchy princi-
pal value. Obviously,HHHα[f(t)] is closely related to the Weyl fractional integral
W−α so that

2 sin
(πα

2

)
HHHα[f(t)] =W−α[f(t), x] −Wα[f(−t),−x]. (9.3.18)

Several properties of HHHα[f(t)] and W−α[f(t)] are investigated by Kober
(1967). He also proved the following results, which is stated below without
proof.

THEOREM 9.3.5
(Parseval’s Relation). IfHHHα[f(t)] = f̂HHHα

(x), then <HHHαf, g >=−<f, HHHαg >.
Or, equivalently,

∞∫
−∞

HHHα[f(t), x] g(x)dx=−
∞∫

−∞
HHHα[g(t), x] f(x)dx. (9.3.19)

9.4 Hilbert Transforms in the Complex Plane

In communication and coherence problems in electrical engineering (see, for
example, Tuttle, 1958), the Hilbert transform in the complex plane plays an
important role. In order to define such a transform, we first consider the
function f0(z) of a complex variable z= x+ iy given by

f0(z) =
1
π

∞∮
−∞

f(t)dt
t− z

, y > 0. (9.4.1)



© 2007 by Taylor & Francis Group, LLC

Hilbert and Stieltjes Transforms 379

Application of the Fourier transform defined by (2.3.1) and its inverse by
(2.3.2) to (9.2.1) and (9.4.1) gives

F̂HHH(ω) = i sgn(ω) F (ω), (9.4.2)
F0(ω) = 2i exp(−ωy) HHH(ω) F (ω). (9.4.3)

In view of (9.4.2), (9.4.3) can be written as

F0(ω) = 2 exp(−ωy) HHH(ω) F̂HHH(ω). (9.4.4)

Taking the inverse Fourier transform, we obtain

f0(z) =
i

π

∞∮
−∞

f̂HHH(t)
t− z

dt.

Or,
∞∮

−∞

f(t)dt
t− z

= i

∞∮
−∞

f̂HHH(t)dt
t− z

, Im (z) = y> 0. (9.4.5)

Since,

lim
y→0+

1
t− z

=
1

t− x
+ πi δ(t− x),

we have, from (9.4.5),

f0(z) = lim
y→0+

1
π

∞∮
−∞

f(t)dt
t− z

=
1
π

∞∮
−∞

f(t)dt
t− x

+ i f(x) = f̂HHH(x) + i f(x).

This gives a relation between f0(z) and Hilbert transforms.
We now define a complex analytic signal fc(x) from a real signal f(x) by

fc(x) =
1
π

∞∫
−∞

F (ω) HHH(ω) exp(iωx)dω. (9.4.6)

Since

F (ω)HHH(ω) =
1
2
[F (ω) + sgn(ω)F (ω)] =

1
2

[
F (ω)− i F̂HHH(ω)

]
,

fc(x) =
1
2π

∞∫
−∞

[
F (ω)− i F̂HHH(ω)

]
exp(iωx)dω= f(x) − i f̂HHH(x). (9.4.7)

Since f(x) is real, Re{fc(x)}= f(x) and

Im {fc(x)}=−f̂HHH(x) =
1
π

∞∫
−∞

f(t)dt
x− t

.
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Thus, it follows from the inverse Hilbert transform that

f(t) =− 1
π

∞∮
−∞

Im {fc(x)}dx
x− t

=
1
π

∞∮
−∞

fHHH(x)dx
x− t

. (9.4.8)

9.5 Applications of Hilbert Transforms

Example 9.5.1
(Boundary Value Problems). Solve the Laplace equation

uxx + uyy = 0, −∞<x<∞, y > 0, (9.5.1)

with the boundary conditions

ux(x, y) = f(x) on y= 0, for −∞<x<∞, (9.5.2)

u(x, y) → 0 as r= (x2 + y2)
1
2 →∞. (9.5.3)

Application of the Fourier transform defined by (2.3.1) with respect to x
gives the solution for U(k, y) as

U(k, y) =
F (k)
ik

exp(−|k|y) =F (k)G(k), (9.5.4)

where G(k) = (ik)−1 exp(−|k|y) so that g(x) =

√
2
π

tan−1

(
x

y

)
.

Using the Convolution Theorem 2.5.5 gives the formal solution

u(x, y) =
1√
2π

∞∫
−∞

f(t)g(x− t)dt

=
1
π

∞∫
−∞

f(t) tan−1

(
x− t

y

)
dt. (9.5.5)

Obviously, it follows from (9.5.5) that

uy(x, 0) =
1
π

∞∫
−∞

f(t) dt
t− x

=HHH{f(t)}. (9.5.6)

Thus, the Hilbert transform of the tangential derivative ux(x, 0) = f(x) is the
normal derivative uy(x, 0) on the boundary at y= 0.
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Example 9.5.2
(Nonlinear Internal Waves). We consider a linear homogeneous partial differ-
ential equation with constant coefficients in the form

P

(
∂

∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z

)
u(x, t) = 0, (9.5.7)

where P is a polynomial in partial derivatives, and x= (x, y, z) and time t > 0.

We seek a three-dimensional plane wave solution of (9.5.7) in the form

u(x, t) = a exp[i(κ · x− ωt)], (9.5.8)

where a is the amplitude, κ = (k, �,m) is the wavenumber vector, and ω is the
frequency. If this solution (9.5.8) is substituted into (9.5.7), partial derivatives
∂

∂t
,
∂

∂x
,
∂

∂y
, and

∂

∂z
will be replaced by −iω, ik, i�, and im respectively.

Hence, the solution of (9.5.7) exists provided the algebraic equation

P (−iω, ik, i�, im)= 0 (9.5.9)

is satisfied. This relation is universally known as the dispersion relation. Phys-
ically, this gives the frequency ω in terms of wavenumbers k, �, andm. Further,
the above analysis shows that there is a direct correspondence between the
governing equation (9.5.7) and the dispersion relation (9.5.9) given by

∂

∂t
↔−i ω,

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
↔ (ik, i�, im). (9.5.10)

Clearly, the dispersion relation can be derived from the governing equation
and vice versa by using (9.5.10).

In many physical problems, the dispersion relation can be written explicitly
in terms of the wavenumbers as

ω=W (k, �,m). (9.5.11)

The phase and the group velocities of the waves are defined by

Cp(κ) =
ω

κ
κ̂, Cg(κ) =∇κω, (9.5.12ab)

where κ̂ is the unit vector in the direction of the wavevector κ. In the one-
dimensional problem, (9.5.11)–(9.5.12ab) reduce to

ω=W (k), Cp =
ω

k
, Cg =

dω

dk
. (9.5.13abc)

Thus, the one-dimensional waves given by (9.5.8) are called dispersive if
the group velocity Cg =ω′(k) is not constant, that is, ω′′(k) �= 0. Physically,
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as time progresses, the different waves disperse in the medium with the result
that a single hump breaks into a series of wavetrains.

We consider a simple model of internal solitary waves in an inviscid, stably
stratified two-fluid system between rigid horizontal planes at z= h1 and z=
h2. The upper fluid of depth h1 and density ρ1 lies over the heavier lower
fluid of depth h2 and density ρ2(>ρ1). Both fluids are subjected to a vertical
gravitational force g, and the effects of surface tension are neglected. With z=
η(x, t) as the internal wave displacement field, the linear dispersion relation
for the two-fluid system is

ω2 =
gk(ρ2 − ρ1)

(ρ1 coth kh1 + ρ2 coth kh2)
, (9.5.14)

where ω(k) and k are frequency and wavenumber for a small amplitude sinu-
soidal disturbance at the interface of the two fluids. Several important limiting
cases of (9.5.14) are of interest.

Case (i): Deep-Water Theory (Benjamin, 1967; Ono, 1975).
In this case, the depth of the lower fluid is assumed to be infinite (h2 →∞),

and waves are long compared with the depth h1 of the upper fluid. This leads
to the double limit in the form

lim
k→0

lim
h2→∞

ω2 = c20k
2 − 2αc0k3(sgn k+ · · · ), (9.5.15)

where k→ 0 is used with fixed h1, and the limit h2 →∞ is taken with k and
h1 fixed, and

c20 =
(
ρ2 − ρ1

ρ1

)
gh1 and α=

(
ρ2

ρ1

)(
h1c0

2

)
. (9.5.16ab)

We consider internal waves propagating only in one direction and retain the
first dispersive term so that the associated dispersion relation becomes

ω= c0 k− αk|k|. (9.5.17)

This enables us to define the appropriate space and time scales associated
with this limiting case as

ξ= β(x− c0t), τ = β2t, (9.5.18ab)

where β(<< 1) is the long wave parameter defined as the ratio of the wave-
guide scale to the wavelength.

The linear evolution equation associated with (9.5.17) is

ηt + coηx + αHHH{ηxx}= β2[ητ + αHHH{ηξξ}] = 0, (9.5.19)

where HHH{η(x′, t)} is the Hilbert transform of η(x′, t) defined by

HHH{η(x′, t)}=
1
π

∞∮
−∞

η(x′, t)dx′

(x′ − x)
. (9.5.20)
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Equation (9.5.19) is often called the linear Benjamin−Ono equation. Ben-
jamin (1967) and Ono (1975) investigated nonlinear internal wave motion and
discovered the following nonlinear equation

(ηt + coηx) + c1 ηηx + αHHH{ηxx}= 0, (9.5.21)

where c1 and α are constants, which are the characteristics of specific flows.
This equation is usually known as the Benjamin−Ono equation.

The solitary wave solution of (9.5.21) has the form (Benjamin, 1967)

η(x− ct) =
aλ2

(x− ct)2 + λ2
, (9.5.22)

where c= c0 +
1
2
a c1 and aλ=−4α

c1
.

It is noted here that the Benjamin−Ono equation is one of the model non-
linear evolution equations and it arises in a large variety of physical wave
systems.

Case (ii): Shallow-Water Theory (Benjamin, 1966).
In this case, long wave (k→ 0) disturbances with the length scale h= (h1 +

h2) fixed lead to the result

lim
k→0

(ω2) = c20k
2 − 2c0γk4, (9.5.23)

where

c20 =
g(ρ2 − ρ1)h1h2

(ρ1h2 + ρ2h1)
and γ= c0h1h2

(
ρ1h1 + ρ2h2

ρ1h2 + ρ2h1

)
. (9.5.24ab)

If we retain only the first dispersive term in (9.5.23) and assume that the
wave propagates only to the right, it turns out that

ω(k) = c0k − γk3. (9.5.25)

The evolution equation associated with (9.6.25) is the well-known linear
KdV equation

ηt + c0 ηx + γ ηxxx = 0. (9.5.26)

In terms of a slow time scale τ and a slow spatial modulation ξ in a coordi-
nate system moving at the linear wave velocity defined by ξ= β(x− c0t) and
τ = β2t, the above equation (9.5.26) reduces to the linear KdV equation

ητ + γ ηξξξ = 0. (9.5.27)

The standard nonlinear KdV equation is given by

ηt + c0ηx + α ηηx + γ ηxxx = 0. (9.5.28)
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It is well known that this equation admits the soliton solution in the form

η(x− ct) = a sech2

(
x− ct

λ

)
, (9.5.29)

where c= c0 +
aα

3
and aλ2 =

12γ
α

.
A similar argument can be employed to determine the integrodifferential

nonlinear evolution equation associated with an arbitary dispersion relation
ω(k) = k c(k) in the form

∂η

∂t
+ c1 η ηx +

∞∫
−∞

K(x− ζ)
(
∂η

∂ζ

)
dζ = 0, (9.5.30)

where the kernel K(x) is a given function. The linearized version of (9.5.30)
admits the plane wavelike solution

η(x, t) =A exp[i(kx− ωt)], (9.5.31)

provided the following dispersion relation holds,

(−iω) exp(ikx) + i

∞∫
−∞

K(x− ζ) k exp(ikζ)dζ = 0.

Substituting x− ζ = ξ, this can be rewritten in the form

ω= k

∞∫
−∞

K(ξ) exp(−ikξ) dξ= k c(k), (9.5.32)

where c(k) is the Fourier transform of the given kernel K(x) so that K(x) =
F−1{c(k)}. This means that any phase velocity c(k) = F {K(x)} can be ob-
tained by choosing the kernel K(x).

In particular, if

K(x) = c0δ(x) + γ δ′′(x), c(k) = c0 + γ k2, (9.5.33)

equation (9.5.30) reduces to the linear KdV equation

ηt + c0 ηx + γ ηxxx = 0. (9.5.34)

Combining the general dispersion relation of the integral form with typical
nonlinearity, we obtain

ηt + c0 ηx + α η ηx +

∞∫
−∞

K(x− ζ)
(
∂η

∂ζ

)
dζ = 0. (9.5.35)
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Using (9.5.33) in (9.5.35), we can derive the KdV equation (9.5.28). On the
other hand, if c(k) = c0(1 − α|k|), we can deduce the Benjamin−Ono equation
(9.5.21) from (9.5.30).

Case (iii): Finite-Depth Water Wave Theory (Kubota et al., 1978).
In this case, h2>>h1, that is, (h1/h2) =O(β), but k h1 =O(β) and k h2 =

O(1). This dispersion relation appropriate for this case is

ω= c0k − 1
2

(
ρ2

ρ1

)
c0 h1 k

2 coth(k h2), (9.5.36)

where

c20 =
(
ρ2 − ρ1

ρ1

)
gh1. (9.5.37)

We can use (9.5.18ab) for the appropriate space and time scales to investi-
gate this case. Thus, the finite-depth evolution equation can be derived from
(9.5.36) and has the form (see Kubota et al., 1978)

ηt + c0 ηx + c1 η ηx + c2
∂2

∂x2

⎡⎣ ∞∫
−∞

η(x′, t)

×
{

coth
π(x− x′)

2h
− sgn

(
x− x′

h

)}]
dx′. (9.5.38)

The solitary wave solution of this equation was obtained by Joseph and Adams
(1981).

It is noted that the finite-depth equation reduces to the Benjamin−Ono
equation and the KdV equation in the deep- and shallow-water limits, respec-
tively.

Finally, all of the above theories can be formulated in the framework of
a generalized evolution equation usually known as the Whitham equation
(Whitham, 1967) in the form

∂η

∂t
+ c1 η ηx +

∂

∂x

⎡⎣ ∞∫
−∞

η(x′, t) dx′

× 1
2π

∞∫
−∞

exp{ik(x− x′)} c(k)dk
⎤⎦= 0. (9.5.39)

Subsequently, Maslowe and Redekopp (1980) have generalized the theory
of long nonlinear waves in stratified shear flows. They have obtained the gov-
erning nonlinear evolution equation, which involves the Hilbert transform.
In their analysis, the evolution equation contains a damping term describing
energy loss by radiation, which can be used to determine the persistence of
solitary waves or nonlinear wave packets in physically realistic situations.
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Example 9.5.3
(Airfoil Design). An example of application arises in the design of airfoil which
is a symmetric body designed to produce a desired lifting force when it moves
in an air medium. A typical example of an airfoil is an airplane wing.

We denote the x-coordinates of the leading and trailing edges by xL = a
and xT = b, respectively. The normal component of the induced velocity at a
point (ξ, η) on the surface of the airfoil is given by

(vi)n =
1
2π

b∫
a

f(x)dx
x− ξ

, (9.5.40)

for some function f , which depends on the curl of the velocity vector. Evident-
ly, (vi)n(ξ) is the finite Hilbert transform of f in [a, b]. The normal component
of the uniform stream velocity is found to be

(v∞)n = v∞ sin
[
α− tan−1

(
dz

dx

)]
,

where α is the angle made by the uniform stream with the x-axis and
(
dz
dx

)
is

the slope of the tangent line to the mean camber line at (ξ, η). Since the sum
of the normal components is zero, we have

1
2π

b∫
a

f(x)dx
ξ − x

= v∞ sin
[
α− tan−1

(
dz

dx

)]
at x= ξ, (9.5.41)

together with the boundary condition f(xT = b)= 0 which is known as the
Kutta boundary condition.

The major problem of a thin airfoil is to solve the integral equation for f .
For small α and

(
dz
dx

)
, equation (9.5.41) becomes

1
2π

b∫
a

f(x)dx
ξ − x

= v∞

(
α− dz

dx

)
x=ξ

, (9.5.42)

which, for a symmetrical airfoil with z=constant, reduces to

1
2π

b∫
a

f(x)dx
ξ − x

=α v∞. (9.5.43)

We can solve (9.5.43) explicitly. Without loss of generality, we set b= 0 with
b− a= c as the length of the main chord of the airfoil. We also assume

x=
1
2
c (1− cos θ) and ξ=

1
2
c (1 − cos θ0)



© 2007 by Taylor & Francis Group, LLC

Hilbert and Stieltjes Transforms 387

so that (9.5.43) can be transformed into the form

1
2π

π∫
0

f(θ) sin θ dθ
(cos θ − cos θ0)

=αv∞, f(π) = 0. (9.5.44)

In view of the fact

π∫
0

cosnθ dθ
(cos θ − cos θ0)

= π

(
sinnθ0
sin θ0

)
, (9.5.45)

the solution of (9.5.44) is

f(θ) = 2α v∞

(
1 + cos θ

sin θ

)
. (9.5.46)

The lift per unit span is given by

L=

C∫
0

ρv∞f(θ) dx= ρv∞

π∫
0

2α v∞

(
1 + cos θ

sin θ

)
1
2
c sin θ dθ= παcρv2

∞,

(9.5.47)
where ρ is the constant air density.

The general solution of (9.5.42) can be represented by a sum of two terms.
The first term has the form f(θ) for the symmetric airfoil given by (9.5.46)
and the second term can be represented by a Fourier sine series. Thus, we
have

f(θ) = 2 v∞

[
a0

(
1 + cos θ

sin θ

)
+

∞∑
n=1

an sinnθ

]
. (9.5.48)

Substituting (9.5.48) into (9.5.42) gives

1
π

⎡⎣a0

π∫
0

(1 + cos θ)
(cos θ− cos θ0)

dθ +
∞∑
n=1

an

π∫
0

sin nθ sin θdθ
(cos θ− cos θ0)

⎤⎦=
(
α− dz

dx

)
x=ξ

,

(9.5.49)
where constants an (n= 0, 1, 2, . . .) are to be determined.

Using the relation (9.5.45) and the identity

2 sin nθ sin θ= [cos(n− 1)θ− cos(n+ 1)θ] ,

we obtain (
dz

dx

)
x=ξ

= (α− a0) +
∞∑
n=1

an cosnθ0.



© 2007 by Taylor & Francis Group, LLC

388 INTEGRAL TRANSFORMS and THEIR APPLICATIONS

Since dz
dx is known, we calculate the coefficients as

a0 =α− 1
π

π∫
0

(
dz

dx

)
dθ, an =

2
π

π∫
0

(
dz

dx

)
cosnθ dθ.

Thus, the problem is completely solved. This example of application is taken
from Zayed (1996).

The finite Hilbert transform was defined by Tricomi (1951) as

HHH{f(t), a, b}= f̂HHH(x, a, b) =
1
π

b∫
a

f(t)
t− x

dt. (9.5.50)

Such transforms arise naturally in aerodynamics. Tricomi (1951) studied
the finite Hankel transform and its applications to airfoil theory. Subsequent-
ly, considerable attention has been given to the methods of solution of the
singular integral equation for the unknown function f(t) and known f̂HHH(x) as

1
π

1∫
−1

f(t)
t− x

dt= f̂HHH(x), −1<x< 1, (9.5.51)

where f(x) and f̂HHH(x) satisfy the Hölder conditions on (−1,1). This equa-
tion arises in boundary value problems in elasticity and in other areas. Sev-
eral authors including Muskhelishvili (1963), Gakhov (1966), Peters (1972),
Chakraborty (1980, 1988), Chakraborty and Williams (1980), Williams (1978),
Comninou (1977), Gautesen and Dunders (1987ab), and Pennline (1976) have
studied the methods of the solution of (9.5.41) and its various generalizations.
The readers are referred to these papers for details.

9.6 Asymptotic Expansions of One-Sided
Hilbert Transforms

A two-sided Hilbert transform can be written as the sum of two one-sided
transforms ∞∮

−∞

f(t)
t− x

dt=

∞∮
0

f(t)
t− x

dt−
∞∫
0

f(−t)
t+ x

dt, (9.6.1)

when x> 0 (with a similar expression for x< 0) where the second integral is
actually a Stieltjes transform of [−f(−t)], which has been defined by (9.7.4)
in Section 9.7.
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We examine the one-sided Hilbert transform, which is defined by

HHH+{f(t)}= f̂+
HHH(x) =

∫ ∞

0

f(t)
t− x

dt. (9.6.2)

The Mellin transform of HHH+{f(t)} is

M [HHH+{f(t)}] =

∞∫
0

xp−1

⎡⎣ ∞∫
0

f(t)
t− x

dt

⎤⎦dx =

∞∫
0

f(t)

⎡⎣ ∞∮
0

xp−1

t− x
dx

⎤⎦dt
M {HHH+{f(t)}} = π cot (πp)

∞∫
0

tp−1f(t)dt

= π cot (πp)M {f(t)}= π cot(πp)f̃(p).

Taking the inverse Mellin transform, we obtain

HHH+{f(t)}= f̂+
HHH(x) =

1
2πi

c+i∞∫
c−i∞

x−pπ cot(πp) f̃(p)dp. (9.6.3)

Example 9.6.1
(Asymptotic Expansion of One-Sided Hilbert Transforms).

∞∮
0

cosωt
t− x

dt∼−π sinωx−
∞∑
n=0

n!
(ωx)n+1

cos
{
(n+ 1)

π

2

}
, as x→∞, (9.6.4)

∞∮
0

sinωt
t− x

dt∼ π cosωx−
∞∑
n=0

n!
(ωx)n+1

sin
{
(n+ 1)

π

2

}
, as x→∞. (9.6.5)

We have ∞∮
0

exp(iωt)
t− x

dt= πi exp(iωx) +

∞∫
0

exp(iωt)
t− x

dt,

where in the integral on the right the contour of integration passes above the
pole t= x. The contour can be deformed into the positive imaginary axis on
which t= iu with u> 0. Thus,

∞∫
0

exp(iωt)
t− x

dt = −i
∞∫
0

exp(−ωu)
x− iu

du

∼ −
∞∑
n=0

in+1

xn+1

∞∫
0

un exp(−ωu)du, by Watson’s lemma

= −
∞∑
n=0

n!
(ωx)n+1

exp
{
i(n+ 1)

π

2

}
. (9.6.6)
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Separating the real and imaginary parts, we obtain the desired results. These
results are due to Ursell (1983).

THEOREM 9.6.1
(Ursell, 1983). If f(t) is analytic for real t, 0≤ t <∞, and if it has the asymp-
totic expansion in the form

f(t)∼
∞∑
n=1

an
tn

+ cosωt
∞∑
n=1

An
tn

+ sinωt
∞∑
n=1

Bn
tn

as t→∞, (9.6.7)

where the coefficients an, An and Bn are known and ω> 0, then the one-sided
Hilbert transform f̂+(x) has the following asymptotic expansion

f̂+
HHH(x) = HHH+{f(t)}=

∞∮
0

f(t)
t− x

dt∼
∞∑
1

cn
xn

− log x
∞∑
1

an
xn

+

( ∞∑
1

An
xn

) ∞∮
0

cosωt
t− x

dt+

( ∞∑
1

Bn
xn

) ∞∮
0

sinωt
t− x

dt as x→∞,(9.6.8)

where cn is given by

cn = dn −
n−1∑
r=1

Γ (n− r)
ωn−r

[
Ar cos

{π
2

(n− r)
}

+Br sin
{π

2
(n− r)

}]
(9.6.9)

and

dn = lim
p→n

[
M {f(t), p}+

an
p− n

]
. (9.6.10)

Note that when an = 0, (9.6.10) becomes

dn = M {f(t), n}=

∞∫
0

tn−1f(t)dt. (9.6.11)

Substituting (9.6.9) into (9.6.8) and using (9.6.4) and (9.6.5), we obtain the
following theorem:

THEOREM 9.6.2
(Ursell, 1983). Under the same conditions of Theorem 9.6.1, the one-sided
Hilbert transform f̂+(x) has the asymptotic expansion

f̂+
HHH(x) =

∞∫
0

f(t)
t− x

dt∼−
∞∑
1

dn
xn

− log x
∞∑
1

an
xn

− (π sinωx)
∞∑
1

An
xn

+(π cosωx)
∞∑
1

Bn
xn

as x→∞, (9.6.12)
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where dn is given by (9.6.10).
The reader is referred to Ursell (1983) for a detailed discussion of proof of

Theorems 9.6.1 and 9.6.2.

9.7 Definition of the Stieltjes Transform and Examples

We use the Laplace transform of f̄(s) = L {f(t)} with respect to s to define
the Stieltjes transform of f(t). Clearly,

L {f̄(s)} = f̃(z) =

∞∫
0

e−sz f̄(s)ds

=

∞∫
0

e−szds

∞∫
0

e−stf(t)dt. (9.7.1)

Interchanging the order of integration and evaluating the inner integral, we
obtain

f̃(z) =

∞∫
0

f(t)
t+ z

dt. (9.7.2)

The Stieltjes transform of a locally integrable function f(t) on 0≤ t<∞
is denoted by f̃(z) and defined by

S {f(t)}= f̃(z)=

∞∫
0

f(t)
t+ z

dt, (9.7.3)

where z is a complex variable in the cut plane |arg z|<π.
If z= x is real and positive, then

S {f(t)}= f̃(x) =

∞∫
0

f(t)
t+ x

dt. (9.7.4)

Differentiating (9.7.4) with respect to x, we obtain

dn

dxn
f̃(x) = (−1)n n!

∞∫
0

f(t)
(t+ x)n+1

dt, n= 1, 2, 3, .... (9.7.5)

We now state the inversion theorem for the Stieltjes transform without
proof.
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THEOREM 9.7.1
If f(t) is absolutely integrable in 0≤ t≤T for every positive T and is such that
the integral (9.7.4) converges for x> 0, then f̃(z) exists for complex z(z �= 0)
not lying on the negative real axis and

lim
ε→0+

1
2πi

[f̃(−x− iε)− f̃(−x+ iε)] =
1
2
[f(x+ 0) + f(x− 0)] (9.7.6)

for any positive x at which f(x+ 0) and f(x− 0) exist.

For a rigorous proof of this theorem the reader is referred to Widder (1941,
pp. 340–341).

Example 9.7.1
Find the Stieltjes transform of each of the following functions:

(a) f(t) = (t+ a)−1, (b) f(t) = tα−1.

(a) We have, by definition,

f̃(z) =

∞∫
0

dt

(t+ a)(t+ z)
=

1
(a− z)

⎡⎣ ∞∫
0

(
1

t+ z
− 1
t+ a

)
dt

⎤⎦
=

1
(a− z)

log
∣∣∣a
z

∣∣∣ . (9.7.7)

(b) f̃(z) = S {tα−1}=

∞∫
0

tα−1

t+ z
dt= z−1

∞∫
0

(
1 +

t

z

)−1

tα−1dt,

(
t

z
= x

)
,

= zα−1

∞∫
0

xα−1dx

1 + x
= zα−1M

{
1

1 + x

}
which is, by Example 8.2.1(b),

= zα−1π cosec (πα). (9.7.8)

Example 9.7.2
Obtain the Stieltjes transform of J2

ν (t).
We have

f̃(x) = S {J2
ν (t)}=

∞∫
0

J2
ν (t)dt
t+ x

(9.7.9)
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satisfies the Parseval relation

f̃(x) =
1

2πi

c+i∞∫
c−i∞

x−p f̃(p) g̃(1 − p) dp. (9.7.10)

We write t= xu so that (9.7.9) becomes

f̃(x) =

∞∫
0

f(xu)g(u)du, (9.7.11)

where f(u) = J2
ν (u) and g(u)= (1 + u)−1.

Taking the Mellin transform of (9.7.11) with respect to x, we obtain

M {f̃(x), p}= f̃(p) g̃(1 − p)

where, from Oberhettinger (1974, p. 98),

f̃(p) =
2p−1Γ

(
ν + p

2

)
π cosec (πp){

Γ
(
1− p

2

)}2 Γ
(
1 + ν − p

2

)
Γ(p)

,

g̃(1 − p) = π cosec (πp).

Thus, the inverse Mellin transform gives the desired result.

Example 9.7.3

Show that

S {sin(k
√
t)}= π exp(−k√z), k > 0. (9.7.12)

We have, by definition,

S {sin(k
√
t)}=

∞∫
0

sin(k
√
t)

t+ z
dt, (

√
t= u),

= 2

∞∫
0

u sinku
(u2 + z)

du = π exp(−k√z) by (2.13.6).



© 2007 by Taylor & Francis Group, LLC

394 INTEGRAL TRANSFORMS and THEIR APPLICATIONS

9.8 Basic Operational Properties
of Stieltjes Transforms

The following properties hold for the Stieltjes transform:

(a) S {f(t+ a)}= f̃(z − a), (9.8.1)

(b) S {f(at)}= f̃(az), a> 0, (9.8.2)

(c) S {t f(t)}=−z f̃(z) +

∞∫
0

f(t) dt, (9.8.3)

provided the integral on the right hand side exists.

(d) S

{
f(t)
t+ a

}
=

1
a− z

[
f̃(z)− f̃(a)

]
, (9.8.4)

(e) S

{
1
t
f
(a
t

)}
=

1
z
f̃
(a
z

)
, a> 0. (9.8.5)

PROOF
(a) We have, by definition,

S {f(t+ a)}=

∞∫
0

f(t+ a)
t+ z

dt

which is, by the change of variable t+ a= τ ,

S {f(t+ a)}=

∞∫
0

f(τ)
τ + (z − a)

dτ = f̃(z − a).

(b) We have, by definition,

S {f(at)}=

∞∫
0

f(at)
t+ z

dt, at= τ,

=

∞∫
0

f(τ)
τ + az

dτ = f̃(az).

(c) We have from the definition

S {t f(t)} =

∞∫
0

t f(t)
t+ z

dt=

∞∫
0

(t+ z − z)f(t)
t+ z

dt

=

∞∫
0

f(t) dt− z

∞∫
0

f(t)
t+ z

dt.
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This gives the desired result.
(d) We have, by definition,

S

{
f(t)
t+ a

}
=

∞∫
0

f(t)
(t+ a)(t+ z)

dt

=
1

a− z

⎡⎣ ∞∫
0

{
1

t+ z
− 1
t+ a

}
f(t) dt

⎤⎦
=

1
a− z

[
f̃(z)− f̃(a)

]
.

(e) We have, by definition,

S

{
1
t
f
(a
t

)}
=

∞∫
0

1
t(t+ z)

f
(a
t

)
dt,

(a
t

= τ
)
,

=
1
z

∞∫
0

f(τ)(
τ + a

z

) dτ =
1
z
f̃
(a
z

)
.

THEOREM 9.8.1
(Stieltjes Transforms of Derivatives). If S {f(t)}= f̃(z), then

S {f ′(t)} = −1
z
f(0)− d

dz
f̃(z), (9.8.6)

S {f ′′(t)} = −
[
1
z
f ′(0) +

1
z2
f(0)

]
− d2

dz2
f̃(z). (9.8.7)

More generally,

S {f (n)(t)} = −
[
1
z
f (n−1)(0) +

1
z2
f (n−2)(0)

+ · · ·+ 1
zn
f(0)

]
− dn

dzn
f̃(z). (9.8.8)

PROOF Using the definition and integrating by parts, we obtain

S {f ′(t)} =

∞∫
0

f ′(t)
t+ z

dt

=
[
f(t)
t+ z

]∞
0

+

∞∫
0

f(t) dt
(t+ z)2

=−1
z
f(0)− d

dz
f̃(z).
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This proves result (9.8.6).
Similarly, other results can readily be proved.

9.9 Inversion Theorems for Stieltjes Transforms

We first introduce the following differential operator that can be used to es-
tablish inversion theorems for the Stieltjes transform.

A differential operator is defined for any real positive number t by the
following equations:

Lk,t[f(x)] = (−1)k−1 ck t
k−1 D

(2k−1)
t [tk f(t)], (9.9.1)

L0,t[f(x)] = f(t), (9.9.2)
L1,t[f(x)] =Dt[t f(t)], (9.9.3)

where k= 2, 3, . . . , ck = [k!(k − 2)!]−1, Dt≡ d

dt
, and f(x) has derivatives of all

orders.
We state a basic theorem due to Widder (1941) without proof.

THEOREM 9.9.1
If S {f(t)}= f̃(x) exists and is defined by

f̃(x) =

∞∫
0

f(t)
t+ x

dt (9.9.4)

then, for all positive t,

(i) Lk,t[f̃(x)] = (2k − 1)! ck tk−1

∞∫
0

uk f(u)
(t+ u)2k

du, (9.9.5)

(ii) lim
k→∞

Lk,t[f̃(x)] = f(t). (9.9.6)

Obviously,

tk

t+ u
=
tk − (−u)k

t+ u
+

(−u)k

t+ u
= tk−1 − u tk−2 + · · · ± uk−1 +

(−u)k

t+ u
.

In view of this result, we can find

Lk,t[f̃(x)] = (−1)k−1 ck t
k−1 D

(2k−1)
t [tk f̃(t)]

= ck t
k−1(2k − 1)!

∞∫
0

uk

(t+ u)2k
f(u) du.
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THEOREM 9.9.2
If f̃(x) is the Laplace transform of f̄(s) = L {f(t)} so that

f̃(x) = L {f̃(s)}=

∞∫
0

f(t)
t+ x

dt for s> 0, then

(i) Lk,x[f̃(x)] = (−1)k ck xk−1

∞∫
0

e−xt t2k−1 f (k)(t) dt, (9.9.7)

(ii) lim
k→∞

Lk,x[f̃(x)] = f(x), for all positive x. (9.9.8)

PROOF We have, by definition of the operator defined by (9.9.1),

Lk,x[f̃(x)] = (−1)k−1xk−1ck D
(2k−1)
x [xkf̃(x)]. (9.9.9)

We use the result (Widder, 1941, p. 350)

xk−1 D(2k−1)
x [xk f(x)] =Dk

x[x
2k−1 f (k−1)(x)], (9.9.10)

where f(x) is any function that has derivatives of all orders. This can easily
be verified by computing both sides of (9.9.10). Each of both sides is equal to

k∑
n=0

(2k − 1)!
(2k − n− 1)!

(
k

n

)
x2k−n−1f (2k−n−1)(x).

In view of (9.9.10), result (9.9.9) becomes

Lk,x[f̃(x)] = (−1)k−1 ck D
k
x[x

2k−1f̃ (k−1)(x)]. (9.9.11)

We next show that

(−1)k−1f̃ (k−1)(x) = (−1)k−1 d
k−1

dxk−1

∞∫
0

e−xtf(t)dt

= (−1)2(k−1)

∞∫
0

e−xt tk−1 f(t)dt

=
1
x

∞∫
0

e−u
(u
x

)k−1

f
(u
x

)
du. (9.9.12)

Using (9.9.12) in (9.9.11), we obtain

Lk,x[f̃(x)] = ck

∞∫
0

e−uuk−1Dk
x

{
xk−1f

(u
x

)}
du,



© 2007 by Taylor & Francis Group, LLC

398 INTEGRAL TRANSFORMS and THEIR APPLICATIONS

which is, due to Lemma 25 (Widder 1941, p. 385),

= ck x
−(k+1)

∞∫
0

e−uuk−1(−u)k f (k)
(u
x

)
du. (9.9.13)

We again set u= xt in (9.9.13) to obtain the desired result

Lk,x[f̃(x)] = ck(−1)kxk−1

∞∫
0

e−xtt2k−1f (k)(t)dt.

We next take the limit as k→∞ and use Widder’s result (9.9.6) to derive
(9.9.8). Thus, the proof is complete.

It is important to note that result (9.9.7) depends on the values of all deriva-
tives of f(x) in the domain (0,∞). This seems to be a very severe restriction
on the formula (9.9.7). This restriction can be eliminated by applying the
operator Lk,x to the Laplace integral directly. Then we prove the following
theorem.

THEOREM 9.9.3
(Widder, 1941). Under the same conditions of Theorem 9.9.2, the following
results hold

(i) Lk,x[f̃(x)] =

∞∫
0

e−xs P2k−1(xs) f̄(s)ds, (9.9.14)

(ii) lim
k→∞

Lk,x[f̃(x)] = f(x), (9.9.15)

where

P2k−1(t) = (−1)k−1 ck (2k − 1)!
k∑

n=0

(
k

n

)
(−t)2k−n−1

(2k − n− 1)!
. (9.9.16)

PROOF We apply the operator Lk,x to the Laplace integral directly to
obtain

Lk,x[f̃(x)] = Lk,x[L {f̄(s)}] =Lk,x

⎡⎣ ∞∫
0

e−sx f̄(s)ds

⎤⎦
Lk,x[f̃(x)] =

∞∫
0

Lk,x[e−sx] f̄(s)ds
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which is, after direct computation of Lk,x[exp(−sx)],

=

∞∫
0

e−xsP2k−1 (xs) f̄(s)ds.

Taking the limit as k→∞ and using result (9.9.8), we obtain

lim
k→∞

Lk,x[f̃(x)] = lim
k→∞

∞∫
0

e−xs P2k−1(xs) f̄(s)ds= f(x) for all x> 0.

The significance of this result lies in the fact that the integral representation
for f(x) depends only on the values of f̄(s) in (0,∞) and not on any of its
derivatives.

9.10 Applications of Stieltjes Transforms

Example 9.10.1

(Moment Problem). If f(t) has an exponential rate of decay as t→∞, then
all of the moments exist and are given by

mr =

∞∫
0

tr f(t)dt, r= 0, 1, 2, . . . . (9.10.1)

Then it can easily be shown from (9.7.4) that

f̃(x) =
n−1∑
r=0

(−1)rmr x
−(r+1) + εn(x), (9.10.2)

where

|εn(x)| ≤ x−(n+1) sup
0<t<∞

∣∣∣∣∣∣
t∫

0

τn f(τ) dτ

∣∣∣∣∣∣ . (9.10.3)

The Stieltjes transform is found to arise in the problems of moments for the
semi-infinite interval. The reader is referred to Tamarkin and Shohat (1943).
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Example 9.10.2

(Solution of Integral Equations). Find the solution of the integral equation

λ

∞∫
0

f(t)
t+ x

dt= f(x), (9.10.4)

where λ is a real parameter.

Case (i): Suppose λ �= 1
π

.

In this case, we show that the solution of (9.10.4) is

f(t) =At−α +B tα−1, (9.10.5)

where A and B are arbitrary constants and α is a root of the equation sinαπ=

λπ between zero and unity if λ<
1
π

, and with real part
1
2

if λ>
1
π

.

If 0<Re α< 1, then

λ

∞∫
0

t−α

t+ x
dt = λ

∞∫
0

tp−1

t+ x
dt, (p= 1 − α)

= λπ xp−1 cosec (πp)

= x−α
(

λπ

sinπα

)
= x−α, (9.10.6)

so that x−α is a solution of (9.10.4). Obviously, equation (9.10.6) holds if α
is replaced by 1 − α, and hence, tα−1 is also a solution. Thus, (9.10.5) is a
solution of equation (9.10.4).

Case (ii): λ=
1
π

.

In this case, we show that
1√
t
, and

1√
t
log t are solutions of (9.10.4).

f(x) =
1
π

∞∫
0

dt√
t (t+ x)

=
1
π

∞∫
0

1
(t+ x)

t
1
2−1dt

=
1
π
x

1
2−1 π cosec

(π
2

)
=

1√
x
, by Example 9.7.1(b).

Thus,
1√
t

is a solution of the integral equation (9.10.4).
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To show that f(t) =
1√
t
log t is a solution, we write

f(x) =
1
π

∞∫
0

log t√
t (t+ x)

dt (log t= u)

=
1
π

∞∫
−∞

u

(x+ eu)
exp

(u
2

)
du.

Replacing x by ex and multiplying both sides by exp
(x

2

)
, we find

exp
(x

2

)
f(ex) =

1
π

∞∫
−∞

(
u

ex + eu

)
exp

(
x+ u

2

)
du

=
1
2π

∞∫
−∞

u sech
(
x− u

2

)
du, (x− u= t).

exp
(x

2

)
f(ex) =

1
2π

∞∫
−∞

(x− t) sech
(
t

2

)
dt=

x

2π

∞∫
−∞

sech
(
t

2

)
dt= x,

or,

f(ex) = x exp
(
−x

2

)
.

Thus,

f(t) =
1√
t
log t

is a solution, and hence,
1√
t
(A+B log t) is also a solution of (9.10.4).

9.11 The Generalized Stieltjes Transform

The generalized Stieltjes transform of a function f(t) is defined by

Sg{f(t)}= f̃(z, ρ)=

∞∫
0

f(t)
(t+ z)ρ

dt, (9.11.1)

provided the integral exists and |arg z|<π.
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Example 9.11.1
If Re a> 0, find the generalized Stieltjes transform of

(a) ta−1, (b) exp(−at).
(a) We have, by definition,

Sg{ta−1} =

∞∫
0

ta−1

(t+ z)ρ
dt

= z−ρ
∞∫
0

ta−1

(
1 +

t

z

)−ρ
dt, (t= zu),

= za−ρ
∞∫
0

ua−1(1 + u)−ρ du. (9.11.2)

Substituting x=
u

1 + u
or u=

x

1 − x
into integral (9.11.2), we obtain

Sg{ta−1} = za−ρ
1∫

0

xa−1(1 − x)ρ−a−1dx

= za−ρB(a, ρ− a) =
Γ(a)Γ(ρ− a)

Γ(ρ)
za−ρ. (9.11.3)

(b) We have, by definition,

Sg{exp(−at)}=

∞∫
0

exp(−at)
(t+ z)ρ

dt, (t+z = u),

= exp(az)

∞∫
0

e−auu−ρ du.

Substituting au= x into this integral, we obtain

Sg{exp(−at)} = aρ−1 exp(az)

∞∫
0

e−xx1−ρ−1dx

= aρ−1 exp(az) Γ(1− ρ). (9.11.4)

The reader is referred to Erdélyi et al. (1954, pp. 234–235) where there is
a table for generalized Stieltjes transforms.
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9.12 Basic Properties of the Generalized
Stieltjes Transform

The generalized Stieltjes transform satisfies the following properties:

(a) Sg{f(at)}= aρ−1 f̃(az), a> 0 (9.12.1)

(b) Sg{t f(t)}= f̃(z, ρ− 1)− z f̃(z, ρ), (9.12.2)

(c) Sg{f ′(t)}= ρ f̃(z, ρ+ 1)− z−ρ f(0), f(t)→ 0 as t→∞. (9.12.3)

(d) Sg

⎧⎨⎩
t∫

0

f(x)dx

⎫⎬⎭= (ρ− 1)−1 f̃(z, ρ− 1), Re ρ> 1. (9.12.4)

PROOF
(a) We have, by definition,

Sg{f(at)}=

∞∫
0

f(at) dt
(t+ z)ρ

, (at= x),

= aρ−1

∞∫
0

f(x) dx
(x+ az)ρ

= aρ−1 f̃(az).

(b) It follows from the definition that

Sg{t f(t)} =

∞∫
0

t f(t)
(t+ z)ρ

dt=

∞∫
0

(t+ z − z) f(t)
(t+ z)ρ

dt

=

∞∫
0

f(t)
(t+ z)ρ−1

dt− z

∞∫
0

f(t) dt
(t+ z)ρ

= f̃(z, ρ− 1)− z f̃(z, ρ).

(c) We have, by definition,

Sg{f ′(t)}=

∞∫
0

f ′(t)
(t+ z)ρ

dt

which is, by integrating by parts,

Sg{f ′(t)} =
[

f(t)
(t+ z)ρ

]∞
0

+ ρ

∞∫
0

f(t)
(t+ z)ρ+1

dt

= ρ f̃(z, ρ+ 1)− z−ρ f(0).
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(d) We write

g(t) =

t∫
0

f(x) dx

so that g′(t) = f(t) and g(0)= 0.
Thus,

Sg{f(t), ρ}= Sg{g′(t), ρ}
which is, by (9.12.3),

= ρ g̃(z, ρ+ 1)− z−ρ g(0) = ρSg{g(t), ρ+ 1}.

Replacing ρ by ρ− 1, we obtain (9.12.4).

9.13 Exercises

1. Find the Hilbert transform of each of the following functions:

(a) f(t) =
1

(a2 + t2)
, Re a> 0,

(c) f(t) = exp(−at),

(b) f(t) =
tα

(t+ a)
, |Re α|< 1,

(d) f(t) =
sin t
t
,

(e) f(t) =
1
t

sin(a
√
t), a > 0,

(f) f(t) = t−α exp(−at), Re a> 0, Re α< 1.

2. Show that

(a) S

{
1√
t
cos(a

√
t)
}

=
π√
z

exp(−a√z), z > 0.

(b) S {sin(a
√
t)J0(b

√
t)}= π exp(−a√z)I0(b

√
z), 0<b< a.

3. If f̃(z) = S {f(t)} and f(t) = S {g(u)}, then show that

f̃(z)=

∞∫
0

K(z, u) g(u) du,

where K(z, u)= (z − u)−1 log
( z
u

)
.

4. Show that
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(a) Sg

{
tρ−2 f

(a
t

)}
= aρ−1z−ρ f̃

(a
z

)
, a > 0.

(b) Sg

⎧⎨⎩ 1
Γ(α)

t∫
0

f(x)(t− x)α−1dx

⎫⎬⎭=
Γ(ρ− α)

Γ(ρ)
f̃(z, ρ− α),

where 0<Re α<Re ρ.

5. Show that the dispersion relation associated with the linearized Ben-
jamin−Ono equation

ut +HHH{uxx}= 0 is ω=−k|k|.
6. Find the Stieltjes transforms of each of the following functions:

(a) f(t) =
tα−1

t+ a
, (b) f(t) =

1
t2 + a2

, (c) f(t) =
t

t2 + a2
.

7. Show that

(a) S [f(teiπ) − f(te−iπ)] = 2πi f̃(z),
(b) S [f(

√
t)] = f̃(i

√
z) + f̃(−i√z).

8. Suppose f(t) is ia locally integrable function on (0,∞) and has the
asymptotic representation (Wong, 1989)

f(t)∼
∞∑
r=0

art
αr as t→ 0+

where Re αr ↑+∞ as r→∞, Re α0 >−1, and f(t) =O(t−a), a> 1.
Show that the generalized Stieltjes transform

f̃(x) =

∞∫
0

f(t) dt
(t+ x)ρ

, ρ > 0

has the asymptotic representation, as x→ 0+,

f̃(x)∼
∞∑
r=0

ar
Γ(1 + αr)Γ(ρ− 1 − αr)

Γ(ρ)
x1+αr−ρ

+
∞∑
r=0

(−1)r
Γ(r + ρ)M [f ; 1− ρ− r]

r! Γ(ρ)
xr

provided 1 + αr �= ρ+ n for all non-negative integers r and n.

9. Show that the one-sided Hilbert transform involved in research on water
waves by Hulme (1981)

f̂HHH(x) =

∞∫
0

J2
0 (t) dt
t− x
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satisfies the Parseval relation

f̂HHH(x) =
1

2πi

c+i∞∫
c−i∞

x−pM [J2
0 (x); p]π cotπp dp.

10. Prove the following asymptotic expansions (Ursell, 1983):

∞∮
0

J2
0 (t)
t− x

dt∼− 1
πx

(log x+ γ + 3 log 2) +
1
x

cos 2x+
1

4x2
sin 2x

+
1

8πx3

(
log x+ γ + 3 log 2 − 5

2

)
− 5

32x3
cos 2x, as x→∞,

and
∞∮
0

J2
0 (t)
t− x

dt ∼ −π
2
J0(x)Y0(x) −

√
π

∞∑
r=0

cos(πr)
Γ(r + 1)x2r+1{

Γ
(
r + 3

2

)}3 , as x→ 0.

11. If λ=
1√
π

, show that f(t) =
A√
t
, where A is a constant, is the only

solution of the integral equation

f(s) =λ

∞∫
0

e−stf(t) dt.

12. If λ=− 1√
π

, show that

f(t) =A

[
Γ′(1

2 )√
πt

− 2 log t√
t

]
,

where A is a constant, is the only solution of the integral equation as
stated in Exercise 11.

13. Show that

Lk,t[(x+ a)−1] = ck(2k − 1)! tk−1ak(t+ a)−2k, (a> 0, t > 0, k= 2, 3, . . .).

14. Prove that

lim
ε→0+

1
π

∞∫
ε

[
f(x+ u)− f(x− u)

u

]
du=

1
π

∞∮
−∞

f(t)
(t− x)

dt.

15. Prove Parseval’s formulas (9.3.9).
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Finite Fourier Sine and Cosine Transforms

“Mathematics compares the most diverse phenomena and discovers
the secret analogies that unite them.”

Joseph Fourier

“In the mathematical investigation I have usually employed such
methods as present themselves naturally to a physicist. The pure
mathematician will complain, and (it must be confessed) some-
times with justice, of deficient rigor. But to this question there
are two sides. For, however important it may be to maintain a
uniformly high standard in pure mathematics, the physicist may
occasionally do well to rest content with arguments which are fair-
ly satisfactory and conclusive from his point of view. To his mind,
exercised in a different order of ideas, the more severe procedure of
the pure mathematician may appear not more but less demonstra-
tive. And further, in many cases of difficulty to insist upon highest
standard would mean the exclusion of the subject altogether in
view of the space that would be required.”

Lord Rayleigh

10.1 Introduction

This chapter deals with the theory and applications of finite Fourier sine
and cosine transforms. The basic operational properties including convolution
theorem of these transforms are discussed in some detail. Special attention is
given to the use of these transforms to the solutions of boundary value and
initial-boundary value problems.

The finite Fourier sine transform was first introduced by Doetsch (1935).
Subsequently, the method has been developed and generalized by several au-
thors including Kneitz (1938), Koschmieder (1941), Roettinger (1947), and
Brown (1944).

407
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10.2 Definitions of the Finite Fourier Sine and Cosine
Transforms and Examples

Both finite Fourier sine and cosine transforms are defined from the corre-
sponding Fourier sine and Fourier cosine series.

DEFINITION 10.2.1 (The Finite Fourier Sine Transform). If f(x) is a
continuous or piecewise continuous function on a finite interval 0<x<a, the
finite Fourier sine transform of f(x) is defined by

Fs{f(x)}= f̃s(n) =

a∫
0

f(x) sin
(nπx

a

)
dx, (10.2.1)

where n= 1, 2, 3, . . ..

It is a well-known result of the theory of Fourier series that the Fourier sine
series for f(x) in 0<x<a

2
a

∞∑
n=1

f̃s(n) sin
(nπx

a

)
(10.2.2)

converges to the value f(x) at each point of continuity in the interval 0<

x<a and to the value
1
2
[f(x+ 0) + f(x− 0)] at each point x of the finite

discontinuity in 0<x<a. In view of the definition (10.2.1), the inverse Fourier
sine transform is given by

F −1
s

{
f̃s(n)

}
= f(x) =

2
a

∞∑
n=1

f̃s(n) sin
(nπx

a

)
. (10.2.3)

Clearly, both Fs and F −1
s are linear transformations.

DEFINITION 10.2.2 (The Finite Fourier Cosine Transform). If f(x) is
a continuous or piecewise continuous function on a finite interval 0<x<a,
the finite Fourier cosine transform of f(x) is defined by

Fc{f(x)}= f̃c(n) =

a∫
0

f(x) cos
(nπx

a

)
dx, (10.2.4)

where n= 0, 1, 2, . . ..
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It is also a well-known result of the theory of Fourier series that the Fourier
cosine series for f(x) in 0<x<a

1
a
f̃c(0) +

2
a

∞∑
n=1

f̃c(n) cos
(nπx

a

)
(10.2.5)

converges to f(x) at each point of continuity in 0<x<a, and to
1
2
[f(x+ 0) +

f(x− 0)] at each point x of finite discontinuity in 0<x<a. By virtue of the
definition (10.2.4), the inverse Fourier cosine transform is given by

F −1
c

{
f̃c(n)

}
= f(x) =

1
a
f̃c(0) +

2
a

∞∑
n=1

f̃c(n) cos
(nπx

a

)
. (10.2.6)

Clearly, both Fc and F −1
c are linear transformations.

When a= π, the finite Fourier sine and cosine transforms are defined, re-
spectively, by (10.2.1) and (10.2.4) on the interval 0<x<π. The correspond-
ing inverse transforms are given by the same results (10.2.3) and (10.2.6) with
a= π. The transform of a function defined over an interval 0<x<a can be
written easily in terms of a transform on the standard interval 0<x<π. We
substitute ξ=

πx

a
to write (10.2.1) and (10.2.4) as follows:

f̃s(n) =

a∫
0

sin
(nπx

a

)
f(x)dx=

a

π

π∫
0

sin(nξ)f
(
aξ

π

)
dξ=

a

π
Fs

{
f
(ax
π

)}

f̃c(n) =

a∫
0

cos
(nπx

a

)
f(x)dx=

a

π

π∫
0

cos(nξ)f
(
aξ

π

)
dξ=

a

π
Fc

{
f
(ax
π

)}
.

Example 10.2.1
Find the finite Fourier sine and cosine transforms of

(a) f(x) = 1 and (b) f(x) = x.

(a) We have

Fs(1) = f̃s(n) =

a∫
0

sin
(nπx

a

)
dx=

a

nπ
[1 − (−1)n], (10.2.7)

Fc{1} = f̃c(n) =

a∫
0

cos
(nπx

a

)
dx=

{
a, n= 0

0, n �= 0

}
. (10.2.8)
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(b) Fs{x}=

a∫
a

x sin
(nπx

a

)
dx=

(−1)n+1a2

nπ
.

(10.2.9)

Fc{x}=

a∫
0

x cos
(nπx

a

)
dx=

⎧⎪⎨⎪⎩
a2

2
, n= 0( a

nπ

)2

[(−1)n − 1], n �= 0

⎫⎪⎬⎪⎭ . (10.2.10)

10.3 Basic Properties of Finite Fourier Sine
and Cosine Transforms

As a preliminary to the solution of differential equations by the finite Fourier
sine and cosine transforms, we now establish the transforms of derivatives of
f(x).

Fs{f ′(x)} = −
(nπ
a

)
f̃c(n), (10.3.1)

Fs{f ′′(x)} = −
(nπ
a

)2

f̃s(n) +
(nπ
a

)
[f(0) + (−1)n+1f(a)], (10.3.2)

Fc{f ′(x)} =
(nπ
a

)
f̃s(n) + (−1)nf(a)− f(0), (10.3.3)

Fc{f ′′(x)} = −
(nπ
a

)2

f̃c(n) + (−1)nf ′(a) − f ′(0). (10.3.4)

Similar results can be obtained for the finite Fourier sine and cosine transforms
of higher derivatives of f(x).

Results (10.3.1)–(10.3.4) can be proved by integrating by parts. For exam-
ple, we have

Fs{f ′(x)}=

a∫
0

f ′(x) sin
(nπx

a

)
dx,

which is, integrating by parts,

=
[
f(x) sin

(nπx
a

)]a
0
− nπ

a

a∫
0

f(x) cos
(nπx

a

)
dx

=−
(nπ
a

)
f̃c(n).
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Similarly, we find that

Fc{f ′(x)} =

a∫
0

f ′(x) cos
(nπx

a

)
dx

=
[
f(x) cos

(nπx
a

)]a
0

+
nπ

a

a∫
0

f(x) sin
(nπx

a

)
dx

= (−1)nf(a)− f(0) +
nπ

a
f̃s(n).

This proves the result (10.3.3).
Results (10.3.2) and (10.3.4) and the results for higher derivatives can be

obtained by the repeated application of the fundamental results (10.3.1) and
(10.3.3).

DEFINITION 10.3.1 (Odd Periodic Extension). A function f1(x) is said
to be the odd periodic extension of the function f(x), with period 2π if

f1(x) =

{
f(x) for 0<x<π

−f(−x) for −π <x< 0

}
. (10.3.5)

Or, equivalently,

f1(x) = f(x) when 0<x<π,
f1(−x) = −f1(x), f1(x+ 2π) = f1(x) for −∞<x<∞.(10.3.6)

Similarly, the even periodic extension f2(x) of f(x), with period 2π is de-
fined in −π<x<π by the equations

f2(x) =

{
f(x) for 0<x<π

f(−x) for −π <x< 0

}
. (10.3.7)

Or, equivalently,

f2(x) = f(x) when 0<x<π,
f2(−x) = f2(x), f2(x+ 2π) = f2(x) for −∞<x<∞. (10.3.8)

THEOREM 10.3.1
If f1(x) is the odd periodic extension of f(x) with period 2π, then, for any
constant α,

Fs{f1(x− α) + f1(x+ α)}= 2 cosnαFs{f(x)}. (10.3.9)

In particular, when α= π, and n= 1, 2, 3, . . . ,

Fs{f(x− π)}= (−1)n Fs{f(x)}. (10.3.10)
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Similarly, we obtain

Fc{f1(x+ α)− f1(x− α)}= 2 sin(nα)Fs{f(x)}. (10.3.11)

PROOF To prove (10.3.9), we follow Churchill (1972) and write the right
hand side of (10.3.9) as

2 cosnαf̃s(n) = 2 cos(nα)

π∫
0

sin(nx)f(x)dx

= 2

π∫
0

cosnα sinnxf1(x)dx

=

π∫
0

[sinn(x+ α) + sinn(x− α)]f1(x)dx,

which is, since the integrand is even function of x,

=
1
2

π∫
−π

[sinn(x+ α) + sinn(x− α)]f1(x)dx,

which is, by putting x+ α= t and x− α= t,

=
1
2

π+α∫
−π+α

sinnt f1(t− α) dt+
1
2

π−α∫
−(π+α)

sinnt f1(t+ α) dt,

which is, since the integrands are periodic function of t with period 2π, and
hence, the limits of integration can be replaced with limits −π to π,

=
1
2

π∫
−π

sinnt f1(t− α) dt+
1
2

π∫
−π

sinnt f1(t+ α) dt

=
1
2

⎡⎣ 0∫
−π

+

π∫
0

⎤⎦ {sinnt f1(t− α)}dt

+
1
2

⎡⎣ 0∫
−π

+

π∫
0

⎤⎦ {sin nt f1(t+ α)}dt. (10.3.12)

Furthermore,

0∫
−π

sinnt f1(t− α) dt=

π∫
0

sinnx f1(x+ α) dx
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in which f1(−x− α) =−f1(x+ α) is used.
Making a similar change of variables in the third integral of (10.3.12), we

obtain the formula

2 cosnα f̃s(n) =

π∫
0

sin nt f1(t− α)dt+

π∫
0

sin nx f1(x+ α)dx,

which gives the desired result (10.3.9).
Finally, f1(x+ π) = f1(2π + x− π) = f1(x− π) =−f1(π − x), and when 0<

x<π, f1(π − x) = f(π − x). Thus, when α= π, result (10.3.9) becomes

f̃s(n) cos nπ=

π∫
0

sinnx f(x− π)dx= Fs{f(x− π)},

which reduces to (10.3.10).
The proof of (10.3.11) is similar to that of (10.3.9), and hence, is left to the

reader.

THEOREM 10.3.2

If f2(x) is the even periodic extension of f(x) with period 2π, then, for any
constant α,

Fc{f2(x− α) + f2(x+ α)} = 2 cos nαFc{f(x)}, (10.3.13)
Fc{f2(x− α) − f2(x+ α)} = 2 sin nαFc{f(x)}. (10.3.14)

This theorem is very much similar to that of Theorem 10.3.1, and hence, the
proof is left to the reader.

In the notation of Churchill (1972), we introduce the convolution of two
sectionally continuous periodic functions f(x) and g(x) defined in −π <x<π
by

f(x) ∗ g(x) =

π∫
−π

f(x− u) g(u) du. (10.3.15)

Clearly, f(x) ∗ g(x) is continuous and periodic with period 2π. The convolution
is symmetric, that is, f ∗ g= g ∗ f . Furthermore, the convolution is an even
function if f(x) and g(x) are both even or both odd. It is odd if either f(x)
or g(x) is even or the other odd. We next prove the convolution theorem.

THEOREM 10.3.3

(Convolution). If f1(x) and g1(x) are the odd periodic extensions of f(x) and
g(x) respectively on 0<x<π, and if f2(x) and g2(x) are the even periodic
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extensions of f(x) and g(x) respectively on 0<x<π, then

Fc{f1(x) ∗ g1(x)} = −2 f̃s(n) g̃s(n), (10.3.16)
Fc{f2(x) ∗ g2(x)} = 2 f̃c(n) g̃c(n), (10.3.17)
Fs{f1(x) ∗ g2(x)} = 2 f̃s(n) g̃c(n), (10.3.18)
Fs{f2(x) ∗ g1(x)} = 2 f̃c(n) g̃s(n). (10.3.19)

Or, equivalently,

F −1
c

{
f̃s(n) g̃s(n)

}
= −1

2
{f1(x) ∗ g1(x)}, (10.3.20)

F −1
c

{
f̃c(n) g̃c(n)

}
=

1
2
{f2(x) ∗ g2(x)}, (10.3.21)

F −1
s

{
f̃s(n) g̃c(n)

}
=

1
2
{f1(x) ∗ g2(x)}, (10.3.22)

F −1
s

{
f̃c(n) g̃s(n)

}
=

1
2
{f2(x) ∗ g1(x)}. (10.3.23)

PROOF To prove (10.3.16), we consider the product

2 f̃s(n) g̃s(n) = 2

π∫
0

f̃s(n) sinnu g(u)du,

which is, by using (10.3.11),

=

π∫
0

g(u) [Fc{f1(x+ u)− f1(x− u)}]du

=

π∫
0

g(u)

⎡⎣ π∫
0

{f1(x+ u)− f1(x− u)} cosnx

⎤⎦ du,

which is, by interchanging the order of integration,

=

π∫
0

cos(nx)

⎡⎣ π∫
0

{f1(x+ u)− f1(x− u)} g(u) du

⎤⎦ dx. (10.3.24)

Using the definition of convolution (10.3.15), introducing new variables of
integration, and invoking the odd extension properties of f1(x) and g1(x), we
obtain

f1(x) ∗ g1(x) =

π∫
0

[f1(x− u)− f1(x+ u)] g(u) du (10.3.25)

= I1 − I2 − I3 + I4, (10.3.26)
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where

I1 =

x∫
0

f(u) g(x+ u) du, I2 =

π∫
x

f(u) g(u− x)du, (10.3.27ab)

I3 =

π−x∫
0

f(u) g(x+ u) du, I4 =

π∫
x

f(u) g(2π− x− u)du. (10.3.28ab)

In view of (10.3.25), we thus obtain the desired result (10.3.16) from (10.3.24).
This completes the proof.

The other results included in Theorem 10.3.3 can be proved by the above
method of proof.

As an example of convolution theorem, we evaluate the inverse cosine Fouri-
er transform of (n2 − a2)−1. We write, for n �= 0,

1
(n2 − a2)

=
n(−1)n+1

(n2 − a2)
· (−1)n+1

n
= f̃s(n) g̃s(n),

where f̃s(n) = n(−1)n+1(n2 − a2)−1 and g̃s(n) =
(−1)n+1

n
so that

f(x) =
(

sin ax
sin aπ

)
and g(x)=

x

π
.

Evidently,

1
(n2 − a2)

= f̃s(n) g̃s(n) = Fs

{
sin ax
sin aπ

}
Fs

{x
π

}
.

According to result (10.3.20),

F −1
c

{
1

(n2 − a2)

}
= F −1

c

{
f̃s(n) g̃s(n)

}
=−1

2
f1(x) ∗ g1(x), (10.3.29)

where f1(x) is the periodic extension of the odd function f(x) with period 2π
and g1(x) =

x

π
. Thus, it turns out that

F −1
c

{
1

(n2 − a2)

}
=−1

2

π∫
−π

f1(x− u) g1(u) du=− 1
2π

π∫
−π

f1(x− u)u du.

This integral can easily be evaluated by splitting up the interval of integration
or, by using (10.3.26), and hence,

F −1
c

{
1

(n2 − a2)

}
=−cos{a(π − x)}

a sinaπ
. (10.3.30)
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10.4 Applications of Finite Fourier Sine and
Cosine Transforms

In this section we illustrate the use of finite Fourier sine and cosine transforms
to the solutions of boundary value and initial-boundary value problems.

Example 10.4.1
(Heat Conduction Problem in a Finite Domain with the Dirichlet Data at the
Boundary). We began by considering the solution of the temperature distri-
bution u(x, t) of the diffusion equation

ut = κuxx, 0≤ x≤ a, t> 0, (10.4.1)

with the boundary and initial conditions

u(0, t) = 0 = u(a, t), (10.4.2ab)

u(x, 0) = f(x) for 0≤ x≤ a. (10.4.3)

Application of the finite Fourier sine transform (10.2.1) to this diffusion
problem gives the initial value problem

d ũs
dt

+ κ
(nπ
a

)2

ũs= 0, (10.4.4)

ũs(n, 0) = f̃s(n). (10.4.5)

The solution of (10.4.4)–(10.4.5) is

ũs(n, t) = f̃s(n) exp
{
−κ

(nπ
a

)2

t

}
. (10.4.6)

The inverse finite Fourier sine transform (10.2.3) leads to the solution

u(x, t) =
2
a

∞∑
n=1

f̃s(n) exp
{
−κ

(nπ
a

)2

t

}
sin

(nπx
a

)
u(x, t) =

2
a

∞∑
n=1

exp
{
−κ

(nπ
a

)2

t

}
sin

(nπx
a

)

×
a∫

0

f(ξ) sin
(
nπξ

a

)
dξ. (10.4.7)

If, in particular, f(x) = T0 = constant, then (10.4.7) becomes

u(x, t) =
(

2T0

π

) ∞∑
n=1

1
n

[1 − (−1)n] exp
{
−κ

(nπ
a

)2

t

}
sin

(nπx
a

)
. (10.4.8)
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This series solution can be evaluated numerically using the Fast Fourier
transform which is an algorithm for the efficient calculation of the finite
Fourier transform.

Example 10.4.2
(Heat Conduction Problem in a Finite Domain with the Neumann Data at the
Boundary). We consider the solution of the diffusion equation (10.4.1) with
the prescribed heat flux at x= 0 and x= a, and the associated boundary and
initial data are

ux(0, t) = 0 = ux(a, t) for t> 0, (10.4.9)
u(x, 0)= f(x) for 0≤ x≤ a. (10.4.10)

In this case, it is appropriate to use the finite Fourier cosine transform
(10.2.4). So, the application of this transform gives the initial value problem

dũc
dt

+ κ
(nπ
a

)2

ũc = 0, (10.4.11)

ũc(n, 0)= f̃c(n). (10.4.12)

The solution of this problem is

ũc(n, t) = f̃c(n) exp
{
−κ

(nπ
a

)2

t

}
. (10.4.13)

The inverse finite cosine transform (10.2.5) gives the formal solution

u(x, t) =
1
a
f̃c(0) +

2
a

∞∑
n=1

f̃c(n) exp
{
−κ

(nπ
a

)2

t

}
cos

(nπx
a

)

=
1
a

a∫
0

f(ξ)dξ +
2
a

∞∑
n=1

⎡⎣ a∫
0

f(ξ) cos
(
nπξ

a

)
dξ

⎤⎦
× exp

{
−κ

(nπ
a

)2

t

}
cos

(nπx
a

)
. (10.4.14)

Example 10.4.3
(The Static Deflection of a Uniform Elastic Beam). We consider the static
deflection y(x) of a uniform elastic beam of finite length � which satisfies the
equilibrium equation

d4y

dx4
=
W (x)
EI

=w(x), 0≤ x≤ �, (10.4.15)
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where W (x) is the applied load per unit length of the beam, E is the Young’s
modulus of the beam, and I is the moment of inertia of the cross section of
the beam. If the beam is freely hinged at its ends, then

y(x) = y′′(x) = 0 at x= 0 and x= �. (10.4.16)

Application of the finite Fourier sine transform of y(x) to (10.4.15) and
(10.4.16) gives

ỹs(n) =
(
�

nπ

)4

w̃s(n). (10.4.17)

Inverting this result, we find

y(x) =
2�3

π4

∞∑
n=1

1
n4

sin
(nπx

�

)
w̃s(n)

=
2�3

π4

∞∑
n=1

1
n4

sin
(nπx

�

) �∫
0

w(ξ) sin
(
nπξ

�

)
dξ. (10.4.18)

In particular, if the applied load of magnitude W0 is confined to the point
x=α, where 0<α< �, then w(x) =W0 δ(x− α) where W0 is a constant.
Consequently, the static deflection is

y(x) =
2�3W0

π4

∞∑
n=1

1
n4

sin
(nπx

�

)
sin

(nπα
�

)
. (10.4.19)

Example 10.4.4
(Transverse Displacement of an Elastic Beam of Finite Length). We consider
the transverse displacement of an elastic beam at a point x in the down-
ward direction where the equilibrium position of the beam is along the x-axis.
With the applied load W (x, t) per unit length of the beam, the displacement
function y(x, t) satisfies the equation of motion

∂4y

∂x4
+

1
a2

∂2y

∂t2
=
W (x, t)
EI

, 0≤ x≤ �, t> 0, (10.4.20)

where a2 =EI/(ρα), α is the cross-sectional area and ρ is the line density of
the beam.

If the beam is freely hinged at its ends, then

y(x, t) =
∂2y

∂x2
= 0 at x= 0 and x= �. (10.4.21)

The initial conditions are

y(x, t) = f(x),
∂y

∂t
= g(x) at t= 0 for 0<x< �. (10.4.22)



© 2007 by Taylor & Francis Group, LLC

Finite Fourier Sine and Cosine Transforms 419

We use the joint Laplace transform with respect to t and the finite Fourier
sine transform with respect to x defined by

¯̃us(n, s) =

∞∫
0

e−stdt

�∫
0

u(x, t) sin
(nπx

�

)
dx. (10.4.23)

Application of the double transform to (10.4.20)–(10.4.22) gives the solution
for ¯̃ys(n, s) as

¯̃ys(n, s) =
sf̃s(n) + g̃s(n)

(s2 + c2)
+
(
a2

EI

)
W̃ s(n, s)
(s2 + c2)

, (10.4.24)

where c= a
(nπ
�

)2

.
The inverse Laplace transform gives

ỹs(n, t) = f̃s(n) cos(ct) +
g̃s(n)
c

sin(ct)

+
(
a2

EI

)
1
c

t∫
0

sin c(t− τ)W̃s(n, τ)dτ. (10.4.25)

Thus, the inverse finite Fourier sine transform yields the formal solution as

y(x, t) =
2
�

∞∑
n=1

ys(n, t) sin
(πnx

�

)
,

=
2
�

∞∑
n=1

sin
(nπx

�

)[{
f̃s(n) cos(ct) +

g̃s(n)
c

sin(ct)
}

+
(
a2

EI

)
1
c

t∫
0

sin c(t− τ) W̃s(n, τ)dτ

⎤⎦ , (10.4.26)

where

f̃s(n) =

�∫
0

f(ξ) sin
(
nπξ

�

)
dξ, g̃s(n) =

�∫
0

g(ξ) sin
(
nπξ

�

)
dξ. (10.4.27ab)

The case of free vibrations is of interest. In this case, W (x, t)≡ 0 and hence,
W̃s(n, t)≡ 0. Consequently, solution (10.4.26) reduces to a simple form

y(x, t) =
2
�

∞∑
n=1

[
f̃s(n) cos ct+

g̃s(n)
c

sin ct
]

sin
(nπx

�

)
, (10.4.28)

where f̃s(n) and g̃s(n) are given by (10.4.27ab).
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Example 10.4.5
(Free Transverse Vibrations of an Elastic String of Finite Length). We con-
sider the free vibration of a string of length � stretched to a constant tension
T between two points (0, 0) and (0, �) lying on the x-axis. The free transverse
displacement function u(x, t) satisfies the wave equation

∂2u

∂t2
= c2

∂2u

∂x2
, 0≤ x≤ �, t > 0, (10.4.29)

where c2 =
T

ρ
and ρ is the line density of the string.

The initial and boundary conditions are

u(x, t) = f(x),
∂u

∂t
= g(x) at t= 0 for 0≤ x≤ �, (10.4.30ab)

u(x, t) = 0 at x= 0 and x= � for t > 0. (10.4.31ab)

Application of the joint Laplace transform with respect to t and the finite
Fourier sine transform with respect to x defined by a similar result (10.4.23)
to (10.4.29)–(10.4.31ab) gives

¯̃us(n, s) =
sf̃s(n)

(s2 + a2)
+

g̃s(n)
(s2 + a2)

, (10.4.32)

where a2 =
(nπc

�

)2

.

The inverse Laplace transform gives

ũs(n, t) = f̃s(n) cos at+
g̃s(n)
a

sin at. (10.4.33)

The inverse finite Fourier sine transform leads to the solution for u(x, t) as

u(x, t) =
2
�

∞∑
n=1

[
f̃s(n) cos at+

g̃s(n)
a

sin at
]

sin
(nπx

�

)
, (10.4.34)

where f̃s(n) and g̃s(n) are given by (10.4.27ab).

Example 10.4.6
(Two-Dimensional Unsteady Couette Flow). We consider two-dimensional un-
steady viscous flow between the plate at z= 0 at rest and the plate z= h in
motion parallel to itself with a variable velocity U(t) in the x direction. The
fluid velocity u(z, t) satisfies the equation of motion

∂u

∂t
=−P (t)

ρ
+ ν

∂2u

∂z2
, 0≤ z≤ h, t> 0, (10.4.35)
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and the boundary and initial conditions

u(z, t) = 0 on z= 0, t > 0; (10.4.36)
u(z, t) =U(t) on z= h, t > 0; (10.4.37)
u(z, t) = 0 at t≤ 0, for 0≤ z≤ h; (10.4.38)

where the pressure gradient px =P (t) and ν is the kinematic viscosity of the
fluid.

Application of the double transform defined by (10.4.23) to this initial
boundary value problem gives the solution for ¯̃us(n, s) as(

s+
ν n2π2

h2

)
¯̃us(n, t) = −hP̄ (s)

nπρ
[1 + (−1)n+1]

+
ν nπ

h
(−1)n+1Ū(s). (10.4.39)

The inverse Laplace transform yields

ũs(n, t) = − h

nπρ
[1 + (−1)n+1]

t∫
0

P (t− τ) exp
(
−ν n

2π2τ

h2

)
dτ

+
ν nπ

h
(−1)n+1

t∫
0

U(t− τ) exp
(
−ν n

2π2τ

h2

)
dτ. (10.4.40)

Finally, the inverse finite Fourier sine transform gives the formal solution

u(z, t) =
2
h

∞∑
n=1

ũs(n, t) sin
(nπz
h

)
. (10.4.41)

If, in particular, P (t) = constant P and U(t) = constant =U , then (10.4.41)
reduces to

u(z, t) =−2P
μh

∞∑
n=1

(
h

nπ

)3

[1 + (−1)n+1] sin
(nπz
h

) [
1 − exp

(
−ν n

2π2t

h2

)]

+
2U
h

∞∑
n=1

(−1)n+1

(
h

nπ

)
sin

(nπz
h

) [
1− exp

(
−ν n

2π2t

h2

)]
. (10.4.42)

This solution for the velocity field consists of both steady-state and transient
components. In the limit as t→∞, the transient component decays to zero,
and the steady state is attained in the form

u(z, t) = −2P
μh

∞∑
n=1

(
h

nπ

)3

[1 + (−1)n+1] sin
(nπz

�

)
+

2U
h2

∞∑
n=1

(−1)n+1

(
h2

nπ

)
sin

(nπz
h

)
. (10.4.43)
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In view of the inverse finite Fourier sine transforms

F −1
s

{
2
(
h

nπ

)3

[1 + (−1)n+1]

}
= z(h− z), (10.4.44)

F −1
s

{
(−1)n+1

(
h2

nπ

)}
= z, (10.4.45)

solution (10.4.43) can be rewritten in the closed form

u(z, t) =
Uz

h
− h

2μ

(
∂p

∂x

) (
1 − z

h

)
z. (10.4.46)

This is known as the generalized Couette flow. In the absence of the pressure
gradient term, solution (10.4.46) reduces to the linear profile of simple Couette
flow. On the other hand, if U(t)≡ 0 and P (t) �= 0, the solution (10.4.46) rep-
resents the parabolic profile of Poiseuille flow between two parallel stationary
plates due to an imposed pressure gradient.

10.5 Multiple Finite Fourier Transforms
and Their Applications

The above analysis for the finite Fourier sine and cosine transforms of a func-
tion of one independent variable can readily be extended to a function of
several independent variables. In particular, if f(x, y) is a function of two
independent variables x and y, defined in a region 0≤ x≤ a, 0≤ y≤ b, its
double finite Fourier sine transform is defined by

Fs{f(x, y)}= f̃s(m,n) =

a∫
0

b∫
0

sin
(mπx

a

)
sin

(nπy
b

)
dx dy. (10.5.1)

The inverse transform is given by the double series

F −1
s

{
f̃s(m,n)

}
= f(x, y) =

(
4
ab

) ∞∑
m=1

∞∑
n=1

f̃s(m,n) sin
(mπx

a

)
× sin

(nπy
b

)
. (10.5.2)

Similarly, we can define the double finite Fourier cosine transform and its
inverse.

The double Fourier sine transforms of the partial derivatives of f(x, y) can
easily be obtained. If f(x, y) vanishes on the boundary of the rectangular
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region D{0≤ x≤ a, 0≤ y≤ b}, then

Fs

[
∂2f

∂x2
+
∂2f

∂y2

]
=−π2

(
m2

a2
+
n2

b2

)
f̃s(m,n). (10.5.3)

Example 10.5.1
(Free Vibrations of a Rectangular Elastic Membrane). The initial value prob-
lem for the transverse displacement field u(x, y, t) satisfies the following equa-
tion and the boundary and initial data

c2
(
∂2u

∂x2
+
∂2u

∂y2

)
=
∂2u

∂t2
, for all (x, y) in D, t> 0, (10.5.4)

u(x, y, t)= 0 on the boundary ∂D for all t > 0, (10.5.5)

u(x, y, t) = f(x, y), ut(x, y, t) = g(x, y) at t= 0, for (x, y)∈D . (10.5.6ab)

Application of the double finite Fourier sine transform defined by

ũs(m,n) =

a∫
0

b∫
0

u(x, y) sin
(mπx

a

)
sin

(nπy
b

)
dxdy, (10.5.7)

to the system (10.5.4)–(10.5.6ab) gives

d2ũs
dt2

+ c2π2

(
m2

a2
+
n2

b2

)
ũs = 0, t > 0 (10.5.8)

ũs(m,n, 0)= f̃s(m,n),
(
dũs
dt

)
t=0

= g̃s(m,n). (10.5.9)

The solution of this transformed problem is

ũs(m,n, t) = f̃s(m,n) cos(cπωmnt)

+ (cπωmn)
−1
g̃s(m,n) sin(cπωmnt), (10.5.10)

where

ωmn =
(
m2

a2
+
n2

b2

) 1
2

. (10.5.11)

The inverse transform gives the formal solution for u(x, y, t) in the form

u(x, y, t) =
(

4
ab

) ∞∑
m=1

∞∑
n=1

sin
(mπx

a

)
sin

(nπy
b

) [
f̃s(m,n) cos(cπωmnt)

+ (cπωmn)
−1
g̃s(m,n) sin(cπωmnt)

]
, (10.5.12)
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where

f̃s(m,n) =

a∫
0

b∫
0

f(ξ, η) sin
(
mπξ

a

)
sin

(nπη
b

)
dξdη, (10.5.13)

g̃s(m,n) =

a∫
0

b∫
0

g(ξ, η) sin
(
mπξ

a

)
sin

(nπη
b

)
dξdη. (10.5.14)

Example 10.5.2
(Deflection of a Simply Supported Rectangular Elastic Plate). The deflection
u(x, y) of the plate satisfies the biharmonic equation

∇4u≡ ∂4u

∂x4
+ 2

∂4u

∂x2∂y2
+
∂4u

∂y4
=
w(x, y)

D
,

in D{0≤ x≤ a, 0≤ y≤ b}, (10.5.15)

where w(x, y) represents the applied load at a point (x, y) and D =
2Eh3

3(1− σ2)
is the constant flexural rigidity of the plate.

On the edge of the simply supported plate the deflection and bending mo-
ments are zero; hence, equation (10.5.15) has to be solved subject to the
boundary conditions

u(x, y)= 0 on x= 0 and x= a

u(x, y)= 0 on y= 0 and y= b

∂2u

∂x2
= 0 on x= 0 and x= a

∂2u

∂y2
= 0 on y= 0 and y= b

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (10.5.16)

We first solve the problem due to a concentrated load W0 at the point (ξ, η)
inside D so that w(x, y) =P δ(x− ξ) δ(y − η), where P is a constant.

Application of the double finite Fourier sine transform (10.5.7) to (10.5.15)–
(10.5.16) gives

π4

(
m2

a2
+
n2

b2

)2

ũs(m,n) =
(
P

D

)
sin

(
mπξ

a

)
sin

(nπη
b

)
,

or,

ũs(m,n) =
(

P

D π4ω4
mn

)
sin

(
mπξ

a

)
sin

(nπη
b

)
, (10.5.17)
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where ωmn is defined by (10.5.11).
The inverse transform gives the formal solution

u(x, y) =
(

4P
π4abD

) ∞∑
m=1

∞∑
n=1

[
ω−4
mn sin

(
mπξ

a

)
sin

(nπη
b

)]
× sin

(mπx
a

)
sin

(nπy
b

)
.(10.5.18)

For an arbitrary load w(x, y) over the region α≤ x≤ β, γ ≤ y≤ δ inside the
region D, we can replace P by w(ξ, η) dξdη and integrate over the rectangle
α≤ ξ≤ β, γ≤ η≤ δ.

Consequently, the formal solution is obtained from (10.5.18) and has the
form

u(x, y) =
(

4
π4abD

) ∞∑
m=1

∞∑
n=1

⎧⎨⎩
β∫
α

δ∫
γ

w(ξ, η) sin
(
mπξ

a

)
sin

(nπη
b

)
dξdη

⎫⎬⎭
×ω−4

mn sin
(mπx

a

)
sin

(nπy
b

)
. (10.5.19)

10.6 Exercises

1. Find the finite Fourier cosine transform of f(x) = x2.

2. Use the result (10.3.2) to prove

(a) Fs{x2}=
a3

nπ
(−1)n+1 − 2

( a

nπ

)3

[1 + (−1)n+1],

(b) Fs{x3}= (−1)n
a4

π2

(
6

n3π3
− 1
nπ

)
.

3. Solve the initial-boundary value problem in a finite domain

ut = κuxx, 0≤ x≤ a, t > 0,

u(x, 0) = 0 for 0≤ x≤ a,

u(0, t) = f(t) for t> 0,

u(a, t) = 0 for t> 0.

4. Solve Exercise 3 above by replacing the only condition at x= a with the
radiation condition

ux + hu= 0 at x= a,
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where h is a constant.

5. Solve the heat conduction problem

ut = κuxx, 0≤ x≤ a, t> 0,

ux(0, t) = f(t)

ux(a, t) + hu= 0

}
for t > 0,

u(x, 0)= 0 for 0≤ x≤ a.

6. Solve the diffusion equation (10.4.1) with the following boundary and
initial data

ux(0, t) = f(t), ux(a, t) = 0 for t > 0
u(x, 0)= 0 for 0≤ x≤ a.

7. Solve the problem of free vibrations described in Example 10.4.4, when
the beam is at rest in its equilibrium position at time t= 0, and an
impulse I is applied at x= η, that is,

f(x)≡ 0 and g(x) =
(
I

ρα

)
δ(x− η).

8. Find the solution of the problem in Example 10.4.4 when

(i) W (x, t) =W0 φ(t) δ(x− η), 0<η < �;

(ii) a concentrated applied load is moving along the beam with a con-
stant speed U , that is,W (x, t) =W0 φ(t)δ(x−Ut)H(Ut− �), where
W0 is a constant.

9. Find the solution of the forced vibration of an elastic string of finite
length � which satisfies the forced wave equation

1
c2
∂2u

∂t2
=
∂2u

∂x2
+ F (x, t), 0≤ x≤ �, t> 0,

with the initial and boundary data

u(x, t) = f(x), ut = g(x) at t= 0 for 0≤ x≤ �,

u(0, t) = 0 = u(�, t) for t > 0.

Derive the solution for special cases when f(x) = 0 = g(x) with

(i) an arbitrary non-zero F (x, t), and

(ii) F (x, t) =
P (t)
T

δ(x− a), 0≤ a≤ �, where T is a constant.
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10. For the finite Fourier sine transform defined over (0, π), show that

(a) Fs

{x
2
(π − x)

}
=

1
n3

[1 + (−1)n+1]

(b) Fs

{
sinh a(π − x)

sinh aπ

}
=

n

(n2 + a2)
, a �= 0.

11. For the finite Fourier cosine transform defined over (0, π), show that

(a) Fc{(π − x)2}=
2π
n2

for n= 1, 2, . . . ; Fs{(π − x)2}=
π3

3
for n= 0.

(b) Fc{cosh a(π − x)}=
a sinh(aπ)
(n2 + a2)

for a �= 0.

12. Use the finite Fourier sine transform to solve the problem of diffusion of
electricity along a cable of length a. The potential V (x, t) at any point
x of the cable of resistance R and capacitance C per unit length satisfies
the diffusion equation

Vt = κ Vxx, 0≤ x≤ a, t > 0,

where κ= (RC)−1 and the boundary conditions (the ends of the cable
are earthed)

V (0, t) = 0 =V (a, t) for t > 0,

and the initial conditions

V (x, 0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

2V0

a

)
x, 0≤ x≤ a

2(
2V0

a

)
(a− x),

a

2
≤ x≤ a

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

where V0 is a constant.

13. Establish the following results

(a) Fs

[
d

dx
{f1(x) ∗ g1(x)}

]
= 2nf̃s(n)g̃s(n),

(b) Fs

⎡⎣ x∫
0

{f1(u) ∗ g1(u)} du
⎤⎦=

2
n
f̃s(n)g̃s(n).

14. If p is not necessarily an integer, we write

f̃c(p) =

π∫
0

f(x) cos px dx and f̃s(p) =

π∫
0

f(x) sin px dx.

Show that, for any constant α,
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(a) Fc{2 f(x) cosαx}= f̃c(n− α) + f̃c(n+ α),

(b) Fc{2 f(x) sinαx}= f̃s(n+ α) − f̃s(n− α),

(c) Fs{2 f(x) cosαx}= f̃s(n+ α) + f̃s(n− α),

(d) Fs{2 f(x) sinαx}= f̃c(n− α) − f̃c(n+ α).

15. Solve the problem in Example 10.5.2 for uniform loadW0 over the region
α≤ x≤ β and γ ≤ y≤ δ.

16. Solve the problem of free oscillations of a rectangular elastic plate of
density ρ bounded by the two parallel planes z=±h. The deflection
u(x, y, t) satisfies the equation

D ∇4u+ ρh utt = 0, 0≤ x≤ a, 0≤ y≤ b, t> 0,

where the deflection and the bending moments are all zero at the edges.
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Finite Laplace Transforms

“The genius of Laplace was a perfect sledgehammer in bursting
purely mathematical obstacles, but like that useful instrument, it
gave neither finish nor beauty to the results ... nevertheless, Laplace
never attempted the investigation of a subject without leaving up-
on it the marks of difficulties conquered: sometimes clumsily, some-
times indirectly, but still his end is obtained and the difficulty is
conquered.”

Anonymous

“It seems to be one of the fundamental features of nature that
fundamental physics laws are described in terms of great beauty
and power. As time goes on, it becomes increasingly evident that
the rules that the mathematicians find interesting are the same as
those that nature has chosen.”

Paul Dirac

11.1 Introduction

The Laplace transform method is normally used to find the response of a
linear system at any time t to the initial data at t= 0 and the disturbance f(t)
acting for t≥ 0. If the disturbance or input function is f(t) = exp(at2), a > 0,
the usual Laplace transform cannot be used to find the solution of an initial
value problem because the Laplace transform of f(t) does not exist. From a
physical point of view, there seems to be no reason at all why the function
f(t) cannot be used as an acceptable disturbance for a system. It is often true
that the solution at times later than t would not affect the state at time t.
This leads to the idea of introducing the finite Laplace transform in 0≤ t≤ T
in order to extend the power and usefulness of the usual Laplace transform in
0≤ t <∞.

This chapter deals with the definition and basic operational properties of
the finite Laplace transform. In Section 11.4, the method of the finite Laplace

429
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transform is used to solve the initial value problems and the boundary value
problems. This chapter is essentially based on papers by Debnath and Thomas
(1976) and Dunn (1967).

11.2 Definition of the Finite Laplace Transform
and Examples

The finite Laplace transform of a continuous (or an almost piecewise contin-
uous) function f(t) in (0, T ) is denoted by ST {f(t)}= f̄(s, T ), and defined
by

ST {f(t)}= f̄(s, T )=

T∫
0

f(t) e−stdt, (11.2.1)

where s is a real or complex number and T is a finite number that may be
positive or negative so that (11.2.1) can be defined in any interval (−T1, T2).
Clearly, ST is a linear integral transformation.

The inverse finite Laplace transform is defined by the complex integral

f(t) = S −1
T {f̄(s, T )}=

1
2πi

∫ c+i∞

c−i∞
f̄(s, T ) estds, (11.2.2)

where the integral is taken over any open contour Γ joining any two points
c− iR and c+ iR in the finite complex s plane as R→∞.

If f(t) is almost piecewise continuous, that is, it has at most a finite number
of simple discontinuities in 0≤ t≤T . Moreover, in the intervals where f(t)
is continuous, it satisfies a Lipschitz condition of order α> 0. Under these
conditions, it can be shown that the inversion integral (11.2.2) is equal to

1
2πi

∫
Γ

f̄(s, T )estds=
1
2
[f(t− 0) + f(t+ 0)], (11.2.3)

where Γ is an arbitrary open contour that terminates with finite constant c
as R→∞. This is due to the fact that f̄(s, T ) is an entire function of s.

It follows from (11.2.1) that if∫
f(t) e−stdt=−F (s, t) e−st, (11.2.4)

then

f̄(s, T ) = F (s, 0)− F (s, T ) e−sT (11.2.5)
= f̄(s) − F (s, T ) e−sT , (11.2.6)
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where f̄(s) is the usual Laplace transform defined by (3.2.1) and hence,

f̄(s) =F (s, 0) =

∞∫
0

e−stf(t) dt. (11.2.7)

Further, using (11.2.2) and (11.2.6), the inversion formula can be written as

f(t) =
1

2πi

∫
Γ

F (s, 0) estds− 1
2πi

∫
Γ

F (s, T ) es(t−T )ds. (11.2.8)

It is noted that the first integral may be closed in the left half of the complex
plane. On the other hand, for t < T , the contour of the second integral must
be closed in the right half-plane. We select Γ so that all poles of F (s, 0) lie to
the left of Γ. Thus, the first integral represents the solution of the initial value
problem, and for t < T , the second integral vanishes. When t > T , the second
integral may be closed in the left half of the complex plane so that f(t) = 0 for
t > T . Thus, for the solution of the initial value problem, there is no need to
consider the second integral, and this case is identical with the usual Laplace
transform.

So, unlike the usual Laplace transform of a function f(t), there is no re-
striction needed on the transform variable s for the existence of the finite
Laplace transform ST {f(t)}= f̄(s, T ). Further, the existence of (11.2.1) does
not require the exponential order property of f(t). If a function f(t) has the
usual Laplace transform, then it also has the finite Laplace transform. In oth-
er words, if f̄(s) = S {f(t)} exists, then ST {f(t)}= f̄(s, T ) exists as shown
below. We have

f̄(s) =

T∫
0

e−stf(t)dt+

∞∫
T

e−stf(t)dt. (11.2.9)

Since f̄(s) exists, both the integrals on the right of (11.2.9) exist. Hence, the
first integral in (11.2.9) exists and defines f̄(s, T ).

However, the converse of this result is not necessarily true. This can be
shown by an example. It is well known that the ususal Laplace transform of
f(t) = exp(at2), a > 0, does not exist. But the finite Laplace transform of this
function exists as shown below.

f̄(s, T ) = ST {exp(at2)}=

T∫
0

exp(−st+ at2)dt

= exp
(
− s2

4a

) T∫
0

exp
[
−
(√

a t− s

2
√
a

)
i

]2

dt

=
1
2i

(π
a

) 1
2

exp
(
− s2

4a

)[
erf

{(√
a T − s

2
√
a

)
i

}
+erf

(
s i

2
√
a

)]
. (11.2.10)
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In the limit as T →∞, (11.2.10) does not exist as seen below.
We use the result (see Carslaw and Jeager, 1953, p. 48), to obtain

erf(z) = exp(−z2)

⎡⎣1 +
2i
π

z∫
0

ex
2
dx

⎤⎦→∞ as z→∞, (11.2.11)

where

z=
(
T
√
a− s

2
√
a

)
i.

This ensures that the right-hand side of (11.2.10) tends to infinity as T →∞.
Thus, the usual Laplace transform of exp(at2) does not exist as expected.

The solution of the final value problem is denoted by ffi and defined by

ffi(t) =
1

2πi

∫
Γ

F (s, T ) es(t−T )ds, (11.2.12)

where the contour Γ lies to the left of the singularities of F (s, t) or F (s, 0).

THEOREM 11.2.1
The solution of an initial value problem is identical with that of the final value
problem.

PROOF Suppose fin is the solution of the initial value problem, and it is
given by

fin(t) =
1

2πi

∫
Br

F (s, 0) estds, (11.2.13)

where Br is the Bromwich contour extending from c− iR to c+ iR as R→∞.
We next reverse the direction of Γ in (11.2.12) and then subtract (11.2.13)
from (11.2.12) to obtain

fin(t)− ffi(t) =
1

2πi

∫
C

{F (s, 0)− F (s, T ) e−sT } estds

=
1

2πi

∫
C

f̄(s, T ) estds, (11.2.14)

where C is a closed contour which contains all the singularities of F (s, 0)
or F (s, T ). Thus, the integrand of (11.2.14) is an entire function of s and
hence, the integral around a contour C must vanish by Cauchy’s Fundamental
Theorem.

Hence,
fin(t) = ffi(t) = f(t). (11.2.15)
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This completes the proof.

We next calculate the finite Laplace transform of several elementary func-
tions:

Example 11.2.1
If f(t) = 1, then

ST {1}= f̄(s, T )=

T∫
0

e−stdt=
1
s
(1 − e−sT ). (11.2.16)

Example 11.2.2
If f(t) = eat, then

ST {eat}= f̄(s, T )=

T∫
0

e−(s−a)tdt=
1− e−(s−a)T

(s− a)
. (11.2.17)

Example 11.2.3
If f(t) = sin at or cos at, then

ST {sin at} =

T∫
0

sin at e−stdt

=
a

s2 + a2
− e−sT

s2 + a2
(s sin aT + a cos aT ). (11.2.18)

ST {cos at} =
s

s2 + a2
+

e−st

s2 + a2
(a sin aT − s cos aT ). (11.2.19)

Example 11.2.4
If f(t) = t, then

ST {t}=

T∫
0

t e−stdt=
1
s2

− e−sT

s

(
1
s

+ T

)
. (11.2.20)



© 2007 by Taylor & Francis Group, LLC

434 INTEGRAL TRANSFORMS and THEIR APPLICATIONS

Example 11.2.5
If f(t) = t2, then

ST {t2}=

T∫
0

t2e−stdt=
2
s3

− e−sT

s

(
T 2 +

2T
s

+
2
s2

)
. (11.2.21)

More generally, if f(t) = tn, then

ST {tn}=

T∫
0

tne−stdt=
n!
sn+1

− e−sT

s

×
{
T n +

n

s
T n−1 +

n(n− 1)
s2

T n−2 + · · ·+ n!T
sn−1

+
n!
sn

}
. (11.2.22)

Example 11.2.6
If f(t) = ta, a(>−1) is a real number, then

ST {ta}= s−(a+1) γ(a+ 1, sT), (11.2.23)

where γ(α, x) is called the incomplete gamma function and is defined by

γ(α, x) =

x∫
0

e−uuα−1du. (11.2.24)

We have

ST {ta} =

T∫
0

tae−stdt, (u= st)

= s−(a+1)

sT∫
0

uae−udu= s−(a+1) γ(a+ 1, sT ).

Example 11.2.7
If 0<a<T and f(t) = 0 in −a< t< 0, then

ST {f(t− a)}= e−as
T−a∫
0

e−τsf(τ)dτ = e−asf̄(s, T − a). (11.2.25)
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In particular,

ST {H(t− a)}=

T∫
a

e−stdt=
1
s

(e−as − e−sT ). (11.2.26)

Example 11.2.8

ST {erf at}= s−1 exp
(
s2

4a2

)[
erf

(
aT +

s

2a

)
− erf

( s

2a

)]
−e

−sT

s
erf(aT ). (11.2.27)

We have, by definition,

ST {erf (at)}=

T∫
0

erf (at) e−stdt

which is, integrating by parts and using the definition of erf(at),

= −[s−1e−sterf(at)]T0 +
1
s

2√
π

T∫
0

exp[−(st+ a2t2)] dt

= −e
−sT

s
erf(aT ) +

1
s

exp
(
s2

4a2

)
2√
π

aT+ s
2a∫

s
2a

e−u
2
du

= −e
−sT

s
erf (aT ) +

1
s

exp
(
s2

4a2

)[
erf

(
aT +

s

2a

)
− erf

( s

2a

)]
.

Example 11.2.9

If f(t) is a periodic function with period ω, then

f̄(s, T )= ST {f(t)}=
(1− e−sT )
(1 − e−sω)

f̄(s, ω), (11.2.28)

where T =nω, and n is a finite positive integer.
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By definition, we have

ST {f(t)} =

T∫
0

f(t) e−stdt

=

ω∫
0

f(t) e−stdt+
∫ 2ω

ω

f(t) e−stdt+ · · ·+
nω∫

(n−1)ω

f(t) e−stdt,

which is, substituting t= u+ ω, t= u+ 2ω, · · · , t= u+ (n− 1)ω in the sec-
ond, third, and the last integral, respectively,

=
∫ ω

0

f(u) e−sudu+ e−sω
∫ ω

0

f(u) e−sudu+ · · ·+ e−s(n−1)ω

∫ ω

0

f(u) e−sudu

=
[
1 + e−sω + · · ·+ e−sω(n−1)

] ∫ ω

0

e−suf(u)du

=
(1 − e−nsω)
(1 − e−sω)

f̄(s, ω).

In the limit as n→∞ (T →∞), (11.2.28) reduces to the known result

f̄(s) = (1 − e−sω)−1

ω∫
0

e−suf(u)du. (11.2.29)

11.3 Basic Operational Properties of the
Finite Laplace Transform

THEOREM 11.3.1

If ST {f(t)}= f̄(s, T ), then

(a) (Shifting) ST {e−atf(t) = f̄(s+ a, T ), (11.3.1)

(b) (Scaling) ST {f(at)}=
1
a
f̄
( s
a
, aT

)
. (11.3.2)

The proofs are easy exercises for the reader.



© 2007 by Taylor & Francis Group, LLC

Finite Laplace Transforms 437

THEOREM 11.3.2
(Finite Laplace Transforms of Derivatives). If ST {f(t)}= f̄(s, T ), then

ST {f ′(t)} = sf̄(s, T )− f(0) + e−sT f(T ), (11.3.3)
ST {f ′′(t)} = s2f̄(s, T )− sf(0)− f ′(0) + sf(T ) e−sT + f ′(T ) esT . (11.3.4)

More generally,

ST {f (n)(t)} = snf̄(s, T )−
n∑
k=1

sn−kf (k−1)(0)

+ e−sT
n∑
k=1

sn−kf (k−1)(T ). (11.3.5)

PROOF We have, integrating by parts,

ST {f ′(t)}=

T∫
0

f ′(t) e−stdt = [f(t) e−st]T0 + s

T∫
0

f(t) e−stdt

= sf̄(s, T )− f(0) + f(T ) e−sT .

Repeating this process gives (11.3.4). By induction, we can prove (11.3.5).

THEOREM 11.3.3
(Finite Laplace Transform of Integrals). If

F (t) =

t∫
0

f(u)du (11.3.6)

so that F ′(t) = f(t) for all t, then

ST

⎧⎨⎩
t∫

0

f(u)du

⎫⎬⎭=
1
s
{f̄(s, T )− e−sTF (T )}. (11.3.7)

PROOF We have from (11.3.3)

ST {F ′(t)}= sST {F (t)} − F (0) + e−sTF (T ).

Or,

f̄(s, T )= sST

⎧⎨⎩
t∫

0

f(u)du

⎫⎬⎭+ e−sTF (T ).
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Hence,

ST

⎧⎨⎩
t∫

0

f(u)du

⎫⎬⎭=
1
s
[f̄(s, T )− e−sTF (T )].

THEOREM 11.3.4
If ST {f(t)}= f̄(s, T ), then

d

ds
f̄(s, T ) = ST {(−t)f(t)}, (11.3.8)

d2

ds2
f̄(s, T ) = ST {(−t)2 f(t)}. (11.3.9)

More generally,
dn

dsn
f̄(s, T )= ST {(−t)nf(t)}. (11.3.10)

The proofs of these results are easy exercises.
These results can be used to find the finite Laplace transform of the product

tn and any derivatives of f(t) in terms of f̄(s, T ). In other words,

ST {tnf ′(t)} = (−1)n
dn

dsn
[ST {f ′(t)}]

= (−1)n
dn

dsn
[s f̄(s, T )− f(0) + f(T )e−sT ].

Similarly, we obtain a more general result

ST {tnf (m)(t)}= (−1)n
dn

dsn
[ST {f (m)(t)}],

which is, by (11.3.5),

= (−1)n
dn

dsn

⎡⎣smf̄(s, T )−
m∑
k=1

sm−k f (k−1)(0)

+ e−sT
m∑
k=1

sm−k f (k−1)(T )

⎤⎦.
Finally, we can find

T∫
s

f̄(s, T ) ds =

T∫
s

ds

T∫
0

f(t) e−stdt=

T∫
0

f(t) dt

T∫
s

e−stds

=

T∫
0

f(t)
t

e−stdt−
T∫

0

f(t)
t

e−Ttdt= ḡ(s, T )− ḡ(T, T ),
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where g(t) =
f(t)
t

and the existence of ḡ(s, T ) is assumed.

11.4 Applications of Finite Laplace
Transforms

Example 11.4.1
Use the finite Laplace transform to solve the initial value problem

dx

dt
+ αx=At, 0≤ t≤T, (11.4.1)

x(t= 0) = a. (11.4.2)

Application of the finite Laplace transform gives

s x̄(s, T )− x(0) + e−sTx(T ) + α x̄(s, T )=A

[
1
s2

− 1
s
e−sT

(
1
s

+ T

)]
.

Or,

x̄(s, T )=
a

s+ α
− e−sTx(T )

s+ α
+

A

s+ α

[
1
s2

− 1
s
e−sT

(
1
s

+ T

)]
. (11.4.3)

This is not an entire function, but it becomes an entire function by setting

x̄(T )=
AT

α
− A

α2
+
A

α2
e−αT + a e−αT (11.4.4)

so that

x̄(s, T )=
(
a+

A

α2

)[
1− e−(s+α)T

s+ α

]
+
A

α

[
1
s2

(1 − e−sT )− T

s
e−sT

]
− A

α2

[
1
s
(1 − e−sT )

]
. (11.4.5)

Using Table B-11 of finite Laplace transforms gives the final solution

x(t) =
(
a+

A

α2

)
e−αt +

At

α
− A

α2
. (11.4.6)

Example 11.4.2
Solve the simple harmonic oscillator governed by

d2x

dt2
+ ω2x=F, (11.4.7)
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x(t= 0)= a, ẋ(t= 0) = u, (11.4.8ab)

where F, a, and u are constants.
Application of the finite Laplace transform gives the solution

x̄(s, T ) =
as

s2 + ω2
+

u

s2 + ω2
− s e−sTx(T )

s2 + ω2

− e−sT ẋ(T )
s2 + ω2

+
F

s(s2 + ω2)
(1 − e−sT ), (11.4.9)

Since x̄(s, T ) is not an entire function, we choose x(T ) such that

x(T ) =
(
a− F

ω2

)
cos ωT +

u

ω
sin ωT +

F

ω2
(11.4.10)

x̄(s, T ) becomes an entire function. Consequently, (11.4.9) becomes

x̄(s, T ) =
(
a− F

ω2

)[
s

s2 + ω2
+

e−sT

s2 + ω2
{ω sinωT − s cosωT }

]
+
u

ω

[
ω

s2 + ω2
− e−sT

s2 + ω2
{s sinωT + ω cosωT }

]
+
F

ω2

{
1 − e−sT

s

}
. (11.4.11)

Using Table B-11 of finite Laplace transforms, we invert (11.4.11) so that the
solution becomes

x(t) =
(
a− F

ω2

)
cosωt+

u

ω
sinωt+

F

ω2
. (11.4.12)

Example 11.4.3
(Boundary Value Problem). The equation for the upward displacement of a
taut string caused by a concentrated or distributed load W (x) normalized
with respect to the tension of the string of length L is

d2y

dx2
=W (x), 0≤ x≤L (11.4.13)

and the associated boundary conditions are

y(0) = y(L) = 0. (11.4.14)

We solve this boundary value problem due to a concentrated load of unit
magnitude at a point a where

W (x) = δ(x− a), 0<a<L.
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The use of the finite Laplace transform defined by

ȳ(s, L) =

L∫
0

y(x) e−sxdx (11.4.15)

leads to the solution of (11.4.13)–(11.4.14) in the form

ȳ(s, L)=
1
s2

[e−sa + y′(0)− e−sLy′(L)], (11.4.16)

where y′(x) denotes the derivative of y(x) with respect to x. The function
ȳ(s, L) is not an entire function of s unless the condition y′(0) = y′(L)− 1 is
satisfied. Using this condition, solution (11.4.16) can be put in the form

ȳ(s, L) =
y′(0)
s2

[
1 − esL − sL e−sL

]
+
e−sa

s2

[
1 − e−s(L−a) + y′(0)sL e−s(L−a)

]
. (11.4.17)

In order to complete the inversion of (11.4.17), we set Ly′(0) = a− L so that
the inversion gives the solution

y(x) = x y′(0) + (x− a)H(x− a). (11.4.18)

Example 11.4.4
(Transient Current in a Simple Circuit). The current I(t) in a simple cir-
cuit (see Figure 4.4) containing a resistance R, and an inductance L with an
oscillating voltage E(t) =E0 cos ωt is given by

L
dI

dt
+RI = E0 cos ωt, 0≤ t≤T, (11.4.19)

I(t) = 0 at t= 0. (11.4.20)

Application of the finite Laplace transform to (11.4.19)–(11.4.20) gives

sĪ(s, T ) + e−sT I(T ) +
R

L
Ī(s, T )

=
E0

L

[
s

s2 + ω2
+

e−sT

s2 + ω2
(ω sinωT − s cosωT )

]
.

Or,

Ī(s, T ) = −e
−sT I(T )(
s+ R

L

) +
E0

L
(
s+ R

L

)
×
[

s

s2 + ω2
+

e−sT

s2 + ω2
(ω sinωT − s cosωT )

]
. (11.4.21)
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Since Ī(s, T ) is not an entire function, we make it entire by setting

I(T ) =
E0

L

ω(
ω2 + R2

L2

) ( R

ωL
cosωT + sinωT − R

ωL
e−

RT
L

)
. (11.4.22)

Putting this into (11.4.21) gives

Ī(s, T ) =
ω E0

L
(
ω2 + R2

L2

) [ R

ω L

{
s

s2 + ω2
+

e−sT

s2 + ω2
(ω sin ωT − s cos ωT )

}]
+

ωE0

L
(
ω2 + R2

L2

) [{ ω

s2 + ω2
− e−sT

s2 + ω2
(s sin ωT + ω cos ωT )

}]

− ωE0

L
(
ω2 + R2

L2

)
⎡⎣ R

ω L
(
s+ R

L

) {
1 − e−(s+ R

L )T
}⎤⎦ . (11.4.23)

Using the table of the finite Laplace transform, we can invert (11.4.23) to
obtain the solution

I(t) =
ωE0

L
(
ω2 + R2

L2

) { R

ω L
cos ωt+ sin ωt− R

ωL
exp

(
−Rt
L

)}
. (11.4.24)

Obviously, the first two terms in the curly brackets represent the steady-state
current field, and the last term represents the transient current. In the limit
t→∞, the transient term decays and the steady state is attained.

Example 11.4.5
(Moments of a Random Variable). Find the nth order moments of a random
variable X with the density function f(x) in 0≤ x≤ T .

It follows from definition (11.2.1) that the finite Laplace transform f̄(s, T ) of
the density function f(x) can be interpreted as the mathematical expectation
of exp(sX). In other words.

f̄(s, T ) = ST {f(x)}=E{exp(sX)}=

T∫
0

esxf(x)dx, (11.4.25)

where s is a real parameter.
Consequently,

d

ds
f̄(s, T )=

T∫
0

x esxf(x)dx.

This result gives the definition of the expectation of X as

m1 =

T∫
0

x f(x) dx=
[
d

ds
f̄(s, T )

]
s=0

. (11.4.26)
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This implies that the mean of X is expressed in terms of the derivative of the
finite Laplace transform of the density function f(x).

Similarly, differentiating (11.4.25) n times with respect to s, we obtain

mn =

T∫
0

xn f(x) dx=
[
dn

dsn
f̄(s, T )

]
s=0

. (11.4.27)

In view of the result, the standard deviation and the variance of X can be
obtained in terms of the derivatives of the finite Laplace transform of the
density function.

11.5 Tauberian Theorems

THEOREM 11.5.1
If ST {f(t)}= f̄(s, T ) exists, then

lim
s→∞ f̄(s, T )= 0. (11.5.1)

If, in addition, ST {f ′(t)} exists, then

lim
s→∞[s f̄(s, T )] = lim

t→0
f(t). (11.5.2)

THEOREM 11.5.2
If ST {f(t)}= f̄(s, T ) exists, then

lim
s→0

f̄(s, T )=

T∫
0

f(t)dt. (11.5.3)

If, in addition, ST {f ′(t)} exists, then

lim
s→0

s f̄(s, T )= 0. (11.5.4)

The proofs of these theorems are similar to those for the usual Laplace
transforms discussed in Section 3.8.

11.6 Exercises

1. Find the finite Laplace transform of each of the following functions:
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(a) cosh at,

(c) exp(−at2), a > 0,

(b) sinh at,

(d) H(t),

(e) tne−at, a > 0, (f) e−at sin bt.

2. If f(t) has a finite discontinuity at t= a, where 0<a<T , show that

ST {f ′(t)}= s f̄(s, T ) + f(T )e−sT − f(0)− e−sa [f ]a,

where [f ]a = f(a+ 0)− f(a− 0).
Generalize this result if f(t) has a finite number of finite discontinuities
at t= a1, a2, . . . , an in [0,T].

3. Verify the result (11.3.7) when f(t) = sin at.

4. Verify the Tauberian theorems for the function f(t) = exp(−at), a > 0.

5. Solve the initial value problem

d2x

dt2
+ ω2x=A exp(αt2), (α> 0), 0≤ t≤T

x(0) = a, ẋ(0) = u,

where ω,A, α, a and u are constants.
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Z Transforms

“Don’t just read it; fight it! Ask your own questions, look for your
own examples, discover your own proofs. Is the hypothesis neces-
sary? Is the converse true? What happens in the classical special
case? What about the degenerate cases? Where does the proof use
the hypothesis?”

Paul R. Halmos

“The shortest path between two truths in the real domain passes
through the complex domain.”

Jacques Hadamard

12.1 Introduction

We begin this chapter with a brief introduction to the input-output charac-
teristics of a linear dynamic system. Some special features of linear dynamic
systems are briefly discussed. Analogous to the Fourier and Laplace trans-
forms applied to the continuous linear systems, the Z transform applicable
to linear time-invariant discrete-time systems is studied in this chapter. The
basic operational properties including the convolution theorem, initial and fi-
nal value theorems, the Z transform of partial derivatives, and the inverse Z
transform are presented in some detail. Applications of the Z transform to
difference equations and to the summation of infinite series are discussed with
examples.

12.2 Dynamic Linear Systems and Impulse Response

In physical and engineering problems, a system is referred to as a physical
device that can transform a forcing or input function (input signal or simply

445
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signal) f(t) into an output function (output signal or response) g(t) where
t is an independent time variable. In other words, the output is simply the
response of the input due to the action of the physical device. Both input
and output signals are functions of the continuous time variable. These may
include steps or impulses. However, the input or the output or both may be
sequences in the sense that they can assume values defined only for discrete
values of time t. One of the essential features of a system is that the output
g(t) is completely determined by the given input function f(t), and the char-
acteristics of the system, and in some instances by the initial data. Usually,
the action of the system is mathematically represented by

g(t) =Lf(t), (12.2.1)

where L is a transformation (or operator) that transforms the input signal
f(t) to the output signal g(t). The system is called linear if its operator L is
linear, that is, L satisfies the principle of superposition. Obvious examples of
linear operators are integral transformations.

Another fundamental characteristic of linear systems is that the response
to an arbitrary input can be found by analyzing the input components of
standard type and adding the responses to the individual components. The
very nature of the delta function, δ(t), suggests that it can be used to represent
the unit impulse function. In Section 2.4 it was shown that δ(t) satisfies the
following fundamental property

f(t)δ(t− tn) = f(tn)δ(t− tn), (12.2.2)

where tn (n is an integer) is any particular value of t and f(t) is a continuous
function in any interval containing the point t= tn. Result (12.2.2) is very
important in the theory of sampling systems. Sampling of signals is very com-
mon in communication and digital systems. It is also used in pulse modulation
systems and in all kinds of feedback systems where a digital computer is one
of the common elements.

Summing (12.2.2) over all integral n gives the sampled function f∗(t) as

f∗(t) = f(t)
∞∑

n=−∞
δ(t− tn) =

∞∑
n=−∞

f(tn) δ(t− tn). (12.2.3)

Thus, the sampled function is approximately represented by a train of impulse
functions, each having an area equal to the function at the sampling instant.

With tn =nT , the series
∞∑

n=−∞
δ(t− nT ) is called the impulse train as shown

in Figure 12.1.
As the sampling period T assumes a small value dτ , the function f(t) in-
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t
0 T 2T 3T 4T 5T-T-2T-3T-4T-5T

Figure 12.1 The impulse train
∞∑

n=−∞
δ(t− nT ).

volved in (12.2.3) can be written in the form

f(t) =

∞∑
n=−∞

f(n dτ) δ(t− n dτ)

∞∑
n=−∞

δ(t− n dτ)
. (12.2.4)

Multiplying the numerator and the denominator of (12.2.4) by ndτ and re-
placing n dτ by dτ , we obtain

f(t) =

∞∫
−∞

f(τ) δ(t− τ) dτ

∞∫
−∞

δ(t− τ) dτ
=

∞∫
−∞

f(t) δ(t− τ) dτ. (12.2.5)

Denoting the impulse response of the system to the input δ(t) by h(t), the
output is mathematically represented by the Fourier convolution as

g(t) =

∞∫
−∞

f(τ)h(t− τ) dτ = f(t) ∗ h(t). (12.2.6)

The convolution of f(t) and the impulse train is g(t) so that

g(t) = f(t) ∗
∞∑

n=−∞
δ(t− nT )

=
∞∑

n=−∞

∞∫
−∞

f(τ) δ(t− nT − τ) dτ

=
∞∑

n=−∞
f(t− nT ). (12.2.7)

This represents the superposition of all translations of f(t) by nT .
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If the input function f(τ) is the impulse δ(τ − τn) located at τn, then h(t−
τn) is the response (output) of the system to the above impulse. This follows
from (12.2.6) as

g(t) =

∞∫
−∞

h(t− τ) δ(τ − τn) dτ = h(t− τn).

If the impulse is located at τ0 = 0, then g(t) = h(t). This explains why the term
impulse response of h(t) was coined in the system’s analysis, for the system’s
response to this particular case of an impulse located at τ0 = 0. The most
important result in this section is (12.2.6), which gives the output g(t) as the
Fourier convolution product of the input signal f(t) and the impulse response
of the system h(t). This shows an application of Fourier integral analysis to
the analysis of linear dynamic systems.

Usually, the input is applied only for t≥ 0, and h(t) = 0 for t < 0. Hence,
the output represented by (12.2.6) reduces to the Laplace convolution as

g(t) =

t∫
0

f(τ)h(t− τ) dτ = f(t) ∗ h(t). (12.2.8)

Physically, this represents the response for any input when the impulse re-
sponse of any linear time invariant system is known.

We consider a certain waveform f(t) shown in Figure 12.2 which is sampled
periodically by a switch.

t

f(
t)

0 T 2T 3T 4T 5T
t

f* (t
)

0 T 2T 3T 4T 5T

Figure 12.2 Input and sampled functions.

We have seen earlier that the delta function takes on the value of the func-
tion at the instant at which it is applied, the sampled function f∗(t) can be
expressed as

f∗(t) = f(t)
∞∑
n=0

δ(t− nT )=
∞∑
n=0

f(nT ) δ(t− nT ). (12.2.9)
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Result (12.2.9) can be considered as the amplitude modulation of unit im-
pulses by the waveform f(t). Evidently, this result is very useful for analyzing
the systems where signals are sampled at a time interval T . Thus, the above
discussion enables us to introduce the Z transform in the next section.

12.3 Definition of the Z Transform and Examples

We take the Laplace transform of the sampled function given by (12.2.9) so
that

L {f∗(t)}= f̄∗(s) =
∞∑
n=0

f(nT ) exp(−nsT ). (12.3.1)

It is convenient to make a change of variable z= exp(sT ) so that (12.3.1)
becomes

L {f∗(t)}=F (z) =
∞∑
n=0

f(nT ) z−n. (12.3.2)

Thus, F (z) is called the Z transform of f(nT ). Since the interval T between
the samples has no effect on the properties and the use of the Z transform,
it is convenient to set T = 1. We now define the Z transform of a sequence
{f(n)} as the function F (z) of a complex variable z defined by

Z{f(n)}=F (z) =
∞∑
n=0

f(n) z−n. (12.3.3)

Thus, Z is a linear transformation and can be considered as an operator map-
ping sequences of scalars into functions of the complex variable z. It is as-
sumed in this chapter that there exists an R such that (12.3.3) converges
for |z|>R. Since |z|= | exp(sT )|= | exp(σ + iμ)T |= | exp(σT )|, it follows that,
when σ < 0 (that is, in the left half of the complex s plane), |z|< 1, and thus,
the left half of the s plane corresponds to the interior of the unit circle in the
complex z plane. Similarly, the right half of the s plane corresponds to the
exterior (|z|> 1) of the unit circle in the z plane. And σ= 0 in the s plane
corresponds to the unit circle in the z plane.

The inverse Z transform is given by the complex integral

Z−1{F (z)}= f(n) =
1

2πi

∮
C

F (z) zn−1 dz, (12.3.4)

where C is a simple closed contour enclosing the origin and lying outside the
circle |z|=R. The existence of the inverse imposes restrictions on f(n) for
uniqueness. We require that f(n) = 0 for n< 0.
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To obtain the inversion integral, we consider

F (z) =
∞∑
n=0

f(n) z−n

= f(0) + f(1) z−1 + f(2) z−2 + · · ·+ f(n) z−n + f(n+ 1) z−(n+1) + · · · .

Multiplying both sides by (2πi)−1zn−1 and integrating along the closed con-
tour C, which usually encloses all singularities of F (z), we obtain

1
2πi

∮
C

F (z)zn−1 dz =
1

2πi

[∮
C

f(0)zn−1 dz +
∮
C

f(1)zn−2 dz

+ · · ·+
∮
C

f(n)z−1 dz +
∮
C

f(n+ 1)z−2 dz + · · ·
]
.

By Cauchy’s Fundamental Theorem all integrals on the right vanish except

1
2πi

∮
C

f(n)
dz

z
= f(n).

This leads to the inversion integral for the Z transform in the form

Z−1{F (z)}= f(n) =
1

2πi

∮
C

F (z) zn−1 dz.

Similarly, we can define the so called bilateral Z transform by

Z{f(n)}=F (z)=
∞∑

n=−∞
f(n)z−n, (12.3.5)

for all complex numbers z for which the series converges. This reduces to the
unilateral Z transform (12.3.3) if f(n)= 0 for n< 0. The inverse Z transform
is given by a complex integral similar to (12.3.4). Substituting z= reiθ in
(12.3.5), we obtain the Z transform evaluated at r= 1

F {f(n)}=F (θ) =
∞∑

n=−∞
f(n)e−inθ.

This is known as the Fourier transform of the sequence {f(n)}∞−∞.

Example 12.3.1

If f(n) = an, n≥ 0, then

Z{an}=
∞∑
n=0

(a
z

)n
=

1
1− a

z

=
z

z − a
, |z|>a. (12.3.6)
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When a= 1, we obtain

Z{1}=
∞∑
n=0

z−n =
z

z − 1
, |z|> 1. (12.3.7)

If f(n) =n an for n≥ 0, then

Z{nan}=
∞∑
n=0

n an z−n =
az

(z − a)2
, |z|> |a|. (12.3.8)

Example 12.3.2
If f(n) = exp(inx ), then

Z{exp(inx )}=
z

z − exp(ix )
. (12.3.9)

This follows immediately from (12.3.6).
Furthermore,

Z{cosnx}=
z(z − cosx)

z2 − 2z cosx+ 1
, Z{sinnx}=

z sinx
z2 − 2z cosx+ 1

.(12.3.10)

These follow readily from (12.3.9) by writing exp(inx ) = cosnx + i sinnx .

Example 12.3.3
If f(n) =n, then

Z{n} =
∞∑
n=0

n z−n = z

∞∑
n=0

n z−(n+1)

= −z d
dz

( ∞∑
n=0

z−n
)

=
z

(z − 1)2
, |z|> 1. (12.3.11)

Example 12.3.4
If f(n) = 1

n! , then

Z

{
1
n!

}
=

∞∑
n=0

1
n!
z−n = exp

(
1
z

)
for all z. (12.3.12)
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Example 12.3.5
If f(n) = coshnx , then

Z{coshnx}=
z(z − coshx)

z2 − 2z coshx+ 1
. (12.3.13)

We have

Z{coshnx} =
1
2
Z{enx + e−nx}

=
1
2

[
z

z − ex
+

z

z − e−x

]
=

z(z − coshx)
z2 − 2z coshx+ 1

.

Example 12.3.6
Show that

Z{n2}=
z(z + 1)
(z − 1)3

. (12.3.14)

We have, from (12.4.13) in section 12.4,

Z{n · n}=−z d

dz
Z{n}=−z d

dz

z

(z − 1)2
=
z(z + 1)
(z − 1)3

.

Example 12.3.7
If f(n) is a periodic sequence of integral period N , then

F (z) =Z{f(n)}=
zN

zN − 1
F1(z),

where

F1(z) =
N−1∑
k=0

f(k) z−k. (12.3.15)

We have, by definition,

F (z) =Z{f(n)} =
∞∑
n=0

f(n) z−n = zN
∞∑
n=0

f(n+N) z−(n+N)

= zN
∞∑
k=N

f(k) z−k, (n+N = k)

= zN

[ ∞∑
k=0

f(k) z−k −
N−1∑
k=0

f(k) z−k
]

=
{
zNF (z)− zNF1(z)

}
.
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Thus,

F (z)=
zN

(zN − 1)
F1(z).

12.4 Basic Operational Properties of Z Transforms

THEOREM 12.4.1

(Translation). If Z{f(n)}=F (z) and m≥ 0, then

Z{f(n−m)} = z−m
[
F (z) +

−1∑
r=−m

f(r) z−r
]
, (12.4.1)

Z{f(n+m)} = zm

[
F (z)−

m−1∑
r=0

f(r) z−r
]
. (12.4.2)

In particular, if m= 1, 2, 3, . . . , then

Z{f(n− 1)} = z−1F (z)− f(−1) z. (12.4.3)

Z{f(n− 2)} = z−2

[
F (z) +

−1∑
r=−2

f(r)z−r
]
. (12.4.4)

and so on.
Similarly, it follows from (12.4.2) that

Z{f(n+ 1)} = z{F (z)− f(0)}, (12.4.5)
Z{f(n+ 2)} = z2{F (z)− f(0)} − z f(1), (12.4.6)
Z{f(n+ 3)} = z3{F (z)− f(0)} − z2 f(1)− z f(2). (12.4.7)

More generally, for m> 0,

Z{f(n+m)}= zm{F (z)− f(0)} − zm−1f(1)− · · · − z f(m− 1). (12.4.8)

All these results are widely used for the solution of initial value problems
involving difference equations. Result (12.4.8) is somewhat similar to (3.4.12)
for this Laplace transform, and has been used to solve initial value problems
involving differential equations.
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PROOF We have, by definition,

Z{f(n−m)} =
∞∑
n=0

f(n−m)z−n, (n−m= r),

= z−m
∞∑

r=−m
f(r) z−r = z−m

∞∑
r=0

f(r)z−r + z−m
−1∑

r=−m
f(r)z−r.

When m= 1, we get (12.4.3).

If f(r) = 0 for all r < 0, then

Z{f(n−m)}= z−m
∞∑
r=0

f(r) z−r. (12.4.9)

When m= 1, this result gives

Z{f(n− 1)}= z−1F (z). (12.4.10)

Similarly, we prove (12.4.2) by writing

Z{f(n+m)}=
∞∑
n=0

f(n+m)z−n, (n+m= r),

= zm
∞∑
r=m

f(r) z−r = zm
∞∑
r=0

f(r) z−r − zm
m−1∑
r=0

f(r) z−r

= zm

[
F (z)−

m−1∑
r=0

f(r)z−r
]
.

When m= 1, 2, 3, . . . , results (12.4.5)–(12.4.7) follow immediately.

THEOREM 12.4.2
(Multiplication). If Z{f(n)}=F (z), then

Z{anf(n)} = F
(z
a

)
, |z|> |a|. (12.4.11)

Z{e−nbf(n)} = F (zeb), |z|> |e−b|. (12.4.12)

Z{n f(n)} = −z d
dz
F (z). (12.4.13)

More generally,

Z
[
nk f(n)

]
= (−1)k

(
z
d

dz

)k
F (z), k= 0, 1, 2, . . . , (12.4.14)
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where (
z
d

dz

)k
F (z)=

(
z
d

dz

)(k−1) (
z
d

dz

)
F.

PROOF Result (12.4.11) follows immediately from the definition (12.3.3),
and (12.4.12) follows from (12.4.11) by writing a= e−b.

If f(n)= 1 so that Z{f(n)}= z
z−1 , and if a= eb, then (12.4.1) gives

Z{(eb)n}=
ze−b

ze−b − 1
=

z

z − eb
, |z|> |eb|. (12.4.15)

Putting b= ix also gives (12.3.9)
To prove (12.4.13), we use the definition (12.3.3) to obtain

Z{n f(n)} =
∞∑
n=0

n f(n) z−n= z

∞∑
n=0

n f(n) z−(n+1)

= z

∞∑
n=0

f(n)
{
− d

dz
z−n

}
=−z d

dz

{ ∞∑
n=0

f(n) z−n
}

=−z d
dz
F (z).

THEOREM 12.4.3

(Division).

Z

{
f(n)
n+m

}
=−zm

∫ z

0

F (ξ)dξ
ξm+1

. (12.4.16)

PROOF We have

Z

{
f(n)
n+m

}
=

∞∑
n=0

f(n)
n+m

z−n, (m≥ 0),

= −zm
∞∑
n=0

f(n)
[
−
∫ z

0

ξ−(n+m+1) dξ

]

= −zm
∫ z

0

ξ−(m+1)

[ ∞∑
n=0

f(n) ξ−n
]
dξ

= −zm
∫ z

0

ξ−(m+1)F (ξ) dξ.

When m= 0, 1, 2, . . . , several particular results follow from (12.4.16).
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THEOREM 12.4.4
(Convolution). If Z{f(n)}=F (z) and Z{g(n)}=G(z), then the Z transform
of the convolution f(n) ∗ g(n) is given by

Z{f(n) ∗ g(n)}=Z{f(n)}Z{g(n)}, (12.4.17)

where the convolution is defined by

f(n) ∗ g(n)=
∞∑
m=0

f(n−m)g(m). (12.4.18)

Or, equivalently,

Z−1{F (z)G(z)}=
∞∑
m=0

f(n−m)g(m). (12.4.19)

PROOF We proceed formally to obtain

Z{f(n) ∗ g(n)}=
∞∑
n=0

z−n
∞∑
m=0

f(n−m)g(m),

which is, interchanging the order of summation,

=
∞∑
m=0

g(m)
∞∑
n=0

f(n−m)z−n.

Substituting n−m= r, we obtain

Z{f(n) ∗ g(n)}=
∞∑
m=0

g(m)z−m
∞∑

r=−m
f(r)z−r,

which is, in view of f(r) = 0 for r < 0,

=
∞∑
m=0

g(m) z−m
∞∑
r=0

f(r) z−r

= Z{f(n)}Z{g(n)}.

This proves the theorem.
More generally, the convolution f(n) ∗ g(n) is defined by

f(n) ∗ g(n) =
∞∑

m=−∞
f(n−m) g(m). (12.4.20)

If we assume f(n) = 0 = g(n) for n< 0, then (12.4.20) becomes (12.4.18).
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However, the Z transform of (12.4.20) gives

Z{f(n) ∗ g(n)}=
∞∑

n=−∞
z−n

∞∑
m=−∞

f(n−m) g(m),

which is, interchanging the order of summation,

=
∞∑

m=−∞
g(m)

∞∑
n=−∞

f(n−m) z−n

=
∞∑

m=−∞
z−m g(m)

∞∑
n=−∞

f(n−m) z−(n−m)

=
∞∑

m=−∞
z−mg(m)

∞∑
r=−∞

f(r)z−r, (r=n−m)

= Z{f(n)}Z{g(n)}. (12.4.21)

This is the convolution theorem for the bilateral Z transform.

The Z transform of the product f(n) g(n) is given by

Z {f(n) g(n)}=
1

2πi

∮
C

F (w)G
( z
w

) dw
w
, (12.4.22)

where C is a closed contour enclosing the origin in the domain of convergence
of F (w) and G

(
z
w

)
.

THEOREM 12.4.5
(Parseval’s Formula). If F (z)=Z{f(n)} and G(z) =Z{g(n)}, then

∞∑
n=−∞

f(n) g(n) =
1
2π

∫ π

−π
F (eiθ) G(eiθ) dθ. (12.4.23)

In particular,
∞∑

n=−∞
|f(n)|2 =

1
2π

∫ π

−π
|F (eiθ)|2 dθ. (12.4.24)

THEOREM 12.4.6
(Initial Value Theorem). If Z{f(n)}=F (z), then

f(0)= lim
z→∞F (z). (12.4.25)

Also, if f(0)= 0, then
f(1)= lim

z→∞ z F (z). (12.4.26)
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PROOF We have, by definition,

F (z)=
∞∑
n=0

f(n) z−n = f(0) +
f(1)
z

+
f(2)
z2

+ · · · . (12.4.27)

The initial value of f(n) at n= 0 is obtained from (12.4.27) by letting z→∞,
and hence

f(0)= lim
z→∞F (z).

If f(0) = 0, then (12.4.27) gives

f(1) = lim
z→∞ zF (z).

This proves the theorem.

THEOREM 12.4.7
(Final Value Theorem). If Z{f(n)}=F (z), then

lim
n→∞ f(n) = lim

z→1
{(z − 1)F (z)}. (12.4.28)

provided the limits exist.

PROOF We have, from (12.3.3) and (12.4.5),

Z{f(n+ 1)− f(n)}= z{F (z)− f(0)} − F (z).

Or, equivalently,

∞∑
n=0

[f(n+ 1)− f(n)] z−n = (z − 1)F (z)− zf(0).

In the limit as z→ 1, we obtain

lim
z→1

∞∑
n=0

[f(n+ 1)− f(n)] z−n = lim
z→1

(z − 1)F (z)− f(0).

Or,

lim
n→∞ [f(n+ 1)− f(0)] = f(∞)− f(0)= lim

z→1
(z − 1)F (z)− f(0)

Thus,
lim
n→∞ f(n) = lim

z→1
(z − 1)F (z),

provided the limits exist.
This proves the theorem. The reader is referred to Zadeh and Desoer (1963)

for a rigorous proof.
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Example 12.4.1
Verify the initial value theorem for the function

F (z) =
z

(z − a)(z − b)
.

We have

f(0) = lim
z→∞

z

(z − a)(z − b)
= 0, f(1) = lim

z→∞ z F (z)= 1.

THEOREM 12.4.8
(The Z Transform of Partial Derivatives).

Z

{
∂

∂a
f(n, a)

}
=

∂

∂a
[Z{f(n, a)}]. (12.4.29)

PROOF

Z

{
∂

∂a
f(n, a)

}
=

∞∑
n=0

[
∂

∂a
f(n, a)

]
z−n

=
∂

∂a

[ ∞∑
n=0

f(n, a)z−n
]

=
∂

∂a
[Z{f(n, a)}].

As an example of this result, we show

Z{n ean} = Z

{
∂

∂a
ena

}
=

∂

∂a
Z{ena}=

∂

∂a

(
z

z − ea

)
=

z ea

(z − ea)2
.

12.5 The Inverse Z Transform and Examples

The inverse Z transform is given by the complex integral (12.3.4), which can
be evaluated by using the Cauchy residue theorem. However, we discuss other
simple ways of finding the inverse transform of a given F (z). These include a
method from the definition (12.3.3), which leads to the expansion of F (z) as
a series of inverse powers of z in the form

F (z) = f(0) + f(1) z−1 + f(2) z−2 + · · ·+ f(n)z −n + · · · . (12.5.1)
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The coefficient of z−n in this expansion is

f(n) =Z−1{F (z)}. (12.5.2)

If F (z) is given by a series

F (z) =
∞∑

n=−∞
an z

−n, r1<z < r2,

then its inverse Z transform is unique and is equal to {f(n)= an} for all n.
If the domain of analyticity of F (z) contains the unit circle |z|= 1, and if F
is single valued therein, then F (eiθ) is a periodic function with period 2π and
hence, it can be expanded in a Fourier series. The coefficients of this series
represent the inverse Z transform of F (z) and are given by

Z−1 {F (z)}= f(n)=
1
2π

∫ π

−π
F (eiθ) einθdθ.

Example 12.5.1
Find the inverse Z transform of F (z)= z(z − a)−1.
We have

F (z) =
z

z − a
=
(
1− a

z

)−1

= 1 + az−1 + a2z−2 + · · ·+ anz−n + · · · .

so that f(0)= 1, f(1)= a, f(2) = a2, . . . , f(n) = an, . . . .
Obviously,

f(n) =Z−1

{
z

(z − a)

}
= an.

Example 12.5.2

Find Z−1

{
exp

(
1
z

)}
.

Obviously,

exp
(

1
z

)
= 1 + 1 · z−1 +

1
2!
z−2 + · · ·+ 1

n!
z−n + · · · .

This gives

f(n) =
1
n!

=Z−1

{
exp

(
1
z

)}
.
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Other methods for inversion use partial fractions and the Convolution The-
orem 12.4.4. We illustrate these methods by the following examples.

Example 12.5.3
Find the inverse Z transform of

F (z)=
z

z2 − 6z + 8
.

We write

F (z) =
z

(z − 2)(z − 4)
=

1
2

(
z

z − 4
− z

z − 2

)
.

It follows from the table of Z transforms that

f(n)=Z−1{F (z)} =
1
2

[
Z−1

{
z

z − 4

}
− Z−1

{
z

z − 2

}]
=

1
2
(4n − 2n).

Example 12.5.4

Use the Convolution Theorem 12.4.4 to find the inverse of
z2

(z − a)(z − b)
.

We set
F (z) =

z

z − a
, G(z) =

z

z − b

so that
f(n) =Z−1{F (z)}= an, g(n) =Z−1{G(z)}= bn.

Thus, the convolution theorem gives

Z−1{F (z)G(z)} =
n∑

m=0

an−m bm = an
n∑

m=0

(
b

a

)m

= an ·
{

1 − (
b
a

)n+1

1 − b
a

}
=

an+1

(a− b)

{
1 −

(
b

a

)n+1
}
.

Example 12.5.5
Find the inverse Z transform of

F (z)=
3z2 − z

(z − 1)(z − 2)2
.

We write F (z) as partial fractions

F (z)=
3z2 − z

(z − 1)(z − 2)2
= 2 · z

(z − 1)
− 2 · z

(z − 2)
+

5
2
· 2z
(z − 2)2
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so that its inverse is

f(n) =Z−1

{
2z

(z − 1)

}
− Z−1

{
2 · z

(z − 2)

}
+

5
2
Z−1

{
2z

(z − 2)2

}
which is, by (12.3.6), and (12.4.13) with f(n)= 2n,

= 2− 2n+1 +
5
2
· n 2n = 2− 2n+1 + 5 · n 2n−1.

Example 12.5.6
Use the Convolution Theorem to show that

Z−1

{
z(z + 1)
(z − 1)3

}
= n2.

We write

z(z + 1)
(z − 1)3

=
z

(z − 1)2

(
z + 1
z − 1

)
=

z

(z − 1)2

[
z

z − 1
+

1
z − 1

]
.

Letting

F (z)=
z

(z − 1)2
and G(z)=

z

z − 1
+

1
z − 1

,

we obtain
f(n) = n and g(n) =H(n) +H(n− 1).

Thus,

Z−1

{
z(z + 1)
(z − 1)3

}
= f(n) ∗ g(n) =

n∑
m=0

m[H(n−m) +H(n−m− 1)] =n2.

Example 12.5.7
(Reconstruction of a Sequence from its Z Transform).

Suppose

F (z) =
z

z − 1
, |z|> 1 and G(z) =

z

z − 1
, |z|< 1, (12.5.3)

Z−1 {F (z)} = f(n) =

⎧⎨⎩
1, n≥ 0,

0, n< 0,

⎫⎬⎭ and Z−1 {G(z)}= g(n) =

⎧⎨⎩
1, n≤ 0,

0, n≥ 0,

⎫⎬⎭ .

(12.5.4)

This shows that the inverse Z transform of z(z − 1)−1 is not unique. In
general, the inverse Z transform is not unique, unless its region of convergence
is specified.
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12.6 Applications of Z Transforms to Finite Difference
Equations

Example 12.6.1
(First Order Difference Equation). Solve the initial value problem for the
difference equation

f(n+ 1)− f(n) = 1, f(0)= 0. (12.6.1)

Application of the Z transform to (12.6.1) combined with (12.4.5) gives

z[F (z)− f(0)]− F (z)=
z

z − 1
.

Or, F (z) =
z

(z − 1)2
.

The inverse Z transform (see result (12.3.11)) gives the solution

f(n) =Z−1

{
z

(z − 1)2

}
= n. (12.6.2)

Example 12.6.2
(First Order Difference Equation). Solve the equation

f(n+ 1) + 2f(n)=n, f(0)= 1. (12.6.3)

The use of the Z transform to this problem gives

z{F (z)− f(0)}+ 2F (z)=
z

(z − 1)2
.

Or, F (z) =
z

z + 2
+

z

(z + 2)(z − 1)2

=
z

z + 2
+

1
9
· z

z + 2
+

3
9
· z

(z − 1)2
− 1

9
· z

z − 1

=
(

10
9

)
z

(z + 2)
+

3
9
· z

(z − 1)2
− 1

9
z

(z − 1)
.

The inverse Z transform yields the solution

f(n) =
1
9
[10(−2)n + 3n− 1]. (12.6.4)
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Example 12.6.3
(The Fibonacci Sequence). The Fibonacci sequence is defined as a sequence in
which every term is the sum of the two proceeding terms. So it satisfies the
difference equation

un+1 = un + un−1, u1 = u(0)= 1. (12.6.5)

Application of the Z transform gives

U(z)=
z2

z2 − z − 1
, where U(z) =Z{un}.

Thus, the inverse transform leads to the solution

un =Z−1

{
z2

z2 − z − 1

}
=Z−1

{
z2

(z − a)(z − b)

}
,

where a=
1
2
(1 +

√
5) and b=

1
2
(1 −

√
5).

Using Example 12.5.4, the Fibonacci sequence is

un =
an+1 − bn+1

(a− b)
, n= 0, 1, 2, . . . (12.6.6)

More explicitly, the Fibonacci sequence is given by 1, 1, 2, 3, 5, . . . .

Example 12.6.4
(Second Order Difference Equation). Solve the initial value problem

f(n+ 2)− 3f(n+ 1) + 2f(n) = 0, f(0)= 1, f(1)= 2. (12.6.7)

Application of the Z transform gives

z2{F (z)− f(0)} − zf(1)− 3[z{F (z)− f(0)}] + 2F (z)= 0.

Or,
(z2 − 3z + 2)F (z)= (z2 − z).

Hence,
F (z) =

z

(z − 2)
.

Thus, the inversion gives the solution

f(n)=Z−1

{
z

(z − 2)

}
= 2n. (12.6.8)
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Example 12.6.5
(Periodic Solution). Find the solution of the initial value problem

u(n+ 2)− u(n+ 1) + u(n)= 0, (12.6.9)
u(0)= 1 and u(1)= 2. (12.6.10)

The Z transform of (12.6.9)–(12.6.10) gives

{z2U(z)− z2 − 2z}− {zU(z)− z}+U(z) = 0.

Or,

U(z)=
z2 + z

(z2 − z + 1)
=

(
z2 − 1

2z
)

z2 − z + 1
+

√
3
(√

3
2 z

)
z2 − z + 1

. (12.6.11)

Writing x= π
3 in (12.3.10), the inverse Z transform of (12.6.11) gives the

periodic solution

u(n) = cos
(nπ

3

)
+
√

3 sin
(nπ

3

)
. (12.6.12)

Example 12.6.6
(Second Order Nonhomogeneous Difference Equation). Solve the initial value
problem

u(n+ 2)− 5 u(n+ 1) + 6 u(n)= 2n, u(0) = 1, u(1)= 0. (12.6.13)

The Z transform of (12.6.13) yields

(z2 − 5z + 6)U(z)= z2 − 5z +
z

z − 2
. (12.6.14)

Or,

U(z) = z

[
z − 5

(z − 2)(z − 3)
+

1
(z − 2)2(z − 3)

]
= z

[(
3

z − 2
− 2
z − 3

)
+
(

1
z − 3

− 1
z − 2

− 1
(z − 2)2

)]
= z

[
2

z − 2
− 1
z − 3

− 1
(z − 2)2

]
. (12.6.15)

The inverse Z transform of (12.6.15) gives the solution

u(n) = 2n+1 − 3n − n 2n−1. (12.6.16)
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Example 12.6.7
(Chebyshev Polynomials). Solve the second order difference equation

un+2 − 2xun+1 + un = 0, |x| ≤ 1, (12.6.17)
u(0)= u0 and u(1)= u1, (12.6.18)

where u0 and u1 are constants.
The Z transform of equation (12.6.17) with (12.6.18) gives

z2U(z)− z2 u0 − zu1 − 2x[z U(z)− zu0] + U(z)= 0.

Or,

U(z) = u0

[
z2 − zx

z2 − 2xz + 1

]
+ (u1 − xu0)

[
z

z2 − 2xz + 1

]
(12.6.19)

= u0

[
z2 − zx

z2 − 2xz + 1

]
+

(u1 − xu0)√
1− x2

[
z
√

1 − x2

z2 − 2xz + 1

]

= u0

[
z2 − zx

z2 − 2xz + 1

]
+ v0

[
z
√

1 − x2

z2 − 2xz + 1

]
, (12.6.20)

where v0 = (u1 − xu0)(1 − x2)−
1
2 is independent of z.

Since |x| ≤ 1, we may write x= cos t and then take the inverse Z transform
with the aid of (12.3.10) to obtain the solution

un = u0 cosnt+ v0 sinnt (12.6.21)
= u0 cos(n cos−1 x) + v0 sin(n cos−1 x). (12.6.22)

Usually, the function

Tn(x) = cos(n cos−1 x) (12.6.23)

is called the Chebyshev polynomial of the first kind of degree n.
The properties of this polynomial are presented in Appendix A-4. This

polynomial plays an important role in the theory of special functions, and is
found to be extremely useful in approximation theory and modern numerical
analysis.

12.7 Summation of Infinite Series

THEOREM 12.7.1
If Z{f(n)}=F (z), then

(i)
n∑
k=1

f(k)=Z−1

{
z

z − 1
F (z)

}
, (12.7.1)
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and

(ii)
∞∑
k=1

f(k) = lim
z→1

F (z) =F (1). (12.7.2)

PROOF We write

g(n)=
n∑
k=0

f(k) so that g(n) = f(n) + g(n− 1).

Application of the Z transform gives

G(z) =F (z) + z−1G(z)

so that
G(z) =

z

(z − 1)
F (z).

Or,

Z{g(n)}=Z

{
n∑
k=0

f(k)

}
=

z

(z − 1)
F (z).

In the limit as z→ 1 together with the Final Value Theorem 12.4.7 gives

lim
n→∞

n∑
k=0

f(k) = lim
z→1

(z − 1) · z

z − 1
F (z)=F (1).

This proves the theorem.

Example 12.7.1
Use the Z transform to show that

∞∑
n=0

xn

n!
= ex. (12.7.3)

We have, from (12.4.11),

Z{xnf(n)}=F
( z
x

)
.

Setting f(n) =
1
n!

so that F (z) = exp
(

1
z

)
, we find

Z

{
xn

n!

}
= exp

(x
z

)
.
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The use of Theorem 12.7.1(ii) gives

∞∑
n=0

xn

n!
= lim
z→1

exp
(x
z

)
= ex.

Example 12.7.2
Show that

∞∑
n=0

(−1)n
xn+1

n+ 1
= log(1 + x). (12.7.4)

Using (12.3.6), we find

Z{xn+1}=
zx

z − x

whence, in view of 4(b) in 12.8 Exercises,

Z

{
xn+1

n+ 1

}
= z

∫ ∞

z

zx

(z − x)
· dz
z2

= xz

∫ ∞

z

dz

z(z − x)

= xz

[
1
x

log
(
z − x

z

)]∞
z

= −z log
(
z − x

z

)
.

Replacing x by (−x) in this result, we obtain

Z

{
(−1)n

xn+1

n+ 1

}
= z log

(
z + x

z

)
.

Application of Theorem 12.7.1(ii) gives

∞∑
n=0

(−1)n · x
n+1

n+ 1
= lim
z→1

z log
(
z + x

z

)
= log (1 + x).

Example 12.7.3
Find the sum of the series

∞∑
n=0

an sin nx.
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We know from (12.3.10) and (12.4.11) that

Z{f(n)} = Z{sin nx}=
z sinx

z2 − 2z cosx+ 1
,

Z{an sinnx} = F
(z
a

)
=

az sinx
a2 − 2az cosx+ z2

.

Hence, Theorem 12.7.1(ii) gives

∞∑
n=0

an sinnx= lim
z→1

F
(z
a

)
=

a sinx
a2 − 2a cosx+ 1

. (12.7.5)

12.8 Exercises

1. Find the Z transform of the following functions:

(a)n3, (b) a
n

n! , (c) n exp {(n− 1)α} ,

(d)H(n)−H(n− 2), (e) n2an, (f) δ(n) =
{

1, n= 0,
0, otherwise

}
.

2. Show that

(a) Z{sinh na}=
z (sinh a)

z2 − 2z cosha+ 1
,

(b) Z{exp(−an) cos bn}=
z (z − e−a cos b)

z2 − 2 z e−a cos b+ e−2a
.

(c) Z
{
e−an sin bn

}
=

ea z sin b
e2a z2 − 2 ea z cos b+ 1

, |z|>e−a.

3. Show that

Z{n anf(n)}=−z d
dz

{
F
(z
a

)}
.

4. Prove that

(a) Z
{
f(n)
n

}
=
∫ ∞

z

F (z)
z

dz,

(b) Z
{
f(n)
n+m

}
= zm

∫ ∞

z

F (z) dz
zm+1

.
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Hence, deduce that

Z

{
1

n+ 1

}
= z log

(
z

z − 1

)
.

5. Show that

(a) Z{nan−1}=
z

(z − a)2
,

(b) Z
{
n(n− 1) · · · (n−m+ 1)

m!
an−m

}
=

z

(z − a)m+1
.

6. Find the inverse Z transform of the following functions:

(a)
z2

(z − 2)(z − 3)
, (b)

z2 − 1
z2 + 1

, (c)
z

(z − 1)2
,

(d)
z

(z − a)2
, (e)

1
(z − a)2

, (f)
1

(z − 1)2(z − 2)
,

(g)
z + 3

(z + 1)(z + 2)
, (h)

z3

(z2 − 1)(z − 2)
, (i)

z2

(z − 1)
(
z − 1

2

) .
(j) F (z) = z2

(z−e−a)(z−e−b)
, a, b are constants.

(k) F (z) = (z − a)−k, k= 1, 2, . . . , |z|> |a|> 0.

(l) F (z) = z4+5
(z−1)2(z−2) , |z|> 2, (m)F (z)= (z−1)

(z+2)(z− 1
2 )
, |z|> 2.

7. Solve the following difference equations:

(a) f(n+ 1) + 3f(n) =n, f(0)= 1.

(b) f(n+ 1)− 5f(n) = sinn, f(0) = 0.

(c) f(n+ 1)− af(n) = an, f(0) = x0.

(d) f(n+ 1)− f(n) = a[1 − f(n)], f(0)= x0.

(e) f(n+ 2)− f(n+ 1)− 6f(n) = 0, f(0) = 0, f(1) = 3.

(f) f(n+ 2) + 4f(n+ 1) + 3f(n)= 0, f(0)= 1, f(1)= 1.

(g) f(n+ 2)− f(n+ 1)− 6f(n) = sin
(nπ

2

)
(n≥ 2), f(0) = 0, f(1) = 3.

(h) f(n+ 2)− 2f(n+ 1) + f(n) = 0, f(0) = 2, f(1) = 0.

(i) f(n+ 2)− 2af(n+ 1) + a2f(n) = 0, f(0) = 0, f(1) = a.

(j) f(n+ 3)− f(n+ 2)− f(n+ 1) + f(n) = 0, f(0) = 1, f(1)= f(2) = 0.

(k) f(n) = f(n− 1) + 2f(n− 2), f(0)= 1, f(1)= 2.

(l) f(n) − a f(n− 1) = 1, f(−1)= 2.
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(m) f(n+ 2) + 3 f(n+ 1) + 2 f(n) = 0, f(0)= 1, f(1)= 2.

(n) f(n+ 1)− 2 f(n)= 0, f(0) = 3.

8. Show that the solution of the resistive ladder network governed by the
difference equation for the current field i(n)

i(n+ 2)− 3 i(n+ 1) + i(n) = 0, i(0) = 1, i(1)= 2 i(0)− V

R

is

i(n) = cosh(xn) +
2√
5

(
1
2
− V

R

)
sinh(nx),

where cosh x=
3
2

and sinhx=
√

5
2

.

9. Use the Initial Value Theorem to find f(0) for F (z) given by

(a)
z

z − α
, (b)

z

(z − α)(z − β)
,

(c)
z(z − cosx)

z2 − 2z cosx+ 1
, (d)

1
(z − a)m

.

10. Use the Final Value Theorem to find lim
n→∞ f(n) for F (z):

(a) F (z) =
z

z − a
, (b) F (z)=

z2 − z cos a
(z2 − 2z cos a+ 1)

.

11. Find the sum of the following series using the Z transform:

(a)
∞∑
n=0

aneinx, (b)
∞∑
n=0

(−1)n
e−n

n+ 1
, (c)

∞∑
n=0

exp[−x(2n+ 1)].

12. Solve the second order difference equation

3f(n+ 2)− 2f(n+ 1)− f(n) = 0, f(0)= 1, f(1)= 2

and then show that f(n)→ 7
4

as n→∞.

13. Solve the simultaneous difference equations

u(n+ 1) = 2 υ(2) + 2,
υ(n+ 1) = 2 u(n)− 1,

with the initial data u(0)= υ(0)= 0.
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14. Show that the solution of the third order difference equation

u(n+ 3)− 3 u(n+ 2) + 3 u(n+ 1)− u(n) = 0,
u(0)= 1, u(1)= 0, u(2)= 1,

is
u(n) = (n− 1)2.

15. Show that the solution of the initial value problem

u(n+ 2)− 4 u(n+ 1) + 3 u(n)= 0, u(0)= u0 and u(1) = u1

is
un =

1
2
(3u0 − u1) +

1
2
(u1 − u0)3n.

16. Find the solution of the following initial value problems:

(a) un+2 + 2 un+1 − 3 un = 0, u0 = 1, u1 = 0,

(b) 3 un+2 − 5 un+1 + 2 un = 0, u0 = 1, u1 = 0,

(c) un+2 − 4 un+1 + 5 un = 0, u0 = 1
2 , u1 = 3.



© 2007 by Taylor & Francis Group, LLC

13

Finite Hankel Transforms

“No human investigation can be called real science if it cannot be
demonstrated mathematically.”

Leonardo da Vinci

“The mathematician’s patterns, like the painter’s or the poet’s
must be beautiful; the ideas, like the colors or the words, must fit
together in a harmonious way. Beauty is the first test: there is no
permanent place in this world for ugly mathematics.”

Godfrey H. Hardy

13.1 Introduction

This chapter is devoted to the study of the finite Hankel transform and its
basic operational properties. The usefulness of this transform is shown by
solving several initial-boundary problems of physical interest. The method of
finite Hankel transforms was first introduced by Sneddon (1946).

13.2 Definition of the Finite Hankel Transform
and Examples

Just as problems on finite invervals −a< x<a lead to Fourier series, problems
on finite intervals 0<r <a, where r is the cylindrical polar coordinate, lead
to the Fourier-Bessel series representation of a function f(r) which can be
stated in the following theorem:

473
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THEOREM 13.2.1
If f(r) is defined in 0≤ r≤ a and

f̃n(ki) =
∫ a

o

rf(r)Jn(rki)dr, (13.2.1)

then f(r) can be represented by the Fourier-Bessel series as

f(r) =
2
a2

∞∑
i=1

f̃n(ki)
Jn(rki)
J2
n+1(aki)

, (13.2.2)

where ki(0<k1<k2< · · · ) are the roots of the equation Jn(aki) = 0, that
means

J ′
n(aki) = Jn−1(aki) =−Jn+1(aki), (13.2.3)

due to the standard recurrence relations among J ′
n(x), Jn−1(x), and Jn+1(x).

PROOF We write formally the Bessel series expansion of f(r) as

f(r) =
∞∑
i=1

ci Jn(rki), (13.2.4)

where the summation is taken over all the positive zeros k1, k2, . . . of the Bessel
function Jn(aki). Multiplying (13.2.4) by rJn(rki), integrating the both sides
of the result from 0 to a, and then using the orthogonal property of the Bessel
functions, we obtain

a∫
o

rf(r)Jn(rki) dr= ci

a∫
o

r J2
n(rki) dr.

Or,

f̃n(ki) =
a2ci
2
J2
n+1(aki),

hence, we obtain

ci =
2
a2

f̃n(ki)
J2
n+1(aki)

. (13.2.5)

Substituting the value of ci into (13.2.4) gives (13.2.2).

DEFINITION 13.2.1 The finite Hankel transform of order n of a function
f(r) is denoted by Hn{f(r)}= f̃n(ki) and is defined by

Hn {f(r)}= f̃n(ki) =
∫ a

0

rf(r)Jn(rki) dr. (13.2.6)
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The inverse finite Hankel transform is then defined by

H −1
n

{
f̃n(ki)

}
= f(r) =

2
a2

∞∑
i=1

f̃n(ki)
Jn(rki)
J2
n+1(aki)

, (13.2.7)

where the summation is taken over all positive roots of Jn(ak) = 0.
The zero-order finite Hankel transform and its inverse are defined by

H0{f(r)}= f̃0(ki) =
∫ a

0

rf(r)J0(rki) dr, (13.2.8)

H −1
0

{
f̃0(ki)

}
= f(r) =

2
a2

∞∑
i=1

f̃0(ki)
J0(rki)
J2

1 (aki)
, (13.2.9)

where the summation is taken over the positive roots of J0(ak) = 0.
Similarly, the first-order finite Hankel transform and its inverse are

H1 {f(r)}= f̃1(ki) =
∫ a

0

rf(r)J1(rki) dr, (13.2.10)

H −1
1

{
f̃1(ki)

}
= f(r) =

2
a2

∞∑
i=1

f̃1(ki)
J1(rki)
J2

2 (aki)
, (13.2.11)

where ki is chosen as a positive root of J1(ak) = 0.

We now give examples of finite Hankel transforms of some functions.

Example 13.2.1
If f(r) = rn, then

Hn {rn}=
∫ a

0

rn+1Jn(rki) dr=
an+1

ki
Jn+1(aki). (13.2.12)

When n= 0,
H0 {1}=

a

ki
J1(aki). (13.2.13)

Example 13.2.2
If f(r) = (a2 − r2), then

H0{(a2 − r2)}=
∫ a

0

r (a2 − r2)J0(aki) dr=
4a
k3
i

J1(aki)− 2a2

k2
i

J0(aki).
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Since ki are the roots of J0(ak) = 0, we find

H0{(a2 − r2)}=
4a
k3
i

J1(aki). (13.2.14)

13.3 Basic Operational Properties

We state the following operational properties of the finite Hankel transforms:

Hn{f ′(r)} =
ki
2n

[(n− 1)Hn+1{f(r)}
−(n+ 1)Hn−1{f(r)}] , n≥ 1, (13.3.1)

provided f(r) is finite at r= 0.
When n= 1, we obtain the finite Hankel transform of derivatives

H1{f ′(r)}=−kiH0{f(r)}=−kif̃0(ki). (13.3.2)

Hn

[
1
r

d

dr
{rf ′(r)} − n2

r2
f(r)

]
=−k2

i f̃n(ki)− akif(a)J ′
n(aki) . (13.3.3)

When n= 0

H0

[
f ′′(r) +

1
r
f ′(r)

]
=−k2

i f̃0(ki) + akif(a)J1(aki). (13.3.4)

If n= 1, (13.3.3) becomes

H1

[
f ′′(r) +

1
r
f ′(r) − 1

r2
f(r)

]
=−k2

i f̃1(ki) − akif(a)J ′
1(aki). (13.3.5)

Results (13.3.4) and (13.3.5) are very useful for finding solutions of differ-
ential equations in cylindrical polar coordinates.

The proofs of the above results are elementary exercises for the reader.

13.4 Applications of Finite Hankel Transforms

Example 13.4.1
(Temperature Distribution in a Long Circular Cylinder). Find the solution of
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the axisymmetric heat conduction equation

∂u

∂t
= κ

(
∂2u

∂r2
+

1
r

∂u

∂r

)
, 0≤ r≤ a, t > 0 (13.4.1)

with the boundary and initial conditions

u(r, t) = f(t) on r= a, t > 0 (13.4.2)
u(r, 0) = 0, 0≤ r≤ a. (13.4.3)

Application of the finite Hankel transform defined by

ũ(ki, t) = H0 {u(r, t)}=
∫ a

0

rJo(rki)u(r, t) dr, (13.4.4)

yields the given system with the boundary condition

ũt + κk2
i ũ = κakiJ1(aki)f(t),

ũ(ki, 0) = 0. (13.4.5ab)

The solution of the first order system is

ũ(ki, t) = κakiJ1(aki)
∫ t

0

f(τ) exp
{−κk2

i (t− τ)
}
dτ. (13.4.6)

The inverse transform gives the formal solution

u(r, t) =
(

2κ
a

) ∞∑
i=1

kiJ0(rki)
J1(aki)

∫ t

0

f(τ) exp
{−κk2

i (t− τ)
}
dτ. (13.4.7)

In particular, if f(t) = T0 = constant,

u(r, t) =
(

2T0

a

) ∞∑
i=1

J0(rki)
kiJ1(aki)

[
1 − exp

(−κk2
i t
)]
. (13.4.8)

Using the inverse version of (13.2.7) gives the final solution

u(r, t)= T0 −
(

2T0

a

) ∞∑
i=1

J0(rki)
kiJ1(aki)

exp
(−κk2

i t
)
. (13.4.9)

This solution representing the temperature distribution consists of the steady-
state term, and the transient term which decays to zero as t→∞. Consequent-
ly, the steady temperature is attained in the limit as t→∞.

Example 13.4.2
(Unsteady Viscous Flow in a Rotating Long Circular Cylinder). The axisym-
metric unsteady motion of a viscous fluid in an infinitely long circular cylinder
of radius a is governed by

ut = ν

(
urr +

1
r
ur − u

r2

)
, 0≤ r≤ a, t > 0, (13.4.10)
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where u= u(r, t) is the tangential fluid velocity and ν is the constant kinematic
viscosity of the fluid.

The cylinder is initially at rest at t= 0, and it is then allowed to rotate with
constant angular velocity Ω. Thus, the boundary and initial conditions are

u(r, t) = aΩ on r= a, t > 0, (13.4.11)
u(r, t) = 0 at t= 0 for 0<r <a. (13.4.12)

We solve the problem by using the joint Laplace and the finite Hankel
transform of order one defined by

˜̄u(ki, s) =
∫ ∞

0

e−stdt
∫ a

0

rJ1(kir)u(r, t) dr, (13.4.13)

where ki are the positive roots of J1(aki) = 0.
Application of the joint transform gives

s ˜̄u(ki, s) =−ν k2
i

˜̄u(ki, s)− νa2Ωki
s

J ′
1(aki).

Or,

˜̄u(ki, s) =−νa
2ΩkiJ ′

1(aki)
s(s+ νk2

i )
. (13.4.14)

The inverse Laplace transform gives

ũ(ki, t) =−a
2Ω
ki

J ′
1(aki)

[
1 − exp

(−νtk2
i

)]
. (13.4.15)

Thus, the final solution is found from (13.4.15) by using the inverse Hankel
transform with J ′

1(aki) =−J2(aki) in the form

u(r, t) = 2Ω
∞∑
i=1

J1(rki)
kiJ2(aki)

[
1 − exp

(−νtk2
i

)]
. (13.4.16)

This solution is the sum of the steady-state and the transient fluid velocities.
In view of (13.2.12) for n= 1, we can write

r= H −1
1

{
a2

ki
J2(aki)

}
= 2

∞∑
i=1

J1(rki)
kiJ2(aki)

. (13.4.17)

This result is used to simplify (13.4.16) so that the final solution for u(r, t)
takes the form

u(r, t) = rΩ − 2Ω
∞∑
i=1

J1(rki)
kiJ2(aki)

exp
(−νtk2

i

)
. (13.4.18)
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In the limit as t→∞, the transient velocity component decays to zero, and
the ultimate steady state flow is attained in the form

u(r, t)= rΩ. (13.4.19)

Physically, this represents the rigid body rotation of the fluid inside the cylin-
der.

Example 13.4.3
(Vibrations of a Circular Membrane). The free symmetric vibration of a thin
circular membrane of radius a is governed by the wave equation

utt = c2
(
urr +

1
r
ur

)
, 0<r <a, t > 0 (13.4.20)

with the initial and boundary data

u(r, t) = f(r),
∂u

∂t
= g(r) at t= 0 for 0<r <a, (13.4.21ab)

u(a, t)= 0 for all t> 0. (13.4.22)

Application of the zero-order finite Hankel transform of u(r, t) defined by
(13.4.4) to (13.4.20)–(13.4.22) gives

d2ũ

dt2
+ c2 k2

i ũ= 0, (13.4.23)

ũ= f̃(ki) and
(
dũ

dt

)
t=0

= g̃(ki). (13.4.24ab)

The solution of this system is

ũ(ki, t) = f̃(ki) cos(ctki) +
g̃(ki)
c ki

sin(ctki). (13.4.25)

The inverse transform yields the formal solution

u(r, t) =
2
a2

∞∑
i=1

f(ki) cos(ctki)
J0(rki)
J2

1 (aki)

+
2
ca2

∞∑
i=1

g(ki) sin(ctki)
J0(rki)
kiJ2

1 (aki)
, (13.4.26)

where the summation is taken over all positive roots of J0(aki) = 0.
We consider a more general form of the finite Hankel transform associated

with a more general boundary condition

f ′(r) + hf(r) = 0 at r= a, (13.4.27)
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where h is a constant.
We define the finite Hankel transform of f(r) by

Hn{f(r)}= f̃n(ki) =
∫ a

0

rJn(rki)f(r)dr, (13.4.28)

where ki are the roots of the equation

kiJ
′
n(aki) + hJn(aki) = 0. (13.4.29)

The corresponding inverse transform is given by

f(r) = H −1
n {f̃n(ki)}= 2

∞∑
i=1

k2
i f̃n(ki)Jn(rki)

{(k2
i + h2)a2 − n2} J2

n(aki)
. (13.4.30)

This finite Hankel transform has the following operational property

Hn

[
1
r

d

dr
{rf ′(r)} − n2

r2
f(r)

]
= − k2

i f̃n(ki)

+ a [f ′(a) + hf(a)]Jn(aki), (13.4.31)

which is, by (13.4.29)

=−k2
i f̃n(ki) −

aki
h

[f ′(a) + hf(a)] J ′
n(aki). (13.4.32)

Thus, result (13.4.32) involves f ′(a) + hf(a) as the boundary condition.

We apply this more general finite Hankel transform pairs (13.4.28) and
(13.4.30) to solve the following axisymmetric initial-boundary value problem.

Example 13.4.4
(Temperature Distribution of Cooling of a Circular Cylinder). Solve the ax-
isymmetric heat conduction problem for an infinitely long circular cylinder
of radius r= a with the initial constant temperature T0, and the cylinder is
cooling by radiation of heat from its boundary surface at r= a to the out-
side medium at zero temperature according to Newton’s law of cooling, which
satisfies the boundary condition

∂u

∂r
+ hu= 0 at r= a, t> 0, (13.4.33)

where h is a constant.
The problem is governed by the axisymmetric heat conduction equation

ut = κ(urr +
1
r
ur), 0≤ r≤ a, t > 0, (13.4.34)
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with the boundary condition (13.4.33) and the initial condition

u(r, 0)=T0 at t= 0, for 0< r< a. (13.4.35)

Application of the zero-order Hankel transform (13.4.28) with (13.4.29) to
the system (13.4.33)–(13.4.35) gives

dũ

dt
+ κ k2

i ũ= 0, t > 0 (13.4.36)

ũ(ki, 0) =T0

∫ a

0

rJ0(rki) dr=
aT0

ki
J1(aki). (13.4.37)

The solution of (13.4.36)–(13.4.37) is

ũ(ki, t) =
(
aT0

ki

)
J1(aki) exp(−κ t k2

i ). (13.4.38)

The inverse transform (13.4.30) with n= 0 and kiJ ′
0(aki) + hJ0(aki) = 0, that

is, kiJ1(aki) = hJ0(aki), leads to the formal solution

u(r, t) =
(

2hT0

a

) ∞∑
i=1

J0(rki) exp(−κtk2
i )

(k2
i + h2)J0(aki)

, (13.4.39)

where the summation is taken over all the positive roots of kiJ1(aki) = hJ0(aki).

13.5 Exercises

1. Find the zero-order finite Hankel transform of

(a) f(r) = r2, (b) f(r) = J0(αr), (c) f(r) = (a2 − r2).

2. Show that

Hn

{
Jn(αr)
Jn(αa)

}
=

aki
(α2 − k2

i )
J ′
n(aki)

3. If Hn{f(r)} is the finite Hankel transform of f(r) defined by (13.2.6),
and if n> 0, show that

(a) Hn{r−1f ′(r)}=
1
2
ki
[
Hn+1{r−1f(r)} −Hn−1{r−1f(r)}] ,

(b) H0{r−1f ′(r)}= ki H1{r−1f(r)} − f(a).
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4. Solve the initial-boundary value problem

c2(urr +
1
r
ur) = utt, 0< r<a, t > 0,

u(r, 0) = 0, ut(r, 0) = u0, for all r, u(a, t) = 0, t > 0,

where u0 is a constant.

5. Obtain a solution of the initial-boundary problem

κ

(
urr +

1
r
ur

)
= ut, 0<r< a, t > 0,

u(r, 0) = f(r), for 0<r <a
u(a, t) = 0.

6. If we define the finite Hankel transform of f(r) by

Hn{f(r)}= f̃n(ki) =
∫ b

a

rf(r)An(r ki)dr, b > a,

where
An(rki) = Jn(rki)Yn(aki)− Yn(rki)Jn(aki),

and Yn(x) is the Bessel function of the second kind of order n, show
that the inverse transform is

H −1
n {f̃n(ki)}= f(r) =

π2

2

∞∑
i=1

k2
i f̃n(ki)An(rki)J2

n(bki)
J2
n(aki)− J2

n(bki)
,

where ki are the positive roots of An(bki) = 0.

7. For the transform defined in problem 6, show that

Hn

[
f ′′(r) +

1
r
f ′(r) − n2f(r)

r2

]
=−k2

i f̃n(ki) +
2
π

[
f(b)

Jn(aki)
Jn(bki)

− f(a)
]
.

8. Viscous fluid of kinematic viscosity ν is bounded between two infinitely
long concentric circular cylinders of radii a and b. The inner cylinder is
stationary and the outer cylinder begins to rotate with uniform angular
velocity Ω at t= 0. The axisymmetric flow is governed by (13.4.10) with
υ(a, 0)= 0 and υ(b, 0)= Ωb. show that

υ(r, t) = (πbΩ)
∞∑
i=1

J1(aki)J1(bki)A1(rki)
[
1− exp(−νtk2

i )
]

J2
1 (aki)− J2

1 (bki)
,

where
A1(rki) = Jn(rki)Yn(aki)− Yn(rki)Jn(aki),

and ki are the positive roots of the equation A1(bki) = 0.
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9. Find the solution of the forced symmetric vibrations of a thin elastic
membrane that satisfy the initial-boundary value problem

urr +
1
r
ur − 1

c2
utt =−p(r, t)

T0
,

where p(r, t) is the applied pressure which produces vibrations, and the
membrane is stretched by a constant tension T0. The membrane is set
into motion from rest in its equilibrium position so that

u(r, t) = 0 =
(
∂u

dt

)
at t= 0.

10. Use the joint Hankel and Laplace transform method to the axisymmetric
diffusion problem in an infinitely long circular cylinder of radius a:

ut = κ

(
urr +

1
r
ur

)
+Q(r, t), 0< r< a, t > 0,

u(a, t) = 0 for t > 0,
u(r, 0) = 0 for 0< r≤ a,

where Q(r, t) represents a heat source inside the cylinder. Find the ex-
plicit solution for two special cases:

(a) Q(r, t) =
κQ0

k
, (b) Q(r, t) =Q0

δ(r)
r

f(t),

where Q0, κ, and k are constants.
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14

Legendre Transforms

“Legendre, who for so many reasons is considered the founder of
elliptic functions, greatly smoothed the way for his successors; it is
the fact of the double periodicity of the inverse function, immedi-
ately discovered by Abel and Jacobi, that is missing and that gave
such a restrained analytical character to his treatise.”

Charles Hermite

“First causes are not known to us, but they are subjected to simple
and constant laws that can be studied by observation and whose
study is the goal of Natural Philosophy. ... Heat penetrates, as
does gravity, all the substances of the universe; its rays occupy all
regions of space. The aim of our work is to expose the mathematical
laws that this element follows. ... The differential equations for the
propagation of heat express the most general conditions and reduce
physical questions to problems in pure Analysis that is properly the
object of the theory.”

Clerk Maxwell

14.1 Introduction

We consider in this chapter the Legendre transform with a Legendre polynomi-
al as kernel and discuss basic operational properties including the Convolution
Theorem. Legendre transforms are then used to solve boundary value prob-
lems in potential theory. This chapter is based on papers by Churchill (1954)
and Churchill and Dolph (1954) listed in the Bibliography.

485
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14.2 Definition of the Legendre Transform
and Examples

Churchill (1954) defined the Legendre transform of a function f(x) defined in
−1<x< 1 by the integral

Tn{f(x)}= f̃(n) =

1∫
−1

Pn(x)f(x)dx, (14.2.1)

provided the integral exists and where Pn(x) is the Legendre polynomial of
degree n (≥ 0). Obviously Tn is a linear integral transformation.

When x= cos θ, (14.2.1) becomes

Tn{f(cos θ)}= f̃(n) =

π∫
0

Pn(cos θ)f(cos θ) sin θdθ. (14.2.2)

The inverse Legendre transform is given by

f(x) = T −1
n {f̃(n)}=

∞∑
n=0

(
2n+ 1

2

)
f̃(n)Pn(x). (14.2.3)

This follows from the expansion of any function f(x) in the form

f(x) =
∞∑
n=0

an Pn(x), (14.2.4)

where the coefficient an can be determined from the orthogonal property of
Pn(x). It turns out that

an =
(

2n+ 1
2

) 1∫
−1

Pn(x)f(x)dx=
(

2n+ 1
2

)
f̃(n), (14.2.5)

and hence, result (14.2.3) follows.

Example 14.2.1

Tn{exp(iαx)}=
(

2π
α

)1/2

in Jn+1/2(α), (14.2.6)

where Jν(x) is the Bessel function.
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We have, by definition,

Tn{exp(iαx)}=

1∫
−1

exp(iαx)Pn(x)dx,

which is, by a result in Copson (1935, p. 341),

=

√
2π
α
in Jn+1/2(α).

Similarly,

Tn{exp(αx)}=

√
2π
α
In+1/2(α), (14.2.7)

where Iν(x) is the modified Bessel function of the first kind.

Example 14.2.2

(a) Tn{(1 − x2)−1/2}= π P 2
n(0) (14.2.8)

(b) Tn

{
1

2(t− x)

}
=Qn(t), |t|> 1, (14.2.9)

where Qn(t) is the Legendre function of the second kind given by

Qn(t) =
1
2

1∫
−1

(t− x)−1Pn(x)dx.

These results are easy to verify with the aid of results given in Copson (1935,
p. 292 and p. 310).

Example 14.2.3

If |r| ≤ 1, then

(a) Tn{(1− 2rx+ r2)−1/2}=
2 rn

(2n+ 1)
, (14.2.10)

(b) Tn{1− 2rx+ r2)−3/2}=
2 rn

(1 − r2)
. (14.2.11)

We have, from the generating function of Pn(x),

(1 − 2rx+ r2)−1/2 =
∞∑
n=0

rnPn(x), |r|< 1.
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Multiplying this result by Pn(x) and using the orthogonality condition of the
Legendre polynomial gives

1∫
−1

(1− 2rx+ r2)−1/2Pn(x)dx=
2 rn

(2n+ 1)
. (14.2.12)

In particular, when r= 1, we obtain

Tn{(1 − x)−1/2}=
2
√

2
(2n+ 1)

. (14.2.13)

Differentiating (14.2.12) with respect to r gives

1
2

1∫
−1

(1− 2rx+ r2)−3/2 (2rx− 2r2)Pn(x)dx=
2nrn

(2n+ 1)
,

so that

−Tn{(1− 2rx+ r2)−1/2} + (1 − r2)Tn{(1 − 2rx+ r2)−3/2}=
2nrn

(2n+ 1)
.

Using (14.2.10), we obtain (14.2.11).

Example 14.2.4
If |r|< 1 and α> 0, then

Tn

⎧⎨⎩
r∫

0

tα−1dt

(1 − 2xt+ t2)1/2

⎫⎬⎭=
2rn+α

(2n+ 1)(n+ α)
. (14.2.14)

We replace r by t in (14.2.10) and multiply the result by tα−1 to obtain

Tn{tα−1(1 − 2xt+ t2)−1/2}=
2 tn+α−1

(2n+ 1)
.

Integrating this result on (0, r) we find (14.2.14).

Example 14.2.5
If H(x) is a Heaviside unit step function, then

Tn{H(x)}=

⎧⎪⎨⎪⎩
1, n= 0

Pn−1(0)− Pn+1(0)
(2n+ 1)

, n≥ 1

⎫⎪⎬⎪⎭ . (14.2.15)
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Obviously,

Tn{H(x)}=

1∫
0

Pn(x)dx= 1 when n= 0.

However, for n> 1, we use the recurrence relation for Pn(x) as

(2n+ 1)Pn(x) =P ′
n+1(x) − P ′

n−1(x) (14.2.16)

to derive

Tn{H(x)} =
1

(2n+ 1)

1∫
0

[P ′
n+1(x) − P ′

n−1(x)]dx

=
1

2n+ 1
[Pn−1(0)− Pn+1(0)].

Debnath and Harrel (1976) introduced the associated Legendre transform
defined by

Tn,m{f(x)}= f̃(n,m) =

1∫
−1

(1 − x2)−m/2Pmn (x) f(x)dx, (14.2.17)

where Pmn (x) is the associated Legendre function of the first kind.
The inverse transform is given by

f(x) = T −1
n,m {f̃(n,m)} =

∞∑
n=0

(2n+ 1)
2

(n−m)!
(n+m)!

×f̃(n,m)(1 − x2)m/2Pmn (x). (14.2.18)

The reader is referred to Debnath and Harrel (1976) for a detailed discussion
of this transform.

14.3 Basic Operational Properties
of Legendre Transforms

THEOREM 14.3.1
If f ′(x) is continuous and f ′′(x) is bounded and integrable in each subinterval
of −1≤ x≤ 1, and if Tn{f(x)} exists and

lim
|x|→1

(1 − x2)f(x) = lim
|x|→1

(1 − x2)f ′(x) = 0, (14.3.1)
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then
Tn{R[f(x)]}=−n(n+ 1)f̃(n), (14.3.2)

where R[f(x)] is a differential form given by

R[f(x)] =
d

dx

[
(1 − x2)

d

dx
f(x)

]
, n> 0. (14.3.3)

PROOF We have, by definition,

Tn{R[f(x)]}=

1∫
−1

d

dx

[
(1 − x2)

d

dx
f(x)

]
Pn(x) dx

which is, by integrating by parts together with (14.3.1),

=−
1∫

−1

(1 − x2)P ′
n(x)

d

dx
f(x) dx.

Integrating this result by parts again, we obtain

Tn{R[f(x)]}=−[(1− x2)]P ′
n(x)f(x)]1−1 +

1∫
−1

d

dx
[(1 − x2)]P ′

n(x)] f(x) dx.

Using (14.3.1) and the differential equation for the Legendre polynomial

d

dx

[
(1 − x2)

dy

dx

]
+ n(n+ 1)y= 0, (14.3.4)

we obtain the desired result

Tn{R[f(x)]}=−n(n+ 1)f̃(n).

We may extend this result to evaluate the Legendre transforms of the dif-
ferential forms R2[f(x)], R3[f(x)], . . . , Rk[f(x)].

Clearly

Tn{R2[f(x)]} = Tn{R[R[f(x)]]}
= −n(n+ 1)Tn{R[f(x)]}=n2(n+ 1)2f̃(n), (14.3.5)

provided f ′(x) and f ′′(x) satisfy the conditions of Theorem 14.3.1.
Similarly,

Tn{R3[f(x)]}= (−1)3n3(n+ 1)3f̃(n). (14.3.6)



© 2007 by Taylor & Francis Group, LLC

Legendre Transforms 491

More generally, for a positive integer k,

Tn{Rk[f(x)]}= (−1)knk(n+ 1)kf̃(n). (14.3.7)

COROLLARY 14.3.1

If Tn{R[f(x)]}=−n(n+ 1)f̃(n), then

Tn

{
1
4
f(x) −R[f(x)]

}
=
(
n+

1
2

)2

f̃(n). (14.3.8)

PROOF We replace n(n+ 1) by
(
n+

1
2

)2

− 1
4

in (14.3.2) to obtain

Tn{R[f(x)]}=−
[(

n+
1
2

)2

− 1
4

]
f̃(n). (14.3.9)

Rearranging the terms in (14.3.9) gives

Tn

{
1
4
f(x) −R[f(x)]

}
=
(
n+

1
2

)2

f̃(n).

In general, this result can be written as

(−1)kTn{Rk[f(x)] − 4−kf(x)}=
k−1∑
r=0

(−1)r
(
k

r

)[
4−r

(
n+

1
2

)2k−2r
]
f̃(n).

(14.3.10)
The proof of (14.3.10) follows from (14.3.7) by replacing n(n+ 1) with(
n+ 1

2

)2 − 1
4 and using the binomial expansion.

Example 14.3.1

Tn{log(1 − x)}=

⎧⎨⎩
2(log 2− 1), n= 0

− 2
n(n+ 1)

, n> 0

⎫⎬⎭ . (14.3.11)

Clearly,

R[log(1 − x)] =
d

dx

[
(1− x2)

d

dx
log(1 − x)

]
=−1.

Although
d

dx
log(1 − x) does not satisfy the conditions of Theorem 14.3.1, we

integrate by parts to obtain
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Tn{R[log(1− x)]} =

1∫
−1

R[log(x)]Pn(x)dx

= [−(1 + x)Pn(x)]1−1 +

1∫
−1

(1 + x)P ′
n(x) dx,

which is, since (1 + x) =−(1 − x2)
d

dx
log(1 − x), and by integrating by parts,

=−2 +

1∫
−1

log(1 − x)
d

dx
[(1 − x2)]P ′

n(x)]dx. (14.3.12)

By integrating by parts twice, result (14.3.12) gives

Tn{R[log(1 − x)]}=−2 +

1∫
−1

d

dx

[
(1 − x2)

d

dx
log(1 − x)

]
Pn(x)dx,

which is, by (14.3.2),

=−2− n(n+ 1) f̃(n), (14.3.13)

where f̃(n) = Tn{log(1 − x)}.
However, R[log(1 − x)] =−1 so that Tn{R[log(1 − x)]}= 0 for all n> 0 and

hence, result (14.3.13) gives

Tn[log(1 − x)] = f̃(n) =− 2
n(n+ 1)

.

On the other hand, since P0(x) = 1, we have

T0{[log(1 − x)]}=

1∫
−1

log(1 − x)dx,

which is, by direct integration,

=−[(1 − x){log(1 − x) − x}]1−1 = 2(log 2 − 1).
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THEOREM 14.3.2
If f(x) and f ′(x) are piecewise continuous in −1<x< 1, R−1[f(x)] = h(x),

and f(0)=
1∫

−1

f(x)dx= 0, then

T −1
n

{
f̃(n)

n(n+ 1)

}
=A−

x∫
0

ds

(1 − s2)

s∫
−1

f(t)dt, (14.3.14)

where A is an arbitrary constant of integration.

PROOF We have
R[h(x)] = f(x)

or,
d

dx

[
(1 − x2)

d

dx
h(x)

]
= f(x).

Integrating over (−1, x) gives
x∫

−1

f(t) dt= (1− x2)
d

dx
h(x), (14.3.15)

which is a continuous function of x in |x|< 1 with limit zero as |x| → 1.
Integration of (14.3.15) gives

h(x) =

x∫
0

ds

(1 − s2)

s∫
−1

f(t)dt−A,

where A is an arbitrary constant. Clearly, h(x) satisfies the conditions of
Theorem 14.3.1, and there exists a positive real constant m< 1 such that

|h(x)|=O{(1 − x2)−m} as |x| → 1.

Hence, Tn{R[h(x)]} exists, and by Theorem 14.3.1, it follows that

Tn{R[h(x)]}=−n(n+ 1)Tn{h(x)}=−n(n+ 1)Tn{R−1[f(x)]}, (14.3.16)

whence it turns out that

Tn{R−1{f(x)}}=− f̃(n)
n(n+ 1)

. (14.3.17)

Inversion leads to the result

T −1
n

{
f(n)

n(n+ 1)

}
= −R−1{f(x)}=−h(x)

= A−
x∫

0

ds

1− s2

s∫
−1

f(t)dt. (14.3.18)
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This proves the theorem.

THEOREM 14.3.3

If f(x) is continuous in each subinterval of (−1, 1) and a continuous function
g(x) is defined by

g(x) =

x∫
−1

f(t)dt, (14.3.19)

then

Tn{g′(x)}= f̃(n) = g(1)−
1∫

−1

g(x)P ′
n(x)dx. (14.3.20)

PROOF We have, by definition,

Tn{g′(x)}=

1∫
−1

g′(x)Pn(x)dx,

which is, by integrating by parts,

= [Pn(x)g(x)]1−1 −
1∫

−1

g(x)P ′
n(x)dx.

Since Pn(1)= 1 and g(−1)= 0, the preceding result becomes (14.3.20).

COROLLARY 14.3.2

If result (14.3.20) is true and g(x) is given by (14.3.19), then

Tn{g(x)}= f(0)− f(1) when n= 0

=
f̃(n− 1)− f̃(n+ 1)

(2n+ 1)
when n> 1

⎫⎪⎬⎪⎭ . (14.3.21)

PROOF We write f̃(n− 1) and f̃(n+ 1) using (14.3.20) and then subtract
so that the resulting expression gives (14.3.21) with the help of (14.2.16).

COROLLARY 14.3.3

If g′(x) is a sectionally continuous function and g(x) is the continuous function
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given by (14.3.19), then

Tn{g′(x)} = g(1), when n= 0

= g(1) − (2n− 1) g̃(n− 1)− (2n− 5) g̃(n− 3)− · · · − g(0)

when n= 1, 3, 5, . . .

= g(1) − 2(2n− 1)g̃(n− 1)− (2n− 5)g̃(n− 3)− · · · − 3g(1)

when n= 2, 4, 6, . . .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

(14.3.22)

These results can readily be verified using (14.3.20) and (14.2.16).

THEOREM 14.3.4

(Convolution). If Tn{f(x)}= f̃(n) and Tn {g(x)}= g̃(n), then

Tn{f(x)} ∗ g(x) = f̃(n)g̃(n), (14.3.23)

where the convolution f(x) ∗ g(x) is given by

f(x) ∗ g(x) = h(x) =
1
π

π∫
0

f(cosμ) sinμdμ

π∫
0

g(cosλ)dβ, (14.3.24)

with

x= cos v and cosλ= cosμ cos v + sinμ sin v cosβ. (14.3.25)

PROOF We have, by definition (14.2.2),

f̃(n)g̃(n) =

π∫
0

f(cosμ)Pn(cosμ) sinμdμ

π∫
0

g(cos λ)Pn(cosλ) sinλdλ

=

π∫
0

f(cosμ) sinμ

⎡⎣ π∫
0

g(cosλ)Pn(cosλ)Pn(cosμ) sinλdλ

⎤⎦dμ, (14.3.26)

where f(x) = f(cosμ) and g(x) = g(cosλ).
With the aid of an addition formula (see Sansone, 1959, p. 169) given as

Pn(cos λ)Pn(cos μ) =
1
π

π∫
0

Pn(cos v) dα, (14.3.27)
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where cos v= cosλ cosμ+ sinλ sinμ cosα, the product can be rewritten in the
form

f̃(n) g̃(n) =
1
π

π∫
0

f(cosμ) sinμ

×
⎡⎣ π∫

0

π∫
0

g(cosμ)Pn(cosμ) sinλ dα dλ

⎤⎦dμ. (14.3.28)

We next use Churchill and Dolph’s (1954, pp. 94–96) geometrical arguments
to replace the double integral inside the square bracket by

π∫
0

π∫
0

g(cosμ cos v + sinμ sin v cosβ)Pn(cos v) sin v dv. (14.3.29)

Substituting this result in (14.3.26) and changing the order of integration,
we obtain

f̃(n) g̃(n) =
1
π

π∫
0

Pn(cos v) sin v

⎡⎣ π∫
0

π∫
0

f(cosμ) sinμ g(cosλ)dμ dβ

⎤⎦dv
=

π∫
0

h(cos v)Pn(cos v) sin v dv, (14.3.30)

where
cosλ= cosμ cos v + sinμ sin v cosβ, (14.3.31)

and

h(cos v) =
1
π

π∫
0

f(cosμ) sinμ dμ

π∫
0

g(cosλ) dβ.

This proves the theorem.
In particular, when v= 0, result (14.3.24) becomes

h(1)=

1∫
−1

f(t)g(−t)dt, (14.3.32)

and when v= π, (14.3.24) gives

h(−1) =

1∫
−1

f(t)g(−t)dt. (14.3.33)
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14.4 Applications of Legendre Transforms
to Boundary Value Problems

We solve the Dirichlet problem for the potential u(r, θ) inside a unit sphere
r= 1, which satisfies the Laplace equation

∂

∂r

[
r2
∂u

∂r

]
+

∂

∂x

[
(1 − x2)

∂u

∂x

]
= 0, 0<r< 1, (14.4.1)

with the boundary condition (x= cos θ)

u(1, x)= f(x), −1<x< 1. (14.4.2)

We introduce the Legendre transform ũ(r, n) = Tn{u(r, θ)} defined by (14.2.1).
Application of this transform to (14.4.1)–(14.4.2) gives

r2
d2ũ(r, n)
dr2

+ 2r
dũ

dr
− n(n+ 1)ũ(r, n) = 0, (14.4.3)

ũ(1, n)= f̃(n), (14.4.4)

where ũ(r, n) is to be continuous function for r for 0≤ r < 1.
The bounded solution of (14.4.3)–(14.4.4) is

ũ(r, n) = f̃(n) rn, 0≤ r < 1, for n= 0, 1, 2, 3, . . . (14.4.5)

Thus, the solution for u(r, x) can be found by the inverse transform so that

u(r, x) =
∞∑
n=0

(
n+

1
2

)
f̃(n) rnPn(x) for 0<r≤ 1, |x|< 1. (14.4.6)

The Convolution Theorem allows us to give another representation of the
solutiuon. In view of (14.2.11), we find

T −1
n {rn}=

1
2
(1− r2)(1 − 2rx+ r2)−3/2.

Thus, it follows from (14.4.5) that

u(r, cos θ) = T −1
n {f̃(n) rn}

=
1
2π

π∫
0

f(cosμ) sinμdμ

π∫
0

(1− r2)dλ
(1 − 2r cos v + r2)3/2

, (14.4.7)

where
cos v= cosμ cos θ+ sinμ sin θ cosλ. (14.4.8)
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Integral (14.4.7) is called the Poisson integral formula for the potential
inside the unit sphere for the Dirichlet problem.

On the other hand, for the Dirichlet exterior problem, the potential w(r, cos θ)
outside the unit sphere (r > 1) can be obtained with the boundary condition
w(1, cos θ) = f(cos θ). The solution of the Legendre transformed problem is

w̃(r, n) =
1
r
f̃(n) r−n, n= 0, 1, 2, . . . , (14.4.9)

which is, in terms of w,

w(r, cos θ) =
1
r
w

(
1
r
, cos θ

)
, r > 1 (14.4.10)

=
1
2π

π∫
0

f(cosμ) sinμ dμ

π∫
0

(r2 − 1)dλ
(1 − 2r cos v + r2)3/2

, (14.4.11)

where cos v is given by (14.4.8).

14.5 Exercises

1. Show that, if |r|< 1,

(a) Tn{xn}=
2n+1(n!)2

(2n+ 1)!
.

(b) Tn

[
log

{
r− x+ (1 − 2rx+ r2)1/2

1− x

}]
=

2 rn+1

(n+ 1)(2n+ 1)
.

(c) Tn

[{
2 r(1 − rx+ r2)−1/2

}
− log

{
r − x+ (1 − 2rx+ r2)1/2

1 − x

}]
=

2rn+1

(n+ 1)
.

(d) Tn

[
− log

1
2
{1− rx+ (1 − 2rx+ r2)1/2}

]
=

⎧⎨⎩
0, n= 0

2 rn

n(2n+ 1)
, n> 0

⎫⎬⎭ .

(e) Tn

[
(1 − 2rx+ r2)−

1
2 − 1

2
log

{
1 − rx+ (1 − 2rx+ r2)1/2

2

}]
=
rn

n
.

2. Using the recurrence relation for the Legendre polynomials, show that

Tn[x f(x)] = (2n+ 1)−1[(n+ 1)f̃(n+ 1) + n f̃(n− 1)].

Hence, find Tn{x2 f(x)}.
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3. Use the definition of the even Legendre-transform pairs (Tranter, 1966)

T2n{f(x)}= f̃(2n)=

1∫
0

f(x)P2n(x) dx, n= 0, 1, 2, . . .

f(x) = T −1
2n {f̃(2n)}=

∞∑
n=0

(4n+ 1)f̃(2n)P2n(x), 0<x< 1,

to show that

T2n

[
d

dx
{(1 − x2)f ′(x)}

]
=−2n(2n+ 1)f̃(2n)− f ′(0)P2n(0).

Hence, deduce

T2n{x}=− P2n(0)
(2n− 1)(2n+ 2)

.

4. Use the definition of the odd Legendre-transform pairs (Tranter, 1966)

T2n+1 = f̃(2n+ 1)=

1∫
0

P2n+1(x)f(x)dx, n= 0, 1, 2, . . . .

f(x) = T −1
2n+1{f̃(2n+ 1)}=

∞∑
n=0

(4n+ 3)P2n+1(x)f̃ (2n+ 1),

to prove the result

T2n+1

[
d

dx
{(1 − x2)f ′(x)}

]
=−(2n+ 1)(2n+ 2)f̃(2n+ 1)

+f(0)P ′
2n+1(0).

Hence, derive

T2n+1{1}=
P ′

2n+1(0)
(2n+ 1)(2n+ 2)

.

5. From the definition of the even Legendre transform, show that

T2n{x2r}=
22n(2r)!(r + n)!

(2r + 2n+ 1)!(r − n)!
.

6. Show that the Legendre transform solution of the Dirichlet boundary
value problem for u(r, θ)

urr +
1
r
ur + (1 − x2)uxx − 2xux = 0, 0≤ r≤ a, 0≤ θ≤ π

u(a, θ) = f(x), 0≤ θ≤ π,
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where x= cos θ, is
ũ(r, n) =

( r
a

)n
f̃(n).

Obtain the solution for u(r, θ) with the help of (14.2.11) and the Con-
volution Theorem 14.3.4.

7. Solve the problem of the electrified disk for the potential u(ξ, η) which
satisfies the equation (see Tranter, 1966, p. 99)

∂

∂ξ

[
(1 − ξ2)

∂u

∂ξ

]
+
∂

∂η

[
(1 − η2)

∂u

∂η

]
= 0,

and the boundary data

u(ξ, η) = 0 on η= 0, and
∂u

∂ξ
= 0 on ξ= 0,

where (ξ, η) are the oblate spheroidal corrdinates related to the cylin-
drical polar coordinates (r, z) by r= (1 − ξ2)1/2(1 − η2)1/2 and z= ξη.
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15

Jacobi and Gegenbauer Transforms

“The real end of science is the honor of the human mind.”
Carl Jacobi

“... Jacobi possessed not only the impulse to acquire pure scientific
knowledge, but also the desire to impart it. ...”

Felix Klein

15.1 Introduction

This chapter deals with Jacobi and Gegenbauer transforms and their basic op-
erational properties. The former is a fairly general finite integral transform in
the sense that both Gegenbauer and Legendre transforms follow as special cas-
es of the Jacobi transform. Some applications of both Jacobi and Gegenbauer
transforms are discussed. This chapter is based on papers by Debnath (1963,
1967), Scott (1953), Conte (1955), and Lakshmanarao (1954). In Chapters
12–15, we discussed several special transforms with orthogonal polynomials
as kernels. All these special transforms have been unified by Eringen (1954)
in his paper on the finite Sturm-Liouville transform.

15.2 Definition of the Jacobi Transform and Examples

Debnath (1963) introduced the Jacobi transform of a function F (x) defined
in −1<x< 1 by the integral

J{F (x)}= f (α,β)(n) =

1∫
−1

(1 − x)α(1 + x)βP (α,β)
n (x)F (x) dx, (15.2.1)

where P (α,β)
n (x) is the Jacobi polynomial of degree n and orders α(>−1) and

β(>−1).

501
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We assume that F (x) admits the following series expansion

F (x) =
∞∑
n=1

an P
(α,β)
n (x). (15.2.2)

In view of the orthogonal relation

1∫
−1

(1 − x)α(1 + x)β P (α,β)
n (x) P (α,β)

m (x) dx= δn δmn, (15.2.3)

where δnm is the Kronecker delta symbol,

δn =
2α+β+1Γ(n+ α+ 1)Γ(n+ β + 1)

n!(α+ β + 2n+ 1)Γ(n+ α+ β + 1)
, (15.2.4)

and the coefficients an in (15.2.2) are given by

an =
1
δn

1∫
−1

(1 − x)α(1 + x)βF (x)P (α,β)
n (x)dx=

f (α,β)(n)
δn

. (15.2.5)

Thus, the inverse Jacobi transform is given by

J−1{f (α,β)(n)}=F (x) =
∞∑
n=0

(δn)−1 f (α,β)(n)P (α,β)
n (x). (15.2.6)

Note that both J and J−1 are linear transformations.

Example 15.2.1
If F (x) is a polynomial of degree m<n, then

J{F (x)}= 0. (15.2.7)

Example 15.2.2
J{P (α,β)

m (x)}= δmn. (15.2.8)

Example 15.2.3
From the uniformly convergent expansion of the generating function for |z|< 1

2α+βQ−1(1 − z +Q)−α(1 + z +Q)−β =
∞∑
n=0

znP (α,β)
n (x), (15.2.9)
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where Q=
(
1 − 2xz + z2

) 1
2 , it turns out that

J{2α+βQ−1(1 − z +Q)−α(1 + z +Q)−β}

=
∞∑
n=0

zn
1∫

−1

(1 − x)α(1 + x)βP (α,β)
n (x)P (α,β)

n (x)dx

=
∞∑
n=0

(δn)zn. (15.2.10)

Example 15.2.4

J{xn} =

1∫
−1

(1 − x)α(1 + x)βP (α,β)
n (x)xndx

= 2n+α+β+1 Γ(n+ α+ 1)Γ(n+ β + 1)
Γ(n+ α+ β + 1)

. (15.2.11)

Example 15.2.5

If p>β − 1, then

J{(1 + x)p−β}=

1∫
−1

(1 − x)α(1 + x)pP (α,β)
n (x)dx

=
(
n+ α

n

)
2α+p+1 Γ(p+ 1)Γ(α+ 1)Γ(p− β + 1)

Γ(α+ p+ n+ 2)Γ(p− β + n+ 1)
. (15.2.12)

In particular, when α= β= 0, the above results reduce to the corresponding
results for the Legendre transform defined by (14.2.1) so that

Tn{(1 + x)p} =

1∫
−1

(1 + x)pPn(x)dx

=
2p+1{Γ(1 + p)}2

Γ(p+ n+ 2)Γ(p+ n+ 1)
, (p>−1). (15.2.13)
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Example 15.2.6
If Re σ >−1, then

J{(1− x)σ−α} =

1∫
−1

(1 − x)σ(1 + x)βP (α,β)
n (x)dx, Re σ >−1,

=
2σ+β+1

n! Γ(α− σ)
· Γ(σ + 1)Γ(n+ β + 1)Γ(α− σ + n)

Γ(β + σ + n+ 2)
, (15.2.14)

Example 15.2.7
If Re σ >−1, then

J{(1 + x)σ−βP (α,σ)
m (x)} =

1∫
−1

(1 − x)α(1 + x)σP (α,β)
n (x)P (α,σ)

m (x)dx

=
2α+σ+1Γ(n+ α+ 1)Γ(α+ β +m+ n+ 1)Γ(σ +m+ 1)
m! (n−m)! Γ(α+ β + n+ 1)Γ(α+ σ +m+ n+ 2)

× Γ(σ − β + 1)
Γ(α− β +m+ 1)

. (15.2.15)

15.3 Basic Operational Properties

THEOREM 15.3.1
If J{F (x)}= f (α,β)(n),

lim
|x|→1

(1 − x)α+1(1 + x)β+1F (x) = 0, (15.3.1a)

lim
|x|→1

(1 − x)α+1(1 + x)β+1F ′(x) = 0, (15.3.1b)

R[F (x)] = (1 − x)−α(1 + x)−β
d

dx

[
(1 − x)α+1(1 + x)β+1 d

dx
F (x)

]
, (15.3.2)

then J{R[F (x)]} exists and is given by

J{R[F (x)]}=−n(n+ α+ β + 1)f (α,β)(n), (15.3.3)

where n= 0, 1, 2, 3, . . . .
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PROOF We have, by definition,

J{R[F (x)]}=

1∫
−1

d

dx

[
(1 − x)α+1(1 + x)β+1 dF

dx

]
P (α,β)
n (x)dx,

which is, by integrating by parts and using the orthogonal relation (15.2.3),

= −n(n+ α+ β + 1)

1∫
−1

(1 − x)α(1 + x)βP (α,β)
n (x)F (x)dx

= −n(n+ α+ β + 1)f (α,β)(n).

This completes the proof.
If F (x) and R[F (x)] satisfy the conditions of Theorem 15.3.1, then

J{[R[F (x)]]} exists and is given by

J{R2[F (x)]}= J{R[R[F (x)]]}= (−1)2n2(n+ α+ β + 1)2f (α,β)(n). (15.3.4)

More generally, if F (x) and Rk[F (x)] satisfy the conditions of Theorem 15.3.1,
where k= 1, 2, · · · ,m− 1, and m is a positive integer then

J{Rm[F (x)]}= (−1)mnm(n+ α+ β + 1)mf (α,β)(n). (15.3.5)

When α= β= 0, P (0,0)
n (x) becomes the Legendre polynomial Pn(x) and the

Jacobi transform pairs (15.2.1) and (15.2.5) reduce to the Legendre transform
pairs (14.2.1) and (14.2.3). All results for the Jacobi transform also reduce to
those given in Chapter 14.

15.4 Applications of Jacobi Transforms to the
Generalized Heat Conduction Problem

The one-dimensional generalized heat equation for temperature u(x, t) is

∂

∂x

[
κ
∂u

∂x

]
+Q(x, t) = ρ c

∂u

∂t
, (15.4.1)

where κ is the thermal conductivity, Q(x, t) is a continuous heat source within
the medium, ρ and c are density and specific heat respectively. If the thermal
conductivity is κ= a(1 − x2), where a is a real constant, and the source is
Q(x, t) = (μx+ ν)∂u∂x , then the heat equation (15.4.1) reduces to

∂

∂x

[
(1 − x2)

∂u

∂x

]
+
(
μx+ ν

a

)
∂u

∂x
=
(ρ c
a

) ∂u
∂t
. (15.4.2)
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We consider a non-homogeneous beam with ends at x=±1 whose lateral
surface is insulated. Since κ= 0 at the ends, the ends of the beam are also
insulated. We assume the initial conditions as

u(x, 0) =G(x) for all − 1<x< 1, (15.4.3)

where G(x) is a suitable function so that J{G(x)} exists.

If we write
μ

a
=−(α+ β) and

ν

a
= β − α so that (α, β) =−

(
μ+ ν

2a
,
μ− ν

2a

)
,

the left-hand side of (15.4.2) becomes

∂

∂x

[
(1 − x2)

∂u

∂x

]
+ [(β − α) − (β + α)x]

∂u

∂x

=
∂

∂x

[
(1 − x2)

∂u

∂x

]
+ [(1 − x)β − (1 + x)α]

∂u

∂x

= (1 − x)−α(1 + x)−β
{

(1− x)α(1 + x)β
∂

∂x

[
(1 − x2)

∂u

∂x

]
+
[
β(1 + x)β(1 − x)α+1 − α(1 − x)α(1 + x)β+1

] ∂u
∂x

}
= (1 − x)−α(1 + x)−β

{
∂

∂x

[
(1 − x)α+1(1 + x)β+1 ∂u

∂x

]}
=R[u(x, t)].

Thus, equation (15.4.2) reduces to

R[u(x, t)] =
(

1
d

)
∂u

∂t
, d=

(
a

ρc

)
. (15.4.4)

Application of the Jacobi transform to (15.4.4) and (15.4.3) gives

d

dt
u(α,β)(n, t) = −dn(n+ α+ β + 1)u(α,β)(n, t), (15.4.5)

u(α,β)(n, 0) = g(α,β)(n). (15.4.6)

The solution of this system is

u(α,β)(n, t) = g(α,β)(n) exp[−n(n+ α+ β + 1)td]. (15.4.7)

The inverse Jacobi transform gives the formal solution

u(x, t) =
∞∑
n=0

δ−1
n g(α,β)(n)P (α,β)

n (x) exp[−n(n+ α+ β + 1)td], (15.4.8)

where α=− 1
2a

(μ+ ν) and β =
1
2a

(μ− ν).
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15.5 The Gegenbauer Transform and Its Basic
Operational Properties

When α= β= ν − 1
2
, the Jacobi polynomial P (α,β)

n (x) becomes the Gegenbauer

polynomial Cνn(x) which satisfies the self-adjoint differential form

d

dx

[
(1 − x2)ν+

1
2
dy

dx

]
+ n(n+ 2ν)(1 − x2)ν−1 y= 0, (15.5.1)

and the orthogonal relation

1∫
−1

(1 − x2)ν−
1
2 Cνm(x)Cνn(x) dx= δnδmn, (15.5.2)

where

δn =
21−2νπΓ(n+ 2ν)
n! (n+ ν)[Γ(ν)]2

. (15.5.3)

Thus, when α= β= ν − 1
2
, the Jacobi transform pairs (15.2.1) and (15.2.6)

reduce to the Gegenbauer transform pairs, in the form

G{F (x)} = f (ν)(n) =

1∫
−1

(1 − x2)ν−
1
2 Cνn(x)F (x)dx, (15.5.4)

G−1{f (ν)(n)} = F (x) =
∞∑
n=0

δ−1
n Cνn(x)f (ν)(n), −1<x< 1. (15.5.5)

Obviously,G andG−1 stand for the Gegenbauer transformation and its inverse
respectively. They are linear integral transformations.

When α= β= ν − 1
2
, the differential form (15.3.2) becomes

R[F (x)] = (1 − x2)
d2F

dx2
− (2ν + 1)x

dF

dx
, (15.5.6)

which can be expressed as

R[F (x)] = (1− x2)
1
2−ν d

dx

[
(1 − x2)ν+

1
2
dF

dx

]
. (15.5.7)

Under the Gegenbauer transformation G, the differential form (15.5.6) is
reduced to the algebraic form

G{R[F (x)]}=−n(n+ 2ν)f (ν)(n). (15.5.8)
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This follows directly from the relation (15.3.3).
Similarly, we obtain

G{R2[F (x)]}= (−1)2n2(n+ 2ν)2f (ν)(n). (15.5.9)

More generally,

G{Rk[F (x)]}= (−1)knk(n+ 2ν)kf (ν)(n), (15.5.10)

where k= 1, 2, . . . .
Convolution Theorem 15.5.1 If G{F (x)}= f (ν)(n) and G{G(x)}=

g(ν)(n), then
f (ν)(n)g(ν)(n) =G{H(x)}= h(ν)(n), (15.5.11)

where

H(x) =G−1{h(ν)(n)}=G−1{f (ν)(n)g(ν)(n)}=F (x) ∗G(x), (15.5.12)

and H(x) is given by

H(cosψ) =A(sinψ)1−2ν

π∫
0

π∫
0

F (cos θ)G(cosφ)(sin θ)2ν

×(sinφ)2ν−1(sinλ)2ν−1dθ dα, (15.5.13)

where α is defined by (15.5.19).

PROOF We have, by definition,

f (ν)(n) g(ν)(n) =

1∫
−1

F (x)(1 − x2)v−
1
2Cνn(x) dx

×
1∫

−1

G(x)(1 − x2)ν−
1
2Cνn(x) dx

=

π∫
0

F (cos θ)(sin θ)2νCνn(cos θ) dθ

×
π∫

0

G(cosφ)(sinφ)2νCνn(cosφ) dφ

=

π∫
0

F (cos θ)(sin θ)2ν [

π∫
0

G(cosφ)Cνn(cos θ)

×Cνn(cosφ)(sinφ)2νdφ] dθ. (15.5.14)
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The addition formula for the Gegenbauer polynomial (see Erdélyi, 1953, p.
177) is

Cνn(cos θ)Cνn(cosφ) =A

π∫
0

Cνn(cosψ)(sinλ)2ν−1 dλ, (15.5.15)

where
A= {Γ(n+ 2ν)/n! 22ν−1 Γ2(ν)}, (15.5.16)

and
cosψ= cos θ cosφ+ sin θ sinφ cosλ. (15.5.17)

In view of this formula, result (15.5.14) assumes the form

f (ν)(n)g(ν)(n)

=A

π∫
0

F (cos θ)(sin θ)2ν [

π∫
0

π∫
0

G(cos φ)Cνn(cos ψ)

×(sinφ)2ν(sinλ)2ν−1dλ dφ] dθ. (15.5.18)

We next introduce a new variable α defined by the relation

cosφ= cos θ cosψ + sin θ sinψ cosα. (15.5.19)

Thus, under transformation of coordinates defined by (15.5.17) and (15.5.19),
the elementary area dλ dφ= (sinψ/ sinφ)dψ dα, where (sinψ/ sinφ) is the
Jacobian of the transformation. In view of this transformation, the square
region of the φ-λ plane given by (0≤φ≤ π, 0≤λ≤ π) transforms into a square
region of the same dimension in the ψ-α plane. Consequently, the double
integral inside the square bracket in (15.5.18) reduces to

π∫
0

π∫
0

G(cosφ)Cνn(cosψ)(sinφ)2ν−1(sinλ)2ν−1 sinψ dψ dα, (15.5.20)

where cosψ is defined by (15.5.17) and cosφ is defined by (15.5.19). If the
double integral (15.5.20) is substituted into (15.5.18), and if the order of in-
tegration is interchanged, (15.5.18) becomes

f (ν)(n)g(ν)(n) =

π∫
0

(sinψ)2νC ν
n (cosψ)H(cosψ) dψ=G{H(cosψ)}, (15.5.21)

where

H(cosψ) =A(sinψ)1−2ν

π∫
0

π∫
0

F (cos θ)G(cosφ)(sin θ)2ν

×(sinφ)2ν−1(sinλ)2ν−1 dθ dα. (15.5.22)
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When ν = 1
2 , C

1
2
n (x) becomes the Legendre polynomial, the Gegenbauer trans-

form pairs (15.5.4) and (15.5.5) reduce to the Legendre transform pairs (14.2.1)
and (14.2.3), and the Convolution Theorem 15.5.1 reduces to the correspond-
ing Convolution Theorem 14.3.4 for the Legendre transform.

15.6 Application of the Gegenbauer Transform

The generalized one-dimensional heat equation in a non-homogeneous solid
beam for the temperature u(x, t) is

∂

∂x

[
(1 − x2)

∂u

∂x

]
− (2ν + 1) x

∂u

∂x
=

1
d

∂u

∂t
, (15.6.1)

where κ= (1 − x2) is the thermal conductivity, d=
(
a

ρc

)
, and the second

term on the left hand side represents the continuous source of heat within the
solid beam. We assume that the beam is bounded by the planes at x=±1
and its lateral surfaces are insulated. The initial condition is

u(x, 0)=G(x) for −1<x< 1, (15.6.2)

where G(x) is a given function so that its Gegenbauer transform exists.
Application of the Gegenbauer transform to (15.6.1) and (15.6.2) and the

use of (15.5.8) gives

d

dt
u(ν)(n, t) =−dn(n+ 2ν)u(ν)(n, t), (15.6.3)

u(ν)(n, 0) = g(ν)(n). (15.6.4)

This solution of this system is

u(ν)(n, t) = g(ν)(n) exp[−n(n+ 2ν)td]. (15.6.5)

The inverse transform gives the formal solution

u(x, t) =
∞∑
n=0

δ−1
n Cνn(x) g(ν)(n) exp[−n(n+ 2ν)td], (15.6.6)

where δn is given by (15.5.3).
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16

Laguerre Transforms

“The search for truth is more precious than its possession.”
Albert Einstein

“Nature is an infinite sphere of which the center is everywhere and
the circumference nowhere.”

Blaise Pascal

“Mathematics is the tool specially suited for dealing with abstract
concepts of any kind and there is no limit to its power in this field.”

Paul A. M. Dirac

16.1 Introduction

This chapter is devoted to the study of the Laguerre transform and its basic
operational properties. It is shown that the Laguerre transform can be used
effectively to solve the heat conduction problem in a semi-infinite medium
with variable thermal conductivity in the presence of a heat source within the
medium. This chapter is based on a series of papers by Debnath (1960–1962)
and McCully (1960) listed in the Bibliography.

16.2 Definition of the Laguerre Transform
and Examples

Debnath (1960) introduced the Laguerre transform of a function f(x) defined
in 0≤ x<∞ by means of the integral

L{f(x)}= f̃α(n) =

∞∫
0

e−x xαLαn(x)f(x) dx, (16.2.1)

511
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where Lαn(x) is the Laguerre polynomial of degree n(≥ 0) and order α(>−1),
which satisfies the ordinary differential equation expressed in the self-adjoint
form

d

dx

[
e−x xα+1 d

dx
Lαn(x)

]
+ ne−x xα Lαn(x) = 0. (16.2.2)

In view of the orthogonal property of the Laguerre polynomials

∞∫
0

e−x xα Lαn(x)Lαm(x) dx=
(
n+ α
n

)
Γ(α+ 1)δmn = δn δnm, (16.2.3)

where δmn is the Kronecker delta symbol, and δn is given by

δn =
(
n+ α
n

)
Γ(α+ 1). (16.2.4)

The inverse Laguerre transform is given by

f(x) =L−1{f̃α(n)}=
∞∑
n=0

(δn)−1f̃α(n)Lαn(x). (16.2.5)

When α= 0, the Laguerre transform pairs due to McCully (1960) follow from
(16.2.1) and (16.2.5) in the form

L{f(x)}= f̃0(n) =

∞∫
0

e−x Ln(x)f(x) dx, (16.2.6)

L−1{f̃0(n)}= f(x) =
∞∑
n=0

f̃0(n)Ln(x), (16.2.7)

where Ln(x) is the Laguerre polynomial of degree n and order zero.
Obviously, L and L−1 are linear integral transformations. The following

examples (Debnath, 1960) illustrate the Laguerre transform of some simple
functions.

Example 16.2.1

If f(x) =Lαm(x) then L{Lαm(x)}= δn δnm. (16.2.8)

This follows directly from the definitions, (16.2.1) and (16.2.3).

Example 16.2.2
If f(x) = xs−1 where s is a positive real number, then

L{xs−1}=

∞∫
0

e−x xα+s−1 Lαn(x) dx=
Γ(s+ α)Γ(n− s+ 1)

n! Γ(1 − s)
, (16.2.9)
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in which a result due to Howell (1938) is used.

Example 16.2.3
If a>−1, and f(x) = e−ax, then

L{e−ax} =

∞∫
0

e−x(1+a)xαLαn(x) dx=
Γ(n+ α+ 1)an

n! (a+ 1)n+α+1
, (16.2.10)

where result in Erdélyi et al. (1954, vol. 2, p 191) is used.

Example 16.2.4
If f(x) = e−axLαm(x), then

L{e−axLαm(x)}=

∞∫
0

e−x(a+1)xαLαn(x)Lαm(x) dx,

which is, due to Howell (1938),

=
1

n!m!
Γ(n+ α+ 1)Γ(m+ α+ 1)

Γ(1 + α)
· (a− 1)n−m+α+1

an+m+2α+2

× 2F1

(
n+ α+ 1,

m+ a+ 1
a+ 1

,
1
a2

)
, (16.2.11)

where 2F1(x, α, β) is the hypergeometric function.

Example 16.2.5

L{f(x)xβ−α}=

∞∫
0

e−x xβ Lαn(x)f(x) dx.

We use a result from Erdélyi (1953, vol. 2, p. 192) as

Lαn(x) =
n∑

m=0

(m!)−1(α− β)m L
β
n−m(x) (16.2.12)

to obtain the following result:

L{f(x)xβ−α}=
n∑

m=0

(m!)−1(α− β)m f̃β(n−m). (16.2.13)

In particular, when β =α− 1, we obtain

L

{
f(x)
x

}
=

n∑
m=0

(m!)−1 f̃α−1(n−m).



© 2007 by Taylor & Francis Group, LLC

514 INTEGRAL TRANSFORMS and THEIR APPLICATIONS

Example 16.2.6

L{exx−αΓ(α, x)}=
∞∑
n=0

δn
(n+ 1)

, −1<α< 0. (16.2.14)

We use a result from Erdélyi (1953, vol. 2, p. 215) as

exx−α Γ(α, x) =
∞∑
n=0

(n+ 1)−1Lαn(x), (α>−1, x> 0),

in the definition (16.2.1) to derive (16.2.14).

Example 16.2.7
If β > 0, then

L{xβ}= Γ(α+ β + 1)
∞∑
n=0

(−β)n δn
Γ(n+ α+ 1)

. (16.2.15)

Using the result from Erdélyi (1953, vol. 2, p. 214)

xβ = Γ(α+ β + 1)
∞∑
n=0

(−β)n
Γ(n+ α+ 1)

Lαn(x),

where

−β < 1 + min
(
α,
α

2
− 1

4

)
, x> 0, α>−1,

we can easily obtain (16.2.15).

Example 16.2.8
If |z|< 1 and α≥ 0, then

(a) L

{
(1 − z)−(α+1) exp

(
xz

z − 1

)}
=

∞∑
n=0

δn z
n, (16.2.16)

(b) L
{
(xz)−

α
2 ezJα

[
2(xz)

1
2

]}
=

∞∑
n=0

δnz
n

Γ(n+ α+ 1)
. (16.2.17)

We have the following generating functions (Erdélyi, 1953, vol. 2, p. 189)

(1− z)−(α+1) exp
(

xz

z − 1

)
=

∞∑
n=0

Lαn(x)zn, |z|< 1,

(xz)−α/2 ezJα[2
√
xz] =

∞∑
n=0

znLαn(x)
Γ(n+ α+ 1)

, |z|< 1.

In view of these results combined with the orthogonality relation (16.2.3),
we obtain (16.2.16) and (16.2.17).
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Example 16.2.9

(Recurrence Relations).

(a) f̃α+1(n) = (n+ α+ 1)f̃α(n)− (n+ 1)f̃α(n+ 1), (16.2.18)

(b) n! f̃m−n(n) = (−1)n−mm!
m∑
k=0

(k!)−1(2n− 2m)k f̃m−n(m− k).(16.2.19)

We have

f̃α+1(n) =

∞∫
0

e−x xα+1 Lα+1
n (x)f(x) dx,

which is, by using the recurrence relation for the Laguerre polynomial,

=

∞∫
0

e−xxα[(n+ α+ 1)Lαn(x) − (n+ 1)Lαn+1(x)]f(x) dx

= (n+ α+ 1) f̃α(n)− (n+ 1) f̃α(n+ 1).

Similarly, we find

n! f̃m−n(n) =

∞∫
0

e−xxm−nn!Lm−n
n (x)f(x) dx.

We next use the following result due to Howell (1938)

n!Lm−n
n (x) = (−1)n−mm!Ln−mm (x)

to obtain

n! f̃m−n(n) = (−1)n−mm!

∞∫
0

e−xxm−nLn−mm (x)f(x) dx

= (−1)n−mm!
m∑
k=0

(k!)−1(2n− 2m)k f̃m−n(m− k).
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16.3 Basic Operational Properties

We obtain the Laguerre transform of derivatives of f(x) as

L{f ′(x)}= f̃α(n) − α

n∑
k=0

fα−1(k) +
n−1∑
k=0

fα(k), (16.3.1)

L{f ′′(x)}= f̃α(n)− 2α
n∑

m=0

f̃α−1(n−m) + 2
n−1∑
m=0

f̃α(n−m− 1)

− 2α
n−1∑
m=0

(m+ 1)f̃α+1(n−m− 1) + α(α− 1)
n∑

m=0

(m+ 1)fα−2(n−m)

+
n−2∑
m=0

(m+ 1)f̃α(n−m− 2), (16.3.2)

and so on for the Laguerre transforms of higher derivatives.
We have, by definition,

L{f ′(x)} =

∞∫
0

e−xxαLαn(x)f ′(x) dx

=
[
e−xnαLαn(x)f(x)

]∞
0

+

∞∫
0

e−xxαLαn(x)f(x) dx

−α
∞∫
0

e−xxα−1Lαn(x)f(x) dx−
∞∫
0

e−xxα
[
d

dx
Lαn(x)

]
f(x) dx,

which is, due to Erdélyi (1954, vol. 2, p. 192),

= f̃α(n)− α
n∑
k=0

f̃α−1(k) +
n−1∑
k=0

fα(k).

Similarly, we can derive (16.3.2).

THEOREM 16.3.1

If g(x) =

x∫
0

f(t) dt so that g(x) is absolutely continuous and g′(x) exists, and

if g′(x) is bounded and integrable, then

f̃α(n)− f̃α(n− 1)= g̃α(n) − α g̃α−1(n), (16.3.3)
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and

L

⎧⎨⎩
x∫

0

f(t) dt

⎫⎬⎭= f̃0(n)− f̃0(n− 1), (16.3.4)

where L stands for the zero-order Laguerre transform defined by (16.2.6).

PROOF We have

f̃α(n) =

∞∫
0

e−xxαLαn(x)g′(x) dx,

which is, by integrating by parts,

=

∞∫
0

e−xxαLαn(x)g(x) dx − α

α∫
0

e−xxα−1Lαn(x)g(x) dx

−
∞∫
0

e−xxα
[
d

dx
Lαn(x)

]
g(x) dx.

Thus,

f̃α(n)− f̃α(n+ 1) =

∞∫
0

e−xxα
[
Lαn(x) − Lαn+1(x)

]
g(x) dx

+α

∞∫
0

e−xxα
[
Lαn+1(x) − Lαn(x)

]
g(x) dx

−
∞∫
0

e−xxα
d

dx

[
Lαn(x) − Lαn+1(x)

]
g(x) dx.

Thus,

f̃α(n)− f̃α(n+ 1)=

∞∫
0

e−xxα
[
Lαn(x) −Lαn+1(x)

]
g(x) dx

+α

∞∫
0

e−xxαLα−1
n+1(x)g(x) dx −

∞∫
0

e−xxαLαn(x)g(x) dx

=−g̃α(n+ 1) + α g̃α−1(n+ 1).

This proves (16.3.3).
Putting α= 0, and replacing n by n− 1 gives

g̃0(n) = f̃0(n) − f̃0(n− 1).
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Or,

L

⎧⎨⎩
x∫

0

f(t) dt

⎫⎬⎭= f̃0(n)− f̃0(n− 1).

THEOREM 16.3.2
If L{f(x)}= f̃α(n) exists, then

L{R[f(x)]}=−nf̃α(n), (16.3.5)

where R[f(x)] is the differential operator given by

R[f(x)] = exx−α
d

dx

[
e−xxα+1 d

dx
f(x)

]
. (16.3.6)

PROOF We have, by definition,

L{R[f(x)]}=

∞∫
0

Lαn(x)
d

dx

[
e−xxα+1 df

dx

]
dx,

which is, by integrating by parts and using (16.2.2),

=−n
∞∫
0

e−xxαLαn(x)f(x) dx=−nf̃α(n).

This completes the proof of the basic operational property. This result can
easily be extended as follows:

L{R2[f(x)]}=L{R[R[f(x)]]}= (−1)2 n2 f̃α(n). (16.3.7)

More generally,
L{Rm[f(x)]}= (−1)m nm f̃α(n), (16.3.8)

where m is a non-negative integer.

The Convolution Theorem for the Laguerre transform can be stated as
follows:

THEOREM 16.3.3
(Convolution Theorem). If L{f(x)}= f̃α(n) and L{g(x)}= g̃α(n), then

L−1{f̃α(n)g̃α(n)}= h(x), (16.3.9)
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where h(x) is given by the following repeated integral

h(x) =
Γ(n+ α+ 1)√
π Γ(n+ 1)

∞∫
0

e−t tαf(t) dt

π∫
0

exp(−√
xt cosφ)

× sin2α φ g(x+ t+ 2
√
xt cosφ)

Jα− 1
2
(
√
xt sinφ) dφ[

1
2
(
√
xt sinφ)

]α− 1
2
. (16.3.10)

In order to avoid long proof of this Convolution Theorem 16.3.3, we will not
present the proof here, but refer the reader to the article of Debnath (1969).
However, when α= 0 and φ is replaced by (π − θ), and the standard result

J− 1
2
(x) =

√
2
πx

cosx (16.3.11)

is used, the Convolution Theorem 16.3.3 reduces to that of McCully’s (1960).
We now state and prove McCully’s Convolution Theorem as follows:

THEOREM 16.3.4
(McCully’s Theorem). If L{f(x)}= f̃0(n) and L{g(x)}= g̃0(n), then

L−1{f̃0(n)g̃0(n)}= h(x), (16.3.12)

where h(x) is given by the formula

h(x) =
1
π

∞∫
0

e−tf(t) dt

π∫
0

exp(
√
xt cos θ) cos(

√
xt sin θ)

×g(x+ t− 2
√
xt cos θ) dθ. (16.3.13)

PROOF We have, by definition,

f̃0(n)g̃0(n) =

∞∫
0

e−xLn(x)f(x) dx

∞∫
0

e−yLn(y)g(y) dy

=

∞∫
0

e−xf(x) dx

∞∫
0

e−yLn(x)Ln(y) g(y) dy. (16.3.14)

This can be written in the form

f̃0(n)g̃0(n) =L{h(t)}=

∞∫
0

e−tLn(t)h(t) dt.
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This shows that h is the convolution of f and g and has the representation

h(x) = f(x) ∗ g(x). (16.3.15)

It follows from a formula of Bateman (1944, p. 457) that

Ln(x)Ln(y) =
1
π

π∫
0

e
√
xy cos θ cos(

√
xy sin θ)Ln(x+ y− 2

√
xy cos θ) dθ.

(16.3.16)
In view of this result, (16.3.14) becomes

πf̃0(n)g̃0(n) =

∞∫
0

e−xf(x) dx

⎡⎣ ∞∫
0

e−yg(y)

π∫
0

exp(
√
xy cos θ)

× cos(
√
xy sin θ)Ln(x+ y− 2

√
xy cos θ)dθdy] . (16.3.17)

Using
√
y as the variable of integration combined with polar coordinates,

the integral inside the square bracket in (16.3.17) can be reduced to the form
∞∫
0

e−tLn(t) dt

π∫
0

exp(
√
xt cosφ) cos(

√
xt sinφ)

× g(x+ t− 2
√
xt cosφ) dφ, (16.3.18)

so that (16.3.17) becomes

f̃0(n)g̃0(n) =L{h(t)}=

∞∫
0

e−tLn(t)h(t) dt,

where h(x) is given by

h(x) =
1
π

∞∫
0

e−tf(t) dt

π∫
0

exp(
√
xt cos θ) cos(

√
xt sin θ)

× g(x+ t− 2
√
xt cos θ) dθ. (16.3.19)

This proves the McCully’s Theorem for the Laguerre transform (16.2.6).

16.4 Applications of Laguerre Transforms

Example 16.4.1
(Heat Conduction Problem). The diffusion equation for one-dimensional linear
flow of heat in a semi-infinite medium 0≤ x<∞ with a source Q(x, t) in the
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medium is
∂

∂x

[
κ
∂u

∂x

]
+Q(x, t) = ρc

∂u

∂t
, t > 0, (16.4.1)

where κ= κ(x) =λ e−x xβ is the variable thermal conductivity; Q(x, t) = μ
e−x xβ

′ ∂u
∂x ; ρ = ν e−xxβ

′
; λ, μ, ν, and c are constants; and β≥ 1 and

β − β′ = 1. Thus, the above equation reduces to

∂

∂x

[
e−xxβ

∂u

∂x

]
+
μ

λ
e−xxβ

′ ∂u

∂x
=
νc

λ
e−x xβ

′ ∂u

∂t
. (16.4.2)

The initial condition is

u(x, 0) = g(x), 0≤ x<∞. (16.4.3)

Clearly, equation (16.4.2) assumes the form

exx−α
∂

∂x

(
e−xxα+1 ∂u

∂x

)
= γ

∂u

∂t
, (16.4.4)

where α=
μ

λ
+ β − 1 and γ=

νc

λ
.

Application of the Laguerre transform to (16.4.4) gives

d

dt
uα(n, t) = −n

γ
uα(n, t), uα(n, 0)= gα(n).

Thus, the solution of this system is

uα(n, t) = gα(n) exp
(
−nt
γ

)
. (16.4.5)

The inverse transform (16.2.5) gives the formal solution

u(x, t) =
∞∑
n=0

(δn)−1gα(n)Lαn(x) exp
(
−nt
γ

)
, (16.4.6)

where δn is given by (16.2.4).

Example 16.4.2
(Diffusion Equation). Solve equation (16.4.1) with

κ= x e−x, Q(x, t) = e−x f(t), and ρc= e−x.

In this case, the diffusion equation (16.4.1) becomes

∂u

∂t
= ex

∂

∂x

(
x e−x

∂u

∂x

)
+ f(t), 0≤ x<∞, t > 0, (16.4.7)
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has to be solved with the initial-boundary data

u(x, 0) = g(x), 0≤ x<∞
∂

∂t
u(x, t) = f(x), at t= 0, for x> 0

⎫⎬⎭ . (16.4.8)

Application of the Laguerre transform L{u(x, t)}= ũ0(n, t) to (16.4.7)–
(16.4.8) gives

ũ0(n, t) = g0(n) e−nt, n= 1, 2, 3, . . . (16.4.9)

ũ0(0, t) = g0(0) +

t∫
0

f(τ) dτ. (16.4.10)

The inverse Laguerre transform (16.2.5) leads to the formal solution

u(x, t) = g0(0) +

t∫
0

f(τ) dτ +
∞∑
n=1

g0(n)e−ntLn(x)

=

t∫
0

f(τ)dτ +
∞∑
n=0

g0(n)e−ntLn(x). (16.4.11)

In view of the Convolution Theorem 16.3.4, this result takes the form

u(x, t) =

t∫
0

f(τ) dτ +
1
π

∞∫
0

e−τ (eτ − 1)−1 exp
( −τ
et − 1

)

×
π∫

0

exp(
√
xτ cos θ) cos(

√
xτ sin θ)g(x+ τ − 2

√
xτ cos θ) dθdτ. (16.4.12)

This result is obtained by McCully (1960).
Another application of the Laguerre transform to the problem of oscillations

of a very long and heavy chain with variable tension was discussed by Debnath
(1961).

We conclude this chapter by adding references of recent work on the Laguerre-
Pinney transformation and the Wiener-Laguerre transformation by Glaeske
(1981, 1986). For more details, the reader is referred to these papers.
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16.5 Exercises

1. Find the zero-order Laguerre transform of each of the following func-
tions:

(a) H(x− a) for constant a≥ 0,

(c) ALm(x), (d) xm,

(b) e−ax (a>−1),

(e) Ln(x).

2. If L{f(x)}= f0(n) =

∞∫
0

e−xLn(x)f(x) dx, and a> 0, show that

(a) L{sin ax}=
an

(1 + a2)
n+1
2

sin
[
n tan−1

(
1
a

)
+ tan−1(−a)

]
,

(b) L{cos ax}=
an

(1 + a2)
n+1

2

cos
[
n tan−1

(
1
a

)
+ tan−1(−a)

]
.

3. If L{f(x)}= f̃0(n) =

∞∫
0

e−xLn(x)f(x) dx, prove the following properties:

(a) L{xf ′(x)}=−(n+ 1)f̃0(n+ 1) + nf̃0(n),

(b) L
[
ex

d

dx
{x e−xf ′(x)}

]
=−nf̃0(n),

(c) L
[
e−x

d

dx
{x exf ′(x)}

]
=nf̃0(n)− 2(n+ 1)f̃0(n+ 1),

(d) L
[
d

dx
{xf ′(x)}

]
=−(n+ 1)f̃0(n+ 1).

4. Show that

(a) f̃α(n) =L{Lαn(x)}=
Γ(n+ α+ 1)

n!
for α>−1.

(b) f̃α(n) =L{xLαn(x)}=
Γ(n+ α+ 1)

n!
(2n+ α+ 1) for α>−1.
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Hermite Transforms

“We are servants rather than masters in mathematics.”
Charles Hermite

“Success [in teaching] depends ... to a great extent upon the teach-
er’s leading the student continually to some research. This however
does not occur by chance ... but chiefly as follows ... through his
arrangement of the material and emphasis, the teacher’s presenta-
tion of lectures on a discipline lets the student discern leading ideas
appropriately. In these ways, the fully conversant thinker logical-
ly advances from mature and previous research and attains new
results or better foundations than exist. Next the teacher should
not fail to designate boundaries not yet crossed by science and to
point out some positions from which further advances would then
be possible. A university teacher should also not deny the student
a deeper insight into the progress of his own investigations, nor
should he remain silent about his own past errors and disappoint-
ments.”

Karl Weierstrass

17.1 Introduction

In this chapter we introduce the Hermite transform with a kernel involving
a Hermite polynomial and discuss its basic operational properties, including
the convolution theorem. Debnath (1964) first introduced this transform and
proved some of its basic operational properties. This chapter is based on pa-
pers by Debnath (1964, 1968) and Dimovski and Kalla (1988).

525
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17.2 Definition of the Hermite Transform
and Examples

Debnath (1964) defined the Hermite transform of a function F (x) defined in
−∞<x<∞ by the integral

H{F (x)}= fH(n) =

∞∫
−∞

exp(−x2)Hn(x)F (x)dx, (17.2.1)

where Hn(x) is the well-known Hermite polynomial of degree n.
The inverse Hermite transform is given by

H−1{fH(n)}=F (x) =
∞∑
n=0

(δn)
−1
fH(n)Hn(x), (17.2.2)

where δn is given by
δn =

√
π n! 2n. (17.2.3)

This follows from the expansion of any function F (x) in the form

F (x) =
∞∑
n=0

anHn(x), (17.2.4)

where the coefficients an can be determined from the orthogonal relation of
the Hermite polynomial Hn(x) as

∞∫
−∞

exp(−x2)Hn(x)Hn(x)dx= δnm δn. (17.2.5)

Multiplying (17.2.4) by exp(−x2)Hm(x) and integrating over (−∞,∞) and
using (17.2.4), we obtain

an = δ−1
n fH(n) (17.2.6)

so that (17.2.2) follows immediately.

Example 17.2.1

If F (x) is a polynomial of degree m, then

fH(n) = 0 for n>m. (17.2.7)
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Example 17.2.2
If F (x) =Hm(x), then

H{Hm(x)}=

∞∫
−∞

exp(−x2)Hn(x)Hm(x)dx= δnδnm. (17.2.8)

Example 17.2.3
If

exp(2 xt− t2) =
∞∑
n=0

tn

n!
Hn(x) (17.2.9)

is the generating function of Hn(x), then

H{exp(2xt− t2)}=
√
π

∞∑
n=0

(2t)n, |t|< 1
2
. (17.2.10)

We have, by definition,

H{exp(2xt− t2)} =
∞∑
n=0

tn

n!

∞∫
−∞

exp(−x2)H2
n(x)ds

=
∞∑
n−0

δn
tn

n!
=
√
π

∞∑
n=0

(2t)n, |t|< 1
2
.

Example 17.2.4
If F (x) =Hm(x)Hp(x), then

H{Hm(x)Hp(x)}=

⎧⎪⎪⎨⎪⎪⎩
√
π 2km!n! p!

(k −m)!(k − n)!(k − p)!
,

m+ n+ p= 2k,
k≥m, n, p

0, otherwise

⎫⎪⎪⎬⎪⎪⎭ .

(17.2.11)
This follows from a result proved by Bailey (1939).

Example 17.2.5
If F (x) =H2

m(x)Hn(x), then

H
{
Hm

2(x)Hn(x)
}

= 2mδn
n∑
k=0

(
m

k

)(
n

k

)(
2k
k

)
, if m>n. (17.2.12)

Using a result proved by Feldheim (1938), (17.2.12) follows immediately.
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Example 17.2.6
If F (x) =Hn+p+q(x)Hp(x)Hq(x), then

H{F (x)}= δn+p+q. (17.2.13)

We have, by definition,

H{F (x)}=

∞∫
−∞

exp(−x2)Hn+p+q(x)Hp(x)Hq(x) dx = δn+p+q,

where a result due to Bailey (1939) is used and δn is given by (17.2.3).

Example 17.2.7
If F (x) = exp(ax), then

H{exp(ax)}=
√
π
∑

an exp
(

1
4
a2

)
. (17.2.14)

This result follows from the standard result

∞∫
−∞

exp(−x2 + 2bx) Hn(x)dx=
√
π(2b)n exp(b2).

Example 17.2.8
If |2z|< 1, show that

H{exp(z2) sin(
√

2 xz)}=

⎧⎪⎪⎨⎪⎪⎩
0, n �= 2m+ 1

√
π

∞∑
m=0

(−1)m(2z)2m+1, n= 2m+ 1

⎫⎪⎪⎬⎪⎪⎭ .

(17.2.15)
We have, by definition,

H{exp(z2) sin(
√

2xz)}=

∞∫
−∞

exp(z2 − x2)Hn(x) sin(
√

2xz)dx.

We use a result (see Erdélyi et al., 1954, vol. 2, p. 194)

exp(z2) sin(
√

2xz) =
∞∑
m=0

(−1)mH2m+1(x)
z2m+1

(2m+ 1)!
, (17.2.16)
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to derive

H{exp(z2) sin(
√

2xz)}

=
∞∑
m=0

(−1)m
z2m+1

(2m+ 1)!

∞∫
−∞

exp(−x2)Hn(x)H2m+1(x)dx

=

⎧⎪⎪⎨⎪⎪⎩
√
π

∞∑
m=0

(−1)m(2z)2m+1, n= 2m+ 1

0, n �= 2m+ 1

⎫⎪⎪⎬⎪⎪⎭ .

Example 17.2.9

H

[
(1 − z2)−

1
2 exp

{
2xyz − (x2 + y2)z2

(1 − z2)

}]
=
√
π

∞∑
m=0

zmHm(y) δmn. (17.2.17)

We use a result (see Erdélyi et al., 1954, vol. 2, p. 194)

(1 − z2)−
1
2 exp

{
2xyz − (x2 + y2)z2

(1− z2)

}
=

∞∑
m=0

(
1
2
z

)m 1
m!

Hm(x)Hm(y)

to derive

H

[
(1 − z2)−

1
2 exp

{
2xyz − (x2 + y2)z2

(1 − z2)

}]

=
∞∑
m=0

(
1
2
z

)m 1
m!

Hm(y)

∞∫
−∞

exp(−x2)Hn(x)Hm(x) dx

=
∞∑
m=0

(
1
2
z

)m 1
m!

Hm(y) δm δmn =
√
π

∞∑
m=0

zmHm(y) δmn.

17.3 Basic Operational Properties

THEOREM 17.3.1
If F ′(x) is continuous and F ′′(x) is bounded and locally integrable in the
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interval −∞<x<∞, and if H{F (x)}= fH(n), then

H{R[F (x)]}=−2n fH(n), (17.3.1)

where R[F (x)] is the differential form given by

R[F (x)] = exp(x2)
d

dx

[
exp(−x2)

dF

dx

]
. (17.3.2)

PROOF We have, by definition,

H{R[F (x)]}=

∞∫
−∞

d

dx

[
exp(−x2)

dF

dx

]
Hn(x)dx

which is, by integrating by parts and using the orthogonal relation (17.2.8),

=−2n

∞∫
−∞

exp(−x2)Hn(x)F (x)dx = −2n fH(n).

Thus, the theorem is proved.
If F (x) and R[F (x)] satisfy the conditions of Theorem 17.3.1, then

H{R2[F (x)]} = H{R[R[F (x)]]}= (−1)2(2n)2fH(n). (17.3.3)
H{R3[F (x)]} = (−1)3(2n)3fH(n). (17.3.4)

More generally,
H{Rm[F (x)]}= (−1)m(2n)mfH(n), (17.3.5)

where m= 1, 2, . . . ,m− 1.

THEOREM 17.3.2
If F (x) is bounded and locally integrable in −∞<x<∞, and fH(0) = 0, then
H{F (x)}= fH(n) exists and for each constant C,

H−1

{
−fH(n)

2n

}
= R−1[F (x)]

=

x∫
0

exp(s2)

s∫
−∞

exp(−t2)F (t)dt ds+C, (17.3.6)

where R−1 is the inverse of the differential operator R and n is a positive
integer.

PROOF We write
R−1[F (x)] = Y (x)
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so that Y (x) is a solution of the differential equation

R[Y (x)] =F (x). (17.3.7)

Since fH(0)= 0, and H0(x) = 1, then

∞∫
−∞

exp(−x2)F (x)dx= 0.

The first integral of (17.3.7) is

exp(−x2)Y ′(x) =

x∫
−∞

exp(−t2)F (t)dt,

which is a continuous function of x and tends to zero as |x| →∞. The second
integral

Y (x) =

x∫
0

exp(s2)

s∫
−∞

exp(−t2)F (t)dt ds+C,

where C is an arbitrary constant, is also continuous. Evidently,

lim
|x|→∞

exp(−x2)Y (x) = 0

provided Y (x) is bounded.
Then H{Y (x)} exists and

H{R[Y (x)]}=−2nH{Y (x)}.

Or,
H [F (x)] =−2nH{Y (x)}.

Hence,
fH(n) =−2nH{R−1[F (x)]}.

Thus, for any positive integer n,

H{R−1[F (x)]}=−fH(n)
2n

.

THEOREM 17.3.3
If F (x) has bounded derivatives of order m and if H{F (x)}= fH(n) exists,
then

H{F (m)(x)}= fH(n+m). (17.3.8)
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PROOF We have, by definition,

H{F ′(x)}=

∞∫
−∞

exp(−x2)Hn(x)F ′(x) dx,

which is, by integrating by parts,

= [exp(−x2)F (x)Hn(x)]∞−∞ −
∞∫

−∞
F (x)

d

dx

[
e−x

2
Hn(x)

]
dx

= 2

∞∫
−∞

x exp(−x2)Hn(x)F (x) −
∞∫

−∞
F (x) exp(−x2)H ′

n(x)dx. (17.3.9)

We use recurrence relations (A-6.5)–(A-6.6) for the Hermite polynomial to
rewrite (17.3.9) in the form

H{F ′(x)} =

∞∫
−∞

exp(−x2)[Hn+1(x) + 2nHn−1(x)]F (x)dx

−2n

∞∫
−∞

exp(−x2)Hn−1(x)F (x)dx

=

∞∫
−∞

exp(−x2)Hn+1(x)F (x)dx= fH(n+ 1).

Proceeding in a similar manner, we can prove

H{F (m)(x)}= fH(n+m).

Thus, the theorem is proved.

THEOREM 17.3.4
If the Hermite transforms of F (x) and xF (m−1)(x) exist, then

H{xF (m)(x)}= nfH(m+ n− 1) +
1
2
fH(m+ n+ 1). (17.3.10)

PROOF We have, by definition,

H{xF (m)(x)} =

∞∫
−∞

exp(−x2)Hn(x)
{
x
dmF (x)
dxm

}
dx

=
[
x exp(−x2)Hn(x)F (m−1)(x)

]∞
−∞

−
∞∫

−∞

d

dx

[
x exp(−x2)Hn(x)

]
F (m−1)(x)dx.
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Thus,

H{xF (m)(x)} =

∞∫
−∞

2x2 exp(−x2)Hn(x)F (m−1)(x)dx

−
∞∫

−∞
exp(−x2)Hn(x)F (m−1)(x)dx

−n
∞∫

−∞
2x exp(−x2)Hn−1(x)F (m−1)(x)dx,

which is, by the recurrence relations (17.3.10)–(17.3.11), and (17.3.8),

=

∞∫
−∞

x exp(−x2)[Hn+1(x) + 2nHn−1(x)]F (m−1)(x)dx

−n

∞∫
−∞

exp(−x2)[Hn(x) + 2(n− 1)Hn−2(x)]F (m−1)(x)dx

− fH(n+m+ 1)

=
1
2

∞∫
−∞

exp(−x2)[Hn+2(x) + 2(n+ 1)Hn(x)]F (m−1)(x)dx

+n

∞∫
−∞

exp(−x2)[Hn(x) + 2(n− 1)Hn−2(x)]F (m−1)(x)dx

−nfH(n+m− 1)− 2n(n− 1)fH(n+m− 3)− fH(n+m+ 1)

=
1
2
fH(n+m+ 1) + (n+ 1)fH(n+m− 1)

+n[fH(n+m− 1) + 2(n− 1)fH(n+m− 3)]
−nfH(n+m− 1)− 2n(n− 1)fH(n+m− 3)− fH(n+m+ 1)

= nfH(n+m− 1) +
1
2
fH(n+m+ 1).

In particular, when m= 1 and m= 2, we obtain

H{xF ′(x)}=nfH(n) +
1
2
fH(n+ 2), (17.3.11)

H{xF ′′(x)}=nfH(n+ 1) +
1
2
fH(n+ 3). (17.3.12)

The reader is referred to a paper by Debnath (1968) for other results similar
to those of (17.3.11)–(17.3.12).
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DEFINITION 17.3.1 (Generalized Convolution). The generalized convo-
lution of F (x) and G(x) for the Hermite transform defined by

H{F (x) ∗G(x)} = μnH{F (x)}H{G(x)} = μn fH(n)gH(n),(17.3.13)

where μn is a non-zero quantity given by

μn =
√
π(−1)n

{
22n+1 Γ

(
n+

3
2

)}−1

. (17.3.14)

Debnath (1968) first proved the convolution theorem of the Hermite trans-
form for odd functions. However, Dimovski and Kalla (1988) extended the
theorem for both odd and even functions. We follow Dimovski and Kalla to
state and prove the convolution theorem of the Hermite transform. Before we
discuss the theorem, it is observed that, if F (x) is an odd function, then

H{F (x); 2n}= fH(2n) =

∞∫
−∞

exp(−x2)H2n(x)F (x)dx= 0, (17.3.15)

but
H{F (x); 2n+ 1}= fH(2n+ 1) �= 0. (17.3.16)

On the other hand, if F (x) is an even function, then

H{F (x); 2n+ 1}= fH(2n+ 1)= 0, (17.3.17)

but
H{F (x); 2n}= fH(2n) �= 0. (17.3.18)

THEOREM 17.3.5
(Convolution of the Hermite Transform for Odd Functions). If F (x) and G(x)
are odd functions and n is an odd positive integer, then

H {F (x)◦∗G(x); 2n+ 1}=μnfH(2n+ 1)gH(2n+ 1), (17.3.19)

where ◦
∗ denotes the convolution operation for odd functions and is given by

F (x)◦∗G(x) =
x

π

∞∫
−∞

exp(−t2)t F (t)dt

π∫
0

exp(−xt cos φ) sinφ

×
π∫

0

G[(x2 + t2 + 2xt cosφ)]
1
2

(x2 + t2 + 2xt cosφ)
1
2

J0(xt sin φ) dφ, (17.3.20)

and J0(z) is the Bessel function of the first kind of order zero.
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PROOF We have, by definition,

fH(2n+ 1)=

∞∫
−∞

exp(−x2)H2n+1(x)F (x) dx. (17.3.21)

We replace H2n+1(x) by using a result for Erdélyi (1953, vol. 2, p. 1993)

H2n+1(x) = (−1)n 22n+1 n!xL
1
2
n (x2), (17.3.22)

where Lαn(x) is the Laguerre polynomial of degree n and order α so that
(17.3.21) reduces to the form

fH(2n+ 1) = (−1)n22n+2 n!

∞∫
0

x exp(−x2)L
1
2
n (x2)F (x) dx. (17.3.23)

Invoking the change of variable x2 = t, we obtain

H{F (x); 2n+ 1}= (−1)n22n+1n!

∞∫
0

√
t exp(−t)L 1

2
n (t)

F (
√
t)√
t

dt. (17.3.24)

It is convenient to introduce the transformation T by

(T F )(t) =
F (

√
t)√
t
, 0≤ t <∞ (17.3.25)

so that the inverse of T is given by

T−1(Φ)(x) = xΦ(x2). (17.3.26)

Consequently, (17.3.24) takes the form

H{F (x); 2n+ 1}= (−1)n 22n+1 n!L{T F (x)}, (17.3.27)

where L is the Laguerre transformation of degree n and order α=
1
2

defined

by (16.2.1) in Chapter 16.
The use of (17.3.27) allows us to write the product of two Hermite trans-

forms as the product of two Laguerre transforms as

fH(2n+ 1)gH(2n+ 1) = 24n+2(n!)2L{T F (x)}L{T G(x)}. (17.3.28)

We now apply the Convolution Theorem for the Laguerre transform (when
α= 0) proved by Debnath (1969) in the form

L{F ∗̃G(x)}=
n!
√
π

Γ
(
n+

3
2

) L{F (x)} L{G(x)}, (17.3.29)
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where F ∗̃G is given by

F ∗̃G(x) =

∞∫
0

exp(−τ)√τ F (τ)dτ

π∫
0

exp(−√
tτ cosφ) sinφ

×G(t+ τ + 2
√
tτ cosφ)J0(

√
tτ sinφ) dφ. (17.3.30)

Substituting (17.3.29) into (17.3.28), we obtain

fH(2n+ 1)gH(2n+ 1) = π− 1
2 24n+2n! Γ

(
n+

3
2

)
L{T F ∗̃T G},

which is, by (17.3.27),

=
22n+1Γ

(
n+

3
2

)
(−1)n

√
π

H{T−1 (T F ∗̃T G)}. (17.3.31)

Or, equivalently,

H {F ◦
∗G(x); 2n+ 1}=μn H{F (x)}H{G(x)}, (17.3.32)

where
F ◦

∗G(x) = T−1{T F ◦
∗ T G(x)}. (17.3.33)

This coincides with (17.3.20). Thus, the proof is complete.

THEOREM 17.3.6

(Convolution of the Hermite Transform for Even Functions). If F (x) andG(x)
are even functions and n is an even positive integer, then

H {F (x)e∗G(x); 2n}=μnH{F (x); 2n}H{G(x); 2n}. (17.3.34)

PROOF We use result (17.3.8), that is,

H{F ′(x);n}=H{F (x); n+ 1}

so that
H{I F (x); 2n+ 1}=H{F (x), 2n}, (17.3.35)

where

I F (x) =

x∫
0

F (t)dt and [I F (x)]′ =F (x).
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Obviously,

H
{
F (x) e∗G(x); 2n

}
= H

{[
I F (x) e∗ I G(x)

]′; 2n
}

= H
{
I F (x) ◦

∗ I G(x); 2n+ 1
}

= μnH{I F (x); 2n+ 1}H{I G(x); 2n+ 1}
= μnH{F (x); 2n}H{G(x); 2n}.

This proves the theorem.

THEOREM 17.3.7
If F (x) and G(x) are two arbitrary functions such that their Hermite trans-
forms exist, then

H{F (x) ∗G(x); n}= μ[n/2]H{F (x); n}H{G(x); n}, (17.3.36)

where
F (x) ∗G(x) =F0(x) ◦

∗G0(x) + Fe(x) e∗Ge(x), (17.3.37)

and

F0(x) =
1
2
[F (x) − F (−x)] and Fe(x) =

1
2
[F (x) + F (−x)]. (17.3.38)

PROOF We first note that arbitrary functions F (x) and G(x) can be
expressed as sums of even and odd functions, that is, F (x) =F0(x) + Fe(x)
and G(x) =G0(x) +Ge(x) so that result (17.3.38) follows.

Suppose n is odd. Then

H{F (x); n}=H{F0(x); n}, H{G(x); n}=H{G0(x); n},

and
H{F (x) +G(x); n}=H{F0(x) +G0(x); n}.

Clearly,

H{F (x) ∗G(x); 2n+ 1}
=H {F0(x) ◦

∗G0(x); 2n+ 1}+H {Fe(x) e∗Ge(x); 2n+ 1}
=μnH{F0(x)}H{G0(x)} = μnH{F (x)}H{G(x)}.

Similarly, the case for even n can be handled without any difficulty.
We conclude this chapter by citing some recent work on the generalized

Hermite transformation by Glaeske (1983, 1986, 1987). These papers include
some interesting discussion on operational properties and convolution struc-
ture of the generalized Hermite transformations. For more details, the reader
is referred to these papers.
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17.4 Exercises

1. Find the Hermite transform of the following functions:

(a) exp(−x2)Hn(x), (b) xm, (c) x2Hn(x).

2. Show that
H{xn}=

√
π n!Pn(1),

where Pn(x) is the Legendre polynomial.

3. Show that

H
{
H2
n(x)

}
=
√
π

n∑
r=0

(
n

r

)
2r+n (2r)!n! .
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18

The Radon Transform and Its Applications

“This struck me as a typical nineteenth century piece of mathe-
matics which a Cauchy or a Riemann might have dashed off in a
light moment, but a diligent search of standard texts on analysis
failed to reveal it, so I had to solve the problem myself. I still felt
that the problem must have been solved, so I contacted mathe-
maticians on three continents to see if they knew about it, but to
no avail.”

Allan MacLeod Cormack

“We live in an age in which mathematics plays a more and more
important role, to the extent that it is hard to think of an aspect of
human life to which it either has not provided, or does not have the
potential to provide, crucial insights. Mathematics is the language
in which quantitative models of the world around us are described.
As subjects become more understood, they become more mathe-
matical. A good example is medicine, where the Radon transform
is what makes X-ray tomography work, where statistics form the
basis of evaluating the success or failure of treatments, and where
mathematical models of organs such as the heart, of tumor growth,
and of nerve impulses are of key importance.”

John Ball

18.1 Introduction

The origin of the Radon transform can be traced to Johann Radon’s 1917
celebrated work “On the determination of functions from integrals along cer-
tain manifolds.” In his seminal work, Radon demonstrated how to construct
a function of two variables from its integrals over all straight lines in the
plane. He also made other generalizations of this transform involving the re-
construction of a function from its integrals over other smooth curves as well
as the reconstruction of a function of n variables from its integrals over all

539
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hyperplanes. Although the Radon transform had some direct ramifications on
solutions of hyperbolic partial differential equations with constant coefficients,
it did not receive much attention from mathematicians and scientists.

In the 1960s, the Radon transform played a major role in tomography which
is widely used method to reconstruct cross-sections of the interior structure
of an object without having to cut or damage the object. Through the inter-
action of a physical organ or “probe” — varying from X-rays, gamma rays,
visible light, electrons, or neutrons to ultrasound waves — with the object,
we usually obtain line or (hyper) plane integrals of the internal distribution
to be reconstructed. There is a close relation between the Radon transform
and the development of X-ray scans (or CAT scans) in medical imaging. In
practice, X-ray scans provide a picture of an internal organ of a human or
animal body, and hence help detect and locate many types of abnormalities.
Thus, one of the most prominent examples of applications of computer assist-
ed tomography occurs in diagnostic medicine, where the method is employed
to generate images of the interior of human organs. The central problem of
reconstruction and the introduction of new algorithms and faster electronic
computers led to a rapid development of computerized tomography.

More than fifty years later, Allan Cormack, a young South African physi-
cist, became interested in finding a set of maps of absorption coefficients for
different sections of the human body. In order to make X-ray radiotherapy
more effective, he quickly recognized the importance of the Radon transform
which is similar to measurements of the absorption of X-rays along lines in
their sections of the human body. Since the logarithm of the ratio of incident
to reflected X-ray intensities along a given straight line is just the line integral
of the absorption coefficient along that line, the problem is mathematically e-
quivalent to finding a function from the values of its integrals along all or some
lines in the plane. As early as 1963, Cormack already obtained three alterna-
tive solutions of this major problem. At the same time, Godfrey Hounsfield,
a young British biomedical engineer, realized the unique importance of the
major ideas of Radon and Cormack and then used them to develop a new
X-ray machine that totally revolutionized the field of medical imaging. Soon
after that Cormack and Hounsfield joined together to work on the refinement
of the solution of medical imaging. Their joint work led to the major discovery
of the CT-scanning technique and then culminated in winning the 1979 Nobel
Prize in Physiology and Medicine. In their Nobel Prize addresses Cormack
and Hounsfield acknowledged the pioneering work of Radon in 1917.

The Radon transform is found to be very useful in many diverse fields of sci-
ence and engineering including medical imaging, astronomy, crystallography,
electron microscopy, geophysics, material science, and optics. It is importan-
t to mention that the Radon transform has been used in computer assisted
tomography (CAT) heavily. The problem of determining internal structure of
an object by observations or projections is closely associated with the Radon
transform. In this chapter, we introduce the Radon transform, its basic prop-
erties, its inverse and the relationship between the Radon transform and Fouri-
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er transform. Included are Parseval theorems and applications of the Radon
transform.

18.2 The Radon Transform

DEFINITION 18.2.1 (The Radon Transform). If L is any straight line in
the x-y plane (or, in R2) and ds is the arc length along L (see Figure 18.1),the
Radon transform of a function f(x, y) of two real variables is defined by its
integral along L as

f̂(p, φ) = R {f(x, y)}=
∫
L

f(x, y) ds. (18.2.1)

In other words, the totality of all these line integrals constitutes the Radon
transform of f(x, y) and each line integral is called a sample of the Radon
transform of f(x, y). Thus, the Radon transform f̂ of f can be viewed as a
function defined on all straight lines in the plane and the value of f̂(p, φ) at
a given L is the integral of f(x, y) over that line.

x

y

o

r

u

P

Q(x,y)

u

p
L

Figure 18.1 Graph of the line L.

Making references to Figure 18.1, we write the equation of the line L in the
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form p= x cosφ + y sinφ, where p is the length of the perpendicular from the
origin to L and φ is the angle that the perpendicular makes with the positive
x-axis. If we rotate the coordinate system by an angle φ, and label the new
axes by p and s, then x= p cosφ− s sinφ, y= p sinφ + s cosφ. Consequently,
the Radon transform (18.2.1) can be defined by

R {f(x, y)}= f̂(p, φ) =
∫ ∞

−∞
f (p cosφ− s sinφ, p sinφ+ s cosφ) ds.

(18.2.2)
This definition is very practical in two dimensions. However, it does not lend
itself readily to higher dimensions.

In order to generalize the above definition in higher dimensions, we intro-
duce the unit vectors u = (cosφ, sinφ) and u⊥ = (− sinφ, cosφ), so that x =
(x, y) = (r, θ)= pu + tu⊥ for some scalar parameter t, where r and θ are
the usual polar coordinates. The equation of the line L can now be written in
terms of the unit vector u as p=x.u = x cosφ+ y sinφ. Using the definition
of Dirac delta function, we express (18.2.1) in the form

f̂(p, φ) =
∫ ∞

−∞
f
(
pu + tu⊥) dt= ∫ ∞

−∞

∫ ∞

−∞
f(x) δ(p− x.u) dx. (18.2.3)

It is noted that the integral is taken over a line orthogonal to the line θ=φ
and that f̂(−p, φ)= f̂(p, φ+ π) so that negative values for p can be assigned
and φ may be restricted to [0, π].

DEFINITION 18.2.2 (The Radon Transform in Higher Dimensions).
In n dimensional Euclidean space Rn, x = (x1, x2, ....,xn) and f(x) =
f(x1, x2, ...., xn). Let us introduce a unit vector u = (u1, u2, ..., un) in Rn

that defines the orientation of a hyperplane with the equation

p= x.u = x1u1 + ......+ xnun. (18.2.4)

Then the Radon transform of a function f(x) is defined by

f̂(p,u) = R {f(x)} (p,u) =
∫ ∞

−∞
f(x) δ(p− x.u) dx, (18.2.5)

where the integration is taken over dx = dx1dx2...dxn.

Therefore, the Radon transform of a function of n variables is the totality
of all integrals of f over all hyperplanes in Rn. In other words, the Radon
transform f̂(p,u) of f(x) is a function defined on all hyperplanes in Rn, and
the value of that function at any hyperplane is the integral of f(x) over that
hyperplane. The inverse Radon transform is equivalent to finding f(x) from
the values of its integrals over all hyperplanes.
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The Radon transform has been further generalized to use this idea in the
field of medical imaging, where the integral along a line represents a measure-
ment of the intensity of the X-ray beam at the detector after passing through
the object to be radiographed. This is essentially the idea of the X-ray trans-
form where a two-dimensional object lying in the plane R2 which may be
considered as a planer cross section of a human or animal organ. After send-
ing the X-ray beam through the object along a line L, we calculate the integral
in (18.2.1), which is also called the X-ray transform (or the Radon transform).
Thus, this transform assigns to each suitable function f on R2 another unique
function f̂ = R{f} which domain is the set of lines in R2. From a practical
point of view, the major interest lies essentially in internal structure of the
object, and hence, the central problem is to reconstruct f (or, to find the
inverse) from the given f̂ . This is called the reconstruction problem which
has a definite solution based on the general mathematical theory. However,
in practice, this problem can be solved using sampling procedures, numerical
approximations, or computer algorithms.

To explain this idea, we observe that in R2, if a function f(x, y) is integrated
over a line Lθ with direction θ, and then if the line is moved parallel to itself,
we obtain a function Lθ f =P 1 f defined on a line Lθ⊥ orthogonal to Lθ. The
value of this function at any point x on Lθ⊥ is equal to the integral of f(x)
over the line with direction θ which intersects Lθ⊥ at the point x.

Similarly, in R3, if a function f(x) is integrated over a plane P 2, and then
if the plane is moved parallel to itself, we obtain a function P 2 f defined on a
straight line orthogonal to the plane P 2. The value of this function at any point
x on this line is equal to the integral over the plane passing through x and
parallel to P 2. If f(x) represents the density at x, then an X-ray taken in the
θ direction generates a function Lθ f =P 1 f defined on the plane orthogonal
to θ. The value of (Lθ f) at the point x on this plane is equal to the integral
of f along a line through x in the direction θ, that is,

[Lθ f ] (x) =
∫ ∞

−∞
f (x + t θ) dt, (18.2.6)

where x∈ θ⊥ that represents the plane orthogonal to θ.

DEFINITION 18.2.3 (The k-Plane Transform). If Π is a k-dimensional
subspace of Rn determined by the direction θ, then the k-plane transform of
f(x) where x∈Rn in the direction θ at the point ξξξ ∈Π⊥ is defined by(

P k f
)
(Π, ξξξ) =

∫
Π

f(ξξξ, ηηη)dηηη, (18.2.7)

where x= (ξξξ, ηηη), ηηη ∈Π, and ξξξ ∈Π⊥ .
Or, equivalently, (

P k f
)
(θ, ξξξ) =

∫
f(ξξξ + u.θ)du, (18.2.8)
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where u.θ =(u1 θ1 + u2 θk + ...+ uk θk) and ξξξ ∈ θ⊥.

The 1-plane transform
(
P 1 f

)
is called the X-ray transform and (n− 1)-

plane transform is the Radon transform. The k-plane transformation is a
linear transformation.

Example 18.2.1
Show that

R
[
exp

{−a2(x2 + y2)
}]

=
√
π

a
exp

(−a2p2
)
, a> 0. (18.2.9)

Using m= u1x+ u2y , n=−u2x+ u1y, we have

x2 + y2 = m2 + n2

f(m,n) = exp
{−a2(m2 + n2)

}
.

So it turns out that

f̂(p,u) =
∫ ∞

−∞

∫ ∞

−∞
exp

{−a2
(
m2 + n2

)}
δ(p−m) dmdn

=
∫ ∞

−∞
exp(−a2m2) δ(m− p)dm

∫ ∞

−∞
exp(−a2n2)dn

=
√
π

a
exp(−a2p2).

In other words,

R
[
exp

{−a2(x2 + y2)
}]

=
√
π

a
exp

(−a2p2
)
.

Alternatively, we can use (18.2.2) to obtain

f̂(p, φ) =
∫ ∞

−∞
exp

[−a(p2 + s2)
]
ds= e−ap

2
∫ ∞

−∞
e−as

2
ds=

√
π

a
e−ap

2
.

When a= 1, the above result yields

R
[
exp(−x2 − y2)

]
=
√
π e−p

2
. (18.2.10)

Example 18.2.2
Find the Radon transform of the following functions:

(a) f(x, y) = x exp
[−a(x2 + y2)

]
, a> 0,

(b) g(x, y) = y exp
[−a(x2 + y2)

]
, a> 0.



© 2007 by Taylor & Francis Group, LLC

The Radon Transform and Its Applications 545

(a) We have, by definition (18.2.2),

f̂(p, φ) =
∫ ∞

−∞
(p cosφ− s sinφ) exp

[−a(p2 + s2)
]
ds

=
√
π

a
p cosφ exp(−ap2). (18.2.11)

(b) Similarly,

ĝ(p, φ) =
∫ ∞

−∞
(p cosφ+ s sinφ) exp

[−a(p2 + s2)
]
ds

=
√
π

a
p sinφ exp(−ap2). (18.2.12)

Combining these two results gives

R
{
(x+ y) exp

[−a(x2 + y2)
]}

= f̂(p, φ) + i ĝ(p, φ) =
√
π

a
p eiφ exp(−ap2).

(18.2.13)

18.3 Properties of the Radon Transform

(Relation between the Fourier Transform and the Radon Transform).
Consider two-dimensional Fourier transform defined by

f̃(k) = F{f(x, y)}=
∫ ∞

−∞

∫ ∞

−∞
e−i(k.x)f(x, y)dxdy (18.3.1)

where k= (k, l) and x= (x, y).
The kernel exp[−i(k.x)] of the Fourier transform can be written as

e−i(k.x) =
∫ ∞

−∞
e−itδ(t− k.x)dt (18.3.2)

so that (18.3.1) becomes

f̃(k) =
∫ ∞

−∞
e−itdt

∫ ∞

−∞
f(x) δ(t− k.x) dx. (18.3.3)

Substituting k= su and t= sp in (18.3.3) where s is real and u is a unit vector
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yields

f̃(su) =
∫ ∞

−∞
e−ispdp

∫ ∞

−∞
f(x) δ(p− u.x)dx

=
∫ ∞

−∞
e−ispf̂(p,u)dp

= F
{
f̂(p,u)

}
. (18.3.4)

In other words,
f̃ = F (Rf).

This means that f̃ is the two-dimensional Fourier transform of f , whereas
F (Rf) is the one-dimensional Fourier transform of Rf . Thus,

f̂(p,u) = R {f(x)} .

Or, equivalently,

F−1
{
f̃(su)

}
=

1
2π

∫ ∞

−∞
eips f̃(su) ds. (18.3.5)

THEOREM 18.3.1

Linearity : R [af(x) + bg(x)] = aR [f(x)] + bR [g(x)] . (18.3.6)

Shifting : (a) If R{f(x, y)}= f̂(p, u1, u2), then

R{f(x− a, y − b)}= f̂(p− au1 − bu2,u). (18.3.6a)

(b) In general,

f̂ (x− a) = f̂ (p− a.u, u) . (18.3.6b)

Scaling : (a) If R{f(x, y)}= f̂(p, u1, u2), then

R{f(ax, by)}=
1

|ab| f̂
(
p,
u1

a
,
u2

b

)
. (18.3.7a)

(b) f̂ (ax) =
1
an
f̂
(
p,

x
a

)
=

1
an−1

f̂ (ap, x) . (18.3.7b)

Symmetry : (a) If f̂(p,u) = R [f(x, y)] , then, if a �= 0,

f̂(ap, au) = |a|−1f̂(p,u). (18.3.8a)

(b) f̂ (p, au) = |a|−1f̂
(p
a
,u
)
. (18.3.8b)

Here a and b are two constants.
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PROOF Linearity:
R [af(x) + bg(x)] =

∫ ∞

−∞

∫ ∞

−∞
[af(x) + bg(x)] δ(p− x.u) dx

= a

∫ ∞

−∞

∫ ∞

−∞
f(x)δ(p− x.u) dx

+ b

∫ ∞

−∞

∫ ∞

−∞
g(x)δ(p− x.u) dx

= aR [f(x)] + bR [g(x)] .

This property is also true for any x=(x1, x2,,... ,xn)∈ Rn, n≥ 2.
Shifting:
(a) Putting x− a= ξ and y − b= η, we can write

R {f(x− a, y− b)} =
∫ ∞

−∞

∫ ∞

−∞
f(x− a, y − b) δ(p− xu1 − yu2) dxdy

=
∫ ∞

−∞

∫ ∞

−∞
f(ξ, η) δ(p− (a+ ξ)u1 − (b+ η)u2) dξdη

=
∫ ∞

−∞

∫ ∞

−∞
f(ξ, η) δ(p− au1 − bu2 − ξu1 − ηu2) dξdη

= f̂(p− au1 − bu2,u).

Similarly, results (18.3.6b) can be proved.
Scaling:
(a) Let a> 0, b> 0. Putting ax= ξ, by= η, we have

R [f(ax , by)] =
∫ ∞

−∞

∫ ∞

−∞
f(ax, by) δ(p− xu1 − yu2) dxdy

=
∫ ∞

−∞

∫ ∞

−∞
f(ξ, η) δ

(
p− u1

a
ξ − u2

b
η
) dξdη

ab

=
1
ab

∫ ∞

−∞

∫ ∞

−∞
f(ξ, η) δ

(
p− u1

a
ξ − u2

b
η
)

=
1
ab
f̂
(
p,
u1

a
,
u2

b

)
.

If a or b< 0, then

R [f(ax , by)] = − 1
ab
f̂
(
p,
u1

a
,
u2

b

)
.

Or,

R [f(ax , by)] =
1

|ab| f̂
(
p,
u1

a
,
u2

b

)
.

Similarly, results (18.3.7b) can be proved.
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Symmetry:
(a) By definition, we have

f̂ (ap , au) =
∫ ∞

−∞

∫ ∞

−∞
f(x, y)δ(ap− axu1 − ayu2) dxdy,

which is, by using δ(ap− axu1 − ayu2) =
1
|a| δ(p− xu1 − yu2),

=
1
|a|

∫ ∞

−∞

∫ ∞

−∞
f(x, y) δ(p− xu1 − yu2) dxdy

=
1
|a| f̂(p,u).

This implies that the Radon transform is an even homogeneous function of
degree −1. In particular if a=−1, we have

f̂(−p,−u)= f̂(p,u),

that is, f̂ is an even function.
(b) Another form of symmetry property is

f̂(p, au) = |a|−1f̂
(p
a
,u
)
.

We have, by definition,

f̂ (p, au) =
∫ ∞

−∞

∫ ∞

−∞
f(x, y) δ(p− axu1 − ayu2) dxdy

=
∫ ∞

−∞

∫ ∞

−∞
f(x, y) δ(

p

a
.a− axu1 − ayu2) dxdy

=
1
|a|

∫ ∞

−∞

∫ ∞

−∞
f(x, y) δ(

p

a
− xu1 − yu2) dxdy

=
1
|a| f̂

(p
a
,u
)
.

In general, there is an important relation between the n-dimensional Fourier
transform and the Radon transform given by

f̃(su) =
1

(2π)
n
2

∫ ∞

−∞
e−ips f̃(p, u) dp. (18.3.9)

The n-dimensional Fourier transform of f(x) is

f̃(k) =
1

(2π)
n
2

∫ ∞

−∞
e−i(k.x) f̃(x) dx. (18.3.10)
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Invoking the hyperspherical polar coordinates allows us to write k= su where
u∈Sn−1 which is the generalized unit sphere

∑n
k=1 x

2
k = 1. Thus, (18.3.10)

becomes

f̃(k) = f̃(su) ==
1

(2π)
n
2

∫ ∞

−∞
e−is(u.x) f̃(x) dx. (18.3.11)

We put g(x) = exp [−is(u.x)] f(x) so that

ĝ(p,ηηη) =
∫
L

exp [−is(u.x)] f(x) ds, (18.3.12)

where L is the hyperplane x.ηηη= p and ds is the (n− 1)-dimensional surface
area in Rn. Hence,

ĝ(p,u) = exp(−ips)
∫
u.x=p

f(x)ds= e−ipsf̂(p,u). (18.3.13)

Using the result (18.4.12), we have∫ ∞

−∞
ĝ(p,u) dp =

∫ ∞

−∞
e−ipsf̂(p,u) dp=

∫ ∞

−∞
g(x)dx

=
∫ ∞

−∞
e−is(u.x)f(x) dx = (2π)

n
2 f̃(su)

=
1

(2π)
n−1

2

1√
2π

∫ ∞

−∞
e−ipsf̂(p,u) dp.

Consequently, this yields the following result

f̃(su) =
1

(2π)
n
2

∫ ∞

−∞
e−ipsf̂(p,u)dp. (18.3.14)

Denoting the one-dimensional Fourier transform along the radial direction by
Fr, equation (18.3.14) can be written as

F{f}=
1

(2π)
n−1

2

Fr{f̂} (18.3.15)

In view of (18.3.14) and the inverse Fourier transform, we find the relation

f̂(p,u) = (2π)
n−1

2
1√
2π

∫ ∞

−∞
eipsf̃(su)ds

= (2π)
n−2

2

∫ ∞

−∞
f̃(su) eisp ds. (18.3.16)
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18.4 The Radon Transform of Derivatives

Since

∂f

∂x
= lim
h→0

⎡⎣f
(
x+ h

u1
, y
)
− f(x, y)

h
u1

⎤⎦ ,
we can write

R

[
∂f

∂x

]
= u1 lim

h→0

⎡⎣R
{
f
(
x+ h

u1
, y
)}

− R {f(x, y)}
h

⎤⎦
= u1 lim

h→0

f̂(p+ h,u)− f̂(p,u)
h

= u1
∂

∂p
f̂(p,u).

Similarly partial derivative with respect to y

R

[
∂f

∂y

]
= u2

∂

∂p
f̂(p,u).

The Radon transform of the first derivatives, that is,

R

[
n∑
k=1

ak
∂f

∂xk

]
(p,u) = (a.u)

∂

∂p
f̂(p,u), (18.4.1)

where a= (a1, a2, ..., an).
Or, equivalently,

R [(a.∇) f ] (p,u) = (a.u)
∂

∂p
f̂(p,u), (18.4.2)

where ∇=
(

∂
∂x1

, ∂
∂x2

, ..., ∂
∂xn

)
is the gradient operator.

In particular,

R

[
∂f

∂xk

]
(p,u) = uk

∂

∂p
f̂(p,u). (18.4.3)

We leave proofs of the above results to the reader.
The Radon transform of the second order derivatives are given by

R

[
∂2f

∂x2

]
= R

[
∂

∂x

(
∂f

∂x

)]
= u1

∂

∂p
R

[
∂f

∂x

]
= u2

1

∂2

∂p2
f̂(p,u),

R

[
∂2f

∂x∂y

]
= u1u2

∂2

∂p2
f̂(p,u),

R

[
∂2f

∂y2

]
= u2

2

∂2

∂p2
f̂(p,u).
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We state more general results:
If L=L

(
∂
∂x1

, ∂
∂x2

, ..., ∂
∂xn

)
is a linear differential operator with constant

coefficients, then

R

[
L

(
∂

∂x1
,
∂

∂x2
, ...,

∂

∂xn

)
f(x)

]
(p,u)

=L

(
u1

∂

∂p
, u2

∂

∂p
, ..., un

∂

∂p

)
f̂(p,u). (18.4.4)

In particular,

R

[
n∑
k=1

n∑
l=1

(akbl)
∂2f

∂xk∂xl

]
(p,u) = (a.u)(b.u)

∂2f̂(p,u)
∂p2

, (18.4.5)

R

[
∂2f(x)
∂xk∂xl

]
(p,u) = (ukul)

∂2f̂(p,u)
∂p2

. (18.4.6)

If akbl = δkl (the Kronecker delta), then the operator involved is the Laplace
operator

∇2 =
∂2

∂x2
1

+
∂2

∂x2
2

+ ....+
∂2

∂x2
n

,

and

R
{∇2f(x)

}
= |u|2 ∂

2f̂(p,u)
∂p2

=
∂2f̂(p,u)
∂p2

, (18.4.7)

where |u|2 = 1 is used to obtain the last result. This is a very important result
that is employed to solve partial differential equations.

18.5 Derivatives of the Radon Transform

In order to calculate the derivative of the radon transform, the following for-
mulas of the derivative of the Dirac delta function are needed and stated
as

∂

∂x
δ(x− y) =− ∂

∂y
δ(x− y). (18.5.1)

If y is replaced by by, then

∂

∂(by)
δ(x− by)=

1
b

∂

∂y
δ(x− by) =− ∂

∂x
δ(x− by). (18.5.2)

Similarly, an n-dimensional result is

∂

∂yj
δ(x− y) =− ∂

∂xj
δ(x− y). (18.5.3)
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It follows from the above results that

∂

∂ξj
δ(p− ξξξ.x) =−xj ∂

∂p
δ((p− ξξξ.x), (18.5.4)

where ξξξ is not necessarily a unit vector in the term ξξξ.x.
Formula (18.5.4) reveals that the derivatives are calculated with respect to

components of ξξξ and then evaluated at ξξξ=u. Using the definition of (18.2.5),
we obtain

∂f̂

∂uk
=

[
∂f̂(p,ξξξ)
∂ξk

]
ξξξ=u

=
[∫

f(x)
∂

∂ξk
δ(p− ξξξ.x) dx

]
ξξξ=u

= − ∂

∂p

∫
xkf(x) δ(p− u.x) dx. (18.5.5)

Consequently, we obtain the formula for the derivative of the Radon transform

∂f̂(p,u)
∂uk

=
[
∂

∂ξk
R {f(x)}

]
ξξξ=u

=− ∂

∂p
R {xk f(x)} . (18.5.6)

More generally, we state the derivatives of the Radon transform as(
a.
∂

∂u

)
R {f(x)} (p,u) =− ∂

∂p
R [(a.x)f(x)] (p,u), (18.5.7)

where a. ∂∂u =
∑n
k=1 ak

∂
∂uk

.
Formula (18.5.6) can be generalized for higher order derivatives as follows:

∂2f̂(p,u)
∂ul ∂uk

= (−1)2
∂2

∂p2
R {xl xkf(x)} , (18.5.8)

∂3f̂(p,u)
∂ul ∂2uk

= (−1)3
∂3

∂p3
R
{
xl x

2
kf(x)

}
, (18.5.9)

where + or − sign is used for even or odd order derivatives, respectively.
More generally,

n∑
k,l=1

(ak bl)
∂2f̂(p,u)
∂uk ∂ul

=
∂2

∂p2
R {(a.x) (b.x)f(x)} . (18.5.10)

For a two dimensional function, f(x) = f(x, y) we obtain

∂k+lf̂(p,u)
∂uk1 ∂u

l
2

=
(
− ∂

∂p

)k+l
R
{
xk xl f(x)

}
(p,u). (18.5.11)

Finally, the property involving the integration of the radon transform with
respect to p can be stated as follows:∫ ∞

−∞
f̂(p,u) dp=

∫ ∞

−∞
f(x) dx. (18.5.12)
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Example 18.5.1
The Radon transform of Hermite polynomials is given by

R
{
Hl(x)Hk(y) exp(−(x2 + y2)

}
=
√
π(cosφ)l (sinφ)k e−p

2
Hl+k(p),

(18.5.13)

where Hn(x) is the Hermite polynomials of degree defined by Rodrigues for-
mulas

e−x
2
Hn(x) = (−1)n

(
∂

∂x

)n
e−x

2
. (18.5.14)

Obviously,

exp
[−(x2 + y2)

]
Hl(x)Hk(x) = (−1)l+k

(
∂

∂x

)l(
∂

∂y

)k
exp

[−(x2 + y2)
]
.

(18.5.15)

It follows from the above formulas

R

[(
∂

∂x

)l(
∂

∂y

)k
f(x, y)

]
= (cosφ)l(sinφ)k

(
∂

∂p

)l+k
f̂(p,u),

(18.5.16)

that the Radon transform of (18.5.15) is given by

R
[
exp{−(x2 + y2)}Hl(x)Hk(x)

]
= (cosφ)l(sinφ)k

(
∂

∂p

)l+k√
π e−p

2
,

(18.5.17)

where f̂(p,u) = R
[
exp{−(x2 + y2)}]=

√
π e−p

2
is used.

18.6 Convolution Theorem for the Radon Transform

THEOREM 18.6.1
(Convolution). If f̂(p, u) = R{f(x)} and ĝ(p, u) = R{g(x)}, then

R {(f � g)(x)}=
(
f̂ � ĝ

)
(p, u). (18.6.1)
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PROOF Let h(x) be the convolution of f(x) and g(x). So, we have

h(x) = (f � g)(x) =
∫ ∞

−∞
f(x)g(x− y)dy, (18.6.2)

where x= (x1, x2, ..., xn) and y = (y1, y2, ..., yn). Taking the Radon transform
of (18.5.3) yields the following

ĥ(p,u) = R{h(x)}= R{(f � g)(x)}
=
∫ ∞

−∞
h(x) δ(p− u.x) dx

=
∫ ∞

−∞
f(y) dy

∫ ∞

−∞
g(x− y) δ(p− u.x) dx

=
∫ ∞

−∞
f(y) dy

∫ ∞

−∞
g(z) δ(p− u.y − u.z) dz, (z =x− y)

=
∫ ∞

−∞
f(y) ĝ(p− u.y, u) dy

=
∫ ∞

−∞
f(y) dy

∫ ∞

−∞
ĝ(p− s, u) δ(s− u.y) ds

=
∫ ∞

−∞
ĝ(p− s, u) ds

∫ ∞

−∞
f(y) δ(s− u.y) dy

=
∫ ∞

−∞
f̂(s, u) ĝ(p− s, u) ds

=
[(
f̂ ∗ ĝ

)
(p, u)

]
,

where
ĝ(p− u.y, u) =

∫ ∞

−∞
ĝ(p− s, u) δ(s− u.y) ds.

Or,
ĥ(p, u) = R {f � g} (x) = f̂(p, u) � ĝ(p, u).

18.7 Inverse of the Radon Transform and the Parseval
Relation

We consider the n-dimensional Fourier transform f̃(k) of f(x) defined by

f̃(k) = F{f(x)}=
1

(2π)n/2

∫ ∞

−∞
e−ik.x f(x)dx. (18.7.1)
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Using the hyperspherical polar coordinates, we can put k= ρu where u∈Sn−1

which is the generalized unit sphere
∑n
r=1 x

2
r = 1. Consequently,

f̃(k) = f̃(ρu) =
1

(2π)n/2

∫ ∞

−∞
e−iρ(u.x) f(x)dx. (18.7.2)

For fixed ρ and u, we set F (x) =exp [−iρ(u.x)] f(x), so that

F̂ (p,u) =
∫
L

e−iρ(u.x)f(x) ds, (18.7.3)

where L is the hyperplane u′.x= p and ds is (n− 1)-dimensional surface area
measure in Rn. Thus,

F̂ (p,u) = e−iρp
∫
u′.x=p

f(x) ds= e−iρpf̂(p,u), (18.7.4)

which is integrated by using (18.5.12) so that∫ ∞

−∞
F̂ (p,u) dp=

∫ ∞

−∞
e−iρpf̂(p,u) dp. (18.7.5)

Therefore, result (18.7.2) becomes

f̃(ρu) =
1

(2π)n/2

∫ ∞

−∞
e−iρpf̂(p,u)dp. (18.7.6)

We next denote the one-dimensional Fourier transform along the radial
direction by Fr, so that (18.7.6) can be written as

F{f(ρu)}=
1

(2π)
n−1

2

Fr

[
f̂(p,u)

]
. (18.7.7)

Invoking the inverse Fourier transform in (18.7.6)

f̂(p,u) =
1

(2π)
n−1

2

∫ ∞

−∞
f̃(ρu) eiρp dρ. (18.7.8)

We next consider the inverse Fourier transform with (18.7.6) to obtain

f(x) =
1

(2π)n/2

∫ ∞

−∞
eik.xf̃(k) dk (18.7.9)

=
1

(2π)n/2

∫ ∞

0

ρn−1dρ

∫
|u|=1

eiρ(x.u)f̃(ρu) du

=
1

(2π)n/2

∫ ∞

0

ρn−1dρ

∫
|u|=1

du
∫ ∞

−∞
eiρ(x.u)f̂(p,u)e−iρp dp

=
∫
|u|=1

h(x.u, u) du,
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where

h(t,u) =
1

(2π)n/2

∫ ∞

0

dρ

∫ ∞

−∞
ρn−1 e−iρ(p−t) f̂(p,u)dp. (18.7.10)

We thus obtain a theorem for the inverse Radon transform:

THEOREM 18.7.1
(Inversion Theorem). If f̂ is the Radon transform of f(x), then

f(x) =
∫
|u|=1

h(x.u,u)du, (18.7.11)

where

h(t,u) =

⎧⎪⎪⎨⎪⎪⎩
an

∂n−1

∂tn−1
f̂(t,u), for odd n

anHHH

[
∂n−1

∂pn−1
f̂(p,u)

]
(t), for even n

⎫⎪⎪⎬⎪⎪⎭ , (18.7.12ab)

where HHH stands for the Hilbert transform with respect to p,

an =

⎧⎪⎪⎨⎪⎪⎩
in−1

2 (2π)n−1
, for odd n

in

2 (2π)n−1
, for even n

⎫⎪⎪⎬⎪⎪⎭ . (18.7.13ab)

THEOREM 18.7.2
(Two Dimensional Inversion Theorem). If f̂(p,u) is the Radon transform of
f(x) = f(x, y), then

f(x, y) =− 1
4π2

∫
|u|=1

du
∫ ∞

−∞

f̂p(p,u)
p− x.u

dp. (18.7.14)

In this case n= 2, it follows from (18.7.12ab)–(18.7.13ab) that

h(t,u) =
−1

2 (2π)
1
π

∫ ∞

−∞

f̂p(p,u)
p− t

dp, (18.7.15)

where
f̂p(p,u) =

∂

∂p
f̂(p,u).

Consequently, the formula (18.7.11) reduces to (18.7.14).
On the other hand, using u = (cosφ, sinφ), (18.7.14) gives

f(x, y) =− 1
π

∫ π

0

dφ

∫ ∞

−∞

f̂p(p,u)
p− x.u

dp. (18.7.16)
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A simple change of variables x= r cos θ, y= r sin θ leads to the inversion
formula in the polar form

f(r, θ) =− 1
4π2

∫ 2π

0

dφ

∫ ∞

−∞

f̂p(p, φ)
p− r cos(φ− θ)

dp. (18.7.17)

We discuss the three-dimensional inverse Radon transform independently be-
cause it does not involve the Hilbert transform.

THEOREM 18.7.3
(Three Dimensional Inversion Theorem). If f̂(p,u) = R{f(x, y, z)}, then

f(x) =−∇2

∫
|u|=1

f̂(p, x.u) du, (18.7.18)

where x= (x, y, z) ∈ R3.

PROOF We begin with the inverse of the three-dimensional Fourier trans-
form in the form

f(x) = F−1
3 f̃(su) =

∫ ∞

0

s2 ds

∫
|u|=1

f̃(qu) eis(x.u) du

where the integral over the unit sphere is stated as follows:∫
|u|=1

du =
∫ 2π

0

dφ

∫ π

0

sin θ dθ,

where u = (sin θ cosφ, sin θ sinφ, cos θ), θ is the polar angle and φ is the az-
imuthal angle.

Invoking the symmetry of the Radon transform f̂ , where F{f̂}= f̃ , the
integral over q from 0 to ∞ can be replaced by one-half the integral from −∞
to ∞ and hence,

f(x) =
1
2

∫
|u|=1

du
[∫ ∞

−∞
s2 f̃(su)eisp

]
p=x.u

ds

=
1
2

∫
|u|=1

F−1
[
{s2f̃(su)}

]
p=x.u

du

which is, by the Fourier transform of the second derivatives, or,

=−1
2

∫
|u|=1

[
f̂pp(p,u)

]
p=x.u

du. (18.7.19)

This is an inversion formula for the three-dimensional Radon transform. In
view of the fact that, for any f(x,u),

∇2f(x,u) = |u|2 [fpp(p)]p=x.u = [fpp(p)]p=x.u , (18.7.20)
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we obtain another form of the inversion formula for the Radon transform

f(x) =−1
2
∇2

∫
|u|=1

f̂(x.u, u) du. (18.7.21)

We next introduce the adjoint Radon transform from the definition of the
inner product as

〈φ, R[f ]〉 =
∫ ∞

−∞
dp

∫
|u|=1

φ(p,u) (Rf)(p,u) du

=
∫ ∞

−∞
dp

∫
|u|=1

φ(p,u)du
∫ ∞

−∞
f̄(x) δ(p− x.u) dx

=
∫ ∞

−∞
f̄(x) dx

[∫
|u|=1

du
∫ ∞

−∞
φ(p,u) δ(p− x.u) dp

]

=
∫ ∞

−∞

[∫
|u|=1

φ(x.u,u) du

]
f̄(x) dx

=
∫ ∞

−∞
(R∗[φ]) f̄(x) dx = 〈R∗[φ], f〉 (18.7.22)

where the adjoint R∗ is defined by

R∗[φ](x) =
∫
|u|=1

φ(x.u, u) du. (18.7.23)

This means that the action of the adjoint R∗ on φ corresponds to the integra-
tion of φ over all hyperplanes passing through a given point.

We use (18.7.12ab) to introduce the operator K as follows:

Kφ(p,u)=

⎧⎪⎪⎨⎪⎪⎩
an

∂n−1

∂pn−1
φ(p,u), for odd n

anHHH

[
∂n−1

∂pn−1
φ(p,u)

]
, for even n

⎫⎪⎪⎬⎪⎪⎭ , (18.7.24)

where an is defined by (18.7.13ab) and HHH stands for the Hilbert transform.
Clearly, it follows from (18.7.12ab) that

Kf̂(x.u, u) = h(x.u, u) (18.7.25)

and hence, by (18.7.23),

R∗[Kf̂(x.u,u)] =R∗[h(x.u,u)] =
∫
|u|=1

h(x.u,u) du = f(x). (18.7.26)
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This means that the inversion formula (18.7.11) can be written as

f =R∗K[f̂ ]. (18.7.27)

THEOREM 18.7.4

(Parseval’s Theorem). If R{f(x)}= f̂(p, u) and R{g(x)}= ĝ(p, u), then

(a) for even n

〈f, g〉 =
∫ ∞

−∞
f(x)ḡ(x) dx

= an

∫
|u|=1

du
∫ ∞

−∞

∫ ∞

−∞
f̂(p, u) ¯̂g(q, u)(p− q)−n dp dq, (18.7.28)

where an = (−1)
n
2 (2π)−n (n− 1)!,

(b) for odd n

〈f, g〉 =
∫ ∞

−∞
f(x)ḡ(x) dx

=
(−1)

n−1
2

2(2π)n−1

∫
|u|=1

du
∫ ∞

−∞
f̂(p, u) ¯̂g (n−1)

p (p, u) dp (18.7.29)

=
1

2(2π)n−1

∫
|u|=1

du
∫ ∞

−∞
f̂p

(m)
(p, u) ¯̂g (m)

p (p, u) dp, (18.7.30)

where m= n−1
2 .

We next introduce an operator H due to Ludwig (1966) by

H [f ](p)=
1√
2

1
(2π)m

∂mf(p)
∂pm

, (18.7.31)

where m= n−1
2 . Consequently, the Parseval’s formula (18.7.30) reduces to the

form

〈f, g〉= 〈Hf̂, Hĝ〉. (18.7.32)

Ludwig (1966) proved that HR is a unitary transformation from L2(Rn)
onto L2(R × Sn−1). For a proof of the above Parseval’s formulas, the reader
is referred to Ludwig (1966) and Zayed (1996).
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18.8 Applications of the Radon Transform

We prove a remarkable relation between the Radon transform and the solution
of the Cauchy problem involving the solution of the wave equation

utt = c2 ∇2u, x∈R3, t > 0, (18.8.1)

u(x, 0)= f(x) ut(x, 0) = g(x), (18.8.2ab)

where c is a constant and ∇2 is the three-dimensional Laplacian.
We apply the radon transform of u(x, t) by

û(p,ξξξ, t) = R {u(x, t)}=
∫ ∞

−∞
u(x, t) δ(p− x.ξξξ) dξξξ, (18.8.3)

where ξξξ= (ξ1, ξ2, ξ3) is the three-dimensional unit vector in R3 so that |ξξξ|=
ξ21 + ξ22 + ξ23 = 1.

Application of (18.8.3) to (18.8.1)-(18.8.2ab) gives

ûtt = c2
(
ξ21 + ξ22 + ξ23

)
ûpp = c2 ûpp, (18.8.4)

û(p, ξξξ, 0) = f̂(p, ξξξ),
[
dû(p, ξξξ, t)

dt

]
t=0

= ĝ(p,ξξξ). (18.8.5)

Thus, the radon transform û(p,ξξξ, t) satisfies the Cauchy problem (18.8.4)–
(18.8.5). We solve this problem by the application of the Fourier transform of
û(p,ξξξ, t) so that

d2Û

dt2
= −c2k2 Û , (18.8.6)

Û(k, ξξξ, 0) = F̂ (k, ξξξ),

(
dÛ

dt

)
t=0

= Ĝ(k, ξξξ), (18.8.7)

where

Û(k,ξξξ, t) = F {û(p, ξξξ, t)}=
1√
2π

∫ ∞

−∞
e−ikp û(p, ξξξ, t) dp (18.8.8)

The solution of this transformed problem is obtained in Chapter 2, and the
solution of (18.8.6)-(18.8.7) gives

Û(k, ξξξ, t) = F̂ (k, ξξξ) cos(ckt) +
Ĝ(k, ξξξ)

2ick
sin(ckt).
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Following the method presented in Section 2.12, the D’Alembert solution is
obtained in the form

û(p, ξξξ, t) =
1
2

[
f̂(p− ct) + f̂(p+ ct)

]
+

1
2c

∫ p+ct

p−ct
ĝ(α, ξξξ) dα. (18.8.9)

The inverse Radon transform yields the solution of the Cauchy problem in
the form

u(x, t) = R−1 {û(p, ξξξ, t)}=−∇2

∫
|ξξξ|=1

û(x.ξξξ, ξξξ, t) dξξξ. (18.8.10)

It is noted that the Radon transform transformed the (1+3)-dimensional
wave equation (18.8.1) to the (1+1)-dimensional wave equation (18.8.4) which
can be solved by using standard methods. In general, the Radon transform
reduces problems with (n+ 1) independent variables to problems with two
independent variables. In other words, as stated in equation (18.4.4), if L is a
differential operator of (n+ 1)-dimensions with constant coefficients, then its
Radon transform is

R

[
L

(
∂

∂x1
,
∂

∂x2
, ...,

∂

∂xn
;
∂

∂t

)
f(x, t)

]
=L

(
u1

∂

∂p
, u2

∂

∂p
, ..., un

∂

∂p
;
∂

∂t

)
f̂(p, ξξξ, t). (18.8.11)

This fundamental property help solve hyperbolic partial differential equations
with constant coefficients.

18.9 Exercises

1. Show that

(a) R
{
x2 exp(−x2 − y2)

}
=

√
π

2
(
2 p2 cos2 φ+ sin2 φ

)
e−p

2
.

(b) R
{
y2 exp(−x2 − y2)

}
=

√
π

2
(
2 p2 sin2 φ+ cos2 φ

)
e−p

2
.

(c) R
{
(x2 + y2) exp(−x2 − y2)

}
=

√
π

2
(
2 p2 + 1

)
e−p

2
.

2. Verify that
∂f

∂u1
=− ∂

∂p

[
R
{
x e−x

2−y2
}]

.
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3. If f(x, y) = exp
(−x2 − y2

)
, show that

∂f̂

∂uk
=
√
π uk (2p2 − 1) e−p

2
.

4. Prove result (18.5.16).

5. If A is nonsingular m× n matrix, show that

(a) R{f(Ax)}= f̂(p,Au),

where x= (x1, x2, ..., xn), and Au is a unit vector.

(b) R{f(cx)}= c−nf̂
(
p,

u
c

)
= c1−nf̂ (cp,u) , A= cI.

6. If f(x, y) = exp(−x2 − y2), n= 2, c= (σ
√

2)−1, use 5(b) and

f(Ax) = exp
(
−x

2 + y2

2σ2

)
and

1
c

f̂(cp,u) = σ
√

2π exp
(
− p2

2σ2

)
,

show that the Radon transform of the symmetric Gaussian probability
density function is given by

R

{
1

2πσ2
exp

(
−x

2 + y2

2σ2

)}
=

1
σ
√

2π
exp

(
− p2

2σ2

)
.
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Wavelets and Wavelet Transforms

“Wavelets are without doubt an exciting and intuitive concept.
The concept brings with it a new way of thinking, which is ab-
solutely essential and was entirely missing in previously existing
algorithms.”

Yves Meyer

“Today the boundaries between mathematics and signal and im-
age processing have faded, and mathematics has benefited from
the rediscovery of wavelets by experts from other disciplines. The
detour through signal and image processing was the most direct
path leading from Haar basis to Daubechies’s wavelets.”

Yves Meyer

19.1 Brief Historical Remarks

The concept of “wavelets” or “ondelettes” started to appear in the literature
only in the early 1980s. This new concept can be viewed as a synthesis of var-
ious ideas which originated from different disciplines including mathematics,
physics and engineering. In 1982 Jean Morlet, a French geophysical engineer,
first introduced the idea of wavelet transform as a new mathematical tool for
seismic signal analysis. It was Alex Grossmann, a French theoretical physicist,
who quickly recognized the importance of the Morlet wavelet transform which
is something similar to coherent states formalism in quantum mechanics, and
developed an exact inversion formula for the wavelet transform. In 1984 the
joint venture of Morlet and Grossmann led to a detailed mathematical study
of the continuous wavelet transforms and their various applications. It has
become clear from their work that, analogous to the Fourier expansions, the
wavelet theory has provided a new method for decomposing a function or a
signal.

In 1985 Yves Meyer, a French pure mathematician, recognized immediately
the deep connection between the Calderón formula in harmonic analysis and

563
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the new algorithm discovered by Morlet and Grossmann. Using the knowledge
of the Calderón-Zygmund operators and the Littlewood-Paley theory, Meyer
was able to give a mathematical foundation for wavelet theory. The first ma-
jor achievement of wavelet analysis was Daubechies, Grossmann and Meyer’s
(1986) construction of a “painless” non-orthogonal wavelet expansion. During
1985-1986, further work of Meyer and Lemarié on the first construction of
a smooth orthonormal wavelet basis on R and RN marked the beginning of
their famous contributions to the wavelet theory. At the same time, Stéphans
Mallat recognized that some quadratic mirror filters play an important role
for the construction of orthogonal wavelet bases generalizing the Haar sys-
tem. Meyer (1986) and Mallat (1988) realized that the orthogonal wavelet
bases could be constructed systematically from a general formalism. Their
collaboration culminated with the remarkable discovery by Mallat (1989 a,b)
of a new formalism, which is the so called multiresolution analysis. It was
also Mallat who constructed the wavelet decomposition and reconstruction
algorithms using the multiresolution analysis. Mallat’s brilliant work was the
major source of many new developments in wavelets. A few months later, G.
Battle (1987) and Lamarié (1988) independently proposed the construction
of spline orthogonal wavelets with exponential decay.

Inspired by the work of Meyer, Ingrid Daubechies (1988) made a new re-
markable contribution to wavelet theory by constructing families of compactly
supported orthonormal wavelets with some degree of smoothness. Her 1988
paper had a tremendous positive impact on the study of wavelets and their
diverse applications. This work significantly explained the connection between
the continuous wavelets on R, and the discrete wavelets on Z or ZN, where
the latter has become useful for digital signal analysis. The idea of frames was
introduced by Duffin and Schaeffer (1952) and subsequently studied in some
detail by Daubechies (1990, 1992). In spite of tremendous success, expert-
s in wavelet theory recognized that it is difficult to construct wavelets that
are symmetric, orthogonal and compactly supported. In order to overcome
this difficulty, Cohen et al. (1992a,b) studied bi-orthogonal wavelets in some
detail. Chui and Wang (1991, 1992) introduced compactly supported spline
wavelets, and semi-orthogonal wavelet analysis. On the other hand, Beylkin,
Coifman and Rokhlin (1991), and Beylkin (1992) have successfully applied the
multiresolution analysis generated by a completely orthogonal scaling func-
tion to study a wide variety of integral operators on L2(R) by a matrix in
a wavelet basis. This work culminated with the remarkable discovery of new
algorithms in numerical analysis. Consequently, some significant progress has
been made in boundary element methods, finite element methods, and numer-
ical solutions of partial differential equations using wavelet analysis. For more
detailed historical introduction, the reader is referred to Debnath (2002).

We close this historical introduction by citing some of the applications which
include addressing problems in signal processing, computer vision, seismology,
turbulence, computer graphics, image processing, structures of the galaxies
in the Universe, digital communication, pattern recognition, approximation
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theory, quantum optics, biomedical engineering, sampling theory, matrix the-
ory, operator theory, differential equations, numerical analysis, statistics and
multiscale segmentation of well logs, natural scenes and mammalian visual
systems. Wavelets allow complex information such as music, speech, images,
patterns, etc., to be decomposed into elementary form, called building blocks
(wavelets).

19.2 Continuous Wavelet Transforms

An integral transform is an operator T on a space of functions on some Ω⊂RN

which is defined by

(Tf)(y)=
∫

Ω

K(x, y)f(x)dx.

The properties of the transform depend on the function K, which is called
the kernel of the transform. For example, in the case of the Fourier transform
K(x, y) = e−ixy. Note that y can be interpreted as a scaling factor. We take
the exponential function ϕ(x) = eix and then generate a one parameter family
of functions by taking scaled copies of ϕ, that is ϕα(x) = e−iαx, for all α∈R.
The continuous wavelet transform is similar to the Fourier transform in the
sense that it is based on a single function ψ and that this function is scaled.
But unlike the Fourier transform, we also shift the function, thus, generating
a two parameter family of functions ψa,b. It is convenient to define ψa,b as
follows:

ψa,b(x) = |a|− 1
2ψ

(
x− b

a

)
.

Then the continuous wavelet transform is defined by

(Wψf)(a, b)=
∫ ∞

−∞
f(t)ψa,b(t) dt= |a|− 1

2

∫ ∞

−∞
f(t)ψ

(
t− b

a

)
dt.

The continuous wavelet transform is not a single transform as the Fourier
transform, but any transform obtained in this way. Properties of a particular
transform will depend on the choice of ψ. One of the first properties we expect
of any integral transform is that the original function can be reconstructed
from the transform. We will prove a theorem which gives conditions on ψ that
guarantee invertibility of the transform. First we need to define the object of
our study more precisely.

DEFINITION 19.2.1 (Wavelet) By a wavelet we mean a function ψ ∈
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L2(R) satisfying the admissibility condition∫ ∞

−∞

|ψ̂(ω)|2
|ω| dω <∞, (19.2.1)

where ψ̂ is the Fourier transform ψ, i.e.,

ψ̂(ω) =
1√
2π

∫ ∞

−∞
e−iωxψ(x)dx.

If ψ ∈L2(R), then ψa,b(x)∈L2(R) for all a, b. Indeed,

‖ψa,b(t)‖2 = |a|−1

∫ ∞

−∞

∣∣∣∣ψ(x− b

a

)∣∣∣∣2 dt= ∫ ∞

−∞
|ψ(t)|2dt= ‖ψ‖2. (19.2.2)

The Fourier transform of ψa,b(x) is given by

ψ̂a,b(ω) = |a|− 1
2

1√
2π

∫ ∞

−∞
e−iωxψ

(
x− b

a

)
dx=

√
|a| e−ibωψ̂(aω). (19.2.3)

1

-1

0 1

Figure 19.1 The Haar wavelet.

Example 19.2.1
(The Haar Wavelet) Let

ψ(x) =

⎧⎪⎨⎪⎩
1 0≤ x< 1

2

−1 1
2 ≤ x< 1

0 otherwise.

The Haar wavelet is shown in Figure 19.1.
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Then the Fourier transform ψ̂(ω) = F {ψ(x)} is

ψ̂(ω) =
1√
(2π)

(sin ω
4 )2

ω
4

e−i(ω−π)/2 =
1√
(2π)

(
4i
ω

)
e−

iω
2 sin2

(ω
4

)
.

and

∫ ∞

−∞

|ψ̂(ω)|2
|ω| dω=

8
π

∫ ∞

−∞

| sin ω
4 |4

|ω|3 dω <∞.

Figure 19.2 The absolute value of the Fourier transform of the Haar
wavelet.

The Haar wavelet is one of the classic examples. It is well-localized in the
time domain, but it is not continuous. The absolute value of the Fourier trans-
form of the Haar wavelet, |ψ̂(ω)|, is plotted in Figure 19.2. This figure clearly
indicates that the Haar wavelet has poor frequency localization, since it does
not have compact support in the frequency domain. The function |ψ̂(ω)| is
even and attains its maximum at the frequency ω0 ∼ 4.662. The rate of decay
as ω→∞ is as ω−1. The reason for the slow decay is discontinuity of ψ. Its
discontinuous nature is a serious weakness in many applications. However, the
Haar wavelet is one of the most fundamental examples that illustrate major
features of the general wavelet theory.

THEOREM 19.2.1
Let ψ be a wavelet and let ϕ be a bounded integrable function. Then the
function ψ ∗ ϕ is a wavelet.
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PROOF Since∫ ∞

−∞
|ψ ∗ ϕ(x)|2 dx=

∫ ∞

−∞

∣∣∣∣∫ ∞

−∞
ψ(x− u)ϕ(u)du

∣∣∣∣2 dx
≤
∫ ∞

−∞

(∫ ∞

−∞
|ψ(x− u)||ϕ(u)|du

)2

dx

=
∫ ∞

−∞

(∫ ∞

−∞
|ψ(x− u)||ϕ(u)|1/2|ϕ(u)|1/2du

)2

dx

≤
∫ ∞

−∞

(∫ ∞

−∞
|ψ(x− u)|2|ϕ(u)|du

∫ ∞

−∞
|ϕ(u)|du

)
dx

≤
∫ ∞

−∞
|ϕ(u)|du

∫ ∞

−∞

∫ ∞

−∞
|ψ(x− u)|2|ϕ(u)|dxdu

=
(∫ ∞

−∞
|ϕ(u)|du

)2 ∫ ∞

−∞
|ψ(x)|2dx<∞,

we have ψ ∗ ϕ∈L2(R). Moreover,∫ ∞

−∞

|ψ̂ ∗ ϕ(ω)|2
|ω| dω=

∫ ∞

−∞

|ψ̂(ω)ϕ̂(ω)|2
|ω| dω=

∫ ∞

−∞

|ψ̂(ω)|2
|ω| |ϕ̂(ω)|2dω

≤ sup |ϕ̂(ω)|2
∫ ∞

−∞

|ψ̂(ω)|2
|ω| dω <∞

Thus, the function ψ ∗ ϕ is a wavelet.

Figure 19.3 A continuous wavelet.

Example 19.2.2
Theorem 19.2.1 can be used to generate examples of wavelets. For example,
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if we take the Haar wavelet and convolve it with the following function

ϕ(x) =

⎧⎪⎨⎪⎩
0 x< 0
1 0≤ x≤ 1,
0 x≥ 1,

then we obtain a simple continuous function (see Figure 19.3). If we convolve
the Haar wavelet with ϕ(x) = e−x

2
, then the obtained wavelet is smooth (see

Figure 19.4).

Figure 19.4 A smooth wavelet.

DEFINITION 19.2.2 (Continuous Wavelet Transform). Let ψ ∈L2(R)
and let, for a, b∈R, a �= 0,

ψa,b(x) = |a|− 1
2ψ

(
x− b

a

)
.

The integral transform Wψ defined on L2(R) by

(Wψf)(a, b)=
∫ ∞

−∞
f(t)ψa,b(t) dt= 〈f, ψa,b〉 (19.2.4)

is called a continuous wavelet transform.

The function ψ is often called the mother wavelet or, the analyzing wavelet.
The parameter b can be interpreted as the time translation and a is a scaling
parameter which measures the degree of compression.
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LEMMA 19.2.1
For any f ∈L2(R), we have

F{(Wψf)(a, b)}=
√

2π|a| f̂(ω)ψ̂(aω). (19.2.5)

PROOF Using the Parseval formula for the Fourier transform, it follows
from (19.2.4) that

(Wψf)(a, b) = 〈f, ψa,b〉=
〈
f̂ , ψ̂a,b

〉
=

1√
2π

∫ ∞

−∞

{√
2π|a| f̂(ω) ψ̂(aω)

}
eibωdω. (19.2.6)

This means that

F{(Wψf)(a, b)}=
1√
2π

∫ ∞

−∞
e−ibω(Wψf)(a, b)db

=
√

2π|a| f̂(ω) ψ̂(aω). (19.2.7)

THEOREM 19.2.2
(Parseval’s Relation for Wavelet Transforms). Suppose that ψ ∈L2(R) which
satisfy the admissibility condition

Cψ = 2π
∫ ∞

−∞

|ψ̂(ω)|2
|ω| dω <∞. (19.2.8)

Then, for any f, g ∈L2(R), we have∫ ∞

−∞

∫ ∞

−∞
(Wψf)(a, b)(Wψg)(a, b)

dbda

a2
=Cψ〈f, g〉. (19.2.9)

PROOF From (19.2.6) we get

(Wψf)(a, b) =
√
|a|

∫ ∞

−∞
f̂(ω) eibω ψ̂(aω) dω (19.2.10)

and
(Wψg)(a, b)=

√
|a|

∫ ∞

−∞
ĝ(σ) e−ibσ ψ̂(aσ) dσ. (19.2.11)

Substituting (19.2.10) and (19.2.11) in the left hand-side of (19.2.9) gives∫ ∞

−∞

∫ ∞

−∞
(Wψf)(a, b)(Wψg)(a, b)

dbda

a2

=
∫ ∞

−∞

∫ ∞

−∞

dbda

a2

∫ ∞

−∞

∫ ∞

−∞
|a|f̂(ω) ĝ(σ) ψ̂(aω) ψ̂(aσ)eib(ω−σ)dωdσ
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which is, by interchanging the order of integration,

= 2π
∫ ∞

−∞

da

|a|
∫ ∞

−∞

∫ ∞

−∞
f̂(ω) ĝ(σ) ψ̂(aω) ψ̂(aσ) dωdσ

1
2π

∫ ∞

−∞
eib(ω−σ)db

= 2π
∫ ∞

−∞

da

|a|
∫ ∞

−∞

∫ ∞

−∞
f̂(ω) ĝ(σ) ψ̂(aω) ψ̂(aσ)δ(σ − ω) dωdσ

= 2π
∫ ∞

−∞

da

|a|
∫ ∞

−∞
f̂(ω) ĝ(ω)

∣∣∣ψ̂(aω)
∣∣∣2 dω

and finally, again interchanging the order of integration and putting aω= x,

= 2π
∫ ∞

−∞
f̂(ω) ĝ(ω) dω

∫ ∞

−∞

∣∣∣ψ̂(x)
∣∣∣2

|x| dx=Cψ

〈
f̂ , ĝ

〉
=Cψ 〈f, g〉 . (19.2.12)

If f = g, then (19.2.9) assumes the form∫ ∞

−∞

∫ ∞

−∞
|(Wψf)(a, b)|2 dbda

a2
=Cψ‖f‖2. (19.2.13)

THEOREM 19.2.3
(Inversion formula). If f ∈L2(R), then

f(x) =
1
Cψ

∫ ∞

−∞

∫ ∞

−∞
(Wψf)(a, b)ψa,b(x)

dbda

a2
, (19.2.14)

where the equality holds almost everywhere.

PROOF For any g ∈L2(R), we have

Cψ 〈f, g〉=
∫ ∞

−∞

∫ ∞

−∞
(Wψf)(a, b)(Wψg)(a, b)

dbda

a2

=
∫ ∞

−∞

∫ ∞

−∞
(Wψf)(a, b)

∫ ∞

−∞
g(t)ψa,b(t)dt

dbda

a2

=
∫ ∞

−∞

∫ ∞

−∞
(Wψf)(a, b)ψa,b(t)

dbda

a2
g(t)dt

=
〈∫ ∞

−∞

∫ ∞

−∞
(Wψf)(a, b)ψa,b

dbda

a2
, g

〉
.

Since g is an arbitrary element of L2(R), the inversion formula 19.2.14 follows.
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The following theorem summarizes some elementary properties of the con-
tinuous wavelet transform. Proofs are straightforward, hence, are left as exer-
cises.

THEOREM 19.2.4
Suppose ψ and ϕ are wavelets and let f, g ∈L2(R).

(i) (Wψ(αf + βg))(a, b) =α(Wψf)(a, b) + β(Wψg)(a, b) for any α, β ∈C,

(ii) (Wψ(Tcf))(a, b) = (Wψf)(a, b− c), where Tc is the translation operator
defined by Tcf(t) = f(t− c),

(iii) (Wψ(Dcf))(a, b)= 1√
c
(Wψf)

(
a
c ,

b
c

)
, where c is a positive number and

Dc is the dilation operator defined by Dcf(t)= 1
cf( tc),

(iv) (Wψϕ)(a, b) = (Wϕψ)
(

1
a ,− b

a

)
, a �= 0,

(v) (Wαψ+βϕf)(a, b) =α (Wψf)(a, b) + β (Wϕf)(a, b) for any α, β ∈C,

(vi) (WPψPf)(a, b)= (Wψf)(a,−b), where P is the parity operator defined
by Pf(t) = f(−t),

(vii) (WTcψf)(a, b) = (Wψf)(a, b+ ca),

(viii) (WDcψf)(a, b) = 1√
c
(Wψf)(ac, b), c> 0.

For the wavelets to be useful analyzing functions, the mother wavelet must
have certain properties. One such property is defined by the admissibility
condition (19.2.1) which guarantees existence of the inversion formula for the
continuous wavelet transform. If ψ ∈L1(R), then its Fourier transform ψ̂ is
continuous. If ψ̂ is continuous, Cψ can be finite only if ψ̂(0) = 0, or, equiv-
alently,

∫∞
−∞ ψ(t)dt= 0. This means that ψ must be an oscillatory function

with zero mean. Condition (19.2.1) also imposes a restriction on the rate of
decay of |ψ̂(ω)|2.

In addition to the admissibility condition (19.2.1), there are other prop-
erties that may be useful in particular applications. For example, it may be
necessary to require that ψ be n times continuously differentiable or infinitely
differentiable. If the Haar wavelet is convolved (n+ 1) times with the function
ϕ given in Example 19.2.2, then the resulting function ψ ∗ ϕ ∗ · · · ∗ ϕ is an n
times differentiable wavelet. The function in Figure 19.4 is an infinitely dif-
ferentiable wavelet. The so-called “Mexican hat wavelet” is another example
of an infinitely differentiable wavelet.

Example 19.2.3
(Mexican Hat Wavelet). This wavelet is defined by

ψ(t) = (1 − t2)e−at
2/2
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Figure 19.5 Mexican hat wavelet.

and shown in Figure 19.5 with a= 1.

Another desirable property of wavelets is the so called “localization prop-
erty.” We want ψ to be well localized in both time and frequency domains.
In other words, ψ and its derivatives must decay very rapidly. For frequency
localization, ψ̂(ω) must decay sufficiently rapidly as ω→∞ and ψ̂(ω) should
be flat in the neighborhood of ω= 0. The flatness at ω= 0 is associated with
the number of vanishing moments of ψ. The k-th moment of ψ is defined by

mk =
∫ ∞

−∞
tkψ(t)dt.

A wavelet is said to have n vanishing moments if∫ ∞

−∞
tkψ(t)dt= 0 for k= 0, 1, . . . , n.

Or, equivalently, [
dkψ̂(ω)
dωk

]
ω=0

= 0 for k= 0, 1, . . . , n.

Wavelets with a larger number of vanishing moments result in more flatness
when frequency ω is small.

19.3 The Discrete Wavelet Transform

While the continuous wavelet transform is compared to the Fourier transform,
which requires calculating the integral

∫∞
−∞ e−iωxf(x)dx for all (or, almost all)
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ω ∈R, the discrete wavelet transform can be compared to the Fourier series,
which requires calculating the integral

∫ 2π

0 e−inxf(x)dx for integer values of
n. Since the continuous wavelet transform is a two parameter representation
of a function

(Wψf)(a, b)= |a|− 1
2

∫ ∞

−∞
f(t) ψ

(
t− b

a

)
dt,

we can discretize it by assuming that a and b take only integer values. It turns
out that it is better to discretize it in a different way. First we fix two positive
constants a0 and b0 and then define

ψm,n(x) = a
−m/2
0 ψ(a−m0 x− nb0), (19.3.1)

where m and n range over Z. By the discrete wavelet coefficients of f ∈L2(R)
we mean the numbers 〈f, ψm,n〉, where m,n∈Z. The fundamental question
here is whether it is possible to reconstruct f from those coefficients. The
weakest interpretation of this problem is whether 〈f, ψm,n〉= 〈g, ψm,n〉 for all
m,n∈Z implies f = g. In practice we expect much more than that: we want
〈f, ψm,n〉 and 〈g, ψm,n〉 to be “close” if f and g are “close.” This will be
guaranteed if there exists a B> 0, such that

∞∑
m,n=−∞

| 〈f, ψm,n〉 |2 ≤B‖f‖2

for all f ∈L2(R). Similarly, we want f and g to be “close” if 〈f, ψm,n〉 and
〈g, ψm,n〉 are “close.” This is important because we want to be sure that
when we neglect some small terms in the representation of f in terms of
〈f, ψm,n〉, then the reconstructed function will not differ much from f . The
representation will have this property if there exists an A> 0, such that

A‖f‖2 ≤
∞∑
n=1

| 〈f, ψm,n〉 |2

for all f ∈L2(R). These two requirements are best investigated in terms of
the so-called frames.

DEFINITION 19.3.1 (Frame). A sequence (ϕ1, ϕ2, · · · ) in a Hilbert s-
pace H is called a frame if there exist A,B > 0 such that

A ||f ||2 ≤
∞∑
n=1

|〈f, ϕn〉|2 ≤ B ||f ||2 (19.3.2)

for all f ∈H. The constants A and B are called frame bounds. If A=B, then
the frame is called tight.
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If (ϕn) is an orthonormal basis, then it is a tight frame since
∑∞

n=1 |〈f, ϕn〉|2
= ||f ||2 for all f ∈H . The vectors (1, 0), (− 1

2 ,
√

3
2 ), (− 1

2 ,−
√

3
2 ) form a tight

frame in C2 which is not a basis.

19.4 Examples of Orthonormal Wavelets

Since the discovery of wavelets, orthonormal wavelets play an important role
in the wavelet theory and have a variety of applications. In this section we
discuss several examples of orthonormal wavelets.

DEFINITION 19.4.1 (Orthonormal Wavelet). A wavelet ψ ∈L2 (R) is
called orthonormal if the family of functions ψm,n generated from ψ by

ψm,n (x) = 2m/2ψ
(
2m

(
x− n

2m
))

= 2m/2ψ (2mx− n) , m, n∈Z, (19.4.1)

is orthonormal, that is,

〈ψm,n, ψk,�〉=
∫ ∞

−∞
ψm,n (x)ψk,� (x) dx= δm,k δn,�, (19.4.2)

for all m,n, k, �∈Z.

The following lemma is often useful when dealing with orthogonality of
wavelets.

LEMMA 19.4.1
If ψ, ϕ∈L2 (R), then

〈ψm,k, ϕm,�〉= 〈ψn,k, ϕn,�〉 , (19.4.3)

for all m,n, k, �∈Z.

PROOF We have

〈ψm,k, ϕm,�〉=
∫ ∞

−∞
2m ψ (2mx− k)ϕ (2mx− �)dx,

which is, by assuming 2mx= 2nt,

〈ψm,k, ϕm,�〉=
∫ ∞

−∞
2n ψ (2nt− k)ϕ (2nt− �) dx= 〈ψn,k, ϕn,�〉 .
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Example 19.4.1
(The Haar Wavelet). The simplest example of an orthonormal wavelet is the
classic Haar wavelet. We consider the scaling function ϕ=χ[0,1). The function
ϕ satisfies the dilation equation

ϕ (x) =
√

2
∞∑

n=−∞
cn ϕ (2x− n) , (19.4.4)

where the coefficients cn are given by

cn =
√

2
∫ ∞

−∞
ϕ (x)ϕ (2x− n) dx. (19.4.5)

Evaluating this integral with ϕ=χ[0,1) gives cn as follows:

c0 = c1 =
1√
2

and cn = 0 for n> 1.

Consequently, the dilation equation becomes

ϕ (x) =ϕ (2x) + ϕ (2x− 1) . (19.4.6)

This means that ϕ (x) is a linear combination of the even and odd translates
of ϕ (2x) and satisfies a very simple two-scale relation (19.4.6), as shown in
Figure 19.6.

Figure 19.6 Two-scale relation of ϕ (x) =ϕ (2x) + ϕ (2x− 1).

The Haar mother wavelet is obtained as a simple two-scale relation

ψ(x) = ϕ(2x) − ϕ(2x− 1) (19.4.7)
= χ[0, 12 ](x) − χ[ 1

2 ,1](x)

=

⎧⎨⎩
1 if 0≤ x < 1

2 ,−1 if 1
2 ≤ x < 1,

0 otherwise.

⎫⎬⎭ . (19.4.8)
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For any m,n∈Z, we have

ψm,n (t) = 2−m/2ψ
(
2−mt− n

)
=

⎧⎪⎨⎪⎩
2−m/2 2mn≤ t < 2mn+ 2m−1,

−2−m/2 2mn+ 2m−1 ≤ t< 2mn+ 2m,
0 otherwise.

Clearly, ‖ψm,n‖2 = ‖ψ‖2 = 1, for all m,n∈Z. To verify that {ψm,n} is an or-
thonormal system, we observe that

〈ψm,n, ψk,�〉=
∫ ∞

−∞
2m/2ψ (2mx− n) 2k/2ψ

(
2kx− �

)
dx,

which gives, by the change of variables 2mx− n= t,

〈ψm,n, ψk,�〉= 2k/22−m/2
∫ ∞

−∞
ψ (t)ψ

(
2k−m (t+ n) − �

)
dt. (19.4.9)

For m= k, we obtain

〈ψm,n, ψm,�〉=
∫ ∞

−∞
ψ (t)ψ (t+ n− �) dt= δ0,n−� = δn,�, (19.4.10)

where ψ (t) �= 0 in 0≤ t< 1 and ψ
(
t− �− n

) �= 0 in �− n≤ t < 1 + �− n, and
these intervals are disjoint from each other unless n= �.

We now consider the case m �= k. In view of symmetry, it suffices to consider
the case m>k. Putting r=m− k > 0 in (19.4.9), we obtain, for m>k,

〈ψm,n, ψm,�〉= 2r/2
∫ ∞

−∞
ψ (t)ψ (2rt+ s) dt, (19.4.11)

where s= 2rn− �. Thus, it suffices to show that∫ 1
2

0

ψ (2rt+ s) dt−
∫ 1

1
2

ψ (2rt+ s) dt= 0.

Using a simple change of variables 2rt+ s= x, we find∫ 1
2

0

ψ (2rt+ s) dt−
∫ 1

1
2

ψ (2rt+ s) dt=
∫ a

s

ψ (x) dx−
∫ b

a

ψ (x) dx, (19.4.12)

where a= s+ 2r−1 and b= s+ 2r. Since the interval [s, a] contains the support
[0, 1] of ψ, the first integral in (19.4.12) is zero. Similarly, the second integral
is also zero.

Example 19.4.2
(The Shannon Wavelet). The function ψ whose Fourier transform satisfies

ψ̂ (ω) =χI(ω), (19.4.13)
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where I = [−2π,−π]∪ [π, 2π], is called the Shannon wavelet. The function ψ

can directly be obtained from the inverse Fourier transform of ψ̂ so that

ψ (t) =
1
2π

∫ ∞

−∞
eiωtψ̂ (ω)dω

=
1
2π

[∫ −π

−2π

eiωtdω +
∫ 2π

π

eiωtdω

]
=

1
πt

(sin 2πt− sinπt) =
sin

(
πt
2

)(
πt
2

) cos
(

3πt
2

)
. (19.4.14)

This function is orthonormal to its translates by integers. Indeed, by Parseval’s
relation,

〈ψ (t) , ψ (t− n)〉=
1
2π

〈
ψ̂, einωψ̂

〉
=

1
2π

∫ ∞

−∞
ψ̂ (ω) einωψ̂ (ω) dω

=
1
2π

∫ 2π

−2π

einωdω= δ0,n.

The wavelet basis is now given by

ψm,n (t) = 2−m/2 ψ
(

2−mt− n− 1
2

)
, m, n∈Z

or,

ψm,n (t) = 2−
m
2

sin
{
π
2 (2−mt− n)

}
π
2 (2−mt− n)

cos
{

3π
2
(
2−mt− n

)}
. (19.4.15)

For any fixed n∈Z, the functions ψm,n (t) form a basis for the space of
functions supported on the interval[−2−m+1π, −2−mπ

]∪ [
2−mπ, 2−m+1π

]
.

The system {ψm,n (t)}, m,n∈Z, is an orthonormal basis for L2 (R). Both
ψ (t) and ψ̂ (ω) are shown in Figure 19.7.

The Fourier transform of ψm,n is

ψ̂m,n (ω) =

{
2m/2 exp (−i ω n 2m) if 2−mπ < |ω|< 2−m+1 π,

0 otherwise.
(19.4.16)

Evidently, ψ̂m,n and ψ̂k,� do not overlap for m �= k. Hence, by the Parseval
relation [(equation (3.4.37), Debnath, 2002)], it turns out that, for m �= k,

〈ψm,n, ψk,�〉=
1
2π

〈
ψ̂m,n, ψ̂k,�

〉
= 0. (19.4.17)
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Figure 19.7 The Shannon wavelet and its Fourier transform.

For m= k, we have

〈ψm,n, ψk,�〉=
1
2π

〈
ψ̂m,n, ψ̂m,�

〉
=

1
2π

2−m
∫ ∞

−∞
exp

{−i ω 2−m (n− �)
} ∣∣∣ψ̂ (2−mω)∣∣∣2 dω

=
1
2π

∫ ∞

−∞
exp {−iσ (n− �)} dσ= δn,�. (19.4.18)

This shows that {ψm,n (t)} is an orthonormal system.

Example 19.4.3

(The Daubechies Wavelets and Algorithms). Daubechies (1988, 1992) first
developed the theory and construction of continuous orthonormal wavelets
with compact support. Wavelets with compact support have many interesting
properties. They can be constructed to have a given number of derivatives
and to have a given number of vanishing moments.

We assume that the scaling function ϕ satisfies the dilation equation

ϕ (x) =
√

2
∞∑

n=−∞
cn ϕ (2x− n) , (19.4.19)

where cn = 〈ϕ,ϕ1,n〉 and
∑∞
n=−∞ |cn|2 ≤∞.

If the scaling function ϕ has compact support, then only a finite number of
cn have nonzero values. The associated generating function m̂,

m̂ (ω) =
1√
2

∞∑
n=−∞

cn e
−iωn (19.4.20)
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is a trigonometric polynomial and it satisfies the identity [(see equation (7.3.4),
Debnath, 2002)] with special values m̂ (0)= 1 and m̂ (π) = 0. If coefficients cn
are real, then the corresponding scaling function, as well as the mother wavelet
ψ, will also be real-valued. The mother wavelet ψ corresponding to ϕ is given
by the formula [(see equation (7.3.24), Debnath, 2002)] with |ϕ̂ (0)|= 1. The
Fourier transform ψ̂ (ω) is m-times continuously differentiable and it satisfies
the moment condition

ψ̂(k) (0) = 0 for k= 0, 1, . . . ,m. (19.4.21)

It follows that ψ ∈Cm(R) implies that m̂0 has a zero at ω= π of order (m+ 1).
In other words,

m̂0 (ω)=
(

1 + e−iω

2

)m+1

L̂ (ω) , (19.4.22)

where L̂ is a trigonometric polynomial.
In addition to the orthogonality condition [(see equation (7.3.4), Debnath,

2002)], we assume

m̂0 (ω) =
(

1 + e−iω

2

)N
L̂ (ω) , (19.4.23)

where L̂ (ω) is 2π-periodic and L̂∈CN−1(R). Evidently,

|m̂0 (ω)|2 = m̂0 (ω) m̂0 (−ω) (19.4.24)

=
(

1 + e−iω

2

)N (
1 + eiω

2

)N
L̂ (ω) L̂ (−ω)

=
(
cos2

ω

2

)N ∣∣∣L̂ (ω)
∣∣∣2 , (19.4.25)

where
∣∣∣L̂ (ω)

∣∣∣2 is a polynomial in cosω, that is,

∣∣∣L̂ (ω)
∣∣∣2 =Q (cosω) .

Since cosω= 1 − 2 sin2
(
ω
2

)
, it is convenient to introduce x= sin2

(
ω
2

)
so that

(19.4.25) reduces to the form

|m̂0 (ω)|2 =
(
cos2

ω

2

)N
Q (1 − 2x) = (1 − x)N P (x) , (19.4.26)

where P (x) is a polynomial in x.
We next use the fact that

cos2
(
ω + π

2

)
= sin2

(ω
2

)
= x
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and ∣∣∣L̂ (ω + π)
∣∣∣2 =Q (− cosω) =Q (2x− 1) ,

=Q (1− 2 (1− x)) =P (1 − x) (19.4.27)

to express the identity [(see equation (7.3.4), Debnath, 2002)] in terms of x
so that it becomes

(1 − x)N P (x) + xNP (1− x) = 1. (19.4.28)

Since (1− x)N and xN are two polynomials of degree N which are relatively
prime, then, by Bezout’s theorem (Daubechies, 1992), there exists a unique
polynomial PN of degree ≤N − 1 such that (19.4.28) holds. An explicit solu-
tion for PN (x) is given by

PN (x) =
N−1∑
k=0

(
N + k − 1

k

)
xk, (19.4.29)

which is positive for 0<x< 1 so that PN (x) is at least a possible candidate

for
∣∣∣L̂ (ω)

∣∣∣2. There also exist higher degree polynomial solutions PN (x) of
(19.4.28) which can be written as

PN (x) =
N−1∑
k=0

(
N + k − 1

k

)
xk + xNR

(
x− 1

2

)
, (19.4.30)

where R is an odd polynomial.

Since PN (x) is a possible candidate for
∣∣∣L̂ (ω)

∣∣∣2 and

L̂ (ω) L̂ (−ω)=
∣∣∣L̂ (ω)

∣∣∣2 =Q (cosω)=Q (1 − 2x) =PN (x) , (19.4.31)

the next problem is how to find out L̂ (ω). This can be done by the following
lemma.

LEMMA 19.4.2
(Riesz’s Lemma for Spectral Factorization). If

Â (ω) =
n∑
k=0

ak cosk ω, (19.4.32)

where ak ∈R and an �= 0, and if Â (ω)≥ 0 for all ω ∈R with Â (0) = 1, then
there exists a trigonometric polynomial

L̂ (ω) =
n∑
k=0

bk e
−ikω (19.4.33)
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with real coefficients bk such that L̂ (0) = 1 and

Â (ω)= L̂ (ω) L̂ (−ω)=
∣∣∣L̂ (ω)

∣∣∣2 (19.4.34)

for all ω ∈R.

We refer to Daubechies (1992) for a proof of the Riesz Lemma. We also
point out that the factorization of Â (ω) given in (19.4.34) is not unique.

For a given N , if we select P =PN , then Â (ω) becomes a polynomial of de-
gree N − 1 in cosω and L̂ (ω) is a polynomial of degree (N − 1) in exp (−iω).
Therefore, the generating function m̂0 given by (19.4.23) is of degree (2N − 1)
in exp (−iω). The interval [0, 2N − 1] becomes the support of the correspond-
ing scaling function Nϕ. The mother wavelet Nψ obtained from Nψ is called
the Daubechies wavelet.

For N = 2, it follows from (19.4.29) that

P2 (x) =
1∑

k=0

(
k + 1
k

)
xk = 1 + 2x

and hence, (19.4.31) gives∣∣∣L̂2 (ω)
∣∣∣2 =P2 (x) =P2

(
sin2 ω

2

)
= 1 + 2 sin2 ω

2
= 2− cosω.

Using (19.4.33), we obtain that L̂ (ω) is a polynomial of degree N − 1 = 1 and

L̂ (ω) L̂ (−ω) = 2 − 1
2
(
eiω + e−iω

)
.

It follows from (19.4.33) that(
b0 + b1e

−iω) (b0 + b1e
iω
)
= 2− 1

2
(
eiω + e−iω

)
. (19.4.35)

Equating the coefficients in this identity gives

b20 + b21 = 1 and 2b0b1 =−1. (19.4.36)

These equations admit solutions

b0 =
1
2

(
1 +

√
3
)

and b1 =
1
2

(
1 −

√
3
)
. (19.4.37)

Thus, the generating function (19.4.21) takes the form

m̂0 (ω)=
(

1 + e−iω

2

)2 (
b0 + b1e

−iω)
=

1
8

[(
1 +

√
3
)

+
(
3 +

√
3
)
e−iω +

(
3 −

√
3
)
e−2iω +

(
1 −

√
3
)
e−3iω

]
(19.4.38)
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Figure 19.8 The Daubechies scaling function 2ϕ (x).

with m̂0 (0) = 1. Comparing coefficients of (19.4.38) with the Equation (7.3.3)
(Debnath, 2002) gives hn = cn as

c0 = 1
4
√

2

(
1 +

√
3
)
, c1 = 1

4
√

2

(
3 +

√
3
)

c2 = 1
4
√

2

(
3 −√

3
)
, c3 = 1

4
√

2

(
1 −√

3
)
.

(19.4.39)

Consequently, the Daubechies scaling function 2ϕ (x) takes the form, dropping
the subscript,

ϕ (x) =
√

2 [c0 ϕ (2x) + c1 ϕ (2x− 1) + c2 ϕ (2x− 2) + c3 ϕ (2x− 3)] .
(19.4.40)

Using the equation (7.3.31) (Debnath, 2002) withN = 2, we obtain the Daubechies
wavelet 2ψ (x), dropping the subscript,

ψ (x) =
√

2 [d0 ϕ (2x) + d1 ϕ (2x− 1) + d2 ϕ (2x− 2) + d3 ϕ (2x− 3)]

=
√

2 [−c3 ϕ (2x) + c2 ϕ (2x− 1)− c1 ϕ (2x− 2) + c0 ϕ (2x− 3)] ,
(19.4.41)

where the coefficients in (19.4.41) are the same as for the scaling function ϕ (x),
but in reverse order and with alternate terms having their signs changed from
plus to minus.

On the other hand, the use of the equation (7.3.29) (see Debnath, 2002)
with the equation (7.3.34) also gives the Daubechies wavelet 2ψ (x) in the
form

2ψ (x) =
√

2 [−c0 ϕ (2x− 1) + c1 ϕ (2x)− c2 ϕ (2x+ 1) + c3 ϕ (2x+ 2)] .

The wavelet has the same coefficients as ψ given in (19.4.41) except that the
wavelet is reversed in sign and runs from x=−1 to 2 instead of starting from
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Figure 19.9 The Daubechies wavelet 2ψ (x).

x= 0. It is often referred to as the Daubechies D4 wavelet since it is generated
by four coefficients.

Both Daubechies’ scaling function 2ϕ and Daubechies’ wavelet 2ψ are shown
in Figures 19.8 and 19.9, respectively.

For N = 1, it follows from (19.4.29) that P1 (x)≡ 1, and this in turn leads
to the fact that Q (cosω) = 1, L̂ (ω) = 1 so that the generating function is

m̂0 (ω) =
1
2
(
1 + e−iω

)
. (19.4.42)

This corresponds to the generating function for the Haar wavelet.

19.5 Exercises

1. For the Haar wavelet defined in Example 19.2.1, show that

(a) F {ψ (2mx− n)}=
(

4i
ω

)
e−iωn exp

(
− iω

2.2m

)
sin2

( ω

4.2m
)

(b) |F {ψ (2mx− n)} |= 4
ω

sin2
( ω

4.2m
)

.

Explain the significance of this result.

2. Find the Fourier transforms of the following wavelets:

(a) ψ(t) =
{

1 − |t|, 0≤ t≤ 1
0, otherwise

}
(piecewise linear spline wavelet)

(b) ψ(t) = (1 − t2) exp
(
− t

2

2

)
=− d2

dt2
exp

(
− t

2

2

)
(Mexcican hat wavelet)
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(c) ψ(t) = exp
(
iω0t− t2

2

)
(Morlet wavelet).

3. If f is a homogeneous function of degree n, show that

(Wψf)(λa, λb) =λn+ 1
2 (Wψf)(a, b).

4. In the proof of Theorem 19.2.2 we do not address the difficulty that arises
from the fact that a takes both positive and negative values. Provide a
more detailed proof that removes the difficulty.

5. Prove Theorem 19.2.4.

6. Show that ∫ ∞

−∞

sinπx
πx

sinπ(2x− n)
π(2x− n)

dx=
1

2πn
sin

(πn
2

)
.

7. Let ψm,n(t) = 2−m/2 ψ (2−mt− n), where ψ(t) is the Haar wavelet, that
is,

ψm,n(t) =

⎧⎪⎨⎪⎩
2−m/2 if 2mn< t< 2mn+ 2m−1,

−2−m/2 if 2mn+ 2m−1< t< 2mn+ 2m,
0 otherwise.

and

f(t)=

⎧⎪⎨⎪⎩
a if 0< t< 1

2 ,

b if 1
2 < t< 1,

0 otherwise.

(a) Find 〈f, ψm,0〉.
(b) Show that

∑∞
m=0 〈f, ψm,0〉ψm,0(t) =

{
a if 0< t< 1

2 ,

b if 1
2 < t< 1.

8. Consider the cardinal B-splines Bn(x) of order n are defined by

B1(x) = χ[0,1](x),
Bn(x) = B1(x) ∗B1(x) ∗ ... ∗B1(x) =B1(x) ∗Bn−1(x), n≥ 2,

where n factors are involved in the convolution product.

(a) Show that

Bn(x) =
∫ ∞

−∞
Bn−1(x− t)B1(t) dt

=
∫ 1

0

Bn−1(x− t) dt=
∫ x

x−1

Bn−1(t) dt.
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(b) Find B2(x), B3(x), B4(x) explicitly.

(c) Show that

B̂1 (ω)=
(

2
ω

)
exp

(
− iω

2

)
sin

(ω
2

)
=
∫ 1

0

e−iωt dt.

9. Use the Fourier transform B̂1 (ω) of B1 (x) to prove

∞∑
k=−∞

∣∣∣B̂n (2ω+ 2πk)
∣∣∣2 =− sin2n (ω)

(2n− 1)!
d2n−1

dω2n−1
(cotω) .

10. The Franklin wavelet is generated by the second-order (n= 2) splines.
Show that the Fourier transform ϕ̂ (ω) of this wavelet is

ϕ̂ (ω) =
sin2 ω

2(
ω
2

)2 (
1− 2

3
sin2 ω

2

)− 1
2

.

11. The Gabor window (or the Gaussian window) function f ∈L2(R) is
defined by

f(t) =
(

2a
π

) 1
4

exp
(−at2) .

Show that ||f ||= 1 and f̂(ω) = 1√
2a
f
(
ω
2a

)
.

Discuss the time and frequency characteristics of the Gabor windows.

Draw graphs of f(t) and f̂(ω).

12. For a triangular window f ∈L2(R) is defined by

f(t) =

√
3

2a3

[
χ[−a

2 ,
a
2 ](t) ∗ χ[− a

2 ,
a
2 ](t)

]
=

√
3

2a3
(a− |t|)χ[−a,a](t).

Show that
(a) ||f ||= 1,

(b) f̂(ω) =
(

2
π

)√
3a
2

(
sin aω

2

aω

)2

.

Examine its time and frequency characteristics.
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Appendix A

Some Special Functions
and Their Properties

The main purpose of this appendix is to introduce several special functions
and to state their basic properties that are most frequently used in the theory
and applications of integral transforms. The subject is, of course, too vast to
be treated adequately in so short a space, so that only the more important
results will be stated. For a fuller discussion of these topics and of further
properties of these functions the reader is referred to the standard treatises
on the subject.

A-1 Gamma, Beta, and Error Functions

The gamma function (also called the factorial function) is defined by a definite
integral in which a variable appears as a parameter

Γ(x) =

∞∫
0

e−ttx−1dt, x> 0. (A-1.1)

The integral (A-1.1) is uniformly convergent for all x in [a, b] where
0<a≤ b<∞, and hence, Γ(x) is a continuous function for all x> 0.

Integrating (A-1.1) by parts, we obtain the fundamental property of Γ(x)

Γ(x) = [−e−ttx−1]∞0 + (x− 1)

∞∫
0

e−ttx−2dt

= (x− 1)Γ(x− 1), for x− 1> 0.

Then we replace x by x+ 1 to obtain the fundamental result

Γ(x+ 1) = x Γ(x). (A-1.2)

In particular, when x= n is a positive integer, we make repeated use of

587
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(A-1.2) to obtain

Γ(n+ 1) = nΓ(n) =n(n− 1)Γ(n− 1)= · · ·
= n(n− 1)(n− 2) · · · 3 · 2 · 1 Γ(1)= n!, (A-1.3)

where Γ(1) = 1.
We put t= u2 in (A-1.1) to obtain

Γ(x) = 2

∞∫
0

exp(−u2)u2x−1du, x> 0. (A-1.4)

Letting x=
1
2
, we find

Γ
(

1
2

)
= 2

∞∫
0

exp(−u2) du= 2
√
π

2
=
√
π. (A-1.5)

Using (A-1.2), we deduce

Γ
(

3
2

)
=

1
2
Γ
(

1
2

)
=

√
π

2
. (A-1.6)

Similarly, we can obtain the values of Γ
(

5
2

)
, Γ

(
7
2

)
, . . . ,Γ

(
2n+ 1

2

)
.

The gamma function can also be defined for negative values of x by the
rewritten form of (A-1.2) as

Γ(x) =
Γ(x+ 1)

x
, x �= 0,−1,−2, . . . . (A-1.7)

For example

Γ
(
−1

2

)
=

Γ
(

1
2

)
−1

2

=−2 Γ
(

1
2

)
=−2

√
π, (A-1.8)

Γ
(
−3

2

)
=

Γ
(
−1

2

)
−3

2

=
4
3
√
π. (A-1.9)

We differentiate (A-1.1) with respect to x to obtain

d

dx
Γ(x) = Γ′(x) =

∞∫
0

d

dx
(tx)

e−t

t
dt

=

∞∫
0

d

dx
[exp(x log t)]

e−t

t
dt=

∞∫
0

tx−1(log t)e−tdt. (A-1.10)
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At x= 1, this gives

Γ′(1) =

∞∫
0

e−t log t dt=−γ, (A-1.11)

where γ is called the Euler constant and has the value 0.5772.
The graph of the gamma function is shown in Figure A.1.

-4 -2 0 2 4

-15

-10

-5

0

5

10

15

x

(x)

Figure A.1 The gamma function.

The volume, Vn and the surface area, Sn of a sphere of radius r in Rn are
given by

Vn =

{
Γ(1

2 )
}n
rn

Γ(n2 + 1)
, Sn =

{
Γ(1

2 )
}n
rn−1

Γ(n2 )

Thus, dVn = Sn.
In particular, when n= 2, 3, ....,, V2 = πr2, S2 = 2πr; V3 = 4

3πr
3, S3 = 4πr2;

....

Legendre Duplication Formula

Several useful properties of the gamma function are recorded below for refer-
ence without proof.

22x−1 Γ(x)Γ
(
x+

1
2

)
=
√
π Γ(2x). (A-1.12)

In particular, when x= n(n= 0, 1, 2, . . .)

Γ
(
n+

1
2

)
=

√
π (2n)!
22n n!

. (A-1.13)
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The following properties also hold for Γ(x):

Γ(x)Γ(1 − x) = π cosec πx, x is a noninteger, (A-1.14)

Γ(x) = px
∞∫
0

exp(−pt) tx−1dt, (A-1.15)

Γ(x) =

∞∫
−∞

exp(xt− et)dt. (A-1.16)

Γ(x+ 1)−√
2π exp(−x)xx+ 1

2 for large x, (A-1.17)

n!∼
√

2π exp(−n)xn+ 1
2 for large n. (A-1.18)

The incomplete gamma function, γ(x, a), is defined by the integral

γ(a, x) =

x∫
0

e−tta−1dt, a> 0. (A-1.19)

The complementary incomplete gamma function, Γ(a, x), is defined by the
integral

Γ(a, x) =

∞∫
x

e−t ta−1dt, a> 0. (A-1.20)

Thus, it follows that
γ(a, x) + Γ(a, x) = Γ(a). (A-1.21)

The beta function, denoted by B(x, y) is defined by the integral

B(x, y) =

t∫
0

tx−1(1 − t)y−1dt, x > 0, y > 0. (A-1.22)

The beta function B(x, y) is symmetric with respect to its arguments x and
y, that is,

B(x, y) =B(y, x). (A-1.23)

This follows from (A-1.22) by the change of variable 1− t= u, that is,

B(x, y) =

1∫
0

uy−1(1 − u)x−1du=B(y, x).

If we make the change of variable t= u/(1 + u) in (A-1.22), we obtain another
integral representation of the beta function

B(x, y) =

∞∫
0

ux−1(1 + u)−(x+y)du=

∞∫
0

uy−1(1 + u)−(x+y)du, (A-1.24)
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Putting t= cos2 θ in (A-1.22), we derive

B(x, y) = 2

π/2∫
0

cos2x−1 θ sin2y−1 θ dθ. (A-1.25)

Several important results are recorded below for ready reference without
proof.

B(1, 1) = 1, B

(
1
2
,
1
2

)
= π, (A-1.26)

B(x, y) =
(

x− 1
x+ y − 1

)
B(x− 1, y), (A-1.27)

B(x, y) =
Γ(x)Γ(y)
Γ(x+ y)

, (A-1.28)

B

(
1 + x

2
,
1 − x

2

)
= π sec

(πx
2

)
, 0<x< 1. (A-1.29)

The error function, erf(x) is defined by the integral

erf(x) =
2√
π

x∫
0

exp(−t2)dt, −∞<x<∞. (A-1.30)

Clearly it follows from (A-1.30) that

erf(−x) = −erf(x), (A-1.31)

d

dx
[erf(x)] =

2√
π

exp(−x2), (A-1.32)

erf(0) = 0, erf(∞) = 1. (A-1.33)

The complementary error function, erfc(x) is defined by the integral

erfc(x) =
2√
π

∞∫
x

exp(−t2)dt. (A-1.34)

Clearly it follows that
erfc(x) = 1− erf(x), (A-1.35)

erfc(0)=1, erfc(∞) = 0. (A-1.36)

erfc(x)∼ 1
x
√
π

exp(−x2) for large x. (A-1.37)

The graphs of erf(x) and erfc(x) are shown in Figure A.2.
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Figure A.2 The error function and the complementary error function.

Closely associated with the error function are the Fresnel integrals, which
are defined by

C(x) =

x∫
0

cos
(
πt2

2

)
dt and S(x) =

x∫
0

sin
(
πt2

2

)
dt. (A-1.38)

These integrals arises in diffraction problems in optics, in water waves and in
elasticity and elsewhere.

Clearly it follows from (A-1.38) that

C(0) = 0 = S(0) (A-1.39)

C(∞) =S(∞) =
π

2
, (A-1.40)

d

dx
C(x) = cos

(
πx2

2

)
,
d

dx
S(x) = sin

(
πx2

2

)
. (A-1.41)

It also follows from (A-1.38) that C(x) has extrema at the points where
x2 = (2n+ 1), n= 0, 1, 2, 3, . . . , and S(x) has extrema at the points where
x2 = 2n, n= 1, 2, 3, . . . . The largest maxima occur first and are found to be
C(1) = 0.7799 and S(

√
2) = 0.7139. We also infer that both C(x) and S(x)

are oscillatory about the line y= 0.5. The graphs of C(x) and S(x) for non-
negative real x are shown in Figure A.3.

A-2 Bessel and Airy Functions

The Bessel function of the first kind of orderor v (non-negative real number)
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Figure A.3 The Fresnel integrals C(x) and S(x).

is denoted by Jv(x), and defined by

Jv(x) = xv
∞∑
r=0

(−1)rx2r

22r+v r! Γ(r + v + 1)
. (A-2.1)

This series is convergent for all x.
The Bessel function y= Jv(x) satisfies the Bessel equation

x2y′′ + xy′ + (x2 − v2)y= 0. (A-2.2)

When v is not a positive integer or zero, Jv(x) and J−v(x) are two linearly
independent solutions so that

y=AJv(x) +B J−v(x) (A-2.3)

is the general solution of (A-2.2), where A and B are arbitrary constants.
However, when v=n, where n is a positive integer or zero, Jn(x) and J−n(x)

are no longer independent, but are related by the equation

J−n(x) = (−1)nJn(x). (A-2.4)

Thus, when n is a positive integer or zero, equation (A-2.2) has only one
solution given by

Jn(x) =
∞∑
r=0

(−1)r

r!(n+ r)!

(x
2

)n+2r

. (A-2.5)

A second solution, known as Neumann’s or Webber’s solution, Yn(x) is given
by

Yn(x) = lim
v→n

Yv(x), (A-2.6)

where
Yv(x) =

(cos vπ)Jv(x) − J−v(x)
sin vπ

. (A-2.7)
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Thus, the general solution of (A-2.2) is

y(x) =A Jn(x) +B Yn(x), (A-2.8)

where A and B are arbitrary constants.
In particular, from (A-2.5),

J0(x) =
∞∑
r=0

(−1)r

(r!)2
(x

2

)2r

, (A-2.9)

J1(x) =
∞∑
r=0

(−1)r

r!(r + 1)!

(x
2

)2r+1

. (A-2.10)

Clearly, it follows from (A-2.9) and (A-2.10) that

J ′
0(x) =−J1(x). (A-2.11)

Bessel’s equation may not always arise in the standard form given in (A-
2.2), but more frequently as

x2y′′ + xy′ + (k2x2 − v2)y= 0 (A-2.12)

with the general solution

y(x) =AJv(kx) +B Yv(kx). (A-2.13)

The recurrence relations are recorded below for easy reference without
proof.

Jv+1(x) =
( v
x

)
Jv(x) − J ′

v(x), (A-2.14)

Jv−1(x) =
( v
x

)
Jv(x) + J ′

v(x), (A-2.15)

Jv−1(x) + Jv+1(x) =
(

2v
x

)
Jv(x), (A-2.16)

Jv−1(x) − Jv+1(x) = 2J ′
v(x). (A-2.17)

We have, from (A-2.5),

xnJn(x) =
∞∑
r=0

(−1)r2−(n+2r)

r!(n+ r)!
x2n+2r .

Differentiating both sides of this result with respect to x and using the fact
that 2(n+ r)/(n+ r)! = 2/(n+ r − 1)!, it turns out that

d

dx

[
xnJn(x)

]
=

∞∑
r=0

(−1)r2−(n+2r+1)

r!(n+ r − 1)!
x2n+2r−1 = xnJn−1(x). (A-2.18)
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Similarly, we can show

d

dx

[
x−nJn(x)

]
=−x−nJn+1(x). (A-2.19)

The generating function for the Bessel function is

exp
[
1
2
x

(
t− 1

t

)]
=

∞∑
n=−∞

tnJn(x). (A-2.20)

The integral representation of Jn(x) is

Jn(x) =
1
π

π∫
0

cos(n θ− x sin θ)dθ. (A-2.21)

The following are known as the Lommel integrals:

a∫
0

xJn(px)Jn(qx) dx

=
a

(q2 − p2)
[p Jn(qa)J ′

n(pa) − q Jn(pa)J ′
n(qa)], p �= q, (A-2.22)

and
a∫

0

xJ2
n(px)dx=

a2

2

[
J ′2
n (pa) +

(
1− n2

p2a2

)
J2
n(pa)

]
. (A-2.23)

When n=± 1
2 ,

J 1
2
(x) =

√
2
πx

sinx, J− 1
2
(x) =

√
2
πx

cosx. (A-2.24)

A rough idea of the shape of the Bessel functions when x is large may be
obtained from equation (A-2.2). Substitution of y= x−

1
2u(x) eliminates the

first derivative, and hence, gives the equation

u′′ +
(

1− 4n2 − 1
4x2

)
u= 0. (A-2.25)

For large x, this equation approximately becomes

u′′ + u= 0. (A-2.26)

This equation admits the solution u(x) =A cos(x+ ε) that is,

y=
A√
x

cos(n+ ε). (A-2.27)
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Figure A.4 Graphs of y= J0(x), J1(x) and J2(x).
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Figure A.5 Graphs of J 1
2
(x) and J− 1

2
(x).

This suggests that Jn(x) is oscillatory and has an infinite number of zeros.
It also tends to zero as x→∞. The graphs of Jn(x) for n= 0, 1, 2 and for

n=±1
2

are shown in Figure A.4 and Figure A.5, respectively.

An important special case arises in particular physical problems when k2 =
−1 in equation (A-2.12). we then have the modified Bessel equation

x2y′′ + xy′ − (x2 + v2)y= 0, (A-2.28)

with the general solution

y=AJv(ix) +B Yv(ix). (A-2.29)

We now define a new function

Iv(x) = i−vJv(ix), (A-2.30)

and then use the series (A-2.1) for Jv(x) so that

Iv(x) = i−v
∞∑
r=0

(−1)r

r!Γ(r + v + 1)

(
ix

2

)v+2r

=
∞∑
r=0

1
r!Γ(r + v + 1)

(x
2

)v+2r

.

(A-2.31)
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Similarly, we can find the second solution, Kv(x) of the modified Bessel equa-
tion (A-2.28). Usually, Iv(x) and Kv(x) are called modified Bessel functions
and their properties can be obtained in a similar way to those of Jv(x) and
Yv(x). The graphs of Y0(x), Y1(x) and Y2(x) are shown in Figure A.6.
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Figure A.6 Graphs of y= Y0(x), Y1(x) and Y2(x).

We state a few important infinite integrals involving Bessel functions which
arise frequently in the application of Hankel transforms.

∞∫
0

exp(−at)Jv(bt)tvdt =
(2b)v Γ

(
v +

1
2

)
√
π(a2 + b2)v+

1
2
, v >−1

2
, (A-2.32)

∞∫
0

exp(−at)Jv(bt)tv+1dt =
2a(2b)v Γ

(
v +

3
2

)
√
π(a2 + b2)v+

3
2
, v >−1, (A-2.33)

∞∫
0

exp(−a2t2)Jv(bt)tv+1dt =
bv

(2a2)v+1
exp

(
− b2

4a2

)
, v >−1, (A-2.34)

∞∫
0

exp(−a2t2)Jv(bt)Jv(ct) t dt =
1

2a2
exp

(
−b

2 + c2

4a2

)
Iv

(
bc

2a2

)
, v >−1,

(A-2.35)
∞∫
0

t2μ−v−1 Jv(t)dt =
22μ−v−1Γ(μ)
Γ(v − μ+ 1)

, 0<μ<
1
2
, v >−1

2
. (A-2.36)
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The Airy function, y=Ai(x) is the first solution of the differential equation

y′′ − xy= 0. (A-2.37)

The second solution is denoted by Bi(x). Then these functions are given by

Ai(x) =
√
x

3

[
I− 1

3

(
2
3
x3/2

)
− I 1

3

(
2
3
x3/2

)]
, (A-2.38)

Bi(x) =
√
x

3

[
I− 1

3

(
2
3
x3/2

)
+ I 1

3

(
2
3
x3/2

)]
. (A-2.39)

The integral representation for Ai(x) is

Ai(x) =
1
π

∞∫
0

cos
(

1
3
t3 + x t

)
dt. (A-2.40)

The graph of y=Ai(x) is shown in Figure A.7.

-8 -6 -4 -2 0 2
0

1

x

y

Ai(x)

Figure A.7 The Airy function.

A-3 Legendre and Associated Legendre Functions

The Legendre polynomials Pn(x) are defined by the Rodrigues formula

Pn(x) =
1

2nn!
dn

dxn
(x2 − 1)n. (A-3.1)
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The seven Legendre polynomials are

P0(x) = 1
P1(x) = x

P2(x) =
1
2
(3x2 − 1)

P3(x) =
1
2
(5x3 − 3x)

P4(x) =
1
8
(35x4 − 30x2 + 3)

P5(x) =
1
8
(63x5 − 70x3 + 15x)

P6(x) =
1
16

(231x6 − 315x4 + 105x2 − 5).

The generating function for the Legendre polynomial is

(1 − 2xt+ t2)−
1
2 =

∞∑
n=0

tnPn(x). (A-3.2)

This function provides more information about the Legendre polynomials.
For example

Pn(1)= 1, Pn(−1)= (−1)n, (A-3.3)

P2n(0) = (−1)n
1 · 3 · 5 · · · (2n− 1)

2n n!
= (−1)n

(2n− 1)!!
(2n)!!

, (A-3.4)

P2n+1(0) = 0, n= 0, 1, 2, . . . , (A-3.5)

Pn(−x) = (−1)nPn(x),
dn

dxn
Pn(x) =

(2n)!
2n n!

, (A-3.6)

where the double factorial is defined by

(2n− 1)!! = 1 · 3 · 5 · · · (2n− 1) and (2n)!! = 2 · 4 · 6 · · · (2n).

The graphs of the first four Legendre polynomials are shown in Figure A.8.
The recurrence relations for the Legendre polynomials are

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x) − nPn−1(x), (A-3.7)
P ′
n+1(x) − P ′

n−1(x) = (2n+ 1)Pn(x), (A-3.8)
(1 − x2)P ′

n(x) =nPn−1(x) − nxPn(x), (A-3.9)
(1 − x2)P ′

n(x) = (n+ 1)xPn(x) − (n+ 1)Pn+1(x). (A-3.10)

The Legendre polynomials y=Ln(x) satisfy the Legendre differential equation

(1 − x2)y′′ − 2x y′ + n(n+ 1)y= 0. (A-3.11)
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Figure A.8 Graphs of y=P0(x), P1(x), P2(x) and P3(x).

If n is not an integer, both solutions of (A-3.11) diverge at x=±1.
The orthogonal relation is

1∫
−1

Pn(x)Pm(x)dx=
2

(2n+ 1)
δnm. (A-3.12)

The associated Legendre functions are defined by

Pmn (x) = (1 − x2)
m
2
dm

dxm
Pn(x) =

1
2n n!

(1 − x2)
m
2
dm+n

dxm+n
(x2 − 1)n, (A-3.13)

where 0≤m≤n.
Clearly, it follows that

P 0
n(x) = Pn(x), (A-3.14)

Pmn (−x) = (−1)n+mPmn (x), P−m
n (x) = (−1)m

(n−m)!
(n+m)!

Pmn (x). (A-3.15)

The generating function for Pmn (x) is

(2m)!(1 − x2)
m
2

2mm!(1 − 2 t x+ t2)m+ 1
2

=
∞∑
r=0

Pmr+m(x) tr. (A-3.16)

The recurrence relations are

(2n+ 1)xPmn (x) = (n+m)Pmn−1(x) + (n−m+ 1)Pmn+1(x), (A-3.17)

2(1− x2)
1
2
d

dx
Pmn (x) =Pm+1

n (x) − (n+m)(n−m+ 1)Pm−1
n (x). (A-3.18)
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The associated Legendre functions Pmn (x) are solutions of the differential e-
quation

(1 − x2)y′′ − 2xy′ +
[
n(n+ 1)− m2

(1 − x2)

]
y= 0. (A-3.19)

This reduces to the Legendre equation when m= 0.
Listed below are few associated Legendre functions with x= cos θ:

P 1
1 (x) = (1 − x2)

1
2 = sin θ,

P 1
2 (x) = 3x(1 − x2)

1
2 = 3 cos θ sin θ

P 2
2 (x) = 3(1− x2) = 3 sin2 θ

P 1
3 (x) =

3
2
(5x2 − 1)(1 − x2)

1
2 =

3
2
(5 cos2 θ− 1) sin θ

P 2
3 (x) = 15x(1− x2) = 15 cos θ sin2 θ

P 3
3 (x) = 15(1− x2)3/2 = 15 sin3 θ.

The orthogonal relations are

1∫
−1

Pmn (x)Pmt (x)dx=
2

(2�+ 1)
· (�+m)!
(�−m)!

δn�, (A-3.20)

1∫
−1

(1 − x2)−1Pmn (x)P �n(x)dx=
(n+m)!
m(n−m)!

δm�. (A-3.21)

A-4 Jacobi and Gegenbauer Polynomials

The Jacobi polynomials P (α,β)
n (x) of degree n are defined by the Rodrigues

formula

P (α,β)
n (x) =

(−1)n

2n n!
(1 − x)−α(1 + x)−β

dn

dxn
[(1 − x)α+n(1 + x)β+n], (A-4.1)

where α>−1 and β >−1.
When α= β= 0, the Jacobi polynomials become Legendre polynomials,

that is,
Pn(x) =P (0,0)

n (x), n= 0, 1, 2, . . . . (A-4.2)

On the other hand, the associated Laguerre functions arise as the limit

Lαn(x) = lim
β→∞

P (α,β)
n

(
1− 2x

β

)
. (A-4.3)
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The recurrence relations for P (α,β)
n (x) are

2(n+ 1)(α+ β + n+ 1)(α+ β + 2n)P (α,β)
n+1 (x)

= (α+ β + 2n+ 1)[(α2 − β2) + x(α+ β + 2n+ 2)(α+ β + 2n)]P (α,β)
n (x)

−2(α+ n)(β + n)(α+ β + 2n+ 2)P (α,β)
n−1 (x), (A-4.4)

where n= 1, 2, 3, . . ., and

P (α,β−1)
n (x) − P (α−1,β)

n (x) =P
(α,β)
n−1 (x). (A-4.5)

The generating function for Jacobi polynomials is

2(α+β)R−1(1− t+R)−α(1 + t+R)−β =
∞∑
n=0

P (α,β)
n (x) tn, (A-4.6)

where R= (1 − 2x t+ t2)
1
2 .

The Jacobi polynomials, y=P
(α,β)
n (x), satisfy the differential equation

(1 − x2)y′′ + [(β − α) − (α+ β + 2)x] y′ + n(n+ α+ β + 1)y= 0. (A-4.7)

The orthogonal relation is

1∫
−1

(1 − x)α(1 + x)βP (α,β)
n (x)P (α,β)

m (x)dx=
{

0, n �=m
δn, n=m

}
, (A-4.8)

where

δn =
2α+β+1Γ(n+ α+ 1)Γ(n+ β + 1)
n!(α+ β + 2n+ 1)Γ(α+ β + n+ 1)

. (A-4.9)

When α= β= v − 1
2
, the Jacobi polynomials reduce to the Gegenbauer poly-

nomials Cvn(x), which are defined by the Rodrigues formula

Cvn(x) =
(−1)n

2nn!
(1 − x2)v−

1
2
dn

dxn

[
(1− x2)v+n−

1
2

]
. (A-4.10)

The generating function for Cvn(x) of degree n is

(1 − 2x t+ t2)−v =
∞∑
n=0

Cvn(x) t
n, |t|< 1, |x| ≤ 1, v >−1

2
. (A-4.11)

The recurrence relations are

(n+ 1)Cvn+1(x) − 2(v + n)xCvn(x) + (2v + n− 1)Cvn−1(x) = 0, (A-4.12)

(n+ 1)Cvn+1(x) − 2v Cv+1
n (x) + 2v Cv+1

n−1(x) = 0, (A-4.13)
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d

dx
[Cvn(x)] = 2v Cv+1

n+1(x). (A-4.14)

The differential equation satisfied by y=Cvn (x) is

(1 − x2)y′′ − (2v + 1)xy′ + n(n+ 2v) y= 0. (A-4.15)

The orthogonal property is

1∫
−1

(1 − x2)v−
1
2Cvn(x)Cvm (x) dx= δnδnm, (A-4.16)

where

δn =
21−2vnΓ(n+ 2 v)
n!(n+ v)[Γ(v)]2

. (A-4.17)

When v= 1
2 , the Gegenbauer polynomials reduce to Legendre polynomials,

that is,
C

1
2
n (x) =Pn(x). (A-4.18)

The Hermite polynomials can also be obtained from the Gegenbauer polyno-
mials as the limit

Hn(x) = n! lim
v→∞ v−n/2 Cvn

(
x√
v

)
. (A-4.19)

Finally, when α= β= 1
2 , the Gegenbauer polynomials reduce to the well-

known Chebyshev polynomials, Tn(x), which are defined by a solution of the
second order difference equation (see Example 12.6.7)

un+2 − 2x un+1 + un = 0, |x| ≤ 1 (A-4.20)

u(0) = u0 and u(1)= u1. (A-4.21)

The generating function for Tn(x) is

(1 − t2)
(1 − 2x t+ t2)

=T0(x) + 2
∞∑
n=1

Tn(x)tn, |x| ≤ 1 t < 1. (A-4.22)

The first seven Chebyshev polynomials of degree n of the first kind are

T0(x) = 1
T1(x) = x

T2(x) = 2x2 − 1
T3(x) = 4x3 − 3x
T4(x) = 8x4 − 8x2 + 1
T5(x) = 16x5 − 20x3 + 5x
T6(x) = 32x6 − 48x4 + 18x2 − 1.
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Figure A.9 Chebyshev polynomials y=Tn(x).

The graphs of the first four Chebyshev polynomials are shown in Figure A.9.
The Chebyshev polynomials y= Tn(x) satisfy the differential equation

(1− x2)y′′ − xy′ + n2y= 0. (A-4.23)

It follows from (A-4.22) that Tn(x) satisfies the recurrence relations

Tn+1(x) − 2xTn(x) + Tn−1(x) = 0, (A-4.24)

Tn+m(x) − 2Tn(x)Tm(x) + Tn−m(x) = 0, (A-4.25)

(1 − x2)T ′
n(x) + nxTn(x) − nTn−1(x) = 0. (A-4.26)

The parity relation for Tn(x) is

Tn(−x) = (−1)n Tn(x). (A-4.27)

The Rodrigues formula is

Tn(x) =
√
π(−1)n(1 − x2)

1
2

2n
(
n− 1

2

)
!

· d
n

dxn

[
(1 − x2)n−

1
2

]
. (A-4.28)

The orthogonal relation for Tn(x) is

1∫
−1

(1 − x2)−
1
2Tm(x)Tn(x) dx=

⎧⎨⎩
0, m �=n
π
2 , m=n
π, m= n= 0

⎫⎬⎭ . (A-4.29)

The Chebyshev polynomials of the second kind, Un(x), are defined by

Un(x) = (1 − x2)−
1
2 sin[(n+ 1) cos−1 x], −1≤ x≤ 1. (A-4.30)
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The generating function for Un(x) is

(1 − 2x t+ t2)−1 =
∞∑
n=0

Un(x)tn, |x|< 1, |t|< 1. (A-4.31)

The first seven Chebyshev polynomials Un(x) are given by

U0(x) = 1
U1(x) = 2x
U2(x) = 4x2 − 1
U3(x) = 8x3 − 4x
U4(x) = 16x4 − 12x2 + 1
U5(x) = 32x5 − 32x3 + 6x
U6(x) = 64x6 − 80x4 + 24x2 − 1.

The differential equation for y=Un(x) is

(1 − x2)y′′ − 3xy′ + n(n+ 2)y= 0. (A-4.32)

The recurrence relations are

Un+1(x) − 2xUn(x) +Un−1(x) = 0. (A-4.33)

(1 − x2)U ′
n(x) + nxUn(x) − (n+ 1)Un−1(x) = 0. (A-4.34)

The parity relation is
Un(−x) = (−1)nUn(x). (A-4.35)

The Rodrigues formula is

Un(x) =
√
π(−1)n(n+ 1)

2n+1
(
n+ 1

2

)
!(1 − x2)

1
2

dn

dxn

[
(1 − x2)n+ 1

2

]
. (A-4.36)

The orthogonal relation for Un(x) is

1∫
−1

(1 − x2)
1
2 Um(x)Un(x) dx=

π

2
δmn. (A-4.37)

A-5 Laguerre and Associated Laguerre Functions

The Laguerre polynomials Ln(x) are defined by the Rodrigues formula

Ln(x) = ex
dn

dxn
(xn e−x), (A-5.1)
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where n= 0, 1, 2, 3, . . . .
The first seven Laguerre polynomials are

L0(x) = 1
L1(x) = 1− x

L2(x) = 2− 4x+ x2

L3(x) = 6− 18x+ 9x2 − x3

L4(x) = 24− 96x+ 72x2 − 16x3 + x4

L5(x) = 120− 600x+ 600x2 − 200x3 + 25x4 − x5

L6(x) = 720− 4320x+ 5400x2 − 2400x3 + 450x4 − 36x5 + x6.

The generating function is

(1 − t)−1 exp
(

x t

1− t

)
=

∞∑
n=0

tn Ln(x). (A-5.2)

In particular
Ln(0) = 1. (A-5.3)

The orthogonal relation for the Laguerre polynomial is

∞∫
0

e−xLm(x)Ln(x)dx= (n!)2δnm. (A-5.4)

The recurrence relations are

(n+ 1)Ln+1(x) = (2n+ 1 − x)Ln(x) − nLn−1(x), (A-5.5)

xL′
n(x) = nLn(x) − nLn−1(x), (A-5.6)

L′
n(x) =L′

n−1(x) − Ln−1(x). (A-5.7)

The Laguerre polynomials y=Ln(x) satisfy the Laguerre differential equation

xy′′ + (1 − x)y′ + ny= 0. (A-5.8)

The associated Laguerre polynomials are defined by

Lmn (x) =
dm

dxm
Ln(x) for n≥m. (A-5.9)

The generating function for Lmn (x) is

(1− z)−(m+1) exp
(
− x z

1− z

)
=

∞∑
n=0

Lmn (x)zn, |z|< 1. (A-5.10)
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It follows from this that

Lmn (0) =
(n+m)!
n!m!

. (A-5.11)

The associated Laguerre function satisfies the recurrence relation

(n+ 1)Lmn+1(x) = (2n+m+ 1 − x)Lmn (x) − (n+m)Lmn−1(x), (A-5.12)

x
d

dx
Lmn (x) =nLmn (x) − (n+m)Lmn−1(x). (A-5.13)

The associated Laguerre function y=Lmn (x) satisfies the associated Laguerre
differential equation

x y′′ + (m+ 1 − x)y′ + n y= 0. (A-5.14)

The Rodrigues formula for Lmn (x) is

Lmn (x) =
exx−m

n!
dn

dxn
(e−xxn+m). (A-5.15)

The orthogonal relation for Lmn (x) is

∞∫
0

e−x xm Lmn (x)Lml (x) dx=
(n+m)!

n!
δn l. (A-5.16)

A-6 Hermite Polynomials and Weber-Hermite Function-
s

The Hermite polynomials Hn(x) are defined by the Rodrigues formula

Hn(x) = (−1)n exp(x2)
dn

dxn
[exp(−x2)], (A-6.1)

where n= 0, 1, 2, 3, . . . .
The first seven Hermite polynomials are

H0(x) = 1
H1(x) = 2x
H2(x) = 4x2 − 2
H3(x) = 8x3 − 12x
H4(x) = 16x4 − 48x2 + 12
H5(x) = 32x5 − 16x3 + 120x
H6(x) = 64x6 − 480x4 + 720x2 − 120.
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The generating function is

exp(2x t− t2) =
∞∑
n=0

tn

n!
Hn(x). (A-6.2)

It follows from (A-6.2) that Hn(x) satisfies the parity relation

Hn(−x) = (−1)nHn(x). (A-6.3)

Also, it follows from (A-6.2) that

H2n+1(0) = 0, H2n(0) = (−1)n
(2n)!
n!

. (A-6.4)

The recurrence relations for Hermite polynomials are

Hn+1(x) − 2xHn(x) + 2nHn−1(x) = 0, (A-6.5)

H ′
n(x) = 2xHn−1(x). (A-6.6)

The Hermite polynomials, y=Hn(x), are solutions of the Hermite differential
equation

y′′ − 2xy′ + 2ny= 0. (A-6.7)

The orthogonal property of Hermite polynomials is

∞∫
−∞

exp(−x2)Hn(x)Hm(x) dx= 2nn!
√
π δmn. (A-6.8)

With repeated use of integration by parts, it follows from (A-6.1) that

∞∫
−∞

exp(−x2)Hn(x)xmdx= 0, m= 0, 1, . . . , (n− 1), (A-6.9)

∞∫
−∞

exp(−x2)Hn(x)xndx=
√
π n!. (A-6.10)

The Weber-Hermite function or, simply, Hermite functions

y= hn(x) = exp
(
−x

2

2

)
Hn(x) (A-6.11)

satisfies the Hermite differential equation

y′′ + (λ− x2)y= 0, x∈R (A-6.12)

where λ= 2n+ 1. If λ �= 2n+ 1, then y is not finite as |x|→∞.
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Figure A.10 The normalized Weber-Hermite functions.

The Hermite functions {hn(x)}∞0 form an orthogonal basis for the Hilbert
space L2(R) with weight function 1. They satisfy the following fundamental
properties:

h′n(x) + x hn(x) − 2n hn−1(x) = 0,
h′n(x) − x hn(x) + hn+1(x) = 0,
h′′n(x) − x2 hn(x) + (2n+ 1)hx = 0,
F {hn(x)}= h̃n(k) = (−i)n hn(k).

The normalized Weber-Hermite functions are given by

ψn(x) = 2−n/2π− 1
4 (n!)−

1
2 exp

(
−x

2

2

)
Hn(x). (A-6.13)

Physically, they represent quantum mechanical oscillator wave functions. The
graphs of these functions are shown in Figure A.10.

A-7 Mittag Leffler Function

Another important function that has widespred use in fractional calculus and
fractional differential equation is the Mittag-Leffler function. The Mittag-
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Leffler function is an entire function defined by the series

Eα(z) =
∞∑
n=0

zn

Γ(αn+ 1)
, α> 0. (A-7.1)
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Figure A.11 Graph of the Mittag-Leffler function Eα(x).

The graph of the Mittag-Leffler function is shown in Figure A.11.

The generalized Mittag-Leffler function, Eα,β(z), is defined by

Eα,β(z) =
∞∑
n=0

zn

Γ(αn+ β)
, α, β > 0. (A-7.2)

Also the inverse Laplace transform yields

L −1

{
m! sα−β

(sα+̄a)m+1

}
= tαm+β−1E

(m)
α,β (+atα) , (A-7.3)

where

E
(m)
α,β (z) =

dm

dzm
Eα,β (z) . (A-7.4)

Obviously,

Eα,1(z) = Eα(z), E1,1(z) =E1(z) = ez. (A-7.5)



© 2007 by Taylor & Francis Group, LLC

Appendix B

Tables of Integral Transforms

In this appendix we provide a set of short tables of integral transforms of the
functions that are either cited in the text or in most common use in math-
ematical, physical, and engineering applications. In these tables no attempt
is made to give complete lists of transforms. For exhaustive lists of integral
transforms, the reader is referred to Erdélyi et al. (1954), Campbell and Foster
(1948), Ditkin and Prudnikov (1965), Doetsch (1950–1956, 1970), Marichev
(1983), and Oberhettinger (1972, 1974).

TABLE B-1 Fourier Transforms

f(x) F (k) =
1√
2π

∞∫
−∞

exp(−ikx)f(x)dx

1 exp(−a|x|), a > 0

(√
2
π

)
a(a2 + k2)−1

2 x exp(−a|x|), a > 0

(√
2
π

)
(−2aik)(a2 + k2)−2

3 exp(−ax2), a > 0
1√
2a

exp
(
−k

2

4a

)

4 (x2 + a2)−1, a > 0
√
π

2
exp(−a|k|)

a

5 x(x2 + a2)−1, a > 0
√
π

2

(
ik

2a

)
exp(−a|k|)

6

{
c, a≤ x≤ b

0, outside

}
ic√
2π

1
k

(e−ibk − e−iak)

7 |x| exp(−a|x|), a> 0

√
2
π

(a2 − k2)(a2 + k2)−2

611
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f(x) F (k) =
1√
2π

∞∫
−∞

exp(−ikx)f(x)dx

8
sin ax
x

√
π

2
H(a− |k|)

9 exp{−x(a− iω)}H(x)
1√
2π

i

(ω − k + ia)

10 (a2 − x2)−
1
2H(a− |x|)

√
π

2
J0(ak)

11
sin

[
b(x2 + a2)

1
2

]
(x2 + a2)

1
2

√
π

2
J0

(
a
√
b2 − k2

)
H(b− |k|)

12
cos

(
b
√
a2 − x2

)
(a2 − x2)

1
2

H(a− |x|)
√
π

2
J0

(
a
√
b2 + k2

)
13 e−axH(x), a > 0

1√
2π

(a− ik)(a2 + k2)−1

14
1√|x| exp(−a|x|) (a2 + k2)−

1
2

[
a+ (a2 + k2)

1
2

] 1
2

15 δ(x)
1√
2π

16 δ(n)(x)
1√
2π

(ik)n

17 δ(x− a)
1√
2π

exp(−iak)

18 δ(n)(x− a)
1√
2π

(ik)n exp(−iak)

19 exp(iax)
√

2π δ(k − a)

20 1
√

2π δ(k)

21 x
√

2π i δ′(k)

22 xn
√

2π in δ(n)(k)
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f(x) F (k) =
1√
2π

∞∫
−∞

exp(−ikx)f(x)dx

23 H(x)
√
π

2

[
1
iπk

+ δ(k)
]

24 H(x− a)
√
π

2

[
exp(−ika)

πik
+ δ(k)

]

25 H(x) −H(−x)
√

2
π

(
− i

k

)
26 xn exp(iax)

√
2π in δ(n)(k − a)

27 |x|−1 1√
2π

(A− 2 log |k|), A is a constant

28 log(|x|) −
√
π

2
1
|k|

29 H(a− |x|)
√

2
π

(
sin ak
k

)

30 |x|α (α< 1, not a negative integer)

√
2
π

Γ(α+ 1) |k|−(1+α)

× cos
[π
2

(α+ 1)
]

31 sgn x

√
2
π

1
(ik)

32 x−n−1 sgn x
1√
2π

(−ik)n
n!

(A− 2 log |k|)

33
1
x

−i
√
π

2
sgn k

34
1
xn

−i
√
π

2

[
(−ik)n−1

(n− 1)!
sgn k

]
35 xn exp(iax)

√
2π inδ(n)(k − a)
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f(x) F (k) =
1√
2π

∞∫
−∞

exp(−ikx)f(x)dx

36 xαH(x), (α not an integer)
Γ(α+ 1)√

2π
|k|−(α+1)

× exp
[
−
(
πi

2

)
(α+ 1) sgn k

]
37 xn exp(iax)H(x)

√
π
2

[
n!

iπ(k−a)n+1 + in δ(n)(k − a)
]

38 exp(iax)H(x− b)
√
π

2

[
exp[−ib(k− a)]

iπ(k − a)
+ δ(k − a)

]

39
1

x− a
−i
√
π

2
exp(−iak)sgn k

40
1

(x− a)n
−i
√
π

2
exp(−iak) (−ik)n−1

(n− 1)!
sgn k

41
eiax

(x− b)
i

√
π

2
exp[ib(a− k)][1 − 2H(k− a)]

42
eiax

(x− b)n
i

√
π

2
[1− 2H(k− a)]

×exp{ib(a− k)}
(n− 1)!

[−i(k − a)]n−1

43 |x|α sgn x (α not integer)

√
2
π

(−i)Γ(α+ 1)
|k|α+1

cos
(πα

2

)
sgn k

44 xn f(x) (−i)n dn

dkn
F (k)

45
dn

dxn
f(x) (ik)n F (k)

46 eiax f(bx)
1
b
F

(
k − a

b

)

47 sin
cos

(
ax2

) 1√
2a

sin
cos

(
k2

4a − π
4

)
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TABLE B-2 Fourier Cosine Transforms

f(x) Fc(k) =

√
2
π

∞∫
0

cos(kx)f(x)dx

1 exp(−ax), a > 0

(√
2
π

)
a(a2 + k2)−1

2 x exp(−ax), a > 0

(√
2
π

)
(a2 − k2)(a2 + k2)−2

3 exp(−a2x2)
1

|a|√2
exp

(
− k2

4a2

)

4 H(a− x)

√
2
π

(
sin ak
k

)

5 xa−1, 0<a< 1

√
2
π

Γ(a) k−a cos
(aπ

2

)
6 cos(ax2)

1
2
√
a

[
cos

(
k2

4a

)
+ sin

(
k2

4a

)]

7 sin(ax2), a > 0
1

2
√
a

[
cos

(
k2

4a

)
− sin

(
k2

4a

)]

8 (a2 − x2)v−
1
2H(a− x), v >− 1

2 2v−
1
2 Γ
(
v +

1
2

) (a
k

)v
Jv(ak)

9 (a2 + x2)−1 J0(bx), a, b> 0
√

π
2 a

−1 e−akI0(ab), b < k <∞

10 x−vJv(ax), v >−1
2

(a2 − k2)v−
1
2H(a− k)

2v−
1
2 av Γ

(
v +

1
2

)

11 (x2 + a2)−
1
2 e−b(x

2+a2)
1
2 K0

[
a(k2 + b2)

1
2

]
, a > 0, b > 0

12 (2ax− x2)v−
1
2H(2a− x), v >− 1

2

√
2 Γ

(
v +

1
2

)(
2a
k

)v
× cos(ak)Jv(ak)
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f(x) Fc(k) =

√
2
π

∞∫
0

cos(kx)f(x)dx

13 xν−1e−ax, ν > 0, a> 0
√

2
π Γ(ν)r−ν cos νθ, where

r= (a2 + k2)
1
2 , θ= tan−1

(
k
a

)
14

2
x
e−x sinx

√
2
π

tan−1

(
2
k2

)

15 sin
[
a(b2 − x2)

1
2

]
H(b− x)

√
π

2
(ab)(a2 + k2)−

1
2

×J1

[
b(a2 + k2)

1
2

]
16

(1− x2)
(1 + x2)2

√
π

2
k exp(−k)

17 x−α, 0<α< 1
√
π

2
kα−1

Γ(α)
sec

(πα
2

)

18
(

1
a

+ x

)
e−ax

√
2
π

2a2

(a2 + k2)2

19 log
(

1 +
a2

x2

)
, a > 0

√
2π

(1 − e−ak)
k

20 log
(
a2 + x2

b2 + x2

)
, a, b> 0

√
2π

(e−bk − e−ak)
k

21 a(x2 + a2)−1, a > 0
√
π

2
exp(−ak), k > 0

22 (a2 − x2)−1

√
π

2
sin(ak)
k

23 e−bx sin(ax)
1√
2π

[
a+ k

b2 + (a+ k)2
+

a− k

b2 + (a− k)2

]

24 e−bx cos(ax)
b√
2π

[
1

b2 + (a− k)2
+

1
b2 + (a+ k)2

]
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TABLE B-3 Fourier Sine Transforms

f(x) Fs(k) =

√
2
π

∞∫
0

sin(kx) f(x)dx

1 exp(−ax), a> 0

√
2
π
k(a2 + k2)−1

2 x exp(−ax), a > 0

√
2
π

(2ak)(a2 + k2)−2

3 xα−1, 0<α< 1

√
2
π
k−αΓ(α) sin

(πα
2

)
4

1√
x

1√
k
, k > 0

5 xα−1e−ax, α>−1, a> 0

√
2
π

Γ(α) r−α sin(αθ), where

r= (a2 + k2)
1
2 , θ= tan−1

(
k
a

)
6 x−1e−ax, a > 0

√
2
π

tan−1

(
k

a

)
, k > 0

7 x exp(−a2x2) 2−3/2

(
k

a3

)
exp

(
− k2

4a2

)

8 erfc(ax)

√
2
π

1
k

[
1 − exp

(
− k2

4a2

)]

9 x(a2 + x2)−1

√
π

2
exp(−ak), a > 0

10 x(a2 + x2)−2 1√
2π

(
k

a

)
exp(−ak), (a> 0)

11 x(a2 − x2)v−
1
2H(a− x), 2v−

1
2 av+1k−vΓ

(
v + 1

2

)
v >− 1

2 ×Jv+1(ak)

12 tan−1
(x
a

) √
π

2
k−1 exp(−ak)
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f(x) Fs(k) =

√
2
π

∞∫
0

sin(kx) f(x)dx

13 x−vJv+1(ax), v >−1
2

k(a2 − k2)v−
1
2

2v−
1
2 av+1Γ

(
v +

1
2

) H(a− k)

14 x−1J0(ax)

⎧⎪⎨⎪⎩
√

2
π

sin−1

(
k

a

)
, 0<k<a√

π
2 , a < k <∞

⎫⎪⎬⎪⎭
15 x(a2 + x2)−1 J0(bx), a > 0, b > 0

√
π
2 e

−akI0(ab), a< k <∞

16 J0(a
√
x), a > 0

√
2
π

1
k

cos
(
a2

4k

)
17 (x2 − a2)v−

1
2H(x− a), |v|< 1

2 2v−
1
2
(
a
k

)v Γ
(
v + 1

2

)
J−v(ak)

18 x1−v(x2 + a2)−1 Jv(ax),
√
π

2
a−v exp(−ak) Iv(ab),

v >− 3
2 , a, b> 0 a<k <∞

19 H(a− x), a > 0

√
2
π

1
k

(1 − cos ak)

20 erfc(ax)

√
2
π

1
k

[
1 − exp

(
− k2

4a2

)]
21 x−α, 0<α< 2 Γ(1 − α) kα−1 cos

(απ
2

)
22 (ax− x2)α−

1
2H(a− x), α>− 1

2

√
2 Γ

(
α+

1
2

)(a
k

)α
× sin

(
ak

2

)
Jα

(
ak

2

)

23 e−bx sin(ax)
b√
2π

[
1

b2 + (a− k)2
− 1
b2 + (a+ k)2

]

24 ln
∣∣∣a+xb−x

∣∣∣ √
2π

sin(ak)
k
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TABLE B-4 Laplace Transforms

f(t) f̄(s) =

∞∫
0

exp(−st) f(t)dt

1 tn (n= 0, 1, 2, 3, . . .)
n!
sn+1

2 eat
1

s− a

3 cos at
s

s2 + a2

4 sinat
a

s2 + a2

5 coshat
s

s2 − a2

6 sinhat
a

s2 − a2

7 tne−at
Γ(n+ 1)

(s+ a)n+1

8 ta (a>−1)
Γ(a+ 1)
sa+1

9 eat cos bt
s− a

(s− a)2 + b2

10 eat sin bt
b

(s− a)2 + b2

11 (eat − ebt)
a− b

(s− a)(s− b)

12
1

(a− b)
(a eat − bebt)

s

(s− a)(s− b)

13 t sinat
2as

(s2 + a2)2

14 t cosat
s2 − a2

(s2 + a2)2

15 sinat sinh at
2sa2

(s4 + 4a4)
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f(t) f̄(s) =

∞∫
0

exp(−st) f(t)dt

16 (sinh at− sin at)
2a3

(s4 − a4)

17 (cosh at− cos at)
2a2s

(s4 − a4)

18
cos at− cos bt

(b2 − a2)
(a2 �= b2)

s

(s2 + a2)(s2 + b2)

19
1√
t

√
π

s

20 2
√
t

1
s

√
π

s

21 t coshat (s2 + a2)(s2 − a2)−2

22 t sinh at 2as(s2 − a2)−2

23
sin(at)
t

tan−1
(a
s

)
24 t−1/2 exp

(
−a
t

) √
π

s
exp(−2

√
as)

25 t−3/2 exp
(
−a
t

) √
π

a
exp(−2

√
as)

26
1√
πt

(1 + 2at)eat
s

(s− a)
√
s− a

27 (1 + at)eat
s

(s− a)2

28
1

2
√
πt3

(ebt − eat)
√
s− a−√

s− b

29 exp(a2t)erf (a
√
t)

a√
s(s− a2)

30 exp(a2t)erfc (a
√
t)

1√
s (

√
s+ a)

31
1√
πt

+ a exp(a2t)erf (a
√
t)

√
s

(s− a2)
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f(t) f̄(s) =

∞∫
0

exp(−st) f(t)dt

32
1√
πt

− a exp(a2t) erfc(a
√
t)

1√
s+ a

33
exp(−at)√

b− a
erf

(√
(b− a)t

) 1
(s+ a)

√
s+ b

34 1
2e
iωt

[
e−λz erfc(ζ −√

iωt) (s− iω)−1 e−z
√

s
v

+ exp(λz) erfc(ζ +
√
iωt)

]
,

where ζ = z/2
√
vt, λ=

√
iω
v .

35
1
2

[
e−ab erfc

(
b− 2at
2
√
t

)
e−b(s+a

2)
1
2

+ exp(ab) erfc
(
b+ 2at
2
√
t

)]

36 Si(t) =

t∫
0

sinx
x

dx
1
s

cot−1(s)

37 Ci(t) =−
∞∫
t

cosx
x

dx − 1
2s

log(1 + s2)

38 −Ei(−t)=

∞∫
t

e−x

x
dx

1
s

log(1 + s)

39 J0(at) (s2 + a2)−
1
2

40 I0(at) (s2 − a2)−
1
2

41 tα−1 exp(−at), a> 0 Γ(α)(s+ a)−α

42
√
π

Γ
(
v +

1
2

) (
t

2a

)v
Jv(at) (s2 + a2)−(v+ 1

2 ), Re v >− 1
2

43 t−1 Jv(at) av

v(
√
s2+a2+s)v , Re v >− 1

2

44 J0(a
√
t)

1
s

exp
(
−a

2

4s

)
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f(t) f̄(s) =

∞∫
0

exp(−st) f(t)dt

45
(

2
a

)v
tv/2Jv(a

√
t) s−(v+1) exp

(
−a2

4s

)
, Re v >− 1

2

46
a

2t
√
πt

exp
(
−a

2

4t

)
exp(−a√s), a > 0

47
1√
πt

exp
(
−a

2

4t

)
1√
s

exp(−a√s), a≥ 0

48 exp
(
−a

2t2

4

) √
π

a
exp

(
s2

a2

)
erfc

( s
a

)
, a > 0

49 (t2 − a2)−
1
2H(t− a) K0(as), a > 0

50 δ(t− a) exp(−as), a≥ 0

51 H(t− a)
1
s

exp(−as), a≥ 0

52 δ′(t− a) s e−as, a≥ 0

53 δ(n) (t− a) sn exp(−as)

54 | sin at|, (a> 0)
a

(s2 + a2)
coth

(πs
2a

)
55

1√
πt

cos(2
√
at)

1√
s

exp
(
−a
s

)
56

1√
πt

sin(2
√
at)

1
s
√
s

exp
(
−a
s

)
57

1√
πa

cosh(2
√
at)

1√
s

exp
(a
s

)
58

1√
πa

sinh(2
√
at)

1
s
√
s

exp
(a
s

)
59 erf

(
t

2a

)
1
s

exp(a2s2) erfc(as), a > 0
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f(t) f̄(s) =

∞∫
0

exp(−st) f(t)dt

60 erfc
(

a

2
√
t

)
1
s

exp(−a√s), a≥ 0

61

√
4t
π
e−

a2
4t − a erfc

(
a

2
√
t

)
1
s
√
s

exp(−a√s), a≥ 0

62 ea(b+at)erfc
(
a
√
t+

b

2
√
t

)
exp(−b√s)√
s(
√
s+ a)

, a≥ 0

63 J0

(
a
√
t2 − ω2

)
H(t− ω) (s2 + a2)−

1
2 exp

{−ω√s2 + a2
}

64
1
t
(ebt − eat) log

(
s− a

s− b

)

65 {π(t+ a)}− 1
2

1√
s

exp(as) erfc(
√
as), a > 0

66
1
πt

sin(2a
√
t) erf

(
a√
s

)

67
1√
πt

exp(−2a
√
t), a≥ 0

1√
s

exp
(
a2

s

)
erfc

(
a√
s

)

68 C(t) =
1√
2π

t∫
0

cosu√
u
du

1
2s

[
1√

1 + s2
+

s

1 + s2

] 1
2

69 S(t) =
1√
2π

t∫
0

sinu√
u
du

1
2s

[
1√

1 + s2
− s

1 + s2

] 1
2

70 I (t) = 1 + 2
∞∑
n=1

exp(−n2πt) (
√
s tanh

√
s)−1

71 tmα+β−1E
(m)
α,β (±at) m!sα−β

(sα∓a)m+1

72 1+2at√
πt

s+a
s
√
s
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TABLE B-5 Hankel Transforms

f(r) order f̃n(k) =

∞∫
0

rJn (kr) f(r) dr

1 H(a− r) 0
a

k
J1(ak)

2 exp(−ar) 0 a(a2 + k2)−
3
2

3
1
r

exp(−ar) 0 (a2 + k2)−
1
2

4 (a2 − r2)H(a− r) 0
4a
k3
J1(ak) − 2a2

k2
J0(ak)

5 a(a2 + r2)−
3
2 0 exp(−ak)

6
1
r

cos(ar) 0 (k2 − a2)−
1
2H(k − a)

7
1
r

sin(ar) 0 (a2 − k2)−
1
2H(a− k)

8
1
r2

(1 − cos ar) 0 cosh−1
(a
k

)
H(a− k)

9
1
r
J1(ar) 0

1
a
H(a− k), a > 0

10 Y0(ar) 0
(

2
π

)
(a2 − k2)−1

11 K0(ar) 0 (a2 + k2)−1

12
δ(r)
r

0 1

13 (r2 + b2)−
1
2 0 (k2 + a2)−

1
2

× exp
{
−a(r2 + b2)

1
2

}
× exp

{
−b(k2 + a2)

1
2

}

14
sin r
r2

0

⎧⎪⎨⎪⎩
π

2
, k < 1

sin−1

(
1
k

)
, k > 1

⎫⎪⎬⎪⎭
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f(r) order f̃n(k) =

∞∫
0

rJn (kr) f(r) dr

15 (r2 + a2)−
1
2 0

1
k

exp(−ak)

16 exp(−ar) 1 k(a2 + k2)−3/2

17
sin ar
r

1
aH(k − a)
k(k2 − a2)

1
2

18
1
r

exp(−ar) 1
1
k

[
1− a

(k2 + a2)
1
2

]

19
1
r2

exp(−ar) 1
1
k

[
(k2 + a2)

1
2 − a

]
20 rnH(a− r) >−1

1
k
an+1 Jn+1(ak)

21 rn exp(−ar), Re a> 0 >−1
1√
π

2n+1Γ
(
n+

3
2

)
akn

(a2 + k2)n+ 3
2

22 rn exp(−ar2) >−1
kn

(2a)n+1
exp

(
−k

2

4a

)

23 ra−1 >−1
2aΓ

[
1
2
(a+ n+ 1)

]
ka+1Γ

[
1
2
(1 − a+ n)

]
24 rn(a2 − r2)m−n−1 >−1 2m−n−1Γ(m− n)am

×H(a− r) ×kn−mJm(ak)

25 rm exp(−r2/a2) >−1 1F1

(
1 + m

2 + n
2 ;n+ 1;− 1

4a
2k2

)
× knam+n+2

2n+1Γ(n+1) Γ
(
1 + m

2 + n
2

)
26

1
r
Jn+1(ar) >−1 kna−(n+1)H(a− k), a > 0

27 rn(a2 − r2)mH(a− r), >−1 2manΓ(m+ 1)
(
a
k

)m+1

m>−1 ×Jn+m+1(ak)
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f(r) order f̃n(k) =

∞∫
0

rJn (kr) f(r) dr

28
1
r2
Jn(ar) >

1
2

⎧⎪⎪⎨⎪⎪⎩
1
2n

(
k

a

)n
, 0<k≤ a

1
2n

(a
k

)n
, a < k <∞

⎫⎪⎪⎬⎪⎪⎭
29

rn

(a2 + r2)m+1
, a > 0 >−1

(
k

2

)m
an−m

Γ(m+ 1)
Kn−m(ak)

30 exp(−p2r2)Jn(ar), >−1 (2p2)−1 exp
(
−a

2 + k2

4p2

)
×In

(
ak
2p2

)

31
1
r

exp(−ar) >−1

{
(k2 + a2)

1
2 − a

}n
kn(k2 + a2)

1
2

32
rn

(r2 + a2)n+1
>−1

(
k

2

)n
K0(ak)
Γ(n+ 1)

33
rn

(a2 − r2)n+ 1
2
H(a− r) < 1

1√
π

(
k

2

)n
Γ
(

1
2
− n

)(
sin ak
k

)

34
1√
r
Jn−1(ar) >−1

⎧⎪⎨⎪⎩
0, 0<k≤ a

1√
a

(a
k

)n− 1
2
, a < k <∞

⎫⎪⎬⎪⎭

35
1
r
√
r
Jn(ar) > 0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√
a

2n

(
k

a

)n+ 1
2

, 0<k≤ a

√
a

2n

(a
k

)n+ 1
2
, a < k <∞

⎫⎪⎪⎪⎬⎪⎪⎪⎭
36

1√
r
Jn+1(ar) >−3

2

⎧⎪⎨⎪⎩
1√
a

(
k

a

)n+ 1
2

, 0<k≤ a

0, a < k <∞

⎫⎪⎬⎪⎭
37 rn−1e−ar >−1

(2k)n(n− 1
2 )!√

π(k2 + a2)n+ 1
2

38 e−ar
2
J0(br) 0

a

2
exp

(
k2 − b2

4a

)
I0

(
bk

2a

)
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TABLE B-6 Mellin Transforms

f(x) f̃(p) =

∞∫
0

xp−1f(x)dx

1 exp(−nx) n−p Γ(p), Re p> 0

2 exp(−ax2), a > 0
1
2
a−(p/2) Γ

(p
2

)
, Re p> 0

3 cos(ax) a−p Γ(p) cos
(πp

2

)
, 0< Re p< 1

4 sin(ax) a−p Γ(p) sin
(πp

2

)
, 0< Re p< 1

5 (a+ x)−1, | arg a|<π πap−1 cosec(πp), 0< Re p< 1

6 (a− x)−1 πap−1 cot(πp), 0< Re p< 1

7 (1 + x)−a, Re a> 0
Γ(p)Γ(a− p)

Γ(a)

8 (1 + xa)−s
Γ(p/a) Γ(s− p/a)

aΓ(s)

9 (a2 + x2)−1 π

2
a(p−2) cosec

(πp
2

)

10

{
1, 0≤ x≤ a

0, x> a

}
p−1ap

11 Ci (x) =−
∞∫
x

cos t
t
dt −p−1Γ(p) cos

(pπ
2

)
, 0<Re p< 1

12 Si(x) =

x∫
0

sin t
t

dt −p−1Γ(p) sin
(πp

2

)
, −1<Re p< 0

13

{
(1 − x)a−1, 0<x< 1

0, x≥ 1

}
Γ(a) Γ(p)
Γ(a+ p)

14

{
0, 0<x≤ 1

(x− 1)−a, x> 1

}
Γ(a− p) Γ(1 − a)

Γ(1− p)
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f(x) f̃(p) =

∞∫
0

xp−1f(x)dx

15 exp(−ax)H(x− b) a−p Γ(p, ab)

16 exp(−ax)H(b− x) a−p γ(p, ab)

17 2F1(a, b, c;−x) Γ(p) Γ(a− p) Γ(b− p) Γ(c)
Γ(c− p) Γ(a) Γ(b)

18 x
1
2 Jv(x)

2p−
1
2 Γ

[
1
2

(
p+ v +

1
2

)]
Γ
[
1
2

(
v − p+

3
2

)]

19 x−vJv(ax)
2p−v−1av−pΓ

(p
2

)
Γ
(
v − 1

2
p+ 1

)

20 Pn(x)H(1 − x)
Γ
(p

2

)
Γ
(
p

2
+

1
2

)
2Γ
(
p

2
− n

2
+

1
2

)
Γ
(p

2
+
n

2
+ 1

)

21

{
log

(a
x

)
, x< a

0, x≥ a

}
ap

p2

22 x−1 log(1 + x) π(1 − p)−1 cosec (πp)

23 (ex − 1)−1 Γ(p) ζ(p)

24 (ex + e−x)−1 L(p) Γ(p)

25 log
∣∣∣∣1 + x

1 − x

∣∣∣∣ (
π

p

)
tan

(pπ
2

)

26 (1 + x)−mPm−1

(
1−x
1+x

) Γ(p){Γ(m− p)}2

Γ(1 − p) {Γ(m)}2
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f(x) f̃(p) =

∞∫
0

xp−1f(x)dx

27 xa(1 + x)−b
Γ(a+ p) Γ(b− a− p)

Γ(b)

28 x−2vJv(x)Kv(x)
2p−2v−2 Γ

(p
4

)
Γ
(p

2
− v

)
Γ
(
1 + v − p

4

)
29 log(1 + ax), | arg a|<π π

p
a−pcosec(πp), −1<Re p< 0

30 xv+1Jv(ax) 2p+va−(p+v+1)

Γ
(
p

2
+ v +

1
2

)
Γ
(

1 − p

2

)

31 (1 + x2)−(1+α)H(x− 1)
Γ
(p

2

)
Γ
(
α+ 1− p

2

)
2 Γ(α+ 1)

32 cos(xα)
1
α

Γ
( p
α

)
cos

(pπ
2α

)
33 sin(xα)

1
α

Γ
( p
α

)
sin

(pπ
2α

)
34 (1 + ax)−n

Γ(p) Γ(n− p)
ap Γ(n)

, 0<Re p<n

35 e−x (log x)n
dn

dpn
Γ(p) Re p> 0

36 e−axIv(ax), Re; a> 0
Γ
(

1
2
− p

)
Γ(v + p)

2pap
√
π Γ(1 + v − p)

37 e−axKv(ax), Re a> 0
√
πΓ(p+ v) Γ(p− v)

2papΓ
(
p+

1
2

)

38 erfc(x)
Γ( p+1

2 )
p
√
π
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TABLE B-7 Hilbert Transforms

f(t) f̂H(x) =
1
π

∞∮
−∞

f(t)
(t− x)

dt

1 1 0

2

⎧⎪⎨⎪⎩
0, −∞< t< a

1, a < t< b

0, b < t<∞

⎫⎪⎬⎪⎭ 1
π

log
∣∣∣∣ b− x

a− x

∣∣∣∣
3 (t+ a)−1, Im a> 0 i(x+ a)−1

4 (t+ a)−1, Im a< 0 −i(x+ a)−1

5

⎧⎪⎨⎪⎩
0, −∞< t< 0

(at+ b)−1, 0< t<∞
a, b> 0

⎫⎪⎬⎪⎭ 1
π (ax+ b)−1 log

∣∣ b
ax

∣∣ , ax �=−b

6
t

(t2 + a2)
, Re a> 0

a

(x2 + a2)

7
1

(t2 + a2)
, Re a> 0 − x

a(x2 + a2)

8
αt+ βa

(t2 + a2)
, Re a> 0

αa− βx

(x2 + a2)

9 exp(iat), a > 0 i exp(iax)

10 cos(at), a > 0 − sin(ax)

11 sin (at), a> 0 cos(ax)

12
a

a2 + (t+ b)2
, a > 0 − (b+ x)

a2 + (b+ x)2

13

⎧⎪⎨⎪⎩
0, −∞< t<−a

(a2 − t2)−
1
2 , −a< t< a

0, a< t<∞

⎫⎪⎬⎪⎭
⎧⎪⎪⎨⎪⎪⎩

(x2 − a2)−
1
2 , −∞<x<−a

0, −a<x< a
−(x2 − a2)−

1
2 , a <x<∞

⎫⎪⎪⎬⎪⎪⎭
14 H(t− a) −H(t− b), b > a> 0

1
π

log
∣∣∣∣ x− b

x− a

∣∣∣∣
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f(t) f̂H(x) =
1
π

∞∮
−∞

f(t)
(t− x)

dt

15
1
t
H(t− a), a> 0

1
πx

log
∣∣∣∣ a

x− a

∣∣∣∣ , x �= 0, x �= a

16

⎧⎪⎪⎨⎪⎪⎩
−(t2 − a2)−

1
2 ,−∞< t<−a

0, −a< t<a
(t2 − a2)−

1
2 , a < t<∞

⎫⎪⎪⎬⎪⎪⎭
⎧⎪⎨⎪⎩

0, −∞<x<−a
(a2 − x2)−

1
2 , −a< x<a

0, a< x<∞

⎫⎪⎬⎪⎭
17

sinat
t

, a > 0
1
x

(cos ax− 1)

18

{
0, −∞< t< 0

sin(a
√
t), 0< t<∞, a > 0

} {
exp

(
−a√|x|

)
,−∞<x< 0

cos (a
√
x) , 0<x<∞

}

19 sgn t sin
(
a
√|t|

)
, a > 0 cos

(
a
√|x|

)
+ exp

(
−a√|x|

)
20

1
t
(1 − cos at), a > 0

1
x

(sin ax)

21 Jn(t) sin(t− x), n= 0, 1, . . . Jn(x)

22 sgn t |t|v Jv(a|t|), where −|x|v Yv(a|x|)

a> 0, −1
2
<Re v <

3
2

23 sin(at)J1(at), a > 0 cos(ax)J1(ax)

24 sin(at)Jn(bt), where
cos(ax)Jn(bx)

0<b<a, n= 0, 1, 2, . . .

25 cos(at)J1(at), a> 0 − sin(ax)J1(ax)

26 cos(at)Jn(bt), 0<b< a − sin(ax)Jn(bx)

where n= 0, 1, 2, . . .

27 exp(−at) I0(at) H(t), a > 0
1
π

exp(−ax)K0(a|x|)
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f(t) f̂H(x) =
1
π

∞∮
−∞

f(t)
(t− x)

dt

28 exp(−a|t|) I0(at), a > 0 − 2
π

sinh(ax)K0(a|x|)

29 sgn t exp(−a|t|) I0(at), a> 0
2
π

cosh(ax) K0(a|x|)

30 exp(at)K0(a|t|), a> 0 π exp(ax) I0(ax) H(−x)

31 |t|v Yv(a|t|), a> 0,
|x|vJv(a|x|) sgn x

−1
2
<Re v <

3
2

32 sinh(at)K0(a|t|), a > 0
π

2
exp(−a|x|) I0(ax)

33 cosh(at)K0(a|t|), a > 0 −π
2

exp(−a|x|) I0(ax) sgn x

34 log
∣∣∣∣ b− t

t− a

∣∣∣∣ , a < b

⎧⎪⎨⎪⎩
0, −∞<x<a

−π, a<x< b

0, b < x<∞

⎫⎪⎬⎪⎭
35 log

∣∣∣∣ t2 − a2

t2 − b2

∣∣∣∣ , 0<a< b

⎧⎪⎨⎪⎩
−π,−b<x< a
π, a<x< b

0, elsewhere

⎫⎪⎬⎪⎭
36

1 − cos at
t

, a > 0
sin ax
x
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TABLE B-8 Stieltjes Transforms

f(t) f̃(x) =

∞∫
0

f(t)
(t+ x)

dt

1 (a+ t)−1, | arg a|<π (a− x)−1 log
(a
x

)
2

1
(a2 + t2)

, Re a> 0 (a2 + x2)−1
[πx
2a

− log
(x
a

)]
3

t

(a2 + t2)
, Re a> 0 (a2 + x2)−1

[πa
2

+ x log
(x
a

)]
4 tv, −1<Re v < 0 −πxv cosec(πv)

5

⎧⎪⎨⎪⎩
−1, 2n<x< 2n+ 1

+1, 2n+ 1<x< 2n+ 2

n= 0, 1, 2, 3 . . .

⎫⎪⎬⎪⎭ log

⎡⎣x
2

{
Γ
(x

2

)/
Γ
(
x+ 1

2

)}2
⎤⎦

6
tv

(a+ t)
, | arg a|<π,

(a− x)−1 π(av − xv) cosec(πv)where −1<Re v < 1

7
(
tv − av

t− a

)
, −1<Re v < 1

(
π

a+ x

) [
xv cosec(vπ)

−av ctn(vπ) +
av

π
log

(a
x

)]

8 tv−1(a+ t)1−μ, | arg a|<π, Γ(v)Γ(μ− v)
Γ(μ)

(
xv−1

aμ−1

)
0<Re v <Re μ × 2F1

(
μ− 1, v, μ; 1− x

a

)
9 t−ρ(a+ t)−σ, | arg a|<π, π cosec(ρπ)x−ρ(a− x)−σ

−Re σ <Re ρ< 1 × I(1− x
a )(σ, ρ)

10 exp(−at), Re a> 0 − exp(ax)Ei(−ax)

11

{
exp(−at), 0< t< b

0, b < t<∞

}
eax[Ei(−ab− ax) −Ei(−ax)]
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f(t) f̃(x) =

∞∫
0

f(t)
(t+ x)

dt

12

⎧⎪⎨⎪⎩
0, 0< t< b

exp(−at), b < t<∞
Re a> 0

⎫⎪⎬⎪⎭ − exp(−ax)Ei(−ab− ax)

13
1√
t
exp(−at), Re a> 0

π√
x

exp(ax) erfc (
√
ax)

14
√
t exp(−at), Re a> 0

√
π

a
− π

√
x exp(ax) erfc (

√
ax)

15
t−v exp(−at), Re a> 0,

Re v < 1
Γ(1 − v)x−v exp(ax)Γ(v, ax)

16
tv−1 exp

(
−a
t

)
, Re a> 0,

Re v < 1
Γ(1 − v)xv−1 exp

(a
x

)
Γ
(
v,
a

x

)
17 exp(−a√t), Re a> 0 2

[
cos(a

√
x)Ci(a

√
x)

− sin(a
√
x)Si(a

√
x) ]

18
1√
t
exp(−a√t), Re a> 0 − 2√

x

[
sin(a

√
x)Ci(a

√
x)

+ cos(a
√
x)Si(a

√
x) ]

19 (a+ t)−1 log
(
t
a

)
, | arg a|<π 1

2
(x− a)−1

[
log

(x
a

)]2
20 (t− a)−1 log

(
t

a

)
, a > 0

1
2
(x+ a)−1

[
π2 +

{
log

(x
a

)}2
]

21
1√
t
log(at+ b), Re a> 0,

Re b > 0

2π√
x

log
(√

ax+
√
b
)

22 tv log t, −1< Re v < 0 −πxvcosec (vπ)[log x− πctn(vπ)]

23 sin at, a> 0 −[sin(ax)Ci(ax) + cos(ax)Si(ax)]

24 sin(a
√
t), a > 0 π exp(−a√x)
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f(t) f̃(x) =

∞∫
0

f(t)
(t+ x)

dt

25 t−1 sin(a
√
t), a > 0

(π
x

) [
1 − exp(−a√x)

]
26 t−α sin(a

√
t+ απ),

( π

xα

)
exp(−a√x)

where a> 0, −1
2
<Reα< 1

27 sin
(
a
√
t− b√

t

)
, a, b> 0 π exp

[
−
(
a
√
x+

b√
x

)]

28
1√
t
sin2(a

√
t), a > 0

(
π

2
√
x

)[
1 − exp(−2a

√
x)
]

29 cos (at), a> 0 cos(ax)Ci(ax) − sin(ax)Si(ax)

30
1√
t
cos(a

√
t), a > 0

(
π√
x

)
exp(−a√x)

31 1√
t
cos

(
a
√
t− b√

t

)
, a, b> 0

(
π√
x

)
exp

[
−
(
a
√
x+

b√
x

)]

32
1√
t
cos(a

√
t) cos(b

√
t),

π√
x

exp(−a√x) cosh(b
√
x)

a≥ b> 0

33 t(
v
2 +k)Jv(a

√
t) 2(−1)k x(

1
2v+k)Kv(a

√
x)

34 sin(a
√
t)J0(b

√
t), 0< b<a π exp(−a√x) I0(b√x)

35
1√
t
sin(a

√
t)J0(b

√
t),

2√
x

sinh(a
√
x)K0(b

√
x)

0<a< b

36 cos(a
√
t)J0(b

√
t), 0<a< b 2 cosh(a

√
x)K0(b

√
x)

37
1√
t
cos(a

√
t)J0(b

√
t),

π√
x

exp(−a√x)I0(b
√
x)

0<b<a

38 J2
v (at), a > 0 2 Iv(a

√
x)Kv(a

√
x)
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TABLE B-9 Finite Fourier Cosine Transforms

f(x) f̃c(n) =

a∫
0

f(x) cos
(nπx

a

)
dx

1 1

{
a, n= 0

0, n �= 0

}

2 x

⎧⎪⎨⎪⎩
a2

2
, n= 0( a

nπ

)2

[(−1)n − 1], n �= 0

⎫⎪⎬⎪⎭

3 x2

⎧⎪⎨⎪⎩
1
3
a3, n= 0

2a
( a

nπ

)2

(−1)n, n= 1, 2, . . .

⎫⎪⎬⎪⎭

4 x3

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
4
a4 n= 0

3a4(−1)n

(nπ)2 + 6
(
a
nπ

)4 [(−1)n − 1],

n= 1, 2, 3, . . .

⎫⎪⎪⎪⎬⎪⎪⎪⎭
5

⎧⎪⎨⎪⎩
1, 0<x<

a

2

−1,
1
2
a<x< a

⎫⎪⎬⎪⎭
⎧⎪⎨⎪⎩

0, n= 0(
2a
nπ

)
sin

(nπ
2

)
, n= 1, 2, 3, . . .

⎫⎪⎬⎪⎭

6
(
1 − x

a

)2

⎧⎪⎪⎨⎪⎪⎩
1
3
a, n= 0

2a
(nπ)2

, n= 1, 2, . . .

⎫⎪⎪⎬⎪⎪⎭
7 sin(bx)

ba2

(nπ)2 − (ab)2
[(−1)n cos (ab)− 1],

nπ �= ab

8 cos(bx)
(−1)nba2 sin(ab)

(ab)2 − (nπ)2
, nπ �= ab

9 sin
(
mπx
a

)
, m an integer

⎧⎪⎨⎪⎩
0, n=m

mπ[(−1)n+m − 1]
π(n2 −m2)

, n �=m

⎫⎪⎬⎪⎭
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f(x) f̃c(n) =

a∫
0

f(x) cos
(nπx

a

)
dx

10 exp(bx) (a2b)
[
(−1)n exp(ab)− 1

(nπ)2 + (ba)2

]

11 x−
1
2 (a2 − x2)−

1
2

(π
2

)3/2 (nπ
a

) 1
2
{
J−1/4

(nπ
2

)}2

12 (a2 − x2)v−
1
2

√
π 2v−1Γ

(
v + 1

2

) (
a2

nπ

)v
Jv(nπ)

13 sin
{
b(a2 − x2)

1
2

} (
πab

2

)(
b2 +

n2π2

a2

)− 1
2

×J1

[
{(ab)2 + (nπ)2} 1

2

]
14 (a2 − x2)−

1
2

(π
2

)
J0

[
{(ab)2 + (nπ)2} 1

2

]
× cos

{
b(a2 − x2)

1
2

}

15 J0

{
b(a2 − x2)

1
2

} (
b2 +

n2π2

a2

)− 1
2

× sin
[
{(ab)2 + (nπ)2} 1

2

]
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TABLE B-10 Finite Fourier Sine Transforms

f(x) f̃s(n) =

a∫
0

sin
(nπx

a

)
f(x) ds

1 1
( a

nπ

)
[1− (−1)n]

2 x (−1)n+1

(
a2

nπ

)

3 x2 a3(−1)n−1

nπ
− 2a3

[
1 + (−1)n+1

]
(nπ)3

4 x3 (−1)n
a4

π5

(
6
n3

− π2

n

)

5
(
a− x

a

) ( a

nπ

)
6 x(a− x) 2

( a

nπ

)3 [
1 + (−1)n+1

]
7 x(a2 − x2) (−1)n+1 6a

( a

nπ

)3

8 exp(bx)
nπa

(nπ)2 + (ab2)
[
1 + (−1)n+1 exp(ab)

]
9 cos(bx)

nπa

(nπ)2 − (ab)2
[
1 + (−1)n+1 cos(ab)

]
,

nπ �= ab

10 sin(bx)
(−1)n anπ sin(ab)

(nπ)2 − (ab)2
, nπ �= ab

11 cosh(bx)
nπa

[(nπ)2 + (ab)2]
[1 + (−1)n+1 cosh(ab)]

12 sin
(mπx

a

)
, m integer

{
0, n �=m

1
2a, n=m

}

13 cos
(mπx

a

)
, m integer

{ na

π(n2 −m2)
[
1 + (−1)n+m+1

]
, n �=m

0, n=m

}

14 x−1 Si(nπ)
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f(x) f̃s(n) =

a∫
0

sin
(nπx

a

)
f(x) ds

15 x−
1
2 (x2 − a2)−

1
2

(π
2

)3/2 (nπ
a

) 1
2
{
J1/4

(nπ
2

)}2

16 x(a2 − x2)α−
1
2

√
π 2α−1aα+1Γ

(
α+

1
2

)
×
(nπ
a

)−α
Jα+1(nπ)

17 (a2 − x2)−
1
2 T2n+1

(
x
a

) (π
2

)
(−1)nJ2n+1(nπ)

18 (ax− x2)α−
1
2

√
π Γ

(
α+

1
2

)(
a2

nπ

)α
Jα

(nπ
2

)
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TABLE B-11 Finite Laplace Transforms

f(t) LT {f(t)}= f̄(s, T )=

T∫
0

e−stf(t)dt

1 1
1
s
(1 − e−sT )

2 t
1
s2

− 1
s
e−sT

(
1
s

+ T

)

3 tn
n!
sn+1

− e−sT

sn+1

[
(sT )n + n(sT )n−1

+ n(n− 1)(sT )n−2 + · · ·+ n!
]

4 ta, (a>−1)
1

sa+1
γ(a+ 1, sT )

5 exp(−at), a > 0 (s+ a)−1[1 − exp{−T (s+ a)}]

6 tn exp(−at), a > 0
n!

(s+ a)n+1
− e−(a+s)T

(s+ a)n+1
[{(s+ a)T }n

+ n{T (s+ a)}n−1

+n(n− 1){T (s+ a)}n−2 + · · ·+ n!
]

7 H(t− a), a > 0
1
s

[
e−sa − e−sT

]
H(T − a)

8 cos(at)
s

(s2 + a2)
+

e−sT

(s2 + a2)

× (a sin aT − s cosaT )

9 sin(at)
a

(s2 + a2)
− e−sT

(s2 + a2)

× (s sin aT + a cosaT )

10 e−at sin(bt)
b

(s+ a)2 + b2
− exp(−sT )

(s+ a)2 + b2

×(s sin bT + a sin bT + b cos bT )

11 e−at cos(bt)
s+ a

(s+ a)2 + b2
+

exp(−sT )
(s+ a)2 + b2

×(b sin bT − s cos bT − a cos bT )
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f(t) LT {f(t)}= f̄(s, T )=

T∫
0

e−stf(t)dt

12 sinh(at)
a

(s2 − a2)
− exp(−sT )

(s2 − a2)
(a coshaT + s sinhaT )

13 cosh(at)
s

(s2 − a2)
− exp(−sT )

(s2 − a2)
(s coshaT + a sinhaT )

14 t
1
2 −

√
T exp(−sT )

s
+

√
π

2
erf (

√
sT )

s3/2

15 t−
1
2

π

s
erf (

√
sT )

16 erfc
(
t

2a

)
1
s
{1− exp(a2s2)erfc(as)} − e−sT

s
erfc

(
T

2a

)

+
exp(a2s2)

s
erfc

(
T

2a
+ as

)

17 erfc(bt) − 1
s exp

(
s2

4b2

)
erf

(
s
2b

)− exp
(
s2

4b2

)
s

erfc
( s

2b

)
+

1
s

exp
(
s2

4b2

)
erfc

(
bT +

s

2b

)
− e−sT

s
erf (bT )

18 erf (t) −e
s2
4

s
erf

(s
2

)
+
e

s2
4

s
erf

(
T +

s

2

)
− e−sT

s
erf (T )

19 erf (
√
t)

erf (
√
T )

s(s+ 1)
− exp(−sT )erf (

√
T )

s

20 ebt erf (
√
bT )

√
b erf (

√
sT )√

s(s− b)
+
e−(s−b)T erf (

√
bT )

(s− b)

21 ebt erfc (
√
bT )

1
(s− b)

{
1−

√
b√
s

erf (
√
sT )

}

−e
−(s−b)T erf (

√
bT )

(s− b)
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TABLE B-12 Z Transforms

f(n) F (z) =
∞∑
n=0

f(n) z−n

1

{
1, n= 0

0, n �= 0

}
1

2 1
z

z − 1

3 an
z

z − a

4 n
z

(z − 1)2

5 n2 z(z + 1)
(z − 1)3

6
1
n!

exp
(

1
z

)

7 cosnx
z(z − cosx)

z2 − 2z cosx+ 1

8 sinnx
z sinx

z2 − 2z cosx+ 1

9 exp(±nx) z

z − exp(±x)

10 nk enx
∂

∂xk

(
z

z − ex

)

11 n e−nx
z exp (−x)
(z − e−x)2

12 n2 e−nx
z(z + e−x)e−x

(z − e−x)3

13 exp(−nx) sin(an)
z exp(−x) sin a

z2 − 2ze−x cos a+ e−2x

14 exp(−nx) cos(an)
z(z − e−x cos a)

z2 − 2z e−x cos a+ e−2x
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f(n) F (z)=
∞∑
n=0

f(n) z−n

15 sinh (nx)
z sinh x

z2 − 2z cosh x+ 1

16 cosh (nx)
z(z − cosh x)

z2 − 2z cosh x+ 1

17 H(n− 1)
1

z − 1

18 H(n)−H(n− 1) 1

19 H(n−m), m= 1, 2, 3
1

zm−1(z − 1)

20 H(n− 1)−H(n− 2)
1
z

21 H(n−m)−H [n− (m+ 1)]
1
zm

22
m(m− 1) · · · (m− n+ 1)

n!

(
1 +

1
z

)m

23
1

(2n+ 1)!
√
z sinh

(
1√
z

)

24
1

(2n)!
cosh

(
1√
z

)

25
an

(2n+ 1)!

√
z

a
sinh

(√
a

z

)

26
an

(2n)!
cosh

(√
a

z

)

27 an sinh (nx)
za sinh x

z2 − 2za cosh x+ a2

28 an cosh (nx)
z(z − a cosh x)

z2 − 2za cosh x+ a2
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TABLE B-13 Finite Hankel Transforms

order

f(r) n f̃n(ki) =
a∫
0

r Jn(rki)f(r)dr

1 c, where c is a constant 0
(
ac

ki

)
J1(aki)

2 (a2 − r2) 0
4a
k3
i

J1(aki)

3 (a2 − r2)−
1
2 0 k−1

i sin(aki)

4
J0(αr)
J0(αa)

0 − aki(
α2 − k2

i

) J1(aki)

5
1
r

1 k−1
i {1− J0(aki)}

6 r−1(a2 − r2)−
1
2 1

(1 − cos aki)
(aki)

7 rn >−1
an+1

ki
Jn+1(aki)

8
Jv(αr)
Jv(αa)

>−1
aki(

α2 − k2
i

)J ′
v(aki)

9 r−n(a2 − r2)−
1
2 >−1

π

2

{
Jn

2

(
aki
2

)}2

10 rn(a2 − r2)−(n+ 1
2 ) <

1
2

Γ

(
1
2
− n

)
√
π 2n kn−1

i sin(aki)

11 rn−1(a2 − r2)n−
1
2 >−1

2

√
π

2
Γ
(
n+

1
2

)(
2
ki

)n

× a2nJ2
n

(
aki
2

)
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Answers and Hints to Selected
Exercises

2.19 Exercises

1. (a)
√
π

2
exp(−|k|). (c)

1√
2π

(ik)n.

(e) Hint : Put ex = y, F (k) =
Γ(1 − ik)√

2π
.

(f) Hint :f(x) =−1
a

d

dx
exp

(
−1

2
ax2

)
.

(h) F (k) =
1√
2π

(
k

2

)−2

sin2

(
k

2

)
.

(j) F {hn(x)}= (−i)nhn(k),
hn(k) is an eigenfunction for the Fourier transform.

(k) F (k) =
i√
2π

1
(α− k)

[
eia(α−k) − eib(α−k)

]
.

(l)
1√
2a

cos
sin

(
k2

4a
∓ π

4

)
.

5. (b) Hint: Use Pn(x) =
1

2nn!
dn

dxn
(x2 − 1)n.

6. (a) (f ∗ g)(x) = eax
∞∫
0

e−aydy=
1
a
eax.

(b) (f ∗ g)(x) =

∞∫
−∞

sin b(x− y)e−a|y|dy

=

∞∫
0

[sin b(x+ y) + sin b(x− y)] e−aydy

= 2 sin bx

∞∫
0

e−ay cos by dy=
2a sin bx
a2 + b2

.

645



© 2007 by Taylor & Francis Group, LLC

646 INTEGRAL TRANSFORMS and THEIR APPLICATIONS

7. (j) Verify this result using the Fourier transform of convolution.

8. (a) y(x) = e−x
x∫

−a
eαf(α) dα+ ex

a∫
x

e−αf(α) dα.

For (b)–(c) use Exercises 3(a) and 3(b).

(b) y(x) =A exp
(
−1

4
x2

)
, where A is a constant.

(e) y(t) =
1√
2π

∞∫
−∞

F (k) exp(ikt) dk
(ω2 − k2 + 2iαk)

.

9. (b) f(x) =
a√

π(a− b)
exp

(
− abx2

a− b

)
.

(c) f(x) =

√
2
π

{
b

a
(a− b)

}
1

(a− b)2 + x2
.

(d) f(x) =

√
2
π
· ac

b(x2 + c2)
, c= b− a.

(e) F (k) =
1
π
· iπΦ(k)

sgn k
, f(x) =− 1

π

∞∫
−∞

(x− t)−1φ(t) dt.

10. u(x, t) =
1√
2π

∞∫
−∞

{A(k) exp[i(kx+ ωt)] +B(k) exp[i(kx− ωt)]} dk,

where A(k) =
1
2

[
F (k) +

1
iω
G(k)

]
, B(k) =

1
2

[
F (k)− 1

iω
G(k)

]
and ω2 =

(
c2k2 + a2

)
.

11. Hint: u(x, t) = 2

∞∫
0

A(k) exp(−k2bt) cos{(x+ at)k} dk

≈
√
π

bt
A(0) exp

[
− (x+ at)2

4bt

]
as t→∞,

where A(k) is expanded in Taylor series and only the first term is re-
tained at k= 0.

12. Hint: F−1{cos(k2t)}=
1√
2t

cos
(
x2

4t
− π

4

)
.
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14. (a) Hint: Differentiate both sides of the integral
∞∫
0

e−ax sin kx dx =
a

k2 + a2
with respect to a to obtain

Fs(k) =
√
a

π

2ak
(k2 + a2)2

.

(c) Fc

{
1
x

}
does not exist.

(d)
√
π

2
(a2 + k2)−

1
2 . Hint: Use K0(ax) =

∞∫
0

exp(−ax coshu) du and in-

terchange the order of integration.

15. (a) Differentiate both sides of the integral

∞∫
0

e−ax sin kx dx=
k

k2 + a2

with respect to a to obtain the result.
(b) Integrate the above integral with respect to a from a to ∞ to obtain

the answer.

(c)
√
π

2
(−i sgn k).

(d)
√
π

2
e−ak.

16. (a) Hint: If f(x) = exp(−ax2), then f(x) satisfies the equation

f ′(x) + 2 a x f(x)= 0.

We take the Fourier transform and use 3(a) to obtain

2aF ′(k) + k F (k) = 0, F (0) =
1√
2a
.

Solving this equation yields

F (k) =
1√
2a

exp
(
−k

2

4a

)
.

(b) Use the definition of the Fourier cosine transform and integrate by
parts.

17. Hint: Use the Parseval formula for the gate function.

19. Hint: Us(k, t) =Fs(k)Gc(k, t), where Gc(k, t) = exp(−κ k2t).

20. u(x, y) =− 2
π

∞∫
0

1
k

sin ak cos kx e−ky dk.
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21. (a) f(x) =
1√
x

,

(c) f(x) =
H(x− a)√
x2 − a2

,

(b) f(x) = exp(−ax),
(d) H(a− x).

22. Hint: Use the Fourier sine transform.

u(x, t) =
1√

4π κt

∞∫
0

f(ξ)
[
exp

{
− (x− ξ)2

4κt

}
− exp

{
− (x+ ξ)2

4κt

}]
dξ.

23. (a)
πa3

2
, (b)

π

b2
(1 − e−ab), (c) πa.

24. Hint: Use the Convolution Theorem for the Fourier cosine transform.

25. Hint: Use the Convolution Theorem for the Fourier cosine transform.

26. (a)
1
2
(π − a), (d) π

(
exp(2πa) + 1
exp(2πa)− 1

)
.

28. Hint: F −1

{
cos
sin (atk2)

}
=

1
2
√
at

[
cos

(
x2

4at

)
± sin

(
x2

4at

)]
.

29. u(x, z)=
P

2πμ

∞∫
−∞

1
α

exp(ikx− αz) dx, α=

√
k2 − ω2

c 2
2

.

Hint: Write (x, y) = r(cos θ, sin θ) along with k=
ω

c2
cosφ

and α=
iω

c2
sinφ to obtain

u(x, z)=
P

2πiμ

π+i∞∫
0−i∞

exp
[
− iωr
c2

sin(θ + φ)
]
dφ.

30. φ(x, z, t) =−Pg
2π

∞∫
−∞

sinωt
ω

exp(ikx+ |k|z) dk,

η(x, t) =
P

2π

∞∫
−∞

cosωt exp(ikx) dk, where ω2 = g|k|,

η(x, t)≈ Pt

2
√

2π

√
g

x3/2
cos

(
gt2

4x

)
for gt2>> 4x.
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32. φ(x, z, t) =
iP exp(εt)

2πρ

∞∫
−∞

(Uk − iε) exp(|k|z + ikx)
(Uk − iε)2 − g|k| dk,

η(x, t) =
P exp(εt)

2πρ

∞∫
−∞

|k| exp(ikx) dk
(Uk − iε)2 − g|k| .

36. u(x, t) =
1
2
[f(x− ct) + f(x+ ct)] +

1
2c

x+ct∫
x−ct

g(ξ)dξ for x> ct.

Similar result for x< ct.

37. Hint: Fs{uxxxx}=

√
2
π

[k4Us(k, y)− k3u(0, y)],

Fs{uxxyy}=

√
2
π

∂2

∂y2
[−k2Us(k, y) + ku(0, y)].

43. (a) φ(t) =
(

1− it

a

)−p
.

(b) φ(t) = exp(iμt− λ|t|).
(c) φ(t) = (1 + λ2t2)−1 exp(iμt).

44. f(x) =
1 − cosx
πx2

.

45. φ(t) =
1
it

[exp(ita)− 1].

47. U(k, y)=F (k) cos(k2y), u(x, y) =
1√
2π

∞∫
−∞

F (k) cos(k2y) exp(ikx) dk.

48. u(x, y, t) =
1
2π

∫ ∞∫
−∞

F (k, l) cos
[
c(k2 + l2)

1
2 t
]
exp[i(kx+ ly)] dk dl.

52. u(x, t) =
1
2π

∞∫
−∞

[
F (k) cos(xα) +

G(k)
α

sinxα
]

exp(ikt) dk,

where −α2 =
b+ ika− k2

c2
.

53. u(x, y) =
2T0

π

∞∫
0

sin ak cosxk cosh yα
k coshα

dk, α=
√
h+ k2.

54. (a) u(x, y) =
1

4π2

∞∫
−∞

∫
F (k, l) exp{i(kx+ ly)}

(k4 + l2 + 2)
dk dl.
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(b) u(x, y) =− 1
4π2

∞∫
−∞

∫
F (k, l) exp{i(kx+ ly)}dk dl

(k2 + 2l2 − 3ik+ 4)
.

55. Hint: Seek a solution of the form ψ=φn(x, t) sinnπy with ψ0(x, y) =
ψ0n(x) sinnπy so that φn satisfies the equation

∂

∂t

[
∂2

∂x2
φn − α2φn

]
+ β

∂φn
∂x

= 0, α2 = (nπ)2 + κ2.

Apply the Fourier transform of φn(x, t) with respect to x and use
Ψn(k, 0)= F{ψ0n(x)}.

φn(x, t) =
1√
2π

∞∫
−∞

Ψn(k, 0) exp[i{kx− ω(k)t}] dk,

where ω(k) =−βk(k2 + α2)−1.

Examine the case for ψ0n(x) =
1

a
√

2
exp

{
ik0x−

(x
a

)2
}
.

56. Hint: The Fourier transform of the equation gives(
iωR+

1
C

)
Q (ω) = E (ω) ,

so that the transfer function in the frequency domain is

Φ (ω) =
Q (ω)
E (ω)

=
C

(1 + iωRC)
.

The inverse Fourier transform gives the impulse response function

φ (t) = F−1 {Φ (ω)} =
1
R

exp
(
− t

RC

)
H (t) .

57. (a) See Titchmarsh (1959) pages 60-61.

(b)
√
a

[
1
2

+
∞∑
n=1

e−na
]

=

√
2b
π

[
1
2

+
∞∑
n=1

(
1 + n2b2

)−1

]
.

(c)
√
a

[
1
2

+
∞∑
n=1

exp
(
−1

2
a2n2

)]
=
√
b

[
1
2

+
∞∑
n=1

exp
(
−1

2
n2b2

)]
.

(d)
√
a

[
1
2

+
∞∑
n=1

exp
(
−1

2
a2n2

)
cos(αan)

]

=
√
b exp

(
−1

2
α2

)[
1
2

+
∞∑
n=1

exp
(
−1

2
b2n2

)
cosh(αbn)

]
.
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(e)
√
a

b
f(0)

⎡⎣1
2

+
∞∑

na≤1

(
1− a2n2

)ν− 1
2

⎤⎦=
1
2
Fc(0) +

∞∑
n=1

(nb)−νJν(nb),

where, in the case ν = 1
2 , the term na= 1, if it is present, is to be

halved.

3.9 Exercises

1. (a)
2
s2

+
a2

s2 + a2
,

(c)
s2 − a2

(s2 + a2)2
,

(g)
2
s3

exp(−3s),

(i) s
√
π(s− a)−3/2,

(b) s(s+ 2)−2,

(e)
exp(−3s)
(s− 1)

,

(h) (1 + sa)s−2 exp(−as),

(j)
a(s2+2ω2)
s(s2+4ω2) .

2. Hint:

∞∫
0

t−n exp(−st) dt≥ e−s
1∫

0

t−n dt+

∞∫
1

t−n exp(−st) dt,

since exp(−st)≥ exp(−s) for 0≤ t≤ 1. But

1∫
0

t−n dt does not exist.

5. Hint: Use (3.6.7).

6. Hint: Use definition 3.2.5 and result (3.6.7).

7. (a)
1

(a2 − b2)
(cos bt− cos at),

(c) (t− a)H(t− a),

(e)
1
2

exp(−t) sin 2t,

(b)
(
t

c2
− sin ct

c3

)
,

(d) exp(2t)− (t+ 1) exp(t),

(f) Hint:
1

s2(s+ 1)(s+ 2)
=

1
2s2

− 3
4s

+
1

s+ 1
− 1

4(s+ 2)
,

(g)
1
a2

[
1 + (at− 1) eat

]
,

(i)
1
a2

(
eat − at− 1

)
.

(h)
1
a3

[
2 + at (at− 2) eat

]
,
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8. (a)
1
2a

(sin at+ at cos at), (b)
1
2
erf (2

√
t),

(c)

t∫
0

f(τ) dτ, (d)
t

2a
sin at,

(e)

t∫
0

f(t− τ) sinωτ dτ, (f)
1

2a3
(sin at− at cosat) ,

(g)
1

(a2 + b2)
(b sin bt− a cos bt+ a eat), (i) erfc

(
a

2
√
t

)
,

(j)
1
a3

(at− sin at) , (k) t cos at, (l)Use(3.6.7).
(

1 − cos at
t

)
.

9. (b) Hint:
1

(
√
s−√

a)
=

1√
s

(
a

s− a
+ 1

)
+

√
a

s− a
.

(c) Hint: f̄(s) has simple poles at s= 0 and at s=±(2n+ 1)
aπi

b
=±sn.

The residue at s= 0 is
x

a
, and the residue at s= sn is

sinh
{

(2n+ 1)
πix

a

}
exp

{
(2n+ 1)

πiax

b

}
(
b

2a

){
(2n+ 1)

πai

b

}2

sinh
{

(2n+ 1)
πi

2

} .
Grouping the residues at s=±sn together and using

sinh
{

(2n+ 1)
πi

2

}
= i sin(2n+ 1)

π

2
= i(−1)n, we obtain the result.

(d) Hint: L −1
{

1√
s+ia

}
= e−iat√

πt

L −1

{
1√

s2 + a2

}
= L −1

{
1√

s+ ia
√
s− ia

}
,

=
1
π

∫ t

0

τ−
1
2 e−iaτ (t− τ)−

1
2 eia(t−τ)dτ

=
1
π

∫ t

0

1√
τ(t− τ)

eia(t−2τdτ,

=
1
π

∫ 1

0

eiat(1−2v)√
v(1 − v)

dv (τ = tv)

=
1
π

∫ 1

−1

eiatx√
1− x2

dx (x= 1 − 2v).

10. (a) Use result (3.6.7).
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(b) Use 10(a) and result (3.7.6).

11. (a) J0(at), (b)
1
t

sinh at, (c) 1 +
1
2
· t

2

3!
+

1.3
2.4

· t
4

5!
+ · · · ,

(d) 2
∞∑
n=0

erfc
[
(2n+ 1)x

2
√
t

}
, (e) J0(2

√
t),

(f) a
[
1 +

(at)2

22 · 3 +
(at)4

22 · 42 · 52
+ · · ·

]
.

12. Hint: (i) L −1

{
f̄(s)
s

}
=

t∫
0

f(τ)dτ = g(t),

(ii) L −1

{
L {g(t)}

s

}
= L −1

{
f̄(s)
s2

}
=

t∫
0

g(t1)dt1

=

t∫
0

⎧⎨⎩
t1∫

0

f(τ)dτ

⎫⎬⎭ dt1 =

t∫
0

t1∫
0

f(τ)dτ dt1.

13.
1
s
{exp(s)− 1}−1.

15. (b) Hint: Use Example 3.6.1(a).

17. s(s2 + 1)−1 exp
(
−πs

2

)
.

18. (f) Use result (3.6.7).

22. (a) − 1
2s

log(1 + s2), (b)
1
s

log(1 + s).

23. (a) Hint: Use (3.6.2) and then the shifting property (3.4.1).

(c) Ln(t) =
n∑
r=0

(
n

r

)
(−t)r
r!

.

24. (a) Hint: Use the definition and then interchange the order of integra-
tion.

26. f̄(s) = s−2 tanh
(as

2

)
, s > 0; Hint: f(t+ 2a) = f(t).

27. (a) f(0) = 1, f ′(0) = 5.



© 2007 by Taylor & Francis Group, LLC

654 INTEGRAL TRANSFORMS and THEIR APPLICATIONS

29. Hint: Use the identities

sf̄(s)ḡ(s) = f(0)ḡ(s) + {sf̄(s) − f(0)}ḡ(s)
= f(0)ḡ(s) + L {f ′(t)}L {g(t)}.

sf̄(s)ḡ(s) = g(0)f̄(s) + {sḡ(s) − g(0)}f̄(s).

30. (a) f̄(s)∼ 1
s

(
1 − 2!

s2
+

4!
s4

− · · ·
)

.

(b) Hint: Put t= x+ 1 and then write the binomial expansion of (x2 +
2x)

1
2 for |x|< 2.

K0(s)∼ e−s√
π

∞∑
n=0

(−1)n

n!

{
Γ
(
n+

1
2

)}2

(2s)n+ 1
2

as s→∞.

31. (a)
∞∑
n=0

(−1)nΓ(n+ 1)
sn+1

, Hint : (1 + t)−1 =
∞∑
n=0

(−1)n tn,

(b)
∞∑
n=0

(−1)n 22n+1Γ
(
n+

3
2

)
(2n+ 1)! sn+ 3

2
, sin(2

√
t) =

∞∑
n=0

(−1)n 22n+1 t(n+ 1
2 )

(2n+ 1)!
.

(c)
∞∑
n=0

(−1)n

n

Γ(n+ 1)
sn+1

, Hint : log(1 + t) =
∞∑
n=1

(−1)n−1 t
n

n
,

(d)
∞∑
n=0

(−1)n a2n Γ(2n+ 1)
{22 · 42 · · · · · (2n)2}s2n+1

, Hint : J0(at) =
∞∑
n=0

(−1)n(at)2n

22 · 42 · · · · · (2n)2
.

32. (a) L {(t− a)nH(t− a)}= e−asL {tn}= e−as
n!
sn+1

.

(b) L
{
t2H(t− a)

}
= e−asL

{
(t+ a)2

}
= e−asL

{
t2 + 2at+ a2

}
= e−as

(
2
s3 + 2a

s2 + a2

s

)
.

(c) f(t) = t− tH(t− a). Hence, f̄(s) =
1
s2

−L {tH(t− a)}

=
1
s2

− e−asL {t+ a}=
1
s2

− e−as
(

1
s2

+
a

s

)
.

(d) f(x) =w0

(
1− 2x

l

)
−w0

(
1 − 2x

l

)
H

(
x− l

2

)
=

2w0

l

[(
l

2
− x

)
+
(
x− l

2

)
H

(
x− l

2

)]
f̄(s) =

2w0

l

[(
l

2s
− 1
s2

)
+

1
s2

exp
(
−sl

2

)]
.
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(e) e−πsL {cos 2(t+ π)}= e−πsL {cos 2t}= e−πs
(

s

s2 + 4

)
.

(f) f(t) = 2− 4H(t− a), f̄(s) =
2
s
− 4
s
e−as.

33.
{
a, 0≤ t≤ a
0, a < t< 2a

}
34.

⎧⎨⎩
a, 0≤ t≤ a
−a, 1< t< 2
0, t < 2

⎫⎬⎭
36. (a) (fp∗fq) (t) =

t∫
0

fp(t− τ) fq(τ) dτ = tp+q−1 e−tB(p, q), x= 1 − τ

t

= fp+q(t)B(p, q).

(c) (fp∗fq)′ (t) = f ′
p(t)∗fq(t) = [(p− 1)fp−1(t) − fp(t)] ∗fq(t)

= (p− 1)B(p− 1, q)fp+q−1(t) −B(p, q)fp+q(t).

4.11 Exercises

1. (a)
1

(a− b)
(e−bt − e−at),

(c)
1
5
(2 cos t+ sin t+ 3e−2t),

(b) 2e−t − t2 − 2t− 2,

(d) 2(e2t − 1).

2. x(t) = x0 exp(−kt).

3. (a) x(t) =
1
2
(e3t + e−t), y(t) =

1
2
(e3t − e−t).

(b) x1 =
28
9
e3t − e−1 − t

3
− 1

9
, x2 =

28
9
e3t + e−t − t

3
− 1

9
.

(c) x= 15 cos t+ 20 sin t− 10e−t,
y= 10 cos t+ 5 sin t− 10e−t,
z=−25 sin t.

(d) x=
1
5
(7e−t + 3e4t), y=

1
5
(7e−t − 2e4t).

4. x(t) =
(
x1

x2

)
= x0

(
3e−t − 2
3 − 3e−t

)
.

5. x(t) = x0e
t, y(t) = (x0 + y0)e2t − x0e

t.

6. (a) Write s4 + 2s2(�+ 2k2) + �2 = (s2 + α2)(s2 + β2) so that α2 + β2 =
2(�+ 2k2), (αβ)2 = �2 and α=

√
k2 + �+ k, β =

√
k2 + �− k.
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(b) x(s) = y(s) =
s(s2 + 3)

(s2 + 2)2 − 1
.

7. C(t) =
( α

kV

)
(1 − e−kt).

8. p(t) = p0 exp
(
−ct
k

)
+Acω

(
ω2 +

c2

k2

)−1 [
c

ωk
sinωt− cosωt+ exp

(
−ct
k

)]
.

10. c(t) = c0 exp(−k1t).

11. Hint:
d

dt
(c1 + c2 + c3) = 0 and so c1 + c2 + c3 = c1(0).

c1(t) = c1e
−k1t, c2(t) =

k1c1
k2 − k1

(e−k1t − e−k2t) and

c3(t) = c1(0)− c1(t) − c2(t).

12. (a) x(t) =
(

1 +
1

n2 − ω2

)
cos ωt− cosnt

n2 − ω2
.

(b) x(t) =
1
3
(sin t− sin 2t).

(c) 2e−1 +
1
16
e−4t +

3t
4
− 31

16
.

(d)
1
16

(3 sin 2t+ 5 sinh 2t).

(e) Hint: x̄(s) =
1

(s− 1)2 + 1
− (s+ 2)

(s+ 2)2 + 1
.

(f) x̄(s) =
e−as + α(s+ b) + β

s(s+ b)
= α

s + β
b

(
1
s − 1

s+b

)
+ e−as

b

(
1
s − 1

s+b

)
x(t) =α+ β

b

(
1 − e−bt

)
+ 1

bH(t− a)
(
1− e−bt

)
.

(g) v(t) =
1
C

L −1

{
(e−as − 1)

1
(s+ 1

2RC )2 + ω2

}
,

where ω2 = 1
LC − 1

4R2C2 .

(i) x̄(s) =
1

s2(s− a)2
− e−as

s2(s− a)2
− a e−as

s(s− a)2
.

Inversion yields the solution as

x(t) = f(t)− f(t− a)H(t− a)− a g(t− a)H(t− a), where

f(t) = L −1

{
1

s2(s− a)2

}
=

1
a3

[
2 + at+ (at− 2)eat

]
,
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g(t) = L −1

{
1

s(s− a)2

}
=

1
a2

[
1 + (at− 1)eat

]
.

14. x(t) = a(ωt− sinωt), y(t) = a(1 − cosωt).

16. ẋ(t) =
eE

mω
sinωt, ẏ(t) =

eE

mω
(cosωt− 1), ż= 0.

19. ȳ(x, s) = f̄(s)
sinh

{s
c
(l− x)

}
sinh

(
sl

c

) .

20. V (x, t) = V0 erfc
(

x

2
√
κt

)
.

21. V (x, t) = V0

(
t− x

c

)
H
(
t− x

c

)
,

(i) V =V0H
(
t− x

c

)
, (ii) V =V0 cos

{
ω
(
t− x

c

)}
H
(
t− x

c

)
.

22. u(z, t)=Ut

[
(1 + 2ζ2)erfc(ζ) − 2ζ√

π
e−ζ

2
]

where ζ =
z

2
√
νt
.

23. q(z, t)=
a

2
eiωt

[
e−λ1zerfc{ζ − [it(2Ω + ω)]1/2}
+eλ1zerfc{ζ + [it(2Ω + ω)]1/2}

]
+
b

2
e−iωt[e−λ2zerfc{ζ − [it(2Ω− ω)]1/2} + eλ2zerfc{ζ + [it(2Ω− ω)]1/2}],

where λ1,2 =
{
i(2Ω± ω)

ν

}1/2

.

q(z, t)∼ a exp(iωt− λ1z) + b exp(−iωt− λ2z), δ1,2 =
{

ν

|2Ω± ω|
}1/2

.

24.
( ν

2Ω

)1/2

.

25. (a)
1
2

(
t+

3
2

sin 2t
)
, (b) (1 − cos t), (c) aJ0(at),

(d) 3 sin t−
√

2 sin(
√

2t), (e)
(
t2 +

2t
a

)
.

(f) x̄(s) =
s

s2 − a2
, x(t) = cosh at.

26. Hint: f(s) =
1

s(
√
s− a)

.

27. 1− (1 + t)e−t.
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28. (a)
π

2a2
(1 − e−at), (b)

π

2
sgn t, (c)

π

a
e−at,

(d) πe−at, (e)
√
π

4t
, (f)

√
π

8t
.

29. Hint: Use the Laplace transform of sine and cosine functions.

31. EIs4ȳ(s) =W exp(−as) +As+B,

where A=EI y′′(0) and B=EI y′′′(0).

EI y(x) =
W

6
(x− a)3 H(x− a) +

A

2
x2 +

B

6
x3,

y(�)= 0 = y′′(�) gives A=Wa �−2(�− a)2 and

B=−W�−3(�− a)2(�+ 2a).

32. EI s4ȳ(s) =
W

s

[
exp

(
− �s

2

)
− exp

(
−3�s

2

)]
+As+B,

where A=EI y′′(0) and B=EI y′′′(0).

EI y(x) =
W

24

[(
x− �

2

)
H

(
x− �

2

)
−
(
x− 3�

2

)4

H

(
x− 3�

2

)]
+
Ax2

2
+
Bx3

6
.

y′′(2�)= 0 = y′′′(2�) gives A=W�2, B=−W�.

33. EI y(IV )(x) =W [1 −H(x− �)], 0<x< 2�.

EI y(x) =
W

8

[
9
8
(�x)2 − 19

16
�x3 +

1
3
{x4 − (x− �)4H(x− �)}

]
.

34. EI s4ȳ(s) =
W

s
[1 − exp(−2�s)] + P exp(−�s) +As+B,

where A=EI y′′(0) and B=EI y′′′(0).

EI y(x) =
W

24
[x4 − (x− 2�)4H(x− 2�)]

+
P

6
(x− �)3H(x− �) +

A

2
x2 +

B

6
x3.

The second term inside the square bracket in y(x) does not contribute
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because the beam extends over 0≤ x< 2�. Thus

EI y(x) =
W

24
x4 +

A

2
x2 +

B

6
x3, 0≤ x< �,

=
W

24
x4 +

P

6
(x− �)3 +

A

2
x2 +

B

6
x3, � < x≤ 2�.

y′′(2�) = 0 = y′′′(2�) givesA= �(2W�+ P ) and B=−(A/�).

M

(
�

2

)
= EI y′′

(
�

2

)
=
�

8
(9W�+ 4P ) and

S

(
�

2

)
= EI y′′′

(
�

2

)
=−

(
3
2
W�+ P

)
.

35. (a) un = 3n,

(c) un = (n+ 1)2n,

(e) un =n2n,

(b) un = n2n−1,

(d) un = 2(3n − 2n−1),

(f) un =A3n +B2n,

where A= (u1 − 2u0) and B= (3u0 − u1),

(g) un = 3n, (h) un = can.

37. u(t) = 1 + t+
(t− 1)3

3
+ · · · .

38. u(x, t) =
1

2πi

∫ c+i∞

c−i∞
s−1exp

[
st− sx√

1 + k2s2

]
ds.

39. Hint:

L −1

[
1√

s2 − α2
exp{−β(s2 − α2)1/2}

]
= I0[α(t2 − β2)1/2]H(t− α).

42. u(x, t) = x+ exp

[
−
(

3πc
a

)2

t

]
sin

(
3πx
a

)

−a
[ ∞∑
n=0

erfc
{

(2n+ 1)a+ x

3c
√
t

}
−

∞∑
n=0

erfc
{

(2n+ 1)a− x

2c
√
t

}]
.

50. (a) u(x, t) =
1√

4πκt

∫ ∞

−∞
exp

[
− (x− ξ)2

4κt

]
f(ξ)dξ

+
∫ t

0

dτ

∫ ∞

−∞
q(ξ, τ)G(x, t; ξ, τ)dξ,

where

G(x, t; ξ, τ) =
1√

4πκ(t− τ)
exp

[
− (x− ξ)2

4κ(t− τ)

]
.
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(b) The Laplace transform solution is

x̄(x, s) =
1

s(1 + e−al)

[
e−ax + e−a(l−x)

]
,

where a=
√

s
κ .

Expanding the denominator, the solution is

u(x, t) =
∞∑
n=0

(−1)n
[
erfc

(
x+ nl√

4κt

)
− erfc

(
(n+ 1)l− x√

4κt

)]
.

52.

ū(z, s) = U0f̄(s) exp
(
−z

√
s

ν

)
=U0sf(s)

1
s

exp
(
−z

√
s

ν

)
= U0 [L {f ′(t) + f(0)}]L

[
erfc

(
z√
4νt

)]
Using the convolution theorem, we obtain

u(z, t)=U0

∫ t

0

[f ′(t− τ) + f(0)] erfc
(

z√
4νt

)
dτ.

For the special case, we obtain

u(z, t) =
U0

2πi

∫ c+i∞

c−i∞

(
ω

s2 + ω2

)
exp

(
st− z

√
s

ν

)
ds, c> 0

=
(
U0ω

π

)∫ ∞

0

e−σt sin
(√

σ
ν z

)
σ2 + ω2

dσ

+ U0 exp
(
−z

√
ω

2ν

)
sin

(
ωt− z

√
ω

2ν

)
,

where the first integral is due to the branch cut of the Bromwich integral
and it tends to zero as t→∞, and represents the initial transient term
that occurs because the disk starts from rest. The second term comes
from the residues at the poles at s=±iω. It represents the oscillatory
motion of the viscous fluid whose amplitude decays exponentially with
z and whose phase changes with z.

53. (a) h̄(s) =
(
s2 + 2s+ 5

)−1
, h(t) =

1
2
e−t sin 2t,

x(t) = 2e−t cos 2t+ (h ∗ f)(t).

(b) h̄(s) =
(
s2 − 2s+ 5

)−1
, h(t) =

1
2
et sin 2t,

x(t) = et sin 2t+ (h ∗ f)(t).
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(c) h̄(s) =
(
s2 + 32

)−1
, h(t) =

1
3

sin 3t,

x(t) = (2 cos 3t− sin 3t) + (h ∗ f)(t).

(d) h̄(s) =
(
s2 − 2s+ 5

)−1
, h(t) =

1
2
et sin 2t,

x(t) = L −1

{
x0s+ (x1 − 2x0)
s2 − 2s+ 5

}
= L −1

{
x0(s− 1) + (x1 − x0)

(s− 1)2 + 22

}
+

1
2

t∫
0

e t−τ sin 2(t− τ)f(τ)dτ

x(t) = et
{
x0 cos 2t+

1
2
(x1 − x0) sin 2t

}
+ (h ∗ f)(t).

54. (a) h̄(s) =
x̄(s)
f̄(s)

=
3s+ 2

s2 + 2s+ 2
.

The system is of order 2, and its characteristic equation is s2 +
2s+ 2 = 0 with roots s=−1± i. Since the real parts are negative,
the system is stable.

(b) h̄(s) =
x̄(s)
f̄(s)

=
2s+ 3

4s2 + 16s+ 25
.

Order 2, characteristic equation is 4s2 + 16s+ 25 = 0,
roots s=−2± 3

2 i. Stable.

(c) h̄(s) =
2s2 + s− 6

36s2 + 12s+ 37
.

Order 2, characteristic equation is 36s2 + 12s+ 37= 0,
roots s= 1

6 ± i. Unstable.

(d) h̄(s) =
2s− 1

s2 − 6s+ 10
.

Order 2, characteristic equation is s2 − 6s+ 10 = 0,
roots s= 3 ± i. Unstable.

55. h(s) =
1

s3 − as2 + b2s− ab2
=

1
(s− a)(s2 + b2)

= (a2 + b2)−1

[
1

(s− a)
− (s+ a)

(s2 + b2)

]
.

It has simple poles at s= a and s=± ib(b �= 0). The system is always
unstable.
(a) The system has a pole in the right-half plane and hence, is unstable.

(b) The poles are at ± ib which lie on the imaginary axis. The system
is unstable (or marginally unstable).

(c) The pole zero is of second-order and the system is unstable.

h(t) =
1

(a2 + b2)

(
eat − cos bt− a

b
sin bt

)
.
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6.8 Exercises

1. Hint: E1,1(x) = ex.

7.5 Exercises

2. (b) u(r, z)=

∞∫
0

ke−kzJ0(kr)f̃ (k)dk= a

∞∫
0

e−kzJ0(kr)J1(ak)dk.

3. (b) Hint: f̃(k) =
(
Q

πak

)
J1(ak).

6. u(r, t) =

∞∫
0

kf̃(k) cos(btk2)J0(kr)dk.

9. Hint: The solution of the dual integral equations

∞∫
0

kJ0(kr)A(k)dk= u0, 0≤ r≤ a,

∞∫
0

k2J0(kr)A(k)dk = 0, a< r <∞,

is A(k) =
(

2u0

π

)
sin(ak)
k2

.

10. Hint: See Debnath, 1994, pp. 103–105.

11. u(r, z)=
1
πa

∞∫
0

k−1J1(ak)J0(kr) exp(−kz)dk.

13. Hint: L −1

⎡⎣exp
{
−k(s2 + a2)

1
2

}
(s2 + a2)

1
2

⎤⎦=H(t− k)J0(a
√
t2 − k2).

14. u(r, z)= b

∞∫
0

k−1

(
sinh kz
coshka

)
J1(bk)J0(kr)dk.
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15. Hint: H0

[
H(a− r)√
a2 − r2

]
=

sin ak
k

and

L −1

{
exp(−√

sk)√
s(
√
s− a)

}
= exp(−ak− a2t) erfc

{
k

2
√
t
− a

√
t

}
.

16. u(r, z)=
(

Q

πaK

) ∞∫
0

k−1e−|k|zJ1(ak)J0(kr)dr.

17. Use the hint in exercise 9 with a= 1 and u0 = 1.

18. Hint: Use the joint Hankel and Laplace transform method.

20. Hint: Use the Hankel transform.

u(r, z, t)=
1
ρ

∞∫
0

k exp(kz) J0(kz)

t∫
0

⎛⎜⎝ r0(τ)∫
0

αp(α, τ)J0(kα)dα

⎞⎟⎠
× cos[ω(t− τ)dτ ]dk,

where ω2 = gk.

21.

φ̃(k, z) = − q

k

cosh(kz)
cosh(ka)

e−ak, φ(r, z) =−q
∞∫
0

e−akJ0(kr)
cosh(kz)
cosh(ka)

dk.

8.8 Exercises

1. (e) f̃(p) =−xp+z
0
p+z , Re(p)<−Re(z).

(f) f̃(p) =−xp+z
0
p+z , Re(p)>−Re(z).

(g) f̃(p) = p−1Γ(p),
(h) f̃(p) = (−p)! {Γ(p)}2 .

2. Hint: Substitute e−t = x and g(− logx) = f(x).

3. Hint: Similar to Example 6.2.1(d).

4. Hint: Use (6.2.12) and the scaling property of the Mellin transform.

5. Hint: Use Fc{x−nJn(ax)} and Fc{xp−1} and then the Parseval relation
for the Fourier cosine transform.
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16. (a) Hint: Use (8.4.8) and φ̃(p,±α) = ap

p , Re(p)> 0.
The solution of (8.4.8) is φ̃(p, θ) =A(p)eipθ +B(p)e−ipθ.
Hence, A=B= ap

2p cos(pα) , and φ̃(p, θ) = ap cos pθ
p cos(pα) .

Inversion gives the solution.
(b) φ(r, θ) = M−1

{
f̃(p) sin pθ

sin pα

}
.

17. Hint:
∞∑
n=1

cos kn
n2

=−k
2

2
· 1
2πi

c+i∞∫
c−i∞

(
2π
k

)p
ζ(1 − p)

(p− 1)(p− 2)
dp,

and the integrand has three simple poles at p= 0, 1, 2 with residues

−1
2
,
π

k
,− π2

3k2
.

18. Hint:
∞∑
n=1

e−nx =
1

(1 − e−x)
.

27. Hint: (a) Put x=−et, dx=−e−t dt in (8.2.5) to obtain

f̃(p) = M {f(x); p}=

∞∫
−∞

e−ptf(e−t)dt= L
{
f(e−t); p

}
.

(b) Put p= a+ iω to obtain

f̃(p) = M {f(x); p}=

∞∫
−∞

f(e−t)e−ate−iωtdt= F
{
f(e−t)e−at;ω

}
.

9.13 Exercises

1. (a) (a2 + z2)−1
[πz
2a

− log
(z
a

)]
.

(b) (a− z)−1(aα − zα)π cosecπα.

(c) −exp(az)Ei(−az).
(d) Γ(1 − α)z−α exp(az)Γ(α, az).

(e)
(π
z

)
[1− exp(−a√z)].

(f) z−1(cos z − 1).

6. (a) (a− z)−1(zα−1 − aα−1)π cosec (απ).

(b) (a2 + z2)−1
[(πz

2a

)
− log

(z
a

)]
.

(c) (a2 + z2)−1
[(πa

2

)
+ z log

(z
a

)]
.
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9. Hint: Use t= xu in the transform solution and then apply the convolu-
tion theorem for the Mellin transform.

14. Hint:
1
π

∞∮
−∞

f(t)
t− x

dt= lim
ε→0

⎡⎣ 1
π

⎧⎨⎩
x−ε∫

−∞
+

∞∫
x+ε

⎫⎬⎭ f(t)
t− x

dt

⎤⎦ and then put

t− x= u.

15. Hint: Use general Parseval’s relation∫ ∞

−∞
f1(x)f2(x)dx=

∫ ∞

−∞
(HHH f1) (x) (HHH f2) (x)dx,

where f1 ∈Lp(R) and f2 ∈Lq(R) with (p−1 + q−1) = 1.

Put f1(x) = f(x) and f2(x) = (HHH g)(x) to obtain∫ ∞

−∞
f(x)(HHH g)(x)dx=

∫ ∞

−∞
(HHH f)(x)HHH [HHH g(x)] (x)dx

=−
∫ ∞

−∞
(HHH f)(x)g(x)dx.

Thus, (9.3.9) follows.

10.6 Exercises

1.
1
3
a3 when n= 0, and 2

( a

nπ

)2

a(−1)n, n= 1, 2, 3, . . . .

3. u(x, t) =
(

2πκ
a

) ∞∑
n=1

n sin
(nπx

a

) t∫
0

f(τ)exp
[
−κ(t− τ)

(nπ
a

)2
]
dτ.

4. Hint: f̃s(n) =

a∫
0

f(x) sin(ξnx)dx

f(x) = F −1
s {f̃s(n)}=

2
a

∞∑
n=0

(h2 + ξ2n)f̃s(n) sin(xξn)
h+ (h2 + ξ2n)

where ξn is the root of the equation ξ cot(aξ) + h= 0.

u(x, t) =
(

2
a

) ∞∑
n=1

ξn(h2 + ξ2n)
h+ (h2 + ξ2n)

t∫
0

f(ξ) exp[−κξn(t− ξ)] sin(xξn)dξ.
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5. Hint: Use f̃c(n) =

a∫
0

f(x) cos(xξn)dx,

f(x) = 2
∞∑
n=1

(h2 + ξ2n)f̃c(n) cos(xξn)
h+ a(h2 + ξ2n)

,

where ξn is the root of the equation ξ tan(aξ) = h.

6. Hint: Apply the finite Fourier cosine transform.

8. Hint: W̃s(n, t) =W0φ(t)H(Ut− �)

�∫
0

sin
(πnx

�

)
δ(x− Ut)dx

=W0φ(t)H
(
t− �

U

)
sin

(
nπUt

�

)
.

12. Hint:
dṼs
dt

+ κ
(nπ
a

)2

Ṽs = 0, Ṽs(n, t) =A exp
(
−κn

2π2t

a2

)
,

A= Ṽs(n, 0)=
4aV0

n2π2
sin

(nπ
2

)
= (−1)r

4aV0

(2r + 1)2π2

where n= (2r+ 1), r= 0, 1, 2, . . .

V (x, t) =
(

8V0

π2

) ∞∑
r=0

(−1)r

(2r+ 1)2
sin

{
(2r+ 1)

nx

a

}
exp

{
−κ(2r+ 1)2π2t

a2

}
.

15. Hint: Replace P by W0 dξ dη and integrate with respect to ξ and η over

the region α≤ ξ≤ β, γ≤ η≤ δ.

u(x, y) =
(

4W0

Dπ6

) ∞∑
m=1

∞∑
n=1

[{
cos

(mπα
a

)
− cos

(
mπβ

a

)}

×
{

cos
(nπγ

b

)
− cos

(
nπδ

b

)} sin
(mπx

a

)
sin

(nπy
b

)
mn ω4

mn

⎤⎦ .
16. Hint:

d2ũs(m,n, t)
dt2

+ Ω2
mnũs(m,n, t) = 0, where Ω2

mn =
Dπ4ω4

mn

ρh
.

u(x, y, t) =
(

4
ab

) ∞∑
m=1

∞∑
n=1

{Amn cos(Ωmnt) +Bmn sin(Ωmnt)}

× sin
(mπx

a

)
sin

(nπy
b

)
.
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11.6 Exercises

1. (a)
s

(s2 − a2)
− exp(−sT )

(s2 − a2)
(s coshaT + a sinh aT ).

(d)
1
s
(1 − e−sT )H(T ).

12.8 Exercises

1. (a)
z3 + 4z2 + z

(z − 1)4
, use (12.4.13) and (12.3.14).

(b) exp(a/z), (c)
z

(z − ea)2
, (d)

(
1 +

1
z

)
, (e)

z(z + a)
(z − a)2

.

2. Hint: Put b= ix in (12.4.14).

6. (a) Z−1

{
z

z − 2
· z

z − 3

}
=

n∑
m=0

2m3n−m = 3n
n∑

m=0

(
2
3

)m
,

= (3n+1 − 2n+1),

(d) nan−1,

(f) (2n−1 − n),

(h)
1
6
[
(−1)n + 2n+3 − 3(1)n

]
,

(e) (n− 1)an−2H(n− 1),

(g) 2(−1)n − (−2)n,

(i) Hint:

U(z)
z

=
2

(z − 1)
− 1(

z − 1
2

) , U(z) =
2z

(z − 1)
− z(

z − 1
2

)
u(n) = (2 − 2−n).

(j) f(n) =Z−1

{
z

z − e−a

}
= e−an, g(n) =Z−1

{
z

z − e−b

}
= e−bn,

h(n) = f(n) ∗ g(n) =
∞∑
m=0

e−ame−b(n−m)

= e−bn
∞∑
m=0

e−(a−b)m = e−bn
[
1 − e(b−a)(n+1)

1− e(b−a)

]
.
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(k) Divide (12.3.6) by z and differentiate both sides with respect to z

Z−1
{
(z − a)−k

}
=

(n− k + 1)k−1a
n−kH(n− k)

(k − 1)!
, |z|>a> 0,

where (a)n = a(a+ 1) . . . (a+ n− 1), (a)0 = 1, n= 1, 2, . . . ,

and Z−1
{
z−k

}
= δ(n− k).

(l) F (z) = (z + 4)− 1
(z − 1)2

− 5
(z − 1)

+
16

(z − 2)
.

Use 6(k) to obtain

Z−1 {F (z)}= δ(n+ 1) + 4δ(n)− (n− 1)H(n− 2)− 5H(n− 1)
+16. 2n−1H(n− 1).

Since

f(−1)= 1, f(0)= 4, f(1)= 11, f(n) =−(n+ 4) + 16 2n−1, n≥ 2.

(m) f(n) =
1
5
Z−1

(
6

z + 2
− 1
z − 1

2

)
=

6
5

(−2)n−1 − 1
5

(
1
2

)n−1

, n≥ 1.

7. (a)
1
16

[17(−3)n + 4n− 1], (c) x0a
n + nan−1,

(d) x0(1 − a)n + 1− (1 − a)n, (e)
3
5
[3n − (−2)n], (i) nan.

(k) From the given equation and initial data, f(−1)= 1
2 and f(−2)= 1

4 .
The Z transform is

F (z) =
−1∑

k=−1

f(k) z−(k+1) + z−1F (z)

+2

[ −1∑
k=−2

f(k) z−(k+2) + z−2F (z)

]
= f(−1) + z−1F (z) + 2

[
f(−2) + f(−1)z−1 + z−2 F (z)

]
F (z) = 1 + z−1 + z−1F (z) + 2 z−2 F (z)

F (z) =
z2 + z

z2 − z − 2
=

z

z − 2
. Hence, f(n) = 2n.

(l) F (z)− a f(−1)− a z−1 F (z) = z(z − 1)−1

F (z) =
2a

(1 − a
z )

+
1

(1 − a)
1

(1 − 1
z )

+
(

a

a− 1

)
1

(1 − a
z )

f(n) = 2 an+1 + (1 − a)−1 + (a− 1)−1 an+1

=
1

1− a
+
(

2a− 1
a− 1

)
an+1.
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(m) F (z) =
z2 + 5z

(z + 1)(z + 2)
=

4z
z + 1

− 3z
z + 2

. f(n) = 4(−1)n − 3(−2)n.

(n) F (z) =
3z
z − 2

, f(n)= 3.2n, n= 0, 1, 2, . . . .

9. (a) 1, (b) 0, (c) 1,

(d) f(0) = 0, m> 0; f(0)= 1, m= 0.

11. (a) (1 − aeix)−1, (b) e log
(

1 +
1
e

)
, (c) (2 sinhx)−1.

12.
7
4
− 3

4

(
−1

3

)n
.

13. U(z)=
2z

z2 − 4
, u(n) = 2n−1[1 + (−1)n+1], ν(n) = 2n−1[1 + (−1)n]− 1,

where n= 0, 1, 2, . . . .

14. Apply the Z transform to obtain

z3
[
U(z)− u(0)− u(1)z−1 − u(2)z−2

] − 3z2
[
U(z)− u(0)− u(1)z−1

]
+ 3z [U(z)− u(0)]−U(z) = 0.

U(z)=
1

(z − 1)3
(z3 − 3 z2 + 4z) =

(1 − 3 z−1 + 4 z−2)
(1 − z−1)3

.

Use
Z
{
n an−1

}
=

z−1

(1 − a z−1)2
, Z

{
n (n− 1)an−2

}
=

2 z−2

(1 − a z−2)
,

zN−1

pN (z)
=

z2

(z − 1)3
=

z−2

(1− z−1)3
.

Inversion gives
u(n) = Z−1

{
1

(1 − z−1)3

}
−Z−1

{
3z−1

(1 − z−1)3

}
+Z−1

{
4 z−2

(1 − z−1)3

}
=

1
2

(n+ 1) (n+ 2)− 3
2
n(n+ 1) +

4
2
n(n− 1) = (n− 1)2.

16. (a) z2
[
U(z)− u(0)− u(1)z−1

]
+ 2 [U(z)− u(1)]− 3U(z) = 0

U(z) =
z(z + 2)

(z2 + 2 z − 3)
=

1
4

(
1

1 + 3 z−1
+

3
1− z−1

)
un =

1
4

[(−3)n − 3.1n] =
3
4
[
1 − (−3)n−1

]
,
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(b) un = 2

[(
2
3

)n−1

− 1

]
,

(c) un = 5n/2
(

2 sinnx+
1
2

cosnx
)
, where x= tan−1

(
1
2

)
.

13.5 Exercises

1. (a)
a2

k2
i

(
aki − 4

aki

)
J1(aki), (b)

aki
(α2 − k2

i )
J0(aα)J1(aki).

10. u(r, t) =
2
a2

∞∑
i=1

J0(rki)
J2

1 (aki)

t∫
0

Q̃(ki, τ) exp[−(t− τ)k2
i ]dτ.

(a) u(r, t) =
Q0

4k
(a2 − r2)−

(
2Q0

ak

) ∞∑
i=1

J0(rki)
k3
i J1(aki)

exp(−tκk2
i ).

(b) u(r, t) =
2κQ0

ka2

∞∑
i=1

J0(rki)
J2

1 (aki)

t∫
0

f(τ) exp[−κ(t− τ)k2
i ]dτ.

16.5 Exercises

1. (a) f0(n) = exp(−a), n= 0,

f0(n)exp(−a)[Ln(a) − Ln−1(a)], n≥ 1.

(b) an(1 + a)n+1, (c) Aδmn,

(d) 0, n>m; (−1)n
(m
n

)
m!,m≥n, (e) 1 for n= 0, 1, 2, 3, . . . .

17.4 Exercises

1. (a) 2n−
1
2 Γ

(
n+

1
2

)
, (b) 0; m= 0, 1, 2, . . . , n− 1,

(c)
(
n+

1
2

)
δn.
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3. Hint: Use Feldheim’s result (1938).

H2
n(x) =n!2n

n∑
r=0

(n
r

) H2r(x)
22 r!

.

18.9 Exercises

1. Hint: Use the same method employed in Example 18.2.2 to solve (a) and
(b). To solve (c) apply the linearity property.

2. Hint: f̂(p,u) =
√
π exp(−p2). Use v= su, s=

√
v2
1 + v2

2 and then use

(18.3.8b) to obtain f̂(p,v) = f̂(p, su) =
√
π

s
exp(−p2/s2).

Apply
∂

∂ vk
=

∂ s

∂ vk

∂

∂ s
, (k= 1, 2) to find

∂f̂

∂ vk
=
√
π
(vk
s

) ∂

∂ s

[
1
s

exp(−p2/s2)
]

=
√
π
(vk
s

)
(2p2 − s2) exp(−p2/s2).

Finally, replace v and u with s= 1 to get
∂f̂

∂ uk
=
√
πuk(2p2 − 1) exp(−p2).

19.5 Exercises

1. (a) F {ψ(x)}=
∫ ∞

−∞
e−iω xψ(x) dx=

∫ 1
2

0

e−iω x dx−
∫ 1

1
2

e−iω xdx

=
4i
ω

exp(− iω
2

) sin2(
iω

4
).

Using scaling and shifting properties of the Fourier transform gives
F {ψ(2m x− n)}.

(b) The amplitude spectrum decays like ω−1 and hence, tends to zero s-
lowly as |ω|→∞. This shows that the Haar wavelet has poor frequency
localization. But it has a very good time localization.

2. (a) ψ̂(ω)=
1√
2π

[
sin (ω2 )

(ω2 )

]2

,

(b) ψ̂(ω)=
√

2π ω2 exp
(
−ω

2

2

)
,
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(c) ψ̂(ω)=
√

2π exp
[
−1

2
(ω − ω0)2

]
.

8. (a)–(c) See pages 434-437 of a book by Debnath (2002).

9. See Debnath (2002) pages 434-438.
10. See Debnath (2002) pages 440-441.
11. A window function is a f ∈L2(R) with norm unity.

‖f‖2 =
∫ ∞

−∞
|f(t)|2 dt=

(
2a
π

) 1
2
∫ ∞

−∞
e−2at2 dt=

(
2a
π

) 1
2

.

√
π

2a
= 1.

f̂(ω) =
(

2a
π

) 1
4 1√

2π

∫ ∞

−∞
e−iωt exp(−at2)dt=

(
2a
π

) 1
4

F
{
exp(−at2)} .

=
(

2a
π

) 1
4 1√

2π
exp

(
−ω

2

4a

)
=

1√
2a

f
( ω

2a

)
.

The Gabor windows have optimal time and frequency localization prop-
erties.

12.

(a) ‖f‖2 =
(

3
2a3

) ∫ ∞

−∞
|(a− |t|)2|χ[−a,a](t) dt

=
(

3
2a3

) ∫ a

−a
|(a− |t|)|2 dt=

(
3

2a3

)
2
∫ a

0

(a− t)2 dt= 1.

(b) f̂(ω) =

√
3

2a3
F

{
χ[− a

2 ,
a
2 ](t) ∗ χ[−a

2 ,
a
2 ] (t)

}
,

=

√
3

2a3

[
F

{
χ[− a

2 ,
a
2 ] (t)

}]2
, by convolution theorem

=

√
3

2a4

(
2
π

) (
sin aω

2

ω

)2

=

√
3a
2

(
2
π

) (
sin aω

2

aω

)2

.

It is better localized in the frequency domain, as f̂(ω) decays like |ω|−2

as |ω| → ∞.

(c) ∇2
f =

∫ ∞

−∞
t2 |f(t)|2 dt=

∫ a

−a
t2

(√
3

2a3
(a− |t|)

)2

dt

=
3
a3

∫ a

0

t2(a− t)2 dt=
1
10
a2

∇2
f̂

=
1

4π2
‖f ′‖2 =

3
8π2 a3

[∫ 0

−a
12 dt+

∫ a

0

(−1)2 dt
]

=
3

4π2 a3

(4∇f ∇f̂ ) =
1
π

√
6
5
>

1
π
.
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d’Hermite, Jour. Lond. Math. Soc., 13, 22–29.

[101] Firth, Jean M., (1992). Discrete Transforms, Chapman & Hall, London.
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[152] Lemarié, P. G., (1988). Une nouvelle base d’ondelettes de L2 (Rn), J.
Math. Pure Appl., 67, 227–236.

[153] Lighthill, M. J., (1958). Introduction to Fourier Analysis and Generalised
Functions. Cambridge University Press, Cambridge.

[154] Liouville, J., (1832). Sur le calcul des differentielles á indices quelconques,
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[223] Szegö, G., (1967). Orthogonal polynomials. Colloquium Publications,
Vol. 23, (Third Edition), Amer. Math. Soc., Providence, Rhode Island.

[224] Tamarkin, J. D., and Shohat, J. A., (1943). The Problem of Moments,
Amer. Math. Soc., New York.

[225] Temple, G., (1953). Theories and applications of generalized functions,
J. London Math. Soc., 28, 134–148.

[226] Temple, G., (1955). The theory of generalized functions, Proc. Roy. Soc.
London, Series A, 228, 175–190.

[227] Titchmarsh, E., (1925). Conjugate trigonometrical integrals, Proc. Lon-
don Math. Soc., 24, 109–130.

[228] Titchmarsh, E., (1928). On conjugate functions, Proc. London Math.
Soc., 29, 49–80.

[229] Titchmarsh, E., (1930). Additional note on conjugate functions, J. Lon-
don Math. Soc., 4, 204–206.

[230] Titchmarsh, E., (1967). Introduction to the Theory of Fourier Integrals,
Oxford University Press, Oxford.



© 2007 by Taylor & Francis Group, LLC

Bibliography 687

[231] Tranter, C. J., (1950). Legendre Transforms, Quart. J. Math., 1, (2),
1–8.

[232] Tranter, C. J., (1966). Integral Transforms in Mathematical Physics,
(Third Edition), Methuen and Company Ltd., London.

[233] Tricomi, F. G., (1935). Transformazione di Laplace e polinomi di La-
guerre, Rend. Accad. Lincei, (vi), 21, 235–242.

[234] Tricomi, F. G, (1951). On the finite Hilbert transformation, Quart. J.
Math. Oxford, 2, 199–211.

[235] Tricomi, F. (1951). The airfoil equation for a double interval, Z. Angew.
Math. Phys., 2, 402–406.

[236] Tuttle, D. F., (1958). Network Synthesis, Vol. 1, John Wiley and Sons,
New York.

[237] Ursell, F., (1983). Integrals with a large parameter: Hilbert transforms.
Math. Proc. Camb. Phil. Soc., 93, 141–149.

[238] Ursell, F., (1990). Integrals with a large parameter. A strong form of
Watson’s lemma. Elasticity, Mathematical Methods and Applications
(Ed. G. Eason and R. W. Ogden). 391–395. Ellis Horwood Ltd. Chich-
ester.

[239] Varma, R. S., (1951). On a generalization of Laplace integral, Proc. Nat.
Acad. Sci. India, A20, 209–216.

[240] Watanabe, Y., (1931). Notes on the generalized derivatives of Riemann-
Liouville and its applications to Leibniz formula I and II, Tohoku Math.
J., 34, 8–14.

[241] Watson, E. J., (1981). Laplace Transforms and Applications, Van Nos-
trand Reinhold, New York.

[242] Watson, G. N., (1938). A note on the polynomials of Hermite and La-
guerre, Jour. Lond. Math. Soc., 13, 29–32.

[243] Watson, G. N., (1944). A Treatise on the Theory of Bessel Functions,
(Second Edition). Cambridge University Press, London.

[244] Weyl, H., (1917). Bemerkungen zum Begriff des Differentialquotienten
Gebrochener Ordnung, Vierteljschr. Naturforsch. Gesellsch. Zurich, 62,
296–302.

[245] Wheelon, A. D., (1954). On the summation of infinite series in closed
form, J. Appl. Phys., 25, 113–118.

[246] Whitham, G. B., (1967). Variational methods and applications to water
waves, Proc. Roy. Soc., London, A299, 6–25.



© 2007 by Taylor & Francis Group, LLC

688 INTEGRAL TRANSFORMS and THEIR APPLICATIONS

[247] Whittaker, E. T., and Watson, G. N., (1927). A Course of Modern Anal-
ysis, (Fourth Edition), Cambridge University Press, Cambridge.

[248] Widder, D. V., (1941). The Laplace Transform, Princeton University
Press, Princeton, New Jersey.

[249] Wiener, N., (1932). The Fourier Integral and Certain of Its Applications,
Cambridge University Press, Cambridge.

[250] Williams, W. E., (1978). Note on a singular integral equations, J. Inst.
Math. Applics., 22, 211–241.

[251] Winter, A., (1947). Fourier Transforms of Probability Distributions,
(mimeographed notes: Princeton University Press).

[252] Wong, R., (1989). Asymptotic Approximations of Integrals, Academic
Press, Boston.

[253] Wong, R., and Wyman, M., (1972). A generalization of Watson’s lemma.
Can. J. Math., 24, 185–208.

[254] Wyman, M., (1963). The asymptotic behavior of the Hermite polyno-
mials. Can. J. Math., 15, 332–349.

[255] Wyman, M., (1964). The method of Laplace. Trans. Roy. Soc. Canada,
2, 227–256.

[256] Zadeh, L. A., and Desoer, C. A., (1963). Linear System Theory,
McGraw-Hill, New York.

[257] Zayed, A. I., (1987). A generalized inversion formula for the continuous
Jacobi transform, Internat. J. Math. and Math. Sci., 10, 671–692.

[258] Zayed, A., and Walter, G., (1988). The continuous (α, β) Jacobi trans-
form and its inverse when α+ β + 1 is a positive integer, Trans. Amer.
Math. Soc., 305, 653–664.

[259] Zayed, A.I., (1993). Advances in Shannon’s Sampling Theory, CRC
Press, Boca Raton, Florida.

[260] Zayed, A.I., (1996). Handbook of Function and Generalized Function
Transformations, CRC Press, Boca Raton, Florida.

[261] Zayed, A.I., and Deeba, E., (1993). Generalized continuous Jacobi trans-
form, J. Appl. Anal., 48, 63–79.

[262] Zayed, A. I., and Mikusinski, P., (1993). An extension of the Radon
Transform, Generalized Functions and Their Applications, R.S. Pathak,
Editor, Plenum Press, New York, 141–147.

[263] Zemanian, A. H., (1969). Generalized Integral Transformations, John
Wiley & Sons, New York.


	c5750fm
	Integral Transforms and Their Applications, Second Edition
	Preface to the Second Edition
	Preface to the First Edition
	About the Authors
	Contents
	Appendix A: Some Special Functions and Their Properties
	Appendix B: Tables of Integral Transforms
	Answers and Hints to Selected Exercises
	Bibliography


	C5750ch1
	Table of Contents
	Chapter 1: Integral Transforms
	1.1 Brief Historical Introduction
	1.2 Basic Concepts and Definitions
	Appendix A: Some Special Functions and Their Properties
	Appendix B: Tables of Integral Transforms
	Answers and Hints to Selected Exercises
	Bibliography


	C5750ch2
	Table of Contents
	Chapter 2: Fourier Transforms and Their Applications
	2.1 Introduction
	2.2 The Fourier Integral Formulas
	2.3 Definition of the Fourier Transform and Examples
	2.4 Fourier Transforms of Generalized Functions
	2.5 Basic Properties of Fourier Transforms
	2.6 Poisson’s Summation Formula
	2.7 The Shannon Sampling Theorem
	2.8 Gibbs’ Phenomenon
	2.9 Heisenberg’s Uncertainty Principle
	2.10 Applications of Fourier Transforms to Ordinary Differential Equations
	2.11 Solutions of Integral Equations
	2.12 Solutions of Partial Differential Equations
	2.13 Fourier Cosine and Sine Transforms with Examples
	2.14 Properties of Fourier Cosine and Sine Transforms
	2.15 Applications of Fourier Cosine and Sine Transforms to Partial Differential Equations
	2.16 Evaluation of Definite Integrals
	2.17 Applications of Fourier Transforms in Mathematical Statistics
	2.18 Multiple Fourier Transforms and Their Applications
	2.19 Exercises
	Appendix A: Some Special Functions and Their Properties
	Appendix B: Tables of Integral Transforms
	Answers and Hints to Selected Exercises
	Bibliography


	C5750ch3
	Table of Contents
	Chapter 3: Laplace Transforms and Their Basic Properties
	3.1 Introduction
	3.2 Definition of the Laplace Transform and Examples
	3.3 Existence Conditions for the Laplace Transform
	3.4 Basic Properties of Laplace Transforms
	3.5 The Convolution Theorem and Properties of Convolution
	3.6 Differentiation and Integration of Laplace Transforms
	3.7 The Inverse Laplace Transform and Examples
	3.8 Tauberian Theorems and Watson’s Lemma
	3.9 Exercises
	Appendix A: Some Special Functions and Their Properties
	Appendix B: Tables of Integral Transforms
	Answers and Hints to Selected Exercises
	Bibliography


	C5750ch4
	Table of Contents
	Chapter 4: Applications of Laplace Transforms
	4.1 Introduction
	4.2 Solutions of Ordinary Differential Equations
	4.3 Partial Differential Equations, Initial and Boundary Value Problems
	4.4 Solutions of Integral Equations
	4.5 Solutions of Boundary Value Problems
	4.6 Evaluation of Definite Integrals
	4.7 Solutions of Difference and Differential-Difference Equations
	4.8 Applications of the Joint Laplace and Fourier Transform
	4.9 Summation of Infinite Series
	4.10 Transfer Function and Impulse Response Function of a Linear System
	4.11 Exercises
	Appendix A: Some Special Functions and Their Properties
	Appendix B: Tables of Integral Transforms
	Answers and Hints to Selected Exercises
	Bibliography


	C5750ch5
	Table of Contents
	Chapter 5: Fractional Calculus and Its Applications
	5.1 Introduction
	5.2 Historical Comments
	5.3 Fractional Derivatives and Integrals
	5.4 Applications of Fractional Calculus
	5.5 Exercises
	Appendix A: Some Special Functions and Their Properties
	Appendix B: Tables of Integral Transforms
	Answers and Hints to Selected Exercises
	Bibliography


	C5750ch6
	Table of Contents
	Chapter 6: Applications of Integral Transforms to Fractional Dfferential and Integral Equations
	6.1 Introduction
	6.2 Laplace Transforms of Fractional Integrals and Fractional Derivatives
	6.3 Fractional Ordinary Differential Equations
	6.4 Fractional Integral Equations
	6.5 Initial Value Problems for Fractional Differential Equations
	6.6 Green’s Functions of Fractional Differential Equations
	6.7 Fractional Partial Differential Equations
	6.8 Exercises
	Appendix A: Some Special Functions and Their Properties
	Appendix B: Tables of Integral Transforms
	Answers and Hints to Selected Exercises
	Bibliography


	C5750ch7
	Table of Contents
	Chapter 7: Hankel Transforms and Their Applications
	7.1 Introduction
	7.2 The Hankel Transform and Examples
	7.3 Operational Properties of the Hankel Transform
	7.4 Applications of Hankel Transforms to Partial Differential Equations
	7.5 Exercises
	Appendix A: Some Special Functions and Their Properties
	Appendix B: Tables of Integral Transforms
	Answers and Hints to Selected Exercises
	Bibliography


	C5750ch8
	Table of Contents
	Chapter 8: Mellin Transforms and Their Applications
	8.1 Introduction
	8.2 Definition of the Mellin Transform and Examples
	8.3 Basic Operational Properties of Mellin Transforms
	8.4 Applications of Mellin Transforms
	8.5 Mellin Transforms of the Weyl Fractional Integral and the Weyl Fractional Derivative
	8.6 Application of Mellin Transforms to Summation of Series
	8.7 Generalized Mellin Transforms
	8.8 Exercises
	Appendix A: Some Special Functions and Their Properties
	Appendix B: Tables of Integral Transforms
	Answers and Hints to Selected Exercises
	Bibliography


	C5750ch9
	Table of Contents
	Chapter 9: Hilbert and Stieltjes Transforms
	9.1 Introduction
	9.2 Definition of the Hilbert Transform and Examples
	9.3 Basic Properties of Hilbert Transforms
	9.4 Hilbert Transforms in the Complex Plane
	9.5 Applications of Hilbert Transforms
	9.6 Asymptotic Expansions of One-Sided Hilbert Transforms
	9.7 Definition of the Stieltjes Transform and Examples
	9.8 Basic Operational Properties of Stieltjes Transforms
	9.9 Inversion Theorems for Stieltjes Transforms
	9.10 Applications of Stieltjes Transforms
	9.11 The Generalized Stieltjes Transform
	9.12 Basic Properties of the Generalized Stieltjes Transform
	9.13 Exercises
	Appendix A: Some Special Functions and Their Properties
	Appendix B: Tables of Integral Transforms
	Answers and Hints to Selected Exercises
	Bibliography


	C5750ch10
	Table of Contents
	Chapter 10: Finite Fourier Sine and Cosine Transforms
	10.1 Introduction
	10.2 Definitions of the Finite Fourier Sine and Cosine Transforms and Examples
	10.3 Basic Properties of Finite Fourier Sine and Cosine Transforms
	10.4 Applications of Finite Fourier Sine and Cosine Transforms
	10.5 Multiple Finite Fourier Transforms and Their Applications
	10.6 Exercises
	Appendix A: Some Special Functions and Their Properties
	Appendix B: Tables of Integral Transforms
	Answers and Hints to Selected Exercises
	Bibliography


	C5750ch11
	Table of Contents
	Chapter 11: Finite Laplace Transforms
	11.1 Introduction
	11.2 Definition of the Finite Laplace Transform and Examples
	11.3 Basic Operational Properties of the Finite Laplace Transform
	11.4 Applications of Finite Laplace Transforms
	11.5 Tauberian Theorems
	11.6 Exercises
	Appendix A: Some Special Functions and Their Properties
	Appendix B: Tables of Integral Transforms
	Answers and Hints to Selected Exercises
	Bibliography


	C5750ch12
	Table of Contents
	Chapter 12: Z Transforms
	12.1 Introduction
	12.2 Dynamic Linear Systems and Impulse Response
	12.3 Definition of the Z Transform and Examples
	12.4 Basic Operational Properties of Z Transforms
	12.5 The Inverse Z Transform and Examples
	12.6 Applications of Z Transforms to Finite Difference Equations
	12.7 Summation of Infinite Series
	12.8 Exercises
	Appendix A: Some Special Functions and Their Properties
	Appendix B: Tables of Integral Transforms
	Answers and Hints to Selected Exercises
	Bibliography


	C5750ch13
	Table of Contents
	Chapter 13: Finite Hankel Transforms
	13.1 Introduction
	13.2 Definition of the Finite Hankel Transform and Examples
	13.3 Basic Operational Properties
	13.4 Applications of Finite Hankel Transforms
	13.5 Exercises
	Appendix A: Some Special Functions and Their Properties
	Appendix B: Tables of Integral Transforms
	Answers and Hints to Selected Exercises
	Bibliography


	C5750ch14
	Table of Contents
	Chapter 14: Legendre Transforms
	14.1 Introduction
	14.2 Definition of the Legendre Transform and Examples
	14.3 Basic Operational Properties of Legendre Transforms
	14.4 Applications of Legendre Transforms to Boundary Value Problems
	14.5 Exercises
	Appendix A: Some Special Functions and Their Properties
	Appendix B: Tables of Integral Transforms
	Answers and Hints to Selected Exercises
	Bibliography


	C5750ch15
	Table of Contents
	Chapter 15: Jacobi and Gegenbauer Transforms
	15.1 Introduction
	15.2 Definition of the Jacobi Transform and Examples
	15.3 Basic Operational Properties
	15.4 Applications of Jacobi Transforms to the Generalized Heat Conduction Problem
	15.5 The Gegenbauer Transform and Its Basic Operational Properties
	15.6 Application of the Gegenbauer Transform
	Appendix A: Some Special Functions and Their Properties
	Appendix B: Tables of Integral Transforms
	Answers and Hints to Selected Exercises
	Bibliography


	C5750ch16
	Table of Contents
	Chapter 16: Laguerre Transforms
	16.1 Introduction
	16.2 Definition of the Laguerre Transform and Examples
	16.3 Basic Operational Properties
	16.4 Applications of Laguerre Transforms
	16.5 Exercises
	Appendix A: Some Special Functions and Their Properties
	Appendix B: Tables of Integral Transforms
	Answers and Hints to Selected Exercises
	Bibliography


	C5750ch17
	Table of Contents
	Chapter 17: Hermite Transforms
	17.1 Introduction
	17.2 Definition of the Hermite Transform and Examples
	17.3 Basic Operational Properties
	17.4 Exercises
	Appendix A: Some Special Functions and Their Properties
	Appendix B: Tables of Integral Transforms
	Answers and Hints to Selected Exercises
	Bibliography


	C5750ch18
	Table of Contents
	Chapter 18: The Radon Transform and Its Applications
	18.1 Introduction
	18.2 The Radon Transform
	18.3 Properties of the Radon Transform
	18.4 The Radon Transform of Derivatives
	18.5 Derivatives of the Radon Transform
	18.6 Convolution Theorem for the Radon Transform
	18.7 Inverse of the Radon Transform and the Parseval Relation
	18.8 Applications of the Radon Transform
	18.9 Exercises
	Appendix A: Some Special Functions and Their Properties
	Appendix B: Tables of Integral Transforms
	Answers and Hints to Selected Exercises
	Bibliography


	C5750ch19
	Table of Contents
	Chapter 19: Wavelets and Wavelet Transforms
	19.1 Brief Historical Remarks
	19.2 Continuous Wavelet Transforms
	19.3 The Discrete Wavelet Transform
	19.4 Examples of Orthonormal Wavelets
	19.5 Exercises
	Appendix A: Some Special Functions and Their Properties
	Appendix B: Tables of Integral Transforms
	Answers and Hints to Selected Exercises
	Bibliography


	C5750appa
	Table of Contents
	Appendix A: Some Special Functions and Their Properties
	A-1 Gamma, Beta, and Error Functions
	Legendre Duplication Formula
	A-2 Bessel and Airy Functions
	A-3 Legendre and Associated Legendre Functions
	A-4 Jacobi and Gegenbauer Polynomials
	A-5 Laguerre and Associated Laguerre Functions
	A-6 Hermite Polynomials and Weber-Hermite Functions
	A-7 Mittag Leffler Function
	Appendix B: Tables of Integral Transforms
	Answers and Hints to Selected Exercises
	Bibliography


	C5750appb
	Table of Contents
	Appendix B: Tables of Integral Transforms
	TABLE B-1 Fourier Transforms
	TABLE B-2 Fourier Cosine Transforms
	TABLE B-3 Fourier Sine Transforms
	TABLE B-4 Laplace Transforms
	TABLE B-5 Hankel Transforms
	TABLE B-6 Mellin Transforms
	TABLE B-7 Hilbert Transforms
	TABLE B-8 Stieltjes Transforms
	TABLE B-9 Finite Fourier Cosine Transforms
	TABLE B-10 Finite Fourier Sine Transforms
	TABLE B-11 Finite Laplace Transforms
	TABLE B-12 Z Transforms
	TABLE B-13 Finite Hankel Transforms
	Appendix A: Some Special Functions and Their Properties
	Answers and Hints to Selected Exercises
	Bibliography


	C5750answers_hints_selected_exercises
	Table of Contents
	Answers and Hints to Selected Exercises
	2.19 Exercises
	3.9 Exercises
	4.11 Exercises
	6.8 Exercises
	7.5 Exercises
	8.8 Exercises
	9.13 Exercises
	10.6 Exercises
	11.6 Exercises
	12.8 Exercises
	13.5 Exercises
	16.5 Exercises
	17.4 Exercises
	18.9 Exercises
	19.5 Exercises
	Appendix A: Some Special Functions and Their Properties
	Appendix B: Tables of Integral Transforms
	Bibliography


	C5750bib
	Table of Contents
	Bibliography
	Appendix A: Some Special Functions and Their Properties
	Appendix B: Tables of Integral Transforms
	Answers and Hints to Selected Exercises





