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Introduction to Algebraic Geometry

Algebraic geometry has a reputation for being difficult and inaccessible, even among mathe-
maticians! This must be overcome. The subject is central to pure mathematics, and applications
in fields like physics, computer science, statistics, engineering, and computational biology are
increasingly important. This book is based on courses given at Rice University and the Chinese
University of Hong Kong, introducing algebraic geometry to a diverse audience consisting of
advanced undergraduate and beginning graduate students in mathematics, as well as researchers
in related fields.

For readers with a grasp of linear algebra and elementary abstract algebra, the book covers
the fundamental ideas and techniques of the subject and places these in a wider mathematical
context. However, a full understanding of algebraic geometry requires a good knowledge of
guiding classical examples, and this book offers numerous exercises fleshing out the theory. It
introduces Gröbner bases early on and offers algorithms for almost every technique described.
Both students of mathematics and researchers in related areas benefit from the emphasis on
computational methods and concrete examples.
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Preface

This book is an introduction to algebraic geometry, based on courses given at Rice
University and the Institute of Mathematical Sciences of the Chinese University of
Hong Kong from 2001 to 2006. The audience for these lectures was quite diverse,
ranging from second-year undergraduate students to senior professors in fields like
geometric modeling or differential geometry. Thus the algebraic prerequisites are kept
to a minimum: a good working knowledge of linear algebra is crucial, along with some
familiarity with basic concepts from abstract algebra. A semester of formal training
in abstract algebra is more than enough, provided it touches on rings, ideals, and
factorization. In practice, motivated students managed to learn the necessary algebra
as they went along.

There are two overlapping and intertwining paths to understanding algebraic geo-
metry. The first leads through sheaf theory, cohomology, derived functors and cat-
egories, and abstract commutative algebra – and these are just the prerequisites! We
will not take this path. Rather, we will focus on specific examples and limit the
formalism to what we need for these examples. Indeed, we will emphasize the strand
of the formalism most useful for computations: We introduce Gröbner bases early on
and develop algorithms for almost every technique we describe. The development of
algebraic geometry since the mid 1990s vindicates this approach. The term ‘Groebner’
occurs in 1053 Math Reviews from 1995 to 2004, with most of these occurring in the
last five years. The development of computers fast enough to do significant symbolic
computations has had a profound influence on research in the field.

A word about what this book will not do: We develop computational techniques as
a means to the end of learning algebraic geometry. However, we will not dwell on the
technical questions of computability that might interest a computer scientist. We will
also not spend time introducing the syntax of any particular computer algebra system.
However, it is necessary that the reader be willing to carry out involved computations
using elementary algebra, preferably with the help of a computer algebra system such
as Maple, Macaulay II, or Singular.

Our broader goal is to display the core techniques of algebraic geometry in their
natural habitat. These are developed systematically, with the necessary commutative
algebra integrated with the geometry. Classical topics like resultants and elimination

xi



xii PREFACE

theory, are discussed in parallel with affine varieties, morphisms, and rational maps.
Important examples of projective varieties (Grassmannians, Veronese varieties, Segre
varieties) are emphasized, along with the matrix and exterior algebra needed to write
down their defining equations.

It must be said that this book is not a comprehensive introduction to all of algebraic
geometry. Shafarevich’s book [37, 38] comes closest to this ideal; it addresses many
important issues we leave untouched. Most other standard texts develop the material
from a specific point of view, e.g., sheaf cohomology and schemes (Hartshorne [19]),
classical geometry (Harris [17]), complex algebraic differential geometry (Griffiths
and Harris [14]), or algebraic curves (Fulton [11]).

Acknowledgments
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1 Guiding problems

Let k denote a field and k[x1, x2, . . . , xn] the polynomials in x1, x2, . . . , xn with

coefficients in k. We often refer to k as the base field. A nonzero polynomial

f =
∑

α1,...,αn

cα1...αn xα1

1 . . . xαn
n , cα1...αn ∈ k,

has degree d if cα1...αn = 0 when α1 + · · · + αn > d and cα1...αn �= 0 for some in-

dex with α1 + · · · + αn = d . It is homogeneous if cα1...αn = 0 whenever α1 + · · · +
αn < d . We will sometimes use multiindex notation

f =
∑

α

cαxα

where α = (α1, . . . , αn), cα = cα1...αn , xα = xα1

1 . . . xαn
n , and |α| = α1 + · · · + αn ,

1.1 Implicitization

Definition 1.1 Affine space of dimension n over k is defined

An(k) = {(a1, a2, . . . , an) : ai ∈ k}.

For k = R this is just the ubiquitous Rn . Why don’t we use the notation kn for affine

space? We write An(k) when we want to emphasize the geometric nature of kn rather

than its algebraic properties (e.g., as a vector space). Indeed, when our discussion

does not involve the base field in an essential way we drop it from the notation,

writing An .

We shall study maps between affine spaces, but not just any maps are allowed in

algebraic geometry. We consider only maps given by polynomials:

Definition 1.2 A morphism of affine spaces

φ : An(k) → Am(k)

1



2 GUIDING PROBLEMS

is a map given by a polynomial rule

(x1, x2, . . . , xn) �→ (φ1(x1, . . . , xn), . . . , φm(x1, . . . , xn)),

with the φi ∈ k[x1, . . . , xn].

Remark 1.3 This makes a tacit reference to the base field k, in that the polynomials

φi have coefficients in k. If we want to make this explicit, we say that the morphism

is defined over k.

Example 1.4 An affine-linear transformation is a morphism: given an m × n ma-

trix A = (ai j ) and an m × 1 matrix b = (bi ) with entries in k, we define

φA,b : An(k) → Am(k)⎛
⎜⎝

x1

...

xn

⎞
⎟⎠ �→

⎛
⎜⎝

a11x1 + · · · + a1n xn + b1

...

am1x1 + · · · + amn xn + bm

⎞
⎟⎠ .

Example 1.5 Consider

A1(R) → A2(R)

given by the rule

t �→ (t, t2).

If y1 and y2 are the corresponding coordinates on R2 then the image is the parabola

{(y1, y2) : y2 = y2
1}. More generally, consider the morphism

φ : A1(k) → Am(k)

t �→ (t, t2, t3, . . . , tm).

Can we visualize the image of φ in Am(k)? Just as for the parabola, we write down

polynomial equations for this locus. Fix coordinates y1, . . . , ym on Am(k) so that φ

is given by yi �→ t i . We find the equations

yi y j = yi+ j 1 ≤ i < j ≤ m
yi y j = yk yl i + j = k + l

corresponding to the relations t i t j = t i+ j and t i t j = t k t l respectively.

The polynomial equations describing the image of our morphism are an implicit
description of this locus. Here the sense of ‘implicit’ is the same as the ‘implicit

function theorem’ from calculus. We can consider the general question:

Problem 1.6 (Implicitization) Write down the polynomial equations satisfied by

the image of a morphism.



1.1 IMPLICITIZATION 3

1.1.1 A

special case:

linear trans-

formations

Elementary row operations from linear algebra solve Problem 1.6 in the case where

φ is a linear transformation.

Suppose φ is given by the rule

A2(Q) → A3(Q)

(x1, x2) �→ (x1 + x2, x1 − x2, x1 + 2x2)

and assign coordinates y1, y2, y3 to affine three-space. From this, we extract the system

y1 = x1 + x2

y2 = x1 − x2

y3 = x1 + 2x2,

or equivalently,

x1 +x2 −y1 = 0

x1 −x2 −y2 = 0

x1 +2x2 −y3 = 0,

which in turn are equivalent to

x1 +x2 −y1 = 0

−2x2 +y1 −y2 = 0

x2 +y1 −y3 = 0,

and

x1 +x2 −y1 = 0

−2x2 +y1 −y2 = 0

+ 3
2

y1 − 1
2

y2 −y3 = 0.

Thus the image of our morphism is given by

3y1 − y2 − 2y3 = 0.

Our key tool for solving Problem 1.6 in general – Buchberger’s Algorithm – will

contain elementary row operations as a special case.

Moral 1: To solve Problem 1.6, choosing an order on the variables is very useful.

1.1.2 A

converse to

implicitiza-

tion?

The implicitization problem seeks equations for the image of a morphism

φ : An(k) → Am(k).

We will eventually show that this admits an algorithmic solution, at least when the

base field is algebraically closed. However, there is a natural converse to this question

which is much deeper.
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Definition 1.7 A hypersurface of degree d is the locus

V ( f ) := {(a1, . . . , am) ∈ Am(k) : f (a1, . . . , am) = 0} ⊂ Am(k),

where f is a polynomial of degree d.

A regular parametrization of a hypersurface V ( f ) ⊂ Am(C) is a morphism

φ : An(C) → Am(C)

such that

1. the image of φ is contained in the hypersurface, i.e., f ◦ φ = 0;

2. the image of φ is not contained in any other hypersurface, i.e., for any h ∈
C[y1, . . . , ym] with h ◦ φ = 0 we have f |h.

Problem 1.8 Which hypersurfaces admit regular parametrizations?

Example 1.9 Here are some cases where parametrizations exist:

1. hypersurfaces of degree one (see Exercise 1.5);

2. the curve V ( f ) ⊂ A2, f = y2
1 − y3

2 , has parametrization (cf. Exercise 1.8)

φ : A1(C) → A2(C)

t �→ (t3, t2)

3. if f = y2
0 + y2

1 − y2
2 then V ( f ) has a parametrization

φ(s, t) = (2st, s2 − t2, s2 + t2);

4. if f = y3
0 + y3

1 + y3
2 + y3

3 then V ( f ) has parametrization

y0 = (u2 + u1)u2
3 + (

u2
2 + 2u2

1

)
u3 − u3

2 + u1u2
2 − 2u2

1u2 − u3
1

y1 = u3
3 − (u2 + u1)u2

3 + (
u2

2 + 2u2
1

)
u3 + u1u2

2 − 2u2
1u2 + u3

1

y2 = −u3
3 + (u2 + u1)u2

3 − (
u2

2 + 2u2
1

)
u3 + 2u1u2

2 − u2
1u2 + 2u3

1

y3 = (u2 − 2u1)u2
3 + (

u2
1 − u2

2

)
u3 + u3

2 − u1u2
2 + 2u2

1u2 − 2u3
1.

The form here is due to Noam Elkies.

We will come back to these questions when we discuss unirationality and rational

maps in Chapter 3.

1.2 Ideal membership

Our second guiding problem is algebraic in nature.

Problem 1.10 (Ideal Membership Problem) Given f1, . . . , fr ∈ k[x1, . . . , xn], de-

termine whether g ∈ k[x1, . . . , xn] belongs to the ideal 〈 f1, . . . , fr 〉.
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Example 1.11 Consider the ideal

I = 〈
y2 − y2

1 , y3 − y1 y2

〉 ⊂ k[y1, y2, y3]

and the polynomial g = y1 y3 − y2
2 (cf. Example 1.5 and the following discussion).

Then g ∈ I because

y1 y3 − y2
2 = y1(y3 − y1 y2) + y2

(
y2

1 − y2

)
.

Again, whenever the fi and g are all linear, elementary row reductions give a

solution to Problem 1.10. However, there is one further case where we already know

how to solve the problem. The Euclidean Algorithm yields a procedure to decide

whether a polynomial g ∈ k[t] is contained in a given ideal I ⊂ k[t]. By Theorem A.9,

each ideal I ⊂ k[t] can be expressed I = 〈 f 〉 for some f ∈ k[t]. Therefore g ∈ I if

and only if f divides g.

Example 1.12 Check whether t5 + t3 + 1 ∈ 〈t3 + 1〉:
t2 +1

t3 + 1 t5 +t3 +1

t5 +t2

+t3 −t2 +1

+t3 +1

−t2

thus q = t2 + 1 and r = −t2. We conclude t5 + t3 + 1 �∈ 〈t3 + 1〉:

Moral 2: In solving Problem 1.10, keeping track of degrees of polynomials is

crucial.

1.3 Interpolation

Let Pn,d ⊂ k[x1, . . . , xn] denote the vector subspace of polynomials of degree ≤ d.

The monomials

xα = xα1

1 . . . xαn
n , α1 + · · · + αn ≤ d

form a basis for Pn,d , so we have (see Exercise 1.4)

dim Pn,d =
(

n + d

n

)
.

Problem 1.13 (Simple Interpolation Problem) Given distinct points

p1, . . . , pN ∈ An(k)

what is the dimension of the vector space Id (p1, . . . , pN ) of polynomials of degree

≤ d vanishing at each of the points?
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Here is some common terminology used in these questions:

Definition 1.14 Given S ⊂ An(k), the number of conditions imposed by S on

polynomials of degree ≤ d is defined

Cd (S) := dim Pn,d − dim Id (S).

S is said to impose independent conditions on Pn,d if

Cd (S) = |S|.

It fails to impose independent conditions otherwise.

Another formulation of the Simple Interpolation Problem is:

When do N points in An(k) fail to impose independent conditions on polynomials of degree

≤ d?

In analyzing examples, it is useful to keep in mind that affine linear transformations

do not affect the number conditions imposed on Pn,d :

Proposition 1.15 Let S ⊂ An(k) and consider an invertible affine-linear transfor-
mation φ : An(k) → An(k). Then Cd (S) = Cd (φ(S)) for each d.

Proof By Exercise 1.11, φ induces an invertible linear transformation φ∗ :

Pn,d → Pn,d with φ∗( f (x1, . . . , xn)) = ( f ◦ φ)(x1, . . . , xn). Thus (φ∗ f )(p) = 0 for

each p ∈ S if and only if f (q) = 0 for each q ∈ φ(S). In particular, φ∗(Id (φ(S))) =
Id (S) so these spaces have the same dimension. �

1.3.1 Some

examples

Let S = {p1, p2, p3} ⊂ An(k) be collinear with n > 1 or S = {p1, p2, p3, p4} ⊂
An(k) coplanar with n > 2. Then S fails to impose independent conditions on poly-

nomials of degree ≤ 1.

Let S = {p1, p2, p3, p4, p5, p6} ⊂ A2(R) lie on the unit circle

x2
1 + x2

2 = 1.

Then S fails to impose independent conditions on polynomials of degree ≤ 2; indeed,

C2(S) = 5 < 6.

When does a set of four points {p1, p2, p3, p4} ⊂ A2(k) fail to impose independent

conditions on quadrics (d = 2)? Assume that three of the points are non-collinear,

e.g., p1, p2, p3. After translating suitably we may assume p1 = (0, 0), and after a

further linear change of coordinates we may assume p2 = (1, 0) and p3 = (0, 1).

(Proposition 1.15 allows us to change coordinates without affecting the number of

conditions imposed.) If p4 = (a1, a2) then the conditions on

c00 + c10x1 + c01x2 + c20x2
1 + c11x1x2 + c02x2

2 ∈ P2,2
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take the form

c00 = 0 (p1)

c00 + c10 + c20 = 0 (p2)

c00 + c01 + c02 = 0 (p3)

c00 + c10a1 + c01a2 + c20a2
1 + c11a1a2 + c02a2

2 = 0. (p4)

If these are not independent, the matrix

⎛
⎜⎜⎝

1 0 0 0 0 0

0 1 0 1 0 0

0 0 1 0 0 1

0 0 0 a2
1 − a1 a1a2 a2

2 − a2

⎞
⎟⎟⎠

has rank 3. This can only happen if

a2
1 − a1 = a1a2 = a2

2 − a2 = 0,

which means p4 ∈ {(0, 0), (1, 0), (0, 1)} = {p1, p2, p3}, a contradiction. Thus we

have shown:

Proposition 1.16 Four distinct points in the plane fail to impose independent
conditions on quadrics only if they are all collinear.

Here are some sample results:

Proposition 1.17 Any N points in the affine line A1(k) impose independent
conditions on P1,d for d ≥ N − 1.

Assume k is infinite. For each N ≤ (n+d
d

)
, there exist N points in An(k) imposing

independent conditions on Pn,d .

Proof For the first statement, suppose that f ∈ k[x1] is a polynomial vanishing

at

p1, . . . , pN ∈ A1(k).

The Euclidean Algorithm implies that f is divisible by x − p j for each j = 1, . . . , N .

Consequently, it is also divisible by the product (x1 − p1) . . . (x1 − pN ) (see Exer-

cise A.13). Moreover, if f �= 0 we have a unique expression

f = q(x1 − p1) . . . (x1 − pN ), q ∈ P1,d−N .

The polynomials of this form (along with 0) form a vector space of dimension

d − N + 1, so

Cd (p1, . . . , pN ) = min(N , d + 1).
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The second statement is established by producing a sequence of points

p1, . . . , p(n+d
d ) such that

Id (p1, . . . , p j ) � Id (p1, . . . , p j+1)

for each j <
(n+d

d

)
. The argument proceeds by induction. Given p1, . . . , p j , linear

algebra gives a nonzero f ∈ Pn,d with f (p1) = . . . = f (p j ) = 0. It suffices to find

some p j+1 ∈ An(k) such that f (p j+1) �= 0, which follows from the fact (Exercise 1.9)

that every nonzero polynomial over an infinite field takes a nonzero value somewhere

in An(k). �

1.4 Exercises

1.1 Consider the linear morphism

φ : A3(R) → A4(R)

(t1, t2, t3) �→ (3t1 + t3, t2 + 4t3, t1 + t2 + t3, t1 − t2 − t3).

Describe image(φ) as the locus where a linear polynomial vanishes.

1.2 Decide whether g = t3 + t2 − 2 is contained in the ideal

〈t3 − 1, t5 − 1〉 ⊂ Q[t].

If so, produce h1, h2 ∈ Q[t] such that

g = h1(t3 − 1) + h2(t5 − 1).

1.3 Consider the ideal

I = 〈
y2 − y2

1 , y3 − y1 y2, . . . , ym − y1 ym−1

〉 ⊂ k[y1, . . . , ym].

Show this contains all the polynomials yi+ j − yi y j and yi y j − yk yl where i + j =
k + l (cf. Example 1.5.)

1.4 Show that the dimension of the vector space of polynomials of degree ≤ d in n
variables is equal to the binomial coefficient(

n + d

d

)
= (n + d)!

d! n!
.

Compute the dimension of the vector space of homogeneous polyonomials of degreee

d in n + 1 variables.

1.5 Given

f = c1x1 + c2x2 + · · · + cn xn + c0

with ci �= 0 for some i > 0, exhibit a morphism

φ : An−1 → An

such that image(φ) = V ( f ) and φ is one-to-one.
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1.6 Let A = (ai j ) be an m × n matrix with entries in k and b = (b1, . . . , bn) ∈ kn . For

each i = 1, . . . , m, set

fi = ai1x1 + · · · + ain xn ∈ k[x1, . . . , xn]

and g = b1x1 + · · · + bn xn. Show that g ∈ 〈 f1, . . . , fm〉 if and only if b is contained

in the span of the rows of A.

1.7 Consider the morphism

j : A3(k) → A6(k)

(u, v, w) �→ (u2, uv, v2, vw, w2, uw).

Let a11, a12, a22, a23, a33, and a13 be the corresponding coordinates on A6(k) and

A =
⎛
⎝ a11 a12 a13

a12 a22 a23

a13 a23 a33

⎞
⎠

the symmetric matrix with these entries.

(a) Show that the image of j satisfies the equations given by the two-by-two minors

of A.

(b) Compute the dimension of the vector space V in

R = k[a11, a12, a22, a23, a33, a13]

spanned by these two-by-two minors.

(c) Show that every homogeneous polynomial of degree 2 in R vanishing on the

image of j is contained in V . Hint: Degree-2 polynomials in R yield degree-4

polynomials in k[u, v, w]. Count dimensions!

1.8 Show that the parametrization given for the curve V ( f ) ⊂ A2(C), f = x2
1 − x3

2

satisfies the required properties.

1.9 Let k be an infinite field. Suppose that f ∈ k[x1, . . . , xn] is nonzero. Show there exists

a = (a1, . . . , an) ∈ An(k) with f (a1, . . . , an) �= 0.

1.10 Let S ⊂ An(k) be a finite nonempty subset and let k[S] denote the ring of k-valued

functions on S. Show that the linear transformation

Pn,d → k[S]

f �→ f |S

is surjective if and only if S imposes independent conditions on polynomials of

degree d .

1.11 Let φ : An(k) → Am(k) be an affine linear transformation given by the matrix formula

φ(x) = Ax + b (see Example 1.4). Consider the map induced by composition of

polynomials

φ∗ : k[y1, . . . , ym] → k[x1, . . . , xn]

P(y) �→ P(Ax + b).
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Show that

(a) φ∗ takes polynomials of degree ≤ d to polynomials of degree ≤ d;

(b) φ is a k-algebra homomorphism;

(c) if the matrix A is invertible then so is φ∗.

Moreover, in case (c) the induced linear transformation φ∗ : Pn,d → Pn,d is also

invertible.

1.12 Consider five distinct points in A2(R) that fail to impose independent conditions on

P2,3. Show that these points are collinear, preferably by concrete linear algebra.

1.13 Show that d + 1 distinct points

p1, . . . , pd+1 ∈ An(Q)

always impose independent conditions on polynomials in Pn,d .

1.14 Let �1, �2, �3 be arbitrary lines in A3(Q). (By definition, a line � ⊂ A3 is the locus

where two consistent independent linear equations are simultaneously satisfied, e.g.,

x1 + x2 + x3 − 1 = x1 − x2 + 2x3 − 4 = 0.) Show there exists a nonzero polynomial

f ∈ P3,2 such that f vanishes on �1, �2, and �3.

Optional Challenge: Assume that �1, �2, and �3 are pairwise skew. Show that f is

unique up to scalar.



2 Division algorithm and Gröbner bases

In this chapter we solve the Ideal Membership Problem for polynomial ideals. The key

tool is Gröbner bases: producing a Gröbner basis for a polynomial ideal is analogous

to putting a system of linear equations in row echelon form. Once we have a Gröbner

basis, a multivariate division algorithm can be applied to decide whether a given

polynomial sits in our ideal. We also discuss normal forms for polynomials modulo

ideals.

The existence of a Gröbner base can be deduced from nonconstructive arguments,

but actually finding one can be challenging computationally. Buchberger’s Algorithm
gives a general solution. The proof that it works requires a systematic understanding

of the ‘cancellations’ among polynomials, which are usually called syzygies.

2.1 Monomial orders

As we have seen, in order to do calculations we need a system for ordering the terms

of a polynomial. For polynomials in one variable, the natural order is by degree, i.e.,

xα
1 > xβ

1 if α > β.

However, for linear polynomials in many variables, we have seen that the order is

essentially arbitrary.

We first fix terminology. Given a polynomial

∑
cα1...αn xα1

1 . . . xαn
n

each cα1...αn xα1

1 . . . xαn
n is a term. A polynomial of the form

xα = xα1

1 . . . xαn
n

is called a monomial.

Definition 2.1 A monomial order > on k[x1, . . . , xn] is a total order on monomials

satisfying the following:

11
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1. Multiplicative property If xα > xβ then xαxγ > xβ xγ (for any α, β, γ ).

2. Well ordering An arbitrary set of monomials

{xα}α∈A

has a least element.

The stipulation that > be a total order means that any monomials xα and xβ are

comparable in the order, i.e., either xα > xβ, xα < xβ, or xα = xβ .

Remark 2.2 The well-ordering condition is equivalent to the requirement that any

decreasing sequence of monomials

xα(1) > xα(2) > xα(3) > . . .

eventually terminates.

We give some basic examples of monomial orders:

Example 2.3 (Pure lexicographic order) This is basically the order on words in a

dictionary. We have xα >lex xβ if the first nonzero entry of (α1 − β1, α2 −
β2, . . . , αn − βn) is positive. For example, we have

x1 >lex x3
2 >lex x2x3 >lex x100

3 .

We prove this is a monomial order. Any two monomials are comparable: given xα

and xβ , either some α j − β j �= 0 (in which case xα >lex xβ or xα <lex xβ) or α j = β j

for each j (and xα = xβ). For the multiplicative condition, it suffices to observe that

for any γ = (γ1, . . . , γn) we have

(α j + γ j ) − (β j + γ j ) = α j − β j ,

so xαxγ >lex xβ xγ if and only if xα >lex xβ .

Finally, given any set of monomials {xα}α∈A, we extract the smallest element.

Consider the descending sequence of subsets

A = A0 ⊃ A1 ⊃ A2 ⊃ . . . ⊃ An

defined recursively by

A j = {α ∈ A j−1 : α j is minimal}.

Each element of A j is smaller (with respect to >lex) than all the elements of A \ A j .

On the other hand, An has a unique element, which is therefore the minimal element

in A.
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Definition 2.4 Fix a monomial order on k[x1, . . . , xn] and consider a nonzero

polynomial

f =
∑

α

cαxα.

The leading monomial of f (denoted LM( f )) is the largest monomial xα such that

cα �= 0. The leading term of f (denoted LT( f )) is the corresponding term cαxα .

For instance, in lexicographic order the polynomial f = 5x1x2 + 7x5
2 + 19x17

3 has

leading monomial LM( f ) = x1x2 and leading term LT( f ) = 5x1x2. One nonintuitive

aspect of lexicographic order is that the degree of the terms is not paramount: the

smallest degree term could be the leading one. We can remedy this easily:

Example 2.5 (Graded lexicographic order) xα >grlex xβ if deg(xα) > deg(xβ) or

deg(xα) = deg(xβ) and xα >lex xβ .

Example 2.6 (Graded reverse lexicographic order) xα >grelex xβ if deg(xα) >

deg(xβ) or deg(xα) = deg(xβ) and the last nonzero α j − β j < 0. (Yes, this inequality

goes the right way!) Note that x1x2x4 >grlex x1x2
3 but x1x2x4 <grelex x1x2

3 . Generally,

this is more efficient than lexicographic order (see Exercise 2.10).

2.2 Gröbner bases and the division algorithm

Algorithm 2.7 (Division procedure) Fix a monomial order > on k[x1, . . . , xn] and
nonzero polynomials f1, . . . , fr ∈ k[x1, . . . , xn]. Given g ∈ k[x1, . . . , xn], we want
to determine whether g ∈ 〈 f1, . . . , fr 〉:

Step 0 Put g0 = g. If there exists no f j with LM( f j )|L M(g0) then we STOP.
Otherwise, pick such an f j0 and cancel leading terms by putting

g1 = g0 − f j0 LT(g0)/LT( f j0 ).

. . .

Step i Given gi , if there exists no f j with LM( f j )|LM(gi ) then we STOP.
Otherwise, pick such an f ji and cancel leading terms by putting

gi+1 = gi − f ji LT(gi )/LT( f ji ). (2.1)

As we are cancelling leading terms at each stage, we have

LM(g) = LM(g0) > LM(g1) > . . . > LM(gi ) > LM(gi+1) > . . . .
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By the well-ordering property of the monomial order, such a chain of decreasing

monomials must eventually terminate. If this procedure does not stop, then we must

have gN = 0 for some N . Back-substituting using Equation 2.1, we obtain

g =
N−1∑
i=0

f ji LT(gi )/LT( f ji ) =
r∑

j=1

(∑
ji = j

LT(gi )/LT( f ji )

)
f j =

r∑
j=1

h j f j ,

where the last sum is obtained by regrouping terms.

Unfortunately, this procedure often stops prematurely. Even when g ∈
〈 f1, . . . , fr 〉, it may happen that LM(g) is not divisible by any LM( f j ).

Example 2.8

1. Let f1 = x + 1, f2 = x and g = 1. We certainly have g ∈ 〈 f1, f2〉 but LM(g) is not

divisible by LM( f1) or LM( f2), so the procedure stops at the initial step.

2. If f1 = x + 2y + 1, f2 = x − y − 5, and g = y + 2 then we have the same prob-

lem. Linear algebra presents a solution: Our system of equations corresponds to the

augmented matrix

(
1 2 1

1 −1 −5

)
.

Put this matrix in ‘row echelon form’ by subtracting the first row from the second

(
1 2 1

0 −3 −6

)
,

which corresponds to the new set of generators f1, f̃2 = −3y − 6. Our division

algorithm works fine for these new generators.

To understand better why this breakdown occurs, we make the following defini-

tions:

Definition 2.9 A monomial ideal J ⊂ k[x1, . . . , xn] is an ideal generated by a

collection of monomials {xα}α∈A.

The main example is the ideal of leading terms of an arbitrary ideal I ⊂ k[x1, . . . , xn].

Definition 2.10 Fix a monomial order > and let I ⊂ k[x1, . . . , xn] be an ideal.

The ideal of leading terms is defined

LT(I ) := 〈LT(g) : g ∈ I 〉.

By convention, LT(〈0〉) = 〈0〉.
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Definition 2.11 Fix a monomial order > and let I ⊂ k[x1, . . . , xn] be an ideal. A

Gröbner basis for I is a collection of nonzero polynomials

{ f1, . . . , fr } ⊂ I

such that LT( f1), . . . , LT( fr ) generate LT(I ).

Nothing in the definition says that a Gröbner basis actually generates I ! We prove

this a posteriori.

Remark 2.12 Every generator for a principal ideal is a Gröbner basis.

Proposition 2.13 Let I ⊂ k[x1, . . . , xn] be an ideal and f1, . . . , fr a Gröbner
basis for I . The Division Algorithm terminates in a finite number of steps, with either
gi = 0 or LT(gi ) not divisible by any of the leading terms LT( f j ).

1. In the first case, it returns a representation

g = h1 f1 + · · · + hr fr h j ∈ k[x1, . . . , xn],

and g ∈ I .
2. In the second case, we obtain an expression

g = h1 f1 + · · · + hr fr + gi LT(gi ) �∈ 〈LT( f1), . . . , LT( fr )〉,

hence g �∈ I .

The proposition immediately implies the following corollary.

Corollary 2.14 Fix a monomial order >. Let I ⊂ k[x1, . . . , xn] be an ideal and
f1, . . . , fr a Gröbner basis for I . Then I = 〈 f1, . . . , fr 〉.

The proof of the proposition will use the following lemma.

Lemma 2.15 (Key lemma) Let I = 〈xα〉α∈A be a monomial ideal. Then every mono-
mial in I is a multiple of some xα .

Proof of lemma Let xβ be a monomial in I . Then we can write

xβ =
∑

i

xα(i)wi ,

where the wi are polynomials. In particular, xβ appears in the right-hand side, is a

monomial of xα(i)wi for some i , and thus is divisible by xα(i). �
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Proof of proposition We have already shown that we obtain a representation

g = h1 f1 + · · · + hr fr

unless the algorithm stops. We need to show the algorithm terminates with gi = 0 for

some i whenever g ∈ I .

If g ∈ I then the intermediate gi ∈ I as well. We now use the definition of a

Gröbner basis: If, for some i , the leading term LT(gi ) is not divisible by LT( f j ) for

any j , then

LT(gi ) �∈ 〈LT( f1), . . . , LT( fr )〉

by Lemma 2.15. It follows that gi �∈ I ; the formula relating g and gi guarantees that

g �∈ I . �

2.3 Normal forms

Theorem 2.16 Fix a monomial order > on k[x1, . . . , xn] and an ideal I ⊂
k[x1, . . . , xn]. Then each g ∈ k[x1, . . . , xn] has a unique expression

g ≡
∑

xα �∈LT(I )

cαxα (mod I ),

where cα ∈ k and all but a finite number are zero. The expression
∑

α cαxα is called
the normal form of g modulo I .

Equivalently, the monomials {xα : xα �∈ LT(I )} form a k-vector-space basis for the

quotient k[x1, . . . , xn]/I .

Corollary 2.17 Fix a monomial order > on k[x1, . . . , xn], an ideal I ⊂
k[x1, . . . , xn], and Gröbner basis f1, . . . , fr for I . Then each g ∈ k[x1, . . . , xn] has
a unique expression

g ≡
∑

cαxα (mod I ),

where LM( f j ) does not divide xα for any j or α.

Proof of theorem: We first establish existence: the proof is essentially an

induction on LM(g). Suppose the result is false, and consider the nonempty set

{LM(g) : g does not admit a normal form}.
One of the defining properties of monomial orders guarantees that this set has a least

element xβ ; choose g such that LT(g) = xβ .

Suppose xβ ∈ LT(I ). Choose h ∈ I with LT(h) = xβ and consider g̃ = g − h.

Note that LM(g̃) < LM(g) and g̃ ≡ g (mod I ). By the minimality of g, we obtain a
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normal form

g̃ ≡
∑

xα �∈LT(I )

cαxα (mod I ).

But this is also a normal form for g, a contradiction.

Now suppose xβ �∈ LT(I ). Consider g̃ = g − xβ so that LM(g̃) < LM(g). By

minimality, we have a normal form

g̃ ≡
∑

xα �∈LT(I )

cαxα (mod I ).

But then we have

g ≡ xβ +
∑

xα �∈LT(I )

cαxα (mod I ),

i.e., a normal form for g, which is a contradiction.

Now for uniqueness: Suppose we have

g ≡
∑

α

cαxα ≡
∑

α

c̃αxα (mod I )

with cα �= c̃α for some α. It follows that

h :=
∑

α

(cα − c̃α)xα ∈ I, h �= 0,

and LT(h) = (cα − c̃α)xα for some α. We have xα ∈ LT(I ), a contradiction. �

Example 2.18 Choose > such that

x1 > x2 > . . . > xn.

Let 0 � I � k[x1, . . . , xn] be an ideal generated by linear forms

gi =
n∑

j=1

ai j x j + ai0, ai j ∈ k.

It is an exercise to show that 〈gi 〉 admits a Gröbner basis of the form:

f1 =
∑

j≥�(1)

b1 j x j + b10, b1�(1) �= 0

f2 =
∑

j≥�(2)

b2 j x j + b20, b2�(2) �= 0

...

fr =
∑

j≥�(r )

br j x j + br0, br�(r ) �= 0
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where �(1) < �(2) < . . . < �(r ). The numbers �(1), . . . , �(r ) are positions of the

pivots of the row echelon form of the matrix

⎛
⎜⎝

a11 . . . a1n a10

a21 . . . a2n a20

... . . .
...

...

⎞
⎟⎠.

We may write

{1, 2, . . . , n} = {�(1), . . . , �(r )} ∪ {m(1), . . . , m(n − r )}.

Theorem 2.16 says that for each g ∈ k[x1, . . . , xn] there exists a unique P ∈
k[xm(1), . . . , xm(n−r )] with g ≡ P (mod I ). Its proof implies that if g is linear we

can write

g ≡ c1xm(1) + · · · + cn−r xm(n−r ) + c0 (mod I )

for unique c0, c1, . . . , cn−r ∈ k.

Algorithm 2.19 Fix a monomial order > on k[x1, . . . , xn], a nonzero ideal I ⊂
k[x1, . . . , xn], and a Gröbner basis f1, . . . , fr for I . Given a nonzero element g ∈
k[x1, . . . , xn], we find the normal form of g (mod I ) as follows:

Step 0 Put g0 = g: If each monomial appearing in g0 is not divisible by any
LM( f j ) then g0 is already a normal form. Otherwise, let cβ(0)xβ(0) be the largest term
in g0 divisible by some LM( f j ), say LM( f j0 ). Set

g1 = g0 − cβ(0)x
β(0) f j0/LT

(
f j0

)
so that g1 ≡ g0 (mod I ).. . .

Step i Given gi , if each monomial appearing in gi is not divisible by any LM( f j )

then gi is already a normal form. Otherwise, let cβ(i)xβ(i) be the largest term in gi

divisible by some LM( f j ), say LM( f ji ). Set

gi+1 = gi − cβ(i)x
β(i) f ji /LT

(
f ji

)

so that gi+1 ≡ gi (mod I ).

Proposition 2.20 The algorithm terminates in a finite number of steps, with either
gi = 0 or gi in normal form.

Proof In passing from gi to gi+1, we replace the largest term of gi appearing in

LT(I ) with a sum of terms of lower degrees. Thus we have

xβ(0) > xβ(1) > . . . > xβ(i) > xβ(i+1) > . . . .
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However, one of the defining properties of a monomial order is that every descending

sequence of monomials eventually terminates, so the algorithm must terminate as

well. �

2.4 Existence and chain conditions

We have not yet established that Gröbner bases exist, or even that each ideal of

k[x1, . . . , xn] is finitely generated. In this section, we shall prove the following

theorem.

Theorem 2.21 (Existence Theorem) Fix a monomial order > and an arbitrary
nonzero ideal I ⊂ k[x1, . . . , xn]. Then I admits a finite Gröbner basis for the pre-
scribed order.

We obtain the following result, named in honor of David Hilbert (1862–1943), who

pioneered the use of nonconstructive arguments in algebraic geometry and invariant

theory at the end of the nineteenth century:

Corollary 2.22 (Hilbert Basis Theorem) Every polynomial ideal is finitely
generated.

It suffices to show that LT(I ) is finitely generated. Indeed, if f1, . . . , fr ∈ I are chosen

such that

LT(I ) = 〈LT( f1), . . . , LT( fr )〉

then Corollary 2.14 implies

I = 〈 f1, . . . , fr 〉.

Thus the proof of the Existence Theorem is reduced to the case of monomial ideals:

Proposition 2.23 (Dickson’s Lemma) Every monomial ideal in a polynomial ring
over a field is generated by a finite collection of monomials.

Proof Let J ⊂ k[x1, . . . , xn] be a monomial ideal; we want to find a finite

number of monomials {xα(1), . . . , xα(s)} ∈ J generating J . The proof is by induction

on n, the number of variables. The case n = 1 mirrors the proof in Appendix A that

every ideal in k[x1] is principal: If xα
1 is the monomial of minimal degree in J and

xβ

1 ∈ J , then α ≤ β and xα
1 |xβ

1 .

For the inductive step, we assume the result is valid for k[x1, . . . , xn] and deduce

it for k[x1, . . . , xn, y]. Consider the following set of auxillary monomial ideals Jm ⊂
k[x1, . . . , xn]:

Jm = 〈xα ∈ k[x1, . . . , xn] : xα ym ∈ J 〉.
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Note that we have an ascending chain of ideals:

J0 ⊂ J1 ⊂ J2 . . .

The following result will prove useful:

Proposition 2.24 (Noether’s Proposition) Let R be a ring. Then the following
conditions are equivalent:

1. every ideal I ⊂ R is finitely generated;
2. every ascending chain of ideals

I0 ⊂ I1 ⊂ I2 ⊂ . . .

terminates, i.e., IN = IN+1 for sufficiently large N.

Then we say the ring R is Noetherian.

This terminology pays homage to Emmy Noether (1882–1935), who pioneered

abstract approaches to finiteness conditions and primary decomposition. [33]

Proof of Proposition 2.24 Suppose every ideal is finitely generated. Consider

I∞ = ∪n In,

which is also an ideal (see Exercise 2.13). Pick generators g1, . . . , gr ∈ I∞; each

gi ∈ Ini for some ni . If N = max(n1, . . . , nr ) then I∞ = IN .

Conversely, suppose every ascending chain terminates. Let I be an ideal and

write

I = 〈 fα〉α∈A.

If I is not generated by a finite number of α then we may construct an infinite sequence

fα(1), fα(2), . . . with

Ir := 〈
fα(1), . . . , fα(r )

〉
� Ir+1 := 〈

fα(1), . . . , fα(r+1)

〉

for each r , violating the ascending chain condition. �

Remark 2.25 The same statement applies to S = k[x1, . . . , xn] with the ideals

restricted to monomial ideals. Note that every monomial ideal with a finite set of

generators has a finite set of monomial generators.

Completion of Proposition 2.23 The sequence of monomial ideals Jm ⊂
k[x1, . . . , xn] terminates at some JN . Therefore, there is a finite sequence of
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monomials:

〈
xα(0,1), . . . , xα(0,n0)

〉 = J0〈
xα(1,1), . . . , xα(1,n1)

〉 = J1

...〈
xα(N ,1), . . . , xα(N ,nN )

〉 = JN

generating each of the Jm for m ≥ N . The ideal J is therefore generated by the terms

xα(m, j) ym for m = 0, . . . , N . �

Essentially the same argument proves the following more general theorem:

Theorem 2.26 Let R be a Noetherian ring. Then R[y] is also Noetherian.

Proof Given J ⊂ R[y], consider

Jm = {am ∈ R : am ym + am−1 ym−1 + · · · + a0 ∈ J for some a0, . . . , am−1 ∈ R},

i.e., the leading terms of degree m polynomials in J . We leave it to the reader to check

that Jm is an ideal. Again we have an ascending sequence

J0 ⊂ J1 ⊂ J2 . . .

so our Noetherian assumption implies the sequence terminates at JN . Thus we can

find ai j ∈ R with

〈
a0,1, . . . , a0,n0

〉 = J0〈
a1,1, . . . , a1,n1

〉 = J1

...〈
aN ,1, . . . , aN ,nN

〉 = JN

Choose polynomials fi j ∈ J with leading terms ai j yi . We claim these generate J .

The proof is by induction on the degree in y. Indeed, given f ∈ J we have

f = bd yd + lower-order terms

with bd ∈ Jd . There exist hi j ∈ R such that

bd =
∑
i≤d

hi j ai j .

The difference g := f − ∑
hi j fi j yd−i has degree d − 1 and is contained in J . Hence

g ∈ 〈 fi j 〉 by induction and f ∈ 〈 fi j 〉 as well. �
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2.5 Buchberger’s Criterion

In this section, we give an algorithm for finding a Gröbner basis for an ideal in

k[x1, . . . , xn]. We first study how a set of generators for an ideal might fail to be a

Gröbner basis. Consider

I = 〈 f1, . . . , fr 〉

and assume that

h = f1h1 + · · · + fr hr (2.2)

has leading term not contained in J = 〈LM( f1), . . . , LM( fr )〉. Consider the mono-

mial

xδ = max
j

{LM( f j h j )} = max
j

{LM( f j )LM(h j )},

which is contained in J . Therefore, the occurences of xδ in (2.2) necessarily cancel,

and some smaller monomial takes up the mantle of being the leading term.

We will describe precisely how such cancellation might occur:

Definition 2.27 The least common multiple of monomials xα and xβ is defined

LCM(xα, xβ) = xmax(α1,β1)
1 . . . xmax(αn ,βn )

n .

Fix a monomial order on k[x1, . . . , xn]. Let f1 and f2 be polynomials in

k[x1, . . . , xn] and set

xγ (12) = LCM(LM( f1), LM( f2)).

The S-polynomial S( f1, f2) is defined

S( f1, f2) := (
xγ (12)/LT( f1)

)
f1 − (

xγ (12)/LT( f2)
)

f2.

The S-polynomial is constructed to ensure the sort of cancellation alluded to above:

we have

xγ (12) = max
i=1,2

{
LM

(
fi x

γ (12)/LT( fi )
)}

but the xγ (1,2) terms cancel; in particular,

LM(S( f1, f2)) < LCM(LM( f1), LM( f2)).

For example, using lexicographic order and

f1 = 2x1x2 − x2
3 , f2 = 3x2

1 − x3,
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the S-polynomial is

S( f1, f2) = x2
1 x2

2x1x2

(
2x1x2 − x2

3

) − x2
1 x2

3x2
1

(
3x2

1 − x3

) = −1/2x1x2
3 + 1/3x2x3.

Our goal is to show that all cancellations can be expressed in terms of S-

polynomials. Later on, we will put this on a more systematic footing using syzygies.

Now we will prove the following:

Theorem 2.28 (Buchberger’s Criterion) Fix a monomial order and polynomials
f1, . . . , fr in k[x1, . . . , xn]. The following are equivalent:

1. f1, . . . , fr form a Gröbner basis for 〈 f1, . . . , fr 〉.
2. Each S-polynomial S( fi , f j ) gives remainder zero on application of the division

algorithm.

Proof (⇒) Each S-polynomial is contained in the ideal I = 〈 f1, . . . , fr 〉. If we

have a Gröbner basis, the division algorithm terminates with a representation

S( fi , f j ) =
r∑

l=1

h(i j)l fl LM(S( fi , f j )) ≥ LM(h(i j)l fl) (2.3)

In particular, S( fi , f j ) has remainder zero.

(⇐) Suppose that each S-polynomial gives remainder zero; for each i, j we have

an expression in the form (2.3). If the fi do not form a Gröbner basis, some h ∈ I does

not have leading term in 〈LM( f1), . . . , LM( fr )〉. Choose a representation as in (2.2)

h = h1 f1 + · · · + hr fr

satisfying the following minimality assumptions:

1. xδ := max j {LM( f j h j )} is minimal;

2. the number of indices j realizing the maximum (i.e., LM( f j h j ) = xδ) is minimal.

After reordering the f j , we may assume that

LM( f1h1) = LM( f2h2) = · · · = LM( fmhm) = xδ

but LM( f j h j ) < xδ for j > m. Note that m ≥ 2 because the xδ term cancels in (2.2).

For i = 1, j = 2, (2.3) takes the form

S( f1, f2) =
r∑

l=1

h(12)l fl , LM(S( f1, f2)) ≥ LM(h(12)l fl).

Write out the S-polynomial using the definition

(
xγ (12)/LT( f1)

)
f1 − (

xγ (12)/LT( f2)
)

f2 −
r∑

l=1

h(12)l fl = 0 xγ (12) > LM(h(12)l fl).

(2.4)



24 DIVISION ALGORITHM AND GRÖBNER BASES

Since LM( fi hi ) = xδ, i = 1, 2, we know xγ (1,2)|xδ and μxγ (12) = LT( f1)LT(h1) for

some monomial μ. We subtract μ × (2.4) from (2.2), to get a new expression

h = h̃1 f1 + h̃2 f2 + · · · + h̃r fr

such that xδ ≥ (LM( f j h̃ j )), with strict inequality for j > m and j = 1. This contra-

dicts the minimality assumption for (2.2). �

Corollary 2.29 (Buchberger’s Algorithm) Fix a monomial order and polynomials
f1, . . . , fr ∈ k[x1, . . . , xn]. A Gröbner basis for 〈 f1, . . . , fr 〉 is obtained by iterating
the following procedure:

For each i, j apply the division algorithm to the S-polynomials to get expressions

S( fi , f j ) =
r∑

l=1

h(i j)l fl + r (i j), LM(S( fi , f j )) ≥ LM(h(i j)l fl)

where each LM(r (i j)) is not divisible by any of the LM( fl). If all the remainders
r (i j) = 0 then f1, . . . , fr are already a Gröbner basis. Otherwise, let fr+1, . . . , fr+s

denote the nonzero r (i j) and adjoin these to get a new set of generators

{ f1, . . . , fr , fr+1, . . . , fr+s}.

Proof Write I = 〈 f1, . . . , fr 〉, S1 = { f1, . . . , fr }, and J1 = 〈LM( f1), . . . ,

LM( fr )〉. If J1 = LT(I ) then we are done. Otherwise, at least one of the remainders

is nonzero by the Buchberger criterion. Consider S2 = { f1, . . . , fr , fr+1, . . . , fr+s}
and let J2 denote the ideal generated by leading terms of these polynomials. Iterating,

we obtain an ascending chain of monomial ideals

J1 � J2 � J3 . . . ⊂ LT(I )

and subsets

S1 � S2 � S3 . . . ⊂ I.

As long as Jm � LT(I ), Buchberger’s criterion guarantees that Jm � Jm+1.

The chain terminates at some JN because k[x1, . . . , xn] is Noetherian. Since JN =
JN+1 = · · · , we conclude that JN = LT(I ) and SN is a Gröbner basis for I . �

2.5.1 An

example

We compute a Gröbner basis of

I = 〈 f1, f2〉 = 〈
x2

1 − x2, x3
1 − x3

〉

with respect to lexicographic order.
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The first S-polynomial is

S( f1, f2) = x1 f1 − f2 = x1

(
x2

1 − x2

) − (
x3

1 − x3

) = −x1x2 + x3;

its leading term is not contained in

〈LM( f1), LM( f2)〉 = 〈
x2

1

〉
.

Therefore, we must add

f3 = x1x2 − x3

to the Gröbner basis.

The next S-polynomial is

S( f1, f3) = x2 f1 − x1 f3 = x1x3 − x2
2 ;

its leading term is not contained in

〈LM( f1), LM( f2), LM( f3)〉 = 〈
x2

1 , x1x2

〉
.

Therefore, we must add

f4 = x1x3 − x2
2

to the Gröbner basis.

We have:

S( f2, f3) = x2 f2 − x2
1 f3 = x2

1 x3 − x2x3 = x3 f1,

S( f1, f4) = x3 f1 − x1 f4 = x1x2
2 − x2x3 = x2 f3,

S( f2, f4) = x3 f2 − x2
1 f4 = x2

1 x2
2 − x2

3 = (x1x2 + x3) f3,

S( f3, f4) = x3 f3 − x2 f4 = x3
2 − x2

3 .

The last has leading term not contained in

〈LM( f1), . . . , LM( f4)〉 = 〈
x2

1 , x1x2, x1x3

〉
.

Therefore, we must add

f5 = x3
2 − x2

3

to the Gröbner basis.

Adding this new generator necessitates computing the S-polynomials involving f5:

S( f1, f5) = x3
2 f1 − x2

1 f5 = −x4
2 + x2

1 x2
3 = (

x1x3 + x2
2

)
f4,

S( f2, f5) = x3
2 f2 − x3

1 f5 = −x3
2 x3 + x3

1 x2
3 = x2

1 x3 f3 + x2x3 f1,

S( f3, f5) = x2
2 f3 − x1 f5 = −x2

2 x3 + x1x2
3 = x3 f4,

S( f4, f5) = x3
2 f4 − x1x3 f5 = x1x3

3 − x5
2 = x2

3 f4 − x2
2 f5.
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Buchberger’s criterion implies { f1, f2, f3, f4, f5} is a Gröbner basis.

Remark 2.30 Note that

LM( f2) ∈ 〈LM( f1), LM( f3), LM( f4), LM( f5)〉

so that f2 is redundant and can be removed from the minimal Gröbner basis.

The division algorithm applied to the S-polynomials for f1, f3, f4, f5 gives the

following relations

0 = S( f1, f3) − f4 = x2 f1 − x1 f3 − f4,

0 = S( f1, f4) − x2 f3 = x3 f1 − x1 f4 − x2 f3,

0 = S( f1, f5) − (
x1x3 + x2

2

)
f4 = x3

2 f1 − x2
1 f5 − (

x1x3 + x2
2

)
f4,

0 = S( f3, f4) − f5 = x3 f3 − x2 f4 − f5,

0 = S( f3, f5) − x3 f4 = x2
2 f3 − x1 f5 − x3 f4,

0 = S( f4, f5) − x2
3 f4 + x2

2 f5 = (
x3

2 − x2
3

)
f4 − (

x1x3 − x2
2

)
f5.

2.6 Syzygies

We now formalize the notion of cancellations of leading terms of polynomials, and

give an important example of how modules arise in algebraic geometry.

According to the Webster Third International Unabridged Dictionary, a syzygy is

the nearly straight-line configuration of three celestial bodies (as the sun, moon, and

earth during a solar or lunar eclipse) in a gravitational system.

Just as the sun or moon is obscured during an eclipse, leading terms of polynomi-

als are obscured by syzygies. The original Greek term συζυγ ία refers to a yoke,

conjunction, or copulation.

Definition 2.31 Let f1, . . . , fr ∈ k[x1, . . . , xn]. A syzygy among the f j is a rela-

tion

h1 f1 + h2 f2 + · · · + hr fr = 0

where (h1, . . . , hr ) ∈ k[x1, . . . , xn]r . The set of all such relations is denoted

Syz( f1, . . . , fr ) ⊂ k[x1, . . . , xn]r .

It is easy to check the following property of syzygies:

Proposition 2.32 Syz( f1, . . . , fr ) is a k[x1, . . . , xn]-submodule of k[x1, . . . , xn]r .
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Example 2.33 Given a finite set of monomials

{μ j = xα( j)} j=1,...,r

with xγ (i, j) = LCM(xα(i), xα( j)). The syzygies among the μ j of the form

xγ (i, j)−α(i)μi − xγ (i, j)−α( j)μ j

generate Syz(μ1, . . . , μr ). The proof is the same as the inductive argument for the

Buchberger criterion, i.e., that all cancellations among leading terms are explained

by S-polynomials (see Exercise 2.16).

Theorem 2.34 Let f1, . . . , fr be a Gröbner basis with respect to some monomial
order on k[x1, . . . , xn]. Consider the relations

(
xγ (i j)/LT( fi )

)
fi − (

xγ (i j)/LT( f j )
)

f j −
∑

l

h(i j)l fl = 0

obtained by applying the division algorithm to the S-polynomials

S( fi , f j ) =
∑

l

h(i j)l fl , LM(S( fi , f j )) ≥ LM(h(i j)l fl).

These generate Syz( f1, . . . , fr ) as a k[x1, . . . , xn]-module.

Corollary 2.35 (Generalized Hilbert Basis Theorem) The module of syzygies among
a set of polynomials is finitely generated.

Proof The proof is essentially contained in our proof of Buchberger’s criterion.

Suppose we have a syzygy

f1h1 + f2h2 + · · · + fr hr = 0. (2.5)

The proof proceeds by induction on

xδ = max
j

(LM( f j h j ))

and the number of indices j realizing this maximum. After reordering, we may assume

that this set of indices is {1, 2, . . . , m} with m ≥ 2. Consider the syzygy associated

to f1 and f2:

(
xγ (12)/LT( f1)

)
f1 − (

xγ (12)/LT( f2)
)

f2 −
∑

l

h(1, 2)l fl = 0. (2.6)

Choose the monomial μ such that μxγ (12) = LT( f1)LT(h1). Subtract μ×(2.6) from

(2.5) to get a new relation

f1h̃1 + f2h̃2 + · · · + fr h̃r = 0



28 DIVISION ALGORITHM AND GRÖBNER BASES

with fewer indices realizing xδ or with

max
j

(LM( f j h̃ j )) < xδ. �

This can be placed in a much more general context:

Theorem 2.36 Let R be Noetherian and M ⊂ Rn an R submodule. Then M is
finitely generated.

Proof The basic strategy of the proof is induction on n; the n = 1 case is im-

mediate because R is Noetherian. We record some elements of the argument which

might be useful in other contexts:

Lemma 2.37 Let M1 ⊂ M be R-modules such that M1 and M/M1 are both finitely
generated. Then M is also finitely generated.

Given generators m1, . . . , ms ∈ M1 and elements ms+1, . . . , ms+t ∈ M with images

generating M/M1, m1, . . . , ms+t generate M . Indeed, for an arbitrary element m ∈ M ,

first choose rs+1, . . . , rs+t ∈ R such that

m − rs+1ms+1 − · · · − rs+t ms+t → 0 ∈ M/M1.

But this difference is also in M1, so we can write

m − rs+1ms+1 − · · · − rs+t ms+t = r1m1 + · · · + rsms

for some r1, . . . , rs ∈ R.

Iterating the previous argument gives the following result.

Lemma 2.38 Suppose there exists a sequence of R-submodules

0 = M0 ⊂ M1 ⊂ M2 . . . ⊂ Mn = M

such that each Mi/Mi−1 is finitely generated. Then M is finitely generated.

To prove the theorem, consider the sequence of modules

0 ⊂ R1 ⊂ R2 ⊂ . . . ⊂ Rn−1 ⊂ Rn

where

R j = {(r1, r2, . . . , r j , 0, . . . , 0︸ ︷︷ ︸
n− j times

) : r1, . . . , r j ∈ R}.

Each R j ⊂ Rn is a submodule and R j/R j−1 � R. We have an induced sequence

0 ⊂ M1 ⊂ M2 ⊂ . . . ⊂ Mn−1 ⊂ Mn = M
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where M j = M ∩ R j . Each M j is a submodule of M . One of the standard isomor-

phism theorems of group theory gives

M j/M j−1 = (M ∩ R j )/(M ∩ R j−1) ↪→ R j/R j−1 = R.

In particular, we can regard each quotient as an ideal. Applying the lemmas above

and the case n = 1 gives the result. �

Remark 2.39 The 1966 thesis [5] of Bruno Buchberger, supervised by Wolfgang

Gröbner (1899–1980), introduces Gröbner bases and the Buchberger algorithm. The

extension to syzygies is due to F.O. Schreyer [36]; this is presented in [9, ch. 15].

2.7 Exercises

2.1 Prove the assertion in Remark 2.2.

2.2 Prove the assertion in Remark 2.12.

2.3 Let I = 〈xα(1), . . . , xα(r )〉 ⊂ k[x1, . . . , xn] be a monomial ideal. Given a polynomial

f =
∑

β

cβ xβ ∈ I, cβ �= 0,

show that each xβ is divisible by some xα( j), j = 1, . . . , r .

2.4 Let k[t1, . . . , tn] and fix real numbers w1, . . . , wn , the weights corresponding to the

variables, i.e., w(t j ) = w j . Given a monomial ta with exponent a = (a1, . . . , an), its

weight is defined

w(ta) = w1a1 + · · · + wnan.

We order the monomials by weight: ta > tb if and only if w(ta) > w(tb). This is

called a weight order.

(a) Take n = 2, w1 = 3, and w2 = 7. Is the weight order a monomial order?

(b) Take n = 2, w1 = 1, and w2 = π . Show that the weight order is a monomial

order.

(c) Give necessary and sufficient conditions on the weights for the weight order to

be a monomial order.

(d) Can lexicographic order be defined as a weight order, in the sense defined above?

(However, see [8] where a more general notion of weight order is defined.)

2.5 Show there is a unique monomial order on C[x].

2.6 (a) Give an example of a monomial ideal I ⊂ C[x, y] with a minimal set of generators

consisting of five elements.

(b) Is there any bound on the number of generators of a monomial ideal in C[x, y]?

Prove your answer!

2.7 Show that

〈
x1 − x37

2 , x1 − x38
2

〉

is not a Gröbner basis with respect to lexicographic order.
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2.8 Consider the ideal I ⊂ C[x, y]

〈
x2n − y3n, n = 1, 2, 3, 4 . . .

〉
.

Find a finite set of generators for I and show they actually generate the full ideal.

2.9 Consider the polynomial

f = x4 + x2 y2 + y3 − x3 ∈ C[x, y]

and the ideal

I = 〈 f, ∂ f/∂x, ∂ f/∂y〉.

Compute the dimension of C[x, y]/I as a complex vector space. Determine whether

x5 ≡ y5 (mod I ).

2.10 Using the Buchberger Algorithm, compute Gröbner bases for

〈
x3 − x5

1 , x2 − x3
1

〉

with respect to both lexicographic order and graded reverse lexicographic order.

Include all the relevant S-polynomial calculations. Which computation takes more

effort?

Compute the normal form of x1x2x3 with respect to each Gröbner basis.

2.11 Fix a monomial order < on k[x1, . . . , xn] and a nonzero ideal I ⊂ k[x1, . . . , xn]. A

reduced Gröbner basis for I is a Gröbner basis { f1, . . . , fr } with following additional

properties:

(1) LT( f j ) = LM( f j ) for each j , i.e., the leading coefficient of f j equals one;

(2) for each i and j with i �= j , no term of fi is divisible by LM( f j ).

Show that I admits a unique reduced Gröbner basis.

2.12 Given φ1, . . . , φm ∈ k[x1, . . . , xn], consider the k-algebra homomorphism

ψ : k[x1, . . . , xn, y1, . . . , ym] → k[x1, . . . , xn]

y j �→ φ j

xi �→ xi .

.

Show that

ker(ψ) = 〈y1 − φ1, y2 − φ2, . . . , ym − φm〉 .

Hint: Check that the generators of

I = 〈y1 − φ1, y2 − φ2, . . . , ym − φm〉 ⊂ ker(ψ)

are a Gröbner basis under lexicographic order with

y1 > y2 > . . . > ym > x1 > . . . > xn.
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Conclude that normal forms modulo I correspond to polynomials in k[x1, . . . , xn].

The inclusion

j : k[x1, . . . , xn] ↪→ k[x1, . . . , xn, y1, . . . , ym]

is a right inverse for ψ , i.e., ψ ◦ j is the identity. Hence ker(ψ) ∩ k[x1, . . . , xn] = 0

and the quotient

k[x1, . . . , xn, y1, . . . , ym]/I � k[x1, . . . , xn, y1, . . . , ym]/ ker(ψ)

is injective.

2.13 Consider an ascending chain of ideals

I0 ⊂ I1 ⊂ I2 ⊂ . . .

in a ring R. Show that I∞ = ∪n In is also an ideal.

2.14 Show that the ring of polynomials in an infinite number of variables

k[x1, x2, x3, . . . , xn, . . .]

does not satisfy the ascending chain condition.

2.15 Let f1, f2 ∈ k[x1, . . . , xn] be polynomials with no common irreducible factors. Show

that

Syz( f1, f2) = ( f2, − f1)k[x1, . . . , xn] ⊂ k[x1, . . . , xn]2.

What happens if f1 and f2 have common irreducible factors?

2.16 Let μ j = x j for j = 1, . . . , n. Verify explicitly that

Syz(μ1, . . . , μn) ⊂ k[x1, . . . , xn]n

is generated by

(0, . . . , 0, −x j︸︷︷︸
ith place

, 0, . . . , 0, xi︸︷︷︸
jth place

, 0, . . .).

2.17 Consider the matrix

A =
(

a11 a12 a13

a21 a22 a23

)

and the ideal

I ⊂ k[a11, a12, a13, a21, a22, a23]

generated by the 2 × 2 minors of A, i.e.,

g1 = a12a23 − a13a22, g2 = −a11a23 + a13a21, g3 = a11a22 − a12a21.
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(a) Do the minors form a Gröbner basis with respect to lexicographic order a11 >

a12 > a13 > a21 > a22 > a23?

(b) Compute a set of generators for the syzygies among g1, g2, and g3.

2.18 Commutative algebra challenge problem:

A ring R satisfies the descending chain condition if any descending sequence of ideals

in R

I1 ⊃ I2 ⊃ I3 . . .

stabilizes, i.e., IN = IN+1 for large N . Such a ring is said to be Artinian.
(a) Show that Z/nZ and k[t]/ 〈tn〉 are Artinian.

(b) Show that Z and k[t] are not Artinian.

(c) Show that an Artinian ring has a finite number of maximal ideals. Hint: Consider

chains

m1 ⊃ m1m2 ⊃ m1m2m3 . . . .

(d) Show that every prime ideal in an Artinian ring is maximal. Hint: Consider chains

m ⊃ m2 ⊃ m3 . . . ⊃ p

where p is a nonmaximal prime and m ⊃ p is maximal.

(e) Show that an Artinian ring R finitely generated over a field k satisfies dimk(R) <

∞. (To say that R is finitely generated over k means that R is a quotient of a

polynomial ring k[x1, . . . , xn].)



3 Affine varieties

In this chapter, we introduce algebraic varieties and various kinds of maps between

them. Our main goal is to develop a working dictionary between geometric concepts

and algebraic techniques. The geometric formulations are dictated by the algebraic

structures in the background, e.g., we only consider maps that can be expressed using

polynomials.

For researchers in the field, geometric intuition and algebraic formalism are (or

ought to be) mutually reinforcing. Most of the algebra is developed with a view

toward geometric applications, rather than for its own sake. Often, complex algebraic

manipulations are more transparent in vivo than in vitro.

For much of the rest of this book, the base field is assumed to be infinite. Finite

fields exhibit pathologies that complicate their use in algebraic geometry (cf. Defini-

tion 3.26). For instance, the polynomial function x p − x vanishes at every point of

Fp = Z/pZ, where p is a prime integer. However, it does not vanish over the field

extension Fp2 , so we cannot identify x p − x with 0.

3.1 Ideals and varieties

Definition 3.1 Given S ⊂ An(k), the ideal of polynomials vanishing on S is

defined

I (S) = { f ∈ k[x1, . . . , xn] : f (s) = 0 for each s ∈ S}.

This is an ideal: if f1 and f2 both vanish on S then so does f1 + f2. If f vanishes on

S and g is arbitrary, then g f also vanishes on S.

Example 3.2

1. S = An(R) then I (S) = 〈0〉;
2. S = {(a1, . . . , an)} then I (S) = 〈x1 − a1, . . . , xn − an〉;

33
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3. S = {(1, 1), (2, 3)} ⊂ A2(Q) then

I (S) = 〈(x − 1)(y − 3), (x − 1)(x − 2), (y − 1)(x − 2), (y − 1)(y − 3)〉;

4. S = N ⊂ A1(C) then I (S) = {0}, because every nonconstant polynomial f ∈ C[x]

has at most deg( f ) distinct roots (see Exercise A.13);

5. S = {(x, y) : x2 + y2 = 1, x �= 0} ⊂ A2(R) has ideal I (S) = 〈x2 + y2 − 1〉.

Definition 3.3 An affine variety is the locus where a collection of polynomial

equations is satisfied, i.e., given F = { f j } j∈J ⊂ k[x1, . . . , xn] we define

V (F) = {a ∈ An(k) : f j (a) = 0 for each j ∈ J } ⊂ An(k).

These polynomials are said to define the variety.

The structure of an algebraic variety on a given set depends on the choice of base

field. For example, the set of rational numbers Q is a variety when it is regarded as a

subset of A1(Q), but not when it is regarded as a subset of A1(R) or A1(C). When we

want to put particular emphasis on the ground field, we will say that V is an affine

variety defined over k. This means the defining polynomials have coefficients in k.

In what follows, B is a (possibly infinite) index set:

Proposition 3.4 For each β ∈ B, let Fβ ⊂ k[x1, . . . , xn] denote a collection of
polynomials. Then we have

V (∪β∈B Fβ) = ∩β∈B V (Fβ).

Proof

V (∪β∈B Fβ) = {a ∈ An(k) : f (a) = 0 for each f ∈ ∪β∈B Fβ}
= ∩β∈B{a ∈ An(k) : f (a) = 0 for each f ∈ Fβ}
= ∩β∈B V (Fβ). �

Thus as we add new polynomials to our collection, the corresponding variety gets

smaller:

Proposition 3.5 For each collection of polynomials F = { f j } j∈J ⊂ k[x1, . . . , xn]

and each subset F ′ ⊂ F we have V (F ′) ⊃ V (F).

We have the analogous statements for ideals, which are left to the reader:

Proposition 3.6 For each β ∈ B, let Sβ ⊂ An(k) denote a subset. Then we have

I (∪β∈B Sβ) = ∩β∈B I (Sβ).
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Proposition 3.7 For any subsets S′ ⊂ S ⊂ An(k) we have I (S′) ⊃ I (S).

The variety defined by a collection of polynomials only depends on the ideal they

define:

Proposition 3.8 Given F = { f j } j∈J ⊂ k[x1, . . . , xn] generating an ideal I =
〈 f j 〉 j∈J , we have V (F) = V (I ).

Proof Proposition 3.5 guarantees V (F) ⊃ V (I ). Conversely, for v ∈ V (F)

we have f j (v) = 0 for each j ∈ J . For each g = ∑N
i=1 hi f ji ∈ I we have g(v) =∑N

i=1 hi f ji (v) = 0, so v ∈ V (I ). �

Definition 3.9 Given a ring R and a collection of ideals {Iβ}β∈B of R, we define

the sum to be

∑
β∈B

Iβ = { f1 + . . . + fr : f j ∈ Iβ j for some β j },

i.e., all finite sums of elements each taken from one of the Iβ .

We leave it to the reader to check (see Exercise 3.4) that this is the smallest ideal

containing ∪β∈B Iβ .

Proposition 3.10 For any collection of ideals {Iβ}β∈B in k[x1, . . . , xn], we have

V

(∑
β∈B

Iβ

)
= ∩β∈B V (Iβ).

Proof This follows from Proposition 3.4 and the identity

V

(∑
β∈B

Iβ

)
= V (∪β∈B Iβ)

of Proposition 3.8. �

Definition 3.11 Given a ring R and ideals I1, I2 ⊂ R, the product I1 I2 is the ideal

generated by products f1 f2 with f1 ∈ I1 and f2 ∈ I2.

Proposition 3.12 For any ideals I1, I2 ⊂ k[x1, . . . , xn], we have

V (I1 ∩ I2) = V (I1 I2) = V (I1) ∪ V (I2).

Proof We have inclusions

I1 I2 ⊂ I1 ∩ I2 ⊂ I1, I2



36 AFF INE VARIETIES

so Proposition 3.5 yields

V (I1 I2) ⊃ V (I1 ∩ I2) ⊃ V (I1), V (I2).

It remains to show that V (I1 I2) ⊂ V (I1) ∪ V (I2). Suppose that v ∈ V (I1 I2) but v �∈
V (I1). Then for some f ∈ I1 we have f (v) �= 0. However, for each g ∈ I2, all the

products ( f g)(v) = 0. Thus g(v) = 0 and v ∈ V (I2). �

We describe the behavior of varieties under set-theoretic operations:

Proposition 3.13 An arbitrary intersection of varieties ∩β∈B Vβ is a variety. A
finite union of varieties ∪N

i=1Vi is a variety.

Proof For the intersection part, write each Vβ = V (Iβ) for some ideal Iβ . Then

Proposition 3.10 gives the result. To show that a finite union of varieties is a variety,

we apply Proposition 3.12 successively. �

The above properties and the Hilbert Basis Theorem from Chapter 2 together

imply the following.

Proposition 3.14 Every variety can be defined as the locus where a finite number
of polynomials vanish.

We can take products of affine varieties:

Definition3.15 Consider affine varieties V ⊂ An(k) and W ⊂ Am(k). The product
variety

V × W ⊂ An+m(k)

is defined as the set

{(a1, . . . , an, b1, . . . , bm) : (a1, . . . , an) ∈ V, (b1, . . . , bm) ∈ W }.

The projections

π1 : V × W → V, π2 : V × W → W

are defined

π1(x1, . . . , xn, y1, . . . , ym) = (x1, . . . , xn), π2(x1, . . . , xn, y1, . . . , ym)

= (y1, . . . , ym).
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Proposition 3.16 Consider ideals I1 ⊂ k[x1, . . . , xn] and I2 ⊂ k[y1, . . . , ym] and
the corresponding varieties V (I1) ⊂ An(k) and V (I2) ⊂ Am(k). Let

J = I1k[x1, . . . , xn, y1, . . . , ym] + I2k[x1, . . . , xn, y1, . . . , ym],

i.e., the ideal in k[x1, . . . , xn, y1, . . . , ym] generated by I1 and I2. Then V (I1) ×
V (I2) = V (J ).

Proof We start with some notation: Given a map φ : X → Y and a subset Z ⊂ Y ,

we write

φ−1(Z ) = {x ∈ X : φ(x) ∈ Z}.

Consider the projection morphisms

�1 : Am+n → An

(x1, . . . , xn, y1, . . . , ym) �→ (x1, . . . , xn),

�2 : Am+n → Am

(x1, . . . , xn, y1, . . . , ym) �→ (y1, . . . , ym).

Since

�−1
1 (V (I1)) = {(a1, . . . , an, b1, . . . , bm) : f (a1, . . . , an) = 0 for each f ∈ I1}

it follows that �−1
1 (V (I1)) is the variety in Am+n defined by I1 ⊂ k[x1, . . . , xn] ⊂

k[x1, . . . , xn, y1, . . . , ym]. Proposition 3.6 then implies

�−1
1 (V (I1)) = V (I1k[x1, . . . , xn, y1, . . . , ym]).

We can express the product as an intersection

V (I1) × V (I2) = �−1
1 (V (I1)) ∩ �−1

2 (V (I2)).

Proposition 3.10 then yields

V (I1) × V (I2) = V (J ). �

3.1.1 A

warning

about our

definitions

We have defined an affine variety as the locus in An(k) where a collection of poly-

nomials vanish. Over some base fields, it can be very difficult to determine precisely

where a polynomial is zero!

Example 3.17 Fermat’s Last Theorem, as proven by Andrew Wiles and Richard

Taylor, asserts that for any integers x, y, z with

x N + yN = zN , N ≥ 3,
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at least one of the three integers is zero. We may as well assume x, y, z ∈ Q; mul-

tiplying through by the least common multiple of the denominators would yield an

integral solution. In our notation, Fermat’s Last Theorem takes the following form:

If N ≥ 3 and V = V (x N + yN − zN ) ⊂ A3(Q) then xyz ∈ I (V ).

For any ideal I ⊂ k[x1, . . . , xn] we have (cf. Exercise 3.3)

I (V (I )) ⊃ I.

Whether equality holds is a subtle problem, depending both on the base field and the

geometry of V (I ). There are many general theorems asserting that I (V ( f )) � 〈 f 〉 for

certain classes of polynomials f . When k = Q, a number field, or a finite field, these

problems have a strong number-theoretic flavor. This area is known as Diophantine
geometry or Arithmetic algebraic geometry. On the other hand, when k is algebraically

closed the Nullstellensatz (Theorem 7.3) allows precise descriptions of I (V (I )) in

terms of I .

3.2 Closed sets and the Zariski topology

Definition 3.18 The algebro-geometric closure of a subset S ⊂ An(k) is defined

S = {a ∈ An(k) : f (a) = 0 for each f ∈ I (S)} = V (I (S)).

A subset S ⊂ An(k) is closed if S = S;U ⊂ An(k) is open if its complement An(k) \ U
is closed in An(k).

Example 3.19

1. The closure of N ⊂ A1(C) is the complex line A1(C).

2. The closure of {(x, y) : x2 + y2 = 1, x �= 0} ⊂ A2(R) is the circle {(x, y) : x2 +
y2 = 1}.

3. The open subsets of A1(C) are the empty set and U ⊂ C with finite complement, e.g.,

U = C \ {a1, . . . , ad}.

You may remember open and closed sets from calculus, e.g., U ⊂ Rn is open if,

for each x ∈ U , a sufficiently small ball centered at x is contained in U . There is a

very general definition underlying both usages:

Definition 3.20 A topological space consists of a set X and a collection of subsets

Z = {Z ⊂ X} called the closed subsets of X , satisfying the following:

� ∅, X ∈ Z;
� if Z1, Z2 ∈ Z then Z1 ∪ Z2 ∈ Z;
� if {Z j } j∈J ⊂ Z then ∩ j∈J Z j ∈ Z .

A subset U ⊂ X is open if its complement X \ U is closed.
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Our axioms imply that a finite intersection of open subsets is open and an arbitrary

union of open subsets is open.

Proposition 3.13 shows that closed subsets of affine space (in the sense of algebraic

geometry) satisfy the axioms of a topological space. This is called the Zariski topology
in recognition of Oscar Zariski (1899–1986). By Proposition 3.14, all Zariski open

sets are of the form

U = An(k) \ Z with Z closed

= {a ∈ An(k) : f j (a) �= 0, j = 1, . . . , r, f j ∈ k[x1, . . . , xn]},

i.e., where a finite set of polynomials do not simultaneously vanish.

The Zariski topology on affine space induces a topology on subsets V ⊂ An(k):

Z ⊂ V is closed if Z = V ∩ Y for some closed Y ⊂ An(k). If V ⊂ An(k) is an affine

variety then closed subsets of V are precisely closed subsets of An(k) contained in

V . This is called the Zariski topology on the affine variety.

Definition 3.21 A function of topological spaces f : X → Y is continuous if for

each closed Z ⊂ Y the preimage f −1(Z ) = {x ∈ X : f (x) ∈ Z} is closed.

The concept of a ‘Zariski continuous’ function is really too weak to be of much use.

For instance, any bijective function C → C is automatically Zariski continuous!

One useful class of Zariski continuous functions are the morphisms introduced in

Chapter 1:

Proposition 3.22 Let φ : An(k) → Am(k) be a morphism of affine spaces. Then
φ is Zariski continuous.

Proof Let Z ⊂ Am(k) be closed, i.e.,

Z = {b ∈ Am(k) : g j (b) = 0, {g j } j∈J ⊂ k[y1, . . . , ym]}.

Thus

φ−1(Z ) = {a ∈ An(k) : g j (φ(a)) = 0}

is also closed, because g j ◦ φ is a polynomial. �

3.3 Coordinate rings and morphisms

We elaborate on algebraic aspects of morphisms of affine space.

Definition 3.23 Choose coordinates x1, . . . , xn and y1, . . . , ym on An(k) and

Am(k). Let φ : An(k) → Am(k) be a morphism given by the rule

φ(x1, . . . , xn) = (φ1(x1, . . . , xn), . . . , φm(x1, . . . , xn)), φ j ∈ k[x1, . . . , xn].
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For each f ∈ k[y1, . . . , ym], the pull-back by φ is defined

φ∗ f = f ◦ φ = f (φ1(x1, . . . , xn), . . . , φm(x1, . . . , xn)).

We obtain a ring homomorphism

φ∗ : k[y1, . . . , ym] → k[x1, . . . , xn]

y j �→ φ j (x1, . . . , xn),

with the property that φ∗(c) = c for each constant c ∈ k, i.e., pull-back is a k-algebra
homomorphism.

Conversely, any k-algebra homomorphism

ψ : k[y1, . . . , ym] → k[x1, . . . , xn]

is determined by its values on the generators. Writing ψ j (x1, . . . , xn) = ψ(y j ), we

obtain a morphism

An(k) → Am(k)

(x1, . . . , xn) �→ (ψ1(x1, . . . , xn), . . . , ψm(x1, . . . , xn)).

To summarize:

Proposition 3.24 There is a natural correspondence between morphisms φ :

An(k) → Am(k) and k-algebra homomorphisms

ψ : k[y1, . . . , ym] → k[x1, . . . , xn]

identifying φ∗ and ψ .

We have already considered the ring of polynomial functions on affine space.

How does this generalize to arbitrary affine varieties? Let V ⊂ An(k) be affine

with ideal I (V ). We restrict polynomial functions on An(k) to V ; elements of I (V )

are zero along V , so these functions can be identified with the quotient k[x1, . . . ,

xn]/I (V ).

I (V ) ⊂ k[x1, . . . , xn] → k[x1, . . . , xn]/I (V )

↓ ↓ ↙
0 ∈ functions on V

Example 3.25 Consider the circle V = {(x, y) : x2 + y2 = 1} ⊂ A2(R) with

I (V ) = 〈x2 + y2 − 1〉. The polynomials x2 and 1 − y2 define the same function on

the circle. We have

x2 ≡ 1 − y2 mod I (V ).
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Definition 3.26 Let V ⊂ An(k) be an affine variety. The coordinate ring is defined

as the quotient ring

k[V ] = k[x1, . . . , xn]/I (V ).

Note that k[An] = k[x1, . . . , xn] provided k is infinite (see Exercise 3.2). This is

one point where finite fields create difficulties. Our definition of the coordinate ring

requires modification in this case.

Definition 3.27 Fix an affine variety V ⊂ An(k). Two morphisms φ̄, φ̂ : An(k) →
Am(k) are equivalent on V if the induced pull-back homomorphisms

φ̄∗ : k[Am] → k[V ], φ̂∗ : k[Am] → k[V ]

are equal. The resulting equivalence classes are called morphisms φ : V → Am(k).

Each φ̂ : An(k) → Am(k) in the equivalence class is called an extension of φ to affine

space.

Example 3.28 Consider the circle V = {(x, y) : x2 + y2 = 1} ⊂ A2(R) with

I (V ) = 〈x2 + y2 − 1〉. The morphisms

φ̄ : A2(R) → A1(R),

(x, y) �→ x2,

φ̂ : A2(R) → A1(R),

(x, y) �→ 1 − y2

are equivalent on the circle.

Equivalent morphisms are equivalent as functions:

Proposition 3.29 Let V ⊂ An(k) be an affine variety and

φ̄, φ̂ : An(k) → Am(k)

two morphisms equivalent on V . Then we have φ̄(v) = φ̂(v) for each v ∈ V .

Proof If φ̄(v) �= φ̂(v) then they can be differentiated by coordinate functions

from k[Am], i.e., we have

yi (φ̄(v)) �= yi (φ̂(v))

for some i . It follows that φ̄∗yi (v) �= φ̂∗yi (v), which violates the equivalence

assumption. �
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Definition 3.30 Fix affine varieties V ⊂ An(k) and W ⊂ Am(k). A morphism
φ : V → W is defined to be morphism φ : V → Am(k) with φ(V ) ⊂ W .

The geometric condition φ(V ) ⊂ W is equivalent to the algebraic condition

φ∗ I (W ) ⊂ I (V ). Indeed first assume that φ∗ I (W ) ⊂ I (V ). Given v ∈ V and an arbi-

trary g ∈ I (W ), we have g(φ(v)) = φ∗(g)(v) = 0 as φ∗(g) ∈ I (V ), so that φ(v) ∈ W .

Conversely, if φ(V ) ⊂ W then, given g ∈ I (W ), we have g(φ(v)) = 0 for each v ∈ V ,

and thus φ∗g ∈ I (V ).

We are tacitly assuming that the polynomials defining φ have coefficients in k. If

we have to make this explicit, we say that the morphism is defined over k.

Proposition 3.31 Let V ⊂ An(k) and W ⊂ Am(k) be affine varieties. Any mor-
phism φ : V → W induces a k-algebra homomorphism φ∗ : k[W ] → k[V ]. Con-
versely, each k-algebra homomorphism ψ : k[W ] → k[V ] can be expressed as φ∗

for some morphism φ.

Proof Suppose we have a morphism φ : V → W . Consider the composition

k[y1, . . . , ym]
φ∗
→ k[x1, . . . , xn] → k[V ]

∪ ∪ ∪
I (W )

φ∗
→ I (V ) → 0

The ideal I (W ) is mapped to zero in k[V ], so there is an induced homomorphism

φ∗ : k[W ] = k[y1, . . . , ym]/I (W ) → k[V ].

Conversely, suppose we have a k-algebra homomorphism

k[y1, . . . , ym] k[x1, . . . , xn]

↓ ↓
k[W ]

ψ−→ k[V ]

.

It suffices to find a k-algebra homomorphism

ψ ′ : k[y1, . . . , ym] → k[x1, . . . , xn]

making the diagram above commute. Indeed, Proposition 3.24 then gives a morphism

φ′ : An(k) → Am(k) such that ψ ′ = φ′∗. The diagram guarantees ψ ′(I (W )) ⊂ I (V ),

so φ′(V ) ⊂ W and the induced homomorphism on coordinate rings k[W ] → k[V ] is

just ψ .
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To construct ψ ′, consider the elements ψ(y j ) ∈ k[V ]. Lifting these to polynomials

φ j ∈ k[x1, . . . , xn], j = 1, . . . , m, we obtain a homomorphism

ψ ′ : k[y1, . . . , ym] → k[x1, . . . , xn]

y j �→ φ j
.

making the diagram commute. �

The main idea here is that polynomial rings are extraordinarily flexible; we can

send the generators anywhere we like!

Corollary 3.32 Let V and W be affine varieties. There is a one-to-one correspon-
dence between morphisms V → W and k-algebra homomorphisms k[W ] → k[V ].

Definition 3.33 An isomorphism of affine varieties is a morphism φ : V → W
admitting an inverse morphism φ−1 : W → V . An automorphism of an affine variety
is an isomorphism φ : V → V .

One important consequence of Corollary 3.32 is that automorphisms of V corre-

spond to k-algebra isomorphisms k[V ] → k[V ].

Example 3.34 Consider V = A2(k) and the homomorphism

ψ(x1) = x1, ψ(x2) = x2 + g(x1), g ∈ k[x1],

with inverse

ψ−1(x1) = x1, ψ−1(x2) = x2 − g(x1).

Each ψ = φ∗ for some automorphism φ : A2(k) → A2(k). Thus each polynomial

g ∈ k[x1] yields an automorphism of the affine plane. See [37] chapter I, section 2,

esp. exercise 9, for more information.

Exercise 3.14 is the classification of automorphisms of the affine line A1(k). As

far as I know, there is no intelligible classification of automorphisms of A3(k). There

is substantial research on this question: see [2], for example.

3.4 Rational maps

Let k(x1, . . . , xn) denote the fraction field of k[x1, . . . , xn], consisting of quotients

f/g where f, g ∈ k[x1, . . . , xn], g �= 0.

Definition 3.35 A rational map ρ : An(k) ��� Am(k) is given by a rule

ρ(x1, . . . , xn) = (ρ1(x1, . . . , xn), . . . , ρm(x1, . . . , xn)), ρ j ∈ k(x1, . . . , xn).
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A rational map does not yield a well-defined function from An(k) to Am(k) – hence

the dashed arrow! Represent each component ρ j as a fraction

ρ j = f j/g j , f j , g j ∈ k[x1, . . . , xn];

we will generally assume that f j and g j have no common irreducible factors, for

j = 1, . . . , m. Wherever any of the g j vanish, ρ is not well-defined; the closed set

V ({g1, . . . , gm}) ⊂ An(k) is called the indeterminacy locus of ρ. However, over the

complement

U := {(a1, . . . , an) ∈ An(k) : g j (a1, . . . , an) �= 0, j = 1, . . . , m}

we obtain a well-defined function to Am(k).

The argument for Proposition 3.24 also yields:

Proposition 3.36 Each rational map ρ : An(k) ��� Am(k) defined over k induces
a k-algebra homomorphism

ρ∗ : k[y1, . . . , ym] → k(x1, . . . , xn),

y j �→ ρ j (x1, . . . , xn).

Conversely, each k-algebra homomorphism

k[y1, . . . , ym] → k(x1, . . . , xn)

arises from a rational map.

Definition3.37 Let W ⊂ Am(k) be an affine variety. A rational mapρ : An(k) ���
W is a rational map ρ : An(k) ��� Am(k) with ρ∗ I (W ) = 0.

Example 3.38 If W = {(y1, y2) : y2
2 = y2

1 + y3
1} ⊂ A2(Q) then we have the ratio-

nal map

ρ : A1 ��� W,

s �→
(

1 − s2

s2
,

1 − s2

s3

)
.

How do we define a rational map from a general affine variety ρ : V ��� Am(k)?

As in our discussion of morphisms, we realize V ⊂ An(k) as a closed subset. It is

natural to define ρ as an equivalence class of rational maps ρ ′ : An(k) ��� Am(k),

restricted to V . However, rational maps can behave badly along a variety, especially

when one of the denominators of the ρ ′
j vanishes along that variety.

Example 3.39 Consider the rational map

ρ : A2(R) ��� A3(R),

(x1, x2) �→ (
x−3

1 , x−1
1 x−1

2 , x−3
2

)
,
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which is well-defined over the open subset

U = {(x1, x2) : x1x2 �= 0} ⊂ A2(R).

However, ρ is not defined along the affine variety

V = {(x1, x2) : x1 = 0} ⊂ A2(R).

We formulate a definition to address this difficulty:

Definition 3.40 Let ρ : An(k) ��� Am(k) be a rational map with components ρ j =
f j/g j with f j , g j ∈ k[x1, . . . , xn] having no common irreducible factors. Let V ⊂
An(k) be an affine variety with ideal I (V ) and coordinate ring k[V ]. Assume that

the image of each g j in k[V ] does not divide zero. Then we say that ρ is admissible
on V .

We would like an algebraic description of rational maps, generalizing Proposi-

tion 3.36 in the spirit of Corollary 3.32. We require an algebraic construction gener-

alizing the field of fractions of a domain:

Definition 3.41 The ring of fractions of a ring R is defined

K = {r/s : r, s ∈ R, s not a zero divisor},

where r1/s1 = r2/s2 whenever r1s2 = r2s1.

We can realize R ⊂ K as the fractions with denominator 1 (see Exercise 3.17).

Definition 3.42 For an affine variety V , let k(V ) denote the ring of fractions of

the coordinate ring k[V ].

Proposition 3.43 Let ρ : An(k) ��� Am(k) be a rational map admissible on an
affine variety V ⊂ An(k). Then ρ induces a k-algebra homomorphism

ρ∗ : k[Am] → k(V ).

Conversely, each such homomorphism arises from a suitable rational map.

Proof By hypothesis, each component function ρ j of ρ can be expressed as a

fraction f j/g j , where f j , g j ∈ k[x1, . . . , xn] and g j does not divide zero in k[V ]. In

particular, each f j/g j goes to an element of k(V ) and we obtain a homomorphism

ρ∗ : k[y1, . . . , ym] → k(V ),

y j �→ f j/g j .
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Conversely, given such a homomorphism ψ , we can express ψ(y j ) = r j/s j

with r j , s j ∈ k[V ] for j = 1, . . . , m. Choose polynomials f1, . . . , fm, g1, . . . , gm ∈
k[x1, . . . , xm] with f j ≡ r j (mod I (V )) and g j ≡ s j (mod I (V )). The rational map

with components ρ j = f j/g j induces the homomorphism ψ . �

With these results, we can make the general definition of a rational map:

Definition 3.44 Let V ⊂ An(k) be an affine variety and

ρ̄, ρ̂ : An(k) → Am(k)

rational maps admissible on V . These are equivalent along V if the induced homo-

morphisms

ρ̄∗, ρ̂∗ : k[Am] → k(V )

are equal.

Definition 3.45 Let V and W be affine varieties realized as closed subsets of An(k)

and Am(k) respectively. A rational map ρ : V ��� W is defined as an equivalence

class of rational maps ρ ′ : An(k) ��� W admissible on V . Each such ρ ′ is called an

extension of ρ to affine space.

The following analog of Corollary 3.32 is left as an exercise:

Corollary 3.46 Let V and W be affine varieties. There is a one-to-one corre-
spondence between rational maps V ��� W over k and k-algebra homomorphisms
k[W ] → k(V ).

3.5 Resolving rational maps

We will introduce a systematic procedure for replacing rational maps by morphisms

defined on a smaller variety. This will be used to compute the image of a rational map

in Chapter 4:

Proposition 3.47 Let V and W be affine varieties realized in An(k) and Am(k)

respectively. Consider a rational map ρ : V ��� W obtained from a map

An(k) ��� An(k)

(x1, . . . , xn) �→ ( f1/g1, . . . , fm/gm)

admissible on V . Write g = g1 . . . gm so that ρ is well-defined over the open set
U = {v ∈ V : g(v) �= 0}. There is an affine variety Vg and morphisms π : Vg → V
and φ : Vg → W , with the following properties:
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1. π (Vg) = U;
2. there is a rational map ψ : V ��� Vg, well-defined on U, such that π ◦ ψ = IdU and

ψ ◦ π = IdVg ;

Vg
f

W

V

rp

3. φ = ρ ◦ π .

Thus π is a birational morphism, i.e., a morphism which admits an inverse rational

map. We’ll discuss these more in Chapter 6.

Proof The new affine variety is obtained by imposing invertibility by fiat: take

An(k)g = {(x1, . . . , xn, z) : zg(x1, . . . , xn) = 1} ⊂ An+1(k)

so that projection

π : An+1(k) → An(k)

(x1, . . . , xn, z) �→ (x1, . . . , xn),

takes An(k)g bijectively to An(k) \ {g = 0}. Similarly, define

Vg = {p ∈ An(k)g : π (p) ∈ V }.

Abusing notation, we use π to designate the restriction of the projection to Vg; it also

maps Vg bijectively to U .

These varieties have coordinate rings

k[An(k)g] = k[x1, . . . , xn, z]

〈zg − 1〉 = k[x1, . . . , xn][1/g] ⊂ k(x1, . . . , xn)

and

k[Vg] = k[V ][1/g] ⊂ k(V ).

The rational map inverse to π is

ψ(x1, . . . , xn) = (x1, . . . , xn, 1/g);

we use the same notation for its restriction to V . The morphism

An+1(k) → Am(k)

(x1, . . . , xn, z) �→ ( f1g2 . . . gm z, . . . , g1 . . . gi−1 fi gi+1 . . . gm z, . . .)
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x

z

X  = {(x, z) : xz = 1}

Figure 3.1 Resolving the rational map x �→ 1
x
.

restricted to An(k)g coincides with the composition

An(k)g
π→ An(k)

ρ��� Am(k) .

Restricting to Vg yields φ : Vg → W with the analogous factorization. �

The varieties Vg ↪→ V produced above are called affine open subsets of V .

Example 3.48 The rational map

ρ : A1(k) ��� A1(k),

x �→ 1

x
,

is defined on the open subset U = A1 \ {0}. We can identify U with the affine variety

X = A1(k)x = {(x, z) : xz = 1},

which is a hyperbola. The morphism π is projection onto the x-axis; φ is projection

onto the z-axis.

Example 3.49 The rational map

ρ : A1(R) ��� A2(R),

x �→
(

x2 − 1

x2 + 1
,

1

x2 + 4

)
,

is defined on U = A1(R).
The rational map over the complex numbers defined by the same rule

ρ ′ : A1(C) ��� A2(C)

is defined on U ′ = A1(C) − {±i, ±2i}.

Example 3.49 shows that the behavior of rational maps under field extensions can

be subtle. Proposition 3.47 has content even when ρ is defined at each point of An(k),
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V W
(0, 0, 0, 0)

Figure 3.2 The rational map of Example 3.50.

i.e., when g has no zeros over k. The morphism An(k)g → An(k) is bijective but is not

an isomorphism unless g is constant. This reflects the possibility that g may acquire

zeros over an extension of k. We will be able to say more about this once we have the

Nullstellensatz at our disposal (see Proposition 8.40.)

Proposition 3.47 has one major drawback. The open set U ⊂ V and the variety Vg

are not intrinsic to the rational map ρ : V ��� W . Rather they depend on the choice

of extension

An(k) ��� Am(k),

as shown by the following example.

Example 3.50 Consider the varieties

V = {x1 = x2 = 0} ∪ {x3 = x4 = 0} ⊂ A4(k)

W = {x1 = x2 = x5 = 0} ∪ {x3 = x4 = x5 − 1 = 0} ⊂ A5(k)

with coordinate rings

k[V ] = k[x1, x2, x3, x4]/ 〈x1x3, x1x4, x2x3, x2x4〉
k[W ] = k[x1, x2, x3, x4, x5]/ 〈x1(x5 − 1), x2(x5 − 1), x3x5, x4x5〉.

The rational maps

ρ ′ : A4(k) ��� A5(k)

(x1, x2, x3, x4, x5) �→ (x1, x2, x3, x4, x1/(x1 + x3))

ρ ′′ : A4(k) ��� A5(k)

(x1, x2, x3, x4, x5) �→ (x1, x2, x3, x4, x2/(x2 + x4))

are admissible on V and induce the same rational map ρ : V ��� W . (Check this!)

However, the corresponding open sets U ′ = {v ∈ V : x1 + x3 �= 0} and U ′′ = {v ∈
V : x2 + x4 �= 0} differ, as do the affine varieties Vx1+x3

and Vx2+x4
.
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How then should we define the indeterminacy locus of a general rational map of

affine varieties ρ : V ��� W ? For each extension ρ ′ : An(k) ��� Am(k), we have an

open subset U ′ ⊂ V where the denominators of the coordinate functions of ρ do not

vanish. However, in some sense a map is well defined at all points v ∈ V for which

there exists some extension well defined at v .

Provisional Definition 3.51 (Indeterminacy locus) Let ρ : V ��� W be a rational

map of affine varieties. We define the indeterminacy locus as

Z = ∩ρ ′ (V \ U ′),

where the intersection is taken over all extensions

ρ ′ : An(k) ��� Am(k)

and U ′ is the open set where ρ ′ is well defined.

Our ultimate definition will have to wait until we define the indeterminacy ideal in

Chapter 8.

Example 3.52 In Example 3.50 the indeterminacy locus of ρ is the origin.

3.5.1

Localization

The proof of Proposition 3.47 and the definition of the ‘ring of fractions’ are both

instances of a very common algebraic construction:

Definition 3.53 Let R be a ring and S ⊂ R a multiplicative subset, i.e., for all

s1, s2 ∈ S the product s1s2 ∈ S. The localization R[S−1] is defined as equivalence

classes {r/s : r ∈ R, s ∈ S}, where we identify r1/s1 ≡ r2/s2 whenever there exists

a t ∈ S with t(r1s2 − r2s1) = 0. This is a ring under the operations of addition and

multiplication of fractions.

We leave it to the reader to verify that the operations are compatible with the equiva-

lence classes (see Exercise 3.19).

Example 3.54

� If R is a domain and S = R∗ then R[S−1] is the field of fractions of R.
� If R is a ring then the nonzero divisors form a multiplicative set S (Check this!) and

R[S−1] is the ring of fractions.
� If R = k[x1, . . . , xn] and S is the multiplicative set generated by g then R[S−1] =

k[x1, . . . , xn][1/g] is the coordinate ring of An(k)g , the variety introduced in the proof

of Proposition 3.47.
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3.6 Rational and unirational varieties

We introduce a more flexible notion of parametrization, generalizing the regular

parametrizations studied in Chapter 1.

Definition 3.55 Consider an affine variety W ⊂ Am(k). A rational parametriza-
tion of W is a rational map

ρ : An(k) ��� W

such that W is the closure of the image of ρ, i.e., if U ⊂ An(k) is the open subset

over which ρ is defined then ρ(U ) = W . W is unirational if it admits a rational

parametrization.

Here ρ is defined over k; to emphasize this, we’ll say that W is unirational over k.

Here are some examples beyond those introduced in Chapter 1.

Example 3.56

1. W = {(y1, y2) : y2
1 + y2

2 = 1} ⊂ A2(Q) is unirational with parametrization

ρ : A1(Q) ��� W

s �→
(

2s

s2 + 1
,

s2 − 1

s2 + 1

)
.

The image of ρ is W \ {(0, 1)}.
2. W = {(y1, y2, y3) : y2

1 + y2
2 + y2

3 = 1} ⊂ A3(Q) is unirational with parametrization

ρ : A2(Q) ��� W,

(s, t) �→
(

2s

s2 + t2 + 1
,

2t

s2 + t2 + 1
,

s2 + t2 − 1

s2 + t2 + 1

)
.

The image of ρ is W \ {(0, 0, 1)}.

These formulas come from stereographic projections of the unit sphere from the north

pole (the points (0, 1) and (0, 0, 1) respectively).

Proposition 3.57 Let W be a unirational affine variety with rational parametriza-
tion ρ : An(k) ��� W inducing

ρ∗ : k[W ] → k(An) = k(x1, . . . , xn).

Then ρ∗ is injective and induces a field extension

j : k(W ) ↪→ k(x1, . . . , xn).
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Conversely, if W is an affine variety admitting an injection of k-algebras

ψ : k[W ] ↪→ k(x1, . . . , xn)

then W is unirational.

We will put this on a systematic footing when we introduce dominant maps.

Proof Suppose that ρ∗ were not injective, so there exists f �= 0 ∈ k[W ] with

ρ∗ f = 0. Let U ⊂ An(k) denote the complement of the indeterminacy of ρ. We

therefore have

φ(U ) ⊂ {
w ∈ W : f (w) = 0

}
� W ;

the strict inclusion reflects the fact that f is not identically zero on W . It fol-

lows that φ(U ) �= W , a contradiction. The injection ρ∗ allows us to regard k[W ] ⊂
k(x1, . . . , xn); its ring of fractions k(W ) ⊂ k(x1, . . . , xn) as well.

Conversely, suppose we have an injection ψ as above. Corollary 3.46 yields a

rational map ρ : An(k) ��� W . If φ(U ) � W then there must exist some f �= 0 ∈
k[W ] vanishing on φ(U ), contradicting the assumption that ψ is injective. �

Example 3.58 Consider the curve

W = {
(y1, y2) : ym

1 = yn
2

} ⊂ A2(k)

where m, n ∈ N are relatively prime. Then W is unirational via

k[W ] ↪→ k(s)

(y1, y2) �→ (sn, sm).

There is a stronger notion which is also worth mentioning:

Definition 3.59 An affine variety W is rational if it admits a rational parametriza-

tion ρ : An(k) ��� W such that the induced field extension

j : k(W ) ↪→ k(x1, . . . , xn)

is an isomorphism.

We have the following algebraic characterization:

Corollary 3.60 An affine variety W is rational if and only if k(W ) � k(x1, . . . , xn)

as k-algebras.

Proof The isomorphism restricts to an injective homomorphism

k[W ] ↪→ k(x1, . . . , xn).
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Proposition 3.57 yields the rational parametrization ρ : An ��� W .

Example 3.61 Both instances of Example 3.56 are rational. For the first case, we

must check that j : Q(W ) ↪→ Q(s) is surjective. However, the fraction y1/(1 − y2)

goes to s. In the second case, j : Q(W ) ↪→ Q(s, t) is surjective because y1/(1 − y3)

goes to s and y2/(1 − y3) goes to t .
Example 3.58 is also rational: m and n are relatively prime so k(sm, sn) = k(s).

Here are some open problems in the field:

Problem 3.62 (Unirationality of small degree hypersurfaces) Let f ∈ C[y1, . . . , ym]

be an irreducible polynomial of degree d ≤ m, and V ( f ) ⊂ Am(C) the corresponding

hypersurface. Is V ( f ) unirational?

For general such hypersurfaces, there are no techniques for disproving unirationality.

However, unirationality has been established only when d = 2, m ≥ 2, d = 3, m ≥ 3

[26], or m � d [18] [34]. Indeed, m grows very rapidly as a function of d; for fixed

d ≥ 4, there are many values of m for which unirationality is an open problem.

On the other hand, general degree d hypersurfaces in Am(C) do not admit rational

parametrizations when d > m [25] §4. For instance, the hypersurface

{
(y1, y2, y3) : y4

1 + y4
2 + y4

3 = 1
}

lacks one.

Deciding whether hypersurfaces are rational is even more difficult: There are open

problems even for cubic hypersurfaces! Given f ∈ C[x1, . . . , x5] of degree 3, when

is V ( f ) ⊂ A5(C) rational? [20] It would be wonderful to have an explicit test that

would decide whether C(V ) � C(t1, . . . , td )!

3.7 Exercises

3.1 Prove Propositions 3.6 and 3.7.

3.2 (a) Let S ⊂ An(k). Show that

I (S) = k[x1, . . . , xn]

if and only if S = ∅.

(b) Let k be an infinite field. Show that

I (An(k)) = 〈0〉.

Hint: Use induction on n.

3.3 For each ideal I ⊂ k[x1, . . . , xn], show that

I (V (I )) ⊃ I.
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Give an example where equality does not hold.

3.4 Given a ring R and a collection of ideals {Iβ}β∈B of R, show that
∑

β∈B Iβ is an ideal.

Prove it is the smallest ideal containing ∪β∈B Iβ :

∑
β∈B

Iβ = 〈 f ∈ Iβ for some β ∈ B〉.

3.5 Let {Vβ}β∈B be a (possibly infinite) collection of affine varieties Vβ ⊂ An(k). Show

there exist a finite number of β1, . . . , βr ∈ B such that

∩β∈B Vβ = Vβ1
∩ Vβ2

∩ . . . Vβr .

3.6 (a) Show that every finite subset S ⊂ An(k) is a variety. Prove that dimk k[S] = |S|.
(b) Suppose that V ⊂ An(k) is an affine variety, with |V | = ∞. Show that dimk k[V ]

is not finite.

3.7 Compute the Zariski closures S ⊂ A2(Q) of the following subsets:

(a) S = {(n2, n3) : n ∈ N} ⊂ A2(Q);

(b) S = {(x, y) : x2 + y2 < 1} ⊂ A2(Q);

(c) S = {(x, y) : x + y ∈ Z} ⊂ A2(Q).

3.8 Let V1, V2 ⊂ An(k) be affine varieties. Show that

I (V1) + I (V2) ⊂ I (V1 ∩ V2).

Find an example where equality does not hold.

3.9 Consider the varieties V, W ⊂ A2(C)

V = {
(x1, x2) : x4

1 + x4
2 = 1

}
, W = {

(y1, y2) : y2
1 + y2

2 = 1
}
,

and the morphism

φ : A2(C) → A2(C)

(x1, x2) → (
x2

1 , x2
2

)
.

Show that φ(V ) ⊂ W .

3.10 (Diagonal morphism) Let V be an affine variety. The diagonal map is defined

	 : V → V × V
v �→ (v, v)

with image 	V := 	(V ) ⊂ V × V .

(a) Show that 	 is a morphism.

(b) Let V = An(k) and fix coordinates x1, . . . , xn and y1, . . . , yn on An(k) × An(k).

Show that

I (	An (k)) = 〈x1 − y1, x2 − y2, . . . , xn − yn〉.

(c) For general V , show that 	V is closed in V × V and hence an affine variety.
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(d) Show that 	 : V → 	V is an isomorphism. Hint: Use the projections π1, π2 :

V × V → V .

3.11 Consider the following lines in affine space A3(R):


1 = {x1 = x2 = 0}, 
2 = {x1 = x3 = 0}, 
3 = {x2 = x3 = 0}.

Compute generators for I (
1 ∪ 
2 ∪ 
3). Justify your answer.

3.12 Identify 2 × 3 matrices with entries in k

A =
(

a11 a12 a13

a21 a22 a23

)

with the affine space A6(k) with coordinates a11, a12, a13, a21, a22, a23. Show that the

matrices of rank 2 are open. Write explicit polynomials vanishing along the matrices

of rank ≤ 1.

3.13 Show there is a one-to-one correspondence between morphisms V → A1(k) and

functions f ∈ k[V ].

3.14 Show that every automorphism of the affine line A1(Q) takes the form

x → ax + b, a, b ∈ Q, a �= 0.

3.15 Let Y ⊂ A2(C) be the variety

{
(y1, y2) : y3

1 = y4
2

}
.

(a) Show there is a bijective morphism φ : A1(C) → Y. Hint: Try y1 = x4.

(b) Show that φ is not an isomorphism, i.e., φ does not have an inverse morphism.

3.16 Let W1, W2, and V be affine varieties. Given a morphism φ : V → W1 × W2, show

there exist unique morphisms φ1 : V → W1 and φ2 : V → W2 such that

φ1 = π1 ◦ φ, φ2 = π2 ◦ φ.

Conversely, given φ1 : V → W1 and φ2 : V → W2, show there exists a unique mor-

phism φ : V → W1 × W2 satisfying these identities.

3.17 Let R be a ring with ring of fractions K . Show that the rule

R → K
r �→ r/1

defines an injective homomorphism R ↪→ K .

3.18 Describe the rings of fractions of the following:

(a) R = Z/12Z;

(b) R = k[x1, x2]/ 〈x1x2〉.
3.19 Let R be a ring and S ⊂ R a multiplicative subset. Show that the operations of addition

and multiplication for the localization R[S−1] are well-defined on equivalence classes

of fractions.
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3.20 Prove Corollary 3.46.

3.21 Let R be a ring, g1, . . . , gm ∈ R, and g = g1g2 . . . gm . Let S and T be the multiplica-

tive sets generated by g and {g1, . . . , gm} respectively. For example, T = {ge1

1 . . . gem
m :

e1, . . . , em ≥ 0}. Show that the localizations R[S−1] and R[T −1] are isomorphic.

3.22 (General linear group) Identify An2

(k) with the space of n × n matrices A = (ai j ),

with coordinate ring

k[a11, . . . , a1n, a21, . . . , a2n, . . . , an1, . . . , ann].

(a) Show that matrix multiplication induces a morphism

μ : An2

(k) × An2

(k) → An2

(k)

(A, B) �→ AB.

(b) Show that there is a rational map

ι : An2

(k) ��� An2

(k)

A �→ A−1.

Hint: Use Cramer’s Rule.

(c) The affine variety An2

(k)det(A) constructed in Proposition 3.47 is called the general
linear group and denoted GLn(k). Show there are multiplication and inversion

morphisms

μ : GLn(k) × GLn(k) → GLn(k), ι : GLn(k) → GLn(k).

A variety G with multiplication and inversion operations

μ : G × G → G, ι : G → G

satisfying the axioms of a group is called an algebraic group.

3.23 Verify that ρ ′ and ρ ′′ in Example 3.50 are admissible along V and define the same

rational map V ��� W .

3.24 (a) Verify the images of the maps in Example 3.56.

(b) Given nonzero numbers r1, r2, r3, show that

(
y1

r1

)2

+
(

y2

r2

)2

+
(

y3

r3

)2

= 1

is unirational.

3.25 Show that

W = {(y1, y2, y3) : y1 y2 y3 = 1} ⊂ A3(Q)

is rational.



4 Elimination

Eliminate, eliminate, eliminate
Eliminate the eliminators of elimination theory

From Shreeram S. Abhyankar, Polynomials and Power Series [7, pp. 783]

Elimination theory is the systematic reduction of systems of polynomial equations in
many variables to systems in a subset of these variables. For example, when a system
of polynomials admits a finite number of solutions, we would like to express these as
the roots of a single polynomial in one of the original variables.

The language of affine varieties, morphisms, and rational maps allows us to un-
derstand elimination theory in more conceptual terms. Recall that one of our original
guiding problems concerned implicitization: describe equations for the image of a
morphism φ : An(k) → Am(k). In light of the theory we have developed, it makes
sense to recast this in a more general context:

Problem 4.1 (Generalized Implicitization Problem) Consider an affine variety V ⊂
An(k), with ideal I (V ), and a morphism φ : V → Am(k). Describe generators for the
ideal I (φ(V )) in terms of generators for I (V ).

A warning is in order: the image of a polynomial morphism is not necessarily closed,
so the best we can do is to find equations for the closure of the image. We will come
back to this point when we discuss projective elimination theory in Chapter 10.

In this chapter, we continue to assume that the base field is infinite.

4.1 Projections and graphs

We start with an example illustrating how images of morphisms can fail to be
closed:

57
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Example 4.2 Consider the variety V = {(x1, x2) : x1x2 = 1} and the morphism

φ : V → A1(k)
(x1, x2) �→ x1.

The image φ(V ) = {x1 : x1 �= 0}, which is not closed.

Here φ is induced by a projection morphism A2(k) → A1(k); projections play an
important role in elmination. Initially, we will focus on finding images of varieties
under projection:

Theorem 4.3 Let V ⊂ Am+n(k) be an affine variety with ideal J = I (V ).
Consider the projection morphism

π : Am+n(k) → Am(k)
(x1, . . . , xn, y1, . . . , ym) �→ (y1, . . . , ym).

Then we have

π (V ) = V (J ∩ k[y1, . . . , ym]).

Proof Given a polynomial f ∈ k[y1, . . . , ym], π∗ f is the polynomial regarded
as an element in k[x1, . . . , xn, y1, . . . , ym].

To establish the forward inclusion, it suffices to check that π (V ) ⊂ V (J ∩
k[y1, . . . , ym]). This is the case if each f ∈ J ∩ k[y1, . . . , ym] vanishes on π (V ).
For each p = (a1, . . . , am) ∈ π (V ), choose q = (b1, . . . , bn, a1, . . . , am) ∈ V with
π (q) = p. We have

f (p) = f (a1, . . . , am)
= π∗ f (b1, . . . , bn, a1, . . . , am)
= π∗ f (q) = 0

as f vanishes on V .
We prove the reverse inclusion

V (J ∩ k[y1, . . . , ym]) ⊂ π (V ).

Pick p = (a1, . . . , am) ∈ V (J ∩ k[y1, . . . , ym]) and f ∈ I (π (V )). Polynomials van-
ishing on π (V ) pull back to polynomials vanishing on V , i.e.,

π∗ I (π (V )) ⊂ I (V ) = J.

In particular, π∗ f ∈ J ∩ k[y1, . . . , ym] so that f (a1, . . . , am) = 0. �

The key in passing to general morphisms is the graph construction:

Definition 4.4 The graph �φ of a morphism φ : V → W is the locus of pairs

{(v, φ(v)) : v ∈ V } ⊂ V × W.
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There are projections

�φ
π1↙

π2↘
V W

(v, φ(v))
↙ ↘

v φ(v)

where π1 is invertible and π2(�φ) = φ(V ).
The graph of a morphism is itself an affine variety. We will prove a more precise

statement:

Proposition 4.5 Consider affine varieties V ⊂ An(k) and W ⊂ Am(k) and a
morphism φ : V → W . Then �φ is naturally an affine variety.

Precisely, choose a morphism φ̂ : An(k) → Am(k) extending φ with coordinate
functions φ1, . . . , φm ∈ k[x1, . . . , xn]. Then we have

I (�φ) = π∗
1 I (V ) + 〈y1 − φ1, . . . , ym − φm〉,

V (I (�φ)) = �φ,

where π1 : Am+n(k) → An(k) is the projection morphism.

Proof Here the projections are induced by:

(x1, . . . , xn, y1, . . . , ym)
↙ ↘

(x1, . . . , xn) (y1, . . . , ym)

The inclusions

�φ ⊂ V × W ⊂ An(k) × Am(k) = Am+n(k)

yield π∗
1 I (V ) ⊂ I (�φ). If v = (v1, . . . , vn) ∈ V then

φ(v) = (φ1(v1, . . . , vn), . . . , φm(v1, . . . , vn)),

so y j − φ j vanishes at (v, φ(v)). This proves that

I (�φ) ⊃ π∗
1 I (V ) + 〈y1 − φ1, . . . , ym − φm〉.

It remains to check that

I (�φ) ⊂ π∗
1 I (V ) + 〈y1 − φ1, . . . , ym − φm〉.

For each f ∈ k[x1, . . . , xn, y1, . . . ym], we have (see Exercise 2.12)

f ≡ f (x1, . . . , xn, φ1(x1, . . . , xn), . . . , φm(x1, . . . , xn))
(mod 〈y1 − φ1, . . . , ym − φm〉),
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i.e., each element is congruent modulo 〈y1 − φ1, . . . , ym − φm〉 to a polynomial in
x1, . . . , xn . However, if f ∈ k[x1, . . . , xn] vanishes along �φ then f ∈ I (V ).

Finally, suppose we are given (v, w) ∈ V (I (�φ)). We have π∗
1 I (V ) ⊂ I (�φ) so

that V (I (�φ)) ⊂ π−1
1 (V ), i.e., v ∈ V . The remaining equations

y j = φ j (x1, . . . , xn), j = 1, . . . , m

imply that w = φ(v), hence (v, w) ∈ �φ . �

Definition 4.6 A monomial order on k[x1, . . . , xn, y1, . . . , ym] is an elimination
order for x1, . . . , xn if each polynomial with leading monomial in k[y1, . . . , ym] is
actually contained in k[y1, . . . , ym], i.e.,

LM(g) ∈ k[y1, . . . , ym] ⇒ g ∈ k[y1, . . . , ym].

Example 4.7

1. Lexicographic order with xi > y j for each i, j is an elimination order for x1, . . . , xn .
However, this is usually relatively inefficient computationally (see Exercise 2.10).

2. Fix monomial orders >x and >y on x1, . . . , xn and y1, . . . , ym respectively. Then the
product order is defined as follows: We have xα yβ > xγ yδ if

{
xα >x xγ or

xα =x xγ and yβ >y yδ.

3. One fairly efficient elimination order is the product of graded reverse lexicographic
orders >x and >y .

Theorem 4.8 (Elimination Theorem) Let J ⊂ k[x1, . . . , xn, y1, . . . , ym] be an ideal
and > an elimination order for x1, . . . , xn. Let { f1, . . . , fr } be a Gröbner basis for J
with respect to >. Then J ∩ k[y1, . . . , ym] is generated by the elements of the Gröbner
basis contained in k[y1, . . . , ym], i.e.,

J ∩ k[y1, . . . , ym] = 〈 f j : f j ∈ k[y1, . . . , ym]〉 ⊂ k[y1, . . . , ym].

Proof It suffices to show that each element g ∈ J ∩ k[y1, . . . , ym] is generated
by the f j ∈ k[y1, . . . , ym]. Choose

g ∈ (J ∩ k[y1, . . . , ym]) \ 〈 f j : f j ∈ k[y1, . . . , ym]〉

with LM(g) minimal. Apply the division algorithm to g and let f j be a Gröbner basis
element with LM( f j )|LM(g). Hence LM( f j ) ∈ k[y1, . . . , ym] so the definition of the
elimination order implies f j ∈ k[y1, . . . , ym]. Thus

g̃ := g − f j LT(g)/LT( f j )
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is an element of (J ∩ k[y1, . . . , ym]) \ 〈 f j : f j ∈ k[y1, . . . , ym]〉 with LM(g̃) <

LM(g), a contradiction. �

Example 4.9 (Solvability of varying equations) For which values of a ∈ C is the
system

x + y = a,

x2 + y2 = a3,

x3 + y3 = a5

solvable? Let Z ⊂ A3(C) be the solution set and

π : A3(C) → A1(C)
(x, y, a) �→ a,

projection onto the coordinate a. We want to compute the image π (Z ).
We compute a Gröbner basis for the ideal

I = 〈x + y − a, x2 + y2 − a3, x3 + y3 − a5〉

with respect to lexicographic order:

x + y − a, 2y2 − a3 − 2ya + a2, 2a5 + a3 − 3a4.

Thus π (Z ) is given by the solutions to the last polynomial

a = 0, 1, 1
2 .

Here are some corresponding solutions:

(x, y, a) = (0, 0, 0), (0, 1, 1),

(
1

4
,

1

4
,

1

2

)
.

4.2 Images of rational maps

Consider a rational map

ρ : An(k) ��� Am(k)
(x1, . . . , xn) �→ ( f1/g1, . . . , fm/gm),

well-defined over the open set U = {g = g1 . . . gm �= 0}. Proposition 3.47 yields an
affine variety An(k)g and a morphism φ : An(k)g → W such that φ(An(k)g) = ρ(U ).
Recall that An(k)g ⊂ An+1(k) is given by

{(x1, . . . , xn, z) : zg(x1, . . . , xn) = 1}.
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We write down equations for the graph of φ in An+1(k) × Am(k). Since

f j/g j = g1 . . . g j−1 f j g j+1 . . . gm/g

we have

I (�φ) = 〈zg − 1, y j − g1 . . . g j−1 f j g j+1 . . . gm z, j = 1, . . . , m〉.

The equations for the image ρ(U ) are obtained by eliminating x1, . . . , xn, z, i.e., we
find generators for I (�φ) ∩ k[y1, . . . , ym].

Example 4.10 Compute the image of the rational map

A1(k) ��� A2(k)

x �→
(

x2 + 1

x2 − 1
, 1

x

)
.

The associated affine variety is

Y := A1(k)x(x2−1) = {(x, z) : z(x2 − 1)x − 1 = 0}

and the graph of φ : Y → A2(k) has equations

I (�φ) := 〈z(x2 − 1)x − 1, y1 − zx(x2 + 1), y2 − z(x2 − 1)〉.

Using lexicographic order, we get a Gröbner basis{
y2

2 − y1 + 1 + y2
2 y1, −y2 y1 + y2 + 2z, −1 + xy2, xy1 − x − y2 y1 − y2

}

and the first entry is the equation for the image ρ(A1(k)).

Computing the image of a rational map from a general affine variety looks trickier –
it is hard to describe the locus where the map is well-defined (cf. Example 3.50).
Luckily, a complete description of the indeterminacy is not necessary.

Proposition 4.11 Let ρ : V ��� W be a rational map of affine varieties V ⊂ An(k)
and W ⊂ Am(k). Let Z ⊂ V be the indeterminacy locus for ρ. Choose an extension

ρ ′ : An(k) ��� Am(k) ,

write g′ = g′
1 . . . g′

m, and let φ : Vg′ → W be the morphism given by Proposition 3.47.
Then we have

ρ(V \ Z ) = φ(Vg′ ).

Proof Recall the indeterminacy locus is the set of points in V where each ex-
tension ρ ′ fails to be well-defined

V \ Z = ∪extensions ρ ′ {v ∈ V : g′(v) �= 0}

where g′ is the denominator of ρ ′.
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It suffices to show that the closure of the image is independent of the choice of
extension. Given

ρ ′, ρ ′′ : An(k) ��� Am(k)

(x1, . . . , xn)
ρ ′
�→ ( f ′

1/g′
1, . . . , f ′

m/g′
m),

(x1, . . . , xn)
ρ ′′
�→ ( f ′′

1 /g′′
1 , . . . , f ′′

m/g′′
m)

with g′ = g′
1 . . . g′

m , g′′ = g′′
1 , . . . , g′′

m , and φ′ : Vg′ → W and φ′′ : Vg′′ → W the
morphisms coming from Proposition 3.47, we will show that

φ′(Vg′ ) = φ′′(Vg′′ ).

We can also consider φ : Vg′g′′ → W , by inverting the product g′g′′. Since

φ(Vg′g′′ ) ⊂ φ′(Vg′ ), φ′′(Vg′′ )

is suffices to show that

φ(Vg′g′′ ) = φ′(Vg′ ).

This is a special case of the following:

Lemma 4.12 Let ψ : Y → W be a morphism of varieties, h an element of k[Y ]
which does not divide zero, and U = {x ∈ Y : h(x) �= 0}. Then

ψ(U ) = ψ(Y ).

Proof of lemma If ψ(U ) � ψ(Y ) then there would exist an f ∈ k[W ] such that
ψ∗ f �= 0 but f (ψ(u)) = 0 for each u ∈ U . But then hψ∗ f = 0 ∈ k[Y ], contradicting
the assumption that h does not divide zero. �

Thus to compute the image of a rational map

ρ : V ��� W,

it suffices to compute the image of any morphism

φ : Vg → W

given by Proposition 3.47. The graph of φ has equations

I (�φ) = 〈y j − g1 . . . g j−1 f j g j+1 . . . gm z, zg − 1〉 + I (V )

and equations of the image are generators for I (�φ) ∩ k[y1, . . . , ym].
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Definition 4.13 Let ρ : V ��� W be a rational map well-defined outside the closed
subset Z ⊂ V . The graph of ρ is the locus

{(v, ρ(v))} ⊂ (V \ Z ) × W.

The graph of a rational map may not be an affine variety – this will be a crucial point
when we discuss abstract varieties.

Example 4.14 The graph of

ρ : A2(k) ��� A2(k)
(x1, x2) �→ (x1, x2/x1)

satisfies the equations

y1 − x1 = y2x1 − x2 = 0.

The corresponding variety contains the line

x1 = x2 = y1 = 0,

which lies over the indeterminacy of ρ.

Definition 4.15 Let ρ : V ��� W be a rational map with indeterminacy locus Z .
The closed graph of ρ is the closure

�ρ = {(v, ρ(v)) : v ∈ V \ Z} ⊂ V × W,

which is an affine variety.

Again, we have projections π1 : �ρ → V and π2 : �ρ → W .
Equations of �ρ can be obtained by computing the image of the rational map

(Id, ρ) : V ��� V × W
v �→ (v, ρ(v)).

.

Example 4.16 Consider the rational map

ρ : A1(k) ��� A2(k)
t �→ (t/(t + 1), t2/(t − 1))

and the induced map

(Id, ρ) : A1(k) ��� A1(k) × A2(k).
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The corresponding morphisms are

φ : A1(k)t2−1 → A2(k)
(t, z) �→ (t(t − 1)z, t2(t + 1)z)

(π, φ) : A1(k)t2−1 → A1(k) × A2(k)
(t, z) �→ (t, t(t − 1)z, t2(t + 1)z)

where z(t2 − 1) = 1. The equations of the graph are given by generators of

k[t, y1, y2] ∩ 〈y1 − t(t − 1)z, y2 − t2(t + 1)z, z(t2 − 1) − 1〉

which equals

〈 − 2y1 y2 + t − y1 + y2, 2y2
1 y2 + y2

1 − 3y1 y2 + y2
〉
.

4.3 Secant varieties, joins, and scrolls

In this section we describe some classical geometric constructions and how elimina-
tion techniques can be applied to write down their equations.

Consider the variety

�N = {(t1, . . . , tN ) : t1 + t2 + · · · + tN = 1} ⊂ AN (k).

For each finite set of points S = {p1, . . . , pN } ⊂ An(k), we have a morphism

σS : �N → An

(t1, . . . , tN ) �→ t1 p1 + · · · + tN pN ,

where we add the p j as vectors in kn . The image is called the affine span of S
in An(k) and denoted affspan(S). We leave it to the reader to verify this is closed
(cf. Exercise 4.9.)

Example 4.17 Given distinct points p1, p2 ∈ A2(R), affspan(p1, p2) is the
unique line joining them. Given distinct noncollinear points p1, p2, p3 ∈ A3(R),
affspan(p1, p2, p3) is the unique plane containing them.

Proposition 4.18 The set S = {p1, . . . , pN } imposes independent conditions on
polynomials of degree ≤ 1 if and only if σS is injective. We say that S is in linear
general position.

Proof σS is not injective if there are distinct (t1, . . . , tN ), (t ′
1, . . . , t ′

N ) ∈ �N with

t1 p1 + · · · + tN pN = t ′
1 p1 + · · · + t ′

N pN .
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Reordering indices, if necessary, we can assume t1 �= t ′
1; we can write

p1 = t ′
2 − t2

t1 − t ′
1

p2 + · · · + t ′
N − tN

t1 − t ′
1

pN ,

i.e., p1 ∈ affspan({p2, . . . , pN }). It follows that every linear polynomial vanishing at
p2, . . . , pN also vanishes at p1 (see Exercise 4.9) so S fails to impose independent
conditions on polynomials of degree ≤ 1.

Conversely, suppose S fails to impose independent conditions on polynomials of
degree ≤ 1. After reordering, we find

I1(p2, . . . , pN ) = I1(p1, p2, . . . , pN ),

which implies (see Exercise 4.9)

p1 ∈ affspan(p2, . . . , pN ).

We can therefore write p1 = t2 p2 + · · · + tN pN with t2 + · · · + tN = 1. In particular,

σS(1, 0, . . . , 0) = σS(0, t2, . . . , tN )

so σS is not injective. �

Definition 4.19 Given a variety V ⊂ An(k) and points p1, . . . , pN ∈ V in linear
general position, affspan(p1, . . . , pN ) is called an N-secant subspace to V .

Examples include 2-secant lines and 3-secant planes.
All the N -secants are contained in the image of the morphism

σN : V × . . . × V︸ ︷︷ ︸
N times

×�N → An

(v1, . . . , vN , (t1, . . . , tN )) �→ t1v1 + · · · + tN vN .

The closure of the image is the N-secant variety of V

SecN (V ) = σN (V × . . . × V × �N ).

Example 4.20 (Secants of twisted cubic curves) Consider the curve V ⊂ A3(k)
satisfying the equations

〈
x3 − x1x2, x2 − x2

1

〉
.

Show that Sec2(V ) = A3(k).
We compute the image of V × V × �2 under σ2. Let {z1, z2, z3} designate the

coordinates on the first V and {w1, w2, w3} the coordinates on the second V . The
homomorphism σ ∗

N is induced by

xi �→ t1zi + t2wi , i = 1, 2, 3.
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The defining ideal of the graph is

J = 〈
z3 − z1z2, z2 − z2

1, w3 − w1w2, w2 − w2
1, t1 + t2 − 1,

xi − (t1zi + t2wi ), i = 1, 2, 3
〉
.

Take a Gröbner basis with respect to the product of graded reverse lexicographic
orders on {t1, t2, w1, w2, w3, z1, z2, z3} and {x1, x2, x3}. This has more terms than can
be produced here, but none of them involve just x1, x2, x3. It follows that

J ∩ k[x1, x2, x3] = 0

and Sec2(V ) = A3(k).
The computation is a bit easier if we use the parametrization A1(k) → V given in

Example 1.5: x1 = t, x2 = t2, x3 = t3. Then we get a morphism

A1 × A1 × �2 → A3

(s, u, (t1, t2)) �→ (t1s + t2u, t1s2 + t2u2, t1s3 + t2u3)

with graph defined by

I = 〈x1 − (t1s + t2u), x2 − (t1s2 + t2u2), x3 − (t1s3 + t2u3), t1 + t2 − 1〉.
The Gröbner basis with respect to the product of graded reverse lexicographic orders
on {t1, t2, s, u} and {x1, x2, x3} has no terms involving x1, x2, x3.

Our analysis of the twisted cubic curve suggests the following variation:

Definition 4.21 Let V be an affine variety and

φ(1), . . . , φ(N ) : V → An

morphisms to affine space. The scroll

Scroll(V ; φ(1), . . . , φ(N )) ⊂ An

is defined as the closure of the image of

V × �N → An

(v, (t1, . . . , tN )) �→ t1φ(1)(v) + · · · + tN φ(N )(v).

Example 4.22 Let V = A1 with coordinate s and consider morphisms

φ(1) : A1 → A3

s → (s, 0, 0),
φ(2) : A1 → A3

s → (1, 1, s).

Equations for Scroll(V ; φ(1), φ(2)) are given by computing the intersection

k[x1, x2, x3] ∩ 〈x1 − (t1s + t2), x2 − t2, x3 − t2s, t1 + t2 − 1〉.
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f (2)(V)f (1)(V )

Figure 4.1 Scroll over two curves.

Compute a Gröbner basis using the product of graded reverse lexicographic orders
on {t1, t2, s} and {x1, x2, x3}:

〈−x3 + x1x2 − x2
2 + x2x3, s − x1 + x2 − x3, −x2 + t2, x2 + t1 − 1

〉
.

The equation is

−x3 + x1x2 − x2
2 + x2x3 = 0.

Definition 4.23 Let V (1), . . . , V (N ) ⊂ An be affine varieties. The join
Join(V (1), . . . , V (N )) ⊂ An is defined as the closure of the image of

V (1) × V (2) . . . × V (N ) × �N → An

(v(1), . . . , v(N ), (t1, . . . , tN )) �→ t1v(1) + · · · + tN v(N ).

Let V ⊂ An be affine and p ∈ An . The cone over V with vertex p is defined

Cone(V, p) = Join(V, p).

4.4 Exercises

4.1 The cardioid is defined as the curve C ⊂ R2 with parametric representation

x(θ ) = cos θ + 1
2 cos 2θ, y(θ ) = sin θ + 1

2 sin 2θ, 0 ≤ θ < 2π.

Show that C can be defined by a polynomial equation p(x, y) = 0. Hint: Introduce
auxiliary variables u and v satisfying u2 + v2 = 1. Express x and y as polynomials
in u and v; eliminate u and v to get the desired equation in x and y.

4.2 Consider the image of the circle

V = {
(x1, x2) : x2

1 + x2
2 = 1

} ⊂ R2
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V

p

Figure 4.2 Cone over a curve V with vertex p.

under the map φ : V → A2(R) given by

(x1, x2) →
(

x1

1 + x2
2

,
x1x2

1 + x2
2

)
.

Compute the equation(s) of the image. Bonus: Produce a nice graph of the real points
of the lemniscate.

4.3 Consider the morphism

φ : A1(C) → A2(C)
x → (x2, x3).

Write equations for the graph of φ and compute the image of φ using elimination
theory. Advice: Throw out superfluous generators from the ideal as you go along.

4.4 Suppose that x, y ∈ C and satisfy the relation

3
√

x + √
y = 1,

where we allow each of the possible roots of x and y. Show that x and y satisfy the
polynomial relation

x2 − 2x − 6xy − y3 + 3y2 − 3y + 1 = 0.
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Using a computer algebra system, extract the polynomial relation correponding to

3
√

x + √
y = √

x + y.

Hint: For the second problem, introduce auxilliary variables s, t and u with s3 =
x, t2 = y, and u2 = x + y.

4.5 Prove the Descartes Circle Theorem: Given four mutually tangent circles
C1, . . . , C4 ⊂ R2 with radii r1, r2, r3, r4. Take ri to be negative if the other three
circles are in the interior of Ci and positive otherwise. Show that

2
(
r−2

1 + r−2
2 + r−2

3 + r−2
4

) = (
r−1

1 + r−1
2 + r−1

3 + r−1
4

)2
.

Hint: If (xi , yi ) is the center of the i th circle, the relevant equations are

(xi − x j )
2 + (yi − y j )

2 = (ri + r j )
2.

4.6 Consider cubic polynomials

p(x) = x3 + ax2 + bx + c

over C; we regard these as an affine space with coordinates (a, b, c). We say that p
has a double (resp. triple) root if there exists an α ∈ C such that

(x − α)2|p(x) (resp. (x − α)3|p(x)).

(a) Find equations in a, b, c for the locus of cubic polynomials with a triple root.
Hint: We must have a = −3α, b = 3α2, c = −α3.

(b) Find equations in a, b, c for the locus of cubic polynomials with a double root.
(c) Show that x3 + x2 + x + 1 has no multiple roots.

4.7 Consider the ideal

I = 〈x1 + x2 + x3 − a, x1 + 2x2 + 4x3 − b, x1 − x2 + x3 − c〉
and the corresponding variety

V (I ) ⊂ A6(C).

Consider the projection morphism

π : V (I ) → A3

(x1, x2, x3, a, b, c) �→ (a, b, c).

Determine the image of π .
4.8 Write down equations for the image and the graph of the rational maps

(a)
A4(Q) ��� A6(Q)

(x1, x2, x3, x4) �→
(

1

x1x2
,

1

x1x3
,

1

x1x4
,

1

x2x3
,

1

x2x4
,

1

x3x4

)
.

(b)
ρ : A2(k) ��� A3(k)

(x1, x2) �→
(

1

x1 + 1
,

1

x1 + x2
,

x2

x2
2 + 1

)
.
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4.9 For S = {p1, . . . , pN } ⊂ An(k), show that
(a) I1(affspan(S)) = I1(S), i.e., the polynomials of degree ≤ 1 vanishing on

affspan(S) equal the polynomials of degree ≤ 1 vanishing on S;
(b) affspan(S) = V (I1(S)).
Conclude affspan(S) is an affine-linear subspace (and hence a closed subset) of An(k).

4.10 Let N ≤ n + 1 and consider the subset

U : = {(p1, . . . , pN ) : p1, . . . , pN in linear general position}
⊂ An(k) × . . . × An(k)︸ ︷︷ ︸

N times

� AnN (k).

Show that U is open and nonempty. Hint: Write each pi = (ai1, . . . , ain) consider
the N × (n + 1) matrix

A =

⎛
⎜⎜⎜⎝

a11 a12 . . . a1n 1
a21 a22 . . . a2n 1

...
...

...
...

...
aN1 aN2 . . . aNn 1

⎞
⎟⎟⎟⎠.

Argue that p1, . . . , pN are in linear general position if and only if some N × N minor
of A has nonvanishing determinant.

4.11 Let V ⊂ A4(k) denote the image of

A1(k) → A4(k)
t �→ (t, t2, t3, t4).

(a) Extract equations for V by computing

〈
x1 − t, x2 − t2, x3 − t3, x4 − t4〉 ∩ k[x1, x2, x3, x4].

(b) Show that V = V̄ .
(c) Show that Sec2(V ) satisfies the equation

−x2x4 + x3
2 − 2x1x2x3 + x2

1 x4 + x2
3 = 0.

4.12 (a) Consider morphisms φ(i) : A2 → A6, i = 1, 2, 3

φ1(s1, s2) = (s1, 0, 0, s2, 0, 0),
φ2(s1, s2) = (0, s1, 0, 0, s2, 0),
φ3(s1, s2) = (0, 0, s1, 0, 0, s2).

Show that Scroll(A2; φ(1), φ(2), φ(3)) is given by the 2 × 2 minors of the matrix

(
x1 x2 x3

x4 x5 x6

)
.
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(b) Consider morphisms �(i) : A3 → A6, i = 1, 2 given by

�(1)(r1, r2, r3) = (r1, 0, r2, 0, r3, 0),
�(2)(r1, r2, r3) = (0, r1, 0, r2, 0, r3).

Compute equations for Scroll(A3; �(1), �(2)).
4.13 Consider morphisms

φ(1) : A1 → A3

s → (s, 0, 0),
φ(2) : A1 → A3

s → (1, s, s2).

Compute an equation for Scroll(A1; φ(1), φ(2).
4.14 Let �(1), �(2) ⊂ A3(R) be disjoint non-parallel lines. Show that Join(�(1), �(2)) =

A3(R).
4.15 Let p = (0, 0, 0) and

V = V
(
x3 − 1, x2

1 + x2
2 + x2

3 − 2
)
.

Write down an equation for Cone(V, p).



5 Resultants

In this chapter, we develop criteria for deciding whether systems of equations have

solutions. These take the form of polynomials in the coefficients of the equations that

vanish whenever they can be solved. The prototype is the determinant of a system

of linear equations: let A = (ai j ) be an N × N matrix with entries in a field k. The

system Ax = b can be solved for each b ∈ k N if and only if det(A) �= 0, in which

case we can put x = A−1b. However, in general our methods will not give an explicit

formula for the solution.

For higher-degree equations, we allow solutions in some extension of k. Finding

solutions in a given field like k = Q or Fp is really a problem of number theory rather

than algebraic geometry.

Most of the algebraic techniques in this chapter apply over an arbitrary field.

However, the geometric interpretations via elimination theory are valid only when k
is infinite.

5.1 Common roots of univariate polynomials

We translate the search for common solutions to a problem in linear algebra, albeit

over an infinite-dimensional space:

Proposition 5.1 Consider polynomials

f = am xm + am−1xm−1 + · · · + a0, g = bn xn + bn−1xn−1 + · · · + b0 ∈ k[x]

of degrees m and n, i.e., with am, bn �= 0. The following conditions are equivalent:

� f and g have a common solution over some extension of k;
� f and g share a common nonconstant factor h ∈ k[x];
� there are no polynomials A, B ∈ k[x] with A f + Bg = 1;
� 〈 f, g〉 � k[x].

Proof We prove the first two are equivalent. Suppose f and g have a common

solution α ∈ L , where L/k is a field extension. Let k[α] ⊂ L denote the k-algebra

73
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generated by α. It is a quotient

q : k[x] � k[α]

x �→ α

with kernel generated by a polynomial h (see Theorem A.9). Since f (α) = g(α) = 0,

f, g ∈ 〈h(x)〉 and h is nonzero and divides f and g. But if h were constant then q
would be zero, which is impossible.

Conversely, suppose that f and g share a common factor h ∈ k[x]. We may assume

h is irreducible, so that k[x]/〈h〉 is a field. Since f and g are in the kernel of the quotient

homomorphism

k[x] → k[x]/〈h〉,

f and g both have roots over that field.

We prove the equivalence of the second and third conditions. If h| f, g then h|(A f +
Bg) for any A, B, whence A f + Bg �= 1. Conversely, assume A f + Bg �= 1 for each

A, B ∈ k[x]. Since k[x] is a principal ideal domain (PID; see §A.5) we can write

〈 f, g〉 := 〈h〉 � k[x]

and h is a divisor of f and g.

The last two conditions are equivalent because 〈 f, g〉 = k[x] if and only 1 ∈ 〈 f, g〉.
�

Example 5.2 Consider the case m = n = 1, i.e.,

f = a1x + a0, g = b1x + b0,

where a1, b1 �= 0. These have common roots if and only if a1b0 − a0b1 = 0.

Example 5.3 (Geometric approach) Consider the variety V ⊂ A5(k) given as

V = {(x, a0, a1, b0, b1) : a0 + a1x = b0 + b1x = 0}

and the projection

π : V → A4(k)

(x, a0, a1, b0, b1) �→ (a0, a1, b0, b1).

The image π (V ) corresponds to the f and g that have common roots, as in Exam-

ple 5.2. Note that the closure

π (V ) =
{

(a0, a1, b0, b1) : det

(
a1 a0

b1 b0

)
= 0

}
.

We shall pursue this further in Section 5.3.
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Definition 5.4 The resultant of polynomials of positive degrees

f = am xm + am−1xm−1 + · · · + a0,

g = bn xn + bn−1xn−1 + · · · + b0 ∈ k[x], am, bn �= 0,

is defined as the (m + n) × (m + n) determinant

Res( f, g) = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

am am−1 · · · a0 0 0 · · · 0

0 am am−1 · · · a0 0 · · · 0

0 0
. . .

. . . · · · ...
... 0

0 0 · · · 0 am am−1 · · · a0

bn bn−1 · · · b0 0 0 · · · 0

0 bn bn−1 · · · b0 0 · · · 0

0 0
. . .

. . . · · · ...
... 0

0 0 · · · 0 bn bn−1 · · · b0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The first n rows involve the ai s and the last m rows involve the b j ’s.

This is sometimes called the Sylvester resultant, in honor of James Joseph Sylvester

(1814–1897).

Theorem 5.5 Two nonconstant polynomials f, g ∈ k[x] have a common factor if
and only if Res( f, g) = 0.

Proof Our first task is to explain the determinantal form of the resultant. For each

d ≥ 0, let P1,d denote the polynomials in k[x] of degree ≤ d. Recall (see Exercise 1.4)

that dim P1,d = d + 1 with distinguished basis {1, x, . . . , xd}. When d < 0 we define

P1,d = 0. Consider the linear transformation

δ0(d) : P1,d−m ⊕ P1,d−n → P1,d

(A, B) �→ A f + Bg.

We have

image(δ0(d)) = P1,d ∩ 〈 f, g〉

so the following are equivalent:

� δ0(d) is surjective for some d ≥ 0;
� 1 ∈ image(δ0(d)) for some d;
� 〈 f, g〉 = k[x].

We compute a matrix for δ0(d). Since

dim P1,d−m ⊕ P1,d−n = 2d − m − n + 2
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this is a (d + 1) × (2d − m − n + 2) matrix. Write

A = rd−m xd−m + · · · + r0, B = sd−n xd−n + · · · + s0

so that

A f + Bg =
d∑

j=0

xd− j

[ ∑
i1+i2=d− j

ri1
ai2

+ si1
bi2

]
.

We can represent

δ0(d)(A, B) = (rd−m, · · · , r0, sd−n, · · · , s0) ·
m+1 columns︷ ︸︸ ︷ d−m columns︷ ︸︸ ︷⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

am · · · a0 0 0 0 · · · 0

0 am · · · a0 0 0 · · · 0

0 0
. . .

. . . · · · ...
... 0

0 0 · · · 0 0 am · · · a0

bn · · · · · · b0 0 0 · · · 0

0 bn · · · · · · b0 0 · · · 0

0 0
. . .

. . . · · · ...
... 0

0 0 · · · 0 bn · · · · · · b0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xd

xd−1

...

...

...

...

x
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

︸ ︷︷ ︸
d−n columns

︸ ︷︷ ︸
n+1 columns

The linear transformation δ0(d) is represented by a square matrix precisely when

d = m + n − 1, in which case

det(δ0(m + n − 1)) = Res( f, g). (5.1)

The next ingredient is a precise form of Proposition 5.1:

Lemma 5.6 Consider nonconstant polynomials

f = am xm + am−1xm−1 + · · · + a0, g = bn xn + bn−1xn−1 + · · · + b0 ∈ k[x]

with am, bn �= 0. The following conditions are equivalent:

� there exist polynomials A, B ∈ k[x] with A f + Bg = 1;
� there exist polynomials A, B ∈ k[x], with deg(A) ≤ n − 1 and deg(B) ≤ m − 1, such

that A f + Bg = 1;
� for each polynomial p ∈ k[x] of degree d, there exist C, D ∈ k[x] with deg(C) ≤

max(d − m, n − 1) and deg(D) ≤ max(d − n, m − 1), such that C f + Dg = p.

The argument is quite similar to the proof of Theorem 2.34; we study possible

cancellations in the expressions C f + Dg.
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Proof of lemma It is clear that the third condition implies the second, and the

second implies the first. We prove the first implies the third.

Suppose there exist A, B ∈ k[x] with A f + Bg = 1. Since (p A) f + (pB)g =
p there exist polynomials C, D ∈ k[x] with C f + Dg = p. Choose these such

that

M := max(deg(C) + m, deg(D) + n)

is minimal. We claim that M ≤ max(d, m + n − 1). Assume on the contrary that

M > d and M ≥ m + n. The leading terms of C f and Dg are therefore of degree

> d and necessarily cancel

LT(C)LT( f ) + LT(D)LT(g) = 0.

This cancellation implies that deg(C) + m = deg(D) + n = M ; since M ≥ m + n it

follows that deg(C) ≥ n and deg(D) ≥ m.

We define polynomials

C ′ = C − (LT(C)/LT(g))g, D′ = D − (LT(D)/LT( f )) f ∈ k[x]

so that deg(C ′) < deg(C), deg(D′) < deg(D), and

C ′ f + D′g = C f + Dg − ( f g)(LT(C)/LT(g) + LT(D)/LT( f )) = C f + Dg = p.

Since

M ′ := max(deg(C ′) + m, deg(D′) + n) < M

we have a contradiction. �

We rephrase this in terms of the linear transformation δ0(d). The following are

equivalent:

� 1 ∈ image(δ0(d)) for some d;
� 1 ∈ image(δ0(m + n − 1));
� δ0(d) is surjective for each d ≥ m + n − 1.

We complete the proof of Theorem 5.5: by Proposition 5.1, f and g have a common

factor if and only if there exist no A, B ∈ k[x] with A f + Bg = 1. It follows that 1 �∈
image(δ0(m + n − 1)), δ0(m + n − 1) is not surjective, and det(δ0(m + n − 1)) = 0;

Equation 5.1 implies Res( f, g) = 0. Conversely, if Res( f, g) = 0 then δ0(m + n − 1)

is not surjective, and the previous lemma implies that

1 �∈ image(δ0(d)) = 〈 f, g〉 ∩ P1,d

for any d . In particular, there exist no A, B ∈ k[x] with A f + Bg = 1. �
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5.1.1

Application

to discrimi-

nants

Recall that α is a root of f = am xm + am−1xm−1 + · · · + a0 if and only if (x − α)| f ;

it is a multiple root if (x − α)2| f . A polynomial f has a multiple root if and only if

f and its derivative

f ′ = mam xm−1 + (m − 1)am−1xm−2 + · · · + 2a2x + a1

have a common root. Indeed, if f = (x − α)eg where g(α) �= 0 then

f ′ = e(x − α)e−1g + (x − α)eg′.

If e ≥ 2 then f ′(α) = 0; if e = 1 then f ′(α) �= 0.

Therefore, a polynomial f has multiple roots only if Res( f, f ′) = 0. For example,

in the case m = 2 we have

Res( f, f ′) = det

⎛
⎝ a2 a1 a0

2a2 a1 0

0 2a2 a1

⎞
⎠

= a2(−a2
1 + 4a0a2).

In general, the leading term am occurs in each nonzero entry of the first column of

the matrix computing Res( f, f ′), so we have

Res( f, f ′) = (−1)m(m−1)/2amdisc( f ),

where disc( f ) is a polynomial in a0, · · · , am called the discriminant of f .

Remark 5.7 There is disagreement as to the sign of the discriminant: some books

omit the power of (−1).

5.1.2

Resultants

for homoge-

neous

polynomials

In our definition of resultants, we required that the polynomials have non-vanishing

leading terms. There is an alternate approach which does not require any assumptions

on the coefficients.

Consider homogeneous forms in two variables

F = am xm
0 + · · · + a0xm

1 , G = bn xn
0 + · · · + b0xn

1 ∈ k[x0, x1]

of degrees m and n. We define Res(F, G) using the formula of Definition 5.4. We can

reformulate Theorem 5.5 as follows:

Theorem 5.8 Let F, G ∈ k[x0, x1] be nonconstant homogeneous forms. Then
Res(F, G) = 0 if and only if F and G have a common nonconstant homogeneous
factor.

In particular, F and G have a nontrivial common zero over some extension of k. Here

the trivial zero is (0, 0).
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Proof Write f (x) = F(x, 1) and g(x) = G(x, 1); these are called the dehomog-
enizations of F and G with respect to x1.

Suppose that F and G have a common factor H . If H is divisible by x1 then am =
bn = 0 and the first column of the matrix defining Res(F, G) is zero, so the resultant

vanishes. If x1 does not divide H , then h(x) = H (x, 1) is nonconstant and divides

f (x) and g(x), so Res( f, g) = 0 by Theorem 5.5. Of course, Res(F, G) vanishes as

well.

Now suppose Res(F, G) = 0. If am = bn = 0 then x1 divides both F and G and

we are done. If am �= 0 and bn �= 0 then

Res( f, g) = Res(F, G),

so f and g have a common factor h = cd xd + · · · + c0, cd �= 0. The homogeneous

polynomial

H = cd xd
0 + cd−1xd−1

0 x1 + · · · + c0xd
1

divides F and G. (This is called the homogenization of h.)

We therefore focus on the case where just one of the leading coefficients is zero,

e.g., am = 0 but bn �= 0. Then we can express

F(x0, x1) = x1 E(x0, x1), E(x0, x1) = am−1xm−1
0 + am−2xm−2

0 x1 + · · · + a0xm−1
1 .

Compute Res(F, G) using expansion-by-minors along the first column. The only

nonzero entry in that column is bn (in the (n + 1)th row) and the corresponding minor

is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

am−1 · · · a0 0 0 · · · 0

0 am−1 · · · a0 0 · · · 0

0
. . .

. . . · · · ...
... 0

0 · · · 0 0 am−1 · · · a0

bn bn−1 · · · b0 0 · · · 0

0
. . .

. . . · · · ...
... 0

0 · · · 0 bn bn−1 · · · b0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

which is the matrix for Res(E, G). We therefore have

Res(F, G) = (−1)nbnRes(E, G),

which implies Res(E, G) = 0. If am−1 �= 0 then we stop; otherwise, we iterate until

we obtain

F(x0, x1) = xe
1 Ee(x0, x1), Ee(x0, x1) = am−exm−e

0 + · · · + a0xm−e
1

with am−e �= 0 and Res(Ee, G) = 0. Then the previous argument applies, and we find

a common factor H dividing Ee and G. �
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5.2 The resultant as a function of the roots

We continue our discussion of the resultant of two polynomials

f = am xm + · · · + a0, g = bn xn + · · · + b0

by finding an expression for Res( f, g) in terms of the roots of f and g. Pass to

a finite extension of k over which we have factorizations (see Theorem A.17 and

Exercise A.14)

f = am

m∏
i=1

(x − αi ), g = bn

n∏
j=1

(x − β j ).

The coefficients can be expressed in terms of the roots

am−k = (−1)kam

∑
i1<...<ik

αi1
. . . αik ,

bn−k = (−1)kbn

∑
j1<...< jk

β j1 . . . β jk .

These yield a k-algebra homomorphism

ψ : k[a0, . . . , am, b0, . . . , bn] → k[am, bn, α1, . . . , αm, β1, . . . , βn]

and a morphism

φ : Am+n+2 → Am+n+2

with φ∗ = ψ . Write R = ψ(Res( f, g)), i.e., the resultant written as a function of the

roots.

Example 5.9 When m = 1 and n = 2 we have

f = a1(x − α1), g = b2(x − β1)(x − β2)

so that

R = det

⎛
⎝ a1 −a1α1 0

0 a1 −a1α1

b2 −b2(β1 + β2) b2β1β2

⎞
⎠

= a2
1b2(β1 − α1)(β2 − α1).

Proposition 5.10 R is divisible by

S := an
mbm

n

∏
i=1,...,m
j=1,...,n

(αi − β j ).
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Proof The determinant definining R has n rows divisible by am and m rows

divisible by bn , so R is divisible by an
mbm

n . If some root αi of f equals some root β j

of g then R is zero. This implies that αi − β j divides R as well.

The polynomial ring k[am, bn, α1, . . . , αm, β1, . . . , βn] is a unique factorization

domain (UFD; see Theorem A.14), so each element has a unique expression as a

product of irreducible elements. Since am, bn , and the αi − β j are irreducible and

distinct, the product S is part of the factorization for R. �

Proposition 5.11 The polynomials S and R coincide up to a constant factor.

Proof The homomorphism ψ admits factorizations

k[a0, . . . , am, b0, . . . , bn]
σ (α)→ k[am, α1, . . . , αm, b0, . . . , bn]

σ (β) ↓ ↓ τ (β)

k[a0, . . . , am, bn, β1, . . . , βn]
τ (α)→ k[am, bn, α1, . . . , βn].

All these homomorphisms are injective (see Exercise 5.5). We write Ra =
σ (β)(Res( f, g)) and Rb = σ (α)(Res( f, g)).

We express the polynomial S in two different ways:

S = [am

m∏
i=1

(β1 − αi )] . . . [am

m∏
i=1

(βn − αi )](−1)mnbm
n

= τ (α)
(
bm

n (−1)mn f (β1) . . . f (βn)
)

:= τ (α)(Sa)

S = an
m

[
bn

n∏
j=1

(α1 − β j )

]
. . .

[
bn

n∏
j=1

(αm − β j )

]

= τ (β)
(
an

m g(α1) . . . g(αm)
)

:= τ (β)(Sb)

The first representation shows that Sa is homogeneous of degree n in the a0, . . . , am .

However, Ra is also homogeneous of degree n in a0, . . . , am ; we find

R = p(bn, β1, . . . , βn)S.

The second representation shows that Sb is homogeneous of degree m in the b j . Since

Rb is also of degree m in the b j , we conclude p is constant. �

Proposition 5.12 Res( f, g) is irreducible.

Proof Suppose we can write the resultant as a product of nonconstant poly-

nomials

Res( f, g) = P1 P2, P1, P2 ∈ k[a0, . . . , am, b0, . . . bn].
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Up to multiplying by a constant, we have

ψ(P1)ψ(P2) = an
mbm

n

∏
i, j

(αi − β j ).

The coefficients ai and b j are symmetric in the roots α1, . . . , αm and β1, . . . , βn

respectively. Thus both ψ(P1) and ψ(P2) are symmetric in both the αi and the β j . In

particular, if just one αi − β j divides ψ(P1), the entire product

∏
i=1,··· ,m, j=1,··· ,n

(αi − β j )

also does. (We are using the fact that polynomial rings are UFDs.) It follows that

Res( f, g)
∣∣a p

mbq
n P1

for suitable p, q .

However, am and bn do not divide Res( f, g). Indeed, if am |Res( f, g) then the

resultant would vanish whenever am = 0, but when

am = . . . = a1 = bn−1 = . . . = b0 = 0, a0 = bn = 1

it can be evaluated directly via row operations

Res( f, g) = ±1.

We conclude then that Res( f, g)|P1. �

5.3 Resultants and elimination theory

Consider the variety V ⊂ Am+n+3(k) given as

V = {(x, a0, . . . , am, b0, . . . , bn) : a0 + a1x + · · · + am xm = b0 + b1x + · · · + bn xn = 0}
and the projection

π : V → Am+n+2(k)

(x, a0, . . . , am, b0, . . . , bn) �→ (a0, . . . , am, b0, . . . , bn).

Our goal is to describe the closure π (V ) using elimination techniques (e.g. Theo-

rem 4.3):

Theorem 5.13 If I = 〈 f, g〉 ⊂ k[x, a0, . . . , am, b0, . . . , bn] is the ideal generated
by

f = am xm + am−1xm−1 + · · · + a0, g = bn xn + bn−1xn−1 + · · · + b0

then

I ∩ k[a0, . . . , am, b0, . . . , bn] = 〈Res( f, g)〉.
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Remark 5.14 In principle, one could prove the theorem directly with Gröbner

bases by eliminating the variable x . For instance, in the case m = 2, n = 3 the resultant

is the last term of the Gröbner basis below.

〈
b3x3 + b2x2 + b1x + b0, a2x2 + a1x + a0,

x2b3a1 + xb3a0 − a2b1x − a2b0 + b2a1x + b2a0,

− a1b0 + x2b3a0 − xa2b0 + xb2a0 + b1a0,

b3a2
1 x + b3a1a0 − a2xb3a0 + a2

2b1x + a2
2b0 − a2b2a1x − a2b2a0,

− a2b1a0 + xb3a1a0 + xa2
2b0 − xa2b2a0 + b3a2

0 + a1a2b0,

− a2b0a0 − xa2b1a0 + xb3a2
0 + b2a2

0 + a2
1b0 + a2b0a1x − a1b1a0,

b3a2
0a2b0 + b3a2

0 xa2b1 − b2
3a3

0 x − b3a3
0b2 − 2b3a0a2

1b0

+ 2b3a2
0a1b1 − b0b3a3

1 x − a1a2
2b2

0 + 2a1b0a2b2a0 − a1a2b2
1a0

+ b1xb3a2
1a0 + b1a2

1a2b0 − a1b2xb3a2
0 − a1b2

2a2
0 − b2a3

1b0 + b2a2
1b1a0,

− b0b3a2
1 x − b0b3a1a0 + b0a2xb3a0 − a2

2b2
0

+ 2b0a2b2a0 − a2b2
1a0 + b1xb3a1a0 + b1b3a2

0

+ b1a1a2b0 − b2xb3a2
0 − b2

2a2
0 − b2a2

1b0 + b2a1b1a0,

− 2a1b2
0a2b2a0 − b1a0a2

2b2
0 + b2

1a2
0b2a1 − b3a2

0a2b2
0 + 2b3a0a2

1b2
0 + b2

0b3a3
1 x

− b1a2
1a2b2

0 + b0b2
3a3

0 x + b0b3a3
0b2 + b0a1b2

2a2
0 + b0a1b2xb3a2

0

+ 2b1a2
0b0a2b2 + b2

1a2
0 xb3a1 + 2b2

1a0a1a2b0 − b1a3
0b2xb3 − 2b1a0b2a2

1b0

− 2b1a0b0b3a2
1 x− b3

1a2
0a2+ b2

1a3
0b3− b1a3

0b2
2+ a1a2

2b3
0+ b2a3

1b2
0 − 3b3a2

0b1a1b0,

− 2b3a2
0a2b1 + b2

3a3
0 + 3a2b0a1b3a0 + a3

2b2
0 − 2b0a2

2b2a0 + a2
2b2

1a0

− b1a1a2
2b0+ a2b2

2a2
0 + a2b2a2

1b0− a2b2a1b1a0− a1b2b3a2
0 − b0b3a3

1 + b1b3a2
1a0

〉

Proof of Theorem 5.13 We first establish

Res( f, g) ∈ I ∩ k[a0, . . . , am, b0, . . . , bn].

This is an application of Cramer’s Rule: Let M be an N × N matrix with entries

taken from a ring R. The classical adjoint ad(M) is the matrix with entries

ad(M)i, j = (−1)i+ j det(M j,i ),

where M j,i is the (N − 1) × (N − 1) minor obtained by removing the j th row and

i th column. For example, when N = 2

M =
(

m11 m12

m21 m22

)
, ad(M) =

(
m22 −m12

−m21 m11

)
.

There is a universal identity

Mad(M) = ad(M)M = det(M)Id.

In particular, for any v ∈ RN we can write

det(M)v = M · ad(M)v ∈ image(M).
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When det(M) is invertible, we obtain the formula

M−1 = ad(M)/ det(M),

which is Cramer’s Rule from linear algebra.

Apply Cramer’s Rule to the matrix for δ0(m + n − 1) to obtain

Res( f, g)1 = δ0(m + n − 1) · ad(δ0(m + n − 1))1 ∈ 〈 f, g〉.

Since Res( f, g) is a polynomial in the ai and b j , the proof of the first part is complete.

We prove the reverse inclusion of Thereom 5.13:

I ∩ k[a0, . . . , am, b0, . . . , bn] ⊂ 〈Res( f, g)〉.

Again given P ∈ I ∩ k[a0, . . . , bn], after substituting the roots αi and β j we obtain

a polynomial ψ(P) vanishing whenever some αi = β j . Thus

∏
i=1,...,m, j=1,...,n

(αi − β j )|ψ(P)

so Res( f, g)|a p
mbq

n P for some p, q . Since am and bn do not divide the resultant, we

conclude that Res( f, g)|P . �

Remark 5.15 The trick here – replacing a polynomial by its factorization – is an

example of faithfully flat base change or passing to a faithfully flat neighborhood.

Intuitively, the roots of a polynomial can be expressed locally as a function of the

coefficients. For example, when m = 2 and k = C we can write

α1 =
− a1 +

√
a2

1 − 4a0a2

2a2

, α2 =
− a1 −

√
a2

1 − 4a0a2

2a2

;

this is only valid in a neighborhood of [ f ] ∈ A3(C) \ {a2 �= 0}, as there is no consistent

way to choose the sign of the square root over the entire complex plane.

Writing the roots as explicit functions of the coefficients is tricky in general,

even with the help of complex analysis. Algebraic geometers formally introduce new

variables to represent the roots. This approach works well over more general base

fields.

5.4 Remarks on higher-dimensional resultants

Suppose that F1, F2, F3 ∈ k[x0, x1, x2] are homogeneous polynomials of degrees

m1, m2, m3. When do the equations

F1 = F2 = F3 = 0

admit nontrivial common solutions over some extension of k?
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In light of our analysis in the univariate case, it is natural to consider the linear

transformation

δ0(d) : Sd−m1
⊕ Sd−m2

⊕ Sd−m3
→ Sd

(A1, A2, A3) �→ A1 F1 + A2 F2 + A3 F3

where Sd is the vector space of homogeneous polynomials of degree d in x0, x1, x2

and (cf. Exercise 1.4)

dim Sd =
(

d + 2

d

)
= (d + 2)(d + 1)

2
.

Naively, one might expect image(δ0(d)) to have dimension

(
d − m1 + 2

2

)
+

(
d − m2 + 2

2

)
+

(
d − m3 + 2

2

)
.

However, this does not take into account syzygies among F1, F2, F3, which corre-

spond to elements in ker δ0(d) for various values of d. For example, we have the

following obvious syzygies

(F2, −F1, 0), (0, F3, −F2), (F3, 0, −F1).

Therefore, defining

δ1(d) : Sd−m1−m2
⊕ Sd−m2−m3

⊕ Sd−m3−m1
→ Sd−m1

⊕ Sd−m2
⊕ Sd−m3

(A12, A23, A31) �→ (A12 F2 + A31 F3, −A12 F1 + A23 F3, −A23 F2 − A31 F1)

we have

image(δ1(d)) ⊂ ker(δ0(d)).

Less naively, one might expect image(δ0(d)) to have dimension

(
d − m1 + 2

2

)
+

(
d − m2 + 2

2

)
+

(
d − m3 + 2

2

)

−
(

d − m1 − m2 + 2

2

)
−

(
d − m2 − m3 + 2

2

)
−

(
d − m3 − m1 + 2

2

)
.

There are still syzygies among the syzygies! We have

δ2(d) : Sd−m1−m2−m3
→ Sd−m1−m2

⊕ Sd−m2−m3
⊕ Sd−m3−m1

(A123) �→ (A123 F1, A123 F2, A123 F3)

so that

image(δ2(d)) ⊂ ker(δ1(d)).

These force ker(δ1(d)) �= 0 when d ≥ m1 + m2 + m3.
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Remark 5.16 In the discussion above we are essentially defining the Koszul
complex associated to F1, F2, F3:

0 −→ Sd−m1−m2−m3

δ2(d)−→ Sd−m1−m2
⊕ Sd−m2−m3

⊕ Sd−m3−m1

δ1(d)−→ Sd−m1
⊕ Sd−m2

⊕ Sd−m3

δ0(d)−→ Sd .

This is one place where cohomological methods have profoundly influenced algebraic

geometry. For more information, see [9, ch. 17] (cf. [12, p. 52]).

We expect the image of δ0(d) should have dimension


(d, m1, m2, m3)

:=
(

d − m1 + 2

2

)
+

(
d − m2 + 2

2

)
+

(
d − m3 + 2

2

)

−
(

d − m1 − m2 + 2

2

)
−

(
d − m2 − m3 + 2

2

)
−

(
d − m3 − m1 + 2

2

)

+
(

d − m1 − m2 − m3 + 2

2

)
.

We shall see more expressions like this in Chapter 12, when we discuss Hilbert

polynomials and the Bezout Theorem. Observe that the identity

(
m1 + m2 + m3

2

)
=

(
m2 + m3

2

)
+

(
m1 + m3

2

)
+

(
m1 + m2

2

)

−
(

m3

2

)
−

(
m1

2

)
−

(
m2

2

) (5.2)

implies


(m1 + m2 + m3 − 2, m1, m2, m3) = dim Sm1+m2+m3−2.

We therefore focus on the case d = m1 + m2 + m3 − 2, where δ2(d) = 0.

Our generalized resultant should define the locus where δ0(m1 + m2 + m3 − 2)

fails to have ‘expected’ rank. There is a generalization of the determinant, the deter-
minant of a complex, which can be applied in this context. This approach, pioneered

by Arthur Cayley (1821–1895) [6] (see also [28] or [12, ch. 14]), yields a resultant

which can be expressed as a quotient of determinants of large matrices.

There has been quite a bit of recent work on finding simple determinantal formulas

for resultants of multivariate polynomials (see [23], for example.)

Bibliographic note: Our discussion is inspired by early editions of van der Waer-

den’s Moderne Algebra [39]. However, the fourth German edition of Volume II ex-

punges elimination theory, which gives context for the quote by Abhyankar in the

previous chapter.
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5.5 Exercises

5.1 Consider the polynomials f = x2 + 3x + 1 and g = x2 − 4x + 1. Compute the re-

sultant Res( f, g). Do the polynomials have a common zero over C? Also compute

Res( f g2, f 2g).

5.2 Compute the discriminant of the polynomial

f (x) = x4 + px + q, p, q ∈ k.

5.3 Consider the polynomial

x2 + 2xy2 + y + 1

as a polynomial in x with coefficients in C[y]. Compute the discriminant of x . How

do you interpret its roots?

5.4 Consider polynomials

f = am xm + am−1xm−1 + · · · + a0, g = bn xn + bn−1xn−1 + · · · + b0

with am �= 0 and bn �= 0. Suppose that the (m + n) × (m + n) matrix defining

Res( f, g) has rank m + n − 1. Show that f and g share a common linear factor,

but not a common quadratic factor.

5.5 Let L be a field and consider the L-algebra homomorphism

σ (α) : L[a0, . . . , am] → L[am, α1, . . . , αm]

am−k �→ (−1)kam
∑

i1<···<ik
αi1

· · · αik

for k = 1, · · · , m.

(a) Show this is injective. Hint: Apply the method of Exercise 2.12.

(b) Deduce the same conclusion when L is a domain.

5.6 Show that the polynomial

am xm + am−1xm−1 + · · · + a0 ∈ k[x, a0, · · · , am]

is irreducible. Hint: Introduce its roots as formal variables.

5.7 Consider a matrix

T =
(

t00 t01

t10 t11

)

acting on homogeneous forms of degree d in x0, x1:

T ∗ : Sd → Sd

F(x0, x1) �→ F(x0t00 + x1t10, x0t01 + x1t11).

Show that T ∗ is linear (cf. Exercise 1.11) and compute its determinant in terms of

det(T ).
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5.8 Consider homogeneous polynomials

F(x0, x1) = am xm
0 + · · · + a0xm

1 , G(x0, x1) = bn xn
0 + · · · + b0xn

1 ∈ k[x0, x1].

(a) Set

F̂(x0, x1) = F(x1, x0), Ĝ(x0, x1) = G(x1, x0)

and show that

Res(F̂, Ĝ) = (−1)ε(m,n)Res(F, G),

ε(m, n) = m(m − 1) + n(n − 1) + (m + n)(m + n − 1)
2

.

(b) Given t ∈ k, set

Ft (x0, x1) = F(x0 + t x1, x1), Gt (x0, x1) = G(x0 + t x1, x1)

and show that

Res(Ft , Gt ) = Res(F, G).

Hint: Exercise 5.7 might be useful. If the general case is tricky, work out (m, n) =
(1, 1), (1, 2), and (2, 2).

5.9 Verify the combinatorial identity (5.2).

5.10 Consider the polynomials

f = x2 + a10x + a01 y + a00,

g = xy + b10x + b01 y + b00,

h = y2 + c10x + c01 y + c00

over a field k. Find a nonzero polynomial

R ∈ k[a10, a01, a00, b10, b01, b00, c10, c01, c00]

such that R = 0 whenever f = g = h = 0 has a common solution over some exten-

sion of k. Hint: Use a computer algebra system to analyze

〈 f, g, h〉 ∩ k[a10, a01, a00, b10, b01, b00, c10, c01, c00].



6 Irreducible varieties

Factorization is ubiquitous in algebra and number theory. We decompose integers as

products of prime numbers and polynomials into irreducible factors. Special tech-

niques are available for analyzing the resulting irreducible objects. Here we shall

develop geometric notions of irreducibility applicable in algebraic geometry. We can

decompose arbitrary varieties into irreducible components, which are generally much

easier to understand. Surprisingly, these notions are more robust than traditional al-

gebraic factorization techniques, which are most effective for special classes of rings.

In Chapter 8 we will return to the topic of algebraic factorization, with a view to

translating the techniques developed here into algebraic terms.

Recall that the polynomial ring k[x1, . . . , xn] is a unique factorization domain (see

Theorem A.14): each nonconstant f ∈ k[x1, . . . , xn] can be written as a product of

irreducible polynomials

f = f1 f2 · · · fR .

This representation is unique, up to permuting the factors or rescaling them by con-

stants. The factors need not be distinct, i.e., two of them might be proportional.

However, we can choose distinct factors f j1 , . . . , f jr so that

f = c f e1

j1
. . . f er

jr
,

where c ∈ k∗ and ei is the number of times f ji appears in the factorization.

We recast this in geometric terms. The hypersurface

V ( f ) = {(a1, . . . , an) : f (a1, . . . , an) = 0}

can be expressed as a union

V ( f ) = V ( f j1 ) ∪ · · · ∪ V ( f jr ).

Indeed, f vanishes if and only if one of its factors f j vanishes. Of course, V (c f j ) =
V ( f j ) and V (c) = ∅ when c ∈ k∗.

89
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In this chapter, we put such decompositions into a general framework. Again, we

assume the base field k is infinite (cf. Remark 6.3).

6.1 Existence of the decomposition

Definition 6.1 A variety V is reducible if we can write it as a union of closed

proper subsets

V = V1 ∪ V2, V1, V2 � V .

It is irreducible if there is no such representation.

If V is irreducible and V = ∪r
i=1Vi , a union of closed subsets, then V = Vi for some i .

Example 6.2

1. The affine variety V = {(x, y) : xy(x − y)(x + y) = 0} ⊂ A2(Q) is reducible

V = {x = 0} ∪ {y = 0} ∪ {x = y} ∪ {x = −y}.
2. Any finite set {p1, . . . , pn}, n > 1, is reducible; it is a union of singleton sets.

Remark 6.3 When k is finite our definition is problematic: any subset of An(k) is

the union of its points!

Theorem 6.4 Let V ⊂ An(k) be a variety. Then we can write

V = V1 ∪ V2 ∪ · · · ∪ Vr

as a finite union of irreducible closed subsets. This representation is unique up to
permutation provided it is irredundant, i.e., Vi �⊂ Vj for any i �= j .

The Vj are called the irreducible components of V .

Proof (Existence) We consider the process of decomposing a variety into a union

of closed proper subsets:

V = W1 ∪ W ′
1, W1, W ′

1 � V .

Since V is not irreducible, such a decomposition is possible. Either W1 and W ′
1 are

irreducible or, after reordering, we can write

W1 = W2 ∪ W ′
2, W2, W ′

2 � W1.

There are two possibilities. Either this process terminates with an expression of V as

a union of irreducibles, or there is an infinite descending sequence of closed subsets

V � W1 � W2 · · ·
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and an infinite ascending sequence of ideals

I (V ) � I (W1) � I (W2) · · · .

However, such a sequence violates the ‘ascending chain condition’ for ideals, derived

from the Hilbert Basis Theorem (see Proposition 2.24).

(Uniqueness) Suppose we have two representations

V = V1 ∪ · · · ∪ Vr V = V ′
1 ∪ · · · ∪ V ′

s

with Vi �⊂ Vj and V ′
i �⊂ V ′

j for any distinct i, j . We have

Vj = Vj ∩ V = ∪s
i=1(Vj ∩ V ′

i )

so that Vj = Vj ∩ V ′
i for some i , i.e., Vj ⊂ V ′

i . Similarly, V ′
i ⊂ Vm for some m. The

irredundancy assumption implies that j = m, so we have Vj ⊂ V ′
i ⊂ Vj , and the two

sets are equal. �

6.2 Irreducibility and domains

We translate the geometric condition of irreducibility into algebraic terms. Unfortu-

nately, the algebraic notion of irreducible elements is not adequate for this purpose; see

Exercise 6.2 for instances where irreducible elements give rise to reducible varieties.

Theorem 6.5 Let V ⊂ An(k) be a variety. The following are equivalent:

1. V is irreducible;
2. the coordinate ring k[V ] is a domain;
3. I (V ) is prime.

Proof The equivalence of the last two conditions follows from Proposition A.7.

We prove 1 ⇔ 2: Let f 1, f 2 �= 0 ∈ k[V ] with f 1 f 2 = 0. Consider the closed

subsets

Vi = {v ∈ V : f i (v) = 0}.

We have Vi � V because f i �= 0, and

V1 ∪ V2 = {v ∈ V : f 1 f 2(v) = 0} = V .

Thus V is reducible.

Conversely, if V is reducible we can write

V = V1 ∪ V2, V1, V2 � .V

Thus I (Vi ) � I (V ), and we can take fi ∈ I (Vi ) \ I (V ). The product f1 f2 is zero on

V1 ∪ V2 = V and is thus in I (V ). The resulting elements f i ∈ k[V ] are divisors of

zero. �
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Definition 6.6 Let V be an irreducible variety, so that k[V ] is a domain. The field

k(V ) is called the function field of V .

Our geometric notion of irreducibility is nevertheless related to irreducible poly-

nomials:

Proposition 6.7 A nonzero principal ideal 〈 f 〉 � k[x1, · · · , xn] is prime if and
only if f is irreducible.

Corollary 6.8 Consider a nontrivial hypersurface V ⊂ An(k), i.e., a variety with
I (V ) = 〈 f 〉 with f ∈ k[x1, · · · , xn] nonconstant. Then V is irreducible if and only
if f is irreducible.

Proof Theorem A.14 implies k[x1, · · · , xn] is a unique factorization domain.

Thus every irreducible element f generates a prime ideal by Proposition A.11.

Suppose that f �= 0 is reducible and is not a unit. We can write f = f1 f2, where

f1 and f2 are neither zero nor units. We claim f1 and f2 are not contained in

〈 f 〉, hence 〈 f 〉 is not prime. Indeed, suppose the contrary, e.g., f1 = g f for some

g ∈ k[x1, · · · , xn]. Then f = f1 f2 = g f f2, which implies 1 = g f2, contradicting the

assumption that f2 is not a unit. �

Example 6.9 Let f ∈ k[x1, · · · , xn] be an irreducible polynomial. We have not
shown that V ( f ) is irreducible. Indeed, consider the irreducible polynomial

f = x2(x − 1)2 + y2 + z2 ∈ Q[x, y, z].

Then V ( f ) = {(0, 0, 0), (1, 0, 0)}, which is reducible as a variety!

Over an algebraically closed field, V ( f ) is irreducible if and only if f is irreducible.

We will deduce this from the Nullstellensatz in Theorem 7.23.

6.3 Dominant morphisms

We develop tools for proving certain varieties are irreducible.

Definition 6.10 A morphism of affine varieties φ : V → W is dominant if φ(V ) =
W , i.e., W is the smallest affine variety containing the image of V .

Proposition 6.11 A morphism of affine varieties φ : V → W is dominant if and
only if φ∗ : k[W ] → k[V ] is injective.

Proof Recall that φ(V ) is contained in a subvariety Z ⊂ W if and only if

φ∗(IZ ) ⊂ IV . If φ(V ) is contained in a proper subvariety Z ⊂ W then there exists a
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nonzero f ∈ IZ ⊂ k[W ] vanishing on the imageφ(V ). In particular,φ∗ f = 0 ∈ k[V ].

Conversely, suppose that φ∗ f = 0 for some f �= 0 ∈ k[W ]. Then we have

φ(V ) ⊂ W ∩ {w ∈ W : f (w) = 0} � W. �

Example 6.12

1. Any surjective morphism is dominant.

2. Consider the projection morphism

πi : V := {(x1, x2) : x1x2 = 1} → A1(k)

(x1, x2) �→ xi .

The image consists of the subset A1(k) \ {0}, which is not contained in a proper closed

subset of A1(k).

Keeping Corollary 3.46 in mind, Proposition 6.11 suggests the following extension:

Definition 6.13 A rational map ρ : V ��� W is dominant if the induced homo-

morphism ρ∗ : k[W ] → k(V ) is injective.

This is compatible with our original definition: If ρ is a morphism then ρ∗ factors

k[W ] → k[V ] ↪→ k(V ).

Proposition 6.14 Let V be an irreducible variety and ρ : V ��� W a dominant
map. Then W is also irreducible.

Proof Since V is irreducible, k[V ] has no divisors of zero. However, the domi-

nance assumption implies that

ρ∗ : k[W ] → k(V )

has trivial kernel. In particular, any zero divisors in k[W ] would yield zero divisors

of function field k(V ), a contradiction. �

Finally, we have the following extension of Proposition 3.57:

Proposition 6.15 Let ρ : V ��� W be a dominant map of irreducible varieties.
Then ρ∗ : k[W ] → k(V ) induces a k-algebra homomorphism k(W ) ↪→ k(V ). Con-
versely, given a homomorphism of k-algebras

ψ : k(W ) → k(V )

there exists a dominant rational map defined over k, ρ : V ��� W , with ρ∗ inducing ψ .
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Proof By definition, ρ∗ : k[W ] → k(V ) is an injection. Since k(V ) is a field, ρ∗

extends to a field extension k(W ) ↪→ k(V ).

The homomorphism ψ restricts to an injective homomorphism k[W ] → k(V ).

Corollary 3.46 yields a rational map V ��� W , which is dominant by definition. �

Definition 6.16 Let V and W be affine varieties defined over k. We say that V
and W are birational over k if k(V ) and k(W ) are isomorphic as k-algebras.

Example 6.17 An affine variety W is rational if and only if it is birational to An(k)

(see Corollary 3.60).

Proposition 6.15 implies that two irreducible varieties V and W are birational if

and only if there are rational maps

ρ : V ��� W, ξ : W ��� V

which are inverse to each other (see Exercise 6.9 for discussion of compositions of

rational maps). A rational map that induces an isomorphism of function fields is called

a birational map .

6.4 Algorithms for intersections of ideals

Consider the decomposition of a variety into irreducible components

V = V1 ∪ V2 ∪ · · · ∪ Vr .

Given equations for V , it is fairly difficult to compute equations for each of the

irreducible components. We will discuss methods for doing this when we discuss

primary decomposition. For the moment, we will focus on the reverse problem:

Problem 6.18 Let V1 and V2 be affine varieties in An(k), with ideals I (V1) and

I (V2). How do we compute I (V1 ∪ V2)?

This boils down to computing the intersection of the ideals I (V1) and I (V2). Indeed,

Proposition 3.7 implies

I (V1 ∪ V2) = I (V1) ∩ I (V2).

We shall require the following general result:

Proposition 6.19 Let I, J ⊂ R be ideals in a ring, and consider the ideal

t I + (1 − t)J := 〈t〉 I + 〈1 − t〉 J ⊂ R[t],

generated by elements t f and (1 − t)g where f ∈ I and g ∈ J . Then we have

(t I + (1 − t)J ) ∩ R = I ∩ J.
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Proof The inclusion (⊃) is straightforward: for any h ∈ I ∩ J , we can write

h = th + (1 − t)h ∈ t I + (1 − t)J.

For the reverse inclusion (⊂), suppose we are given an element h ∈ t I + (1 − t)J ∩
R, which may be expressed

h =
∑

i

t fi ri +
∑

j

(1 − t)g j s j , fi ∈ I, g j ∈ J, ri , s j ∈ R[t].

The left-hand side is constant as a polynomial in t . Setting t = 0 we obtain

h = 0 +
∑

j

s j |t=0g j ∈ J

and setting t = 1 we obtain

h =
∑

i

ri |t=1 fi + 0 ∈ I.

This proves h ∈ I ∩ J . �

This result reduces the computation of intersections to an elimination problem:

Algorithm 6.20 (Computing intersections) Given ideals

I = 〈 f1, . . . , fr 〉 , J = 〈g1, . . . , gs〉 ⊂ k[x1, . . . , xn]

the intersection I ∩ J is obtained as follows: Compute a Gröbner basis h1, . . . , hq

for

t I + (1 − t)J = 〈t f1, . . . , t fr , (1 − t)g1, . . . , (1 − t)gs〉 ⊂ k[x1, . . . , xn, t]

using an elimination order for t . The basis elements h j ∈ k[x1, . . . , xn] generate
I ∩ J .

Example 6.21 Compute equations for {(0, 1), (1, 0)}.
We set I = 〈x1, x2 − 1〉 and J = 〈x1 − 1, x2〉, so that

t I + (1 − t)J = 〈t x1, t(x2 − 1), (1 − t)(x1 − 1), (1 − t)x2〉.

With respect to lexicographic order, we have Gröbner basis

〈
t − x2, x1 + x2 − 1, x2

2 − x2

〉

so we recover the equations x1 + x2 = 1 and x2
2 = x2.

The algorithm computing the intersection of two ideals has a geometric interpre-

tation. Given varieties V, W ⊂ An(k) with ideals I and J , the ideal t I corresponds to

(V × A1(k)) ∪ (An(k) × {0}) ⊂ An(k) × A1(k) = An+1(k),
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while (1 − t)J corresponds to

(W × A1(k)) ∪ (An(k) × {1}) ⊂ An(k) × A1(k) = An+1(k).

Adding ideals corresponds to intersecting varieties, so t I + (1 − t)J defines the

variety

[(V ∩ W ) × A1(k)] ∪ [V × {1}] ∪ [W × {0}].

The image under projection to An(k) is the union V ∪ W .

6.5 Domains and field extensions

Extending the base field can affect whether a quotient ring is a domain. Let f ∈ k[t]
be irreducible; recall that

k ↪→ k[t]/ 〈 f (t)〉

is a field extension (see Section A.6). However, if L/k is a field extension over which

we have a factorization

f = g1g2, g1, g2 ∈ L[t],

then L[t]/ 〈 f (t)〉 has zero divisors.

On the other hand, extending the base field will not cause a reducible variety to

become irreducible:

Proposition 6.22 Let f1, . . . , fr ∈ k[x1, . . . , xn] and L/k a field extension. If
L[x1, . . . , xn]/ 〈 f1, . . . , fr 〉 is a domain then k[x1, . . . , xn]/ 〈 f1, . . . , fr 〉 is also a
domain.

Proof The key ingredient is the following fact:

Lemma 6.23 The induced ring homomorphism

η : k[x1, . . . , xn]/ 〈 f1, . . . , fr 〉 → L[x1, . . . , xn]/ 〈 f1, . . . , fr 〉

is injective.

Assuming this, the proposition is straightforward: suppose we have g, h ∈
k[x1, . . . , xn] with

gh ≡ 0 mod 〈 f1, . . . , fr 〉.

The fact that L[x1, . . . , xn]/ 〈 f1, . . . , fr 〉 is a domain implies η(g) or η(h) is zero.

Since η has trivial kernel, either g or h is zero.
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We prove the lemma: choose a monomial order on k[x1, . . . , xn], which automat-

ically induces an order on L[x1, . . . , xn]. We claim that

LT 〈 f1, . . . , fr 〉k = LT 〈 f1, . . . , fr 〉L ;

the subscripts designate the coefficient fields in each case. The lemma fol-

lows by analyzing normal forms: let 	 := {xα} denote the monomials not ap-

pearing in LT 〈 f1, . . . , fr 〉. Every element of k[x1, . . . , xn]/ 〈 f1, . . . , fr 〉k has a

unique expression as a k-linear combination of monomials from 	; elements of

L[x1, . . . , xn]/ 〈 f1, . . . , fr 〉L have unique expressions as L-linear combinations of

the same monomials. An element of k[x1, . . . , xn] is zero in the first quotient if and

only if it is zero in the second quotient.

We establish the claim: the inclusion ⊂ is evident, so we focus on the reverse

inclusion ⊃. Suppose xα is the leading term of

h1 f1 + · · · + hr fr , h1, . . . , hr ∈ L[x1, . . . , xn];

choose d such that h1, . . . , hr all have degree ≤ d.

We assert that there exist g1, . . . , gr ∈ Pn,d (polynomials in k[x1, . . . , xn] of degree

≤ d) with

LT(g1 f1 + · · · + gr fr ) = xα.

This is just linear algebra. Let m = max{deg( f j )} j=1,... ,r and consider the linear

transformation

� : Pr
n,d → Pn,d+m

(g1, . . . , gr ) �→ g1 f1 + · · · + gr fr .

We want an element

p =
∑

β

cβ xβ ∈ image(�)

with cα = 1 and cβ = 0 for each β > α. Note that each cβ is linear as a function of

the coefficients of g1, . . . , gr , which we interpret as free variables. Finding p boils

down to solving over k a system of linear equations with coefficients in k. However,

we already know that this system of equations has a solution over L , i.e., (h1, . . . , hr ).

Our claim then is a consequence of the following result, left as an exercise:

Lemma 6.24 Let L/k be a field extension, A an M × N matrix with entries in k,
and b ∈ kM a column vector. Consider the system of linear equations

At = b, t =

⎛
⎜⎝

t1
...

tN

⎞
⎟⎠,
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and assume there is a solution with t1, . . . , tN ∈ L. Then there is a solution with
t1, . . . , tN ∈ k.

Remark 6.25 Lemma 6.24 reflects the fact that L is flat as a module over k. We

will not discuss flatness systematically here, but [29, pp. 49] describes how flatness

can be expressed in terms of systems of linear equations.

6.6 Exercises

6.1 Is the intersection of two irreducible varieties irreducible? Give a proof or counterex-

ample.

6.2 Irreducible elements can give rise to reducible varieties:

(a) Show that

V = {(x, y, z) : xy − z2 = 0 ⊂ A3(R)}

is irreducible. Hint: It’s the image of a morphism

A2(R) → A3(R)

(s, t) �→ (s2, t2, st).

(b) Show that z ∈ R[V ] is irreducible as an element in R[V ].

(c) Show that {z = 0} ⊂ V is reducible.

6.3 Let S ⊂ An(k) be a finite set. Show that the affine span affspan(S) is irreducible.

6.4 Suppose that V ⊂ An(k) is irreducible. Show that V × Am(k) is irreducible.

6.5 Consider a matrix with entries in k

A =
(

a11 a12

a21 a22

)

with det(A) = a11a22 − a12a21 �= 0. Show that

ρ : A1(k) ��� A1(k)

t �→ a11t + a12

a21t + a22

is dominant.

6.6 Consider the ideal I ⊂ C[x1, . . . , x6] generated by two-by-two minors of

(
x1 x2 x3

x4 x5 x6

)
.

Show that I is prime. Hint: Use Proposition 6.14 and Exercise 4.12.

6.7 Let V ⊂ An(k) be irreducible and choose nonzero p1, . . . , pr ∈ k[V ]. Consider

W = {(v, y1, . . . , yr ) : p1 y1 = p2 y2 = · · · = pr yr = 1} ⊂ V × Ar (k),
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where y1, . . . , yr are coordinates of Ar (k). Prove that W is irreducible and birational

to V .

6.8 Show that the composition of two dominant morphisms is itself a dominant morphism.

6.9 Let V, W, X denote irreducible varieties and

V
ρ��� W

ξ��� X

dominant rational maps. Show that there is a rational map V ��� X which equals the

composition ξ ◦ ρ over a suitable nonempty open subset U ⊂ V .

6.10 Consider the affine varieties

V1 = {(x, y) : y2 = x3} ⊂ A2(Q)

and

V2 = {(u, v) : u3 = v4} ⊂ A2(Q).

with function fields Q(V1) and Q(V2).

(a) Show that these function fields are isomorphic as Q-algebras.

(b) Construct an explicit birational map V1 ��� V2.

6.11 (Intersections versus products)

(a) We generally have I1 ∩ I2 �= I1 I2, even when I1 and I2 define distinct varieties.

Consider the lines

V1 = {x1 = x2 = 0}, V2 = {x2 = x3 = 0}, V3 = {x3 = x1 = 0}.

Show that the product ideal I (V1)I (V2)I (V3) is smaller than the intersection

I (V1) ∩ I (V2) ∩ I (V3), even though they define the same variety.

(b) Suppose that I, J ⊂ R are ideals such that I + J = R. Show that I J = I ∩ J .

6.12 Let V, W ⊂ An(k) denote affine varieties. Define the disjoint union

V � W ⊂ An × A1 � An+1

as the union of affine varieties

(V × {0}) ∪ (W × {1}).
Writing k[An] = k[x1, . . . , xn], k[A1] = k[t], and R = k[x1, . . . , xn, t], show that

I (V � W ) = (I (V )R + 〈t〉) ∩ (I (W )R + 〈t − 1〉)
and

k[V � W ] = k[V ] ⊕ k[W ].

The direct sum of rings R1 and R2 is defined

R1 ⊕ R2 = {(r1, r2) : r1 ∈ R1, r2 ∈ R2}

with addition and multiplication taken componentwise.
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6.13 Let X = A1(k) � A1(k) be the disjoint union of two affine lines. Express X explicitly

as an affine variety, compute the coordinate ring k[X ], and find examples of zero

divisors.

6.14 Consider monomial ideals

I = 〈
xα(1), . . . , xα(r )

〉
, J = 〈

xβ(1), . . . , xβ(s)
〉 ⊂ k[x1, . . . , xn].

Show that

I ∩ J = 〈
LCM(xα(i), xβ( j))

〉
i=1,... ,r, j=1,... ,s

;

in particular, any intersection of monomial ideals is monomial. Hint: You may not

have to use Proposition 6.19; try a direct approach via Exercise 2.3.

6.15 Prove Lemma 6.24. Hint: Any system of linear equations over k with a solution in L
is consistent.



7 Nullstellensatz

‘Nullstellensatz’ is a German term translated literally as ‘Zero places theorem’. It is as-

sociated with a problem first identified in Chapter 3: given an ideal I ⊂ k[x1, . . . , xn]

defining a variety V (I ), what are the polynomials vanishing on V (I )? Generally, we

have the inclusion (cf. Exercise 3.3)

I (V (I )) ⊃ I.

When does equality hold? Where there is a strict inclusion, can we obtain I (V (I ))

directly from I ?

Raising a polynomial to a power does not change where it vanishes, i.e.,

V ( f ) = V ( f N )

for each N ≥ 1. A general definition will help us utilize this fact:

Definition 7.1 The radical of an ideal I in a ring R is defined

√
I = {g ∈ R : gN ∈ I for some N ∈ N}.

An ideal J is said to be radical if
√

J = J .

The reader should verify that
√

I is automatically an ideal (see Exercise 7.3). Our

observation then translates into the following result:

Proposition 7.2 If I ⊂ k[x1, . . . , xn] is an ideal then

√
I ⊂ I (V (I )).

Proof For each f ∈ √
I , there exists an N � 0 such that f N ∈ I . We have

V ( f ) = V ( f N ) ⊃ V (I ),

hence f vanishes over V (I ). �

101
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7.1 Statement of the Nullstellensatz

Theorem 7.3 (Hilbert Nullstellensatz) If k is algebraically closed and I ⊂
k[x1, . . . , xn] is an ideal then I (V (I )) = √

I .

In other words, given a function vanishing at each point of a variety, some power of

that function can be written in terms of the defining equations for the variety.

Example 7.4 The relationship between
√

I and I (V (I )) is still quite subtle over

nonclosed fields. Consider

I = 〈
x2n + y2n + 1

〉 ⊂ R[x, y]

so that

∅ = V (I ) ⊂ A2(R)

and I (V (I )) = R[x, y]. On the other hand,
√

I � R[x, y]. Indeed, if
√

I = R[x, y]

then 1 ∈ √
I , which would imply that 1 ∈ I , a contradiction. Thus we have

√
I � I (V (I )).

Here is another very useful statement also known as the Nullstellensatz:

Theorem 7.5 (Nullstellensatz II) Let k be algebraically closed and I =
〈 f1, . . . , fr 〉 ⊂ k[x1, . . . , xn]. Then either

1. I = k[x1, . . . , xn]; or
2. there exists a common solution (a1, . . . , an) for the system

f1 = f2 = . . . = fr = 0.

In other words, over an algebraically closed field every consistent system of poly-

nomials has a solution. Of course, an inconsistent system has no solutions over

any field: if f1, . . . , fr have a common zero then 〈 f1, . . . , fr 〉 does not contain

1 and

〈 f1, . . . , fr 〉 � k[x1, . . . , xn].

7.1.1

Effective

results

It is very desirable to have constructive approaches to these questions. We refer the

reader to [24, 4] for more discussion and results.

Problem 7.6 (Effective Nullstellensatz) Consider polynomials f1, . . . , fr ∈
k[x1, . . . , xn]. Find explicit constants N and N ′ depending only on the degrees of

the fi and the number of variables, such that
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� if g ∈ √〈 f1, . . . , fr 〉 then gN ∈ 〈 f1, . . . , fr 〉 ;
� if f1, . . . , fr have no common zeros over an algebraically closed field then there exist

polynomials g1, . . . , gr of degree ≤ N ′ such that f1g1 + · · · + fr gr = 1.

The a priori bound on the degrees allows us to solve for the coefficients of g1, . . . , gr

using linear algebra.

The Hilbert Basis Theorem does yield a non-effective result for the first part of the

problem:

Proposition 7.7 Let R be a Noetherian ring and I ⊂ R an ideal. There exists an
integer N such that

g ∈
√

I ⇒ gN ∈ I.

Proof Let h1, . . . , hs be generators for
√

I and choose M such that

hM
1 , . . . , hM

s ∈ I. We take N = Ms. For each

g = g1h1 + · · · + gshs ∈
√

I

we have

gN = gMs =
∑

e1+···+es=Ms

ne1...es (g1h1)e1 . . . (gshs)es ,

where the ne1...es are suitable positive integers. Each term has some e j ≥ M and thus

is contained in I . We conclude that gN ∈ I as well. �

7.2 Classification of maximal ideals

We start with a general result, valid over any field:

Proposition 7.8 Let a1, . . . , an ∈ k and consider the ideal

m = 〈x1 − a1, x2 − a2, . . . , xn − an〉 ⊂ k[x1, . . . , xn].

Then m is maximal and coincides with the kernel of the evaluation homomorphism

k[x1, . . . , xn]
ev(a)→ k

xi �→ ai .

Proof (cf. Exercise 2.12) For any monomial order on k[x1, . . . , xn] we have

LT(m) = 〈x1, . . . , xn〉,

so the normal form of f ∈ k[x1, . . . , xn] modulo m is constant and equal to

f (a1, . . . , an) = ev(a) f . �
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Theorem 7.9 (Nullstellensatz I) Let k be an algebraically closed field. Then any
maximal ideal m ⊂ k[x1, . . . , xn] takes the form 〈x1 − a1, . . . , xn − an〉.

Theorems 7.5 and 7.3 follow easily from this statement.

Proof of Theorem 7.5 assuming Theorem 7.9 Suppose that 1 �∈ I so that I �

k[x1, . . . , xn]. Then there exists a maximal ideal m ⊃ I , and Theorem 7.9 im-

plies I ⊂ 〈x1 − a1, . . . , xn − an〉, for some (a1, . . . , an) ∈ An(k). Hence (a1, . . . , an)

∈ V (I ). �

Proof of Theorem 7.3 assuming Theorem 7.9 Consider the affine variety

An(k)g = {(x1, . . . , xn, z) : zg(x1, . . . , xn) = 1} ⊂ An+1(k)

introduced in the proof of Proposition 3.47. Projection onto the variables x1, . . . , xn

takes this variety to the open subset

U = {(x1, . . . , xn) : g(x1, . . . , xn) �= 0} ⊂ An(k).

Our hypothesis says that U ∩ V = ∅, so consider the ideal

J = 〈 f1, . . . , fr , gz − 1〉,

which is the full polynomial ring k[x1, . . . , xn, z] by Nullstellensatz II. Therefore, we

may write

h1 f1 + · · · + hr fr + h(gz − 1) = 1, h1, . . . , hr , h ∈ k[x1, . . . , xn, z].

Substitute z = 1/g to get

1 = h1(x1, . . . , xn, 1/g) f1 + · · · + hr (x1, . . . , xn, 1/g) fr

so that, on clearing denominators, we have for some N

gN = h̃1 f1 + · · · + h̃r fr , h̃ j ∈ k[x1, . . . , xn]. �

7.3 Transcendence bases

Let F/k denote a field extension.

Definition 7.10 F/k is finitely generated if F = k(z1, . . . , zN ) for some choice

of z1, . . . , zN ∈ F .

Example 7.11 Let I ⊂ k[x1, . . . , xn] be prime so that k[x1, . . . , xn]/I is an integral

domain with fraction field F . Then F/k is finitely generated, e.g., by x1, . . . , xn . In

particular, the function field of an affine variety is finitely generated.
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Definition 7.12 An element z ∈ F is transcendental over k if it is not algebraic.

A collection of elements z1, . . . , zd ∈ F is algebraically independent over k if there

is no nonzero polynomial f (x1, . . . , xd ) ∈ k[x1, . . . , xd ] with f (z1, . . . , zd ) = 0. It

is algebraically dependent otherwise.

The following result is left as an exercise:

Proposition 7.13 Let F/k be a field extension. Then the elements z1, . . . , zd are
algebraically independent over k if and only if

� z1 is transcendental over k;
� z2 is transcendental over k(z1);

...
� zd is transcendental over k(z1, . . . , zd−1).

Definition 7.14 A transcendence basis for F/k is a collection of algebraically

independent elements

z1, . . . , zd ∈ F

such that F is algebraic over k(z1, . . . , zd ). By convention, the empty set is a tran-

scendence base for an algebraic field extension.

Proposition 7.15 Every finitely generated field extension admits a transcendence
basis; we may take a suitable subset of the generators. Any two transcendence bases
have the same number of elements.

The resulting invariant of the extension is called its transcendence degree.

Proof Express F = k(z1, . . . , zN ) for some z j ∈ F . If the z j are all algebraic

over k then F is algebraic over k (by Proposition A.16), and the transcendence basis

is empty. We therefore assume some of the z j are transcendental.

After reordering z1, . . . , zN , we have

{z1, . . . , zd} ⊂ {z1, . . . , zN }

as a maximal algebraically independent subset, i.e., for each j > d the set

{z1, . . . , zd , z j } is algebraically dependent. We therefore have a nonzero polynomial

f ∈ k[x1, . . . , xd , xd+1]

such that f (z1, . . . , zd , z j ) = 0; expand

f =
∑

i

fi (x1, . . . , xd )xi
d+1
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where fi �= 0 for some i > 0. (Otherwise, z1, . . . , zd would be algebraically depen-

dent.) Thus each z j , j > d, is algebraic over k(z1, . . . , zd ), and F is algebraic over

k(z1, . . . , zd ).

Remark7.16 The remainder of the argument is analogous to a linear independence

result: given linearly independent sets

{z1, . . . , zd}, {w1, . . . , we}

generating the same subspace, we necessarily have d = e. The proof entails exchang-

ing elements of the second set for elements of the first, one at a time. After reordering

the zi s and w j s, we obtain a sequence of linearly independent sets

{z1, z2, . . . , zd}, {w1, z2, . . . , zd}, {w1, w2, z3, . . . , zd}, . . . , {w1, w2, w3, . . . , wd}

all generating the same subspace. If there were a w j with j > d it would have to be

contained in the subspace generated by {w1, . . . , wd}.

Suppose we have algebraically independent sets

{z1, . . . , zd}, {w1, . . . , we} ⊂ F

such that F is algebraic over k(z1, . . . , zd ) and k(w1, . . . , we). We want to show that

d = e. For simplicity, we assume d ≤ e.

We know that w1 is algebraic over k(z1, . . . , zd ), i.e., there is a nonzero f ∈
k[x1, . . . , xd , xd+1] such that f (z1, . . . , zd , w1) = 0. Since w1 is not algebraic over

k, f must involve at least one of the variables x1, . . . , xd , say x1. Then z1 is al-

gebraic over k(w1, z2, . . . , zd ), and hence F is algebraic over k(w1, z2, . . . , zd ) by

Proposition A.16.

We know then that w2 is algebraic over k(w1, z2, . . . , zd ). Proposition 7.13 implies

w2 is not algebraic over k(w1). We then have g �= 0 ∈ k[x1, . . . , xd , xd+1] such that

g(w1, z2, . . . , zd , w2) = 0; g must involve at least one of the variables x2, . . . , xd ,

say x2. But then z2 is algebraic over k(w1, w2, z3, . . . , zd ) and F is algebraic over

k(w1, w2, z3, . . . , zd ).

We continue in this way, deducing that F is algebraic over k(w1, . . . , wd ). In par-

ticular, if there were a w j with j > d then this would be algebraic over k(w1, . . . , wd ).

This contradicts our assumption on algebraic independence. �

7.4 Integral elements

Let R and F be Noetherian domains with R ⊂ F . An element α ∈ F is integral over

R if either of the following equivalent conditions are satisfied:

1. α is a root of a monic polynomial t D + rD−1t D−1 + · · · r0 ∈ R[t];
2. the R-submodule R[α] ⊂ F generated by α is finitely generated.
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The equivalence is easy: R[α] is finitely generated if and only if we can write

−αD = rD−1α
D−1 + rD−2α

D−2 + · · · + r0, r j ∈ R,

for some D.

Proposition 7.17 Assume that the fraction field L of R is contained in F. If w ∈ F
is algebraic over L then there exists a nonzero p ∈ R such that pw is integral over
R.

Proof Let g denote the irreducible polynomial for w over L . Clearing denomi-

nators if necessary, we may assume g ∈ R[t]. Write

g = aN t N + · · · + a0, ai ∈ R, aN �= 0,

and observe that

aN−1
N g =

N∑
i=0

ai a
N−i−1
N (taN )i .

The polynomial

N∑
i=0

ai a
N−i−1
N ui = uN + aN−1aN uN−1 + · · · + a0aN−1

N ∈ R[u]

is monic and has aN w as a root. In particular, aN w is integral over R. �

Proposition 7.18 Let R be a unique factorization domain with fraction field L.
Then every element of L integral over R is contained in R.

Proof Suppose α is algebraic over the fraction field L of R. Consider the eval-

uation homomorphism

L[t] → L(α)

t �→ α

with kernel generated by an irreducible g ∈ L[t]. Clearing denominators, we may

assume g ∈ R[t] with coefficients having no common irreducible factor.

If α is integral over R then there exists a monic irreducible h ∈ R[t] such that

h(α) = 0. We know that g|h in L[t], so Gauss’ Lemma (Proposition A.12) implies

h = f g for f ∈ R[t]. The leading coefficients of f and g are units multiplying to 1;

g becomes monic after multiplying by the leading coefficient of f .

Thus we may assume the irreducible polynomial for α over L is a monic poly-

nomial g ∈ R[t]. If α ∈ L then g has degree 1, i.e., g(t) = t − α. In particular,

α ∈ R. �
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Proposition 7.19 Let S ⊂ F denote the elements in F that are integral over R.
Then S is a subring of F.

Proof We recall Theorem 2.36: A submodule of a finitely generated module

over a Noetherian ring is itself finitely generated. Suppose that α, β ∈ F are integral

over R. Then R[α] is finitely generated over R and β remains integral over R[α], so

R[α][β] is finitely generated over R[α] and R. It follows that the subrings R[α + β]

and R[αβ] are also finitely generated over R and thus α + β and αβ are integral. �

7.5 Proof of Nullstellensatz I

Suppose m ⊂ k[x1, . . . , xn] is maximal. Consider the field F = k[x1, . . . , xn]/m,

which is finitely generated as an algebra over k. By definition, a k-algebra R is

finitely generated if it can be expressed as a quotient of a polynomial ring over k.

Lemma 7.20 Let k be an algebraically closed field. Then any field extension F/k,
finitely generated as an algebra over k, is trivial.

Assuming Lemma 7.20, we obtain the theorem: consider the induced map π1 :

k[x1] → F . Since F is trivial over k, π1(x1) = α1 for some α1 ∈ k, thus x1 − α1 ∈ m.

We prove Lemma 7.20: first, observe that, if α ∈ F is algebraic over k, then it

must have an irreducible polynomial f (t) ∈ k[t]. Since k is algebraically closed this

is necessarily of the form t − α (see Exercise A.14), and α ∈ k.

If F/k is nontrivial then Proposition 7.15 gives a nonempty subset

{x j1 , . . . , x jd } ⊂ {x1, . . . , xn}

such that the images

z1 = x j1 , . . . , zd = x jd ∈ F

are a transcendence basis for F over k. For notational simplicity, we reorder the x j so

that z j = x j for j = 1, . . . , d . Write R = k[z1, . . . , zd ] ⊂ F , which is a polynomial

ring because z1, . . . , zd are algebraically independent. Take the remaining generators

for F over k

w1 = xd+1, . . . , wn−d = xn−d ,

which are algebraic over L := k(z1, . . . , zd ).

Let S ⊂ F denote the ring of elements of F integral over k[z1, . . . , zd ] (see Propo-

sition 7.19). Proposition 7.17 yields nonzero p1, . . . , pn−d ∈ k[z1, . . . , zd ] such that

each t j := p j w j is integral over k[z1, . . . , zd ], i.e., t j ∈ S.

Pick an element f/g ∈ k(z1, . . . , zd ), with f, g ∈ k[z1, . . . , zd ], such that g is rel-

atively prime to p1, . . . , pn−d . It follows that pe1

1 . . . pen−d

n−d ( f/g) is not in k[z1, . . . , zd ]

for any e1, . . . , en−d ∈ N. However, we can represent f/g ≡ q(x1, . . . , xn) for some
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polynomial q with coefficients in k, i.e.,

f/g = q(z1, . . . , zd , t1/p1, . . . , tn−d/pn−d ).

Let e j , j = 1, . . . , n − d , denote the highest power of xd+ j appearing in q, so that

multiplying through by pe1

1 . . . pen−d

n−d clears the denominators in

q(z1, . . . , zd , t1/p1, . . . , tn−d/pn−d ).

It follows that there exists a polynomial q ′ over k such that

pe1

1 . . . pen−d

n−d f/g = q ′(z1, . . . , zd , t1, . . . , tn−d ) ∈ S.

We also have

pe1

1 . . . pen−d

n−d ( f/g) ∈ k(z1, . . . , zd ),

thus Proposition 7.18 implies

pe1

1 . . . pen−d

n−d ( f/g) ∈ k[z1, . . . , zd ],

a contradiction. �
We sketch an alternate (and much easier!) proof of Lemma 7.20 over k = C. Any

finitely generated algebra over C has a countable basis, e.g., a subset of the monomials

xi1

1 . . . xin
n . On the other hand, if x1 �= α1 for any α1 ∈ C, the uncountable collection

of rational functions 1
x1−α

∈ F, α ∈ C are linearly independent over C.

7.6 Applications

7.6.1 When

is a

polynomial

in the

radical of an

ideal?

Unfortunately, computing over algebraically closed fields presents significant tech-

nical difficulties. How can a computer represent a general complex number? The

Hilbert Nullstellensatz gives us a procedure for deciding whether a polynomial van-

ishes over the complex points of variety without ever computing over the complex
numbers! We just need to check whether the polynomial is contained in the radical

of the ideal generated by some defining set of equations. This can be checked over

any field containing the coefficients of the polynomials at hand.

We no longer assume that k is algebraically closed. To test whether a polynomial

g ∈ √
I , where I = 〈 f1, . . . , fr 〉, we use the following criterion.

Proposition 7.21 Given an ideal I = 〈 f1, . . . , fr 〉 ⊂ k[x1, . . . , xn], g ∈ √
I if and

only if 〈 f1, . . . , fr , zg − 1〉 = k[x1, . . . , xn, z].

Proof The proof of the Hilbert Nullstellensatz gives that

1 ∈ 〈 f1, . . . , fr , zg − 1〉 ⇒ gN ∈ I for some N .
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Conversely, if gN = f1h1 + · · · + fr hr then zN gN = f1(h1zN ) + · · · + fr (hr zN ) and

1 = f1(h1zN ) + · · · + fr (hr zN ) + (1 − zN gN ).

Since (1 − zN gN ) = (1 − zg)(1 + zg + · · · + zN−1gN−1), we conclude 1 ∈ 〈 f1, . . . ,

fr , zg − 1〉. �

Algorithm 7.22 To decide whether g ∈ √
I , compute a Gröber basis for

〈 f1, . . . , fr , zg − 1〉 ⊂ k[x1, . . . , xn, z]. If it contains 1 then g ∈ √
I .

Note, however, that we have not given an algorithm for computing generators for√
I for an arbitrary ideal I .

7.6.2 Irre-

ducibility

of hyper-

surfaces

Let k be algebraically closed. Given f ∈ k[x1, . . . , xn] with associated hypersurface

V ( f ), we can factor

f = f a1

1 . . . f ar
r

as a product of irreducibles. This yields a decomposition

V ( f ) = V
(

f a1

1

) ∪ V
(

f a2

2

)
. . . V

(
f ar
r

)
= V ( f1) ∪ V ( f2) . . . V ( fr ).

Are these the irreducible components of V ( f )? In other words, does the algebraic

formulation of irreducibility for polynomials coincide with the geometric notion of

irreducibility for varieties?

Theorem 7.23 Let k be algebraically closed. If f ∈ k[x1, . . . , xn] is irreducible
as a polynomial then V ( f ) is irreducible as a variety.

Proof Since k[x1, . . . , xn] is a unique factorization domain, the ideal 〈 f 〉 is

prime by Proposition A.11. By the Nullstellensatz, I (V ( f )) = √〈 f 〉, so we just need

to check that
√〈 f 〉 = 〈 f 〉. Given g ∈ √〈 f 〉 then gN ∈ 〈 f 〉 and f |gN . Since f is irre-

ducible and k[x1, . . . , xn] is a unique factorization domain, we conclude that f |g and

g ∈ 〈 f 〉. �

Corollary 7.24 If f1, . . . , fr are irreducible and distinct in k[x1, . . . , xn], with k
algebraically closed, then

√〈
f a1

1 . . . f ar
r

〉 = 〈 f1 . . . fr 〉.

Remark 7.25 The assumption that k is algebraically closed is necessary. We

have seen (Example 6.9) the irreducibility of f does not guarantee the irreducibility

of V !
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7.7 Dimension

Definition 7.26 Let V ⊂ An(k) be an irreducible affine variety. The dimension
dim V is defined as the transcendence degree of k(V ) over k.

We outline an effective procedure to compute the dimension of a variety. Let

I ⊂ k[x1, . . . , xn] be a prime ideal, F the quotient field of k[x1, . . . , xn]/I , and d the

transcendence degree of F over k.

By Proposition 7.15, there exist indices

1 ≤ i1 < i2 < . . . < id ≤ n

such that xi1
, . . . , xid form a trascendence basis of F over k. Indeed, any maximal

algebraically independent subset will do. We therefore focus on determining whether

a subset of the variables is algebraically independent. For notational simplicity, we

take the first few variables.

Proposition 7.27 The elements x1, . . . , xe ∈ F are algebraically independent
over k if and only if I ∩ k[x1, . . . , xe] = 0.

The intersection can be effectively computed using the Elimination Theorem (Theo-

rem 4.8)

Proof If x1, . . . , xe are algebraically dependent then there exists a nonzero poly-

nomial f ∈ k[t1, . . . , te] such that f (x1, . . . , xe) ≡ 0 (mod I ). This gives a nontriv-

ial element of I ∩ k[x1, . . . , xe]. Conversely, each such element gives an algebraic

dependence relation among x1, . . . , xe. �

Corollary 7.28 x1, . . . , xd ∈ F are a transcendence basis for F/k if and only if

I ∩ k[x1, . . . , xd ] = 0 and I ∩ k[x1, . . . , xd , x j ] �= 0 for each j > d.

Nonzero elements g(x1, . . . , xd , x j ) ∈ I ∩ k[x1, . . . , xd , x j ] show that x j is alge-

braically dependent on x1, . . . , xd .

This suggests that to check whether an algebraically independent set of variables

x1, . . . , xd is a transcendence basis, we should carry out n − d distinct eliminations.

We can do a bit better:

Proposition 7.29 For each j = 1, . . . , n let

I j = (I ∩ k[x1, . . . , x j ])k[x1, . . . , xn].

Then x1, . . . , xd form a transcendence basis for F/k if and only if

0 = I1 = I2 = . . . = Id � Id+1 . . . � In.
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These ideals can be extracted by computing a Gröbner basis with respect to a monomial

order which is simultaneously an elimination order for the sets {x1, . . . , x j }, j =
d, . . . , n. Pure lexicographic order has this property.

Proof Suppose that h ∈ k[x1, . . . , xn] is contained in I j . By Exercise 7.13, each

coefficient of h, as a polynomial in x j+1, . . . , xn , is also contained in I j .

The vanishing of I1, . . . , Id is equivalent to the independence of x1, . . . , xd by

Proposition 7.27.

Suppose that x1. . . , xd is a transcendence basis for F/k. For each j > d there

exists a nonzero g j (t1, . . . , td , s) ∈ k[t1, . . . , td , s] such that

g j (x1, . . . , xd , x j ) ≡ 0 (mod I ).

If g j ∈ I j−1 then each coefficient of g j (regarded as a polynomial in s) is contained

in Id , which is zero. Thus g j ∈ I j and g j �∈ I j−1.

Conversely, suppose we have the tower of ideals as described in the proposition.

For j > d choose h ∈ k[x1, . . . , xn] ∩ k[x1, . . . , x j ] with h �∈ I j−1; we may expand

h =
N∑

e=0

he(x1, . . . , x j−1)xe
j

with some he �≡ 0 (mod I ). This implies x j is algebraic over k(x1, . . . , x j−1). Iterat-

ing Proposition A.16, we deduce that x j is algebraic over k(x1, . . . , xd ). �

7.8 Exercises

7.1 Let F ∈ C[x, y] be an irreducible polynomial. Consider the set

V = {(x, y) ∈ C2 : F(x, y) = 0}.

Suppose that G ∈ C[x, y] is a polynomial such that G(u, v) = 0 for each (u, v) ∈ V .

Show that F |G. When C is replaced by R, can we still conclude F divides G?

7.2 Let V ⊂ An(k) be an affine variety with coordinate ring k[V ]. For each ideal I ⊂ k[V ],

let

V (I ) = {v ∈ V : g(v) = 0 for each g ∈ I }.

Assume that k is algebraically closed. Prove that V (I ) = ∅ if and only if I = k[V ].

7.3 Let I ⊂ R be an ideal. Show that the radical

√
I = {g ∈ R : gN ∈ I for some N ∈ N}

is automatically an ideal.

7.4 Let S ⊂ An(k) be a subset. Show that I (S) is radical.

7.5 Let F/k be a finitely generated extension which is algebraic. Show this extension is

finite.
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7.6 Determine the dimensions of the following varieties:

(a) affine space An(k);

(b) a point;

(c) an irreducible hypersurface V ( f ) ⊂ An(C).

7.7 Let V ⊂ A6(Q) be defined by the two-by-two minors of the matrix

(
x1 x2 x3

x4 x5 x6

)
.

We write F = Q(V ). Exhibit a transcendence base z1, . . . , zd for F over Q, and

express F explicitly as an algebraic extension over Q(z1, . . . , zd ).

7.8 Let F be the quotient field of

C[x1, x2, x3, x4, x5]/〈x2
1 + x2

2 + x2
3 − 1〉.

Exhibit a transcendence base z1, . . . , zd for F over C, and express F explicitly as an

algebraic extension over C(z1, . . . , zd ).

7.9 Prove Proposition 7.13.

7.10 Let R be a domain with fraction field L , and assume that α is algebraic over L . Show

that

{r ∈ R : rα integral over R}

is a nonzero ideal in R.

7.11 Let V → W be a dominant morphism of affine varieties. Show that dim V ≥ dim W .

7.12 Let R and S be Noetherian integral domains with R ⊂ S. Suppose that α, β ∈ S are

roots of the monic polynomials

x2 + a1x + a0, x2 + b1x + b0 ∈ R[x]

respectively. Using Gröbner basis techniques, exhibit a monic polynomial that has

α + β as a root. Do the same for αβ.

7.13 Let I ⊂ k[x1, . . . , xn] be an ideal and set

I j = (I ∩ k[x1, . . . , x j ])k[x1, . . . , xn]

so that

I1 ⊂ I2 ⊂ . . . ⊂ In.

Given h ∈ k[x1, . . . , xn] write

h =
∑

α j+1...αn

cα j+1...αn x
α j+1

j+1 . . . xαn
n

such that each cα j+1...αn ∈ k[x1, . . . , x j ]. Show that if h ∈ I j then each cα j+1...αn ∈ I j .
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7.14 Given a monomial xα = xα1

1 . . . xαn
n , write

rad(xα) =
∏

i with αi �=0

xi .

For each monomial ideal

I = 〈
xα(i) = xα(i,1)

1 . . . xα(i,n)
n

〉
i=1,... ,r

show that

√
I = 〈

rad(xα(i))
〉
i=1,... ,r

.

Assume that the generating set of monomials for I is minimal, i.e., given distinct i, j
= 1, · · · r , xα(i) does not divide xα( j). Show that I is radical if and only if each

α(i, �) = 0 or 1.

Write down all the radical monomial ideals in k[x1, x2, x3] and describe the cor-

responding varieties in A3(k).

7.15 Show that every maximal ideal m ⊂ R[x1, x2] is one of the following:
� m = 〈x1 − α1, x2 − α2〉 for some α1, α2 ∈ R;
� m = 〈x2 − r x1 − s, x2

1 + bx1 + c〉 for some r, s, b, c ∈ R with b2 − 4c < 0;
� m = 〈x1 − t, x2

2 + bx2 + c〉 for some t, b, c ∈ R with b2 − 4c < 0.

7.16 Let I = 〈 f1, f2〉 ⊂ C[x, y] be an ideal generated by a linear and an irreducible

quadratic polynomial. Suppose that g ∈ √
I . Show that g2 ∈ I .

7.17 (Geometric version of Proposition 7.27) Let V ⊂ An(k) be an irreducible affine

variety over an infinite field. Show that dim(V ) ≥ d if and only if there exists a subset

{x j1 , . . . , x jd } ⊂ {x1, . . . , xn}

so the projection morphism

π : An(k) → Ad (k)

(x1, . . . , xn) �→ (x j1 , . . . , x jd )

is dominant.

7.18 Let I and J be ideals in a ring R.

(a) Show that

√
I ∩ J =

√
I ∩

√
J .

(b) On the other hand, give an example in R = k[x1, . . . , xn] where

√
I + J �=

√
I +

√
J .

7.19 (Codimension-1 varieties are hypersurfaces) Show that any irreducible vari-

ety V ⊂ An(k) of dimension n − 1 is a hypersurface. Hint: It suffices to prove

that any prime ideal I ⊂ k[x1, . . . , xn] with I ∩ k[x1, . . . , xn−1] = 0 is principal.
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Assuming I �= 0, we can express I = 〈 f1, . . . , fr 〉 where each fi is irreducible

and does not divide any of the f j , j �= i . Suppose r > 1 and consider f1, f2 in

L[xn] where L = k(x1, . . . , xn−1). The resultant Res( f1, f2) is defined; verify that

Res( f1, f2) ∈ k[x1, . . . , xn−1] ∩ I and thus is zero. Deduce the existence of an irre-

ducible polynomial in L[xn] dividing both f1 and f2. On clearing denominators and

applying Gauss’ Lemma, we obtain an irreducible h ∈ k[x1, . . . , xn] with h| f1, f2.



8 Primary decomposition

We have shown that every variety is a union of irreducible subvarieties

V = V1 ∪ V2 ∪ . . . ∪ Vr , Vi �⊂ Vj , i �= j.

Our goal here is to find an algebraic analog of this decomposition, applicable to ideals.

Example 8.1 Let I = 〈 f 〉 ⊂ k[x1, . . . , xn] be principal and decompose the gen-

erator into irreducible elements

f = f e1

1 . . . f er
r ,

where no two of the f j are proportional. Then we can write

I = 〈
f e1

1

〉 ∩ 〈
f e2

2

〉
. . .

〈
f er
r

〉
= Pe1

1 ∩ . . . ∩ Per
r , Pi = 〈 fi 〉.

Note that Pi is prime by Proposition A.11.

A warning is in order: decomposing even a univariate polynomial into irreducible

components can be tricky in practice; the decomposition is very sensitive to the base

field k. For example, given a finite extension L/Q and f ∈ Q[t], factoring f into

irreducible polynomials over L is really a number-theoretic problem rather than a

geometric one. This makes it challenging to implement primary decomposition on a

computer, although there are algorithms for extracting some information about the

decomposition [10].

8.1 Irreducible ideals

Here we emulate the decomposition into irreducible components described in Theo-

rem 6.4. Keep in mind that unions of varieties correspond to intersections of ideals

(cf. Propositions 3.6 and 3.12).

116
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Definition 8.2 An ideal I ⊂ R is reducible if can be expressed as the intersection

of two larger ideals in R

I = J1 ∩ J2, I � J1, J2.

An ideal is irreducible if it is not reducible.

Proposition 8.3 Let R be Noetherian. Then any ideal I ⊂ R can be written as
an intersection of irreducible ideals

I = I1 ∩ I2 . . . ∩ Im .

We say that the decomposition is weakly irredundant if none of the I j can be left out,

i.e.,

I j �⊃ I1 ∩ . . . I j−1 ∩ I j+1 . . . ∩ Ir .

Proof Suppose this is not the case, so we get an infinite sequence of decomposi-

tions I = I [1] ∩ I [1]′, with I [1], I [1]′ � I , I [1] = I [2] ∩ I ′[2], with I [2], I ′[2] �

I [1], etc. Thus we obtain an infinite ascending sequence of ideals

I � I [1] � I [2]. . . ,

violating the fact that R is Noetherian. �

A variety V is irreducible precisely when I (V ) is prime (Theorem 6.5). This

connection persists in our algebraic formulation:

Proposition 8.4 Any prime ideal is irreducible.

Proof Suppose that I is prime and I = J1 ∩ J2 with I � J1. Pick f ∈ J1 with

f �∈ I . Given g ∈ J2 we have

f g ∈ J1 J2 ⊂ J1 ∩ J2 = I.

Since I is prime, it follows that g ∈ I . We conclude that I = J2. �

Example 8.5 If I = 〈xy, y2〉 ⊂ k[x, y] then we can write

I = 〈y〉 ∩ 〈x2, y〉.

The first term is prime, hence irreducible, so we focus on the second term. Suppose

there were a decomposition

〈x2, y〉 = J1 ∩ J2
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with I � J1, J2. The quotient ring R = k[x, y]/〈x2, y〉 has dimension dimk R = 2,

so dimk k[x, y]/Ji = 1 and each Ji is a maximal ideal containing 〈x2, y〉. The only

possibility is 〈x, y〉, which contradicts our assumptions.

Theorem 6.4 also asserts the uniqueness of the decomposition into irreducible com-

ponents. This is conspicuously lacking from Proposition 8.3. Unfortunately, unique-

ness fails in the algebraic situation:

Example 8.6 Consider I = 〈x2, xy, y2〉 ⊂ k[x, y]. We have

I = 〈y, x2〉 ∩ 〈y2, x〉 = 〈y + x, x2〉 ∩ 〈x, (y + x)2〉.

The analysis in Example 8.5 shows that the ideals involved are all irreducible.

For the rest of this chapter, we will develop partial uniqueness results for repre-

sentations of ideals as intersections of irreducible ideals.

8.2 Quotient ideals

Definition 8.7 Given ideals I, J in a ring R, the quotient ideal is defined

I : J = {r ∈ R : rs ∈ I for each s ∈ J }.

For any ideals I, J, K ⊂ R, I J ⊂ K if and only if I ⊂ K : J . This explains our

choice of terminology.

Proposition 8.8 For ideals I, J ⊂ k[x1, . . . , xn] we have:

1. I : J ⊂ I (V (I ) \ V (J ));
2. V (I : J ) ⊃ V (I ) \ V (J );
3. I (V ) : I (W ) = I (V \ W ).

Proof Given f ∈ I : J , we have f g ∈ I for each g ∈ J . For x ∈ V (I ) \ V (J ),

there exists a g ∈ J such that g(x) �= 0. Since ( f g)(x) = 0 we have f (x) = 0, which

proves the first assertion. The second assertion follows by taking varieties associated

to the ideals in the first assertion. The inclusion I (V ) : I (W ) ⊂ I (V \ W ) follows

from the first assertion; set I = I (V ) and J = I (W ). To prove the reverse inclusion,

note that if f ∈ I (V \ W ) and g ∈ I (W ) then f g ∈ I (V ) and thus f ∈ I (V ) : I (W ).

�

We develop algorithms for computing the quotient by reducing its computation to

the computation of intersections:

Proposition 8.9 Let I ⊂ R be an ideal and g ∈ k[x1, . . . , xn]. If

I ∩ 〈g〉 = 〈h1, . . . , hs〉
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then

I : 〈g〉 = 〈h1/g, h2/g, . . . , hs/g〉.

Given an ideal J = 〈g1, . . . , gr 〉 we have

I : J = (I : 〈g1〉) ∩ (I : 〈g2〉) ∩ . . . ∩ (I : 〈gr 〉).

Proof Each hi/g ∈ I : 〈g〉, so the inclusion ⊃ is clear. Given f ∈ I : 〈g〉 we

have g f ∈ I, 〈g〉, i.e., g f ∈ I ∩ 〈g〉. The last assertion is an immediate consequence

of the definitions. �

Algorithm 8.10 To compute the quotient I : J of ideals I, J ⊂ k[x1, . . . , xn] with
J = 〈g1, . . . , gr 〉, we carry out the following steps:

1. compute the intersections I ∩ 〈gi 〉 using Proposition 6.19;
2. using the first part of Proposition 8.9, write out generators for I : 〈gi 〉 in terms of the

generators of I ∩ 〈gi 〉;
3. compute the intersection

(I : 〈g1〉) ∩ (I : 〈g2〉) ∩ . . . ∩ (I : 〈gr 〉),

which is the desired quotient I : J .

Remark 8.11 To compute the intersection of a finite collection of ideals

J1, . . . , Jm ⊂ k[x1, . . . , xn],

the following formula is useful:

J1 ∩ . . . ∩ Jm = (s1 J1 + · · · + sm Jm + 〈s1 + · · · + sm − 1〉) ∩ k[x1, x2, . . . , xn].

8.3 Primary ideals

Definition 8.12 An ideal I in a ring R is primary if f g ∈ I implies f ∈ I or

gm ∈ I for some m.

Example 8.13

1. If P = 〈 f 〉 ⊂ k[x1, . . . , xn] is principal and prime then P M is primary.

2. If m = 〈x1, . . . , xn〉 ⊂ k[x1, . . . , xn] and I ⊂ k[x1, . . . , xn] is an ideal with mM ⊂ I
for some M > 0 then I is primary.

We prove the second assertion. Suppose that f g ∈ I and gm �∈ I for any m. It

follows that g �∈ m and g(0, . . . , 0) �= 0. We claim the multiplication

μg : k[x1, . . . , xn]/mM → k[x1, . . . , xn]/mM

h �→ hg
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is injective: if h has Taylor expansion about the origin

h = hd + higher-order terms, hd �= 0,

then gh has expansion

gh = g(0, . . . , 0)hd + higher-order terms,

with the first term nonzero. The quotient k[x1, . . . , xn]/mM is finite-dimensional,

so μg is also surjective. Since μg(I ) ⊂ I , we must have μg(I ) ≡ I (mod mM ). In

particular, f g ∈ I implies f ∈ I + mM = I .

Remark 8.14 It is not generally true that if P ⊂ k[x1, . . . , xn] is prime then Pm

is primary! A counterexample is given in Example 8.18.

Proposition 8.15 Let Q be a primary ideal. Then
√

Q is a prime ideal P, called
the associated prime of Q.

Proof Let f g ∈ √
Q. Then f M gM ∈ Q and either f M ∈ Q or gMm ∈ Q, and

thus f ∈ √
Q or g ∈ √

Q. �

Proposition 8.16 Any irreducible ideal I in a Noetherian ring R is primary.

The converse does not hold – see Exercise 8.10 for a counterexample.

Proof Assume that I is irreducible and suppose that f g ∈ I . Consider the se-

quence of ideals

I ⊂ I : 〈g〉 ⊂ I : 〈g2〉 ⊂ . . . ,

which eventually terminates, so that

I : 〈gN 〉 = I : 〈gN+1〉

for some N . We claim that

(I + 〈gN 〉) ∩ (I + 〈 f 〉) = I.

The inclusion ⊃ is clear. Conversely, given an element h ∈ (I + 〈gN 〉) ∩ (I + 〈 f 〉),
we can write

h = F1 + H1gN = F2 + H2 f, F1, F2 ∈ I.

Since f g ∈ I we have gN+1 H1 ∈ I and thus gN H1 ∈ I and h ∈ I . Since I is irre-

ducible, the claim implies either f ∈ I or gN ∈ I . �
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Combining this with Proposition 8.3, we deduce the following result.

Theorem 8.17 (Existence of primary decompositions) For any ideal I in a Noethe-
rian ring R, we can write

I = Q1 ∩ Q2 ∩ . . . ∩ Qr

where each Q j is primary in R. This is called a primary decomposition of I .

Example 8.18 Consider the ideal P ⊂ k[A, B, C, D, E, F] with generators

AD − B2, AF − C2, DF − E2, AE − BC, B E − C D, B F − C E,

i.e., the two-by-two minors of the symmetric matrix

M =
⎛
⎝ A B C

B D E
C E F

⎞
⎠.

This ideal is prime: it consists of the equations vanishing on the image V of the

map

A3(k) → A6(k)

(s, t, u) → (s2, st, su, t2, tu, u2).

We claim that P2 is not primary. Consider the determinant

det(M) = ADF − AE2 − B2 F + 2BC E − C2 D,

a cubic polynomial contained in P . However, det(M) �∈ P2 because P2 is generated

by polynomials of degree 4.

We have the following relations

A det(M) = (AD − B2)(AF − C2) − (AE − BC)2

B det(M) = (AD − B2)(B F − C E) − (AE − BC)(B E − C D)

C det(M) = (B F − C E)(AE − BC) − (AF − C2)(B E − C D)

D det(M) = (AD − B2)(DF − E2) − (B E − C D)2

E det(M) = (AE − s BC)(DF − E2) − (B F − C E)(B E − C D)

F det(M) = (AF − C2)(DF − E2) − (B F − C E)2.

If P2 were primary then some power of each of the variables would be contained in

P2, i.e., for some m

〈A, B, C, D, E, F〉m ⊂ P2.

In particular, V = V (P2) ⊂ {(0, 0, 0, 0, 0, 0)}, a contradiction.
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8.4 Uniqueness of primary decomposition

A primary decomposition

I = Q1 ∩ Q2 ∩ . . . ∩ Qr ,

is weakly irredundant if none of the Q j is superfluous, i.e.,

Q j �⊃ Q1 ∩ . . . Q j−1 ∩ Q j+1 . . . ∩ Qr

for any j . For a weakly irredundant primary decomposition, the prime ideals Pj =√
Q j are called the associated primes of I .

Unfortunately, even weakly irredundant primary decompositions are not unique in

general:

Example 8.19 Consider two weakly irredundant primary decompositions

I = 〈x2, xy〉
= 〈x〉 ∩ 〈y, x2〉 = Q1 ∩ Q2

= 〈x〉 ∩ 〈y2, x2, xy〉 = Q1 ∩ Q′
2.

Here Q1 = P1 is prime but Q′
2 and Q2 are not prime. They are primary with associated

prime

P2 =
√

Q2 =
√

Q′
2 = 〈x, y〉.

When the ideal is geometric in origin, e.g., I = I (V ) for some V ⊂ An(k), the

primary components reflect the geometry:

Example 8.20 Consider the weakly irredundant primary decomposition

I = 〈xz − y2, z − xy〉
= 〈xz − y2, z − xy, y − x2〉 ∩ 〈y, z〉
= 〈z − xy, y − x2〉 ∩ 〈y, z〉 = Q1 ∩ Q2

Both Q1 and Q2 are prime: Q1 consists of the equations vanishing on the image of

the morphism

t
φ→ (t, t2, t3)

and Q2 consists of the equations for the x-axis. The ideal I = I (V ) where V =
image(φ) ∪ x-axis.

See Remark 8.28 for a conceptual explanation of this example.
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Proposition 8.21 An ideal I ⊂ R is primary if and only if each zero divisor r ∈
R/I is nilpotent, i.e., rm = 0 for some m. When Q is primary, the nilpotents in R/Q
are images of the associated prime P = √

Q.

Proof By definition, I is primary if and only if

f g ∈ I ⇒ f ∈ I or gm ∈ I

for some m, i.e.,

f g = 0(mod I ) ⇒ f = 0(mod I ) or gm = 0(mod I ),

which is the first assertion. Thus when Q is primary, all zero divisors in R/Q come

from P = √
Q. �

Theorem 8.22 (Uniqueness Theorem I) Let R be Noetherian and I ⊂ R an ideal
with weakly irredundant primary decomposition

I = Q1 ∩ Q2 . . . ∩ Qr .

The associated primes are precisely those primes which can be expressed as

P =
√

I : 〈 f 〉

for some f ∈ R. In particular, the associated primes are uniquely determined by I .

Proof From the definition of the quotient ideal we see that

I : 〈 f 〉 = Q1 : 〈 f 〉 ∩ . . . ∩ Qr : 〈 f 〉.

Taking radicals and applying Exercise 7.18, we find that

√
I : 〈 f 〉 =

√
Q1 : 〈 f 〉 ∩ . . . ∩

√
Qr : 〈 f 〉.

Furthermore, Proposition 8.21 gives

√
Qi : 〈 f 〉 =

{
Pi if f �∈ Qi

R if f ∈ Qi .

By the irredundance assumption, there exists f �∈ Q j with f ∈ ∩i �= j Qi . Then

√
I : 〈 f 〉 = √

Q j : 〈 f 〉 = Pj ,

and each associated prime has the desired form.

Conversely, suppose that P = √
I : 〈 f 〉 for some f ∈ R. Then we have

P = ∩ j : f �∈Q j Pj .
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To finish, we need the following fact:

Lemma 8.23 Let R be a ring and P ⊂ R a prime ideal which can be expressed
as a finite intersection of primes

P = ∩s
j=1 Pj .

Then P = Pj for some j .

Proof Suppose, on the contrary, that P � Pj for each j . Products are contained

in intersections, so we have

P = ∩s
j=1 Pj ⊃ P1 . . . Ps .

Pick g j ∈ Pj , g j �∈ P so the product g = ∏s
j=1 g j ∈ P but each g j �∈ P . This

contradicts the fact that P is prime. �

Corollary 8.24 Let I ⊂ R be an ideal in a Noetherian ring. The zero divisors in
R/I are the images of the associated primes for I .

Proof The proof above shows that every element of an associated prime is a zero

divisor. Conversely, suppose we have ab = 0 in R/I with a, b �= 0. Then for some

j , a �∈ Q j but ab ∈ Q j . Then b is a zero divisor in Q j (or is contained in Q j ), and

b ∈ Pj by Proposition 8.21. �

Definition 8.25 Let I ⊂ R be an ideal in a Noetherian ring. An associated

prime is minimal if it does not contain any other associated prime; otherwise, it is

embedded.

Proposition 8.26 Let I ⊂ R be an ideal in a Noetherian ring. Then
√

I is the
intersection of the minimal associated primes of I .

Proof Fix a primary decomposition

I = Q1 ∩ . . . ∩ Qr

with associated primes Pi = √
Qi , i = 1, . . . , r . Exercise 7.18 implies

√
I =

√
Q1 ∩ . . .

√
Qr = P1 ∩ . . . ∩ Pr .

Of course, excluding the embedded primes does not change the intersection. �

Example 8.27 We retain the notation of Example 8.18. We showed that P2 is not

primary by computing

〈det(M)〉m ⊂ P2, m := 〈A, B, C, D, E, F〉,
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but det(M) �∈ P2. It follows that

√
P2 : 〈det(M)〉 = m

and Uniqueness Theorem I (8.22) implies m is an associated prime of P2.

P is the unique minimal associated prime of P2: Indeed, for any prime P and

integer m > 0 we have P = √
Pm (cf. Exercise 8.3.) By Proposition 8.26, the minimal

associated primes of an ideal are the associated primes of its radical.

The only associated primes of P2 are m and P . The proof uses some Lie theory:

Essentially, one classifies prime ideals in k[A, B, C, D, E, F] (the 3 × 3 symmet-

ric matrices) invariant under similarities, i.e., the equivalence relation M ∼ T MT t

where T is a 3 × 3 invertible matrix. This is carried out in [35, Prop. 4.15]; see also

Exercise 8.12.

Remark 8.28 Minimal associated primes have a nice interpretation for ideals

arising from geometry. Let V ⊂ An(k) be a variety with irredundant decomposition

into irreducible components

V = V1 ∪ . . . ∪ Vr , Vi �⊂ Vj , i �= j.

In Exercise 7.4 we saw that I (V ) ⊂ k[x1, . . . , xn] is radical. Proposition 3.6 gives the

decomposition

I (V ) = I (V1) ∩ . . . ∩ I (Vr ), I (Vi ) �⊃ I (Vj ), i �= j,

and each I (Vj ) is prime by Theorem 6.5. Thus the I (Vj ), j = 1, . . . , r are the minimal

associated primes of I (V ).

We can sharpen this over algebraically closed fields:

Corollary 8.29 Let k be algebraically closed and I ⊂ k[x1, . . . , xn] an ideal. The
minimal associated primes of I correspond to irreducible components of V (I ).

Proof Proposition 8.26 expresses
√

I as the intersection of the minimal associ-

ated primes of I . The Hilbert Nullstellensatz gives
√

I = I (V (I )), and we know that

the minimal associated primes of I (V ) correspond to the components of V . �

Based on this geometric intuition, we might expect the primary components asso-

ciated with minimal associated primes to play a special rôle. We shall prove a strong

uniqueness theorem for these components.

Proposition 8.30 Let Q1 and Q2 be primary ideals with
√

Q1 = √
Q2 = P. Then

Q1 ∩ Q2 is also primary with
√

Q1 ∩ Q2 = P.
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Proof Let f g ∈ Q1 ∩ Q2. Suppose that f �∈ Q1 ∩ Q2, and assume that f �∈ Q1.

Then gm ∈ Q1 for some m, and thus g ∈ P . Since
√

Q2 = P , P M ⊂ Q2 for some

large M and gM ∈ Q2. Consequently, gmax(m,M) ∈ Q1 ∩ Q2. �

Suppose we have a weakly irredundant primary decomposition

I = Q1 ∩ Q2 ∩ . . . ∩ Qr

such that two primary components have the same associated prime, i.e. Pi = Pj for

some i �= j . The proposition allows us to replace Qi and Q j with the single primary
Qi ∩ Q j .

Definition 8.31 A primary decomposition

I = Q1 ∩ Q2 ∩ . . . ∩ Qr

is (strongly) irredundant if it is weakly irredundant and the associated primes Pi are

distinct.

Theorem 8.32 (Uniqueness Theorem II) Let I ⊂ R be an ideal in a Noetherian
ring with irredundant primary decomposition

I = Q1 ∩ Q2 ∩ . . . ∩ Qr .

Suppose that Pj is a minimal associated prime. Then there exists an element a ∈
∩i �= j Pi , a �∈ Pj , and for each such element we have

Q j = ∪m(I : 〈am〉).

In particular, the primary components associated to minimal primes are unique.

Proof If there exists no element a with the desired properties then Pj ⊃ ∩i �= j Pi .

Repeating the argument for Lemma 8.23, we find that Pj ⊃ Pi for some i �= j , which

contradicts the minimality of Pj .

Given such an element, for any r ∈ R there exists an m such that amr ∈ Qi , i �= j .

On the other hand, a is not a zero-divisor modulo Q j , so if r �∈ Q j then amr �∈ Q j

for any m. Thus

amr ∈ I = Q1 ∩ Q2 ∩ . . . ∩ Qr

for m � 0 if and only if r ∈ Q j . �

Remark 8.33 The elements employed in Theorem 8.32 are easy to interpret when

the ideal comes from geometry. As in Remark 8.28, suppose that I = I (V ) for a
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variety V ⊂ An(k) with irreducible components

V = V1 ∪ . . . ∪ Vr , Vi �⊂ Vj , i �= j.

The associated primes of I (V ) are Pj = I (Vj ), j = 1, . . . , r and

∩i �= j Pi = {a ∈ k[V ] : a ≡ 0 on each Vi , i �= j}.

Theorem 8.32 requires an element a ∈ k[V ] vanishing on Vi for each i �= j but not

on Vj .

Theorem 8.32 is quite useful for computations. Once we have found an element

satisfying its hypotheses, we can effectively compute the corresponding primary

component. The key tool is the following fact:

Proposition 8.34 Let R be a ring, I ⊂ R an ideal, and a ∈ R. Suppose that for
some integer M ≥ 0

I : 〈aM 〉 = I : 〈aM+1〉,

where by convention a0 = 1. Then we have

∪m(I : 〈am〉) = I : 〈aM 〉.

Proof It suffices to show that

I : 〈aM+1〉 = I : 〈aM+2〉.

Indeed, this will imply

I : 〈aM 〉 = I : 〈aM+1〉 = I : 〈aM+2〉 = I : 〈aM+3〉 = . . . ,

which is our result.

Pick r ∈ (I : 〈aM+2〉), so that raM+2 ∈ I . We therefore have ra ∈ I : 〈aM+1〉
and our hypothesis guarantees then that ra ∈ I : 〈aM 〉. We deduce that (ra)aM =
raM+1 ∈ I . �

Example 8.35 We retain the notation of Example 8.27.

What is the distinguished primary ideal Q1 ⊃ P2 corresponding to the minimal

prime P? We shall show that

Q1 = P2 + 〈det(M)〉.

First we establish that det(M) ∈ Q1; if det(M) �∈ Q1 then elements of m would be zero

divisors (and hence nilpotents) modulo Q1, whence m ⊂ √
Q1 = P , a contradiction.

To apply Theorem 8.32, we need an element a ∈ m, a �∈ P; we take a = A.
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Using the algorithms for computing quotient ideals and intersections (Algo-

rithm 8.10 and Proposition 6.19), we compute

P2 : 〈A〉 = 〈AE2 − 2BC E − AF D + C2 D + B2 F, D2 F2 − 2DF E2 + E4,

B F2 D − B F E2 − C E DF + C E3, B E DF − B E3 − C D2 F + C DE2,

B2 F2 − 2B FC E + C2 E2, B E2C − AE3 − C DB F + AE DF,

B2 E2 − ADE2 − B2 DF + AD2 F, C3 E − C2 B F − AFC E + AF2 B,

B EC2 − AE2C − B2C F + B E AF, C E B2 − ADC E − B3 F + ADB F,

DB2C − AD2C − E B3 + ADB E, C4 − 2AFC2 + A2 F2,

BC3 − AEC2 − BC AF + A2 E F, A2 E2 − 2AE BC + B2C2,

B3C − ADBC − B2 AE + A2 DE, A2 D2 − 2ADB2 + B4〉
= 〈det(M)〉 + P2

and

P2 : 〈A2〉 = 〈det(M)〉 + P2.

Proposition 8.34 implies that

Q1 = ∪m P2 : 〈Am〉 = 〈det(M)〉 + P2.

One last intersection computation implies that our primary decomposition is

P2 = (P2 + 〈det(M)〉) ∩ m4.

The component Q2 = m4 is not unique: we could take

Q′
2 = Q2 + 〈g〉, g ∈ m3, g �∈ 〈det(M)〉;

any proper ideal Q′
2 ⊃ mn is m-primary.

8.5 An application to rational maps

Definition 8.36 Let ρ : V ��� W denote a rational map of affine varieties. The

indeterminacy ideal Iρ ⊂ k[V ] is defined

{r ∈ k[V ] : rρ∗ f ∈ k[V ] for each f ∈ k[W ]}.

We leave it to the reader to check that this is an ideal!

This is compatible with our previous definition of the indeterminacy locus:

Proposition 8.37 The indeterminacy locus of ρ is equal to V (Iρ).
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Proof Choose realizations V ⊂ An(k) and W ⊂ Am(k), so that ρ is determined

by the pull-back homomorphism (see Corolllary 3.46)

ρ∗ : k[y1, . . . , ym] → k(V ).

Suppose first that v ∈ V (Iρ). Let

ρ ′ : An(k) ��� Am(k)

be a rational map admissible along V such that ρ ′|V = ρ. Express each coordinate

ρ ′
j = f j/g, with f j , g ∈ k[x1, . . . , xn] and g not dividing zero in k[V ]. We have

gρ∗k[W ] ⊂ k[V ] and thus g ∈ Iρ . Hence g(v) = 0 and ρ ′ is not defined at v . In

particular, v is contained in the indeterminacy locus of ρ.

Assume that v �∈ V (Iρ). We claim there exists an element ḡ ∈ Iρ such that ḡ
does not divide zero in k[V ] and ḡ(v) �= 0. It follows that ḡρ∗y j ∈ k[V ] for each j .

We can then choose polynomials g, f1, . . . , fm ∈ k[x1, . . . , xn] such that g ≡ ḡ and

f j ≡ ḡρ∗y j in k[V ]. The rational map

ρ ′ : An(k) → Am(k)

(x1, . . . , xn) �→ ( f1/g, . . . , fm/g)

is admissible on V and induces ρ.

To prove the claim, we will require the following

Lemma 8.38 (Prime avoidance) Let R be a ring and P1, . . . , Ps prime ideals in R.
If I ⊂ R is an ideal with I ⊂ ∪s

�=1 P� then I ⊂ P� for some �.

We first give the application: The zero divisors of k[V ] are the union of the primes

associated to the zero ideal in k[V ]; they correspond to functions vanishing on at

least one irreducible component of V (see Corollary 8.24 and Remark 8.28.) Let

R = k[V ], P1, . . . , Ps−1 be the primes associated to zero, and Ps the maximal ideal

corresponding to v . Not every element of Iρ is a zero divisor, as ρ has a representative

by a rational map on affine space admissible along V . In particular, Iρ �⊂ ∪s−1
�=1 P� and

Iρ �⊂ Ps = I (v). The lemma says that Iρ �⊂ ∪s
�=1 P�, so we can pick ḡ ∈ Iρ such that

ḡ neither divides zero nor vanishes at v .

Proof of lemma: The argument is by induction: if I ⊂ ∪s
�=1 Pl we show that I is

contained in the union of some collection of s − 1 primes. Suppose, on the contrary,

that for each � = 1, . . . , s there exists r� ∈ I with r� �∈ ∪ j �=� Pj . We must then have

r� ∈ P� for each �. Consider the element

t = r1 + r2 . . . rs ∈ I ⊂ P1 ∪ P2 ∪ . . . ∪ Ps .

If t ∈ P1 then r2 . . . rs ∈ P1 and r� ∈ P1 for some � �= 1. On the other hand, suppose

t ∈ Pj for some j > 1; since r2 . . . rs ∈ Pj , we deduce r1 ∈ Pj . In either case, we

reach a contradiction. �
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Proposition 8.39 Retain the notation of Proposition 8.37. The following are
equivalent:

1. ρ is a morphism;
2. ρ∗k[W ] ⊂ k[V ];
3. Iρ = k[V ].

Proof The equivalence of the first two conditions follows from Corollaries 3.32

and 3.46: rational maps V ��� W (resp. morphisms V → W ) correspond to homo-

morphisms k[W ] → k(V ) (resp. k[W ] → k[V ]). For the third, Iρ = k[V ] precisely

when 1 ∈ Iρ , i.e., when ρ∗ f ∈ k[V ] for each f ∈ k[W ]. �

Our next result sharpens Proposition 8.37 and puts Example 3.49 in a general

framework:

Proposition 8.40 Let k be algebraically closed and consider a rational map of
affine varieties ρ : V ��� W . Then the following are equivalent:

1. ρ is a morphism;
2. the indeterminacy locus of ρ is empty.

Proof The first condition obviously defines the second; we prove the converse.

Let Iρ ⊂ k[V ] denote the indeterminacy ideal; Proposition 8.37 implies V (Iρ) =
∅. Realize V ⊂ An(k) as a closed subset with quotient homomorphism q :

k[x1, . . . , xn] � k[V ], and set I = q∗ Iρ so that V (I ) = V (Iρ). Since V (I ) = ∅,

the Nullstellensatz (Theorem 7.5) implies I = k[x1, . . . , xn] and thus Iρ = k[V ]. It

follows that ρ is a morphism. �

Given a rational map ρ : V ��� Am(k), we seek an algorithm for computing the

indeterminacy ideal

Iρ = {r ∈ k[V ] : rρ∗k[Am(k)] ⊂ k[V ]} ⊂ k[V ],

or, more precisely, its preimage in k[x1, . . . , xn]

JV,ρ := {h ∈ k[x1, . . . , xn] : h (mod I (V )) ∈ Iρ}.

We have

Iρ = {r ∈ k[V ] : r f j/g j ∈ k[V ], j = 1, . . . , m}
= ∩M

j=1{r ∈ k[V ] : r f j/g j ∈ k[V ]}
= ∩M

j=1{r ∈ k[V ] : r f j ∈ g j k[V ]}
= ∩M

j=1〈g j 〉 : 〈 f j 〉,
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which implies

JV,ρ = ∩m
j=1(〈g j 〉 + I (V )) : (〈 f j 〉 + I (V )). (8.1)

The last step is an application of the following general fact

Lemma 8.41 Let ψ : R � S be a surjective ring homomorphism, J1, J2 ⊂ S
ideals with preimages Ii = ψ−1(Ji ) ⊂ R. Then

I1 : I2 = ψ−1(J1 : J2).

Proof The surjectivity of ψ implies ψ(Ii ) = Ji for i = 1, 2. We prove I1 : I2 ⊂
ψ−1(J1 : J2) first. Given r ∈ R with r I2 ⊂ I1, applying ψ yields ψ(r )ψ(I2) ⊂ ψ(I1).

It follows then that ψ(r ) ∈ J1 : J2. We turn to the reverse implication. Take r ∈ R
with ψ(r ) ∈ J1 : J2. For each w ∈ I2 we have ψ(r )ψ(w) = ψ(rw) ∈ J1, hence rw ∈
ψ−1(J1) = I1. It follows that r ∈ I1 : I2. �

Formula 8.1 allows us to compute JV,ρ by iterating our previous algorithms for

computing quotients and intersections (Algorithm 8.10 and Proposition 6.19.)

8.6 Exercises

8.1 Flesh out the details in Example 8.6. Prove

〈x2, xy, y2〉 = 〈y, x2〉 ∩ 〈y2, x〉 = 〈y + x, x2〉 ∩ 〈x, (y + x)2〉

using our algorithm for computing intersections. Verify that the ideals appearing are

irreducible.

8.2 Let C = {(x1, x2) : x3
1 − x2

2 = 0} ⊂ A2(Q) and consider the birational parametriza-

tion

φ : A1(Q) → C
t �→ (t2, t3).

Use the method of §8.5 to compute the indeterminacy ideal Iφ−1 ⊂ Q[C].

8.3 Let P ⊂ R be a prime ideal and m a positive integer. Show that
√

Pm = P . In

particular, if R is Noetherian then P is a minimal associated prime of Pm . In this

case, the primary component of Pm associated to P is called the mth symbolic power
of P .

8.4 Let R be Noetherian and m ⊂ R a maximal ideal. Let Q ⊂ R be an ideal such that

mM ⊂ Q ⊂ m for some M . Show that Q is m-primary.

8.5 (a) Show that the ideal

Q = 〈xy − z2, x〉 ⊂ C[x, y, z]

is primary. Describe the associated prime.
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(b) Compute an irredundant primary decomposition and associated primes of the

ideal

I = 〈z2, yz, xz, y2 − x2(x + 1)〉 ⊂ Q[x, y, z].

(c) Consider the ideal

I = 〈xy, xz〉 ⊂ Q[x, y, z].

Describe the irreducible components of V (I ) and compute the primary decom-

position of I .

8.6 Consider the ideals

P1 = 〈x, y〉, P2 = 〈x, z〉, P3 = 〈y, z〉 ⊂ Q[x, y, z].

Show that the Pi are prime and compute an irredundant primary decomposition and

the associated primes of the product P1 P2 P3.

8.7 Consider the ideals

I1 = 〈x, y〉, I2 = 〈y, z〉.

(a) Compute the intersection I1 ∩ I2, using the Gröbner basis algorithm.

(b) Find a primary decomposition for I1 I2. Does it have an embedded prime?

(c) Does I1 I2 = I1 ∩ I2?

8.8 Let I1, I2 ⊂ k[x1, . . . , xn] be ideals. Show that I1 : I2 = I1 if I2 is not contained in

any of the associated primes of I1.

8.9 Show that a principal ideal in a polynomial ring has no embedded associated primes.

On the other hand, if

R = k[x1, x2, x3, x4]/
〈
x1x4 − x2x3, x3

2 − x2
1 x3, x3

3 − x2x2
4

〉

show that the principal ideal

〈x2〉 ⊂ R

has embedded associated primes.

8.10 Give an example of a primary ideal Q ⊂ k[x1, . . . , xn] which is not irreducible, i.e.,

Q = I1 ∩ I2, I1, I2 �= Q.

8.11 (a) Find generators for the ideals J (Xi ) for the following closed subsets:

X1 = {x0 = x1 = 0} ∪ {x1 = x2 = 0} ∪ {x2 = x3 = 0} ∪ {x3 = x0 = 0} ⊂ P3

X2 = ({x0 = x1 = 0} ∪ {x2 = x3 = 0}) ∩ {x0 + x1 + x2 + x3 = 0} ⊂ P3

(b) Is the ideal J (X2) equal to

J = (〈x0, x1〉 ∩ 〈x2, x3〉) + 〈x0 + x1 + x2 + x3〉?
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(c) Compute the primary decompositions of J (X2) and J . Hint: What is
√

J : 〈 f 〉
for f = x0 + x1 − x2 − x3?

(d) How do you interpret the embedded prime of J?

8.12 Two symmetric n × n matrices M, M ′ are similar if there exists an invertible n × n
matrix T with M ′ = T MT t .

(a) Show that similar matrices have the same rank.

(b) Show that complex matrices of the same rank are similar.

Identify An(n+1)/2(C) with the n × n complex symmetric matrices M = (mi j ). An

ideal I ⊂ C[mi j ] is invariant under similarity if, for every invertible matrix T ,

f (M) ∈ I ⇒ f (T MT t ) ∈ I.

(c) Let Sr ⊂ An(n+1)/2(C) denote the matrices of rank r . Show that I (Sr ) is prime and

invariant. Hint: Consider the morphism

An2 → An(n+1)/2

T �→ T MT t

with image Sr with r = rank(M).

(d) Show that each invariant prime ideal P ⊂ C[mi j ] equals I (Sr ) for some r .



9 Projective geometry

Projective geometry arose historically out of plane geometry. It is very fruitful to in-

troduce points ‘at infinity’ where parallel lines intersect. This leads to a very elegant

approach to incidence questions, where points and lines are on an equal and symmetric

footing. In the context of algebraic geometry, points at infinity are crucial in the state-

ment of uniform results, like Bezout’s Theorem on the intersection of two plane curves.

However, to do projective geometry we must leave the realm of affine varieties. A

projective variety is constructed by gluing a number of affine varieties together. There

are many subtle issues that arise, especially when the base field is not algebraically

closed. These are deferred to the end of this chapter.

Thankfully, there is an extremely concrete approach to projective geometry us-

ing the algebra of homogeneous polynomials. This allows us to apply many of the

computational techniques developed for affine varieties to projective varieties, with

minor modifications. Indeed, concrete problems in affine geometry often become

more transparent once they are translated into projective language.

9.1 Introduction to projective space

Projective n-space Pn(k) is the set of all lines in affine space containing the origin

0 ∈ � ⊂ An+1(k).

Each such line takes the form

span(a0, . . . , an) = λ(a0, . . . , an), λ ∈ k,

where (a0, . . . , an) ∈ An+1(k) − {0}. Two elements (a0, . . . , an), (a′
0, . . . , a′

n) ∈
An+1(k) span the same line if

(a′
0, . . . , a′

n) = λ(a0, . . . , an), λ ∈ k∗.

Thus we can identify projective space with equivalence classes

Pn(k) = (An+1(k) − {0})/ ∼

134



9.1 INTRODUCTION TO PROJECTIVE SPACE 135

where

(a′
0, . . . , a′

n) ∼ (a0, . . . , an) if (a′
0, . . . , a′

n) = λ(a0, . . . , an), λ ∈ k∗.

We’ll use the notation [a0, . . . , an] to denote one of the resulting equivalence classes.

There is a natural way to parametrize ‘most’ lines in An+1(k) by an affine space of

dimension n. For each i = 0, . . . , n, consider the lines of the form

Ui = {[a0, . . . , an] : ai �= 0} ⊂ Pn(k).

The vanishing (or nonvanishing) of ai is compatible with the following equivalence

relation: when [a0, . . . , an] ∼ [a′
0, . . . , a′

n] ai = 0 if and only if a′
i = 0. We have a

function

ψi : Ui → An(k)

[a0, . . . , an] 	→ (a0/ai , . . . , ai−1/ai , ai+1/ai , . . . , an/ai )

with inverse

ψ−1
i : An(k) → Ui

(b0, . . . , bi−1, bi+1, . . . , bn) 	→ [b0, . . . , bi−1, 1︸︷︷︸
ith place

, bi+1, . . . , bn] .

The function ψi identifies lines in Ui with points in the affine space An(k) with

coordinates b0, . . . , bi−1, bi+1, . . . , bn . For any point in Pn(k) some ai �= 0, so we

can express

Pn(k) = U0 ∪ U1 ∪ . . . ∪ Un, Ui � An(k). (9.1)

Example 9.1 The line span(a0, a1) ⊂ A2(k) is defined by the linear equation

a1x0 − a0x1 = 0.

When a0 �= 0 we can divide through by a0 to get

x1 = b1x0, b1 = a1/a0;

these are the lines in U0. When a1 �= 0 we get

x0 = b0x1, b0 = a0/a1,

corresponding to the lines in U1.

What are the lines ‘left out’ by our distinguished subsets Ui ⊂ Pn(k)? The

complement

Hi :=Pn(k)\Ui ={[a0, . . . , ai−1, 0, ai+1, . . . , an] : (a0, . . . , ai−1, ai+1, . . . , an) �= 0}



136 PROJECTIVE GEOMETRY

0
x   = 1

1
x   = 1

(0, 0)

1

0
U   = A

1
U   = A

1

Figure 9.1 Two A1s parametrizing lines in A2.

consists of the lines through the origin in the affine subspace

0 ∈ � ⊂ An(k) = {ai = 0} ⊂ An+1(k).

We therefore may express

Pn(k) = Ui ∪ Hi = An(k) ∪ Pn−1(k),

where we interpret P0(k) as a point.

How do the identifications ψi : Ui � An(k) fit together? Restrict to the intersec-

tions

Ui ∩ U j
ψ j

↙
ψi↘

An(k) An(k)

with i < j for notational simplicity. We consider the compositions ρi j = ψi ◦ ψ−1
j

ψ j (Ui ∩ U j )
ψi ◦ψ−1

j→ ψi (Ui ∩ U j )

|| ||
An(k) \ {bi = 0} ρi j→ An(k) \ {b′

j = 0}.

Since (ψi ◦ ψ−1
j ) ◦ (ψ j ◦ ψ−1

� ) = ψi ◦ ψ−1
� we have the compatibility condition

ρi j ◦ ρ j� = ρi�
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for all i, j, �. We explicitly compute ρi j

(b0, . . . , b j−1, b j+1, . . . , bn)
ψ−1

j−→ [b0, . . . , b j−1, 1, b j+1, . . . , bn]

= [b0/bi , . . . , bi−1/bi , 1, bi+1/bi , . . . , b j−1/bi , 1/bi , b j+1/bi , . . . , bn/bi ]
ψi−→ (b0/bi , . . . , bi−1/bi , bi+1/bi , . . . , b j−1/bi , 1/bi , b j+1/bi , . . . , bn/bi )

which defines a birational map An(k) ��� An(k). Eliminating indeterminacy using

Proposition 3.47, we get an isomorphism of affine varieties

An(k) \ {bi = 0} ρi j→ An(k) \ {b′
j = 0}

|| ||
An(k)bi

∼→ An(k)b′
j
.

Example 9.2 For P1(k) we get a single birational map

ρ01 : A1(k) ��� A1

b0 	→ 1/b0.

For P2(k) we get

ρ01 : A2(k) ��� A2(k)

(b0, b2) 	→ (
b−1

0 , b2/b0

)
,

ρ02 : A2(k) ��� A2(k)

(b′
0, b′

1) 	→ (
b′

1/b′
0, 1/b′

0

)
,

ρ12 : A2(k) ��� A2(k)

(b′
0, b′

1) 	→ (
b′

0/b′
1, 1/b′

1

)

satisfying ρ02 = ρ01 ◦ ρ12.

Remark 9.3 (Coordinate-free approach) Let V be a finite-dimensional k-vector

space of dimension n + 1. The projectivization of V is defined

P(V ) = {one-dimensional vector subspaces � ⊂ V }.

While this is just Pn(k), for some constructions it is useful to keep track of the under-

lying vector-space structure. For example, P(k[x0, . . . , xn]d ) denotes the projective

space modeled on the homogeneous forms of degree d.

9.2 Homogenization and dehomogenization

Each polynomial f ∈ k[x0, . . . , xn] can be decomposed into homogeneous pieces

f = F0 + F1 + · · · + Fd , d = deg( f ),
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i.e., each Fj is homogeneous of degree j in x0, . . . , xn . An ideal J ⊂ k[x0, . . . , xn]

is homogeneous if it admits a collection of homogeneous generators. Equivalently, if

a polynomial is in a homogenous ideal then each of its homogeneous pieces is in that

ideal (see Exercise 9.1).

Dehomogenization with respect to xi is defined as the homomorphism

μi : k[x0, . . . , xn] → k[y0, . . . , yi−1, yi+1, . . . , yn]

xi → 1

x j → y j , j �= 1.

For f ∈ k[y0, . . . , yi−1, yi , . . . , yn], the preimage μ−1
i ( f ) contains

{
x D

i f (x0/xi , . . . , xi−1/xi , xi+1/xi , . . . , xn/xi ) : D ≥ deg( f )
}

and equals the affine span of these polynomials. The homogenization of f with respect
to xi is defined

F(x0, . . . , xn) := xdeg( f )
i f (x0/xi , . . . , xi−1/xi , xi+1/xi , . . . , xn/xi ).

The homogenization of an ideal I ⊂ k[y0, . . . , yi−1, yi+1, . . . , yn] is the ideal gener-

ated by the homogenizations of each f ∈ I .

Given an ideal I = 〈 f1, . . . , fr 〉, the homogenization J need not be generated by

the homogenizations of the elements, i.e.,

J �= 〈
x

deg( f j )

i f j (x0/xi , . . . , xi−1/xi , xi+1/xi , . . . , xn/xi )
〉

j=1,...,r

in general.

Example 9.4 Consider

I = 〈
y2 − y2

1 , y3 − y1 y2

〉 = 〈 f1, f2〉

and dehomogenize with respect to x0

μ0 : k[x0, x1, x2, x3] → k[y1, y2, y3].

The homogenization of the elements f1, f2 gives an ideal

〈
x2x0 − x2

1 , x3x0 − x1x2

〉
� J.

The polynomial h = x2
2 − x1x3 ∈ J because y2

2 − y1 y3 = y2 f1 − y1 f2, but h is not

contained in the ideal generated by the homogenizations of f1 and f2.

Definition 9.5 A monomial order on k[y1, . . . , yn] is graded if it is compatible

with the partial order induced by degree, i.e., yα > yβ whenever |α| > |β|.

For instance, lexicographic order is not graded, because small degree monomials in

the first variable precede large degree monomials in the subsequent variables.
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Theorem 9.6 Let I ⊂ k[y1, . . . , yn] be an ideal and J ⊂ k[x0, . . . , xn] its homog-
enization with respect to x0. Suppose that f1, . . . , fr is a Gröbner basis for I with
respect to some graded order >. Then the homogenizations F1, . . . , Fr of f1, . . . , fr

generate J .

Proof We first introduce an order >x on the x-monomials derived from >. We

define

xα0

0 xα1

1 . . . xαn
n >x xβ0

0 xβ1

1 . . . xβn
n ⇔

{
if yα1

1 . . . yαn
n > yβ1

1 . . . yβn
n ,

or yα1

1 . . . yαn
n = yβ1

1 . . . yβn
n and α0 > β0.

We leave it as an exercise to verify that this defines a monomial order.

The theorem will follow once we show that F1, . . . , Fr form a Gröbner basis for

J with respect to >x ; Corollary 2.14 guarantees they generate J .

Lemma 9.7 Let G ∈ k[x0, . . . , xn] be homogeneous with dehomogenization g =
μ0(G). If LT>(g) = cyα1

1 . . . yαn
n then LT>x (G) = cxdeg(G)−deg(g)

0 xα1

1 . . . xαn
n ; in partic-

ular, LT>(g) = μ0(LT>x (G)).

Let G ′ denote the homogenenization of g with respect to x0, so that G =
xdeg(G)−deg(g)

0 G ′. It suffices to show that LT>x (G ′) = cxα1

1 . . . xαn
n . Since > is graded,

LT>(g) = cyα1

1 . . . yαn
n has degree equal to deg(g). Thus cxα1

1 . . . xαn
n is a term of G ′.

Consider terms in G ′ in which only x1, x2, . . . , xn appear; the leading term of G ′

is one of these. Indeed, terms containing x0 dehomogenize to terms in y1, . . . , yn of

degree < deg(g), and thus are smaller than monomials of degree deg(g) in x1, . . . , xn .

The order induced on monomials in y1, . . . , yn by > coincides with the order induced

on monomials in x1, . . . , xn by >x , so the leading terms of g and G ′ coincide. This

completes the proof of the lemma.

Lemma 9.8 μ0(J ) ⊂ I .

Choose a homogeneous H ∈ J and express

H =
∑

j

A j g j (x1/x0, . . . , xn/x0)x
deg g j

0 , g j ∈ I, A j ∈ k[x0, . . . , xn].

Dehomogenizing with respect to x0, we obtain

μ0(H ) =
∑

j

A j (1, y1, . . . , yn)g j ,

so μ0(H ) ∈ I and the lemma is proven.

Suppose that H is a homogeneous polynomial in J . It suffices to prove that

LT>x (H ) is divisible by LT>x (Fj ) for some j . By the second lemma above h =
μ0(H ) ∈ I . Since f1, . . . , fr are a Gröbner basis for I we have LT>( f j )|LT>(h) for

some j . Applying the first lemma twice, we conclude LT>x (Fj )|LT>x (H ). �
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9.3 Projective varieties

Definition 9.9 A projective variety X ⊂ Pn(k) is a subset such that, for each

distinguished Ui � An(k), i = 0, . . . , n, the intersection Ui ∩ X ⊂ Ui is affine.

Definition 9.10 X ⊂ Pn(k) is Zariski closed if X ∩ Ui is closed in each distin-

guished Ui . For any subset S ⊂ Pn(k), the projective closure S ⊂ Pn(k) is defined as

the smallest closed subset containing S.

Definition 9.11 A projective variety X ⊂ Pn(k) is reducible if it can be expressed

as a union of two closed proper subsets

X = X1 ∪ X2, X1, X2 � X.

It is irreducible if there is no such representation.

We describe a natural way to get large numbers of projective varieties:

Proposition 9.12 Let F ∈ k[x0, . . . , xn] be homogeneous of degree d. Then there
is a projective variety

X (F) := {[a0, . . . , an] : F(a0, . . . , an) = 0} ⊂ Pn(k),

called the hypersurface defined by F. More generally, given a homogeneous ideal
J ⊂ k[x0, . . . , xn], we define

X (J ) := {[a0, . . . , an] : F(a0, . . . , an) = 0 for each homogeneous F ∈ J },

the projective variety defined by J .

Proof Note that F does not yield a well-defined function on Pn(k): If

(a′
0, . . . , a′

n) = λ(a0, . . . , an) then

F(a′
0, . . . , a′

n) = λd F(a0, . . . , an).

However, we can make sense of the locus X (F) where F vanishes, because

F(a′
0, . . . , a′

n) = 0 if and only if F(a0, . . . , an) = 0.

We check this is closed. On Ui we have xi �= 0, so F = 0 if and only if x−d
i F = 0.

However,

f := x−d
i F = F(x0/xi , . . . , xi−1/xi , 1, xi+1/xi , . . . , xn/xi ),

is a well-defined polynomial on An(k). Hence

Ui ∩ X (F) = V ( f ) ⊂ Ui � An(k)



9.4 EQUATIONS FOR PROJECTIVE VARIETIES 141

is affine for each i . The final assertion is obtained by intersecting the X (F) for

homogeneous F ∈ J . �

Example 9.13

1. The 2 × 2 minors of

⎛
⎝ A B C

B D E
C E F

⎞
⎠

define a closed subset of P5(k) (which we’ll show is isomorphic to P2(k)).

2. The 2 × 2 minors of

(
A B C
B C D

)

define a closed subset of P3(k) (which we’ll show is isomorphic to P1(k)).

Given S ⊂ Pn(k), the homogeneous ideal vanishing along S is defined

J (S) = 〈F ∈ k[x0, . . . , xn] homogeneous : F(s) = 0 for each s ∈ S〉.

9.4 Equations for projective varieties

Our goal is to prove that Proposition 9.12 is robust enough to produce every projective

variety:

Theorem 9.14 Let X ⊂ Pn(k) be a projective variety. Then there exists a homo-
geneous ideal J such that X = X (J ).

Our argument will yield an effective algorithm for computing J from the ideals

I (X ∩ Ui ).

Proposition 9.15 If S ⊂ Pn(k) then X (J (S)) = S.

Proof It is clear that S ⊂ X (J (S)), so we have S ⊂ X (J (S)). We prove the

reverse inclusion. Suppose that p �∈ S. There exists a distinguished open subset Ui ⊂
Pn(k) such that p ∈ Ui and xi (p) �= 0. Since Ui ∩ S is closed, there exists a polynomial

f ∈ I (Ui ∩ S) that does not vanish at p. Let F be the homogenization of f ; we still

have F(p) �= 0. Note that F vanishes at all the points of S ∩ Ui and xi vanishes at each

point of S not contained in Ui . Thus xi F ∈ J (S) and (xi F)(p) �= 0, so p �∈ X (J (S)).

�
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Proposition 9.16 Let V ⊂ An(k) � U0 ⊂ Pn be an affine variety with ideal
I (V ) ⊂ k[y1, . . . , yn]. Let J ⊂ k[x0, . . . , xn] denote the homogenization of I (V ).
Then J (V ) = J and X (J ) = V .

Proof Once we prove J (V ) = J , Proposition 9.15 implies X (J ) = V .

We prove J (V ) ⊃ J . For each homogeneous G ∈ J , g := μ0(G) ∈ I (V ) by

Lemma 9.8. Thus G vanishes on [1, a1, . . . , an] whenever (a1, . . . , an) ∈ V , i.e.,

G ∈ J (V ).

Conversely, suppose we are given a homogeneous H ∈ J (V ), so that

H (1, b1, . . . , bn) = 0 for each (b1, . . . , bn) ∈ V . Writing h = μ0(H ), we find that

h ∈ I (V ). We can write

H = xdeg(H )
0 h(x1/x0, . . . , xn/x0) = xdeg(H )−deg(h)

0 H ′

where H ′ is the homogenization of h. In particular, H is contained in the homoge-

nization of I (V ). �

Remark 9.17 In this situation, the hyperplane

H0 := {x0 = 0} = Pn(k) − U0

is often called the hyperplane at infinity. We have H0 ⊃ (V \ V ).

Example 9.18 Note that, in Proposition 9.16, we used the ideal of all functions

vanishing on V rather than an arbitrary ideal vanishing on V . This is actually neces-

sary; using any smaller ideal can lead to unwanted components at infinity.

For instance, consider the ideal

I = 〈
y2

1 + y4
2

〉 ⊂ R[y1, y2]

which defines the origin in R2. The homogenization is

J = 〈
x2

0 x2
1 + x4

2

〉
,

which defines a variety

X (J ) = {x1 = x2 = 0} ∪ {x0 = x2 = 0} ⊂ P2(R).

This is strictly larger than the closure V (I ); it contains an extra point at infinity.

The reason for this pathology is that we are working over a nonclosed field. Over the

complex numbers, {x2
0 x2

1 + x4
2 = 0} ⊂ P2(C) is a plane curve C with two singularities,

[0, 1, 0] and [1, 0, 0]. These singularties are the only real points of C .

The following result reduces the computation of the equations of a projective

variety to the computation of the equations for affine varieties:
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Proposition 9.19 Let X ⊂ Pn be closed, Ii = I (Ui ∩ X ) where Ui ⊂ Pn(k) is one
of the distinguished open subsets, and Ji ⊂ k[x0, . . . , xn] the homogenization of Ii .
Then we have

J (X ) = J0 ∩ J1 ∩ . . . ∩ Jn.

Proof For each i = 0, . . . , n we have

X ⊃ Ui ∩ X

and thus

J (X ) ⊂ J (Ui ∩ X ) = Ji ,

where the last equality follows from Proposition 9.16. In particular, J (X ) ⊂ ∩n
i=0 Ji .

Conversely, each x ∈ X is contained in some distinguished Ui , so X ⊂ ∪n
i=0(X ∩ Ui )

and

J (X ) ⊃ ∩n
i=0 Ji . �

Example 9.20 Consider

X = {
x2

0 + x2
1 = x2

2

} ∪ {x0 = 0} ∪ {x1 = 0} ∪ {x2 = 0} ⊂ P2(C).

We have

U0 ∩ X = {
1 + y2

1 = y2
2

} ∪ {y1 = 0} ∪ {y2 = 0}

and hence

I (U0 ∩ X ) = 〈
y1 y2

(
1 + y2

1 − y2
2

)〉

with homogenization

J0 = 〈
x1x2

(
x2

0 + x2
1 − x2

2

)〉
.

Similarly,

J1 = 〈
x0x2

(
x2

0 + x2
1 − x2

2

)〉
, J2 = 〈

x0x1

(
x2

0 + x2
1 − x2

2

)〉

and therefore

J (X ) = J0 ∩ J1 ∩ J2 = 〈
x0x1x2

(
x2

0 + x2
1 − x2

2

)〉
.

Example 9.21 Consider

X = {
(x0, x1, x2) : x2

0 = x0x1 = x0x2 = x2
1 = x1x2 = x2

2 = 0
} ⊂ P2(k)
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so that

I (U0 ∩ X ) = 〈1〉, I (U1 ∩ X ) = 〈1〉, I (U2 ∩ X ) = 〈1〉

and J0 = J1 = J2 = J = 〈1〉. In particular, X is empty! This shows that we some-

times get additional equations by looking carefully in each of the distinguished open

neighborhoods Ui .

9.5 Projective Nullstellensatz

In the previous section, we gave an example of a homogeneous ideal

J � k[x0, . . . , xn]

where X (J ) = ∅ and J (X (J )) = k[x0, . . . , xn]. Now we describe systematically

when this happens.

Definition 9.22 A homogeneous ideal J ⊂ k[x0, . . . , xn] is irrelevant if J ⊃
〈x N

0 , . . . , x N
n 〉 for some N .

Proposition 9.23 Fix m = 〈x0, . . . , xn〉. A homogeneous ideal J is irrelevant if
and only if either of the following two equivalent conditions holds

1. J ⊃ mM for some M;
2. J is m-primary.

Proof The analysis of m-primary ideals in Example 8.13 shows the equivalence

of the two conditions. It is clear that if the first condition holds then J is irrelevant.

Conversly, if x N
0 , x N

1 , . . . , x N
n ∈ J then every monomial in x0, . . . , xn of degree at

least (n + 1)N is contained in J . �

Proposition 9.24 If J ⊂ k[x0, . . . , xn] is irrelevant then X (J ) = ∅.

Proof By Proposition 9.23, we know that x N
0 , . . . , x N

n ∈ J for some large N ,

hence

X (J ) ⊂ {
x N

0 = x N
1 = . . . = x N

n = 0
} = {x0 = x1 = . . . = xn = 0} = ∅. �

Theorem 9.25 (Projective Nullstellensatz) Let k be algebrically closed and J ⊂
k[x0, . . . , xn] be a homogeneous ideal. Then X (J ) = ∅ if and only if J is irrelevant.

Proof The implication ⇐ is Proposition 9.24. To prove ⇒, assume that X (J ) =
∅. Let Ii be the dehomogenization of J with respect to xi , i.e., Ii = μi (J ). For any

g ∈ Ii with homogenization G, we have

xe
i xdeg(g)

i g(x0/xi , . . . , xn/xi ) = xe
i G ∈ J
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for some e > 0. Indeed, g is the dehomogenization of some homogeneous H ∈ J and

we have H = xe
i G. We deduce Ui ∩ X = V (Ii ) because on Ui ∩ X , g vanishes exactly

where G vanishes. Since Ui ∩ X = ∅, the affine Nullstellensatz II (Theorem 7.5)

implies Ii = 〈1〉, and it follows that xe
i ∈ J . We conclude that J is irrelevant. �

Theorem 9.26 (Projective Hilbert Nullstellensatz) Let k be algebraically closed and
J ⊂ k[x0, . . . , xn] be homogeneous with variety X = X (J ). If H ∈ k[x0, . . . , xn] is
homogeneous and vanishes on X then H N ∈ J for some N.

Proof Retain the notation introduced in the proof of the last theorem. If

hi = μi (H ) is the dehomogenization of H with respect to xi then hNi
i ∈ Ii for some

Ni by the affine Hilbert Nullstellensatz (Theorem 7.3). Rehomogenizing, we get

xei
i H Ni ∈ J for suitable ei > 0. Each monomial of sufficiently large degree is con-

tained in 〈xe0

0 , . . . , xen
n 〉, so we have H M ∈ 〈xe0

0 , . . . , xen
n 〉 for some M � 0. It follows

that

H M H max{N0,...,Nn} ∈ J. �

9.6 Morphisms of projective varieties

Recall that a morphism of affine spaces is a polynomial map

φ : An(k) → Am(k)

(x1, . . . , xn) 	→ (φ1, . . . , φm), φ j ∈ k[x1, . . . , xn].

Naively, we might try to define a morphism φ : Pn(k) → Pm(k) analogously

φ : Pn(k) → Pm(k)

[x0, . . . , xn] 	→ [φ0, . . . , φm], φ j ∈ k[x0, . . . , xn].

This only makes sense when the φ j are all homogeneous of degree d, in which

case

φ[λx0, . . . , λxn] = [λdφ0, . . . , λ
dφm] = [φ0, . . . , φm] = φ[x0, . . . , xn]

and φ is well-defined on equivalence classes.

Definition 9.27 A polynomial (rational) map

φ : Pn(k) ��� Pm(k)

is given by a rule

[x0, . . . , xn] 	→ [φ0, . . . , φm],

where the φ j ∈ k[x0, . . . , xn] are all homogeneous of degree d ≥ 0.
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Of course, φ is defined everywhere on Pn(k) provided the φ j have only trivial

common zeros, i.e., if

φ0(a0, . . . , an) = . . . = φm(a0, . . . , an) = 0 ⇒ a0 = . . . = an = 0. (†)

In other words, φ(a0, . . . , an) determines a point in Pm(k) for each [a0, . . . , an] ∈
Pn(k). The following example suggests why we might want to ask for a bit more:

Example 9.28 Consider the polynomial map

φ : P2(R) ��� P1(R)

[x0, x1, x2] → [
x2

0 + x2
1 , x2

1 + x2
2

]
,

which satisfies both of our naive conditions. However, the same rule does not define

a function

φ : P2(C) → P1(C).

Over C, φ0 and φ1 have a common solution.

Thus condition (†) does not behave well as the coefficient field is varied. We faced

the same issue for the indeterminacy of rational maps over nonclosed fields (see

Example 3.49 and Proposition 8.40.)

We can avoid this problem by insisting that 〈φ0, . . . , φm〉 be irrelevant. Proposi-

tion 9.24 then guarantees that φ is well-defined over any extension:

Proposition 9.29 A polynomial map

φ : Pn(k) ��� Pm(k)

defines a morphism provided the ideal 〈φ0, . . . , φm〉 is irrelevant.

The irrelevance is not a necessary condition for the polynomial map to induce a

morphism (see Exercise 9.10).

This generalizes readily to arbitrary projective varieties X ⊂ Pn(k), with a slight

twist. For a polynomial map φ to specify a morphism

φ : X → Pm(k)

it is not necessary that the φ j have no common solution anywhere on Pn(k). We don’t

care whether φ makes sense on the complement Pn(k) \ X :

Proposition 9.30 Let X ⊂ Pm(k) be a projective variety. A polynomial map φ :

Pn(k) ��� Pm(k) restricts to a morphism X → Pm(k) provided J (X ) + 〈φ0, . . . , φm〉
is irrelevant.
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Remark 9.31 This situation is in marked contrast to the affine case discussed in

Chapter 3: given affine V ⊂ An(k) and W ⊂ Am(k), a morphism φ : V → W always

extends to a morphism φ′ : An(k) → Am(k).

The proofs of Propositions 9.29 and 9.30 make reference to the general definitions

of abstract varieties and morphisms in §9.8. Readers who wish to avoid this machinery

might take Proposition 9.30 as a working definition of a morphism from a projective

variety to projective space.

9.6.1

Projection

and linear

maps

We generalize the distinguished open affine subsets Ui introduced in the definition of

projective space:

Proposition 9.32 Let L = ∑n
i=0 ci xi ∈ k[x0, . . . , xn] be a nonzero homogeneous

linear form. Then the open subset

UL = {[a0, . . . , an] : L(a0, . . . , an) �= 0} ⊂ Pn(k)

is naturally an affine variety, isomorphic to An(k).

This expanded inventory of affine open subsets will be useful in describing morphisms

from Pn(k).

Proof We describe the identification with affine space. Consider the map

	 : UL → An+1(k)

[a0, . . . , an] 	→ (a0/L(a0, . . . , an), . . . , an/L(a0, . . . , an))

and write b0, . . . , bn for the coordinates on affine space. The image of 	 is the affine

hyperplane

V = {(b0, . . . , bn) : c0b0 + · · · + cnbn = 1} ⊂ An+1(k).

Note that V � An(k): If ci �= 0 then the projection


 : V → An(k)

(b0, . . . , bn) 	→ (b0, . . . , bi−1, bi+1, . . . , bn)

has inverse

(b0, . . . , bi−1, bi+1, . . . , bn) 	→ (b0, . . . , bi−1,

(
1 −

∑
j �=i

c j b j

)
/ci , bi+1, . . . , bn).

Thus we obtain a bijective map

ψL = (
 ◦ 	) : UL → An(k)

[a0, . . . , an] 	→ (a0/L , . . . , ai−1/L , ai+1/L , . . . , an/L).
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This discussion might leave a nagging doubt in the reader’s mind: is ψL compatible

with the identifications ψi : Ui → An(k) used in the definition of projective space?

Consider how these fit together over the intersections

UL ∩ U j
ψ j

↙
ψL↘

An(k) An(k)

where we assume i < j for notational simplicity. The composition

ϕ j (UL ∩ U j )
ψL◦ψ−1

j→ ψL (UL ∩ U j )

|| ||
An(k) \ {L = 0} ρi j→ An(k) \ {b j = 0},

where L = L(b′
0, . . . , b′

j−1, 1, b′
j+1, . . . , b′

n), is given by

(b′
0/L , . . . , b′

i−1/L , b′
i+1/L , . . . , b′

j−1/L , 1/L , b′
j+1/L , . . . , b′

n/L).

These are birational, just as in the case of the distinguished affine open subsets. �

Remark 9.33 A more formal approach, explicitly using the language of abstract

varieties, is sketched in Exercise 9.22.

Corollary 9.34 Let X ⊂ Pn(k) be projective and L ∈ k[x0, . . . , xn] be a linear
form such that L �∈ J (X ). Then

UL ∩ X ⊂ UL � An(k)

is naturally an affine variety.

Definition 9.35 A linear map φ : Pn(k) ��� Pm(k) is a polynomial map induced

by a linear transformation, i.e., there exists an (m + 1) × (n + 1) matrix A with entries

in k such that

φ[x0, . . . , xn] = [a00x0 + · · · + a0n xn, . . . , am0x0 + · · · + amn xn].

Proposition 9.36 (Linear case) Fix a linear map τ : Pn(k) ��� Pm(k) with matrix
A. It defines a morphism Pn(k) → Pm(k) if A has trivial kernel. If X ⊂ Pn(k) is
projective then τ defines a morphism X → Pm(k) if

J (X ) + 〈Li := ai0x0 + · · · + ain xn, i = 0, . . . , m〉

is irrelevant.
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Figure 9.2 Projection from a point in P3.

A morphism τ : Pn(k) → Pn(k) induced by an invertible (n + 1) × (n + 1) matrix is

called a projectivity.

Proof It suffices to prove the second assertion, which subsumes the first. Let

V0, . . . , Vm be the distinguished affine open subsets of Pm(k) and ULi ⊂ Pn(k) the

corresponding affine open subsets. We tacitly ignore rows of A which are zero.

Using the identifications of Proposition 9.32, τ induces a sequence of morphisms

of affine varieties

ULi

τ→ Vi , i = 0, . . . , m
|| ||

An(k)
τi→ Am(k).

Assuming that the entry ai,� �= 0, we can compute τi :

(b0, . . . , b�−1, b�+1, . . . , bn)
ψ−1

Li ,P
n	→ [b0, . . . , b�−1, (1−∑

j �=� ai j b j )/ai�, b�+1, . . . , bn]
τ	→ [L ′

0, . . . , L ′
i−1, 1, L ′

i+1, . . . , L ′
m]

ψi,P m	→ (L ′
0, . . . , L ′

i−1, L ′
i+1, . . . , L ′m)

where

L ′
r = ar0b0 + · · · + ar�−1b�−1 + ar�

(
1 −

∑
j �=�

ai j b j

)
/ai� + ar�+1b�+1 + · · · arnbn

for r �= i . These are morphisms of affine spaces.

These together define a morphism X → Pm(k) provided the ULi , i = 0, . . . , m
cover X . In the language of Section 9.8, {ULi ∩ X}i=0,...,m is an affine open covering

of X . This is guaranteed by our irrelevance hypothesis: the linear equations

L0 = L1 = . . . = Lm = 0

have no nontrivial solutions along X–even over extensions of k. Thus the ULi contain

all of X . �
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Definition 9.37 Let  ⊂ Pn(k) be a linear subspace, i.e., the locus defined by

the vanishing of linearly independent forms L0, . . . , Lm for m < n. The polynomial

map

π : Pn(k) ��� Pm(k)

[x0, . . . , xn] 	→ [L0, . . . , Lm]

is called projection from the subspace .

9.6.2

Veronese

morphisms

We give another special instance of Proposition 9.29. Because of the importance of

this example, we offer a precise description of its image:

Proposition 9.38 (Veronese embedding) The polynomial map

ν(d) : Pn(k) → P(k[x0, x1, . . . , xn]d ) = P(n+d
d )−1(k)

[x0, . . . , xn] 	→ [
xα = xα0

0 . . . xαn
n

]
︸ ︷︷ ︸
all monomials with |α|=d

is a morphism. Its image is closed and defined by the equations

zαzβ = zγ zδ (9.2)

for all indices with α + β = γ + δ. Moreover, ν(d) is an isomorphism onto its image.

This is called the Veronese embedding, after Giuseppe Veronese (1854–1917).

Proof The equations correspond to the identities

xαxβ = xγ xδ, α + β = γ + δ.

We show that ν(d) defines a morphism by analyzing it over each of the distinguished

affine open subset Ui ⊂ Pn(k). For notational simplicity we assume i = 0. Now U0

is mapped into the distinguished affine open subset

Ud0...0 = {zd0...0 �= 0} ⊂ P(n+d
d )−1(k),

so we must show that the induced map of affine spaces ν(d)0 : U0 → Ud0...0 is a

morphism.

Let y1, . . . , yn and wα1...αn be coordinates on U0 and Ud0...0 respectively. The second

set of variables is indexed by nonconstant monomials of degree ≤ d in n variables,

i.e., the dehomogenizations of the xα other than xd
0 . The map ν(d)0 is given by

(y1, . . . , yd ) 	→ (yα)0<α1+···+αn≤d .
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This corresponds to the homomorphism

ν(d)∗0 : k[wα] → k[y1, . . . , yn]

wα1...αn 	→ yα1

1 . . . yαn
n

so ν(d)0 is a morphism of affine varieties.

The image of ν(d)0 is easy to characterize in terms of polynomial equations: For

each i = 1, . . . , n, write

ı̂ = (0, . . . , 0︸ ︷︷ ︸
i−1 times

, 1, 0, . . . , 0︸ ︷︷ ︸
n−i times

)

and wı̂ the corresponding variable, i.e., ν(d)∗0wı̂ = yi . For each (β1, . . . , βn) with

β1 + · · · + βn < d , we have the relation (cf. Exercise 1.3):

qβ := wı̂ wβ1...βi ...βn − wβ1...βi−1βi +1βi+1...βn = 0.

Thus all the wα are determined from the wı̂ and we have

k[wα]/ 〈qβ〉︸︷︷︸
all β

� k[w 1̂, . . . , wn̂].

This proves that image(ν(d)0) is closed and isomorphic to affine n-space with coordi-

nates w 1̂, . . . , wn̂; moreover, ν(d)0 : U0 → image(ν(d)0) is an isomorphism. Finally,

the homogenization of qβ is

zd−10...010...0zβ0β1...βi ...βn − zβ0−1β1...βi +1...βn zd0...0 = 0

where the ‘1’ in the first subscript occurs in the i th position and β0 = d − (β1 + · · · +
βn) > 0. These are instances of the equations (9.2).

To complete the argument, we check that the projective variety defined by the

equations (9.2) lies in the union of the n + 1 distinguished affine open subsets

Ud0...0 ∪ U0d0...0 ∪ . . . U0...0d .

(Then the local analysis above implies ν(d) is an isomorphism onto its image.)

Suppose we have

zd0...0 = z0d0...0 = . . . = z0...0d = 0.

Iteratively applying the equations (9.2), we obtain

zd
α0...αn

= zα0

d0...0zα1

0d0...0 . . . zαn
0...0d

for each α. (This combinatorial deduction is left as an exercise.) It follows that

zα0...αn = 0 for each α. �

We pause to flesh out some important special cases of Proposition 9.38:
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Example 9.39 The Veronese embeddings of P1 take the form

φ : P1(k) → Pm(k)

[x0, x1] → [
xm

0 , xm−1
0 x1, . . . , xm

1

]
.

The image is called the rational normal curve of degree m. It is defined by the 2 × 2

minors of the 2 × m matrix

(
zm 0 zm−1 1 . . . z1 m−1

zm−1 1 zm−2 2 . . . z0 m

)
.

Example 9.40 The degree-2 Veronese embedding takes the form

φ : Pn(k) → P(n+2
2 )−1(k)

[x0, x1, . . . , xn] → [
x2

0 , x0x1, x0x2 . . . , xn−1xn, x2
n

]
.︸ ︷︷ ︸

all monomials of degree 2

The image is defined by the 2 × 2 minors of the symmetric (n + 1) × (n + 1) matrix

M , where Mi j = M ji is the coordinate function mapped to xi x j .

Proposition 9.38 gives a large number of affine open subsets in Pn(k).

Proposition 9.41 Let F ∈ k[x0, . . . , xn] be homogeneous of degree d > 0. The
open subset

VF = {(x0, . . . , xn) ∈ Pn(k) : F(x0, . . . , xn) �= 0} ⊂ Pn(k)

naturally carries the structure of an affine variety.

Proof Express

F =
∑
|α|=d

cαxα

and write

HF := {[zα] : L F =
∑

α

cαzα = 0} ⊂ P(n+d
d )−1(k)

for the corresponding hyperplane with complement

UF :=
{

[zα] :
∑

α

cαzα �= 0

}
.

By Proposition 9.32, UF is naturally affine space with coordinate ring

k[bα]/〈
∑

α

cαbα − 1〉.
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The Veronese map ν(d) identifies VF with the intersection UF ∩ ν(d)(Pn). Propo-

sition 9.38 implies ν(d)(Pn) is cut out by homogeneous equations, so

UF ∩ ν(d)(Pn) ⊂ UF � A(n+d
d )−1

is defined by polynomial equations and thus is affine. �

Remark 9.42 The coordinate ring of UF has an alternate description

k[UF ] � k[zα][L−1
F ]degree 0,

the quotients G/L N
F with G homogeneous of degree N in the zα . With a bit more

work, we could compute analogously

k[VF ] = (k[x0, . . . , xn][1/F])degree 0,

the homogeneous fractions in k[x0, . . . , xn][1/F] of degree zero.

Example 9.43 Let F = x2
1 + 4x1x2 − 3x2

2 . Then we can realize VF ⊂ P2(k) as

the affine variety

{
(y02, y11, y20) : y2

11 = y02 y20, y20 + 4y11 − 3y02 = 1
}
.

Example 9.44 Let X = {(x0, x1, x2) : x3
0 + x3

1 + x3
2 = 0} ⊂ P2(C) be a plane

curve. The rule from Example 9.28 does define a morphism on X

φ : X → P1(C)

[x0, x1, x2] 	→ [
x2

0 + x2
1 , x2

1 + x2
2

]
.

We have

φ−1[0, 0] = {[1, i, 1], [1, −i, 1], [−1, i, 1], [−1, −i, 1]} ⊂ P2(k),

which is disjoint from X .

9.6.3

Proof of

Proposi-

tions 9.29

and 9.30

Every polynomial rational map

φ : Pn(k) ��� Pm(k)

can be factored

Pn(k)
ν(d)→ P(n+d

d )−1(k)
τ��� Pm,

where ν(d) is the Veronese embedding and τ is linear. Indeed, writing each coordinate

function

φi =
∑

α

ci ;αxα, deg(α) = d,
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τ arises from the (m + 1) × (n+d
d

)
matrix (ci ;α). Our results follow from Proposi-

tions 9.38 and 9.36.

9.7 Products

Proposition 9.45 (Segre embedding) The product Pm(k) × Pn(k) is a projective
variety. It can be realized as the locus in Pmn+m+n(k) where the 2 × 2 minors of

⎛
⎜⎜⎝

z00 z01 . . . z0n

z10 z11 . . . z1n

. . . . . . . . . . . .

zm0 zm1 . . . zmn

⎞
⎟⎟⎠ (9.3)

vanish. Here we regard Pmn+m+n(k) as the projective space of all (m + 1) × (n + 1)

matrices (zi j ).

This is called the Segre embedding of Pm(k) × Pn(k) into Pmn+m+n(k), after Corrado

Segre (1863–1924).

Proof Our analysis here presumes the abstract variety structure on the product

Pm(k) × Pn(k) (cf. Proposition 9.52).

Our first task is to construct a morphism

φ : Pm(k) × Pn(k) → P(m+1)(n+1)−1(k).

This is given by the rule

[x0, . . . , xm] × [y0, . . . , yn] → [x0 y0, x0 y1, . . . , x0 yn, x1 y0, . . . , x1 yn, x2 y0, . . .],

which is well-defined on projective equivalence classes.

Consider the distinguished affine open subsets Vi = {[x0, . . . , xm] : xi �= 0} ⊂
Pm(k), W j = {[y0, . . . , yn] : y j �= 0} ⊂ Pn(k), and Ui j = {[z00, . . . , zmn] : zi j �=
0} ⊂ Pmn+m+n(k). Note that φ(Vi × W j ) ⊂ Ui j for each i and j .

The restriction of φ to V0 × W0 takes the form

V0 × W0 → U00

[1, x1/x0, . . . , xm/x0] , [1, y1/y0, . . . , yn/y0] 	→ [xi y j/x0 y0].

If a1, . . . , am and b1, . . . , bn are coordinates on V0 � Am(k) and W0 � An(k), φ can

be expressed

φ00 : Am(k) × An(k) → Amn+m+n(k)

(a1, . . . , am,b1, . . . , bn) 	→ (b1, b2, . . . , bn, a1, a1b1, . . . , a1bn, a2, a2b1,. . . , ambn).

This is a morphism of affine varieties.
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We claim that image(φ) is closed and

Pm(k) × Pn(k)
�→ image(φ).

Fix coordinates on U00:

c01, . . . , c0n, c11, . . . , c1n, . . . , cmn

such that

φ∗
00c0 j = b j , φ

∗
00ci0 = ai , φ

∗
00ci j = ai b j , i = 1, . . . , m, j = 1, . . . , n.

The image of φ00 is the closed set defined by the relations ci j = ci0c0 j , which is

isomorphic to affine space Am+n(k) with coordinates c10, . . . , cm0, c01, . . . , c0n . (In-

deed, φ00 has a left inverse: project onto the variables corresponding to the a j and

bi .) Repeating this over each of the distinguished affine opens, we conclude that each

local realization φi j : Vi × W j → Ui j has closed image and is an isomorphism onto

its image.

It remains to extract homogeneous equations for the image. Homogenizing ci j =
ci0c j0 yields zi j z00 = zi0z0 j . Working over all the distinguished affine open sets, we

obtain the relations

zi j zh� = zi�zhj , i, h = 0, . . . , m, j, � = 0, . . . , n,

which are the 2 × 2 minors of our matrix. �

Remark 9.46 Identify the (m + 1) × (n + 1) matrices (zi j ), up to scalar mul-

tiplication, with Pmn+m+n(k). The matrices of rank 1 form a closed subset R1 ⊂
Pmn+m+n(k), defined by the 2 × 2 minors of (zi j ). The image of a rank-1 matrix

(zi j ) is a one-dimensional subspace of km+1, thus a point in Pm(k). The kernel is a

codimension-1 linear subspace of kn+1, defined by a linear form

ker(zi j ) = {(w0, . . . , wn) ∈ kn+1 : a0w0 + · · · + anwn = 0},
where (a0, . . . , an) is proportional to any of the nonzero rows of (zi j ). We regard

[a0, . . . , an] ∈ Pn(k), the projective space associated to the vector space dual to kn+1.

This gives us a function

R1 → Pm(k) × Pn(k)

(zi j ) 	→ (image(zi j ), linear form vanishing on ker(zi j )).

Since there is a unique rank-1 matrix with prescribed kernel and image, this is a

bijection.

We can now address one complication that arises in the study of morphisms of

projective varieties. Consider projection onto the first factor

π1 : P1(k) × P1(k) → P1(k)

([x0, x1], [y0, y1]) 	→ [x0, x1],
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which is definitely a morphism. And we have just seen how P1(k) × P1(k) can be

realized as the surface

{[z00, z01, z10, z11] : z00z11 = z01z10} ⊂ P3(k).

Does π1 come from a polynomial map P3(k) → P1(k)? Definitely not! Any degree-d
polynomial in the zi j corresponds to a polynomial homogeneous of degree d in both

{x0, x1} and {y0, y1}; the degree in the xi equals the degree in the yi . However, π1

cannot be represented with such polynomials.

The polynomial rational maps P3(k) ��� P1(k) best approximating π1 are

φ : P3(k) ��� P1(k)

[z00, z01, z10, z11] 	→ [z00, z10],

φ′ : P3(k) ��� P1(k)

[z00, z01, z10, z11] 	→ [z01, z11].

Note that φ agrees with π1 away from the line

{z00 = z10 = 0} = P1(k) × [0, 1] ⊂ P1(k) × P1(k) ⊂ P3(k);

φ′ agrees with π1 away from the line

{z01 = z11 = 0} = P1(k) × [1, 0] ⊂ P1(k) × P1(k) ⊂ P3(k).

9.8 Abstract varieties

We would like to endow Pn(k) with the structure of a variety, compatible with our

decomposition (9.1) as a union of affine spaces. To achieve this we will need a more

flexible definition of algebraic varieties, going beyond the affine examples we have

studied up to this point. This section can be omitted on first reading.

9.8.1

Graphs of

birational

maps

Let ρ : V ��� W be a birational map and �ρ ⊂ V × W the closure of its graph. Let

pV : �ρ → V and pW : �ρ → W be the morphisms induced by the projections. Let

Iρ ⊂ k[V ] denote the indeterminacy ideal of ρ and Iρ−1 ⊂ k[W ] the indeterminacy

ideal of its inverse. Consider the intersection of the graphs of ρ and ρ−1

Uρ = {(v, w) : ρ defined at v, ρ−1 defined at w}.

We can regard this as an open subset of both V and W . By Proposition 8.37, we have

Uρ = �ρ \ (
p−1

V V (Iρ) ∪ p−1
W V (Iρ−1 )

)
.

We are interested in whether Uρ = �ρ , i.e., whether the indeterminacy p−1
V V (Iρ)

or p−1
W V (Iρ−1 ) actually meets �ρ . This might be sensitive to the field – indetermi-

nacy may be apparent only after base extension (see Example 3.49.) However, if k is
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algebraically closed then Proposition 8.40 (or a direct argument using the Nullstel-

lensatz) implies that Uρ = �ρ if and only if

I (�ρ) + (p∗
V Iρ ∩ p∗

W Iρ−1 ) = k[V × W ].

We say then that ρ : V ��� W satisfies the closed graph condition. In this case, Uρ

is naturally an affine variety.

Example 9.47 The birational map

ρ : A1(k) ��� A1(k)

x 	→ 1/x

satisfies the closed graph condition. We have I (�ρ) = 〈xz − 1〉, Iρ = 〈x〉, and Iρ−1 =
〈z〉, so that

I (�ρ) + (k[x, z]Iρ ∩ k[x, z]Iρ−1 ) = 〈1 − xz, xz〉 = k[x, z].

The birational morphism

ρ : A2(k) ��� A2(k)

(x1, x2) 	→ (x1, x1x2)

does not satisfy the closed graph condition. Here I (�ρ) = 〈y1 − x1, y2 − x1x2〉, Iρ =
k[x1, x2], and Iρ−1 = 〈y1〉, so we have

〈y1 − x1, y2 − x1x2, y1〉 �= k[x1, x2, y1, y2].

9.8.2

Coverings of

affine

varieties

For pedagogical reasons, we introduce the ideas behind abstract varieties in the

familiar context of affine varieties, where they are more transparent.

Let V be an affine variety. Choose g0, . . . , gn ∈ k[V ] and write Ui = {v ∈ V :

gi (v) �= 0} for each i . Suppose that 〈g0, . . . , gn〉 = k[V ], so there exist h0, . . . , hn ∈
k[V ] with

h0g0 + · · · + hngn = 1.

In particular, for each v ∈ V we have gi (v) �= 0 for some i and

V = U0 ∪ U1 . . . ∪ Un.

If k is algebraically closed then the fact that V can be expressed as a union of the Ui s

implies that 〈g0, . . . , gn〉 = k[V ]; this follows from the Nullstellensatz (Theorem 7.5).

As in the proof of Proposition 3.47, we endow each open subset Ui with the

structure of an affine variety. Let

Vgi := {(v, z) : gi (v)z = 1} ⊂ V × A1(k)
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so that projection onto V maps Vgi bijectively onto Ui . The collection {Vgi }i=0,...,n

is called an affine open covering of V . The intersections Ui1
∩ . . . ∩ Uir also are

naturally affine varieties; they correspond to the affine open subsets Vgi1 −gir
.

Here is the crucial property of affine open coverings:

Theorem 9.48 Let V and W be affine varieties. A morphism φ : V → W is equiv-
alent to the data of an affine open covering {Vgi }i=0,...,n and a collection of morphisms
{φi : Vgi → W, i = 0, . . . , n} satisfying the compatibility φi |Vgi g j = φ j |Vgi g j .

Proof Given φ : V → W , we obtain φi by composing

Vgi ↪→ V → W

where the first arrow is the standard projection morphism. These are compatible on

the intersections Vgi g j by construction.

Conversely, suppose we are given a collection {φi } as above. By Proposition 3.31,

we get a collection of k-algebra homomorphisms

φ∗
i : k[W ] → k[V ][g−1

i ].

The morphism Vgi g j ↪→ Vgi corresponds to the localization homomorphism

k[V ][g−1
i ] → k[V ][(gi g j )

−1]. By assumption the compositions

k[W ]
φ∗

i→ k[V ]
[
g−1

i

] → k[V ][(gi g j )
−1] k[W ]

φ∗
j→ k[V ]

[
g−1

j

] → k[V ][(gi g j )
−1]

are equal.

We construct a unique k-algebra homomorphism

ψ : k[W ] → k[V ]

such that for each f ∈ k[W ] and i = 0, . . . , n we have ψ( f ) = φ∗
i f in k[V ][g−1

i ].

Our desired φ : V → W is the unique morphism with φ∗ = ψ .

Lemma 9.49 Let R be a ring and g0, . . . , gn ∈ R such that

h0g0 + h1g1 + · · · + hngn = 1

for some h0, . . . , hn ∈ R. Then for each N > 0 there exist h′
0, . . . , h′

n such that

h′
0gN

0 + h′
1gN

1 + · · · + h′
ngN

n = 1.

Proof of lemma: Taking N (n + 1) powers and expanding gives

∑
e0+···+en=N (n+1)

Pe0...en (h0, . . . , hn)ge0

0 . . . gen
n = 1



9.8 ABSTRACT VARIETIES 159

where Pe0...en (h0, . . . , hn) is a suitable polynomial in the hi . For each term, one of the

ei ≥ N , i.e., each summand is divisible by gN
i for some i . Regrouping terms in the

summation gives the result. �

First, if ψ( f ) exists it must be unique: Suppose we have another ψ̂( f ) ∈ k[V ] with

ψ̂( f ) = ψ( f ) ∈ k[V ][g−1
i ] for each i . Then there exists an N such that gN

i (ψ̂( f ) −
ψ( f )) = 0 for each i . It follows that

ψ̂( f ) − ψ( f ) =
n∑

i=0

h′
i g

N
i ((ψ̂( f ) − ψ( f )) = 0.

Second, observe that this uniqueness forces ψ to be a homomorphism: Given f1, f2 ∈
k[W ], ψ( f1) = φ∗

i ( f1) and ψ( f2) = φ∗
i ( f2) in k[V ][g−1

i ] imply that

ψ( f1) + ψ( f2) = φ∗
i ( f1 + f2).

Thus ψ( f1 + f2) = ψ( f1) + ψ( f2). A similar argument proves ψ( f1 f2) =
ψ( f1)ψ( f2).

It suffices then to write a formula for ψ and verify the required properties. Given

f ∈ k[W ], choose N such that gN
i φ∗

i ( f ) ∈ k[V ] for each i and (gi g j )
N φ∗

i ( f ) =
(gi g j )

N φ∗
j ( f ) for each i, j . Write

ψ( f ) =
n∑

j=0

h′
j

(
gN

j φ∗
j ( f )

)

so that

gN
i ψ( f ) = ∑n

j=0 h′
j (g j gi )

N φ∗
j ( f )

= ∑n
j=0 h′

j (g j gi )
N φ∗

i ( f )

=
(∑n

j=0 h′
j g

N
j

)
gN

i φ∗
i ( f )

= 1 · gN
i φ∗

i ( f )

which means that ψ( f ) = φ∗
i ( f ) in k[V ][g−1

i ]. �

How are the various affine open subsets Vgi related? Suppose that gi , g j ∈ k[V ]

are not zero divisors so that

k
(
Vgi

) = k(V ) = k
(
Vg j

)
.

In particular, Vgi and Vg j are birational, and Corollary 3.46 yields inverse rational

maps

ρi j : Vg j ��� Vgi , ρ j i : Vgi ��� Vg j .

The birational maps ρi j are called the gluing maps.
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The birational maps ρi j satisfy the closed-graph property. Since

Vgi g j ⊂ �ρi j ⊂ Vgi × Vg j

it suffices to show that Vgi g j is closed in the product. Ifπi : Vgi → V andπ j : Vg j → V
are the standard projections then

(πi , π j )
−1�V = {(v1, v2) : πi (v1) = π j (v2)} ⊂ Vgi × Vg j ⊂ (V × A1(k))2

is closed by Exercise 3.10. This is equal to

{(v, zi , z j ) ∈ V × A1(k) × A1(k) : zi gi (v) = z j g j (v) = 1},
i.e., the affine variety with coordinate ring k[V ][g−1

i , g−1
j ]. The isomorphism of k-

algebras

k[V ][g−1
i , g−1

j ]
∼→ k[V ][(gi g j )

−1]

induces an isomorphism of affine varieties

Vgi g j

∼→ (πi , π j )
−1�V .

9.8.3

Definition of

abstract

varieties

An abstract variety X consists of a collection of affine varieties U0, . . . , Un and

birational maps

ρi j : U j ��� Ui

satisfying the closed-graph property and the compatibility conditions

ρi j ◦ ρ j� = ρi�

for all i, j, � ∈ {0, . . . , n}.
We regard X as the quotient of the disjoint union

U0 � . . . � Un

under the equivalence relation ≈ generated by the following ‘gluing data’: Given

ui ∈ Ui and u j ∈ U j , ui ≈ u j if ρi j is defined at u j and ui = ρi j (u j ). The ρi j are

called the gluing maps. The intersection Ui ∩ U j ⊂ X therefore has the structure of

the affine variety Ui j := �ρi j .

The collection {Ui }i=0,...,n is called an affine open covering of X . We say that

Z ⊂ X is closed if each intersection Z ∩ Ui is closed in Ui .

Example 9.50 Let V be affine and g0, . . . , gn ∈ k[V ] as in § 9.8.2. Then the

collection of open affines

Ui = {v ∈ V : gi (v) �= 0}

makes V into an abstract variety.
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A refinement {Wi ;�} of a covering {Ui } is a union of open coverings {Wi ;�}�=1,...,mi

of each Ui , as described in §9.8.2. There are induced birational gluing maps among

the Wi ;�.

Let X be an abstract variety and W an affine variety. A morphism φ : X → W is

specified over an affine open covering {Ui } of X by a collection of morphisms

φi : Ui → W

compatible with the gluing maps ρi j : U j → Ui , i.e., φ j = φi ◦ ρi j , for each i, j . The

compatibility condition is equivalent to stipulating that φi |Ui j = φ j |Ui j , for each i, j .

Theorem 9.48 shows that our new definition is consistent with our orginial definition

when X = V is affine and {Ui = Vgi } arises as in § 9.8.2. It also guarantees our defi-

nition respects refinements of affine open coverings. We do not distinguish between

a morphism specified over a covering and the morphisms arising from refinements of

that covering.

A morphism of abstract varieties φ : X → Y is specified by the following data:

affine open coverings {Ui }i=0,...,n and {Vj } j=0,...,m with gluing maps ρia : Ua ��� Ui

and ξ jb : Vb ��� Vj for X and Y respectively, and a collection of morphisms

{
φ j(i),i : Ui → Vj(i)

}
i=0,...,n,

with j(i) ∈ {0, . . . , m}, such that the compatibility condition

φ j(i),i ◦ ρia = ξ j(i) j(a) ◦ φ j(a),a

holds for each i, a ∈ {0, . . . , n}. Equivalently

φ j(i),i

∣∣Uia = (
ξ j(i), j(a) ◦ φ j(a),a

)∣∣Uia

holds on the interesections Uia = Ui ∩ Ua .

Remark 9.51 If we fix coverings {Ui } and {Vj } of X and Y then most φ : X → Y
cannot be realized by compatible collections of morphisms {φ j(i),i : Ui → Vj(i)}. As

we saw in our analysis of morphisms of projective spaces, the choice of covering

must take into account the geometry of the morphism.

We define rational maps of abstract varieties analogously.

The formalism of abstract varieties is quite useful for constructing products:

Proposition 9.52 Let X and Y be abstract varieties. Then the product X × Y has
a natural structure as an abstract variety and admits natural projection morphisms
π1 : X × Y → X and π2 : X × Y → Y .

Sketch proof Let {Ui }i=0,...,m and {Vj } j=0,...,n be coverings of X and Y respec-

tively by affine open subsets, and ρia : Ua ��� Ui and ξ jb : Vb ��� Vj the birational
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gluing maps. The product X × Y is covered by the affine varieties {Ui × Vj } with

gluing maps

(ρia, ξ jb) : Ua × Vb ��� Ui × Vj .

The projections

π1 : Ui × Vj → Ui , π2 : Ui × Vj → Vj

are clearly compatible with the gluing maps, and thus define the desired morphisms.

�

9.9 Exercises

9.1 Show that an ideal J ⊂ k[x0, . . . , xn] is homogeneous if, and only if, for each f ∈ J
the homogeneous pieces of f are all in J .

9.2 For a = [a0, . . . , an] ∈ Pn(k), show that

J (a) = 〈xi a j − x j ai 〉i, j=0,...,n.

9.3 Let Z = P1(k) � P1(k) � P1(k) be the disjoint union of three copies of P1(k). Show that

Z � X × P1(k) where X = {p0, p1, p2} ⊂ P1(k). Realize Z explicitly as a projective

variety and find its homogeneous equations. Consider the disjoint union

W = P1(k) � P1(k) . . . � P1(k)︸ ︷︷ ︸
n times

.

Explain how W can be realized as a closed subset of P3(k).

9.4 Let I, J ⊂ k[x0, . . . , xn] be irrelevant ideals. Show that I ∩ J and I + J are also

irrelevant.

9.5 Consider the polynomial map

[x0, x1, x2, x3] 	→ [x0x1, x0x2, x0x3, x1x2, x1x3, x2x3].

(a) Does this induce a well-defined morphism

φ : P3(Q) → P5(Q)?

(b) Consider the hypersurface

X = {
[x0, x1, x2, x3] : x2

0 + x2
1 + x2

2 + x2
3 = 0

} ⊂ P3(C).

Does our polynomial map induce a well-defined morphism X → P5(C)?

9.6 Consider the homogeneous ideal

J = 〈
x2

0 x1, x3
1 , x1x2

2

〉
.
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(a) Let Ii , i = 0, 1, 2 denote the dehomogenization of J with respect to xi . Compute

each Ii .

(b) Let Ji be the homogenization of Ii with respect to xi . Compute each Ji .

(c) Compute the intersection J ′ := J0 ∩ J1 ∩ J2. Show that J � J ′.
(d) Show that (J : 〈x0, x1, x2〉) �= J .

9.7 Describe the irreducible components of the projective variety

X = {[x0, x1, x2, x3] : x0x1 − x2x3 = x0x2 − x1x3 = 0} ⊂ P3(k).

Hint: You may find it easier to work first in the distinguished affine neighborhoods.

9.8 Consider the ideal

I = 〈y2 − y2
1 , y3 − y1 y2, . . . , yn − y1 yn−1〉 = 〈yi+1 − y1 yi , i = 1, . . . , n − 1〉.

Show that the homogenization of I is generated by the 2 × 2 minors of the matrix

(
x0 x1 . . . xn−1

x1 x2 . . . xn

)
.

Compare this with Examples 1.5 and 9.39 and Exercise 1.3.

9.9 Consider the rule φ : [s, t] → [s4, s2t2, t4].

(a) Show that φ defines a morphism P1(k) → P2(k).

(b) Compute the image φ(P1(k)) ⊂ P2(k) and its closure φ(P1(k)).

(c) Show that φ is not dominant.

9.10 Consider the polynomial rational map

φ : P1(k) ��� P2(k)

[x0, x1] 	→ [
x3

0 , x2
0 x1, x0x2

1

]
.

Show this is well-defined on the distinguished open set U0 ⊂ P1(k) and there is a

morphism

φ̂ : P1(k) → P2(k)

such that φ̂|U0 = φ|U0.

9.11 Let f = ad xd + · · · + a0 and g = bexe + · · · + b0 be nonzero polynomials in

x . Consider the corresponding points [ f ] = [a0, a1, . . . , ad ] ∈ Pd (k) and [g] =
[b0, b1, . . . , be] ∈ Pe(k). Show that

{([ f ], [g]) : Res( f, g) = 0} ⊂ Pd (k) × Pe(k)

is a well-defined closed subset.

9.12 Let X ⊂ Pn(k) be closed and � ⊂ Pn(k) a finite set disjoint from X . Show there

exists an affine open subset V with

� ⊂ V ⊂ (Pn(k) \ X ).
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9.13 Consider the complex plane curves

C1 = {
[x0, x1, x2] : x2

0 x2 = x3
1

}

and

C2 = {
[x0, x1, x2] : x0x2

2 = x0x2
1 + x3

1

}
.

Show that each of these is the image of the rational normal cubic curve

X = ν(3)(P1) ⊂ P3(C)

under projection from a point  ∈ P3(C) not on that curve.

9.14 Our discussion of projective geometry ignores its historical origins in the study of

parallelism. Here we partially fill this gap.

A line L ⊂ P2(k) is defined L = {[x0, x1, x2] : p0x0 + p1x1 + p2x2 = 0} where

(p0, p1, p2) �= 0. Note that (p0, p1, p2) and λ(p0, p1, p2), λ ∈ k∗, define the same

line. Thus the lines in P2(k) are also parametrized by a projective plane, the dual
projective plane P̌2(k).

(a) Show that the incidence correspondence

W = {[x0, x1, x2], [p0, p1, p2] : p0x0 + p1x1 + p2x2 = 0} ⊂ P2(k) × P̌2(k)

is closed. Check that the projections

p : W → P2(k), p̌ : W → P̌2(k)

have projective lines as fibers, i.e., p−1([a0, a1, a2]) � P1(k). (Translation: the

lines through a point in the plane form a projective line.)

(b) Show that the open subset U = P̌2 \ {[1, 0, 0]} corresponds to lines in the affine

plane

A2(k) = U0 = {x0 �= 0} ⊂ P2(k).

(c) Show that

Y = {[x0, x1, x2], [p0, p1, p2], [q0, q1, q2] : p0x0 + p1x1 + p2x2 = 0,

q0x0 + q1x1 + q2x2 = 0} ⊂ P2(k) × P̌2(k) × P̌2(k)

is closed.

(d) Show that the open subset

V = {[p0, p1, p2], [q0, q1, q2] : p1q2 − p2q1 �= 0} ⊂ U × U

parametrizes pairs of non-parallel lines in the affine plane.

(e) Let q : Y → P2(k) and q̌ : Y → P̌2(k) × P̌2(k) be the projection morphisms.

Show that q̌(q−1(U0)) contains V . (Translation: any two non-parallel lines in

the affine plane intersect somewhere in the affine plane.)
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(f) Show that q̌(Y ) = P̌2(k) × P̌2(k). (Translation: any two lines in the projective

plane intersect.)

(g) Let �1, . . . , �r ⊂ A2(k) be a collection of parallel lines and L1, . . . , Lr their clo-

sures in P2(k). Show that L1, . . . , Lr share a common point s ∈ H0 = {x0 = 0},
the line at infinity. Moreover, each point s ∈ H0 arises in this way. (Translation:

the points on the line at infinity correspond to equivalence classes of parallel lines

in the affine plane.)

9.15 Let X be a projective variety. Show that X is isomorphic to a variety Y ⊂ PN (k) defined

by quadratic equations. Hint: Given X ⊂ Pn defined by homogeneous equations of

degree ≤ d , analyze the equations satisfied by Y = ν(d)(X ) in P(n+d
d )−1(k).

9.16 It is quite fruitful to consider real morphisms

φ : Pn(R) → Pm(R)

whose image happens to lie in a distinguished open subset.

Consider the following version of the 2-Veronese morphism:

ϕ : P1(R) → P2(R)

[x0, x1] 	→ [
x2

0 + x2
1 , x2

0 − x2
1 , 2x0x1

]
.

Show that the image satisfies the equation

z2
1 + z2

2 = z2
0

and verify that ϕ(P1(R)) ⊂ U0. Conclude that there is a bijection between the real

projective line and the unit circle

C = {
(y1, y2) : y2

1 + y2
2 = 1

}
.

Challenge: Show that P1(R) and C are not isomorphic as varieties, by proving there

exists no non-constant morphism P1(R) → A1(R).

9.17 (Steiner Roman surface) This is a continuation of Exercise 9.16. Consider the poly-

nomial map

φ : P2(R) ��� P3(R)

[x0, x1, x2] 	→ [
x2

0 + x2
1 + x2

2 , x1x2, x0x2, x0x1

]
.

(a) Show that φ is a morphism and φ(P2(R)) ⊂ U0.

(b) Verify that image(φ) satisfies the quartic

z2
1z2

2 + z2
1z2

3 + z2
2z2

3 = z0z1z2z3.

(c) Writing

V = {
(y1, y2, y3) : y2

1 y2
2 + y2

1 y2
3 + y2

2 y2
3 = y1 y2 y3

} ⊂ A3(R)
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Figure 9.3 Steiner Roman surface.

we have a well-defined function

ϕ : P2(R) → V .

For each point v ∈ V , determine #{p ∈ P2(R) : ϕ(p) = v}. Hint: Analyze care-

fully what happens along the coordinate axes.

The surface V ⊂ R3 is known as the Steiner Roman surface, after Jakob Steiner

(1796–1863). It is a useful tool for visualizing the real projective plane.

9.18 (a) Working from the definitions, show that P1(k) × P1(k) × P1(k) is an abstract

variety.

(b) Verify that the rule

φ : P1(k) × P1(k) × P1(k) → P7(k)

taking ([s0, s1], [t0, t1], [u0, u1]) to

[s0t0u0, s0t0u1, s0t1u0, s0t1u1, s1t0u0, s1t0u1, s1t1u0, s1t1u1]

gives a well-defined morphism of varieties.

(c) Show that the image of φ is closed in P7(k) and write down equations for the

image.
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(d) Check that φ is an isomorphism onto its image and conclude that P1(k) × P1(k) ×
P1(k) is projective.

9.19 Let X be a projective variety.

(a) Show that the diagonal map

� : X → X × X
x 	→ (x, x)

is a morphism. Its image is denoted �X .

(b) Let X = Pn(k) and fix coordinates x0, x1, . . . , xn and y0, y1, . . . , yn on Pn(k) ×
Pn(k). Show that

I (�P n (k)) = 〈xi y j − x j yi 〉i, j=0,...,n.

(c) For general X , show that �X is closed in X × X and isomorphic to X .

(d) Repeat parts (a) and (c) for an arbitrary abstract variety. Hint: Let {Ui } be a

covering for X with gluing maps ρi j : U j ��� Ui . Verify that �X ∩ (Ui × U j )

corresponds to the graph of ρi j and apply the closed graph property.

9.20 For each m, n > 0, show that there exists no constant morphism

φ : Pn(C) → Am(C).

Hints:
(a) Reduce to the m = 1 case: Suppose that for each projection πi : Am(C) → A1(C)

the composition πi ◦ φ is constant. Then φ is constant.

(b) Reduce to the n = 1 case: Suppose that φ : Pn(C) → A1(C) is constant along

each line � ⊂ Pn(C). Then φ is constant.

(c) Express C[A1] = C[t]. Show there exists a collection of homogeneous forms

{F0, . . . , Fm} ⊂ C[x0, x1]degree d

such that 〈F0, . . . , Fm〉 is irrelevant and

φ∗t |VFi ∈ C[x0, x1]
[
F−1

i

]
degree 0

for each i (cf. Proposition 9.41).

(d) Suppose F1, F2 ∈ C[x0, x1] are homogeneous of degree d with greatest common

divisor G. Suppose that h ∈ C(x0, x1) is a rational function expressible in two

different forms

h = H1

/
F N

1 , h = H2

/
F N

2 ,

where N > 0 and H1 and H2 are homogeneous of degree Nd in C[x0, x1]. Show

that h = H/G for some homogeneous H with deg(H ) = deg(G).

9.21 Let V be an affine variety over an algebraically closed field, and {gi }i∈I ∈ k[V ] a

possibly infinite collection of elements such that

V = ∪i∈I Ui , Ui = {v ∈ V : gi (v) �= 0}.
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Show that there exists a finite collection of indices i(0), . . . , i(n) such that

{Vgi( j)
} j=0,...,n is an affine open covering of V . In other words, every affine open

covering admits a finite subcovering; this property is known as quasi-compactness.

9.22 Recall the notation of Proposition 9.32. Consider the map

φ−1
L : An(k) → UL ⊂ Pn(k).

Show this defines a morphism An(k) → Pn(k), using Theorem 9.48 and the definition

of a morphism to an abstract variety.

9.23 Recall that the birational morphism

U0 := A2(k)
ρ→ U1 := A2(k)

(x1, x2) 	→ (x1, x1x2)

with inverse

ρ−1(y1, y2) = (y1, y2/y1)

does not satisfy the closed graph condition.

Show that the intersection U01 of the graphs of ρ and ρ−1 is nonetheless an affine

variety with coordinate ring

k[U01] = k[y1, y2]
[
y−1

1

] � k[x1, x2]
[
x−1

1

]
.

Observe that U01 is naturally an affine open subset of both U0 and U1.

Describe the quotient of U0 � U1 obtained by gluing along U01: given u0 ∈ U0 and

u1 ∈ U1, we have u0 ≈ u1 if u0, u1 ∈ U01 and ρ(u0) = u1.

Is this an affine variety? A projective variety?
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What is projective geometry good for? We focus on a key property of projective

varieties that differentiates them from affine varieties: the image of a projective variety

under a morphism is always closed.

Recall that the image of a morphism of affine varieties is not closed. For example,

consider the variety

V = {(x, y) : xy = 1} ⊂ A2(k)

and the projection map

π2 : A2(k) → A1(k)

(x, y) �→ y.

The image

π2(V ) = {y ∈ A1(k) : y �= 0}

is not closed. This phenomenon complicates description of the image of a morphism.

Of course, we have developed algorithms for computing the closure of the image of

a map of affine varieties in Chapter 4.

Projective geometry allows us to change the problem slightly, so that the image of

the morphism becomes closed. We introduce the method for our archetypal example.

Regard

V ⊂ A1(k) × A1(k) ⊂ P1(k) × A1(k),

where the affine factor corresponding to the variable x is completed to the projective

line. The projective closure

V ⊂ P1(k) × A1(k)

is obtained by homogenization

V = {([x0, x1], y) : x1 y = x0}.

169
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We still have a projection map

π2 : P1(k) × A1(k) → A1(k)

([x0, x1], y) �→ y,

but now π2(V ) = A1(k). Indeed, the point added at infinity is mapped to the origin,

π2(([0, 1], 0) = 0.

10.1 Homogeneous equations revisited

A polynomial F ∈ k[x0, . . . , xn, y1, . . . , ym] is homogeneous of degree d in

x0, . . . , xn if

F =
∑
|α|=d

xαhα(y1, . . . , ym),

where the hα ∈ k[y1, . . . , ym]. Regard f ∈ k[w1, . . . , wn, y1, . . . , ym] as a polyno-

mial in w1, . . . , wn with coefficients in k[y1, . . . , ym] of degree d. The homogeniza-

tion of f relative to w1, . . . , wn is defined as

F(x0, . . . , xn, y1, . . . , ym) = xd
0 f (x1/x0, . . . , xn/x0, y1, . . . , ym).

An ideal J ⊂ k[x0, . . . , xn, y1, . . . , ym] is homogeneous in x0, . . . , xn if it can

be generated by polynomials that are homogeneous in x0, . . . , xn . Given I ⊂
k[w1, . . . , wn, y1, . . . , ym], the homogenization of I relative to w1, . . . , wn is the

ideal J ⊂ k[x0, . . . , xn, y1, . . . , ym] generated by homogenizations of elements in I .

A monomial order > on k[w1, . . . , wn, y1, . . . , ym] is graded relative to

w1, . . . , wn if it is compatible with the partial order induced by degree in the w-

variables, i.e., wα yγ > wβ yδ whenever |α| > |β|. We have the following straightfor-

ward generalization of Theorem 9.6:

Proposition 10.1 Let I ⊂ k[w1, . . . , wn, y1, . . . , ym] be an ideal and J ⊂
k[x0, . . . , xn, y1, . . . , ym] its homogenization relative to w1, . . . , wn. Suppose that
f1, . . . , fr is a Gröbner basis for I with respect to some order > graded rela-
tive to w1, . . . , wn. Then the homogenizations of f1, . . . , fr relative to w1, . . . , wn

generate J .

For each F ∈ k[x0, . . . , xn, y1, . . . , ym] homogeneous in x0, . . . , xn of degree d,

we have

F(λx0, . . . , λxn, y1, . . . , ym) = λd F(x0, . . . , ym)

so the locus where F vanishes is well-defined in Pn(k) × Am(k). Let

X (F) := {([x0, . . . , xn], y1, . . . , ym) ∈ Pn(k) × Am(k) : F(x0, . . . , ym) = 0}
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denote the corresponding hypersurface. More generally, for any ideal J ⊂
k[x0, . . . , xn, y1, . . . , ym] homogeneous in x0, . . . , xn , we have the closed subset

X (J ) ⊂ Pn(k) × Am(k).

For each subset S ⊂ Pn(k) × Am(k), write

J (S) = {F ∈ k[x0, . . . , xn, y1, . . . , ym] : F(s) = 0 for each s ∈ S}.
We would like to find equations for closed subsets of Pn(k) × Am(k). When m = 0

we have already addressed this problem: Theorem 9.14 implies each closed X ⊂ Pn(k)

is given by a homogeneous ideal. The general picture is very similar:

Proposition 10.2 If S ⊂ Pn(k) × Am(k) then

J (S) ⊂ k[x0, . . . , xn, y1, . . . , ym]

is homogeneous and X (J (S)) = S. Moreover, J (S) can be computed effectively from
the local affine equations vanishing along S. Consider the distinguished subsets of
Pn(k) × Am(k)

Ui = {([x0, . . . , xn], y1, . . . , ym) : xi �= 0} � An(k) × Am(k)

and the ideals

Ii = I (Ui ∩ S) ⊂ k[w0, . . . , wi−1, wi+1, . . . , wn, y1, . . . , ym].

If Ji denotes the homogenization of Ii relative to w0, . . . , wi−1, wi+1, . . . , wn (using
xi as the homogenizing variable) then

J (S) = ∩n
i=0 Ji .

The proof proceeds just as in Section 9.4.

10.2 Projective elimination ideals

Given a closed subset X ⊂ Pn(k) × Am(k), we would like algorithms for computing

the image π2(X ) ⊂ Am(k).

Definition 10.3 Let J ⊂ k[x0, . . . , xn] be homogeneous and m = 〈x0, . . . , xn〉.
The saturation of J is defined

J̃ = {F ∈ k[x0, . . . , xn] : mN F ⊂ J for some N � 0}.

An ideal is saturated if it is equal to its saturation.

Note that an ideal is irrelevant if and only if its saturation is k[x0, . . . , xn]. Generally,

we have X ( J̃ ) = X (J ) (see Exercise 10.2.)
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Definition 10.4 Given an ideal J ⊂ k[x0, . . . , xn, y1, . . . , ym], homogeneous in

x0, . . . , xn , the projective elimination ideal is defined

Ĵ = { f ∈ k[y1, . . . , ym] : mN 〈 f 〉 ⊂ J for some N � 0}, m = 〈x0, . . . , xn〉.

The reason for the fudge-factor mN is that we want any irrelevant ideal to have

elimination ideal 〈1〉: The image of the closed subset defined by an irrelevant ideal

(i.e., the empty set) is empty!

Proposition 10.5 Consider an ideal homogeneous in x0, . . . , xn,

J ⊂ k[x0, . . . , xn, y1, . . . , ym],

defining a closed subset X (J ) ⊂ Pn(k) × Am(k). Then we have

π2(X (J )) ⊂ V ( Ĵ ).

Proof Suppose we have (b1, . . . , bm) ∈ π2(X (J )), corresponding to

([a0, . . . , an], b1, . . . , bm) ∈ X (J ).

For each F ∈ J we have F(a0, . . . , an, b1, . . . , bm) = 0. For some i , ai �= 0, say,

a0 �= 0. If h(y1, . . . , ym) ∈ Ĵ then x N
0 h ∈ F for some N � 0, so

aN
0 h(b1, . . . , bm) = 0

and hence h(b1, . . . , bm) = 0. �

Theorem 10.6 (Projective Elimination) Assume k is algebraically closed. Let
J ⊂ k[x0, . . . , xn, y1, . . . , ym] be homogeneous in x0, . . . , xn, X = X (J ) ⊂ Pn(k) ×
Am(k), and Ĵ ⊂ k[y1, . . . , ym] the projective elimination ideal. Then

π2(X (J )) = V ( Ĵ ).

Proof It suffices to show V ( Ĵ ) ⊂ π2(X ): the reverse implication has already

been proven.

Suppose we are given c = (c1, . . . , cm) ∈ V ( Ĵ ), but c �∈ π2(X ). Write J =
〈F1, . . . , Fr 〉, with F1, . . . , Fr homogenous in x0, . . . , xn , and set

Fi (x0, . . . , xn, c) = Fi (x0, . . . , xn, c1, . . . , cm).

Since the equations

F1(x0, . . . , xn, c) = . . . = Fr (x0, . . . , xn, c) = 0

have no common solutions, Projective Nullstellensatz gives

mN ⊂ 〈Fi (x0, . . . , xn, c)〉i=1,...,r
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for some N � 0. In particular, for each monomial xα with |α| = N we can write

xα =
r∑

i=1

Fi (x0, . . . , xn, c)Hi,α(x0, . . . , xn),

where the Hi,α are homogeneous.

We may choose monomials xβ j and indices i j ∈ {1, . . . , r} for j = 1, . . . ,
(N+n

N

)
such that

{xβ j Fi j (x0, . . . , xn, c)} j=1,...(N+n
N )

forms a basis for homogeneous forms of degree N in x0, . . . , xn . Consider the corre-

sponding polynomials in x0, . . . , xn, y1, . . . , ym :

G j (x0, . . . , xn, y1, . . . , ym) := xβ j Fi j (x0, . . . , xn, y1, . . . , ym).

Express

G j =
∑

|α|=N

xα A j,α(y1, . . . , ym)

so that A = (A j,α) is an
(N+n

N

) × (N+n
N

)
matrix of polynomials in y1, . . . , ym . The

determinant

D(y1, . . . , ym) = det(A)

is hence also a polynomial in y1, . . . , ym , and D(c1, . . . , cm) �= 0 by hypothesis. By

Cramer’s rule

D(y1, . . . , ym)xα =
(N+n

N )∑
j=1

B j,α(y1, . . . , ym)G j (x0, . . . , xm, y1, . . . , ym)

for a suitable matrix B = (B j,α), with entries polynomials in y1, . . . , ym . It follows

that

D(y1, . . . , ym)xα ∈ 〈F1, . . . , Fr 〉

and thus

D(y1, . . . , ym) ∈ Ĵ .

This contradicts the assumption that (c1, . . . , cm) ∈ V ( Ĵ ). �

Remark 10.7 This is strikingly similar to our analysis of resultants, especially

Theorems 5.5 and 5.8. We encourage the reader to apply the argument for Theo-

rem 10.6 to

J = 〈
ad xd

1 + ad−1xd−1
1 x0 + · · · + a0xd

0 , bexe
1 + be−1xe−1

1 x0 + · · · + b0xe
0

〉
,
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which defines a closed subset X ⊂ P1(k) × Am+n+2(k). Here a0, . . . , ad , b0, . . . , be

play the role of the y-variables in our argument; the elimination ideal is generated

by resultant of the two generators. One advantage of this special case is the good

control we have over N , which makes possible the elegant determinantal form of the

resultant.

10.2.1

Caveats for

nonclosed

fields

The Projective Elimination Theorem needs the assumption that k is algebraically

closed. For general fields, at least two problems arise.

First, the ideal J (X (J )) may be much larger than J , and may include equations

that are not algebraic consequences of the equations in J . This is the case if X (J )

happens to have few points with coordinates in k, i.e., when there are polynomials

vanishing on X (J ) that are not consequences of polynomials in J . See Example 3.17

for concrete examples and further discussion.

The second problem arises even when X (J ) does have lots of k-rational points.

Consider the real variety

V = {
([x0, x1], y) : x2

0 = yx2
1

} ⊂ P1(R) × A1(R).

The image,

π2(V ) = {y ∈ A1(R) : y ≥ 0},

is not a Zariski-closed subset of A1(R).

10.3 Computing the projective elimination ideal

Let J ⊂ k[x0, . . . , xn, y1, . . . , ym] be an ideal, homogeneous in x0, . . . , xn . How do

we compute the projective elimination ideal Ĵ?

Method I By definition,

Ĵ = (∪N J : mN ) ∩ k[y1, . . . , ym]

for m = 〈x0, . . . , xn〉. For any particular N , Algorithm 8.10 computes the quotient J :

mN . To compute the union, we use the ascending chain condition and a generalization

of Proposition 8.34:

Proposition 10.8 Let R be a ring and I, J ⊂ R ideals. Suppose that for some
integer M ≥ 0

I : J M = I : J M+1,

where J 0 = R by convention. Then we have

I : J M = I : J M+1 = I : J M+2 = I : J M+3 = . . . .
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Method II For each i = 0, . . . , n, let Ii denote the dehomogenization of J with

respect to xi . Then

Î := ∩n
i=0(Ii ∩ k[y1, . . . , ym])

is equal to Ĵ .

Proof of equivalence Suppose f ∈ Ĵ , so that for some N � 0 we have

x N
0 f, x N

1 f, . . . , x N
n f ∈ J.

It follows that f is contained in each dehomogenization Ii , and thus in Î .

We prove the reverse inclusion. Recall that if F is homogeneous in x0, . . . , xn ,

f its dehomogenization with respect to xi , and F ′ the rehomogenization of f , then

F = xe
i F ′ for some e. Hence if J is a homogeneous ideal, Ii its dehomogenization

with respect to xi , and Ji the rehomogenization with respect to xi , then

Ji = (
J :

〈
x N

i

〉)
, for all N � 0.

We have

Ii ∩ k[y1, . . . , ym] = Ji ∩ k[y1, . . . , ym]

and hence

Î = ∩n
i=0(Ji ∩ k[y1, . . . , ym]).

On the other hand,

∩i=0 Ji = (J : mN ), N � 0,

so Î = Ĵ . �

10.4 Images of projective varieties are closed

Theorem 10.9 Assume k is algebraically closed. Let X ⊂ Pn(k) be a projective
variety, Y an abstract variety, φ : X → Y a morphism. Then φ(X ) is closed.

Proof Let

	φ ⊂ X × Y ⊂ Pn(k) × Y

denote the graph of φ. We claim that this is closed. Consider the induced morphism

(φ, Id) : X × Y → Y × Y,

with the second factor the identity. We have

	φ = {(x, y) ∈ X × Y : ( f, Id)(x, y) = (y, y)} = (φ, Id)−1(
Y ),
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where 
Y is the diagonal. Since 
Y is closed in Y × Y (see Exercise 9.19), 	φ is

closed as well.

Choose an affine open covering {Vj } for Y ; realize Vj ⊂ Am(k) as a closed subset.

The intersection

	φ ∩ π−1
2 (Vj ) ⊂ Pn(k) × Am(k)

is also closed, and the Projective Elimination Theorem (10.6) implies

π2

(
	φ ∩ π−1

2 (Vj )
)

is closed, which is the equal to π2(	φ) ∩ Vj = φ(X ) ∩ Vj . Thus the intersection of

φ(X ) with each affine open neighborhood is closed in that neighborhood, and φ(X )

is closed in Y . �

Proposition 10.10 Assume k is algebraically closed. Let V ⊂ An(k) be an affine
variety, φ : V → Am(k) a morphism with graph 	φ . Let

	φ ⊂ Pn(k) × Am(k)

be the projective closure. Then π2(	φ) = φ(V ).

Proof The Projective Elimination Theorem (10.6) implies π2(	φ) is closed, and

it contains the image φ(V ), so it also contains φ(V ). On the other hand, π−1
2 (φ(V ))

contains 	φ , and also 	φ ; applying φ2 gives the desired result. �

Remark 10.11 Let V ⊂ An(k) be affine and φ : V → Am(k) a morphism. If its

image fails to be closed, the extra points in the closure come from points ‘at infinity’,

i.e.,

φ(V ) − φ(V ) ⊂ π2(	φ ∩ X (x0)).

Here we are identifying An(k) with U0 = {x0 �= 0} ⊂ Pn(k); X (x0) = (Pn(k) ×
Am(k)) \ (U0 × Am(k)) is the hyperplane at infinity.

10.5 Further elimination results

For the remainder of this section, we discuss how elimination results for affine varieties

can be applied in projective contexts.

Proposition 10.12 Let X ⊂ Pn(k) be a projective variety and φ : X ��� Pm(k) a
rational map induced by the polynomial map

Pn(k) ��� Pm(k)

[x0, . . . , xn] �→ [φ0, . . . , φm].
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Writing

I = 〈y0 − φ0, . . . , ym − φm〉 + k[x0, . . . , xn, y0, . . . , ym]J (X )

J = I ∩ k[y0, . . . , ym].

then X (J ) is the closure of the image of φ.

Of course, if k is algebraically closed and φ is a morphism then φ(X ) is automatically

closed.

Proof Let C(X ) ⊂ An+1(k) be the cone over X , i.e., the subvariety defined by

the equations in J (X ), or the union of lines

{λ(x0, . . . , xn) : λ ∈ k} ⊂ An+1(k)

for [x0, . . . , xn] ∈ X . The polynomials defining φ also determine a map of affine

varieties

ϕ : C(X ) → Am+1(k),

whose graph is defined by the equations in I . It is easy to see that

C(φ(X )) = ϕ(C(X )),

which has equations that may be analyzed with affine elimination theory (see §4.1).

In particular, the image is given by the ideal J . �

10.6 Exercises

10.1 Prove Proposition 10.8.

10.2 Let J ⊂ k[x0, . . . , xn] be a homogeneous ideal with saturation J̃ .

(a) Show that X (J ) = X ( J̃ ).

(b) For each i = 0, . . . , n, let Ii ⊂ k[y0, . . . , yi−1, yi+1, . . . , yn] denote the

dehomogenization of J and Ji ⊂ k[x0, . . . , xn] the homogenization of Ii . Show

that

J̃ = J0 ∩ J1 ∩ . . . ∩ Jn.

(c) Show that J = J̃ if and only if m = 〈x0, . . . , xn〉 is not an associated prime of J .

10.3 Consider the ideal

J = 〈x0 y0 + x1 y1, x0 y1 + x1 y0〉 ⊂ C[x0, x1, y0, y1],

which is homogeneous in x0, x1.

(a) Compute the intersection J ∩ C[y0, y1].

(b) Compute the projective elimination ideal Ĵ .
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(c) Compute the image π2(X (J )), where X (J ) ⊂ P1(C) × A2(C).

(d) Note that J is also homogeneous in y0 and y1 and thus determines a closed subset

X ⊂ P1(C) × P1(C). Describe X .

10.4 (Cayley cubic surface) Consider the rational map

ρ : P2(k) ��� P3(k)

taking [x0, x1, x2] to

[−x0x1x2, x0x1(x0 + x1 + x2), x0x2(x0 + x1 + x2), x1x2(x0 + x1 + x2)].

Describe the indeterminacy of ρ in P2(k) and the equations of the image in P3(k).

Optional: Show that P2(k) ��� image(ρ) is birational.

10.5 F ∈ k[x0, . . . , xn, y0, . . . , ym] is bihomogeneous of bidegree (d, e) if it is homoge-

neous in x0, . . . , xn of degree d and homogeneous in y0, . . . , ym of degree e.

(a) Show that if F is bihomogeneous then

Y (F) = {([a0, . . . , an], [b0, . . . , bm]) : F(a0, . . . , an, b0, . . . , bm) = 0}

is a well-defined closed subset of Pn(k) × Pm(k).

(b) Using the Segre embedding, express Y (F) as the locus in Pmn+m+n(k) where a

collection of homogeneous forms vanish. Hint: If d ≥ e express yβ F , for each β

with |β| = d − e, as a polynomial in the products xi y j .

(c) For F = x2
0 y0 + x2

1 y1 + x2
2 y2 write down explicit equations for Y (F) ⊂ P8(k).

(d) If J ⊂ k[x0, . . . , xn, y0, . . . , ym] is a bihomogeneous ideal show that

Y (J ) := ∩F∈J Y (F) ⊂ Pn(k) × Pm(k)

is projective.

(e) Let X ⊂ Pm(k) and Y ⊂ Pn(k) be projective varieties. Show that X × Y is

projective.

10.6 Given a polynomial morphism

φ : Pn(k) → Pm(k)

[x0, . . . , xn] �→ [φ0, . . . , φm]

it can be tricky to extract equations for the graph.

(a) Show that the graph always contains the bihomogeneous equations

yiφ j − y jφi .

(b) For the Veronese morphism

ν(2) : P1(k) → P2(k)

[x0, x1] �→ [
x2

0 , x0x1, x2
1

]
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show that the equations of the graph are

〈y0x1 − y1x0, y1x1 − y2x0〉.

(c) Extract bihomogenous equations for the graph of ν(2) : P2(k) → P5(k).

10.7 A binary form of degree d is a nonzero homogeneous polynomial F =
a0xd

0 + a1xd−1
0 x1 + · · · + ad xd

1 ∈ k[x0, x1]. Binary forms up to scalar multiples are

parametrized by the projective space P(k[x0, x1]d ) = {[a0, . . . , ad ]}.
(a) Show that multiplication induces a morphism

P(k[x0, x1]e) × P(k[x0, x1]d−e) → P(k[x0, x1]d )

(F, G) �→ FG.

Suppose k is algebraically closed. We say F has a root of multiplicity ≥ e if there

exists a nonzero linear form L = l0x0 + l1x1 with Le|F .

(b) Prove that the binary forms with a root of multiplicity e form a closed subset

Re ⊂ P(k[x0, x1]d ). Hint: Verify that the map

P(k[x0, x1]1) × P(k[x0, x1]d−e) → P(k[x0, x1]d )

(L , G) �→ LeG

is a morphism of projective varieties.

(c) Write down explicit equations for
� R1 ⊂ Pd (k);
� R2 ⊂ P3(k), P4(k).

10.8 Let F be homogeneous of degree d in k[x0, . . . , xn]; all such forms (up to scalars)

are parametrized by

P(n+d
d )−1(k) = P(k[x0, . . . , xn]d ).

For a = [a0, . . . , an] ∈ Pn(k), we say that F has multiplicity ≥ e at a (or vanishes to
order e at a) if (cf. Exercise 9.2):

F ∈ J (a)e = 〈xi a j − x j ai , i, j = 0, . . . , n〉e.

(a) Show that F has multiplicity ≥ e at [1, 0, 0, . . . , 0] if and only if the dehomoge-

nization

μ0(F) ∈ k[y1, . . . , yn]

has no terms of degree < e.

Consider the locus

Ze := {(a, F) : F has multiplicity ≥ e at a } ⊂ Pn(k) × P(n+d
d )−1(k).

Assume k is a field of characteristic other than two and d = 2.
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(b) Show that Z2 = {(a, F) : ∂ F/∂xi (a0, . . . , an) = 0, i = 0, . . . , n}.
(c) Write

F(x0, . . . , xn) = (x0 x1 · · · xn)

⎛
⎜⎜⎜⎝

y00 y01 . . . y0n

y01 y11 . . . y1n
...

...
...

...

y0n y1n · · · ynn

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

x0

x1

...

xn

⎞
⎟⎟⎟⎠

for Y = (yi j ) a symmetric (n + 1) × (n + 1) matrix. Compute the projective elim-

ination ideal of

〈∂ F/∂x0, . . . , ∂ F/∂xn〉 ⊂ k[x0, . . . , xn, y00, . . . , ynn]

and show that π2(Z2) = {Y : det(Y ) = 0}.
(d) Returning to the general case, show that Ze is closed.

Conclude that the hypersurfaces with point of multiplicity ≥ e are closed in

P(n+d
d )−1(k).



11 Parametrizing linear subspaces

The vector subspaces of k N are parametrized by a projective variety called the Grass-
mannian. This is the first instance of a very important principle: algebraic varieties

with common properties are often themselves classified by an algebraic variety. Ap-

plying the techniques of algebraic geometry to this ‘classifying variety’ gives rise to

rich insights. For example, we write down explicit equations for the Grassmannian

in projective space, using the formalism of exterior algebra. Such representations are

crucial for many applications.

11.1 Dual projective spaces

Recall that we defined projective space

Pn(k) = space of all lines 0 ∈ � ⊂ kn+1

= one-dimensional subspaces � = span(x0, . . . , xn).

Definition 11.1 The dual projective space P̌n(k) is the space of all n-dimensional

vector subspaces H ⊂ kn+1.

It is a basic fact of linear algebra that every n-dimensional subspace can be expressed

as

H = H (p0, . . . , pn) = {(x0, . . . , xn) : p0x0 + · · · + pn xn = 0}

for some (p0, . . . , pn) �= 0, where

H (p0, . . . , pn) = H (p′
0, . . . , p′

n) ⇔ [p0, . . . , pn] = [p′
0, . . . , p′

n] ∈ Pn(k).

Thus the map H (p0, . . . , pn) → [p0, . . . , pn] allows us to identify Pn(k) with P̌n(k).

181
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Example 11.2 (General incidence correspondence) Consider the locus

W := {(�, H ) : � ⊂ H ⊂ kn+1}
= {[x0, . . . , xn], [p0, . . . , pn] : x0 p0 + · · · + xn pn = 0}
⊂ Pn(k) × P̌n(k).

Recall the Segre embedding

φ : Pn(k) × P̌n(k) ↪→ Pn2+2n(k)

k[z00, . . . , znn] → k[x0, . . . , xn] × k[p0, . . . , pn]

zi j → xi p j

with image given by the vanishing of the 2 × 2 minors of the matrix

Z =

⎛
⎜⎜⎜⎝

z00 z01 . . . z0n

z10 z11 . . . z1n
...

... . . . . . .

zn0 zn1 . . . znn

⎞
⎟⎟⎟⎠.

The locus W ⊂ φ(Pn(k) × P̌n(k)) is defined by

z00 + · · · + znn = Trace(Z ) = 0,

and thus is a projective variety.

11.2 Tangent spaces and dual varieties

Let V ⊂ An(k) be a hypersurface, i.e., I (V ) = 〈g〉 for some g ∈ k[y1, . . . , yn]. Given

b ∈ V , the affine tangent space is defined:

TbV =
{

(y1, . . . , yn) :
n∑

j=1

∂g/∂y j |b · (y j − b j ) = 0

}
. (11.1)

This is an affine-linear subspace of An(k). It is a hyperplane if ∂g/∂y j |b �= 0 for some

index j ; in this case, we say that V is smooth at b. Otherwise, it is singular.

For a general affine V ⊂ An(k) and b ∈ V , we define the affine tangent space by

TbV =
{

(y1, . . . , yn) :
n∑

j=1

∂g/∂y j |b(y j − b j ) = 0 for each g ∈ I (V )

}
.

We say that V is smooth at b if it has a unique irreducible component containing b of

dimension dim TbV . (The dimension of a variety at a point is well-defined when the

variety has a unique irreducible component containing the point.)
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Consider an affine linear subspace expressed as the solutions to a system of linear

equations, i.e.,

L =

⎧⎪⎨
⎪⎩y =

⎛
⎜⎝

y1

...

yn

⎞
⎟⎠ : Ay = b

⎫⎪⎬
⎪⎭ ⊂ An(k)

where A is an m × n matrix of maximal rank, b ∈ km is a column vector, and

dim L = n − m. Express An(k) as a distinguished open subset U0 ⊂ Pn(k). Using

Proposition 9.16, the projective closure of L can be expressed

L =

⎧⎪⎨
⎪⎩[x0, . . . , xn] ∈ Pn(k) : A

⎛
⎜⎝

x1

...

xn

⎞
⎟⎠ = bx0

⎫⎪⎬
⎪⎭ .

This is a linear subspace of Pn(k) as well.

Proposition 11.3 Let X ⊂ Pn(k) be a hypersurface with J (X ) = 〈F〉, where
F ∈ k[x0, . . . , xn] is homogeneous of degree d, and a = [a0, . . . , an] ∈ X ∩ Ui . Write
V = X ∩ Ui , b = (a0/ai , . . . , ai−1/ai , ai+1/ai , . . . , an/ai ) ∈ An(k) the correspond-
ing point of affine space, and f ∈ k[y0, . . . , yi−1, yi+1, . . . , ym] the dehomogenization
of F with respect to xi . Then the projective closure TbV equals the linear subspace

Ta X :=
{

[x0, . . . , xn] :
n∑

i=0

(∂ F/∂xi )|a xi = 0

}
.

This is called the projective tangent space of X at a.

In particular, a hypersurface in Pn(k) is singular at a point if its projective tangent

space there is Pn(k).

Proof For notational simplicity assume i = 0. Let

μ0 : k[x0, . . . , xn] → k[y1, . . . , ym]

denote the dehomogenization homomorphism. For i = 1, . . . , n we have

μ0(∂ F/∂xi ) = ∂ f/∂yi .

Writing out f as a sum of homogeneous pieces

f = f0 + f1 + · · · + fd ,

we find

μ0(∂ F/∂x0) = d f0 + (d − 1) f1 + · · · + fd−1.
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We analyze the expression

n∑
i=0

(∂ F/∂xi )|a xi . (11.2)

This is homogeneous in a of degree d − 1, i.e.,

n∑
i=0

(∂ F/∂xi )|λa = λd−1
n∑

i=0

(∂ F/∂xi )|a .

Since we are only interested in where this vanishes, we may assume that a0 = 1 and

ai = bi , i = 1, . . . , n. Dehomogenizing (11.2) therefore yields

(d f0 + (d − 1) f1 + · · · + fd−1)|b +
n∑

j=1

∂ f/∂y j |b y j .

This is equal to (11.1) provided we can establish

−
n∑

j=1

b j∂ f/∂y j |b = (d f0 + (d − 1) f1 + · · · + fd−1)|b.

Lemma 11.4 (Euler’s Formula) If F ∈ k[x0, . . . , xn] is homogeneous then

deg(F) · F =
n∑

i=0

xi∂ F/∂xi .

Proof of lemma Both sides are linear in F . It suffices then to check the formula

for xα = xα0

0 . . . xαn
n , α0 + · · · + αn = d. In this case we have

n∑
i=0

xi
∂

∂xi
xα = xα

n∑
i=0

αi = dxα. �

Applying μ0 to Euler’s formula and evaluating at (b1, . . . , bn) yields

d · f (b1, . . . , fn) = (d f0 + (d − 1) f1 + · · · + fd−1)|b +
n∑

j=1

b j∂ f/∂y j |b.

Since f (b1, . . . , bn) = 0 we obtain

(d f0 + (d − 1) f1 + · · · + fd−1)|b = −
n∑

j=1

b j∂ f/∂y j |b. �

Corollary 11.5 Retain the notation of Proposition 11.3.

1. If a ∈ X ∩ Ui and ∂ F/∂x j |a = 0 for each j �= i then ∂ F/∂xi |a = 0 as well.
2. a ∈ X is singular if and only if ∂ F/∂xi |a = 0 for each i = 0, . . . , n.
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3. Suppose that (char(k), d) = 1 or char(k) = 0. Singular points a ∈ X are precisely
the simultaneous solutions to the equations

∂ F/∂x0 = . . . = ∂ F/∂xn = 0.

Proof Only the last assertion requires proof. Euler’s formula gives

F(a0, . . . , an) = 1/d
n∑

i=0

ai∂ F/∂xi |(a0,...,an ),

which vanishes whenever the partials all vanish. �

Definition 11.6 Let X ⊂ Pn(k) be a projective variety and a ∈ X . The projective
tangent space of X at a is defined

Ta X =
{

[x0, . . . , xn] :
n∑

i=0

∂ F/∂xi |a xi = 0 for each F ∈ J (X )

}
⊂ Pn(k).

X is smooth at a if it has a unique irreducible component containing a of dimension

dim Ta X .

Definition 11.7 Let X ⊂ Pn(k) be an irreducible projective variety. The dual va-
riety X̌ ⊂ P̌n(k) is the closure of the locus of all hyperplanes tangent to X at smooth

points, i.e.,

X̌ = {H ∈ P̌n(k) : Ta X ⊂ H for some a ∈ X smooth }.

Remark 11.8 Let k be algebraically closed and X ⊂ Pn(k) projective. Consider

the incidence variety

WX = {(a, H ) : a ⊂ H ⊂ Ta X}
⊂ X × P̌n(k) ⊂ Pn(k) × P̌n(k),

which is contained in the incidence correspondence introduced in Example 11.2. Note

that π2(WX ) is closed by Theorem 10.9; X̌ is a union of irreducible components of

this variety.

For many applications, it is important to restrict attention to hypersurfaces without

singularities. However, a hypersurface with no singularities over a given field may

acquire them after the field is extended. This is just the problem we faced in defining

a morphism. The following definition circumvents this difficulty:

Definition 11.9 A hypersurface X (F) ⊂ Pn(k) is smooth if 〈F, ∂ F/∂x0, . . . ,

∂ F/∂xn〉 is irrelevant.
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Proposition 11.10 Let X ⊂ Pn(k) be a hypersurface with J (X ) = 〈F〉. The poly-
nomial map

Pn(k) ��� P̌n(k)

[x0, . . . , xn] �→ [∂ F/∂x0, . . . , ∂ F/∂xn]

induces a morphism X → Pn(k) when X is smooth. Even when X is singular its
image is X̌ , with equations given by

〈F, p0 − ∂ F/∂x0, . . . , pn − ∂ F/∂xn〉 ∩ k[p0, . . . , pn].

Proof The first statement follows from general properties of polynomial maps of

projective spaces (Proposition 9.30). Let Xs ⊂ X denote the union of the irreducible

components containing smooth points. We obtain a rational map Xs ��� Pn with

closed image X̌ . The equations are obtained from Proposition 10.12. �

Example 11.11 Assume char(k) �= 3. Consider the smooth plane curve

X = {
(x0, x1, x2) : x3

0 + x3
1 + x3

2 = 0
} ⊂ P2(k).

Then the dual is given as

X̌ = {
(p0, p1, p2 : p6

0 + p6
1 + p6

2 − 2p3
0 p3

2 − 2p3
1 p3

2 − 2p3
1 p3

0

} ⊂ P̌2(k).

11.2.1

Plücker

formulas

When X is a smooth hypersurface the dual X̌ is usually singular, even for plane curves!

Figure 11.1 shows two typical cases where the dual curve acquires singularities; for

generic X these are only possibilities. In the first case we have an inflectional tangent,
where the tangent line � meets X at p with multiplicity 3 rather than 2. (Formal

definitions can be found in §12.4.2.) X admits an inflectional tangent at p precisely

when the differential of the map X → P̌2 vanishes at p. One can show that the image

X̌ has a cusp at �, i.e., a singularity with local normal form y2 = x3. In the second

case, we have a bitangent, i.e. � is tangent to X in two points p1, p2. Thus p1 and p2

are mapped to the same point of P̌2, so the image X̌ has two local branches at these

points. We say that X̌ has a node at �, with local normal form y2 = x2.

There are formulas relating the invariants of X and X̌ . Let d and ď be the degrees

of X and X̌ , f the number of inflectional tangents X (which equals the number of

cusps of X̌ ), and b the number of bitangents to X (the number of nodes of X̌ ). Then

we have the Plücker formulas

ď = d(d − 1)

f = 3d(d − 2)

b = (ď(ď − 1) − d − 3 f )/2.

We will deduce the second formula from the Bezout Theorem in §12.4.2.
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inflectional tangent

X

dual to X 

X

dual to X 

node singularity

bitangent

cusp singularity

Figure 11.1 Typical singularities of the dual curve.

11.3 Grassmannians: Abstract approach

We have defined the spaces of all lines and hyperplanes in kn+1. Why not consider

subspaces of arbitrary dimension? The study of arbitrary finite-dimensional spaces

was pioneered by Herman Günter Grassmann (1809–1877) in his 1844 book Die
Lineale Ausdehnungslehre, ein neuer Zweig der Mathematik. (An English translation

is available in [13].)

Definition 11.12 For each M = 1, 2, . . . , N − 1, the Grassmannian Gr(M, N ) is

the set of all vector subspaces 	 ⊂ k N of dimension M .

In particular, Gr(1, N ) = PN−1(k) and Gr(N − 1, N ) = P̌N−1(k).

Theorem 11.13 The Grassmannian Gr(M, N ) carries the structure of an abstract
variety. It is irreducible and rational of dimension M(N − M).

For the moment, we only describe the affine open covering and the gluing maps.

Here is the idea of the argument: fix a basis e1, . . . , eN for k N . Each 	 can be

expressed as the row-space of an M × N matrix W of maximal rank M . This W is

not at all unique. Indeed, applying elementary row operations to W does not affect
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	, so we may replace W by its reduced row echelon form. For ‘most’ W , we have

RREF(W ) =

⎛
⎜⎜⎝

1 0 . . . b1M+1 . . . b1N

0
. . . 0

... . . . . . .
... 0 1 bM M+1 . . . bM N

⎞
⎟⎟⎠ = ( I B ),

where I is the identity. Allowing permutations of e1, . . . , eN , every subspace admits

a reduced row echelon form of this type.

To formalize this, we will need several results from linear algebra:

Lemma 11.14 Fix a partition

{1, . . . , N } = S ∪ T, S = {s1, . . . , sM}, T = {t1, . . . , tN−M}

with s1 < . . . < sM , t1 < . . . < tN−M . For each N × (M − N ) matrix B = (bst ) with
rows and columns indexed by S and T respectively, consider the subspace

	(S; B) = span

(
es +

∑
t∈T

bst et : s ∈ S

)
.

These satisfy the following:

� dim(	(S; B)) = M ;
� 	(S; B) = 	(S; C) only if B = C .

Proof Let R(S; B) be the M × N matrix with i th row equal to esi + ∑
t∈T bsi t et .

For example, when S = {1, . . . , M} we have

R(S; B) =

⎛
⎜⎝

1 0 . . . b1M+1 . . . b1N

0
. . .

...
... . . . . . .

0 . . . 1 bM M+1 . . . bM N

⎞
⎟⎠ = ( I B ),

where I is an M × M identity matrix. The rows of R(S; B) span 	(S; B); since

R(S; B) has rank M , dim(	(S; B)) = M and the first assertion follows.

We leave it to the reader to verify the second assertion. �

Lemma 11.15 Retain the notation of the previous lemma. Each of the distinguished
subsets

US = {	(S; B) : B is a M × (N − M) matrix } ⊂ Gr(M, N )

admits a natural identification

ψS : US
∼→ AM(N−M)(k)

	(S; B) �→ B.
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The Grassmannian is covered by these subsets, i.e.,

Gr(M, N ) = ∪partitions S∪T US.

Proof Each 	 ∈ Gr(M, N ) can be expressed as span(w1, . . . , w M ) for suitable

linearly independent w1, . . . , w M ∈ 	 ⊂ k N . Let W be the M × N matrix having

these vectors as its rows. Note that multiplication from the left by an invertible matrix

does not change the span of the rows, i.e.,

row span(W ) = row span(AW )

provided det(A) �= 0. Choose indices s1, . . . , sM such that the corresponding columns

of W are linearly independent and let WS be the square matrix built from these

columns. The matrix W −1
S W is of the form R(S; B) for some M × (N − M) matrix

B. The natural identification with affine space arises by identifying M × (N − M)

matrices with points in AM(N−M)(k). �

Lemma 11.16 Given partitions corresponding to S, S′ ⊂ {1, . . . , N }, the overlap

maps

ρS′ S := ψS′ ◦ ψ−1
S : AM(N−M)(k) ��� AM(N−M)(k)

are birational, given by the rule

B
ψ−1

S�→ 	(S; B) = 	(S′; B ′)
ψS′�→ B ′

R(S; B) → R(S; B)−1
S′ R(S; B).

Here R(S; B)S′ is the M × M matrix obtained by extracting the columns of R(S; B)

indexed by S′; this is invertible provided B ∈ ψS(US ∩ US′ ).

Proof Observe that R(S; B)−1
S′ R(S; B) contains the identity matrix in the

columns indexed by S′. It is therefore of the form R(S′; B) for some suitable B ′.
Again we have

row span(R(S; B)) = row span(R(S′; B ′)),

i.e., 	(S; B) and 	(S′; B ′) coincide. �

What is left to do in the proof of Theorem 11.13? We have not verified that

the ρS′ S satisfy the closed-graph condition. In Proposition 11.30, we will estab-

lish that the Grassmannian is projective, in a way that is compatible with the pro-

posed abstract variety structure: our distinguished open subsets US will be intersec-

tions of the Grassmannian with distinguished open subsets of the ambient projective

space.
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Example 11.17 We give examples of gluing maps for Gr(2, 4). Let S = {1, 2} and

S′ = {1, 3} so that

US = span(e1 + b13e3 + b14e4, e2 + b23e3 + b24e4) � A4(k),

US′ = span(e1 + b′
12e2 + b′

14e4, e3 + b′
32e2 + b′

34e4) � A4(k).

Start with the matrix

R(S; B) =
(

1 0 b13 b14

0 1 b23 b24

)

and left multiply by

R(S; B)−1
S′ =

(
1 −b13/b23

0 1/b23

)

to get

R(S′; B ′) = R
(
S; B

)−1

S′ =
(

1 −b13/b23 0 b14 − b13b24/b23

0 1/b23 1 b24/b23

)
.

The gluing map is

ρ∗
S′ Sb′

12 = −b13/b23, ρ∗
S′ Sb′

14 = b14 − b13b24/b23

ρ∗
S′ Sb′

32 = 1/b23, ρ∗
S′ Sb′

34 = b24/b23.

We have seen that PN−1(k) � P̌N−1(k); this is not a coincidence:

Proposition 11.18 Choose a nondegenerate inner product on k N , e.g., the standard
dot-product

(a1, . . . , aN ) · (b1, . . . , bN ) = a1b1 + · · · + aN bN .

These we have a natural identification

Gr(M, N ) � Gr(N − M, N ).

Proof Given a subspace 	, we define the orthogonal complement

	⊥ = {x ∈ k N : x · v = 0 for each v ∈ 	}.

Since the product is nondegenerate, dim 	⊥ = N − dim 	 and (	⊥)⊥ = 	. The

association

Gr(M, N ) → Gr(N − M, N )

	 �→ 	⊥

gives the desired identification. �
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11.4 Exterior algebra

In the last section, we introduced the Grassmannian as an abstract variety. Both for

theoretical and practical reasons, it is very useful to have a concrete realization of the

Grassmannian in projective space. Here we develop the algebraic formalism needed

to write down its homogeneous equations.

We work over a field with characteristic char(k) �= 2.

11.4.1

Basic

definitions

Let V = {c1e1 + · · · + cN eN } be a finite-dimensional vector space with basis

{e1, . . . , eN }. For each M = 0, . . . , N , the Mth exterior power is defined as the vector

space

M∧
V =

{ ∑
1≤i1<i2<...<iM ≤N

ci1...iM ei1
∧ ei2

. . . ∧ eiM

}
,

with the convention that
∧0 V = {c∅1}. The basis for

∧M V is indexed by subsets

{i1, . . . , iM} ⊂ {1, . . . , N }

with M elements, so

dim

(
M∧

V

)
=

(
dim V

M

)
.

The direct sum of all the exterior powers is written:

∗∧
V =

0∧
V ⊕

1∧
V ⊕ . . . ⊕

N∧
V .

We describe an associative but noncommutative multiplication operation

∧∗ V × ∧∗ V → ∧∗ V
(η, ω) �→ η ∧ ω,

called the wedge product. It satisfies the following axioms:

1. ∧ is k-linear in each factor, i.e.,

(r1ω1 + r2ω2) ∧ η = r1(ω1 ∧ η) + r2(ω2 ∧ η)

η ∧ (r1ω1 + r2ω2) = r1(η ∧ ω1) + r2(η ∧ ω2)

r1, r2 ∈ k, ω1, ω2, η ∈
∗∧

V ;

2. ∧ is graded commutative:

ei ∧ e j = −e j ∧ ei ,

so, in particular, ei ∧ ei = 0.
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Example 11.19

(e1 + e3) ∧ (e1 ∧ e2 + e3 ∧ e4)

= e1 ∧ e1 ∧ e2 + e1 ∧ e3 ∧ e4 + e3 ∧ e1 ∧ e2 + e3 ∧ e3 ∧ e4

= 0 + e1 ∧ e3 ∧ e4 + (−1)2e1 ∧ e2 ∧ e3 + 0

= e1 ∧ e3 ∧ e4 + e1 ∧ e2 ∧ e3.

(e1 ∧ e2 + e3 ∧ e4)2 = e1 ∧ e2 ∧ e1 ∧ e2

+e1 ∧ e2 ∧ e3 ∧ e4 + e3 ∧ e4 ∧ e1 ∧ e2 + e3 ∧ e4 ∧ e3 ∧ e4

= 2e1 ∧ e2 ∧ e3 ∧ e4

Proposition 11.20 The wedge product is uniquely determined by the two axioms
and associativity.

Proof By linearity, we can compute arbitrary wedge products once we have

specified products of basis elements

(e j1 ∧ . . . ∧ e jL ) ∧ (e jL+1
∧ . . . ∧ e jM ),

where j1 < j2 < . . . < jL and jL+1 < . . . < jM .

To evaluate these, we will use basic facts about permutations

σ : {1, . . . , M} ∼→ {1, . . . , M}
i �→ σ (i).

The sign of the permutation satisfies the following:

1. sign(σ ) ∈ {±1};
2. sign(σσ ′) = sign(σ )sign(σ ′);
3. if σ is a transposition, i.e., a permutation exchanging i and j but fixing all the other

elements of {1, . . . , M}, then sign(σ ) = −1.

Every permutation can be represented as a product of transpositions, and any two

such representations have the same number of transpositions modulo 2. These two

facts guarantee that the sign is well-defined.

Let σ be a permutation of {1, . . . , M} with

jσ (1) ≤ jσ (2) . . . ≤ jσ (M)

and express σ is a product of transpositions. Successively applying the second axiom

of wedge products, using the properties of the sign, we can write

e j1 ∧ . . . ∧ e jM = sign(σ )e jσ (1)
∧ . . . ∧ e jσ (M)

.

However, if any jσ (�) = jσ (�+1) then e jσ (�)
∧ e jσ (�+1)

= 0 and thus the whole product is

zero. Otherwise, we find

(e j1 ∧ . . . ∧ e jL ) ∧ (e jL+1
∧ . . . ∧ e jM ) = sign(σ )e jσ (1)

∧ . . . ∧ e jσ (M)
. �
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It remains to verify that the multiplication rule arising out of this analysis is a

well-defined associative product:

Proposition 11.21 Consider the following multiplication rule on
∧∗ V : given

basis elements e j1 ∧ . . . ∧ e jA ∈ ∧A V and e jA+1
∧ . . . ∧ e jA+B ∈ ∧B V with j1 <

j2 < . . . < jA and jA+1 < . . . < jA+B, we take

(e j1 ∧ . . . ∧ e jA ) ∧ (e jA+1
∧ . . . ∧ e jA+B ) =

{
0 if ja = jb for some a �= b,

sign(σ )e jσ (1)
∧ . . . ∧ e jσ (A+B)

otherwise,

where in the second case σ is the unique permutation of {1, . . . , A + B} with

jσ (1) < jσ (2) < . . . < jσ (A+B).

This defines an associative multiplication on
∧∗ V .

Proof We need to verify the identity

((
e j1 ∧ . . . ∧ e jA

) ∧ (
e jA+1

∧ . . . ∧ e jA+B

)) ∧ (
e jA+B+1

∧ . . . ∧ e jA+B+C

)
= (

e j1 ∧ . . . ∧ e jA

) ∧ ((
e jA+1

∧ . . . ∧ e jA+B

) ∧ (
e jA+B+1

∧ . . . ∧ e jA+B+C

))
,

(11.3)

where j1 < . . . < jA, jA+1 < . . . < jA+B , and jA+B+1 < . . . < jA+B+C . Both sides

are zero whenever any two of the indices coincide, so it suffices to consider the case

where all the indices are distinct.

We introduce four permutations

σ, σ ′, τ, τ ′ : {1, . . . , A + B + C} → {1, . . . , A + B + C} :

� σ is the unique permutation fixing A + B + 1, . . . , A + B + C with jσ (1) < jσ (2) <

. . . < jσ (A+B);
� σ ′ is the unique permutation such that jσ ′(σ (1)) < . . . < jσ ′(σ (A+B+C));
� τ is the unique permutation fixing 1, . . . , A with jτ (A+1) < jτ (A+2) < . . . <

jτ (A+B+C);
� τ ′ is the unique permutation such that jτ ′(τ (1)) < . . . < jτ ′(τ (A+B+C)).

For each r = 1, . . . , A + B + C , we have σ ′(σ (r )) = τ ′(τ (r )) – we write this

index ir .

The left-hand side of (11.3) is

sign(σ ′)sign(σ )ei1
∧ . . . ∧ ei A+B+C

and the right-hand side is

sign(τ ′)sign(τ )ei1
∧ . . . ∧ ei A+B+C .
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The multiplicative property of the sign

sign(σ ′)sign(σ ) = sign(σ ′σ ) = sign(τ ′τ ) = sign(τ ′)sign(τ )

yields our identity. �

Thus
∧∗ V is a graded-commutative k-algebra under wedge product. This is called

the exterior algebra of V .

11.4.2

Exterior

powers and

linear trans-

formations

Proposition 11.22 Let T : V → W be a linear transformation. Then there is an
induced k-algebra homomorphism

∧
T :

∗∧
V →

∗∧
W.

Suppose that {e j } and { fi } are bases of V and W . If (Ai j ) is the matrix of T with
respect to these bases then

(∧
T

)
(e j1 ∧ . . . ∧ e jM ) =

∑
i1<...<iM

Ai1,...,iM ; j1,..., jM fi1
∧ . . . ∧ fiM , (11.4)

where Ai1,...,iM ; j1,..., jM is the determinant of the M × M minor of (Ai j ) obtained from
extracting the rows {i1, i2, . . . , iM} and the columns { j1, . . . , jM}.

The assertion that
∧

T is a k-algebra homomorphism means that it is k-linear and

respects wedge products

(∧
T

)
(η ∧ ω) =

(∧
T

)
(η) ∧

(∧
T

)
(ω), (11.5)

and, in particular,

(∧
T

)
(v1 ∧ . . . ∧ vM ) = T (v1) ∧ . . . ∧ T (vM ). (11.6)

We also use the notation
∧M T :

∧M V → ∧M W when we restrict to the M th

exterior power;
∧0 T is the identity and

∧1 T = T .

Example 11.23 For T : k2 → k2 we have

(∧
T

)
(e1 ∧ e2) = (a11e1 + a21e2) ∧ (a12e1 + a22e2)

= (a11a22 − a12a21)e1 ∧ e2.

For T : k2 → k3 we have

(∧
T

)
(e1 ∧ e2) = (a11 f1 + a21 f2 + a31 f3) ∧ (a12 f1 + a22 f2 + a32 f3)

= (a11a22 − a12a21) f1 ∧ f2

+ (a21a32 − a31a22) f2 ∧ f3 + (a11a32 − a12a31) f1 ∧ f3.
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Proof of Proposition 11.22 In fact, a direct computation shows that Property (11.6)

implies that the matrix of
∧

T is given by Expression (11.4). However, we shall

work in reverse: We verify that the linear transformations
∧M T defined by Expres-

sion (11.4) have Property (11.5).

Since each
∧M T is linear and the operation ∧ is linear in each factor, we need only

check Property 11.5 for η = e j1 ∧ . . . ∧ e jM and ω = e j ′
1
∧ . . . ∧ e j ′

B
. By induction on

B, it suffices to assume ω = e j ′ . Recall the matrix identity

Ai1,...,iM ,iM+1; j1,..., jM , j ′ =
∑

r

(−1)M+1+r air j ′ Ai1,...,îr ,...,iM+1; j1,..., jM

obtained by expanding along the j ′-column. This yields

(
M+1∧

T

)
(e j1 ∧ . . . ∧ e jM ∧ e j ′ )

=
∑

i1<...<iM+1

Ai1,...,iM+1; j1,..., jM , j ′ fi1
∧ . . . ∧ fiM+1

=
∑

i1<...<iM+1; r

(−1)M+1+r air j ′ Ai1,...,îr ,...,iM+1; j1,..., jM
fi1

∧ . . . ∧ fir ∧ . . . ∧ fiM+1

=
∑

i1<...<iM+1; r

Ai1,...,îr ,...,iM+1; j1,..., jM
fi1

∧ . . . f̂ir . . . ∧ fiM+1
∧ (air j ′ fir )

=
∑

i ′
1<...<i ′

M

Ai ′
1,...,...,i

′
M ; j1,..., jM fi ′

1
∧ . . . ∧ fi ′

M
∧

(∑
i ′

ai ′ j ′ fi ′

)

=
M∧

T (e j1 ∧ . . . ∧ e jM ) ∧ T (e j ′ ).

In changing indices from i1, . . . , îr , . . . , iM+1 to i ′
1, . . . , i ′

M , it might seem that we are

adding extra terms, i.e., the cases where i ′ equals one of the i ′
1, . . . , i ′

M . However, in

precisely these cases

fi ′
1
∧ . . . ∧ fi ′

M
∧ fi ′ = 0. �

We deduce the following corollaries:

Corollary 11.24 Let T : V → V be a linear transformation on a vector space of
dimension N. Then (

N∧
T

)
:

N∧
V →

N∧
V

is multiplication by det(T ).

Corollary 11.25 Let T : V → W be a linear transformation. Then rank (T ) < M
if and only if

∧M T = 0.
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Indeed, a matrix A has rank < M exactly when each of its M × M minors vanish.

Corollary 11.26 Let v1, . . . , vM ∈ V be linearly independent, and choose

v ′
1, . . . , v ′

M ∈ span{v1, . . . , vM}

with v ′
i = ∑M

j=1 ai j v j . Then we have

v ′
1 ∧ . . . ∧ v ′

M = det(ai j )v1 ∧ . . . ∧ vM .

11.4.3 De-

composible

elements

Definition 11.27 An element ω ∈ ∧m V is completely decomposible if there ex-

ist v1, . . . , vm ∈ V such that ω = v1 ∧ . . . ∧ vm . An element ω ∈ ∧m V is partially
decomposible if ω = v ∧ η for some v ∈ V and η ∈ ∧m−1 V .

Proposition 11.28 Let ω ∈ ∧m V .

1. If ω is partially decomposible then ω ∧ ω = 0.
2. ω is partially decomposible if and only if the linear transformation

φ(ω) : V → ∧m+1 V
w �→ w ∧ ω

has nontrivial kernel.
3. If {v1, . . . , vM} is a basis for kernel(φ(ω)) then

ω = v1 ∧ . . . ∧ vM ∧ η, η ∈
m−M∧

V .

4. ω is completely decomposible if and only if ker(φ(ω)) has dimension m.

Proof If ω = v ∧ η then

ω ∧ ω = v ∧ η ∧ v ∧ η = (−1)m−1v ∧ v ∧ η ∧ η = 0,

which proves the first assertion. It is evident that v ∈ ker(φ(ω)), which is the ‘only

if’ part of the second assertion. Similarly, if ω = v1 ∧ . . . ∧ vm then v1, . . . , vm ∈
ker(φ(ω)).

For the third assertion, extend v1, . . . , vM to a basis v1, . . . , vN for V . Then we

have

ω =
∑

i1<...<im

ci1,...,im vi1
∧ . . . ∧ vim
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and

v j ∧ ω =
∑

i1<...<im

ci1,...,im v j ∧ vi1
∧ . . . ∧ vim

=
∑

i1<...<im
ir �= j

ci1,...,im v j ∧ vi1
∧ . . . ∧ vim .

This is zero if and only if ci1,...,im = 0 for all indices {i1, . . . , im} �� j . Similarly,

v1 ∧ ω = . . . = vM ∧ ω = 0

if and only if ci1,...,im = 0 for all indices {i1, . . . , im} �⊃ {1, . . . , M}. Then we have

ω = v1 ∧ . . . ∧ vM ∧ η for

η =
∑

j1,..., jM−m

c′
j1,..., jM−m

v j1 ∧ . . . ∧ v jM−m ,

where

c′
j1,..., jM−m

= ±cI , I = {1, . . . , M, j1, . . . , jm−M}.

The ‘if’ parts of the second and fourth assertions follow from this analysis. �

11.5 Grassmannians as projective varieties

The following result realizes the Grassmannian in projective space:

Proposition 11.29 There is a well-defined map

j : Gr(M, N ) → P
(∧M k N

)
span(v1, . . . , vM ) �→ [v1 ∧ . . . ∧ vM ]

which is a bijection between elements of the Grassmannian and projective equivalence
classes of completely decomposible elements ω ∈ ∧M k N .

Proof We first check that j is well-defined. If v1, . . . , vM and v ′
1, . . . , v ′

M are

bases for a subspace 	 then

[v1 ∧ . . . ∧ vM ] = [v ′
1 ∧ . . . ∧ v ′

M ]

by Corollary 11.26.

We can recover span(v1, . . . , vM ) easily from v1 ∧ . . . ∧ vM : Proposition 11.28

implies

span(v1, . . . , vM ) = ker(φ(v1 ∧ . . . ∧ vM )).

We conclude that j is injective. �
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Proposition 11.30 The inclusion j : Gr(M, N ) ↪→ P(
∧M k N ) realizes the Grass-

mannian as a closed subset of projective space.

This is called the Plücker embedding in honor of Julius Plücker (1801–1868).

Our argument will also complete the proof that the Grassmannian is an abstract

variety (Theorem 11.13.)

Proof For each S = {s1, . . . , sM} ⊂ {1, . . . , N } with complement T , write

VS =
{[

ci1...iM

] ∈ P

(
M∧

k N

)
: cs1...sM �= 0

}

for the corresponding distinguished subset of P(
∧M k N ). Recall the notation in the

discussion of the abstract variety structure on the Graassmannian (cf. Theorem 11.13):

let US � AM(N−M)(k) ⊂ Gr(M, N ) denote the distinguished subset corresponding to

subspaces of the form

span

(
es +

∑
t∈T

bst et : s ∈ S

)
.

Observe that j−1(VS) = US: a decomposible element v1 ∧ . . . ∧ vM has nonvanishing

coefficient cs1...sM if and only if (after permuting indices) each es j appears in v j .

For notational simplicity, we take S = {1, . . . , M}. We can expand out j(	(S; B))

as

e1 ∧ . . . ∧ eM + ∑
1≤i≤M< j≤N e1 ∧ . . . ∧ ei−1 ∧ (e j bi, j ) ∧ ei+1 ∧ . . . ∧ eM

+ ∑
1≤i1<i2≤M< j1, j2≤N e1 . . . ∧ (e j1 bi1, j1 ) ∧ . . . ∧ (e j2 bi2, j2 ) ∧ . . . eM + · · ·

or in the form

M∑
r=1

∑
1≤i1<...<ir ≤M< j1<...< jM−r ≤N

pi1,...,ir ; j1,..., jM−r (bi j )ei1
∧ . . . ∧ eir ∧ e j1 ∧ . . . ∧ e jM−r

where pi1,...,ir ; j1,..., jM−r (bi j ) is a polynomial of degree M − r in the bi j , and

p1,...,î,...,M ; j = (−1)M−i bi j . (11.7)

Since the bi j are the coordinates on US � AM(N−M)(k), j : US → VS is a morphism

of affine varieties.

Proposition 11.29 implies that j is bijective onto its image. Projection onto the

coordinates (11.7) and adjusting for the signs, we obtain a left inverse VS → US for

j |US . It follows that j(US) ⊂ VS is closed and US → j(US) is an isomorphism of

affine varieties. �
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11.6 Equations for the Grassmannian

The proof of Proposition 11.30 gives some equations of the Grassmannian:

Example 11.31 Let M = 2 and N = 4. We want to classify

ω = x12e1 ∧ e2 + · · · + x34e3 ∧ e4

arising from the Grassmannian. The condition

ω ∧ ω = 0,

translates into the quadratic equation

x12x34 − x13x24 + x14x23 = 0.

The corresponding hypersurface X ⊂ P(
∧2 k4) contains Gr(2, 4).

On the other hand, we can compute the image

j(U12) ⊂ P

(
2∧

k4

)

and its projective closure. We have j(U12) ⊂ V12 where V12 = {x12 �= 0}, and let

y13, y14, y23, y24, y34 be affine/dehomogenized coordinates for V12. The induced

morphism of affine varieties j |U12 → V12 takes

(e1 + b13e3 + b14e4) ∧ (e2 + b23e3 + b24e4)

to

(b23, b24, −b13, −b14, b13b24 − b14b23)

with graph

y13 = b23, y14 = b24, y23 = −b13, y24 = −b14, y34 = b13b24 − b14b23.

Eliminating the variables bi j gives

y34 = −y23 y14 + y24 y13

and homogenizing gives the projective closure

x12x34 + x23x14 − x13x24 = 0.

This equation can be put in a more general context. Given

ω =
∑

i1<...<iM

xi1...iM ei1
∧ . . . ∧ eiM ,
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if [ω] ∈ j(Gr(M, N )) then ω is partially decomposible and ω ∧ ω = 0 (Proposi-

tion 11.28). This translates into quadratic equations in the xi1...iM . In the special case

M = 2, we can write these explicitly: For each set of four indices i1 < i2 < i3 < i4

we have

xi1i2
xi3i4

− xi1i3
xi2i4

+ xi1i4
xi2i3

= 0.

For M > 2 there exist partially decomposible elements which are not completely

decomposible, so these equations are insufficient to cut out the Grassmannian. How-

ever, we do have the following:

Proposition 11.32 (Rough draft of the equations for Gr(M, N )) An element [ω] ∈
P(

∧M k N ) is completely decomposible if and only if each of the (N − M + 1) ×
(N − M + 1) minors of the matrix of

φ(ω) : k N →
M+1∧

k N

w �→ w ∧ ω

vanish.

Proof By Proposition 11.28, ω is completely decomposible exactly when φ(ω)

has rank ≤ N − M . If ω = v1 ∧ . . . ∧ vM �= 0, then (
∑

j>M c j v j ) ∧ ω �= 0 unless

each c j = 0, so the rank < N − M only when ω = 0. The (N − M + 1) × (N −
M + 1) minors of a matrix B vanish if and only if rank (B) < N − M + 1. �

Remark 11.33 This is only a rough draft! Even in the case M = 2, N = 4 we do

not get generators for the homogeneous ideal of the Grassmannian. Here we obtain

the 3 × 3 minors of a 4 × 4 matrix

e1 e2 e3 e4

e2 ∧ e3 ∧ e4

e1 ∧ e3 ∧ e4

e1 ∧ e2 ∧ e4

e1 ∧ e2 ∧ e3

⎛
⎜⎜⎝

0 x34 −x24 x23

x34 0 −x14 x13

x24 −x14 0 x12

x23 −x13 x12 0

⎞
⎟⎟⎠.

There are altogether six nonzero equations

xi j (x12x34 − x13x24 + x14x23) = 0.

11.6.1

Plücker

relations

We give, without proof, the complete set of homogeneous equations for the Grass-

mannian. These are known as the Plücker relations.

For any vector space V over k, the dual space V ∗ consists of the linear transfor-

mations V → k. Given a subspace W ⊂ V , we define

W ⊥ = { f ∈ V ∗ : f (w) = 0 for each w ∈ W } ⊂ V ∗.
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Each linear transformation T : V → W induces a transpose T ∗ : W ∗ → V ∗ with

formula

(T ∗g)(v) = g(T (v)), g ∈ W ∗, v ∈ V .

Let V be a vector space of dimension N with basis {e1, . . . , eN } for V ; let

e1, . . . , eN denote the dual basis of V ∗ so that ei (e j ) = δi j . Our choice of basis

induces an isomorphism

� :
∧N V

∼→ k
e1 ∧ . . . ∧ eN �→ 1.

The wedge-product

M∧
V ×

N−M∧
V →

N∧
V

�� k

is a nondegenerate pairing. Concretely, we have dual basis elements

ei1
∧ . . . ∧ eiM ⇔ sign(σ )e j1 ∧ . . . ∧ e jN−M

where σ is the permutation

{i1, . . . , iM , j1, . . . , jN−M} σ→ {1, . . . , N }.

Example 11.34 The dual basis elements for
∧1 k4 and

∧3 k4 are

e1 e2 ∧ e3 ∧ e4

e2 −e1 ∧ e3 ∧ e4

e3 e1 ∧ e2 ∧ e4

e4 −e1 ∧ e2 ∧ e3

.

Our duality induces an isomorphism

γ :
N−M∧

V
∼→

M∧
V ∗ (11.8)

given by

γ (e j1 ∧ . . . e jN−M ) = sign(σ )ei1 ∧ . . . ∧ eiM .

γ depends on the choice of the isomorphism � but not on the precise choice of basis.

It is therefore uniquely determined up to scalar multiplication.

Observe that ω is completely decomposible if and only if γ (ω) is com-

pletely decomposible: if ω = v1 ∧ . . . ∧ vM and v M+1, . . . , v N ∈ V ∗ are a basis for

Span {v1, . . . , vM}⊥ then γ (ω) = cv M+1 ∧ . . . ∧ v N for some scalar c ∈ k.
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Consider the linear transformation

ψ(ω) :
∧

V ∗ → ∧N−M+1 V ∗

f → f ∧ γ (ω).

This has rank ≤ M if and only if γ (ω) is completely decomposible. Moreover, using

the relationship between ω and γ (ω), we find

ker(ψ(ω)) = span{v M+1, . . . , v N }
= ker(φ(ω))⊥.

Consider the transpose maps

φ(ω)∗ :
M+1∧

V ∗ → V ∗, ψ(ω)∗ :
N−M+1∧

V → V .

For a linear transformation T : W1 → W2 with transpose T ∗ : W ∗
2 → W ∗

1 , we have

image(T ∗) = ker(T )⊥.

Thus we find

image(φ(ω)∗) = ker(φ(ω))⊥ = ker(ψ(ω)) = image(ψ(ω)∗)⊥.

This means that for each α ∈ ∧M+1 V ∗ and β ∈ ∧N−M+1 V

�α,β(ω) := φ(ω)t (α)[ψ(ω)t (β)] = 0;

this is a quadratic polynomial in the coordinates of ω.

Theorem 11.35 [22, ch. 7] The Plücker relations generate the homogeneous ideal
of the Plücker embedding of the Grassmannian j : Gr(M, N ) ↪→ P(

∧M k N ), i.e.,

J (Gr(M, N )) =
〈
�α,β(ω) : α ∈

M+1∧
V ∗, β ∈

N−M+1∧
V

〉
.

11.7 Exercises

11.1 Consider the plane curve

X = {
(x0, x1, x2) : x3

0 x1 + x3
1 x2 + x3

2 x0

} ⊂ P2(C).

(a) Show that X is smooth.

(b) Compute the dual curve X̌ ⊂ P̌2(C).

(c) Find at least one singular point of X̌ .
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11.2 Enumerate the singularities of the Cayley cubic surface

{[w, x, y, z] : wxy + xyz + yzw + zwx = 0} ⊂ P3(C)

and write down an equation for its dual. Describe the dual to the hypersurface

{[w, x, y, z] : wxy − z3 = 0} ⊂ P3(C).

11.3 Consider the plane curve

X = {
(x0, x1, x2) : x2

0 x2
1 + x2

1 x2
2 + x2

2 x2
0

} ⊂ P2(C).

Show that X is not smooth. If you are ambitious, work out the following:

(a) Set

J = 〈∂ f/∂x0, ∂ f/∂x1, ∂ f/∂x2〉 .

Compute the dehomogenization Ii of J with respect to each of the variables

xi . Find a Gröbner basis for each Ii with respect to a graded order. Compute

the rehomogenization of each Ii , Ji ⊂ C[x0, x1, x2], and the intersection J ′ :=
J0 ∩ J1 ∩ J2.

(b) Determine the singular points of X .

(c) Show that J �= J ′ and compute primary decompositions of J ′ and J .

11.4 Consider the complex projective curve

C = {
(x0, x1, x2) : x2x2

1 = x2
0 x2 + x3

0

} ⊂ P2(C).

(a) Determine whether C is smooth. If it is not smooth, find its singularities.

(b) Compute the tangent line to the curve at the point [−1, 0, 1].

(c) Decide whether this tangent line is an inflectional tangent.

11.5 Prove the statement

	(S; B) = 	(S; C) ⇒ B = C

from Lemma 11.14.

11.6 Let G(M − 1, N − 1) denote the set of all linear subspaces 	 � PM−1 ⊂ PN−1. Show

there is an identification

G(M − 1, N − 1) = Gr(M, N ).

11.7 Verify directly that the gluing maps for Gr(2, 4) satisfy the closed-graph condition.

11.8 Show that the Plücker relations for the Grassmannian

Gr(2, N ) ⊂ P

(
2∧

k N

)
� P(N

2 )−1
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are equivalent to

xi j xkl − xik x jl + xil x jk = 0, {i, j, k, l} ⊂ {1, 2, . . . , N }.

11.9 Fix a two-dimensional subspace 	 ⊂ C4. Consider the set

X	 = {	′ ∈ Gr(2, 4) : 	 ∩ 	′ �= 0}.

Show this is a closed subset of Gr(2, 4) ⊂ P5(C) and find explicit homogeneous

equations for X	 in the special case 	 = span(e1, e2). This is an example of a Schubert
variety.

11.10 Consider the lines �1, �2, �3, �4 ⊂ P3(C) with equations

�1 = {x0 = x1 = 0} �2 = {x2 = x3 = 0}
�3 = {x0 − x2 = x1 − x3 = 0}, �4 = {x0 − x3 = x1 + x2 = 0}.

How many lines 	 ⊂ P3(C) intersect all four? Describe the set

{	 ∈ G(1, 3) : 	 ∩ �i �= ∅, i = 1, 2, 3, 4}.

There is a well-developed theory for enumerating the linear subspaces meeting pre-

scribed configurations of linear subspaces. This is called Schubert calculus after the

enumerative geometer Hermann Schubert (1848–1911).

11.11 Let T : k N → k N be an invertible linear transformation. For each M-dimensional

subspace 	 ⊂ k N , T (	) is also an M-dimensional subspace. Show this induces an

automorphism of the Grassmannian

T : Gr(M, N ) → Gr(M, N ).

11.12 Consider the map S :
∧2 k4 → ∧2 k4 given by

S(x12e1 ∧ e2 + x13e1 ∧ e3 + x14e1 ∧ e4 + x23e2 ∧ e3 + x24e2 ∧ e4 + x34e3 ∧ e4)

= x34e1 ∧ e2 + x24e1 ∧ e3 + x23e1 ∧ e4 + x14e2 ∧ e3 + x13e2 ∧ e4 + x12e3 ∧ e4.

(a) Show that S is an invertible linear transformation and thus yields an automorphism

S : P

(
2∧

k4

)
→ P

(
2∧

k4

)
.

(b) Show that S(Gr(2, 4)) = Gr(2, 4) and that S restricts to an automorphism

S : Gr(2, 4) → Gr(2, 4).

(c) Can this automorphism be realized as one of the automorphisms introduced in

Exercise 11.11?
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11.13 Consider the incidence correspondence

I = {(�, 	) : � ⊂ 	 ⊂ k4, � ∈ P3, 	 ∈ Gr(2, 4)} ⊂ P3(k) × Gr(2, 4).

(a) Show that I is an abstract variety.

(b) Find equations for

I ⊂ P3(k) × P5(k) = P(k4) × P

(
2∧

k4

)
.

Hint: Use and prove the following fact from linear algebra: If ω = v1 ∧ v2 ∈∧2 k4 is decomposible and w ∈ k4, then w ∈ Span {v1, v2} if and only if ω ∧ w
= 0.

11.14 (a) Decide whether

ω = e1 ∧ e2 ∧ e3 + e2 ∧ e3 ∧ e4 + e3 ∧ e4 ∧ e1 + e4 ∧ e1 ∧ e2 ∈
3∧

k4

is partially decomposible. If so, find v and η so that ω = v ∧ η.

(b) Show that every element ω ∈ ∧3 k4 is partially decomposible.

(c) Prove or disprove: every element ω ∈ ∧3 k5 is partially decomposible.

(d) Challenge: Find equations for the locus of partially decomposible elements in∧3 k6. Hint: Consider the induced map

k6 →
4∧

k6

w �→ w ∧ ω.

11.15 Consider the subset Z ⊂ Gr(2, 4) × Gr(2, 4) defined by

Z = {(	1, 	2) : 	1, 	2 ⊂ k4, 	1 ∩ 	2 �= 0}.

(a) Show that Z is closed in Gr(2, 4) × Gr(2, 4).

(b) Find bihomogeneous equations for Z in P5(k) × P5(k).

11.16 Fix integers M1, M2, N with 0 < M1 < M2 < N and consider the incidence

F(M1, M2) ⊂ Gr(M1, N ) × Gr(M2, N ) given by

F(M1, M2) = {(	1, 	2) : 	1 ⊂ 	2 ⊂ k N }.

(a) Show that F(M1, M2) is a closed subset of Gr(M1, N ) × Gr(M2, N ).

(b) Fix M1 = 1, M2 = 2, N = 4. Write down equations for

F(1, 2) ⊂ Gr(1, 4) × Gr(2, 4) = P3(k) × Gr(2, 4) ⊂ P3(k) × P5(k)

where Gr(2, 4) ⊂ P5(k) is the Plücker embedding.
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(c) For 	1 ∈ Gr(M1, N ), consider the set

W (	1) := {	2 : 	2 ⊃ 	1} ⊂ Gr(M2, N ).

Show that W is closed. Hint: Observe that W (	1) = π2(π−1
1 (	1)) where π j :

F(M1, M2) → Gr(M j , N ) is the projection.

The varieties F(M1, M2) are called two-step flag varieties.



12 Hilbert polynomials and the Bezout Theorem

Hilbert polynomials are the main tool for classifying projective varieties. Many in-

variants of topological and geometric interest, like the genus of a Riemann surface, are

encoded in their coefficients. Here we will carefully analyze the Hilbert polynomials

of ideals defining finite sets over algebraically closed fields. The Bezout Theorem is

the main application.

Hilbert polynomials are defined in terms of the Hilbert function, but the precise

relationship between the Hilbert function and the Hilbert polynomial is extremely

subtle and continues to be the object of current research. The interpolation prob-

lems considered in Chapter 1 involve measuring the discrepancy between these two

invariants.

12.1 Hilbert functions defined

While our main focus is homogeneous ideals in polynomial rings, Hilbert functions

and polynomials are used in a much broader context:

Definition 12.1 A graded ring R is a ring admitting a direct-sum decomposition

R = ⊕t∈Z Rt

compatible with multiplication, i.e., Rt1 Rt2 ⊂ Rt1+t2 for all t1, t2 ∈ Z. The decompo-

sition is called a grading of R and the summands Rt are called its graded pieces;

elements F ∈ Rt are homogeneous of degree t .
Let k be a field. A graded k-algebra is a k-algebra R with a grading compatible

with the algebra structure, i.e., for any c ∈ k and F ∈ Rt we have cF ∈ Rt .

Observe that the constants in a graded k-algebra necessarily have degree zero.

Example 12.2

1. S = k[x0, . . . , xn] is a graded ring with graded pieces

St = k[x0, . . . , xn]t = homogeneous forms of degree t.

207
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2. Let w0, . . . , wn be positive integers. Then S = k[x0, . . . , xn] is graded with graded

pieces

St = span
(
xα0

0 . . . xαn
n : w0α0 + · · · + wnαn = t

)
.

This is called a weighted polynomial ring.

3. Let J ⊂ S = k[x0, . . . , xn] be a homogeneous ideal. The quotient ring R = S/J is

graded with graded pieces

Rt = image(k[x0, . . . , xn]t → S/J ).

Here is a proof: For each t , the inclusion k[x0, . . . , xn]t ⊂ k[x0, . . . , xn] induces an

inclusion Rt ⊂ R. These together give a surjective homomorphism ⊕t≥0 Rt → R.

We claim this is injective. Suppose we have homogeneous Fj ∈ k[x0, . . . , xn] j , j =
0, . . . , r, such that F0 + · · · + Fr ≡ 0 in R, i.e., F0 + · · · + Fr ∈ J . By Exercise 9.1,

each Fj ∈ J and thus Fj ≡ 0 in R j .

4. For any projective variety X ⊂ Pn(k) the ring

R(X ) = k[x0, . . . , xn]/J (X )

is graded; it is called the graded coordinate ring of X .

Definition 12.3 Let R be a graded k-algebra with dimk Rt < ∞ for each t . The

Hilbert function HFR : Z → Z is defined

HFR(t) = dimk Rt .

We compute Hilbert functions in some important examples:

Example 12.4

1. For S = k[x0, . . . , xn] with the standard grading, we have

HFS(t) =
(

t + n

t

)
.

2. If F ∈ k[x0, . . . , xn] is homogeneous of degree d and R = k[x0, . . . , xn]/ 〈F〉 then

HFR(t) =
(

t + n

n

)
−

(
t − d + n

n

)

for t ≥ d . Indeed, the elements of 〈F〉 of degree t are of the form FG where G is an

arbitrary homogeneous polynomial of degree t − d.

3. If a = [a0, . . . , an] ∈ Pn(k) and R = k[x0, . . . , xn]/J (a) then HFR(t) = 1 for t ≥ 0.

Hilbert functions are invariant under projectivities:
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Proposition 12.5 Let J ⊂ k[x0, . . . , xn] be homogeneous, φ : Pn(k) → Pn(k) a
projectivity, and J ′ = φ∗ J . If R = k[x0, . . . , xn]/J and R′ = k[x0, . . . , xn]/J ′ then
HFR(t) = HFR′ (t).

Proof The coordinate functions of φ take the form

φi (x0, . . . , xn) =
n∑

j=0

ai j x j

where A = (ai j ) is an (n + 1) × (n + 1) invertible matrix. The corresponding homo-

morphism

φ∗ : k[x0, . . . , xn] → k[x0, . . . , xn]

restricts to invertible linear transformations

(φ∗)t : k[x0, . . . , xn]t → k[x0, . . . , xn]t

xα0

0 . . . xαn
n →

(∑n
j=0 a0 j x j

)α0

. . .
(∑n

j=0 anj x j

)αn

for each t ≥ 0. It follows that

dimk J ′
t = dimk(φ∗)t Jt = dimk Jt

for each t , and HFR(t) = HFR′ (t). �

Proposition 12.6 Let J, J ′ ⊂ k[x0, . . . , xn] be graded ideals with intersection
J ′′ = J ∩ J ′, and write

R = k[x0, . . . , xn]/J, R′ = k[x0, . . . , xn]/J ′, R′′ = k[x0, . . . , xn]/J ′′.

Then we have

HFR(t) + HFR′ (t) ≥ HFR′′ (t).

Equality holds for t � 0 if and only if J + J ′ is irrelevant.

Proof Let Jt , J ′
t , and J ′′

t denote the degree-t graded pieces of the corresponding

ideals, e.g., Jt = J ∩ k[x0, . . . , xn]t . For each t ≥ 0, we have a surjection

Jt ⊕ J ′
t � (J + J ′)t

with kernel J ′′
t . Thus we find

dim Jt + dim J ′
t = dim(J + J ′)t + dim J ′′

t

and

dim Rt + dim R′
t = dim k[x0, . . . , xn]t/(J + J ′)t + dim R′′

t .
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This yields the identity of Hilbert functions

HFR(t) + HFR′ (t) = HFR′′ (t) + dim k[x0, . . . , xn]t/(J + J ′)t ,

and our first inequality follows. J + J ′ is irrelevant if and only if (J + J ′)N =
k[x0, . . . , xn]N for N � 0; equality holds for precisely these values of t . �

Definition 12.7 The Hilbert function of a projective variety X is defined

HFX (t) = HFR(X )(t),

where R(X ) is its graded coordinate ring.

Proposition 12.8 If X1, . . . , Xr ⊂ Pn(k) are projective varieties then

HF∪ j X j (t) ≤
r∑

j=1

HFX j (t).

Equality holds for t � 0 provided J (Xi ) + J (X j ) irrelevant for each i �= j .

Proof By induction, it suffices to address the r = 2 case. Just as for affine

varieties, we have

J (X1 ∪ X2) = J (X1) ∩ J (X2).

Proposition 12.6 then gives the result. �

An application of the Projective Nullstellensatz (Theorem 9.25) yields

Corollary 12.9 Let k be algebraically closed. Suppose X1, . . . , Xr ⊂ Pn(k) are
projective varieties which are pairwise disjoint. Then for t � 0

HF∪ j X j (t) =
r∑

j=1

HFX j (t).

In the special case where each X j is a point we obtain

Corollary 12.10 Let S ⊂ Pn(k) be finite. Then HFS(t) = |S| for t � 0.

The following case is crucial for the Bezout Theorem:

Proposition 12.11 Let F, G ∈ S = k[x0, . . . , xn] be homogeneous of degree d and
e without common factors. The quotient ring R = S/ 〈F, G〉 has Hilbert function

HFR(t) = dim St − dim St−d − dim St−e + dim St−d−e

= (t+n
n

) − (t+n−d
n

) − (t+n−e
n

) + (t+n−d−e
n

)
provided t ≥ d + e.

If n = 2 then HFR(t) = de for t � 0.
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Proof Let q : S → R be the quotient homomorphism and q(t) : St → Rt the

induced linear transformation. Recall (Exercise 2.15) that AF + BG = 0 for A, B ∈
k[x0, . . . , xn] if and only if A = CG and B = −C F for some C ∈ k[x0, . . . , xn]. We

have a series of linear transformations (cf. §5.4)

0 → St−d−e
δ1(t)→ St−d ⊕ St−e

δ0(t)→ St
q(t)→ Rt → 0

C → (CG, −C F)

(A, B) → AF + BG

where ker(δ0(t)) = image(δ1(t)), ker(q(t)) = image(δ0(t)), δ1(t) is injective, and q(t)
is surjective. Applying the rank-nullity theorem successively, we obtain

dim Rt = dim St − dim St−d − dim St−e + dim St−d−e.

The formula dim Sr = (r+n
n

)
is valid for r ≥ 0 and yields

HFR(t) =
(

t + n

n

)
−

(
t + n − d

n

)
−

(
t + n − e

n

)
+

(
t + n − d − e

n

)

for t ≥ d + e. We also have

dim Sr = (r + n)(r + n − 1) . . . (r + 1)

n!

for r ≥ −n; when n = 2, we obtain HFR(t) = de for all t ≥ d + e − 2. �

12.2 Hilbert polynomials and algorithms

Proposition 12.12 Let J ⊂ S = k[x0, . . . , xn] be a homogeneous ideal, > a mono-
mial order, and LT(J ) the ideal of leading terms of J . Then HFS/J (t) = HFS/LT(J )(t).

This reduces the computation of Hilbert functions to the case of monomial ideals.

Proof This follows immediately from the existence of normal forms (Theo-

rem 2.16): The monomials not in LT(J ) form a basis for S/J as a vector space. In

particular, the monomials of degree t not in LT(J ) form a basis for (S/J )t = St/Jt .

�

From now on, we use binomial notation to designate polynomials with rational

coefficients: For each integer r ≥ 0, we write

(
t

r

)
=

{
t(t − 1) . . . (t − r + 1)/r ! if r > 0

1 if r = 0,
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which is a polynomial of degree r in Q[t]. We allow t to assume both positive and

negative values.

Proposition 12.13 Let f : Z → Z be a function such that

(� f )(t) := f (t + 1) − f (t)

is a polynomial of degree d − 1. Then f is a polynomial of degree d and can be
written in the form

f (t) =
d∑

j=0

a j

(
t

d − j

)
, a j ∈ Z. (12.1)

In particular, any polynomial P(t) ∈ Q[t] of degree d with P(Z) ⊂ Z takes this form.

Proof The key to the proof is the identity

(
t + 1

r

)
−

(
t

r

)
=

(
t

r − 1

)
,

which we leave to the reader.

The argument uses induction on degree. The base case d = 1 is straightforward:

If (� f )(t) is a constant a0 then

f (t) = a0t + a1 = a0

(
t

1

)
+ a1

(
t

0

)
.

The inductive hypothesis implies that

(� f )(t) =
d−1∑
j=0

a j

(
t

d − 1 − j

)

for some a j ∈ Z. Set

Q(t) =
d−1∑
j=0

a j

(
t

d − j

)

so that (�Q) = (� f ) by our identity above. It follows that f = Q + ad for some

constant ad ∈ Z and f takes the desired form. �

Theorem 12.14 (Existence of Hilbert polynomial) Let J ⊂ S = k[x0, . . . , xn] be
a homogeneous ideal and R = k[x0, . . . , xn]/J . Then there exists a polynomial
HPR(t) ∈ Q[t] such that

HFR(t) = HPR(t), t � 0.

This is called the Hilbert polynomial and takes the form (12.1).
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Proof If J ⊂ S is an ideal, write

HFJ (t) = dim Jt =
(

t + n

n

)
− HFS/J (t).

Of course, HFS/J (t) is a polynomial function for t � 0 if and only if HFJ (t) is a

polynomial function for t � 0.

We may assume J is a monomial ideal by Proposition 12.12. The argument is by

induction on n. The base case n = 0 is straightforward: if J = 〈x N
0 〉 then HFJ (t) = 1

for t ≥ N . For the inductive step, assume each monomial ideal in S′ = k[x0, . . . , xn−1]

has a Hilbert polynomial.

Define auxilliary ideals

J [m] = {
f ∈ S′ : f xm

n ∈ J
}

so that

J [0] ⊂ J [1] ⊂ J [2] ⊂ . . . .

This terminates at some J [∞] so that J [m] = J [∞] for m ≥ M . Assume that

HFJ [∞](t) = HPJ [∞](t) whenever t ≥ N .

We can write each element of Jt as a sum of terms fm xm
n where fm ∈ J [m]t−m .

Hence we have

Jt � ⊕t
m=0 J [m]t−m xm

n

and, for t � 0,

HFJ (t) =
t∑

m=0

HFJ [m](t − m)

=
M−1∑
m=0

HFJ [m](t − m) +
t∑

m=M

HFJ [m](t − m)

=
M−1∑
m=0

HFJ [m](t − m) +
t∑

m=M

HFJ [∞](t − m)

=
M−1∑
m=0

HFJ [m](t − m) +
t−N∑

m=M

HFJ [∞](t − m) +
t∑

m=t−N+1

HFJ [∞](t − m)

(substituting HFJ [∞](s) = HPJ [∞](s) for s ≥ N )

=
M−1∑
m=0

HFJ [m](t − m) +
t−N∑

m=M

HPJ [∞](t − m) +
t∑

m=t−N+1

HFJ [∞](t − m)

(substituting HFJ [m](s) = HPJ [m](s) for m = 0, . . . , M − 1, s � 0)

=
M−1∑
m=0

HPJ [m](t − m) +
t−N∑

m=M

HPJ [∞](t − m) +
t∑

m=t−N+1

HFJ [∞](t − m)

=
M−1∑
m=0

HPJ [m](t − m) +
t−M∑
j=N

HPJ [∞]( j) +
N−1∑
j=0

HFJ [∞]( j).
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The first part is a finite sum of polynomials in t , hence is a polynomial in t . The third

part is constant in t . As for the second part, write

f (t) :=
t−M∑
j=N

HPJ [∞]( j)

and observe that

(� f )(t) = f (t + 1) − f (t) = HPJ [∞](t + 1 − M)

is a polynomial in t . Proposition 12.13 implies f is also a polynomial in t . We conclude

that HFJ (t) is a polynomial in t for t � 0. �

Definition 12.15 Let X ⊂ Pn(k) be a projective variety. The Hilbert polynomial
of X is defined

HPX (t) = HPR(X )

where R(X ) = k[x0, . . . , xn/J (X ).

In light of our previous results on Hilbert functions, we have

1. HPX (t) = (t+n
n

) − (t−d+n
n

)
when J (X ) = 〈F〉 where F ∈ k[x0, . . . , xn]d ;

2. HPX (t) is invariant under projectivities;

3. HPX (t) = deg(F) deg(G) when J (X ) = 〈F, G〉 ⊂ k[x0, x1, x2], where F and G are

homogeneous with no common factors;

4. HPS(t) = |S| for S finite;

5. HP∪ j X j (t) = ∑r
j=1 HPX j (t) when the X j are pairwise disjoint and k is algebraically

closed.

Example 12.16 Consider the ideal of the twisted cubic curve C ⊂ P3(k)

J (C) = 〈
x0x2 − x2

1 , x0x3 − x1x2, x1x3 − x2
2

〉
,

which has leading term ideal (with respect to pure lexicographic order)

J = 〈x0x2, x0x3, x1x3〉 .

We have J [0] = 〈x0x2〉 hence

HFJ [0](t) = HPJ [0](t) =
(

t

2

)
.

Furthermore,

J [m] = 〈x0, x1〉 = J [∞]

for all m ≥ 1 and

HFJ [∞](t) = HPJ [∞](t) =
(

t + 2

2

)
− 1,
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because J [∞]t contains all monomials of degree t besides xt
2. Thus we have

HFJ (t) =
t∑

j=0

HFJ [t− j]( j)

=
(

t

2

)
+

t−1∑
j=0

((
j + 2

2

)
− 1

)

=
t∑

j=0

(
j + 2

2

)
− t +

(
t

2

)
−

(
t + 2

2

)

=
(

t + 3

3

)
− (3t + 1)

and HPC (t) = 3t + 1.

Proposition 12.17 If J ⊂ S = k[x0, . . . , xn] is a homogeneous ideal with satura-
tion J̃ then HPS/J (t) = HPS/ J̃ (t).

Proof Write m = 〈x0, . . . , xn〉 so that

J̃ = {F ∈ k[x0, . . . , xn] : FmN ⊂ J for some N}.

The inclusion J ⊂ J̃ is obvious, so it suffices to show J̃t ⊂ Jt for t � 0. If J̃ is

generated by homogeneous F1, . . . , Fr then there exists an N such that mN Fi ⊂ J
for i = 1, . . . , r . For t ≥ maxi {deg(Fi )} + N we have J̃t ⊂ Jt . �

12.3 Intersection multiplicities

How do we count the number of points where two varieties meet? We want this

number to be constant even as the varieties vary in families. Such a method satisfies

the continuity principle.

Example 12.18

1. Consider the complex plane curves Ct = {y = x2 − t} and D = {y = 0}. The inter-

section

Ct ∩ D = {(±√
t, 0)}

is two distinct points for t �= 0 and one point for t = 0. This reflects the fact that C0

is tangent to D at the origin.

2. Consider the complex plane curves Ct = {y = x3 − t x} and D = {y = 0}. The

intersection

Ct ∩ D = {(0, 0), (±√
t, 0)}
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0
C

D

multiplicity 2

multiplicity 1

C
1

Figure 12.1 Intersections of families of plane curves.

is three distinct points for t �= 0 and one point for t = 0. Note that D is an inflectional

tangent to C0 at the origin.

We now define the multiplicity: let p = (a1, . . . , an) ∈ An(k) and mp =
〈x1 − a1, . . . , xn − an〉 the corresponding maximal ideal. Let Q ⊂ R := k[x1, . . . ,

xn] be an ideal with

mN
p ⊂ Q ⊂ mp

for some N . Such ideals are precisely the primary ideals in R with associated prime

mp (see Exercise 8.4). The induced quotient map R/mN
p � R/Q is surjective and

dimk R/mN
p = dimk k[x1, . . . , xn]/mN

p =
(

n + N − 1

n

)
,

so dimk R/Q < ∞. We define the multiplicity of Q at p by

mult(Q, p) = dimk R/Q.

We extend this to more general classes of ideals I ⊂ k[x1, . . . , xn]. Assume that

mp is a minimal associated prime of I . Then the multiplicity of I at p is defined

mult(I, p) = mult(Q, p),

where Q is the primary component of I corresponding to mp, which is unique by

Theorem 8.32. If mp �⊃ I then we define mult(I, p) = 0.

Remark 12.19 Assume that k is an algebraically closed field. Then mp is a minimal

associated prime of I if and only if p is an irreducible component of V (I ) (by

Corollary 8.29).

Definition 12.20 Let k be algebraically closed, V1, . . . , Vn ⊂ An(k) hyper-

surfaces with I (Vi ) = 〈 fi 〉 , i = 1, . . . , n. Suppose that p is an irreducible
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component of V1 ∩ . . . ∩ Vn . The multiplicity of V1 ∩ . . . ∩ Vn along p is defined

as mult(〈 f1, . . . , fn〉 , p).

Example 12.21 We return to Example 12.18, computing the multiplicities of Ct ∩
D along each of the points of intersection:

In the first example

It = 〈y, −y + x2 − t〉 = 〈y, −t + x2〉
= 〈y, x − √

t〉 ∩ 〈y, x + √
t〉

primary decomposition if t �= 0

= 〈y, x2〉
primary decomposition if t = 0.

In the first instance each primary component has codimension 1, so the two

points of intersection have multiplicity 1. In the second instance we have just one

primary component with codimension 2, so there is a single intersection point of

multiplicity 2.

In the second example

It = 〈y, y − x3 + t x〉 = 〈y, −x3 + t x〉
= 〈y, x〉 ∩ 〈y, x + √

t〉 ∩ 〈y, x − √
t〉

primary decomposition if t �= 0

= 〈y, x3〉
primary decomposition if t = 0.

In the first instance each of the three intersection points has multiplicity 1; in the

second, there is one point with multiplicity 3.

Example 12.22 Consider the ideal I = 〈yx, (x − 2)2x〉 with primary decomposi-

tion

I = 〈x〉 ∩ 〈y, (x − 2)2〉,
thus

V (I ) = {y − axis} ∪ {(2, 0)}.
The second component is associated with mp for p = (2, 0) and mult(I, p) = 2.

12.3.1

Methods for

computing

multiplici-

ties

We describe an algorithm for computing intersection multiplicities. Let I ⊂
k[x1, . . . , xn] be an ideal, p ∈ An(k) a point, and mp the corresponding maximal

ideal. Assume that mp is a minimal prime of I . Fix an irredundant primary decom-

position

I = Q ∩ Q1 ∩ . . . ∩ Ql ,

where is Q the primary component associated to mp.
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1. Localize to Q. Find some

f ∈ Q1 ∩ . . . ∩ Ql

with f �∈ Q, so that

Q = 〈u f − 1〉 + I.

We can interpret this geometrically when k is algebraically closed: throw out the

irreducible components of V (I ) other than p.

2. Compute a Gröbner basis for Q: since k[x1, . . . , xn]/Q is finite dimensional, the

monomials not appearing in LT(Q) form a basis for the quotient (Theorem 2.16). The

number of these mononials equals mult(I, p).

Example 12.23 Consider the ideal

I = 〈y, y − x2 + x3〉

so that V (I ) = {(0, 0), (1, 0)}. To compute mult(I, (0, 0)) we first extract the primary

component

Q(0,0) = 〈u(x − 1) − 1〉 + I = 〈u(x − 1), y, y − x2 + x3〉,

which has Gröbner basis

{y, x2, u + x + 1}.

The monomials not in LT(Q(0,0)) are {1, x} so mult(I, (0, 0)) = 2.

The primary component

Q(1,0) = 〈ux − 1, y, y − x2 + x3〉

has Gröbner basis

{u − 1, x − 1, y}.

The only monomial not in LT(Q(1,0)) is {1} so mult(I, (1, 0)) = 1.

12.3.2 An

interpola-

tion

result

Theorem 12.24 Let I ⊂ k[y1, . . . , yn] be an ideal whose associated primes are
all of the form mp for some p ∈ An(k). Then we have

dim k[y1, . . . , yn]/I =
∑

p∈V (I )

mult(I, p).

Proof We fix some notation. Choose an irredundant primary decomposition

I = Q1 ∩ . . . ∩ Qs
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with associated primes mp1
, . . . ,mps . We have the linear transformation

� : k[y1, . . . , yn] → ⊕s
j=1k[y1, . . . , yn]/Q j

f → ( f (mod Q1), . . . , f (mod Qs)).

It suffices to show � is surjective: since ker � = I , the definition of the multiplicity

and the rank-nullity theorem yield our result.

Recall that for large N each Q j ⊃ mN
p j

, so the quotients

k[y1, . . . , yn]/mN
p j

→ k[y1, . . . , yn]/Q j

are surjective. Thus � is surjective provided

� : k[y1, . . . , yn] → ⊕s
j=1k[y1, . . . , yn]/mN

p j

f → (
f

(
mod mN

p1

)
, . . . , f

(
mod mN

ps

))

is surjective. This means there exists a polynomial with prescribed Taylor series of

order N at the points p1, . . . , ps (at least over a field of characteristic zero where

Taylor series make sense). Note that the N = 1 case, i.e., finding a polynomial with

prescribed values on a finite set, was addressed in Exercise 3.6.

The proof is by induction on the number of points s. The base case s = 1 is straight-

forward, since after translation we may assume p1 is the origin. For the inductive step,

consider the polynomials mapping to zero in

k[y1, . . . , yn]/mN
p j

for j = 1, . . . , s − 1, which form an ideal Ĩ . It suffices to show that the induced map

�s : Ĩ → k[y1, . . . , yn]/mN
ps

is surjective. The image of �s is an ideal, so it suffices to check it contains a unit, i.e.,

an element that does not vanish at ps . Let �i , i = 1, . . . , s − 1, be linear forms with

�i (pi ) = 0 by �i (ps) �= 0. The polynomial

P =
s−1∏
j=1

�N
j ∈ Ĩ

but P(ps) �= 0. �

12.4 Bezout Theorem

Our first task is to analyze ideals with constant Hilbert polynomial:

Proposition 12.25 Let J ⊂ k[x0, . . . , xn] be a homogeneous ideal and R =
k[x0, . . . , xn]/J . If HPR(t) has degree zero then X (J ) is finite.



220 HILBERT POLYNOMIALS AND BEZOUT

Proof Suppose X (J ) is infinite. Then one of the distinguished open sets Ui ⊂
Pn(k) (say U0) contains an infinite number of points in X (J ). Let I ⊂ k[y1, . . . , yn]

be the dehomogenization of J with respect to x0, which is contained in I (U0 ∩ X (J ).

We therefore have surjections

k[x0, . . . , xn]/J
μ0→ k[y1, . . . , yn]/I → k[U0 ∩ X (J )].

For each t , write

Wt = image(Rt = k[x0, . . . , xn]t/Jt → k[U0 ∩ X (J )]),

i.e., the functions on U0 ∩ X (J ) that can be realized as polynomials of degree ≤ t .
We have dim Wt ≤ dim Rt .

By Exercise 3.6, dimk k[U0 ∩ X (J )] = |U0 ∩ X (J )| = ∞ and Wt is unbounded

for t � 0. On the other hand, dim Rt is bounded because HPR(t) is constant, a

contradiction. �

Over algebraically closed fields, we can sharpen this:

Proposition 12.26 Suppose k is algebraically closed, J ⊂ k[x0, . . . , xn] is a ho-
mogeneous ideal with R = k[x0, . . . , xn]/J , and HPR(t) is constant and nonzero.
Then the minimal associated primes of J are the ideals J (p) for p ∈ X (J ) ⊂ Pn(k).

Proof Irrelevant ideals yield trivial Hilbert polynomials (Proposition 12.17),

so our hypothesis guarantees J is not irrelevant. The Projective Nullstellensatz

(Theorem 9.25) then guarantees that X (J ) is nonempty.

Lemma 12.27 If J ⊂ k[x0, . . . , xn] is homogeneous then each associated prime
of J is homogeneous.

We can put this into geometric terms using Corollary 8.29. Recall that V (J ) ⊂ An+1(k)

is the cone over the projective variety X (J ). Irreducible components of V (J ) corre-

spond to the cones over irreducible components of X (J ).

Proof of lemma By Theorem 8.22, each associated prime of J can be writ-

ten P = √
J : f for some f ∈ k[x0, . . . , xn]. Write f = F0 + · · · + Fd as a sum of

homogeneous pieces and Ki = √
J : Fi . Since J is homogeneous,

J : f = J : F0 ∩ J : F1 ∩ . . . ∩ J : Fd

and Exercise 7.18 gives

√
J : f =

√
J : F0 ∩

√
J : F1 ∩ . . . ∩

√
J : Fd .

Since prime ideals are irreducible (Proposition 8.4), P = √
J : Fi for some i , and

thus is homogeneous. �
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Each irreducible component of X (J ) is a point p ∈ Pn(k) (by Proposition 12.25).

Thus each irreducible component of V (J ) is the line � ⊂ An+1(k) parametrized by

that point. The description of the minimal associated primes of J follows. �

Corollary 12.28 Retain the assumptions of Proposition 12.26 and assume in ad-
dition that J is saturated. Then the associated primes of J are the ideals J (p) for
p ∈ X (J ).

Proof The only possible embedded prime is m = 〈x0, . . . , xn〉, which would

correspond to an irrelevant primary component. In the saturated case, these do not

occur (see Exercise 10.2). �

Our next task is to tie Hilbert polynomials and multiplicities together. We start

with a fun fact from linear algebra:

Lemma 12.29 Assume k is infinite and let S ⊂ Pn(k) be a finite set. Then there
exists a linear L ∈ k[x0, . . . , xn]1 such that L(p) �= 0 for each p ∈ S.

Proof First, we construct an infinite collection of points p1, p2, . . . , pN ,

pN+1, . . . in Pn(k) such that any n + 1 of the points are in linear general position.

Given distinct α1, α2, . . . ∈ k set

pi = [1, αi , α
2
i , . . . , α

n
i ] ∈ Pn(k).

Recall the formula for determinant of the Vandermonde matrix

det

⎛
⎜⎜⎜⎜⎜⎝

1 u0 u2
0 . . . un

0

1 u1 u2
1 . . . un

1
...

...
...

...
...

1 un−1 u2
n−1 . . . un

n−1

1 un u2
n . . . un

n

⎞
⎟⎟⎟⎟⎟⎠

=
∏

0≤i< j≤n

(u j − ui ).

In particular, the determinant is nonzero unless ui = u j for some i �= j . Taking

u0, . . . , un to be any of n + 1 distinct values of the αi , we get the desired linear

independence. In geometric terms, the images of any collection of distinct points in

P1(k) under the Veronese embedding

νn : P1(k) → Pn(k)

are in linear general position.

There exists then a collection of n + 1 points in Pn(k) in linear general position, but

not contained in S. There exists a projectivity taking these to the coordinate vectors

e0 = [1, 0, . . . , 0], e1 = [0, 1, 0, . . . , 0], . . . , en = [0, . . . , 0, 1].

We may then assume that S does not include any of these points.
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We finish by induction on n. Suppose n = 1 and S = {(a1, b1), . . . , (aN , bN )}. If

t ∈ k is distinct from each b j/a j then L = x1 − t x0 has the desired property. For the

inductive step, project from en = [0, . . . , 0, 1]

πen : Pn(k) ��� Pn−1(k)

[x0, . . . , xn] → [x0, . . . , xn−1],

which is well-defined along S. By induction, there exists L ∈ k[x0, . . . , xn−1]1 that

is nonzero at each point of πen (S). Regarding L ∈ k[x0, . . . , xn], we get a form non-

vanishing at each point of S. �

Our next task is to explain how Hilbert polynomials and multiplicities are related.

Proposition 12.30 Suppose k is algebraically closed, J ⊂ k[x0, . . . , xn] is a ho-
mogeneous ideal with R = k[x0, . . . , xn]/J , and HPR(t) is constant. Assume in
addition that X (J ) ⊂ U0. If I ⊂ k[y1, . . . , yn] denotes the dehomogenization of
J then

∑
p∈X (J )=V (I )

mult(I, p) = HPR(t).

Proof We may replace J by its saturation without changing either the Hilbert

polynomial or the dehomogenization (see Proposition 12.17). From now on, we

assume that J is saturated.

Proposition 12.25 implies that X (J ) finite and consequently V (I ) is finite. The

minimal associated primes of I are all of the form mp, where p ∈ V (I ) (see Corol-

lary 8.29). Our interpolation result (Theorem 12.24) implies

dimk k[y1, . . . , yn]/I =
∑
p∈I

mult(I, p).

Again, consider the dehomogenizations

R := k[x0, . . . , xn]/J
μ0→ k[y1, . . . , yn]/I

and the images of the induced

Rt := k[x0, . . . , xn]t/Jt → k[y1, . . . , yn]/I

for each t . We claim that these are isomorphisms for t � 0, which implies our

result.

Surjectivity is not too difficult. The quotient k[y1, . . . , yn]/I has finite dimension,

with a basis consisting of monomials of bounded degree. To prove injectivity, suppose

that F is homogeneous of degree d and dehomogenizes to a polynomial f ∈ I . This

is the dehomogenization of some homogeneous F ′ ∈ J , with F ′ = xe
0 F for some e.
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To show that F is also in J , we establish that the multiplication map

Rt → Rt−1

F → x0 F

is injective.

Corollary 12.28 gives the primary decomposition of J . If X (J ) = {p1, . . . , ps}
then

J = Q1 ∩ . . . ∩ Qs,

where Qi is associated to Pi := J (pi ) for i = 1, . . . , s. However, x0(pi ) �= 0 for

each i by assumption, so x0 �∈ Pi . The only zero divisors in R are in the im-

ages of the associated primes of J (Corollary 8.24); thus x0 is not a zero divisor

in R. �

Theorem 12.31 (Bezout Theorem) Let k be an algebraically closed field, F, G ∈
k[x0, x1, x2] homogeneous polynomials without common factors, and J = 〈F, G〉.
There exist coordinates z0, z1, z2 such that z0(p) �= 0 for each p ∈ X (J ). If I is the
dehomogenization of J with respect to z0 then

∑
p∈X (J )

mult(I, p) = deg(F) deg(G).

Proof Lemma 12.29 guarantees the existence of coordinates with the de-

sired property. Then the theorem is just the combination of Propositions 12.11 and

12.30. �

Corollary 12.32 Two plane curves of degrees d and e with no common components
meet in de points, when counted with multiplicities.

Étienne Bézout (1733–1783) wrote the Théorie générale des équations
algébraiques in 1779. An English translation [3] was published in 2006.

12.4.1

Higher-

dimensional

general-

izations

Theorem 12.33 Let F1, . . . , Fn be homogeneous in S = k[x0, x1, . . . , xn], J =
〈F1, . . . , Fn〉, and R = S/J . Suppose either of the following equivalent conditions
holds

1. for each j = 2, . . . , n, Fj is not a zero divisor (mod 〈F1, . . . , Fj−1〉);
2. X (J ) has a finite number of points over an algebraically closed field.

Then we have

HPR(t) = deg(F1) . . . deg(Fn).
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Idea of proof Let d j denote the degree of Fj . The computation of HPR(t) requires

knowledge of the Koszul complex

0 → Kn
δn (t)→ Kn−1 . . . Kr

δr (t)→ Kr−1 . . . K0
δ0→ Rt → 0.

Here the terms are

K0 = St

K1 = ∑
j St−d j

K2 = ∑
j(1)< j(2) St−d j(1)−d j(2)

...
...

Kr = ∑
j(1)< j(2)<...< j(r ) St−d j(1)−···−d j(r )

...
...

Kn = St−d1−···−dn

and the maps δr (t) are direct sums of multiplication maps

St−d j(1)−···−d j(r )
→ St−d j(1)−···−d j(s−1)−d j(s+1)−···−d j(r )

G → (−1)s Fj(s)G.

The signs are chosen so that image δr (t) ⊂ ker δr−1(t) for each r ; see §5.4 for a special

case.

Under our assumptions, the only syzygies among the Fj are the ‘obvious’ ones,

e.g., Fi (Fj ) − Fj (Fi ) = 0. In this context, the Koszul complex is exact, i.e., the kernel

of each map equals the image of the one before. We then have

dim Rt =
n∑

r=0

(−1)r
∑

j(1)<...< j(r )

dim St−d j(1)−···−d j(r )

=
n∑

r=0

(−1)r
∑

j(1)<...< j(r )

(
t − d j(1) − · · · − d j(r ) + n

n

)

= d1 . . . dn,

where the last step is a formal combinatorial identity. �

This granted, our proof of Theorem 12.31 yields the following.

Theorem 12.34 (Higher-dimensional Bezout Theorem) Let k be an algebraically
closed field, F1, . . . , Fn ∈ k[x0, . . . , xn] homogeneous polynomials, and let J =
〈F1, . . . , Fn〉. Assume that X (J ) is finite and x0(p) �= 0 for each p ∈ X (J ). If I
is the dehomogenization of J with respect to x0 then

∑
p∈X (J )

mult(I, p) =
n∏

i=1

deg(Fi ).
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12.4.2 An

application

to

inflectional

tangents

Let C ⊂ P2(C) be a smooth plane curve over the complex numbers with homogeneous

equation F ∈ C[x, y, z] of degree d.

A line � ⊂ P2 is tangent to C at p if the multiplicity of � ∩ C at p is greater

than or equal to 2. It is an inflectional tangent to C at p if the multiplicity is greater

than or equal to 3. In our discussion of the Plücker formulas in §11.2.1, we observed

that the number of inflectional tangents to C equals the number of cusps in the dual

curve Č .

How do we count the number of inflectional tangents? Recall that the dual curve

is the image of the morphism

φ : C → P̌2

[x, y, z] → [∂ F/∂x, ∂ F/∂y, ∂ F/∂z].

The inflectional tangents are precisely the critical points of this map. The differential

of φ has nontrivial kernel when the Hessian

H (F) = det

⎛
⎜⎜⎝

∂2 F
∂x2

∂2 F
∂x∂y

∂2 F
∂x∂z

∂2 F
∂x∂y

∂2 F
∂y2

∂2 F
∂y∂z

∂2 F
∂x∂z

∂2 F
∂y∂z

∂2 F
∂z2

⎞
⎟⎟⎠ = 0.

This is a polynomial of degree 3(d − 2). We conclude therefore that

#{inflectional tangents of C} = #{critical points of φ : C → P̌2}
= #{solutions of F = H (F) = 0}
= 3d(d − 2),

where the last equality is the Bezout Theorem. We obtain the following table:

deg(F) #{inflectional tangents}
2 0

3 9

4 24

5 45

The Bezout Theorem counts intersection points with multiplicity. The points where

C intersects {H (F) = 0} with multiplicity > 1 include inflectional tangent � meeting

C with multiplicity ≥ 4.

For more information on multiplicities and plane curves, see [11].

12.5 Interpolation problems revisited

We apply some of these ideas to the interpolation problem first considered in Chapter 1.

Before stating the General Interpolation Problem, we need a definition:



226 HILBERT POLYNOMIALS AND BEZOUT

Definition 12.35 Let f ∈ k[y1, . . . , yn] and p = (b1, . . . , bn) ∈ Am(k). The poly-

nomial f has multiplicity ≥ m at p (or vanishes to order m at p) if

f ∈ mm
p = 〈y1 − b1, . . . , yn − bn〉m .

When k has characteristic zero, this means the the Taylor series for f at p only has

terms of degree ≥ m.

Problem 12.36 (General Interpolation Problem) Fix interpolation data

S = (p1, m1; . . . ; pN , m N )

consisting of distinct points p1, . . . , pN ∈ An(k) and positive integers m1, . . . , m N .

What is the dimension of the vector space of polynomials of degree ≤ d vanishing at

each pi to order mi ?

Let Pn,d denote the polynomials of degree ≤ d and

Id (S) = Pn,d ∩ ( ∩N
j=1 m

m j
p j

)

denote the polynomials satisfying the interpolation data.

Definition 12.37 The number of conditions imposed by

S = (p1, m1; . . . ; pN , m N )

on polynomials of degree ≤ d is defined as

Cd (S) := dim Pn,d − dim Id (S).

S is said to impose independent conditions on Pn,d if

Cd (S) =
N∑

j=1

(
n + m j − 1

n

)
.

It fails to impose independent conditions otherwise.

The expected number of conditions is given by naively counting the Taylor coefficients

we set equal to zero!

Fix N and m1, . . . , m N . It may not be possible to choose p1, . . . , pN such that

the data S impose independent conditions on Pn,d . There are counterexamples even

when the expected number of conditions is less than the dimension:

N∑
j=1

(
n + m j − 1

n

)
≤

(
n + d

n

)
.
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Example 12.38

1. Let p1 = (0, 0), p2 = (1, 0) ∈ A2(k) and consider the conditions imposed by

(p1, 2; p2, 2) on quadrics. Since x2
2 vanishes to order 2 at p1 and p2, we have

C2(S) ≤ 6 − 1 = 5.

On the other hand,

2

(
2 + 2 − 1

2

)
= 6.

2. Let p1, . . . , p5 ∈ A2(k) and consider the conditions imposed by

(p1, 2; p2, 2; p3, 2; p4, 2; p5, 2)

on quartics (d = 4). There is a unique (up to scalar) nonzero f ∈ P2,2 such that f
vanishes at each of the p j . Hence f 2 ∈ P2,4 vanishes to order 2 at each of the p j and

C4(S) ≤ 15 − 1 = 14. However, the expected number of conditions is

5

(
2 + 2 − 1

2

)
= 15.

We recast these problems using Hilbert functions and polynomials. Realize An(k)

as the distinguished affine open U0 ⊂ Pn(k) and consider p1, . . . , pN ∈ Pn(k). We

write S = k[x0, . . . , xn]. Dehomogenization with respect to x0

μ0 : k[x0, . . . , xn] → k[y1, . . . , ym]

identifies J (pi ) with mpi and Sd with Pn,d . Homogeneous forms of degree d with

multiplicity m j at each p j (cf. Exercise 10.8) are identified with Id (S). Writing

J (S) = ∩N
j=1 J (pi )

mi , R(S) = S/J (S),

we have an isomorphism

μ0 : R(S)d
∼→ Pn,d/Id (S)

and thus the equality

HFR(S)(d) = Cd (S).

Proposition 12.39 Let S = (p1, m1; . . . ; pN , mn) be a collection of distinct points
in Pn(k) and positive integers m1, . . . , m N . Write

J (S) = ∩N
j=1 J (pi )

mi , R(S) = S/J (S).
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Then we have

HPR(S)(t) =
N∑

j=1

(
n + m j − 1

n

)
.

Proof Let p = [0, . . . , 0, 1] ∈ Pn(k) so that J (p) = 〈x0, . . . , xn−1〉 and the

monomials

{
xα0

0 . . . xαn−1

n−1 xαn
n : α0 + · · · + αn−1 < m

}

form a basis for S/J (p)m . It follows that

HFS/J (p)m (t) =
(

n + m − 1

n

)

for t ≥ m. By Proposition 12.5, this analysis applies to each p ∈ Pn(k); Proposi-

tion 12.6 the gives the result. �

Corollary 12.40 Consider interpolation data S = (p1, m1; . . . ; pN , m N ) in Pn(k)

and the corresponding graded ring R(S). S imposes independent conditions on
polynomials of degree ≤ d if and only if HPR(S)(d) = HFR(S)(d). Thus S imposes
independent conditions on polynomials of degree ≤ t provided t � 0.

The last assertion is the defining property of the Hilbert polynomial (Theorem 12.14).

Thus our General Interpolation Problem reduces to the following.

Problem 12.41 (Projective Interpolation Problem) Fix interpolation data

S = (p1, m1; . . . ; pN , m N )

consisting of distinct points p1, . . . , pN ∈ Pn(k) and positive integers m1, . . . , m N .

If we write

J (S) = ∩N
j=1 J (pi )

mi , R(S) = k[x0, . . . , xn]/J (S),

for which t is

HFR(S)(t) = HPR(S)(t)?

Lemma 12.29 implies we can always choose coordinates such that p1, . . . , pN ∈
U0 � An(k), so the Projective Interpolation Problem reduces to the affine case.

Even for generic points in the plane, the General Interpolation Problem is still open!

There are precise conjectures of Hirschowitz [21] and Harbourne [15, 16] predicting

which interpolation data fail to impose independent conditions on polynomials of

degree ≤ d . A good survey can be found in [31].
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12.6 Classification of projective varieties

The importance of the Hilbert polynomial is that most important invariants of projec-

tive varieties can be defined in terms of it.

Definition 12.42 Let X be a projective variety.

1. The dimension dim(X ) is defined as the degree of HPX .

2. The degree of deg(X ) defined as the normalized leading term of HPX :

HPX (t) = deg(X )

dim(X )!
tdim(X ) + lower-order terms.

In our discussion of Hilbert polynomials, we showed that each can be expressed

in the form

HPX (t) =
dim(X )∑

i=0

ai

(
t

dim(X ) − i

)
,

with the ai integers. The coefficient a0 = deg(X ).

These definitions can be related to existing notions of ‘dimension’ and ‘degree’,

when these can be easily formulated. A finite set X has dimension zero and degree

|X |. Projective space Pn(k) has dimension n and degree 1. As for hypersurfaces, the

following holds.

Proposition 12.43 Let X ⊂ Pn(k) be a hypersurface with J (X ) = 〈F〉, with F a
polynomial of degree d. Then dim(X ) = n − 1 and deg(X ) = d.

Proof We have already computed the Hilbert polynomial

HPX (t) =
(

t + n

n

)
−

(
t − d + n

n

)

= (t + n)(t + n − 1) . . . (t + 1)

n!
− (t − d + n) . . . (t + 1 − d)

n!

= tn−1 n + (n − 1) + · · · + 1 − (n − d) − (n − 1 − d) − · · · − (1 − d)

n!
+ lower-order terms

= tn−1 nd

n!
+ lower-order terms.

In particular, the Hilbert polynomial has degree n − 1 and a0 = d. �

It takes some work to prove in general that the Hilbert-polynomial definition of

dimension agrees with the transcendence-base definition given in Chapter 7. See [9,

ch. 8] for a discussion of the various notions of dimension.

Not only the leading term of the Hilbert polynomial gets a special name. The

constant term is also significant:
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Figure 12.2 A curve of genus 3.

Definition 12.44 The arithmetic genus of an irreducible projective variety X is

defined as

pa(X ) = (−1)dim(X )(HPX (0) − 1).

Example 12.45

1. The curve X ⊂ P3(k) with equations

{
x0x2 − x2

1 , x0x3 − x1x2, x2
2 − x1x3

}

has deg(X ) = 3, pa(X ) = 0.

2. Let X ⊂ P2(k) be a plane curve of degree d. Then we have

HPX (t) =
(

t + 2

2

)
−

(
t − d + 2

2

)

= dt +
[

1 − (d − 1)(d − 2)

2

]

so that pa(X ) = (d − 1)(d − 2)/2.

The geometric meaning of the arithmetic genus is a bit elusive in general. However,

for curves it has a very nice geometric interpretation.

Theorem 12.46 Let X ⊂ Pn(C) be a smooth irreducible complex projective curve.
Then X (C) is an oriented compact Riemann surface of genus pa(X ).

The proof, which uses the Riemann–Roch Theorem and significant analysis, would

take us too far afield. We refer the interested reader to a book on complex Riemann

surfaces, e.g., [30, p. 192].

Example 12.47 Consider the plane curve X ⊂ P2(C) given by the equations x4
0 +

x4
1 = x4

2 . This is smooth (and thus irreducible by the Bezout Theorem!) with genus

3 · 2

2
= 3.

The complex points X (C) are displayed in Figure 12.2.
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We sketch briefly how projective varieties are classified using Hilbert polynomials.

Fix a polynomial f (t) ∈ Q[t] with f (Z) ⊂ Z, and consider all varieties X ⊂ Pn with

HPX (t) = f (t). Choose M � 0 such that HPX (M) = f (M); while it appears that M
depends on X , it is possible to choose a uniform value for all the varieties with Hilbert

polynomial f . Let

Gr := Gr(

(
n + M

M

)
− f (M), k[x0, . . . , xn]M )

denote the Grassmannian of codimension- f (M) subspaces of the space of polynomi-

als of degree M . The homogeneous polynomials of degree M vanishing on X define

a point

[X ]M := J (X )M ∈ Gr.

For M � 0, the set of all projective varieties with Hilbert polynomial f are

parametrized by a locus

Hilb f (t) ⊂ Gr

known as the Hilbert scheme. For details on the construction and discussion ofHilb f (t)

as a projective variety see [32, ch. 14].

Example 12.48 Consider all plane curves X ⊂ P2(k) of degree d. These have

Hilbert polynomial

f (t) =
(

t + 2

2

)
−

(
t − d + 2

2

)

so that f (d) = (
2+d

d

) − 1. If X is defined by F ∈ k[x0, x1, x2]d then

[X ]d = [F] ∈ Gr(1, k[x0, x1, x2]d ) = P(d+2
2 )−1.

A similar analysis applies to arbitrary hypersurfaces of degree d in Pn .

12.7 Exercises

12.1 Consider the ideal

J = 〈x0x1, x2
2〉 ⊂ k[x0, x1, x2].

Compute the Hilbert polynomial HPJ (t).
12.2 Let f = x3 + y3 and g = x4 + y5 and write

I = 〈 f, g〉, p = (0, 0).

Compute the multiplicity mult(I, p).
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12.3 Consider the interpolation dataS = ((0, 0), 2; (0, 1), 2; (1, 0), 2) for A2(R). Show that

this imposes independent conditions on polynomials in P2,3.

12.4 (a) Let p1, . . . , p7 be any distinct points in A2(R). Show that there exists a nonzero

cubic polynomial vanishing at p1 to order 2 and at p2, . . . , p7 to order 1.

(b) Compute the expected number of conditions C6(S) imposed on P2,6 by the inter-

polation data

S = (p1, 4; p2, 2; p3, 2; p4, 2; p5, 2; p6, 2; p7, 2)

for generic points p1, . . . , p7 ∈ A2(R).

(c) Show that S fails to impose independent conditions on P2,6.

12.5 Compute Hilbert polynomials for the following varieties:

(a) the quadratic Veronese varieties

ν(2)(Pn(k)) ⊂ P(n+2
2 )−1(k);

(b) the Segre variety

X = Pm(k) × Pm(k) ⊂ Pnm+n+m(k);

(c) the Grassmannian

Gr(2, 4) ⊂ P5(k).

Compute the degree and dimension from the Hilbert polynomial.

12.6 Let X = {p1, p2, p3, p4} ⊂ P2(Q) be a collection of four distinct points. List all

possible Hilbert functions HFX (t).
12.7 Let S = k[x0, x1] be a weighted polynomial ring, where x0 has weight w0 and x1 has

weight w1.

(a) Assume that w0 = 2 and w1 = 3. For each t ≥ 0, express t = 6q + r where

0 ≤ r ≤ 5. Show that

HFS(t) =
{

q + 1 if r �= 1

q if r = 1.

Explain why this does not contradict Theorem 12.14.

(b) Let M denote the least common multiple of w0 and w1 and pick an integer R with

0 ≤ R ≤ M − 1. Show that HFS(Mq + R) is a degree-1 polynomial function in

q for q � 0.

12.8 Show that any smooth plane curve is irreducible. Hint: The irreducible components

of a plane curve are themselves plane curves! Check that the following complex plane

curves C ⊂ P2(C) are irreducible:

x5
0 + x5

1 + x5
2 = 0

x3
0 + x3

1 + x3
2 = λx0x1x2, λ3 �= 27.
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12.9 Find all points of intersection of the following pairs of plane curves {F = 0},
{G = 0} ⊂ P2(C), and the multiplicities of the intersections.

(a) F = x2
0 + x2

1 + x2
2 and G = x0x2 − x2

1 ;

(b) F = x0x2
2 − x3

1 and G = x0x2
2 − x0x2

1 − x3
1 ;

12.10 Compute the inflectional tangents of the curve C ⊂ P2(C) given by

x3
0 + x3

1 + x3
2 = 2x0x1x2.

12.11 Consider the complex projective curves

C = {
(x0, x1, x2) : x2

0 + x2
1 = x2

2

} ⊂ P2(C)

D = {
(x0, x1, x2) : x2

0 − x2
1 = x2

2

} ⊂ P2(C).

Describe the intersection C ∩ D and compute the multiplicity of each point. Make

sure you prove that you have found every point of the intersection!

12.12 Let V be an affine variety with p ∈ V and mp ⊂ k[V ] the corresponding maximal

ideal. Consider the graded ring

R = ⊕t≥0 Rt = k[V ]/mp ⊕ mp/m
2
p ⊕ m2

p/m
3
p . . . ⊕ mt

p/m
t+1
p ⊕ . . . ,

i.e., R0 = k and Rt = mt
p/m

t+1
p for t > 0. This is called the graded ring associated

to k[V ] and mp.

(a) Let x0, . . . , xn be generators of R1 = mp/m
2
p as a vector space over k. Show that

x0, . . . , xn generate R as a k-algebra. Hint: Check that the monomials xα with

|α| = t span Rt .

(b) Show that the kernel J = ker(k[x0, . . . , xn] � R) is homogeneous. The corre-

sponding affine variety

V (J ) ⊂ An+1(k)

is the tangent cone to V at p and the projective variety

X (J ) ⊂ Pn(k)

is called the projective tangent cone.
(c) Suppose that 0 = p ∈ V ⊂ Am(k) and I (V ) = 〈 f 〉 for some f ∈ k[y1, . . . , ym]

with graded pieces

f = FM + FM+1 + · · · + Fd , FM �= 0.

Show that the associated graded ring is k[y1, . . . , ym]/〈FM 〉.
(d) Draw the graph of V = {(y1, y2) : y2

2 = y2
1 + y3

1} ⊂ A2(R) and its tangent cone.

Do the same for V ′ = {y2
2 = y3

1 + y4
1} ⊂ A2(R).

12.13 Find an explicit formula for the arithmetic genus of a degree d hypersurface X ⊂
P3(C).

12.14 Extract equations for Hilb f (t) for the following classes of varieties:
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(a) Lines � ∈ P3 with f (t) = t + 1. Hint: Use Gr(2, k[x0, x1, x2, x3]1).

(b) Pairs of points X = {p1, p2} ⊂ P2 with f (t) = 2. Hint: Use the Grassmannian

Gr(4, k[x0, x1, x2]2).

Is Hilb f (t) closed in the Grassmannian? If not, describe the points in the closure.

12.15 Challenge: Each bihomogeneous F ∈ C[x0, x1, y0, y1] defines a curve in P1(C) ×
P1(C). State and prove a Bezout Theorem for a pair of bihomogeneous forms F, G
without common factors.



Appendix A Notions from abstract algebra

This appendix is a brief resumé of the abstract algebra used in this book. Sketch

proofs are sometimes included to highlight the key ideas. We encourage the reader

to consult a general text in abstract algebra for detailed arguments and discussion.

Michael Artin’s book [1] contains all that we require (and much more besides).

A.1 Rings and homomorphisms

A commutative ring R is a set with two operations, addition

R × R → R
(a, b) �→ a + b

and multiplication

R × R → R
(a, b) �→ ab

satisfying the following conditions:

1. R is an abelian group under addition:

� addition is associative, i.e., (a + b) + c = a + (b + c) for each a, b, c ∈ R;
� addition is commutative, i.e., a + b = b + a for each a, b ∈ R;
� there exists 0 ∈ R such that 0 + a = a for each a ∈ R;
� there exist additive inverses, i.e., for each a ∈ R there exists an element b ∈ R such

that a + b = 0.

2. Multiplication on R satisfies the following:

� (ab)c = a(bc) for each a, b, c ∈ R;
� ab = ba for each a, b ∈ R;
� there exists 1 ∈ R such that 1a = a for each a ∈ R.

3. The addition and multiplication operations are compatible, i.e., for all a, b, c ∈ R we

have (a + b)c = ac + bc.

235
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We will not consider rings with non-commutative multiplication, so we frequently

shorten ‘commutative ring’ to ‘ring’.

Example A.1 The integers form a ring Z under the standard operations of addition

and multiplication.

If N > 1 is an integer then congruence classes a (mod N ) form a ring Z/NZ

under the operations of addition and multiplication modulo N .

A homomorphism of rings is a function φ : R → S satisfying the following

conditions

� φ(a + b) = φ(a) + φ(b) and φ(ab) = φ(a)φ(b) for all a, b ∈ R;
� φ(1) = 1.

A domain is a ring R with no nontrivial zero-divisors, i.e., if ab = 0 then a = 0

or b = 0. A field k is a domain such that the nonzero elements k∗ := k \ {0} form a

group under multiplication, i.e., for each a �= 0 ∈ k there exists b ∈ k with ab = 1.

Every domain R has a field of fractions

K :=
{r

s
: r, s ∈ R, s �= 0

}
,

where we identify r1/s1 and r2/s2 when r1s2 = r2s1. The operations are addition and

multiplication of fractions

r1

s1

+ r2

s2

= (r1s2 + r2s1)

s1s2

,

(
r1

s1

) (
r2

s2

)
= r1r2

s1s2

.

We realize R ⊂ K as the fractions r/1.

Example A.2 The real numbers R and complex numbers C are fields under the

standard operations of addition and multiplication. The rational numbers

Q =
{r

s
: r, s ∈ Z, s �= 0

}

are the field of fractions of the integers Z.

Let k be a field. A k-algebra is a ring R along with a ring homomorphism k → R.

By Exercise A.4, this homomorphism is injective provided R �= 0, so we may regard k
as a subset of R. A homomorphism of k-algebras φ : R → S is a ring homomorphism

such that φ(ca) = cφ(a) for each a ∈ R and c ∈ k.

A.2 Constructing new rings from old

Let R be a ring. An ideal is a nonempty subset I ⊂ R satisfying the following

properties:

� for any f1, f2 ∈ I we have f1 + f2 ∈ I ;
� for any f ∈ I and r ∈ R we have f r ∈ I .
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Given a finite set

{ f1, f2, . . . , fr } ⊂ R,

the ideal generated by this set is denoted 〈 f1, f2, . . . , fr 〉 and consists of all the

sums f1h1 + f2h2 + · · · + fr hr where the h j ∈ R. (Showing this defines an ideal is

an exercise.) More generally, for any subset { fi }i∈I ⊂ R, we can consider the ideal

〈 fi 〉i∈I ⊂ R consisting of all finite sums fi1
hi1

+ · · · + fir hir with i j ∈ I and hi j ∈ R.

Let R be a ring and I an ideal of R. Two elements a, b ∈ R are congruent
modulo I ,

a ≡ b (mod I ),

if a − b ∈ I . As the notation suggests, this is an equivalence relation on R. Addition

and multiplication are compatible with congruence: if a1 ≡ a2 (mod I ) and b1 ≡ b2

(mod I ) then a1 + b1 ≡ a2 + b2 (mod I ) and a1b1 ≡ a2b2 (mod I ). In particular,

addition and multiplication are well-defined on congruence classes. The quotient
ring R/I is the set of congruence classes modulo I under these operations. We have

natural quotient homomorphism

R � R/I
a �→ a (mod I ).

Example A.3 Let R = Z, N a positive integer, and I = 〈N 〉. Then Z/ 〈N 〉 =
Z/NZ is the corresponding quotient ring.

Given a ring R, the polynomials with coefficients in R is the set of finite formal

sums

R[x] = {p0 + p1x + · · · + pd xd : p0, p1, . . . , pd ∈ R};

the largest power xi appearing with a nonzero coefficient is the degree of the polyno-

mial. This is a ring under the operations of addition

(p0 + p1x + · · · + pd xd ) + (q0 + q1x + · · · + qexe)

= (p0 + q0) + (p1 + q1)x + (p2 + q2)x2 + · · ·

and multiplication

(p0 + p1x + · · · + pd xd )(q0 + q1x + · · · + qexe) =
p0q0 + (p1q0 + p0q1)x + · · · + (pi q0 + pi−1q1 + · · · + p0qi )xi + · · · + pdqexd+e.

We use the shorthand

R[x1, . . . , xn] = R[x1][x2] . . . [xn];

this does not depend on the order of the variables.
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We can combine these constructions, e.g.,

R = Z[x]/〈3, x2 + 1〉.

A.3 Modules

When we develop linear algebra over general rings, modules play the rôle of vector

spaces: an R-module M is an abelian group M (written additively) equipped with an

action

R × M → M
(r, m) �→ rm

satisfying the following properties:

� r (m1 + m2) = rm1 + rm2 for each r ∈ R and m1, m2 ∈ M ;
� (r1 + r2)m = r1m + r2m for each r1, r2 ∈ R and m ∈ M ;
� (r1r2)m = r1(r2m) for each r1, r2 ∈ R and m ∈ M .

Given R-modules M and N , a homomorphism of R-modules or R-linear homo-
mophism is a function φ : M → N satisfying the following:

� φ(m1 + m2) = φ(m1) + φ(m2), for all m1, m2 ∈ M ;
� φ(rm) = rφ(m), for each r ∈ R and m ∈ M .

Example A.4

(a) Every additive abelian group M is a Z-module under the action

(r, m) �→ rm, r ∈ Z, m ∈ M.

(b) R is itself an R-module with action

(r, s) �→ rs, r, s ∈ R.

(c) if M1 and M2 are R-modules then so is the direct sum

M1 ⊕ M2 = {(m1, m2) : m1 ∈ M1, m2 ∈ M2},

where addition is taken componentwise and R acts by ‘scalar multiplication’

r (m1, m2) = (rm1, rm2).

(d) For each n > 0 we have the R-module

Rn = {(c1, . . . , cn) : ci ∈ R} = R ⊕ . . . ⊕ R︸ ︷︷ ︸
n times

.

We will use the standard notation

e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1).
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Given an R-module M , an R-submodule N ⊂ M is a subgroup such that, for

each r ∈ R and n ∈ N , we have rn ∈ N . Two elements m1, m2 ∈ M are congruent
modulo N ,

m1 ≡ m2 (mod N ),

if m1 − m2 ∈ N . The R-action respects congruence classes: if m1 ≡ m2 (mod N )

then rm1 ≡ rm2 (mod N ) for each r ∈ R. The resulting set of equivalence classes is

denoted M/N .

Proposition A.5 If M is an R-module and N ⊂ M an R-submodule, then M/N
naturally inherits an R-module structure, known as the quotient module structure.

Example A.6 A subset I ⊂ R is a submodule if and only if it is an ideal. The

resulting quotient ring R/I is also naturally an R-module.

An R-module M is finitely generated if there exists a finite set of elements

m1, . . . , mn ∈ M such that every m ∈ M can be expressed

m = r1m1 + · · · + rnmn, r1, . . . , rn ∈ R.

This is equivalent to the existence of a surjective R-linear map φ : Rn → M .

A.4 Prime and maximal ideals

Let R be a ring. An ideal m � R is maximal if there exists no ideal I with m � I � R.

An ideal P ⊂ R is prime if, for any a, b ∈ R with ab ∈ P , either a ∈ P or b ∈ P .

These notions are useful in constructing rings with prescribed properties.

Proposition A.7 Consider an ideal I ⊂ R. I is maximal if and only if R/I is a
field. I is prime if and only if R/I is a domain. In particular, every maximal ideal is
prime.

Proof If I is maximal then, for any x ∈ R \ I , we have I + 〈x〉 = R. Thus there

exist y ∈ R and r ∈ I with xy + r = 1, and xy = 1 (mod I ). Conversely, if R/I is a

field then for any x ∈ R \ I we have xy = 1 (mod I ) for some y ∈ R, and any ideal

J � I contains 1.

The remaining assertions are left as an exercise. �

Example A.8 If p is a prime number then the ideal 〈p〉 ⊂ Z is maximal. Indeed,

given a ∈ Z not divisible by p, we show that 〈p, a〉 = Z. Consider the powers

{a, a2, a3, . . . , a p} ⊂ Z/pZ.

None of the ai is a zero divisor in Z/pZ: if ai b ≡ 0 (mod p) then p|ai b, but since

p does not divide a we must have p|b, i.e., b ≡ 0 (mod p). Now Z/pZ has p − 1
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nonzero elements, so we find that ai ≡ a j (mod p) for some 1 ≤ i < j ≤ p. Since

ai (1 − a j−i ) ≡ 0 (mod p), we must have 1 − a j−i ≡ 0 (mod p), i.e., aa j−i−1 ≡ 1

(mod p) and aa j−i−1 = 1 + np for some integer n. This implies that 1 ∈ 〈a, p〉 and

thus 〈p, a〉 = Z.

Proposition A.7 guarantees Z/pZ is a field, called the finite field with p elements.

A.5 Factorization of polynomials

A domain R is a principal ideal domain (PID) if every ideal I is principal, i.e., there

exists an f ∈ R such that I = 〈 f 〉.

Theorem A.9 Let k denote a field. Then k[x] is a principal ideal domain.

Proof The key ingredient is following systematic formulation of polynomial

long division, which can be found in any abstract algebra text:

Algorithm A.10 (Euclidean Algorithm) Let k denote a field, f �= 0 a polynomial in
k[x], and g ∈ k[x] a second polynomial. Then there exist unique q, r ∈ k[x] such that
g = q f + r and deg(r ) < deg( f ) (where deg(0) = −∞). We say q is the quotient of
g by f , and r is the remainder.

Let I ⊂ k[x] be an ideal. Let 0 �= f ∈ I have minimal degree among nonzero el-

ements of I. Given another element g ∈ I we apply the division algorithm to find

q and r such that g = f q + r and deg(r ) < deg( f ). Note that r = g − f q ∈ I , so

by our assumption on f we have r = 0, and g is a multiple of I . We conclude that

I = 〈 f 〉. �

The units of a ring R are the elements with multiplicative inverses

R∗ = {u ∈ R : there exists v ∈ R with uv = 1};

this forms a group under multiplication. Suppose a ∈ R is neither a zero-divisor nor

a unit; a is irreducible if, for any factorization a = bc with b, c ∈ R, either b ∈ R∗ or

c ∈ R∗. A domain R is a unique factorization domain (UFD) if the following hold.

� Each a ∈ R can be written as a product of irreducibles

a = p1 . . . pr , p1, . . . , pr ∈ R.

� This factorization is unique in the following sense. Suppose we have another factor-

ization a = q1 . . . qs . Then s = r and after permuting p1, . . . , pr we can find units

u1, . . . , ur ∈ R∗ such that pi = ui qi , i = 1, . . . , r .

Proposition A.11 If f is an irreducible element of a unique factorization domain R
then 〈 f 〉 is prime. If f is irreducible in a principal ideal domain then 〈 f 〉 is maximal.
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Proof Suppose R is a UFD. Given ab ∈ 〈 f 〉 then ab = h f for some h ∈ R,

and f must be an irreducible factor of either a or b. Now suppose R is a PID.

Given an ideal I ⊂ R with 〈 f 〉 � I , we can write I = 〈g〉 for some g ∈ R. We have

f = gh for some h ∈ R; h �∈ R∗ because 〈 f 〉 �= 〈g〉. Since f is irreducible, g ∈ R∗

and I = R. �

Proposition A.12 (Gauss’ Lemma) Let R be a unique factorization domain with
fraction field L. Let g, h ∈ R[x] and assume that the coefficients of g have no common
irreducible factor. If g|h in L[x] then g|h in R[x].

Proof Given a polynomial f = fd xd + · · · + f0 ∈ R[x], we define

content( f ) = gcd( f0, . . . , fd ),

the greatest common divisor of the coefficents, which is well-defined up to multi-

plication by a unit. A polynomial has content 1 if its coefficients have no common

irreducible factor.

We shall establish the formula

content( f g) = content( f ) · content(g)

for f, g ∈ R[x]. Dividing through f and g by their contents, it suffices to prove

this when f and g have content 1. Suppose p ∈ R is irreducible dividing all the

coefficients of f g. If f and g have degrees d and e respectively, we obtain

p | fd ge

p | fd ge−1 + fd−1ge

p | fd ge−2 + fd−1ge−1 + fd−2ge

...

Suppose p does not divide fd . The first expression shows it divides ge. The second

expression shows it divides fd ge−1, so it divides ge−1. The third expression shows it

divides fd ge−2, so it divides ge−2. Continuing, we conclude p divides each gi , hence

p|content(g).

We can divide the coefficients of h by their common factors to obtain a poly-

nomial of content 1. Without loss of generality, we may assume that h has con-

tent 1. Suppose we have h = f̂ g with f̂ ∈ L[x]. Clear denominators, i.e., choose

r ∈ R such that f := r f̂ ∈ R[x] with content 1. We have rh = f g so our claim

implies rh has content 1. This is only possible if r ∈ R∗, in which case f̂ = r−1 f
∈ R[x]. �

Corollary A.13 Let R be a UFD with fraction field L and f ∈ R[x] irreducible
and nonconstant. Then f is irreducible in L[x].
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The following fundamental result about unique factorization can be found in most

abstract algebra textbooks:

Theorem A.14 If R is a UFD then R[x] is a UFD. In particular, if k is a field then
k[x1, . . . , xn] has unique factorization.

Sketch Proof Suppose we want to write h ∈ R[x] as a product of irreducibles.

We first express h = r ĥ where ĥ has content 1 and r ∈ R, and factor r as a product

of irreducibles over R. Then we factor

ĥ = p1 . . . pr

where p j is irreducible over the fraction field L of R. Successively applying Gauss’

Lemma, we can choose the p j to be polynomials of content 1 in R[x].

A.6 Field extensions

A field extension L/k is a nontrivial homomorphism of fields

k ↪→ L;

Exercise A.4 guarantees these are injective. The extension is finite if L is finite-

dimensional as a vector space over k.

Here is the main source of finite extensions: Suppose f ∈ k[x] is an irreducible,

so that 〈 f 〉 is maximal by Proposition A.11. Then L = k[x]/ 〈 f (x)〉 is a field and the

induced homomorphism

k ↪→ k[x] � L

is nonvanishing as f is nonconstant; we have dimk L = deg f and k = L if and only

if deg f = 1.

Definition A.15 Given a field extension L/k, an element z ∈ L is algebraic over
k if there exists a nonzero polynomial f ∈ k[x] with f (z) = 0. The extension is

algebraic if each element z ∈ L is algebraic over k.

Given a field extension L/k and elements z1, . . . , zN ∈ L , let k(z1, . . . , zN ) denote

the smallest subfield of L containing k and z1, . . . , zN .

Proposition A.16 Let L/k be a field extension.

1. If L/k is finite then it is algebraic.
2. An element z ∈ L is algebraic over k if and only if k(z)/k is finite.
3. The collection of all elements of L algebraic over k forms a field.
4. If M/L and L/k are algebraic extensions then M/k is algebraic.
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Proof Suppose L/k is finite and take z ∈ L . Consider k(z) ⊂ L , a finite-

dimensional vector space over k. For d sufficiently large, the set {1, z, . . . , zd} is

linearly dependent, i.e.,

cd zd + cd−1zd−1 + · · · + c0 = 0.

We take f = cd xd + · · · + c0 ∈ k[x].

Consider the k-algebra homomorphism

ev(z) : k[x] → k[z]

x �→ z.

Since k[x] is a PID, ker(ev(z)) = 〈 f 〉 for some f ∈ k[x]. Now k[z] is an integral

domain because it sits inside L , so f is either irreducible or zero. Of course, f
is irreducible precisely when z is algebraic, in which case dimk k[z] = deg f . (We

call f the irreducible polynomial of z over k.) Furthermore, 〈 f 〉 is maximal by

Proposition A.11 so

k[z] � k[x] 〈 f (x)〉
is a field. It follows that k[z] = k(z) and dimk k(z) = deg f . On the other hand, f = 0

when z is not algebraic, in which case dimk k[z] = ∞.

Suppose z1 and z2 are nonzero and algebraic over k; a fortiori, z2 is algebraic

over k(z1). By our previous analysis, k(z1) is finite-dimensional over k and k(z1, z2)

is finite-dimensional over k(z1). It follows that k(z1, z2) is finite-dimensional over k.

We have

k ⊂ k(z1 + z2), k(z1 − z2), k(z1z2), k(z1/z2) ⊂ k(z1, z2),

so all the intermediate fields are finite extensions of k. This implies that z1 + z2, z1 −
z2, z1z2, z1/z2 are all algebraic over k, so the algebraic elements form a field.

We prove the last assertion. Given z ∈ M , there exists a nonzero polynomial

f (x) = cd xd + · · · + c0 ∈ L[x]

with f (z) = 0. This means that k(z, c0, . . . , cd ) is finite-dimensional over

k(c0, . . . , cd ). However, each ci is algebraic over L and so k(ci ) is finite over k.

Iterating the argument of the last paragraph, we find that k(c0, . . . , cd ) and hence

k(c0, . . . , cd , z) is finite over k. But then k(z) ⊂ k(c0, . . . , cd , z) is finite over k, and

z is algebraic over k. �

A field k is algebraically closed if it has no nontrivial finite extensions; equivalently,

any nonconstant polynomial in k[x] has a root in k (see Exercise A.14). Standard texts

in complex analysis and abstract algebra prove the following theorem.

Theorem A.17 (Fundamental Theorem of Algebra) The complex numbers are alge-
braically closed.
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More generally, every field k admits an extension L/k which is algebraically closed

[1, p. 528].

A.7 Exercises

A.1 Let R be a ring.

(a) Show that there is a unique element e ∈ R with ea = a for each a ∈ R.

(b) Show that if 0 = 1 then R = 0.

A.2 Show that Z/NZ is not a domain if N > 1 is a composite number. Show that R[x]/
〈
x2

〉
is not a domain.

A.3 Let R be a domain with |R| < ∞. Show that R is a field.

A.4 Show that any ring homomorphism k → R from a field to a nonzero ring is injective.

A.5 Let φ : R → S be a ring homomorphism. Show that the kernel

ker(φ) = {a ∈ R : φ(a) = 0} ⊂ R

is an ideal. Show that the image

image(φ) = {b ∈ S : b = φ(a) for some a ∈ R} ⊂ S

is a ring.

A.6 Show that the intersection of two ideals I, J ⊂ R is an ideal. Show by example that

the union of two ideals need not be an ideal.

A.7 Show that any quotient of a finitely generated module is finitely generated.

A.8 Finish the proof of Proposition A.7.

A.9 Show that the ring

R = Z[x]/〈3, x2 + 1〉

is a field with nine elements.

A.10 (a) Let k be a ring. Show there exists a unique nonzero ring homomorphism j :

Z → k.

(b) If k is a field, show that j(Z) is a domain. Prove that ker( j) = 〈0〉 or ker( j) = 〈p〉
for some prime p.

In the first case, we say that k is a field of characteristic zero. In the second case,

k is a field of characteristic p.
A.11 Let k be a field. Show that k[x]∗ = k∗.

A.12 Prove Corollary A.13.

A.13 Let k be a field, f ∈ k[x] a nonzero polynomial, and α ∈ k.

(a) Show that x − α is irreducible in k[x].

(b) Show that f (α) = 0 if and only if x − α divides f (x).

(c) Show that if f (α1) = · · · = f (αm) = 0 for distinct α1, . . . , αm ∈ k then (x −
α1) · · · (x − αm) divides f and m ≤ deg( f ).

A.14 Let k be a field. Show that the following statements are equivalent:

(1) k is algebraically closed;
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(2) every nonconstant polynomial g ∈ k[x] has a root in k;

(3) every irreducible in k[x] has degree 1;

(4) every nonconstant polynomial g ∈ k[x] factors

g = c
d∏

i=1

(x − αi ), c, α1, . . . , αd ∈ k.
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