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Preface

This book is an extended version of a course on continuum mechanics taught
by the authors to junior graduate students in mathematics. Besides a thorough
description of the fundamental parts of continuum mechanics, it contains ram-
ifications in a number of adjacent subjects such as magnetohydrodynamics,
combustion, geophysical fluid dynamics, and linear and nonlinear waves. As
is, the book should appeal to a broad audience: mathematicians (students and
researchers) interested in an introduction to these subjects, engineers, and
scientists.

This book can be described as an “interfacial” book: interfaces between
mathematics and a number of important areas of sciences. It can also be de-
scribed by what it is not: it is not a book of mathematics: the mathematical
language is simple, only the basic tools of calculus and linear algebra are
needed. This book is not a treatise of continuum mechanics: although it con-
tains a thorough but concise description of many subjects, it leaves aside many
developments which are fundamental but not needed in practical applications
and utilizations of mechanics, e.g., the intrinsic – frame invariance – character
of certain quantities or the coherence of certain definitions. The reader inter-
ested by these issues is referred to the many excellent mechanics books which
are available, such as those quoted in the list of references to Part I. Finally, by
its size limitations, this book cannot be encyclopedic, and many choices have
been made for the content; a number of subjects introduced in this book can
be developed themselves into a full book. All in all, we believe that this book,
benefiting from prolonged efforts and teaching experience of the authors, can
be very useful to scientists who want to reduce the gap between mathematics
and sciences, a gap usually due to the language barrier and the differences in
thinking and reasoning.

The core of the book contains the fundamental parts of continuum mecha-
nics: description of the motion of a continuous body, the fundamental law of

ix



x Preface

dynamics, the Cauchy and the Piola-Kirchhoff stress tensors, the constitutive
laws, internal energy and the first principle of thermodynamics, shocks and the
Rankine–Hugoniot relations, an introduction to fluid mechanics for inviscid
and viscous Newtonian fluids, an introduction to linear elasticity and the
variational principles in linear elasticity, and an introduction to nonlinear
elasticity.

Besides the core of continuum mechanics, this book also contains more
or less detailed introductions to several important related fields that could be
themselves the subjects of separate books: magnetohydrodynamics, combus-
tion, geophysical fluid dynamics, vibrations, linear acoustics, and nonlinear
waves and solitons in the context of the Korteweg–de Vries and the nonlinear
Schrödinger equations. The whole book is suitable for a one-year course at the
advanced undergraduate or beginning graduate level. Parts of it are suitable
for a one-semester course either on the fundamentals of continuum mechanics
or on a combination of selected topics.

This second edition of the book has been augmented by the introduction of
exercises and hints at solutions making it more suitable for class utilization, by
a new chapter on nonlinear elasticity, and by several additions and corrections
suggested by the readers of the first edition. In particular it has benefited from
the comments of the anonymous and non-anonymous reviewers of the first
edition, especially J. Dunwoody and J.J. Telega. The authors want also to
thank P. G. Ciarlet for his comments; the new chapter on nonlinear elasticity
borrowed very much from his classical book on the subject. Finally they
gratefully acknowledge essential help in the production of the volume from
Teresa Bunge, Jacques Laminie, Eric Simonnet, and Djoko Wirosoetisno.

Roger Temam
Alain Miranville
June 2004



A few words about notations

The notations in this book are not uniform; this is partly done on purpose and
partly because we had no choice. Indeed modelers usually have to comply or
at least adapt to the notations common in a given field, and thus they must be
trained to some flexibility. Another reason for having non-uniform notations
is that different fields are present in this volume, and it was not possible to
find notations fitting “all the standards.”

Another objective while deciding the notations was to choose notations that
can be easily reproduced by handwriting, thus avoiding as much as possible
arrows, boldfaced type, and simple and double underlining with bars or tildes;
in general, in a given chapter of this book, in a given context, it is clear what
a given symbol represents.

Although the notations are not rigid, there are still some repeated pat-
terns in the notations, and we indicate hereafter notations used in several
chapters:

� or O, possibly with indices: domain in R
2 or R

3

x = (x1, x2) or (x1, x2, x3): generic point in R
2 or R

3. Also denoted (x, y) or
(x, y, z)

a = (a1, a2) or (a1, a2, a3): initial position in Lagrangian variables
t : time
u = (u1, u2) or (u1, u2, u3), or v or w: vectors in R

2 or R
3. Also denoted

(u, v) or (u, v, w)
AB (or

−→
AB to emphasize): vector from A to B

u or U : velocity
u: displacement vector
γ : acceleration
m: mass

xi



xii A few words about notations

f, F : forces; usually f for volume forces and F for surface forces
ρ: density
g: gravity constant. Also used for equation of state for fluids
T or θ : temperature
σ : Cauchy stress tensor (in general)
n : unit outward normal on the boundary of an open set � or O, n = (n1, n2)

or n = (n1, n2, n3)

We will use also the following classical symbols and notations:

δi j : the Kronecker symbol equal to 1 if i = j and to 0 if i �= j

ϕ,i will denote the partial derivative ∂ϕ/∂xi .

The Einstein summation convention will be used: when an index (say j) is
repeated in a mathematical symbol or within a product of such symbols, we
add these expressions for j = 1, 2, 3. Hence

σi j, j =
3∑
j=1

∂σi j

∂x j
, σi j · n j =

3∑
j=1

σi j n j .



PART I

FUNDAMENTAL CONCEPTS

IN CONTINUUM MECHANICS





CHAPTER ONE

Describing the motion of a system:
geometry and kinematics

1.1. Deformations

The purpose of mechanics is to study and describe the motion of material
systems. The language of mechanics is very similar to that of set theory
in mathematics: we are interested in material bodies or systems, which are
made of material points or matter particles. A material system fills some part
(a subset) of the ambient space (R3), and the position of a material point is
given by a point in R

3; a part of a material system is called a subsystem.
We will almost exclusively consider material bodies that fill a domain

(i.e., a connected open set) of the space. We will not study the mechanically
important cases of thin bodies that can be modeled as a surface (plates, shells)
or as a line (beams, cables). The modeling of the motion of such systems
necessitates hypotheses that are very similar to the ones we will present in
this book, but we will not consider these cases here.

A material system fills a domain �0 in R
3 at a given time t0. After de-

formation (think, for example, of a fluid or a tennis ball), the system fills a
domain � in R

3. A material point, whose initial position is given by the point
a ∈ �0, will be, after transformation, at the point x ∈ �.

The deformation can thus be characterized by a mapping as follows (see
Figure 1.1):

�: a ∈ �0 �→ x ∈ �.

Assuming that matter is conserved during the deformation, we are led to
make the following natural hypothesis:

The function � is one – to – one from �0 onto �.

We will further assume that the deformation � is a smooth application of
class C1 at least, from �0 into �, as well as its inverse (C1 from � onto �0).
In fact we assume that � is as smooth as needed.

3



4 Mathematical Modeling in Continuum Mechanics

Ω0
Ω

x
a
×

×Φ

Figure 1.1 The mapping �.

Regularity assumption

The regularity assumption made on � will actually be general; we will as-
sume that all the functions we introduce are as regular as needed for all the
mathematical operations performed to be justified (e.g., integration by parts,
differentiation of an integral depending on a parameter, etc.). This hypothesis,
which will be constantly assumed in the following, will only be weakened
in Chapter 6 for the study of shock waves, which correspond to the appear-
ance of discontinuity surfaces. In that case, we will assume that the map � is
piecewise C1. This assumption must be weakened also for the study of other
phenomena which will not be considered here, such as singular vortices for
fluids, dislocations for solids, or collisions of rigid bodies.

Let grad �(a) = ∇�(a) be the matrix whose entries are the quantities
(∂�i/∂a j )(a); this is the Jacobian matrix of the mapping a �→ x also denoted
sometimes Dx/Da. Because �−1 is differentiable, the Jacobian det (∇�) of
the transformation a �→ x is necessarily different from zero. We will assume
in the following that it is strictly positive; the negative sign corresponds to
the nonphysical case of a change of orientation (a left glove becoming a right
glove). We will later study the role played by the linear tangent map at point
a in relation to the Taylor formula

�(a) = �(a0)+ ∇�(a0) · (a − a0)+ o(|a − a0|).
We will also introduce the dilation tensor to study the deformation of a “small”
tetrahedron.

Displacement

Definition 1.1. Themap u : a �→ x−a=�(a)−a is called the displacement;
u(a) is the displacement of the particle a.
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Elementary deformations

Our aim here is to describe some typical elementary deformations.

a) Rigid deformations

The displacement is called rigid (in this case, we should no longer talk about
deformations) when the distance between any pair of points is conserved as
follows:

d(a, a′) = d(x, x ′), ∀ a, a′ ∈ �0,

where x = �(a), x ′ = �(a′). This is equivalent to assuming that

� is an isometry from �0 onto �,

or, when �0 is not included in an affine subspace of dimension less than or
equal to 2,

� is an affine transformation

(translation+ rotation).

In this case

x = L · a + c, c ∈ R
3, L ∈ L0(R3), L−1 = LT ,

and

u(a) = (L − I )a + c,

where L0(R3) is the space of orthogonal matrices on R
3.

b) Linear compression or elongation

A typical example of elongation is given by the linear stretching of an elastic
rod or of a linear spring.

Let (e1, e2, e3) be the canonical basis of R
3. The uniform elongation in the

direction e = e1 reads

x1 = λa1, x2 = a2, x3 = a3,

with λ > 1; 0 < λ < 1 would correspond to the uniform compression of
a linear spring or an elastic rod. The displacement is then given by u(a) =
[(λ− 1)a1, 0, 0] and

∇� =
λ− 1 0 0

0 0 0
0 0 0

+ I.
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c) Shear

We consider here simple shear in two orthogonal directions. Such a deforma-
tion occurs, for instance, when one tears a sheet of paper.

The shear in the direction e1 parallel to the direction e2 reads
x1 = a1 + ρa2,

x2 = a2 + ρa1,

x3 = a3,

where ρ > 0; hence, the displacement is given by

u(a) =
ρa2

ρa1

0

 ,

and

∇� =

0 ρ 0

ρ 0 0

0 0 0

+ I.

Remark 1.1: We will see in what follows that, in some sense, a general defor-
mation can be decomposed into proper elementary deformations of the types
above.

1.2. Motion and its observation (kinematics)

Kinematics is the study of the motion of a system related to an observer, which
is called the reference system.

With kinematics, we need to introduce two new elements:

• A privileged continuous parameter t corresponding to time. This implies
the choice of a chronology; that is, a way to measure time.1

• A given system of linear coordinates, or frame of reference, that is “fixed”
with respect to the observer. It is defined, in the affine space, by its origin
O and three orthonormal basis vectors e1, e2, e3.

1 From a strictly mathematical point of view, it would not be absurd, for example, to replace
t by t3, but this would change the notion of time interval, and the time t = 0 would play a
particular role, which it does not.
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×
xa

×

Ωt0
Ωt 

Φ ( . ,  t ,  t0)

Figure 1.2 The motion of a system.

Definition 1.2. A reference system is defined by the choice of a chronology
and a frame of reference.2

The chronology is fixed once and for all, but, hereafter, we will consider
several frames of reference, depending on our objectives.

The motion of the system under consideration is observed during a time
interval I ⊂ R. At each instant t ∈ I , the system fills a domain �t ⊂ R

3. The
motion is then geometrically defined by a family of deformation mappings,
depending on the time t ∈ I (see Figure 1.2). We denote by �(t, t0) the
diffeomorphism

a ∈ �t0 �→ x = �(a, t, t0) ∈ �t ,

which maps the position a at time t0 to the position x at time t, and we make
the following natural hypotheses:

• �(t0, t0) = I,
• �(t ′, t) ◦ �(t, t0) = �(t ′, t0), and
• the maps (t, a) �→�(a, t, t0) are at least of class C1 (except in the case

of shock waves).

Definition 1.3. A material system is a rigid body if and only if the maps
�(t, t ′) are isometries for every t and t ′.

Explicit representation of the motion

We are given a reference time t0, and we choose for point O the origin of the
frame of reference in the affine space. The position of the material point M

2 We will not emphasize any more these very profound considerations, which can lead, depend-
ing on the point of view that is pursued, to nonclassic mechanics (e.g., relativity or quantum
mechanics).
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is defined at each time t by the vector
−→
OM ; we thus write

−→
OM = x = �(a, t, t0),

or more simply, omitting t0,
−→
OM = x = �(a, t).

Trajectory of a particle

We consider a particle defined by its position a at time t0. The trajectory of
this particle is the curve {�(a, t, t0)}t∈I ; I is the interval of time during which
the motion is observed.

Velocity of a particle

The velocity of the material point M occupying the position x at time t is the
vector

U = U (x, t) = ∂�

∂t
(a, t, t0).

Remark 1.2: Of course, we consider the derivatives with respect to the given
frame of reference, and the velocity is thus considered with respect to the
same system.

Property 1.1. The vector U is independent of the reference time t0.

Proof: Let M be a particle occupying the positions x at time t, a at t0 and a′

at t ′0 (t > t0 > t ′0). Thus,
−→
OM = x = �(a, t, t0) = �(a′, t, t ′0),

and

a = �(a′, t0, t ′0).

Thus,

x = �[�(a′, t0, t ′0), t, t0] = �(a′, t, t ′0),

where a′, t0, and t ′0 are fixed. We set

h(t) = �[�(a′, t0, t ′0), t, t0],

�(t) = �(a′, t, t ′0).
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We easily verify that (dh/dt) = (d�/dt), which accounts for the result.

Acceleration of a particle

The acceleration of the material particle M occupying the position x at time t
is the vector

γ = γ (x, t) = ∂2�

∂t2
(a, t, t0).

Property 1.2. The vector γ is independent of the reference time t0 (same
proof as for the velocity).

Remark 1.3: Of course, the vectorsU and γ depend on the frame of reference
and on the chronology we have chosen.

We will see in Section 1.3 why we prefer to write U (x, t) and γ (x, t)
instead of U (a, t) and γ (a, t).

Stream lines

The stream lines are defined at a time t ; they are the lines whose tangent at
each point is parallel to the velocity vector at this point.

If U (x, t) is the velocity vector at time t and at x ∈ �t , computing the
stream lines is equivalent to solving the differential system

dx1

U1(x1, x2, x3, t)
= dx2

U2(x1, x2, x3, t)
= dx3

U3(x1, x2, x3, t)
.

In practice, this system can be solved explicitly by analytic methods only
rarely. However, its numerical solution on a computer is easy. For computer
simulations of flows, these equations are numerically integrated to obtain
the stream lines repeatedly in order to visualize the flow (e.g., movie-type
animation).

Remark 1.4: The stream lines are different from the trajectories. However,
in the case of a stationary motion (defined below) the stream lines and the
trajectories coincide.
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1.3. Description of the motion of a system: Eulerian and
Lagrangian derivatives

Lagrangian description of the motion of a system
(description by the trajectories)

The Lagrangian description of the motion is the one we have considered until
now. It consists of giving the trajectory of each particle starting from the initial
position, for instance from time t = 0:

x = �(a, t) = �(a, t, 0), a ∈ �0.

The velocity and acceleration fields are then, respectively, the vector fields
(∂�/∂t)(a, t) and (∂2�/∂t2)(a, t).

This description is too rich for most practical purposes, and it is not used
in general. It is, however, very useful for mathematical analysis and for some
very specific situations. In general, we prefer to use the Eulerian description
of the motion.

Eulerian description of the motion of a system
(description by the velocity field)

In this description, we are given at each time t the velocity field U = U (x, t),
where U (x, t) is the velocity of the material particle occupying the position
x at time t.

Theoretically, we can recover from this velocity field the trajectories and
the Lagrangian description of the motion by solving the following differential
equations: 

dx

dt
= U (x, t),

x(0) = a,

the solution of which is x = xa(t) = �(a, t). Similarly, we can compute
the stream lines by solving for x (t being a fixed parameter) the differential
system

dx1

U1
= dx2

U2
= dx3

U3
.

Definition 1.4. A motion is steady or stationary if and only if �t = �0,∀t ,
and the Eulerian velocity field is independent of t , that is, U (x, t) ≡ U (x),
∀t .
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We emphasize here the fact that a body undergoing a stationary motion is
not at rest.

As we said before, the trajectories and streamlines of a stationary flow are
the same.

Eulerian and Lagrangian derivatives

Consider a particle M occupying the position a at time t = 0 and the position
x at time t . A function f = f (M, t) associated with a particle M (e.g., its
velocity, acceleration, or other physical quantities to be defined subsequently)
can be represented in two different ways during the motion:

f (M, t) = g(a, t) or f (M, t) = h(x, t),

where x = �(a, t); that is to say

h(�(a, t), t) = g(a, t).

Definition 1.5.

1. The Eulerian derivatives of f are the quantities
∂h

∂xi
(x, t),

∂h

∂t
(x, t).

2. The Lagrangian derivatives of f are the quantities
∂g

∂ai
(a, t),

∂g

∂t
(a, t).

In mechanical engineering the derivative (∂g/∂t)(a, t) is denoted dh/dt
or Dh/Dt (or d f/dt or Df/Dt) and is sometimes called the total derivative
of f .

We deduce from the relation

h(�(a, t), t) = g(a, t),

that

∂g

∂a j
(a, t) = ∂h

∂xk

∂xk
∂a j

= ∂h

∂xk
(x, t)

∂�k

∂a j
(a, t),

where we have used the Einstein summation convention on the indices.

Property 1.3. We have the following relation:

∂g

∂t
= Dh

Dt
= ∂h

∂t
+ (U · ∇)h.
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Proof: We see easily that

∂g

∂t
(a, t) = ∂h

∂xk
(x, t)

∂�k

∂t
(a, t)+ ∂h

∂t
(x, t)

=
(
Uk · ∂h

∂xk
+ ∂h

∂t

)
(x, t).

Application to the computation of acceleration
in the Eulerian representation

Here, we consider the case in which the function f above is the velocity.
Thus,

h(x, t) = U (x, t) = U [�(a, t), t] = g(a, t) = ∂�

∂t
(a, t).

Consequently,

γ (x, t) = ∂2�

∂t2
(a, t) = ∂g

∂t
(a, t) = Dh

Dt
(a, t)

= ∂

∂t
[U (�(a, t), t)],

which yields

γ (x, t) = ∂U

∂t
(x, t)+

3∑
i=1

Ui (x, t)
∂U

∂xi
(x, t),

or

γ = ∂U

∂t
+ (U · ∇)U.

This formula is a fundamental one for fluids: the Eulerian expression of the
acceleration is constantly used in fluid mechanics.

Remark 1.5: Even though it is far from being an unbreakable rule, we gen-
erally (or more often) use the Eulerian representation for fluids and the
Lagrangian representation for solids.
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1.4. Velocity field of a rigid body: helicoidal vector fields

Proposition 1.1. A necessary and sufficient condition for U (x, t), x ∈�t ,

to be the velocity field at time t of a rigid body is that

(x − x ′) · [U (x, t)−U (x ′, t)] = 0, (1.1)

for every x and x ′ ∈�t , and for the whole interval of time I under consider-
ation.

Proof: Let us consider two material points of a system occupying the posi-
tions a and a′ at time t0, and the positions x and x ′ at time t, t ∈ I .

We have

‖x − x ′‖2 = ‖�(a, t)−�(a′, t)‖2,

and this quantity remains constant (equal to ‖a − a′‖2) for t ∈ I , if and only
if

d

dt
‖x − x ′‖2 = 0;

that is to say, because x = �(a, t) and x ′ = �(a′, t):

[�(a, t)−�(a′, t)] ·
[
∂�

∂t
(a, t)− ∂�

∂t
(a′, t)

]
= 0,

(x − x ′) · [U (x, t)−U (x ′, t)] = 0

and hence Eq. (1.1).
Proposition 1.2 hereafter gives a useful characterization of the vector fields

U (x) = U (x, t), verifying Eq. (1.1) at a given time.

Proposition 1.2. Equation (1.1) is satisfied for every x and x ′ ∈� if and only
if there exist a vector b ∈ R

3 and an antisymmetric matrix B such that

U (x) = Bx + b, ∀ x ∈ �, (1.2)

where

B =
 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ,

which is equivalent to

U (x) = ω ∧ x + b, ∀ x ∈ �, (1.3)

where ω is the vector of components (ω1, ω2, ω3).
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Proof: Let us show that Eq. (1.2) implies Eq. (1.1). We first notice that

U (x ′) = U (x)+ B(x ′ − x) = U (x)+ ω ∧ (x ′ − x).

Consequently,

[U (x)−U (x ′)] · (x − x ′) = [B(x − x ′)] · (x − x ′)

= 0

because By · y = 0, ∀ y ∈ R
3.

Conversely, let us prove that Eq. (1.1) implies Eq. (1.2). Let us assume for
simplicity that 0 ∈ �, and let b = U (0). We set

V (x) = U (x)−U (0) = U (x)− b.

Then,

V (x) · x = 0, ∀ x ∈ �. (1.4)

Because

[U (x)−U (ei )] · (x − ei ) = 0, ∀ x ∈ �,

we find

[V (x)− V (ei )] · (x − ei ) = 0, ∀ x ∈ �,

which yields, thanks to Eq. (1.4),

V (x) · ei = −V (ei ) · x, ∀ x ∈ �, i = 1, 2, 3. (1.5)

Therefore,

V (x) =
3∑

i=1

[V (x) · ei ] ei = −
3∑

i=1

[V (ei ) · x] ei ;

hence,

Vi (x) =
3∑
j=1

bi, j x j ,

where

bi, j = −V (ei ) · e j = −Vj (ei ).

We then infer that

bi,i = −V (ei ) · ei = 0,

bi, j = −V (ei ) · e j = V (e j ) · ei = −b j,i ,

and the result follows.
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Remark 1.6: For a given vector field U , ω, and b are unique. Indeed

ω ∧ x + b = ω′ ∧ x + b′, ∀ x ∈ �,

yields, for x = 0, b = b′. Similarly, (ω − ω′) ∧ x = 0,∀ x ∈ �, implies
ω − ω′ = 0.

We now introduce a special class of vector fields on R
3 that play an impor-

tant role in this part of mechanics. The terminology hereafter is not commonly
used by engineers, but it is a convenient one, as we will see later on: such vec-
tor fields appear in relation to velocities of rigid bodies, forces, momentum,
and quantities of acceleration (concepts subsequently defined).

Definition 1.6. A helicoidal vector field (HVF) is a vector field on R
3 satisfy-

ing the conditions of Eq. (1.1), or equivalently Eq. (1.2). The corresponding
vector ω is called the resultant (or linear resultant) of the helicoidal vector
field, and U (x0) is its resulting (or angular) momentum at x0; {U (x0), ω} are
the reduction elements at the point x0.

A helicoidal vector field is characterized by its reduction elements at any
given point. Indeed, for every x and x ′

U (x ′) = U (x)+ ω ∧ (x ′ − x). (1.6)

Note that, by Eq. (1.6), U (x) is constant along a line parallel to ω.
A uniform HVF is an HVF for which ω = 0, and then, by Eq. (1.6),

U (x ′) = U (x),∀x ′, x . Another particular HVF is the torque: this is a HVF
for which the scalar product U (x) · ω (which is independent of x, see the
next subsection) vanishes. One can show (this is left as an exercise) that, for
any HVF that is not uniform, there is a unique line � (called the axis of
the HVF), along which U (x) is parallel to ω. A torque is a HVF for which
U (x) = 0, ∀ x ∈ �.

Operations on helicoidal vector fields

We are given two helicoidal vector fields, namely [T ] = {U (x)}x∈�, and
[T̃ ] = {Ũ (x)}x∈�:

U (x ′) = U (x)+ ω ∧ (x ′ − x),

Ũ (x ′) = Ũ (x)+ ω̃ ∧ (x ′ − x).
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a) Sum and product by a scalar

We define respectively the sum [T ] + [T ′] and the product λ[T ] by their
reduction elements at any point x0:

[T ]+ [T̃ ] : {U (x0)+ Ũ (x0), ω + ω̃},
λ[T ] : {λU (x0), λω}.

It is easily seen that this definition is independent of x0. Also, using the linear
mapping

[T ]
ϕx−→ (reduction elements at a point x),

we see that the space of HVFs is isomorphic to R
6. One can show that any

HVF is the sum of a uniform HVF and a torque (hint: use the axis of the HVF).

b) Topology

We define the convergence of a sequence of helicoidal vector fields by the
convergence of their reduction elements at one point. We notice that the
convergence of the reduction elements at one point yields the convergence of
the reduction elements at every point; this topology is essentially that of R

6.

c) Differentiation

If [T (t)], t ∈ I , is a family of HVFs depending on a parameter t ∈ I and
defined by their reduction elements at a point x0: {U (x0, t), ω(t)}, we define

d[T ]

dt
(t) = lim

�t→0

[T (t +�t)]− [T (t)]

�t
;

this is the helicoidal vector field whose reduction elements at x0 are{
∂U

∂t
(x0, t),

dω

dt
(t)

}
.

d) Scalar product of two helicoidal vector fields

Let [T ] and [T̃ ] be two helicoidal vector fields whose reduction elements at
x are respectively [U (x), ω] and [Ũ (x), ω̃]. We set

[T ] · [T̃ ] = U (x) · ω̃ + Ũ (x) · ω.
This quantity is independent of the choice of the point x . Indeed, if x ′ is
another point,

[U (x ′)−U (x)] · ω̃ + [Ũ (x ′)− Ũ (x)] · ω
= [ω ∧ (x ′ − x)] · ω̃ + [ω̃ ∧ (x ′ − x)] · ω
= [x ′ − x, ω̃, ω]+ [x ′ − x, ω, ω̃]

= 0.



Describing the motion of a system: geometry and kinematics 17

Remark 1.7: The scalar product above of two helicoidal vector fields is a
bilinear product but not a positive definite form on the space of HVFs ∼ R

6.
Indeed,

[T ] · [T ] = 2U (0) · ω,
which can be positive, negative, or even equal to 0 for a suitable [T ].

Remark 1.8: We have defined the helicoidal vector field associated with the
velocity field of a rigid body. In the sequel we will introduce other HVFs
corresponding to different physical quantities such as forces, momentum and
quantities of acceleration.

Structure of a helicoidal vector field

When ω vanishes, the vector field U = U (x) is constant.
It is interesting to describe the structure of the vector field U (x) when the

resultant ω of the HVF does not vanish. To do so, we look for the axis �,
called axis of the HVF, along whichU (x) is parallel toω. We start by searching
for such a point x0 in the plane containing 0 and orthogonal to ω. It follows
that

0 = U (x0) ∧ ω = U (0) ∧ ω + (ω ∧ x0) ∧ ω

0 = U (0) ∧ ω + |ω|2x0 − (ω · x0)ω;

since ω · x0 = 0, there remains

x0 = |ω|−2[ω ∧U (0)].

For any other point x ∈ �, we then have

0 = U (x) ∧ ω = U (x0) ∧ ω + [ω ∧ (x − x0)] ∧ ω

0 = U (x0) ∧ ω + |ω|2(x − x0)− [ω · (x − x0)]ω;

hence, since U (x0) ∧ ω = 0

x − x0 = |ω|−2 {[ω · (x − x0)]ω} ,
and the points x belong to an axis � parallel to ω, the axis � of the
HVF.

For any point x in space, we then compare U (x) to U (x ′), where x ′ is
the orthogonal projection of x on �; we deduce that the vector field U (x)
possesses a helicoidal symmetry, that is to say it is invariant by rotation
around � and by translation parallel to �, that is the application (rotation,
translation), mapping x onto x ′, also maps U (x) onto U (x ′).
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1.5. Differentiation of a volume integral depending
on a parameter

When considering a material system whose motion is as described earlier in
this chapter, we will often need to compute the time derivative of integrals of
the form

K (t) =
∫
�t

C(x, t) dx,

where C = C(x, t) is a given scalar function.
Here and henceforth, the expression a set that moves with the flow denotes

a family of sets �t , where t belongs to a time interval I ⊂ R, and �t =
�(�0, t), and �, �0, and �t satisfy the assumptions introduced earlier.

To compute the derivative of K (t), we first recall the following result:

Lemma 1.1 (Differentiation of a Determinant). We are given a family of
linear operators S = S(t) ∈ L(Rn), t ∈ I , such that det S(t) �= 0, for every
t ∈ I . Then,

d

dt
[det(S(t))] = det[S(t)] · tr

[
dS

dt
(t)S−1(t)

]
.

Proof:
1. We first recall the differentiation of the determinant function.

We set f (S) = det S. The function f is a polynomial function of
(the coefficients of) S; therefore, it is differentiable and, by definition,
its differential f ′(S) at S satisfies

f ′(S) · T = lim
λ→0

{
f (S + λT )− f (S)

λ

}

= lim
λ→0

{
det(S + λT )− det(S)

λ

}
,

for all test matrices T . To compute this limit, write

det(S + λT ) = det[S1 + λT1, . . . , Sn + λTn],

where Si , Ti is the i th column vector of S, T . Then, expand this deter-
minant in the form

det(S1, . . . , Sn)+ λk + O(λ2) (asλ→ O).

It is left as an exercise for the reader to check that

k = f ′(S) · T =
n∑

i=1

n∑
j=1

Ti j Ai j = tr(T · (cof S)T ),
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where A = (cof S) is the matrix, the entries of which are the cofactors3

of S, and (cof S)T is the transposed matrix. Recalling that

(cof S)T = (det S) S−1,

we see that, at a point S where det S �= 0, the differential of the deter-
minant can be written in the form

f ′(S) · T = tr(TS−1) det S.

2. Application
We have, by the chain differentiation rule:

d

dt
det[S(t)] = f ′[S(t)] · dS

dt
(t)

= det[S(t)] · tr
[
dS

dt
(t)S−1(t)

]
.

We are now in position to prove the following result.

Proposition 1.3. We assume that C = C(x, t) is a function of class C1, for
x ∈ �t and t ∈ I , and that (this is a standing hypothesis) U (resp. �) is C1

with respect to x (resp. a) and t. Then,

dK

dt
(t) =

∫
�t

∂C

∂t
(x, t) dx +

∫
�t

div(CU )(x, t) dx, (1.7)

dK

dt
(t) =

∫
�t

∂C

∂t
dx +

∫
�t

CU · n d�, (1.8)

where �t is the boundary of �t and n the unit outward normal vector on �t .

Proof:
1. We first consider the case in which C ≡ 1 and K (t) = vol �t . We

perform the change of variables x = �(a, t) in the integral; because
we assume that det ∇a� > 0, we then have∫

�t

dx =
∫
�0

D�

Da
da

=
∫
�0

det(∇a�) da.

3 We recall that the cofactor Si j of S is the determinant, multiplied by (−1)i+ j , of the matrix
obtained by removing the i th line and the j th column of S.
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Hence,

d

dt

∫
�t

dx =
∫
�0

∂

∂t
det(∇a�) da

=
∫
�0

tr

[
∇a

∂�

∂t
· (∇a�)−1

]
det(∇a�) da

=
∫
�t

tr

[
∇a

∂�

∂t
· (∇a�)−1

]
dx .

On the other hand,

Ui (x, t) = ∂�i

∂t
(a, t),

∂Ui

∂x j
(x, t) = ∂2�i

∂t∂ak
· ∂ak
∂x j

,

so that

(∇xU )i, j = ∂Ui

∂x j
=

(
∇a

∂�

∂t

)
i,k

· (∇a�)−1
k, j ,

and thus

div U = tr(∇xU ) = tr

[(
∇a

∂�

∂t

)
· (∇a�)−1

]
,

which yields

d

dt

∫
�t

dx =
∫
�t

div U dx .

2. The general case
A computation similar to that performed above yields

d

dt

∫
�t

C(x, t) dx =
∫
�0

∂

∂t
(C(�(a, t), t) det(∇a�)) da

=
∫
�0

∂C

∂t
· det(∇a�) da

+
∫
�0

∂C

∂x j

∂� j

∂t
· det(∇a�) da

+
∫
�0

C
∂

∂t
det(∇a�) da
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=
∫
�t

(
∂C

∂t
+ ∂C

∂x j
U j + C div U

)
dx

=
∫
�t

(
∂C

∂t
+ div (CU )

)
dx .

This completes the proof of the proposition.

Remark 1.9: Proposition 1.3 is relative to a domain �t limited by a closed
surface �t and that moves with the flow; U = U (x, t) is then the velocity of
the boundary �t . Equation (1.8) can be extended to a time-dependent domain
�t , which does not necessarily move with the flow (i.e., �t is not �(·, t)�0,

at each time t > 0). In that case, Eq. (1.8) applies, U = U (x, t) being then
replaced by the (given) velocity of the boundary �t of �t . The proof is very
similar; this generalization of Eq. (1.8) will be used in Chapter 6.

Remark 1.10: The expression set that moves with the flow introduced at the
beginning of Section 1.5 applies also to surfaces, curves, points, and all sorts
of sets. Sometimes the expression comoving is used in this context.

Exercises

1. We consider the velocity field of a continuum given in Eulerian description

U = (U1,U2,U3) = (sin t, cos t, α), α ≥ 0.

Compute the streamlines and the trajectories.
2. Show that the acceleration field γ in Eulerian representation can be written

as

γ = ∂U

∂t
+ 1

2
∇|U |2 + (curl U ) ∧U.

3. We consider the velocity field of a material given in Eulerian representation

U = (x2x3,−x1x3, kt + k0), k, k0 ∈ R.

a) Compute the trajectories and specify their shape when k = 0 and
k0 �= 0.

b) Give the Lagrangian representation of the motion.
c) For k = 0, compute the acceleration in Lagrangian and Eulerian rep-

resentations.
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4. We consider the motion of a continuum medium given in Lagrangian
representation between times 0 and t by:

x1 = a1 cosωt − a2 sinωt

x2 = a1 sinωt + a2 cosωt

x3 = a3,

ω ∈ R.
a) Check that the Jacobian of the mapping a �→ x = �(a, t) does not

vanish.
b) Give the Eulerian representation of the motion.
c) Compute the trajectories and the streamlines.

5. (Complements of Vector Analysis.) Show that
(i) det[ �A, �B, �C] = �A · ( �B ∧ �C) = ( �A ∧ �B) · �C

= ( �C ∧ �A) · �B = �C · ( �A ∧ �B) = �B · ( �C ∧ �A) = ( �B ∧ �C) · �A.
(ii) �A ∧ (B ∧ �C) = ( �A · �C) �B − ( �A · �B) �C .
Here, �A, �B, and �C denote three vectors in R

3.
6. Show that

div (�u) = ∇ � · u +� div u,

curl (�u) = ∇ � ∧ u +� curl u,

curl curl u = −�u + ∇ div u

div (u ∧ v) = v · curl u − u · curl v,

curl (u ∧ v) = u div v − v div u + (v · ∇)u − (u · ∇)v,

where � is a scalar function (on R
3) and u and v are vector functions.

7. We recall Green’s formula∫
�

div u dx =
∫
∂�

u · n d�,

where � is an open set of R
d with a regular boundary ∂�, dx =

dx1 . . . dxd , and d� is the surface measure on ∂�.
Deduce from Green’s formula that

(i)
∫
�

∂u

∂xi
dx =

∫
∂�

u · ni d�,

(ii)
∫
�

�u · v dx =
∫
∂�

∂u

∂n
v d� −

∫
�

∇ u · ∇ v dx,
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where
∂u

∂n
=

d∑
i=1

∂u

∂xi
ni ,

(iii)
∫
�

(�u · v − u ·�v) dx =
∫
∂�

(
∂u

∂n
v − ∂v

∂n
u) d�,

(iv)
∫
�

u · curl v dx =
∫
�

v · curl u dx −
∫
∂�

(u ∧ v) · n d�,

where u and v are scalar functions on R
d in (i), (ii), and (iii), and vector

functions in (iv).



CHAPTER TWO

The fundamental law of dynamics

2.1. The concept of mass

The aim of this chapter is to allow to express and to generalize to continuum
media the well-known law in mechanics (for one material point) f = mγ .
Having introduced the acceleration, we now need to introduce the concepts
of mass and force.

In this section, we consider a material system S in motion. This system fills
the domain �t0 at time t0 and the domain �t at time t . We define the concept
of mass through the following hypothesis:

For every material system S and at each time t, there exists a positive
measure µt carried by �t and called the mass distribution.

From here on, we will, most of the time, assume that µt is regular (with
respect to the Lebesgue measure dx), that is to say, there exists a function
ρ = ρ(x, t) such that

dµt (x) = ρ(x, t) dx;

ρ is called the volumic mass (or density) of the system at point x and at time
t (we use here the Eulerian description of the motion). As usual, we assume
that the function ρ is as smooth as necessary – at least of class C1 in x and t .

Other cases, which we will not consider here, are important in mechanics;
for plates and shells the measure µt is carried by a surface �t ; for beams and
strings the measure µt is carried by a curve �t and is regular with respect to
the arc-length measure, and finally for point masses, the measureµt is a linear
combination of Dirac masses. All theses cases can be studied by methods that
are similar to those we will present below.

24
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The mathematician reader is in general familiar with measure’s theory;
the non-mathematician reader may simply consider dµt (x) as a conve-
nient notation for one of the above-mentioned measures ρ(x, t)dx,
ρ(x, t)d�t (x), ρ(x, t)dlt (x), or Dirac masses. Only elementary results of
measure’s theory will be used hereafter.

Conservation of mass

Here, we make the following assumption (namely, the conservation of mass
hypothesis):

For every t and t ′, we have

µt ′ = �(·, t ′, t)µt ,

which means that the mass distribution at time t ′ is the image of the mass
distribution at time t by the mapping �(t ′, t) = �(·, t ′, t) (in the sense of the
image of a measure by a mapping). In terms of volumic densities, this reads:

ρ ′(x ′, t ′) = ρ(�(x, t ′, t), t) · Dx ′

Dx
. (2.1)

Definition 2.1. The (total) mass of the system at time t is the integral m =∫
�t
dµt (x). If dµt (x) = ρ(x, t) dx, then

m =
∫
�t

dµt (x) =
∫
�t

ρ(x, t) dx .

Similarly, if a material subsystem S′ fills the domain �′t ⊂ �t at time t, then
the mass of S′ is the integral ∫

�′t
dµt (x).

Remark 2.1: Of course, according to the mass conservation assumption, the
mass of a system is constant:∫

�t

dµt (x) =
∫
�t ′

dµt ′(x
′)

for every t and t ′.More generally, let us recall that ifϕ = ϕ(x ′) is a sufficiently
regular function defined on �t ′, then, by definition of the image of a measure∫

�t ′
ϕ(x ′) dµt ′(x

′) =
∫
�t

ϕ[�(t ′, t)(x)] dµt (x).
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Definition 2.2. The center of mass or center of inertia of the material system
S at time t is the point Gt defined by

OGt =
∫
�t

x dµt∫
�t
dµt

.

Remark 2.2: One can easily check that the definition of Gt is independent of
the choice of the point O .

The point G = Gt is not necessarily a material point that moves with the
flow. Nevertheless, if xG(t) = OGt , we can define, as usual, the velocity and
acceleration of the center of mass as

v(G) = d

dt
xG(t), (2.2)

γ (G) = d2

dt2
xG(t) = dv(G)

dt
. (2.3)

It is clear that xG(t) is the center of mass (or barycenter) of the vectors x
for the measure dµt (x). We will see hereafter that, similarly, v(Gt ) and γ (Gt )
are the centers of mass (or barycenters) of the velocities and accelerations of
the points of S (of �t ) for the same measure.

Consequence of mass conservation: the continuity equation
in Eulerian variables

Proposition 2.1. We consider a material system S that fills the domain�t at
time t ∈ I. Then, for every x ∈ �t and for every t ∈ I,

∂ρ

∂t
+ div(ρU ) = 0,

whereρ(x, t) is the volumicmass density andU(x, t) the velocity of the particle
occupying the position x at time t.

Proof: If �′t ⊂ �t , then, by the conservation of mass hypothesis,

0 = d

dt

∫
�′t
dµt (x)

= d

dt

∫
�′t

ρ(x, t) dx

(thanks to Proposition 1.3)

=
∫
�′t

[
∂ρ

∂t
+ div(ρU )

]
dx .
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Thus, for every �′t ⊂ �t ,∫
�′t

[
∂ρ

∂t
+ div(ρU )

]
dx = 0,

which yields necessarily1

∂ρ

∂t
+ div(ρU ) = 0,

for every (x, t) ∈ �t × I.

Remark 2.3: For certain materials (e.g., incompressible homogeneous fluids,
see Part 2), ρ is constant in space and time, and the continuity equation then
reads

div U = 0.

Proposition 2.2. Let S be a three-dimensional material system that fills the
domain �t at time t, and let C be a function of class C1 in x and t. Then,

d

dt

∫
�t

C(x, t)ρ(x, t) dx =
∫
�t

DC

Dt
(x, t)ρ(x, t) dx,

where (D/Dt) = (∂/∂t)+U · ∇ is the convective (or material, or total)
derivative.

Proof: Thanks to Proposition 1.3, we see that

d

dt

∫
�t

C(x, t)ρ(x, t) dx

=
∫
�t

(
∂C

∂t
ρ + C

∂ρ

∂t
+ ∇C · ρU + C(∇ρ) ·U + Cρ divU

)
(x, t) dx .

Because (see Proposition 2.1)

∂ρ

∂t
+ (∇ρ) ·U + ρ div U = 0,

there remains
d

dt

∫
�t

C(x, t)ρ(x, t) dx =
∫
�t

(
∂C

∂t
+U · ∇C

)
ρ dx

=
∫
�t

DC

Dt
ρ dx .

1 If g is a continuous function on �̄ such that
∫
�′ g(x) dx = 0, ∀�′ ⊂ �, then g vanishes. This

property, which is easy to verify, will be used many times.
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Proposition 2.2 can be rewritten also as follows:

Corollary 2.1. We have the following relation:

d

dt

∫
�t

C(x, t) dµt (x) =
∫
�t

DC

Dt
dµt (x).

Remark 2.4: A consequence of Corollary 2.1 is that the velocity of the center
of mass of a material system S is given by the relation

v(Gt ) = 1∫
�t
dµt (x)

∫
�t

[
∂x

∂t
+ (U · ∇)x

]
dµt (x);

that is to say, because ∂x/∂t = 0 and (U · ∇)x = U,

v(Gt ) =
∫
�t
Udµt (x)∫

�t
dµt (x)

. (2.3)

Similarly, differentiating a second time, we find the acceleration of the center
of mass

γ (Gt ) =
∫
�t

γ dµt (x)∫
�t
dµt (x)

. (2.4)

Hence, as we said before, although xG(t) is the center of mass (barycenter)
of x for the measure dµt (x), v(Gt ) and γ (Gt ) are, respectively, the centers
of mass (barycenters) of the velocity and acceleration functions U (x, t) and
γ (x, t) for the same measure dµt (x).

Conservation of mass in Lagrangian variables

We now write the equation of conservation of mass for the Lagrangian de-
scription of the motion of the system. We have

ρ(x, t) = ρ[�(a, t), t] = σ (a, t),

σ denoting the volumic mass density in Lagrangian variables. Furthermore,
if �′t ⊂ �t , ∫

�′t
ρ(x, t) dx =

∫
�′t0

σ (a, t)J (a, t) da,

where J = det ∇a�. Because

d

dt

∫
�′t0

σ (a, t)J (a, t) da = 0, ∀ �′t0 ⊂ �t0,
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it follows that

σ (a, t)J (a, t) = Const. = σ (a, 0),

which expresses the conservation of mass in Lagrangian variables. When the
fluid is homogeneous and incompressible (see Remark 2.3), we then find

J (a, t) ≡ 1.

We observe that this condition is less convenient than the divergence-free
condition derived in Eulerian variables and is seldom used; the same remark
applies to the conservation of mass equation in the compressible case.

Kinetic energy of a system with respect to a frame of reference

We consider a material system S that fills the domain �t at time t. The kinetic
energy of the system at time t is given by1

Ec = 1

2

∫
�t

|U (x, t)|2 dµt (x),

where U denotes the velocity field in the corresponding frame of reference.

Linear and angular momentum and the corresponding
HVF (Helicoidal Vector Field)

We now introduce two important HVFs associated with a material system,
the momentum HVF and the quantities of acceleration HVF.

Given a material system S in motion, we define, at each instant of time t ,
the momentum HVF: its elements of reduction at the origin O of the frame
of reference are

• The linear momentum of the system: R = ∫
�t
U (x, t) dµt (x),

• The angular momentum at 0 of the system: σ (0) = ∫
�t

x ∧ U (x, t)
dµt (x).

The resulting or angular momentum at a point z is then given by

σ (z) = σ (0)+ R ∧ z,

where R = mv(Gt ) is the linear momentum; {σ (z)}z is the momentum HVF
of the system and

σ (z) =
∫
�t

(x − z) ∧U (x, t)dµt (x). (2.5)

1 Here and in other places, |U | denotes the Euclidian norm of the vector U .
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Quantities of acceleration and the corresponding HVF

Similarly, we define the quantities of acceleration HVF of a material system
S, at time t, as the HVF whose elements of reduction at 0 are

• The dynamical resultant of the system: R′ = ∫
�t

γ (x, t) dµt (x),
• The dynamical momentum at 0: δ(0) = ∫

�t
x ∧ γ (x, t) dµt (x).

The dynamical momentum at a point z is then given by

δ(z) = δ(0)+ R′ ∧ z =
∫
rt

(x − z) ∧ γ (x, t) dµt (x),

where R′ = mγ (Gt ) is the dynamical resultant; {δ(z)}z is the quantities of
acceleration HVF of the system at time t .

Remark 2.5: Consider two disjoint systems S and S′; then, the momentum
and quantities of acceleration HVFs for the system S ∪ S′ are the sum of the
momentum and quantities of acceleration HVFs of S and S′, respectively (this
result is an immediate consequence of the additive property of the integrals
with respect to the domain).

Proposition 2.3. In a given frame of reference, the quantities of acceleration
HVF of a system is equal to the time derivative of its momentum HVF.

Proof: It follows from Proposition 2.2 that R′ = (dR/dt). Hence, it suffices
to check that δ(0) = (dσ (0)/dt). Indeed, using the conservation of mass and
the Lagrangian variables, we have

δ(0) =
∫
�t

x ∧ γ (x, t) dµt (x) =
∫
�0

�(a, t) ∧ ∂2

∂t2
�(a, t) dµ0(a)

= d

dt

∫
�0

�(a, t) ∧ ∂�

∂t
(a, t) dµ0(a) = d

dt

∫
�t

x ∧U (x, t) dµt (x)

= d

dt
σ (0).

2.2. Forces

We are given two disjoint material systems S and S′ in motion; concerning the
actions (or forces) exerted by S′ on S, we make the following assumptions:

At each time t, the actions or forces exerted by S′ on S are represented
by a vector measure dϕt (x) (or, equivalently, by three scalar measures)
carried by �t .
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As in the case of the mass, we consider in practice four types of measures:

• Measures that are regular with respect to dx . In that case,

dϕt (x) = f (x, t) dx, x ∈ �t ,

where f = ( f1, f2, f3). We then say that f is the volumic density of the
forces exerted (by S′ on S at time t).

• Measures that are carried by a surface �t and regular with respect to the
surface measure d�t ;

• Measures that are carried by a curve �t and regular with respect to the
arc-length measure d�t ;

• Measures concentrated at a point that occur in the case of point forces.

In this study, we will consider all four cases that may occur in tridimen-
sional continuum media.

As for the mass, the reader who is not familiar with measure’s theory will
be able to consider dϕt (x) as a convenient notation for one of these force
fields or combinations of such force fields.

The forces that we encounter in mechanics are of various types: gravity,
electromagnetism, contact forces (i.e., forces resulting from the contact of
two bodies and concentrated on the surface of contact), and so forth.

The corresponding HVF

There is a natural way to associate an HVF with the forces exerted by S′ on
S; this is the HVF whose reduction elements at point 0 are

∫
�t
dϕt (x) and∫

�t
x∧ dϕt (x).The reduction elements at any other point z are then

∫
�t
dϕt (x)

and
∫
�t

(x − z) ∧ dϕt (x). We say that
∫
�t
dϕt (x) is the resultant (or linear

resultant) of the forces exerted by S′ on S, and
∫
�t

(x − z) ∧ dϕt (x) is their
resulting momentum at z.

Remark 2.6 (Additivity Assumption): Let S1, S2, and S be three disjoint ma-
terial systems in motion. We make the natural assumption that the measure
associated with the forces exerted by S1 ∪ S2 on S is the sum of the mea-
sures associated with the forces exerted by S1 and S2 on S. Similarly, we
assume that the measure associated with the forces exerted by S on S1 ∪ S2

is the sum of the measures associated with the forces exerted by S on S1 and
by S on S2.

A consequence of Remark 2.6 is that the HVF for the forces exerted by
S1 ∪ S2 on S is the sum of the HVF for the forces exerted by S1 on S and
of the HVF for the forces exerted by S2 on S. Similarly, the HVF for the
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forces exerted by S on S1 ∪ S2 is the sum of the HVF for the forces exerted
by S on S1 and of the HVF for the forces exerted by S on S2 (this result
is a mere consequence of the additivity of the integrals with respect to the
domains).

Remark 2.7: In the case of a material point occupying the position Mt at time
t , the momentum at Mt of the helicoidal vector field of the external forces
applied to this point obviously vanishes. Thus, the corresponding HVF is fully
characterized by its general resultant F = Ft and its momentum equal to 0
at Mt .

2.3. The fundamental law of dynamics and its first consequences

We define the external forces of a material system S as the forces exerted by
the whole universe (the complement of S) on S.

The fundamental law of dynamics. There exists at least one frame of ref-
erence R, called Galilean, such that at each time t and for every material
system S, the two helicoidal vector fields associated with the quantities of
acceleration of S, and with the external forces of S, are equal.

In other words, for any system S, at every time t, and in a Galilean frame
of reference, we have, keeping the notation above∫

�t

γ (x, t) dµt (x) = d

dt

∫
�t

U (x, t) dµt (x) =
∫
�t

dϕt (x), (2.6)∫
�t

x ∧ γ (x, t) dµt (x) = d

dt

∫
�t

x ∧U (x, t) dµt (x) =
∫
�t

x ∧ dϕt (x).

(2.7)

For Eqs. (2.6) and (2.7) we have also used the fact that the HVF of quantities
of acceleration is the time derivative of the momentum HVF, 0 being fixed in
the Galilean frame of reference.

The fundamental equations (2.6) and (2.7) are also called the Laws or
Theorems of Conservation of Linear Momentum and of Conservation
of Angular Momentum. Theorem 2.1 below is a rephrasing of the law of
conservation of linear momentum.

Remark 2.8: The fundamental law is no longer true when the frame of re-
ference is not Galilean. Non-Galilean frames of reference are not much used
in continuum mechanics but are often considered in celestial mechanics, in
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meteorology or oceanography, or for rigid body mechanics. In this case, it is
necessary to add to the external force HVFs some other suitable HVFs related
to the accelerations (see Section 2.5).

Several important results are deduced from the fundamental law of dynam-
ics:

Corollary 2.2 (Action and Reaction Principle). Let S1 and S2 be two dis-
joint material systems. Then, the HVF associated with the forces exerted by
S1 on S2 (denoted by [F12]) is opposed to the HVF corresponding to the forces
exerted by S2 on S1 (denoted by [F21]), that is to say

[F12] = − [F21] .

Proof: We set S = S1 ∪ S2. By Remark 2.6, the external forces exerted on
S1 consist on the one hand of the forces exerted by S2 on S1, whose heli-
coidal vector field is [F21] and, on the other hand, of the forces exerted by the
complement of S on S1, whose helicoidal vector field is denoted by [Fe1] .
Similarly, the external forces exerted on S2 consist of the forces exerted by
S1 on S2, with helicoidal vector field [F12] , and of the forces exerted by
the complementary of S on S2, whose helicoidal vector field is denoted
by [Fe2] .

Using the results derived in Section 2.2, we obtain, thanks to the funda-
mental law

[AS] = [Fe1]+ [Fe2] ,

where [A] denotes the quantities of acceleration helicoidal vector field. Sim-
ilarly [

AS1

] = [Fe1]+ [F21] ,[
AS2

] = [Fe2]+ [F12] .

Because [AS] = [AS1 ] + [AS2 ] (see Remark 2.5), we obtain, after summing
these two equations:

[F12]+ [F21] = 0.

Corollary 2.3 (The Fundamental Law of Statics). If a material system S
is at rest (in equilibrium) with respect to a Galilean frame of reference, then
the HVF corresponding to the external forces applied to S vanishes.

Remark 2.9: This last result is still valid when the motion of the system is
rectilinear and uniform with respect to a Galilean frame of reference.
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Remark 2.10: For a material point M, the fundamental law of dynamics
implies

mγ = F,

where γ is the acceleration of M and F the external force exerted on M
(see Remark 2.7). Because all momenta vanish at M, the fundamental law
of dynamics does not provide any further equation; that is, this equation is
equivalent to the fundamental law in the case of a material point.

Theorem 2.1 (Motion of the Center of Mass). The motion of the center of
mass of a material system S is the same as that of a material point whose
mass is the total mass of the system and that would be subjected to a force
equal to the resultant of the external forces exerted on S.

Proof: We set m = ∫
�t
dµt (x). Then, according to Eq. (2.4)

mγ (Gt ) =
∫
�t

γ (x, t) dµt (x),

= The dynamical resultant of S,

= The resultant of the external forces on S,

owing to the fundamental law of dynamics.

A consequence of this theorem is the following corollary, which is impor-
tant for the characterization of Galilean systems:

Corollary 2.4. In a Galilean system, the motion of the center of mass of an
isolated system is rectilinear and uniform.

This corollary will be used in Section 2.5 for the description of some
Galilean systems. An isolated system is a system S on which no external
forces are applied.

2.4. Application to systems of material points and to rigid bodies

Systems of material points

We are given a set of material points Mi , i = 1, . . . , n (such a situation
occurs for instance in the study of electromagnetic forces or for the motion
of planets). The fundamental law applied to Mi reads

mi γi = Fi +
∑
k �=i

Fki , (2.8)
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where Fi denotes the external force on Mi , and Fki is the force exerted by Mk

on Mi . The fundamental law applied to Mj and to Mi ∪ Mj gives

miγi = Fi +
∑
k �=i

Fki , m jγ j = Fj +
∑
k �= j

Fk j ,

miγi + m jγ j = Fi + Fj +
∑

k �=i,k �= j

Fki +
∑

k �=i,k �= j

Fk j .

Comparing these relations, we see that

Fji + Fi j = 0. (2.9)

Similarly, concerning the resulting momentum at a point O, we have

OMi ∧ Fji + OMj ∧ Fi j = 0, (2.10)

which yields, thanks to Eq. (2.8), that Fi j is necessarily parallel to MiMj :

MiMj ∧ Fi j = 0. (2.11)

Equation (2.9) is proved exactly as is Eq. (2.8) by applying the fundamental
law to Mi , Mj and Mi ∪ Mj . This gives, for the resulting momentum at O,

OMi ∧ miγi = OMi ∧ Fi + OMi ∧
∑
k �=i

Fki ,

OMj ∧ m jγ j = OMj ∧ Fj + OMj ∧
∑
k �= j

Fk j ,

OMi ∧ miγi + OMj ∧ m jγ j = OMi ∧ Fi +
∑

k �=i,k �= j

OMi ∧ Fki

+OMj ∧ Fj +
∑

k �=i,k �= j

OMj ∧ Fkj ;

Equation (2.9) follows by comparison of these three relations. Of course
Eqs. (2.8) and (2.9) follow as well from the principle of action and reaction.

Analytical expression of the fundamental law

In the case of a single material point M , Eq. (2.7) reads

mγ = F. (2.12)

Assuming, for instance, that F is a function of x, ẋ = dx/dt, and t,
F = F(x, ẋ, t), we obtain

m
d2

dt2
x(t) = F(x(t), ẋ(t), t), (2.13)

which is equivalent to a system of three ordinary differential equations for the
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three components of x(t) = OM(t). A classical problem in mechanics is the
following: given the position and velocity of the point M at time 0 (that is to
say x(0) and ẋ(0)), determine the subsequent motion of the point M, that is to
say determine x(t) for t > 0. When the function F is smooth enough (which
we always assume), the existence and uniqueness of solutions for Eq. (2.12)
for given x(0) and ẋ(0) result from classical theorems on ordinary differential
equations (solution of the Cauchy problem).

Similarly, for two material points M1 and M2 (and we could actually ge-
neralize to several material points), if we assume that the forces F1, F2, and
F12 are, respectively, functions of x1, ẋ1, and t, of x2, ẋ2, and t, of x1, x2, ẋ1,

ẋ2, and t, then Eq. (2.7) is equivalent to{
m1 ẍ1 = F1(x1, ẋ1, t)− F12(x1, ẋ1, x2, ẋ2, t),

m2 ẍ2 = F2(x2, ẋ2, t)+ F12(x1, ẋ1, x2, ẋ2, t).
(2.14)

Here, xi (t) = OMi (t), i = 1, 2.Similarly, given x1(0), ẋ1(0), x2(0), and ẋ2(0),
and if the functions F1, F2, and F12 are sufficiently smooth, the existence and
uniqueness of solutions for Eq. (2.13) result from the classical theorems for
the Cauchy problem for differential systems.

In conclusion, for a finite number of material points, and under reason-
able assumptions on the forces, the fundamental law allows us to show that
the motion of such systems is entirely determined by the knowledge of the
external and internal forces, the initial position of the system, and the initial
velocity distribution. It is the ultimate purpose of the following chapters to
prove similar results for continuous systems, but this problem is much more
complicated for continuum media and is far beyond the scope of this book. In
particular, the ordinary differential equations (ODEs) must then be replaced
by partial differential equations (PDEs). The PDEs are generally considerably
more difficult to study and solve than ODEs, and some of the PDEs that ap-
pear subsequently still lead to many open mathematical problems (see some
remarks on the PDEs of mechanics in the Appendix to this book).

Rigid bodies

We now move to the case of a rigid body S whose center of mass or center
of inertia is denoted by G. A first consequence of the fundamental law is the
following theorem.

Theorem 2.2 (Angular Momentum Theorem). Let � be an axis fixed in
the Galilean frame of reference R. Then,

dσ�
dt

= δ� = m�,
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where σ� = σ (A) · k is the angular momentum with respect to � and m� =
mA ·k,mA being the momentum of the external forces at any point A, A ∈ �,
and k is the unit vector of�; σ (A) denotes, as before, the angular momentum
at A.

Proof: We saw (Proposition 2.3) that

mO = d

dt
σ (O) = d

dt

∫
�t

x ∧U (x, t) dµt .

Similarly, at the point A (OA = xA):

mA = d

dt

∫
�t

(x − xA) ∧U (x, t) dµt (x);

hence,

m� = m(A) · k = d

dt

∫
�t

[(x − xA),U (x, t), k] dµt (x),

and the result follows.

The motion of a rigid body is described by six parameters, and it is govern-
ed by six scalar equations corresponding to the theorem of center of inertia
motion and to the angular momentum theorem projected on three noncoplanar
axes.

Inertia tensor at a point A

Let S be a rigid body, and let A be a fixed point of S. Then, the angular
momentum at A reads

σA =
∫
�t

(x − xA) ∧U (x, t) dµt (x),

(OA = xA) and, because S is a rigid body,

U (x, t) = U (xA, t)+ ω ∧ (x − xA),

for some ω ∈ R
3. Consequently,

σA =
∫
�t

(x − xA) ∧U (xA, t) dµt (x)

+
∫
�t

(x − xA) ∧ [ω ∧ (x − xA)] dµt (x)

= mAG ∧U (xA, t)+
∫
�t

(x − xA) ∧ [ω ∧ (x − xA)] dµt (x).
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The mapping

JA : ω �→
∫
�t

(x − xA) ∧ [ω ∧ (x − xA)] dµt (x) (2.15)

is a linear operator called the inertia tensor of S at the point A (this notion is
independent of the choice of the frame of reference).

If S is an homogeneous body, that is, if the mass measure dµt is propor-
tional to the volume, dµt (x) = ρdx , where ρ is constant, and if O ≡ A is
fixed in S = �0, then

J0(u) · v = ρ

∫
�0

[x ∧ (u ∧ x)] · v dx

= ρ

∫
�0

[|x |2u − (x · u)x] · v dx

= ρ

∫
�0

[|x |2(u · v)− (x · u)(x · v)] dx

= J0(v) · u. (2.16)

Thus, (u, v) �→ J0(u) · v is a bilinear symmetric form. Furthermore, J0 is
entirely defined by the quantities

(J0)i j = J0(ei ) · e j ,

(e1, e2, e3) being the canonical basis of R
3. If follows immediately that

(J0)i i = ρ

∫
�0

(|x |2 − x2
i

)
dx,

(J0)i j = −ρ
∫
�0

xi x jdx, i �= j.

In particular, if G is the center of mass of S and � is an axis containing
G, with unit vector k,

σG = JG(ω), σ� = JG(ω) · k.

2.5. Galilean frames: the fundamental law of dynamics
expressed in a non-Galilean frame

We start with the following remark pertaining just to kinematics:
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Comparison of velocities and accelerations in two
different frames

We consider two different frames of reference R f and Rm with the same
chronologies; we want to compare the velocities and accelerations with respect
to R f and Rm of a moving point M = M(t).

The two frames of reference play a somehow symmetric role, but for the
sake of convenience, we will say that R f is the fixed frame and Rm is the
moving one. The velocities and accelerations of M with respect to R f and
Rm will be called, respectively, absolute and relative and will be denoted by
U f , γ f , Um, γm .

We are thus given the frame R f with origin O f and basis ei , i = 1, 2, 3,
and the frame Rm with origin Om and basis fi = fi (t), i = 1, 2, 3; these
bases are connected by the relations

fi (t) = ai j (t)e j ,

where the Einstein convention of summation of repeated indices is understood
throughout. The position of M = M(t) is determined in the frame Rm by the
vector

OmM(t) = xi (t) fi (t).

The velocity of M with respect to R f is given by the relation

U f = dO f M(t)

dt
= U f (Om)+ ẋ i (t) fi (t)+ xi (t) ḟ i (t),

where U f (Om) = (dO f Om)/(dt) is the absolute velocity of Om and where u̇
denotes the derivative of u with respect to t. We can rewrite this relation in
the form

U f = Um +Ue, (2.17)

whereUm = ẋ i (t) fi (t) is the relative velocity of M inRm andUe = U f (Om)+
xi (t) ḟ i (t). It is easy to verify that Ue is the velocity in R f of the point, fixed
in Rm, which coincides with M at time t ; it is called the transport velocity of
M (in the motion of Rm with respect to R f ). Similarly, the acceleration of
M in R f is given by

γ f = d2O f M

dt2
= γ f (Om)+ ẍi (t) fi (t)+ 2ẋ i (t) ḟ i (t)+ xi (t) f̈ i (t),

γ f (Om) = (d2O f Om)/(dt2) being the absolute acceleration of Om ; we rewrite
this last relation as

γ f = γm + γc + γe, (2.18)
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where γm = ẍi (t) fi (t) is the relative acceleration of M in Rm, γc =
2ẋ i (t) ḟ i (t) is called the Coriolis acceleration, and γe = γ f (Om)+ xi (t) f̈ i (t)
is called the transport acceleration of M (in the motion of Rm with respect to
R f ). This is the acceleration in R f of the point, fixed in Rm, which coincides
with M at time t.

If {U (x0), ω} is the HVF corresponding to the velocity field of Rm in its
motion with respect to R f , we have

ḟ i = ω ∧ fi ,

and

f̈ i = ω̇ ∧ fi + ω ∧ (ω ∧ fi ).

Hence,

γc = 2ω ∧Um,

γe = γ f (Om)+ ω̇ ∧ OmM + ω ∧ (ω ∧ OmM). (2.19)

Among other cases of interest, let us mention the case in which Rm is
moving in a uniform translation with respect to R f , in which case γ f = γm .

The fundamental law in a non-Galilean frame

Let us call this frame of reference Rm and let us assume that R f is Galilean.
We can write the fundamental law in Rm, the acceleration being the relative
accelerations in Rm, provided that we add to the external forces the forces
corresponding to the opposite of the accelerations γc and γe, namely the forces
defined by the measures −γcdµt and −γedµt . Then:

The HVF corresponding to the accelerations of a system in a non-
Galilean frame is the sum of the HVFs corresponding to the external
forces of the system and to the inertial forces corresponding to the
Coriolis acceleration and the frozen point acceleration.

Galilean frames

We use Corollary 2.4 to determine Galilean frames of reference. Furthermore,
we infer from the previous discussion that if a frame of reference is Galilean,
then every other frame moving in a rectilinear uniform translation with re-
spect to it is Galilean as well because the accelerations γc and γe vanish (by
Eq. (2.18)).
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On the basis of Corollary 2.4, here are examples of frames that can be
considered as Galilean, depending on the problems under consideration, up
to an acceptable level of approximation.

If we assume that the forces exerted by the stars on the solar system are
negligible, then the solar system is isolated, and a frame centered at the center
of mass of the solar system, whose axes have fixed directions with respect
to the solar system, is Galilean; such Galilean frames are used in celestial
mechanics. Similarly, if we assume that the forces exerted by the stars and the
planets on the earth are negligible, then a frame whose center is the center of the
earth and whose directions are fixed with respect to the stars is Galilean at this
level of precision; such Galilean frames are used, for instance, in meteorology
and oceanography. Finally, for engineering problems of mechanics on earth
(e.g., motion of a vehicle or of a robot), we assume that the forces due to
the rotation of the earth (see Chapter 12, Section 12.1) and the forces exerted
by the stars and the planets are negligible; therefore, a frame connected to
the earth (fixed with respect to the earth) is considered as Galilean for such
problems.

Exercises

1. Determine the motion of a material point of mass m under the action of
gravitation, knowing its initial position and velocity.

2. Compute the center of mass of a half-disc D of radius R.
3. Study the motion of a material point of mass m which moves, without

friction, on a vertical circle of radius R. The position of the material point
will be determined by the angle θ made by the corresponding radius with
the vertical.

4. We consider a body� submitted to forces with surface density−ρ�nd�, on
its boundary ∂�, where �n is the unit outer normal vector and ρ = ρ(x3) is
a linear function of x3, x = (x1, x2, x3). Compute the HVF corresponding
to these forces.



CHAPTER THREE

The Cauchy stress tensor and the
Piola-Kirchhoff tensor. Applications

This chapter is central to continuum mechanics. Our aim is to model and
study the cohesion forces (or internal forces) of a system, that is to say the
actions exerted by part of a system S on another part of S. Our study leads to
the definition of the Cauchy stress tensor and to the equations of statics and
dynamics that then follow by application of the fundamental law of dynamics.

The Cauchy stress tensor is expressed in the Eulerian variable; its analogue
in the Lagrangian variable is the Piola-Kirchhoff tensor introduced in the last
section of this chapter.

3.1. Hypotheses on the cohesion forces

We are given a material system S. Let S = S1 ∪ S2 be a partition of S, �1

and �2 being the domains occupied by S1 and S2 at a given time. In Sections
3.1 and 3.2, the time will be fixed and will not appear explicitly. We assume
that the common boundary � of �1 and �2 (see Figure 3.1) is sufficiently
regular.

Concerning the actions exerted by S2 on S1, we make the following as-
sumptions introduced by Cauchy:

(H1) The forces exerted by S2 on S1 are contact forces, which means that
they can be represented by a vector measure dϕ concentrated on
� = ∂�1 ∩ ∂�2.

(H2) The measure dϕ is absolutely continuous with respect to the surface
measure d�, that is,

dϕ = Td�,

where T is the (vector) surface density of the forces.

42
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Figure 3.1 The domain �.

Figure 3.2 T depends only on n.

(H3) The function T depends only on the point x of � and on the unit
normal n to � at point x:

T = T (x, n).

Thus, under the conditions of Figure 3.2 corresponding to two par-
titions of S, S1 ∪ S2 and S′1 ∪ S′2, T (x0, n) is the same at the point x0

for both partitions.
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Figure 3.3 Action and reaction.

Considering general partitions, we see that the function T is
defined for every x ∈ � and every n ∈ R

3 such that |n| = 1.
We then make the following minimal regularity assumption:

(H4) For fixed n, the function x �→ T (x, n) is continuous.
A first consequence of the fundamental law (and more precisely

of the action and reaction principle) is the following:

Proposition 3.1. For every x ∈ � and for every n ∈ R
3, |n| = 1, we have

the following:

T (x, n) = −T (x,−n).

Proof: Let x ∈ � and n ∈ R
3 satisfy |n| = 1. We consider two systems S1

and S2 contained in S and separated by a plane � perpendicular to n (see
Figure 3.3).
Then, according to the action–reaction principle,[Fi j] denoting as in Chapter 2
the helicoidal vector field for the actions exerted by Si (�i ) on Sj (� j ), we
have

[F12]+ [F21] = 0.

Consequently (hypotheses (H1) and (H2)), if D = ∂�1 ∩ ∂�2,∫
D
T (x, n) d� +

∫
D
T (x,−n) d� = 0.
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We thus deduce that∫
D

[T (x, n)+ T (x,−n)] d� = 0, ∀ D ⊂ �,

which yields

T (x, n)+ T (x,−n) = 0, ∀ x ∈ �.

Definition 3.1. The vector T (x, n) is called the stress vector at x for the
direction n. Furthermore, Tn(x, n) = T (x, n) · n is the normal stress at x for
the direction n and Tt (x, n) = T (x, n)− nTn(x, n) is the tangential stress or
shear stress at x for the direction n.
We say that the material is subjected to a tension when Tn > 0 and to a
compression when Tn < 0.

Remark 3.1: An immediate consequence of Proposition 3.1 is that

T (x,−n) · (−n) = T (x, n) · n,

∀ x ∈ �, ∀ n ∈ R
3, |n| = 1. Thus, Tn(x, n) only depends on the direction

of n.

3.2. The Cauchy stress tensor

To study T (x, n), x ∈ �, n = (n1, n2, n3), |n| = 1, we assume for simplicity
that x = 0 is the origin of the orthonormal system of coordinates. Let e1, e2,
and e3 be the unit vectors on 0x1, 0x2, and 0x3, respectively. We set

T (0, ei ) = σ j i e j .

Thus, at every point x (x = 0 here), we define a matrix whose entries are
σi j (x).

We then consider the domain S1 consisting of a tetrahedron with summit
0 and with bases A1, A2, A3 (see Figure 3.4), A1A2A3 being perpendicular
to n. If h > 0 is the distance from 0 to the plane A1A2A3, the equation of the
plane reads

n1x1 + n2x2 + n3x3 = h.

The tetrahedron A1A2A3 is chosen so that ni > 0, i = 1, 2, 3.
Let dϕ be the measure associated with the external forces on S, and let γ

be the acceleration in a Galilean frame and dµ the mass distribution of S1.
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Figure 3.4 The system S1.

The fundamental law of dynamics applied to the system S1 reads∫
�1

γ (x) dµ(x) =
∫
�1

dϕ(x)+ R,

where�1 is the domain filled by S1, and R is the resultant of the forces exerted
by S2 = S\S1 on S1. Thus, according to Cauchy’s hypotheses:

R =
∫

0A2A3

T (x,−e1) dx2 dx3 +
∫

0A1A2

T (x,−e3) dx1 dx2

+
∫

0A1A3

T (x,−e2) dx1 dx3 +
∫
A1A2A3

T (x, n) d�.

We have ∫
0A2A3

T (x,−e1) dx2 dx3 = −
∫

0A2A3

T (x, e1) dx2 dx3,

and, because the functions x �→ σi j (x) are continuous,

T (x, e1) = σ j1(x)e j = [σ j1(0)+ o(1)]e j ,

where o(1) tends to 0 as h tends to 0. Therefore,∫
0A2A3

T (x, e1) dx2 dx3 = area(0A2A3) [σ j1(0)e j + o(1)].
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Because area(0A2A3) = n1 · area(A1A2A3), where n1 is the cosine of the
angle of the normals n and e1 to the triangles A1A2A3 and 0A2A3, it follows
that

1

area(A1A2A3)

∫
0A2A3

T (x, e1) dx2 dx3 = n1[σ j1(0)e j + o(1)].

We proceed similarly for the faces 0A1A3 and 0A1A2 of the tetrahedron
�1 = �1(h) and then, for A1A2A3,∫

A1A2A3

T (x, n) d� = area(A1A2A3)[T (0, n)+ o(1)].

On the whole,

R = R(h) = area(A1A2A3)[T (0, n)− niσ j i (0)e j + o(1)]

= O(h2)[T (0, n)− niσ j i (0)e j + o(1)].

On the other hand, all the functions being regular,∫
�1(h)

γ (x) dµ(x)−
∫
�1(h)

dϕ(x) =
∫
�1(h)

[γ (x)ρ(x)− f (x)] dx

= [γ (0)ρ(0)− f (0)]O(h3),

For h → 0, there remains, after dividing by h2,

T (0, n) = σ j i (0)nie j . (3.1)

This relation, valid for every vector n when |n| = 1 and when the ni are> 0
can be easily generalized to the case where the ni have arbitrary signs. This
formula then suggests to define a linear operator σ (= σ (x) or σ (x, t) to be
more precise):

σ : n = (n1, n2, n3) �→ σ · n = σ j i ni e j .

The fact that this definition is intrinsic (independent of the given frame
e1, e2, e3) is assumed and we will not prove it here (we recall that σ j i =
T (0, ei ) · e j ). We then obtain

T (x, n) = σi j (x)n jei , for every x , and for every n. (3.2)

A consequence of Eq. (3.2) is the following result.

Theorem 3.1. The stress vector at x for the direction n is a linear function
of the components of n.
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We thus have a linear operator defined even when n is not a unit vector:

n→ T (x, n) =
3∑

i, j=1

σ j i (x)nie j

=
3∑

i, j=1

[T (x, ei ) · e j ]e jni ,

where n = ∑3
i=1 niei . This operator is called the Cauchy stress tensor at x

of the continuum and is denoted by σ (x) or, reintroducing time, by σ (x, t).
As usual, we assume that the stress tensor σ = σ (x, t) is a regular function

of class at least C1 of x and t .

Remark 3.2: Just as we assumed the intrinsic nature of the definition of σ
(independence with respect to the orthogonal frame), we will not discuss the
invariance of σ under a change of frame in relation with the invariance of
forces (change of Galilean frame in particular). This is very important for the
next section, but we refer the reader to more specialized books for this point.

3.3. General equations of motion

We reintroduce the time variable σ = σ (x, t). Our aim in this section and the
next is to write the fundamental law of dynamics using the stress tensor. In
this section we write the linear momentum equations; in Section 3.4 we will
write the angular momentum equations. We have

Theorem 3.2. Given a body whose mass density is ρ(x, t) and that is sub-
jected to external forces with volumetric density f (x, t), we have

ρ γi = fi + σi j, j , (3.3)

where

σi j, j = σi j, j (x, t) =
3∑
j=1

∂σi j (x, t)

∂x j
, i = 1, 2, 3, x ∈ �t , t ∈ I.

Proof: Consider S′ ⊂ S filling the volume �′t at time t , �̄′t ⊂�t , and let
�′t = ∂�′t . The external forces on S′ are the volume forces defined by the
measure f dx and the contact forces exerted by S\S′ on S′ and defined by
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the measure T d� concentrated on �′t (according to the hypotheses in Section
3.2). Hence, by the fundamental law, with Ti = σi j · n j ,∫

�′t
ρ(x, t)γi (x, t) dx =

∫
∂�′t

Ti (x, n) d� +
∫
�′t

fi (x, t) dx

=
∫
∂�′t

σi j (x) · n j d� +
∫
�′t

fi (x, t) dx

= (using the Stokes formula)

=
∫
�′t

σi j, j (x) dx +
∫
�′t

fi (x, t) dx .

Finally, ∫
�′t

(ρ(x, t)γi (x, t)− σi j, j (x, t)− fi (x, t)) dx = 0,

∀ �′t ⊂ �t , and thus the integrand vanishes.
We saw that in Eulerian coordinates

γi = ∂Ui

∂t
+

3∑
j=1

Uj
∂Ui

∂x j
.

We deduce from the preceding relations the following fundamental equations
of continuum mechanics:

ρ

(
∂Ui

∂t
+

3∑
j=1

Uj
∂Ui

∂x j

)
= σi j, j + fi ,

i = 1, 2, 3.

(3.4)

Equilibrium equations

When the system is in equilibrium, U = 0 and Eqs. (3.4) reduce to

σi j, j (x)+ fi (x) = 0, in �, i = 1, 2, 3. (3.5)

Remark 3.2 (Continuity of the Stress Vector and Boundary Conditions): As
we will see (in Chapter 5), the stress tensor is not necessarily continuous
at the boundary between two media. However, the stress vector T (x, n) is
continuous provided we assume that the accelerations and forces remain
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Figure 3.5 The domain �δ .

bounded at the boundary between two continua (which is true except in
the case of shock waves). To prove this continuity of T (x, n), we apply the
fundamental law of dynamics to the domain �δ (shown in Figure 3.5), and
we let δ tend to 0. We omit the details.

In continuum mechanics, the continuity of T (x, n) yields interesting
boundary conditions. For instance, if S is subjected to a surface density of
forces F on its boundary �t , then

F(x) = T (x, n) = σ (x) · n(x), on �t = ∂�t .

3.4. Symmetry of the stress tensor

In Section 3.3, we have used the linear momentum equations resulting from
the fundamental law of dynamics to establish Theorem 3.2. We now use the
angular momentum equations, which lead to the following result.

Theorem 3.3. The stress tensor σ is symmetric, σi j = σ j i , ∀ i, j .
Proof: We consider an arbitrary domain �′ ⊂ � and write the equality of
the angular momentum resulting from the fundamental law as follows:∫

�′
x ∧ (ργ − f ) dx =

∫
∂�′

x ∧ T (x, n) d�

=
∫
∂�′

x ∧ [σ (x) · n] d�.

We assume here that the external forces are volume forces defined by the
measure f dx .
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We write the first component of the previous equation as follows:∫
�′

[x2(ργ3 − f3)− x3(ργ2 − f2)] dx

=
∫
∂�′

(x2σ3 j n j − x3σ2 j n j ) d�

=
∫
�′

∂

∂x j
(x2σ3 j − x3σ2 j ) dx

=
∫
�′

(δ2 jσ3 j + x2σ3 j, j − δ3 jσ2 j − x3σ2 j, j ) dx,

where δi j denotes the Kroenecker symbol equal to 1 if i = j and to 0 if i �= j .
Consequently,∫

�′
[σ32 − σ23 + x2(σ3 j, j − ργ3 + f3)− x3(σ2 j, j − ργ2 + f2)] dx = 0.

Thus, ∫
�′

(σ32 − σ23) dx = 0, ∀ �′ ⊂ �,

and

σ32 = σ23.

If the last two components are considered similarly, it follows that

σ13 = σ31, σ12 = σ21.

Consequences

1. For every n, n′, T (x, n) · n′ = T (x, n′) · n.
2. The two quadrics of equation σi jξiξ j =±1 are called the stress qua-

drics. We note that σi j (x)ξiξ j is not a positive definite quadratic form;
for instance, we already observed that Tn = (σ · n) · n can be either
positive or negative.

3. The eigenvectors of σ (x) are called the principal directions of stresses
at x . They consist of the vectors n such that T (x, n) is parallel to n,

σ (x) · n = λn.

In other words, n = n(x) is an eigenvector of σ (x). For such a direction,
the stress is purely normal. Owing to the symmetry of the tensor σ =
σ (x), there exist at every point x at least three principal directions
for the stresses that are mutually orthogonal (diagonalization of a real
symmetric matrix).
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4. The deviator of a tensor σ (in particular the stress tensor) is the tensor
σ D = σ − r I , where r is such that Tr σ D = 0; hence,

σ D = σ − 1

3
(Tr σ )I,

σ D
i j = σi j − 1

3
σkkδi j .

This equation’s spherical part σ S is the difference σ S = σ − σ D =
1
3σkk I .

Examples

We end this section by a few classical elementary examples of stress tensors.

1. A spherical stress tensor is a tensor σ proportional to identity, which
we write in the form

σ = −pI.

2. The uniaxial stress tensor in direction e1 at x is defined by

σ11 �= 0;

σi j = 0 otherwise.

3. The shear stress tensor in the two orthogonal directions 0x1 and 0x2 is
defined by

σ12 �= 0;

σi j = 0 otherwise.

3.5. The Piola-Kirchhoff tensor

We indicated in Remark 1.5 of Chapter 1 that the Eulerian representation is
more often used for fluids while the Lagrangian representation is more often
used for solids, although this is not an absolutely unbreakable rule.

Our aim is now to express the stress tensor, and equations (3.3) to (3.5),
in the Lagrangian variables. We consider a material system which occupies
the domain �0 at time t0 and the domain �t at time t , and we write, as in
Chapter 1,

x = �(a, t), aε�0, xε�t .
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Φ (. , t )
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Figure 3.6 Partition S = S1 ∪ S2 of system S at times 0 and t .

Anticipating a notation which will be re-introduced and used systematically
in Chapter 5, we call F the Jacobian matrix ∇a� = Dx/Da, which already
appeared in Chapter 1.

The Cauchy stress tensor σ = σ (x, t) was defined above in the Eulerian
variable x ; for the Lagrangian variable a, we can of course introduce the
tensor σ̄ ,

σ̄ (a, t) = σ (�(a, t), t), (3.6)

but σ̄ does not lead to a convenient form of equations (3.3) to (3.5).
The tensor � that we introduce, called the Piola-Kirchhoff tensor, corre-

sponds to the following concern: we come back to the situation depicted in
Figure 3.1, specifying the time t , and we introduce the pre-image by �(·, t),
which gives a similar geometry in �0 (see Figure 3.6); nt is the unit normal
vector on �t pointing from �1t towards �2t and n0 is the unit normal vector
on �0 pointing from �10 to �20. At time t , the resultant of the forces exerted
by S2 on S1 is: ∫

�t

σ (x, t) · nt (x, t) d�t (x). (3.7)

We look for a tensor (if it exists) � = �(a, t), defined at each time t , such
that, at time t , the cohesion forces exerted by S2 on S1 can be expressed in
the form ∫

�0

�(a, t) · n0(a, t) d�0(a), (3.8)

this expression being valid for every partition S = S1
⋃

S2 (and thus for every
closed regular surface �0 in the interior of �0).
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In order to answer this question, we need the following formula of change
of variable for integral (3.7), a formula which is assumed here and proved in
the appendix of Chapter 5:∫

�t

σ (x, t) · nt (x, t) d�t (x) =
∫
�0

σ (�(a, t), t) · (F−1)T

· n0(a, t)[det F(a, t)] d�0(a), (3.9)

where the dots denote products of operators (or products of matrices in a given
basis). We conclude from this that the following tensor answers the question
asked (the variables a and t are omitted and we use notation (3.6)):

� = (det F) σ̄ · (F−1)T . (3.10)

This is the Piola-Kirchhoff tensor. Since σ and σ̄ are symmetric tensors, we
see that � is not symmetric in general, but it satisfies

� · FT = F ·�T . (3.11)

We also introduce sometimes the second Piola-Kirchhoff tensor which is
symmetric

P = F−1 ·� = (det F)F−1 · σ · (F−1)T ;

� is then called the first Piola-Kirchhoff tensor.
Instead of expressing equations (3.3) to (3.5) in the variables a, t , via the

change of variable x = �(a, t) (and by using the tensor �), we write directly
the fundamental law for S1, ∀S1 ⊂ S, assuming, as in Section 3, the existence
of forces with volumic density f = f (x, t) on S. Then, for the resultants, we
have∫

�1t

ρ(x, t)γ (x, t) dx =
∫
�1t

f (x, t) dx +
∫
�t

σ (x, t) · nt (x, t) d�t (x).

We have γ = ∂2�/∂t2 and set

ρa(a, t) = ρ(�(a, t), t) det F(a, t),

fa(a, t) = f (�(a, t), t) det F(a, t).

The change of variable is elementary for the volume integrals and, for the
surface integral on �t , we use (3.9). It follows that∫

�10

ρa
∂2�

∂t2
da =

∫
�10

fada +
∫
�0

� · n0 d�0,∫
�10

ρa
∂2�

∂t2
da =

∫
�10

fada +
∫
�0

Diva� da,
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where Diva� is the vector whose i th component is
∑3

j=1 ∂�i j/∂a j . Hence
the analogue of (3.3) in Lagrangian variable (�10 ⊂ �0 being arbitrary):

ρa
∂2�

∂t2
= fa + Diva�, in �0. (3.12)

In statics, the analogue of (3.5) reads

fa + Diva� = 0, in �0. (3.13)

There is no need to write the analogue of (3.4), the acceleration being very
simple to express in the Lagrangian variables.

We could also write the fundamental law for S1 regarding the equality
of momentum, and we would find (3.11) again (an equation for which we
used the symmetry of σ , obtained itself in Section 4 thanks to the equality of
angular momentums); this is left as an exercise for the reader.

Equations (3.12) and (3.13) express the fundamental law in its more general
form for a continuum medium in the Lagrangian variables.

Exercises

1. We assume that the stress tensor of a continuum is given by

σi j = λ+ µδi j , λ �= 0, µ �= 0.

Compute the normal stresses and the principal directions.
2. Same question as above for

σ =
15 0 5

0 15 5
5 5 15


3. Show that the fundamental law of equilibrium for a continuum with stress

tensor σ can be written as∫
A
fext · θdx +

∫
∂A

(σn) · θd� = 0,

for every subdomain A ⊂ � and every vector field θ (M) = u + v ∧−→
0M, (u, v) ∈ (R3)2, fext being the external forces.

4. What relations must the componentsσi j of the tensorσ given in an arbitrary
basis satisfy for σ to be an uniaxial stress tensor?

5. We consider a mechanical body having the shape of a cylinder of axis
(0; �e3) and radius a, limited by the planes x3 = 0 and x3 = h. This body is
at equilibrium under the action of forces exerted on the bases S0(x3 = 0)
and S1(x3 = h) only.
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a) We assume that, at each point of the cylinder, the stress tensor is of the
form

σ
(1)
11 = σ

(1)
12 = σ

(1)
22 = 0, σ

(1)
13 = k(7x2

1 + x2
2 − c1a2),

σ
(1)
23 = 6kx1x2, σ

(1)
33 = c2k(h − x3)x1,

where k, c1 and c2 are constants.
• (i) Determine the dimension of k. Compute the constants c1 and c2.
• (ii) Describe the volume forces exerted on the cylinder.

b) We assume that, at each point of the cylinder, the stress tensor is of the
form

σ
(2)
11 = σ

(2)
12 = σ

(2)
22 = 0, σ (2)

13 = σ
(1)
13 + c3x2,

σ
(2)
23 = σ

(1)
23 + c4x1, σ

(2)
33 = σ

(1)
33 ,

where c3 and c4 are constants. Describe the volume forces exerted on
the cylinder.



CHAPTER FOUR

Real and virtual powers

Our aim is now to introduce the concepts of real power and virtual power
produced by forces and to present some applications. We first consider the
very simple cases of a material point and of a system of material points
(Section 4.1). We then study more complex situations (Section 4.2) before
finally defining and studying the power of internal forces for a continuum
medium in Section 4.3. This eventually leads to the virtual power theorem
and to the kinetic energy theorem.

From the standpoint of mechanics, this chapter does not present much new
material, but it gives very useful and different perspectives on the concepts
and notions already introduced.

4.1. Study of a system of material points

Before considering the case of a system of material points, we start by con-
sidering that of a single material point. All that we say for a point or even for
a system of points is simple and sometimes naive; it is, however, instructive.

The case of a material point
Definition 4.1. For a force F applied to a material point M, the (real) power
produced by F at time t and for the given frame of reference is the scalar
product F ·U (U being the velocity of M at time t in the considered frame of
reference).

If the frame of reference is Galilean, and if F denotes the total force applied
to M , and m is the mass of M , then, thanks to the fundamental law, we have

mγ ·U = F ·U ;

57
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that is to say,

d

dt

m|U |2
2

= F ·U. (4.1)

We thus deduce the following result, which is easy in this case:

Theorem 4.1 (The Kinetic Energy Theorem). In a Galilean frame of ref-
erence, the derivative with respect to time of the kinetic energy of a material
point M is, at each time, equal to the power developed by the resultant of the
forces applied to M.

Definition 4.2. Let V be a vector of R
3 called the virtual velocity of M. The

virtual power produced by the force F at time t and for this velocity V , is the
scalar product F · V .

We easily see that the relation mγ = F holds if and only if mγ · V =
F · V,∀ V ∈ R

3. Thus, the fundamental law of dynamics is equivalent to the
following principle:

In a Galilean frame of reference, the virtual power of the external forces
applied to a material point M is equal, at each time, to the virtual power of
the quantities of acceleration of M (which is defined in the same way as the
virtual power of a force).

The case of a system of n material points M1, . . . ,Mn

We are now given a system of n material points M1, . . . ,Mn . We saw that
all the information obtained by applying the fundamental law of dynamics to
this system is contained in the following equations:

miγi = Fi +
n∑
j=1

Fji ,

Fi j = −Fji , Fi j ∧ MiMj = 0,

with the convention: Fii = 0, i = 1, . . . , n.

Definition 4.3. Let S be a system consisting of n material points M1, . . . ,Mn

and let V1, . . . , Vn be n vectors of R
3 called the virtual velocities of

M1, . . . ,Mn. The virtual power of all the forces applied to the system S
for this virtual velocity field is the quantity

n∑
i=1

{
Fi · Vi +

n∑
j=1, j �=i

Fji · Vi

}(
=

n∑
i=1

miγi Vi

)
.
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Definition 4.4. We say that the virtual velocity field Vi , i = 1, . . . , n, rigidi-
fies the system S if and only if it is a helicoidal vector field (like the velocity
field of a rigid body).

Theorem 4.2 (Virtual Power Theorem for n Points). In a Galilean frame
of reference and for a rigidifying virtual velocity field, the virtual power of
the external forces applied to a system of n material points is, at each time,
equal to the virtual power of the quantities of acceleration.

We will now give the proof of the virtual power theorem and will then
make some important remarks.

Proof: We saw that
n∑

i=1

miγi · Vi =
n∑

i=1

Fi · Vi +
n∑

i=1

n∑
j=1, j �=i

Fji · Vi

=
n∑

i=1

Fi · Vi +
∑

1≤i< j≤n
(Fji · Vi + Fi j · Vj ).

From Fi j = −Fji , it follows that

Fji · Vi + Fi j · Vj = Fji · (Vi − Vj )

= Fji · (ω ∧ MiMj )

for some vector ω, because the virtual velocity field rigidifies the system.
Therefore,

Fji · Vi + Fi j · Vi = (MiMj ∧ Fji ) · ω
= 0,

which yields
n∑

i=1

miγi · Vi =
n∑

i=1

Fi · Vi ,

and the theorem is proven.

Remark 4.1:

1. In the case of n material points, as in the case of a single point, the virtual
power theorem is equivalent to the fundamental law of dynamics. We
can obtain this result in two ways. A first proof consists of applying the
virtual power theorem to each point Mi because this theorem applies
to every system of material points. We thus obtain that miγi · V =
Fi · V +

∑
j �=i Fji · V for every V and hence the fundamental law for
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the system of material points S. A second proof, which is less easy, but
has its own interest, consists of applying the virtual power theorem to
the system S. We know that

n∑
i=1

Fi · Vi =
n∑

i=1

miγi · Vi

for every virtual velocity field that rigidifies S. We first take Vi = V,∀ i ,
which gives

∑n
i=1 miγi =

∑n
i=1 Fi (theorem of the dynamical resultant

or conservation of linear momentum). Then, we take Vi = ω ∧ OMi ;
hence,

n∑
i=1

Fi · (ω ∧ OMi ) =
n∑

i=1

miγi · (ω ∧ OMi );

thus,

ω ·
n∑

i=1

OMi ∧ Fi = ω ·
n∑

i=1

OMi ∧ miγi ,

for every ω, which yields
n∑

i=1

OMi ∧ Fi =
n∑

i=1

OMi ∧ miγi ,

(conservation of angular momentum at O).
2. If the virtual velocity field does not rigidify S, we have

n∑
i=1

miγi · Vi = Pext + Pint, (4.2)

where

Pext =
n∑

i=1

Fi · Vi

is the virtual power of the external forces to S, and

Pint =
n∑

i=1

n∑
j=1, j �=i

Fji · Vi

is the virtual power of the internal forces to S.
3. The virtual power of the internal forces of a system of n material points

is an intrinsic expression independent of the frame of reference (this
remark is important, in particular, for thermodynamics). To explain this
result, we need the result derived in Chapter 2, Section 2.5 concerning
the comparison of velocities and accelerations for two distinct frames
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of reference. Furthermore, we need to describe and compare the virtual
velocity field with respect to two different frames of reference; we omit
the proof here. It is also important to note that, for a rigidifying virtual
velocity field, the virtual power of the internal forces vanishes (so far,
this has been proven only for a system of material points).

4.2. General material systems: rigidifying velocities

We consider in this section a material system S that fills the domain �t at
time t, t ∈ I .

Definition 4.5. The virtual velocity field of S at time t is a vector field defined
on �t : {V (x), x ∈ �t }.
Remark 4.2:

1. At this point, we make no regularity assumption on the field {V (x),
x ∈ �t }. In practice, we will always choose velocity fields that satisfy
certain regularity properties.

2. We easily see that the space of virtual velocity fields can be endowed
with a vector space structure.

Definition 4.6. The virtual velocity field {V (x), x ∈ �t } at time t is rigidi-
fying for S if it is a helicoidal vector field [V].

Remark 4.3: The space of the virtual velocities rigidifying S (at time t) can
be endowed with a vector subspace structure.

Definition 4.7. We consider two material systems S and S′. The actions
exerted by S′ on S are represented by a vector measure dϕt (x) concentrated
on �t , the domain filled by S at time t. We define the virtual power of the
forces exerted by S′ on S for the virtual velocity field {V (x), x ∈ �t } as the
quantity ∫

�t

V (x) dϕt (x).

We easily check that the virtual power is additive with respect to S and S′,
respectively (we assume that S ∩ S′ = ∅), and that it depends linearly on the
virtual velocity fields.

It is also easy to see that, if the virtual velocity field is rigidifying, then the
virtual power of the forces exerted by S′ on S is equal to the scalar product

[F ] · [V],
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where [F] is the helicoidal vector field associated with the forces exerted by
S′ on S, as defined in Chapter 2, Section 2.2.

Definition 4.8. The virtual power of the quantities of acceleration for the
virtual velocity field {V (x), x ∈ �t } is the quantity∫

�t

γ (x, t) · V (x) dµt (x).

Remark 4.4: When the virtual velocity field is rigidifying for S, the power
of the quantities of acceleration is equal to the scalar product of two heli-
coidal vector fields: that associated with the quantities of acceleration and
that associated with the virtual velocity field.

We then immediately obtain the following result.

Theorem 4.3 (Virtual Power Theorem). For a Galilean frame of reference,
for every material system S, at each time t and for every virtual velocity field
that rigidifies S, the virtual power of the external forces to S is equal to the
virtual power of the quantities of acceleration of S:

[A] · [V] = [Fe] · [V].

Remark 4.5: For a Galilean frame of reference, we easily show that the virtual
power theorem above is equivalent to the fundamental law. The proof of this
last point reduces to simple calculations on helicoidal vector fields.

Virtual velocity fields rigidifying a partition

The next level of complication is reached after the following definitions. We
consider a partition of a material system S into subsystems S1, . . . , SN , such
that Si �= ∅ for every i , Si ∩ Sj = ∅ if i �= j and

⋃N
i=1 Si = S.

Definition 4.9. A virtual velocity field {V (x), x ∈ �t } in which �t is the
domain filled by S at time t rigidifies the partition {Si }i=1,...,N of S if and only
if V|Si rigidifies Si , i = 1, . . . , N .

Let [Fi ] be the helicoidal vector field for the forces exerted by the comple-
ment of S on Si , let [F j i ] be the helicoidal vector field for the forces exerted by
Sj on Si , and letAi be the helicoidal vector field associated with the quantities
of acceleration of Si . Then, applying the virtual power theorem to Si , we find

[Ai ] ·
[
V (i)

] = [Fi ] ·
[
V (i)

]+ N∑
j=1, j �=i

[F j i ] ·
[
V (i)

]
,
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where [V (i)] is the helicoidal vector field associated with V|Si . Consequently,

P =
N∑
i=1

Pi =
N∑
i=1

[Fi ] ·
[
V (i)

]+ N∑
i=1

N∑
j=1, j �=i

[F j i ] ·
[
V (i)

]
= Pext + Pint.

We can then state the following result:

Theorem 4.4 (Virtual Power Theorem for a Rigidifying Partition). Let S
be a material system, let {Si , i = 1, . . . , N } be a partition of S, and let V be
a virtual velocity field on S at time t that rigidifies the partition. Then, the
virtual powerPa of the Galilean quantities of acceleration of S is equal to the
sum of the virtual power of the external forces to S and of the virtual power
of the internal forces to S, which is defined here as the actions of the Si on
the S j , namely

Pa = Pext + Pint, (4.3)

Pext =
N∑
i=1

[Fi ] ·
[
V (i)

]
, Pint =

N∑
i=1

N∑
j=1, j �=i

[F j i ] ·
[
V (i)

]
. (4.4)

In Eq. (4.4), it is understood that [Fi i ] = 0, and that [V (i)] denotes the heli-
coidal vector field of the velocity field on Si .

Remark 4.6: In general, the real velocity field has no reason to rigidify S.
Consequently, the real power of the internal forces has no reason to vanish
in general. The computation of this real power (or of the virtual power for
a nonrigidifying velocity field) will be studied in Section 4.3 by using the
results of Chapter 3 – in particular the notion of stress tensor. We will then
reach our ultimate goal for this chapter and give a more general and more
satisfying formulation of Theorem 4.4.

4.3. Virtual power of the cohesion forces: the general case

We have just seen that the virtual power of the internal forces of a system S for
a virtual velocity field V that rigidifies an arbitrary finite partition (Si )1≤i≤N

of S is given by Eqs. (4.3) and (4.4), where [V (i)] denotes the helicoidal vector
field associated with the virtual velocities on Si .

Our aim now is to define Pint for more general virtual velocity fields, to
obtain finally a suitable generalization of Eqs. (4.3) and (4.4). To do so, we
will give a new expression for the right-hand side of Eq. (4.3). In turn, this
expression will naturally lead to the new definition of Pint.
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We consider the same partition as above and first assume that ∂�i ∩ ∂� =
∅; here Si fills the domain �i , and S fills the domain �, and thus �1, . . . , �N

is a partition of �. Then, we have

N∑
j=1, j �=i

[F j i ] ·
[
V (i)

] = ∫
�i

C(x) · V (i)(x) dx,

where C(x) is the vector with components σ�k,k . To prove this equality, we
start with the expression on the right-hand side. Because V (i)(x) = V (i)(x0)+
(x0 − x) ∧ ω(i), we have∫

�i

C(x) · V (i)(x) dx

=
∫
�i

C(x) · [V (i)(x0)+ (x0 − x) ∧ ω(i)
]
dx

= V (i)
� (x0) ·

∫
�i

σ�k,k(x) dx + ω(i) ·
(∫

�i

(x − x0) ∧ C(x) dx

)
= (Taking x0 = 0 for the sake of simplicity)

= V (i)
� (0) ·

∫
∂�i

σ�k · nk d� + ω(i) ·
∫
�i

−σ2k,k x3 + σ3k,k x2

−σ1k,k x3 + σ3k,k x1

−σ1k,k x2 + σ2k,k x1

 dx .

Now

−σ2k,k x3 + σ3k,k x2 = −(σ2k x3),k + σ2kδ3k + (σ3k x2),k − σ3kδ2k .

Because σ2kδ3k − σ3kδ2k = σ23 − σ32 = 0, the two other components of the
vector C being treated similarly, it follows that:∫

�i

C(x) · V (i)(x) dx

= V (i)(0) ·
∫
∂�i

T (x, n) d� + ω(i) ·
∫
∂�i

−σ2k x3nk + σ3k x2nk
−σ1k x3nk + σ3k x1nk
−σ1k x2nk + σ2k x1nk

d�

= V (i)(0) ·
∫
∂�i

T (x, n) d� + ω(i) ·
∫
∂�i

x ∧ T (x, n) d�;

this is exactly the scalar product of [V (i)] with the helicoidal vector field
associated with

∑N
j=1, j �=i [F j i ], which corresponds, in that case, to the actions

of S\Si on Si . This is precisely the expression on the left-hand side of the
equation.
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Let us now assume that �i has a common boundary �′
i with ∂�, and thus

∂�i = �′
i ∪�i , where �i = ∪ j �=i (∂�i ∩ ∂� j ). Then,

N∑
j=1

[F j i ] ·
[
V (i)

]
= (the virtual power of the forces exerted by S\Si on Si )

=
∫
�i

T (x, n) · V (i)(x0) d� + ω(i) ·
∫
�i

(x − x0) ∧ T (x, n) d�

=
∫
�i

T (x, n) · [V (i)(x0)+ ω(i) ∧ (x − x0)
]
d�

=
∫
�i

T (x, n) · V (x) d�

=
∫
∂�i

T (x, n) · V (x) d� −
∫
�′i

T (x, n) · V (x) d�

=
∫
�i

C(x) · V (x) dx −
∫
�′i

T (x, n) · V (x) d�.

Finally, summing all these relations with respect to i , we obtain:

Theorem 4.5. The virtual power of the internal forces to the material system
S for a virtual velocity field V that rigidifies a finite partition of S is given at
time t by

Pint =
∫
�t

σi j, j (x, t)Vi (x) dx − ∫
∂�t

σi j (x, t) n j (x)Vi (x) d�. (4.5)

Because Eq. (4.5) is actually independent of the given partition, however
fine it may be, we are led to adopt the expression given in Eq. (4.5) as the
definition of the virtual power of the internal forces for every virtual velocity
field defined on �t and regular enough for this expression to make sense.

We can also give another expression for Pint. We assume, as usual, that V
is of class C1 with respect to x on �t . Then,

Pint =
∫
�t

σi j, j Vi dx −
∫
∂�t

σi j n j Vi d�

= (thanks to the Stokes formula)

=
∫
∂�t

σi j Vin j d� −
∫
�t

σi j Vi, j dx −
∫
∂�t

σi j n j Vi d�

= −
∫
�t

σi j
Vi, j + Vj,i

2
dx .
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We finally obtain

Pint = −
∫
�t

σi jεi j (V ) dx, (4.6)

where εi j (V ) = 1
2 (Vi, j + Vj,i ).

Definition 4.10. The virtual power of the internal forces of S for the virtual
velocity field V = V (x), defined at time t on �t , is the expression given by
Eq. (4.5) or (4.6).

The virtual power theorem

We are now in a position to state the virtual power theorem for a general
virtual velocity field that does not necessarily rigidify a partition of S.

We assume, for instance, that the external forces on S are made of

• a volume distribution of forces with volume density f , and
• a surface distribution of forces with surface density T (x, n) = σ ·n = F .

We can then prove the following result.

Theorem 4.6 (The General Virtual Power Theorem). For every material
system S and at each time t, the virtual power of the quantities of acceleration
of S with respect to a Galilean frame of reference is the sum of the virtual
power of the external forces on S and of the internal forces applied to S:

Pa = Pext + Pint.

Proof: We have (see Chapter 3) that

ργ = f + C,

where C is the vector of components σi j, j . Consequently, the virtual power
of the quantities of acceleration is given by∫

�t

ργ · V dx =
∫
�t

C · V dx +
∫
�t

f · V dx .

Furthermore, thanks to Eq. (4.5)∫
�t

C · V dx +
∫
�t

f · V dx = Pint +
∫
∂�t

σi j n j Vi d� +
∫
�t

f · V dx,
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and
∫
∂�t

σi j n j Vi d� +
∫
�t

f · V dx is equal to the power Pext of the external
forces applied to S; that is to say

Pext =
∫
∂�t

F · V d� +
∫
�t

f · V dx

because Ti = σi j n j on �t . This finishes the proof.

Remark 4.7 (Variational Formulations): By using Eqs. (4.6) and (4.7), we
find, for every virtual velocity field defined on �t , that is to say for every
vector field {V (x), x ∈�t }, that∫

�t

ργ · V dx +
∫
�t

σi jεi j (V ) dx =
∫
�t

f · V dx +
∫
∂�t

F · V d�. (4.8)

This relation is similar to the variational formulations used in mathemati-
cal analysis and numerical analysis for problems stemming from mechan-
ics. These variational formulations are derived by choosing particular vector
fields V and by using the stress–strain laws that we will introduce in
Chapter 5. We will come back to the variational formulations in Chapter 15,
Section 15.5.

Remark 4.8: In all the preceding sections and in what follows, except in
Chapters 11 and 12, we implicitly assume that the only internal forces to the
system are the cohesion forces introduced in Chapter 3. In the presence of other
physical or chemical phenomena, other elements have to be taken into account:
for instance, internal electromagnetic forces in magnetohydrodynamics (see
some notions in Chapter 11), or internal heat sources (or sinks) due to chemical
reactions (see an outline of combustion phenomena in Chapter 12).

4.4. Real power: the kinetic energy theorem

The real power for forces or for the quantities of acceleration can be defined
exactly as the virtual power: we just have to replace, at each time t, V (x) by
U (x, t).

Having introduced this notion, we can state the kinetic energy theorem that
concludes this section.

Theorem 4.7 (The General Kinetic Energy Theorem). The derivative with
respect to time of the kinetic energy of a material system with respect to a
Galilean frame of reference is equal, at each time, to the sum of the (real)
powers of the external and internal forces applied to S.
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Proof: At this point, it suffices to prove that the real power of the quantities
of acceleration is equal to the derivative with respect to time of the kinetic
energy. By using the Lagrangian representation of the motion, x = �(a, t),
we can write

1

2

d

dt

∫
�t

|U (x, t)|2 dµt (x) = 1

2

d

dt

∫
�0

∣∣∣∣∂�∂t (a, t)

∣∣∣∣2 dµ0(a)

=
∫
�0

∂2�

∂t2
(a, t) · ∂�

∂t
(a, t) dµ0(a)

=
∫
�t

γ (x, t) · V (x, t) dµt (x),

and the result follows.

Remark 4.9: Thanks to Eq. (2.6) and to Eq. (2.14) of Chapter 2 concern-
ing the comparison of the velocities with respect to two distinct frames
of reference,1 we see that the real power of the internal forces is indepen-
dent of the frame of reference: it is an intrinsic physical (thermodynamical)
quantity.2

Exercises

1. We consider three horizontal linear springs R1, R2, R3 that are linked con-
secutively from left to right (we neglect the mass of the springs). The left
end A0 of R1 and the right end A3 of R3 are fixed; material points M1 and
M2, with mass m1 and m2 respectively, are located at the ends A1 and A2,

common to R1 and R2 and to R2 and R3 respectively. The spring Ri exerts
a force of intensity −ki li proportional to its elongation li (ki > 0, li > 0
or li < 0).
a) Write the virtual power theorem for the material points M1 and M2

separately and then for the system consisting of the two material points.
b) Same questions as above when the springs are vertical.

2. (See also Exercise 5, Chapter 13.) A body in motion fills the domain
� = �t . It is fixed on a part �0 of its boundary, where it is submitted to
unknown forces; it is submitted to a surface density of force F = F(a, t)
on �1 = ∂� \ �0. Furthermore, the body is submitted to volume forces

1 See also Theorem 5.1, Chapter 5.
2 See also Chapter 6, Section 6.1.
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with density f = f (x, t). Write the virtual power theorem (in terms of
the Cauchy stress tensor):
a) for an arbitrary virtual velocity field;
b) for a virtual velocity field which vanishes on ∂�.

3. See Exercise 1, Part c, Chapter 7.



CHAPTER FIVE

Deformation tensor, deformation rate
tensor, constitutive laws

The aim of this chapter is twofold. On the one hand, we introduce various
kinematical quantities that will be useful in what follows – especially in
Section 5.3. On the other hand, we introduce and address an issue of a totally
different nature, more physical and very important: the constitutive laws.

The constitutive laws in mechanics are usually laws that relate the stress
tensor to the kinematical quantities; these laws depend on the physics of the
material under consideration, contrary to the equations and laws previously
written that are valid for all materials. These laws take into account, for
instance, the differences of behavior between liquids and solids, or between
rubber, wood, steel, and so forth.

We present, without pretending to be exhaustive, a list containing a variety
of constitutive laws. These laws are different for solids and fluids; some
materials have memory, others do not; some materials have different behaviors
depending on certain parameters, whereas others have the same behavior for
all regimes, and so forth. The study of the mechanical behavior of materials
is called rheology; we also briefly describe some fundamental principles that
rheological laws are required to satisfy.

5.1. Further properties of deformations

In Chapter 1, we introduced the following deformation map:

�: a ∈ �0 �→ x ∈ �t .

We also defined the gradient of � (for fixed t) as follows:

F = (Fi j ) =
(
∂�i

∂a j

)
= ∇�.

70
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Figure 5.1 Distortion of distances.

In this section, we are going to make precise the role played by F = ∇�
in the study of the local distortion of distances and angles around one
point.

In this section, the time t is fixed and �(·) = �(·, t, 0); the time will vary
in Section 5.2.

Distortion of distances

We are given a and a′ in �0. We set (see Figure 5.1) x = �(a), x ′ = �(a′),
a′ = a + e′, |e′| = λ small, and x ′ = x + f ′. Then,

x ′i = �i (a)+ ∂�i

∂a j
(a) · (a′j − a j )+ o(|a′ − a|),

and

x ′ − x = Fe′ + o(λ);

hence, by setting ē′ = e′/λ,

|x ′ − x |
λ

= |Fē′ + o(1)|  |Fē′|.
Thus,

| f ′|2
|e′|2 =

|x ′ − x |2
λ2

 ē′TFTFē′ = ē′TCē′,

where C = (Cαβ) = FT · F.
This yields, for λ small, the following relation, valid at order o(λ):

|x ′ − x |  [(a′ − a)TC(a′ − a)]1/2.

Distortion of angles

Let a, a′, a′′ belong to �0. We set (see Figure 5.2) x = �(a), x ′ = �(a′),
x ′′ = �(a′′), e′ = a′ − a, e′′ = a′′ − a, f ′ = x ′ − x , and f ′′ = x ′′ − x .
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Figure 5.2 Distortion of angles.

Moreover, we assume that |e′| = |e′′| = λ. Then, if ē′ = e′/λ, ē′′ = e′′/λ,

x ′ − x = Fe′ + o(λ) = λFē′ + o(λ),

x ′′ − x = Fe′′ + o(λ) = λFē′′ + o(λ),

and

(x ′′ − x) · (x ′ − x) = e′′TFTFe′ + o(λ2)

= λ2ē′′TCē′ + o(λ2).

Thus,

f ′′ · f ′
| f ′′| · | f ′| = cos[(x ′′ − x), (x ′ − x)] = ē′′TCē′

(ē′TCē′)1/2(ē′′TCē′)1/2
+ o(1)

 e′′TCe′

(e′′TCe′′)1/2 · (e′TCe′)1/2
.

More generally, if |e′| = λ(e′) �= |e′′| = λ(e′′), then

cos[(x ′′ − x), (x ′ − x)] = (x ′′ − x) · (x ′ − x)

|x ′′ − x | · |x ′ − x |
 (a′′ − a)TC(a′ − a)

[(a′′ − a)TC(a′′ − a)]1/2[(a′ − a)TC(a′ − a)]1/2
.

We thus see that the bilinear form and the quadratic form associated with
C = C(x) allow us to describe the local distortion of angles and distances
near the point x (i.e., it defines the metrics in the tangent space).

Definition 5.1. The linear operator C = C(x) is called the right Cauchy–
Green deformation tensor at x; it is expressed here in the Eulerian variables.

Similarly the tensor B = FFT is called the left Cauchy–Green deformation
tensor.

Remark 5.1: If u denotes the displacement, then �(a) = u(a)+ a and

C = (∇uT + I ) · (∇u + I ) = I + ∇u +∇uT + ∇uT · ∇u.
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When the displacement is rigid

|x ′ − x | = |a′ − a|, ∀ a, a′;
hence,

(x ′′ − x) · (x ′ − x) ≡ (a′′ − a) · (a′ − a),

which yields

C = I.

Conversely, one can prove that, if C = I , then the displacement is rigid. The
proof, which consists of passing from local information around one point to
global information, requires tools and concepts from differential geometry
that are beyond our scope here.

Definition 5.2. The deformation tensor (or Green strain tensor) is the tensor1

X = 1

2
(C − I ).

We deduce from what precedes that the deformation is rigid if and only if
X = 0.

To study the small2 deformations that appear, for instance, in solid me-
chanics, we introduce the linearized deformation tensor:

Definition 5.3. The linearized deformation tensor, denoted by ε(u), is defined
by

εαβ(u) = 1

2
(uα,β + uβ,α), or ε(u) = 1

2
(∇u +∇uT ),

where u denotes the displacement and uα,β(a) = (∂uα/∂aβ)(a).

Remark 5.2: We have C = FT F. Consequently, C is a positive definite
matrix (C is definite because det (∇�) �= 0), and it can be written in the form

C = W 2,

where W is symmetric and positive definite. It then follows that

(FW−1)T (FW−1) = W−1FTFW−1

= W−1CW−1

= I,

1 This tensor is also denoted E by a number of authors.
2 The adjective “infinitesimal” is sometimes used in this context. We find it confusing and prefer

to avoid it.
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because C commutes with W and W−1. We thus deduce that

R = FW−1 is orthogonal,

and F = RW . Furthermore V = RW RT is symmetric and positive definite
as well because

(RW RT x, x) = (WRT x, RT x).

Then,

F = RW = V R,

F FT = V RRT V T = V 2 = B.

Thus, V is the positive square root of B = F FT , whereas W is the positive
square root of C = FTF (B �= C of course). Moreover, R is a rotation
matrix; W is called the right stretch tensor and R is called the rotation tensor.
Similarly, B is the left Cauchy–Green tensor and V is the left stretch tensor.

In the case of small perturbations, we have

F = I + ∇u
= I + h,

where h = ∇u = O(η). Then,

ε = 1

2
(h + hT ) is the symmetric part of h,

ϕ = 1

2
(h − hT ) is the antisymmetric part of h.

Furthermore, up to order o(η),

C = FT F = (I + hT )(I + h)

 I + hT + h = I + 2ε,

F = I + h = I + ε + ϕ

 (I + ε)(I + ϕ)  (I + ϕ)(I + ε),

where I + ε is positive definite. Because

(I + ε)2  C + o(η), (I + ϕT )(I + ϕ)  I + o(η),

we obtain, again up to order o(η):

W  V  I + ε,

R  I + ϕ.
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5.2. The deformation rate tensor

We now assume that the time varies with initial time t0. We set

x = �(a, t, t0),

v(a, t) [≡U (x, t)] = ∂�

∂t
(a, t, t0).

In the previous section (see Figure 5.2), we saw that, up to order o(1),

f ′′(t) · f ′(t) = Cαβ(a, t, t0)e′′αe
′
β.

Our aim now is to compute the time derivative (d/dt)[ f ′′(t) · f ′(t)] at t = t0;
that is to say (∂/∂t)[Cαβ(a, t, t0)]|t=t0 , or else (∂/∂t)[Xαβ(a, t, t0)]|t=t0 .

Considering the deformations between t0 and t > t0, we write

X = 1

2
(C − I ),

C = FT F.

Consequently, we have at the point (a, t, t0)

1

2

∂C

∂t
= ∂X

∂t

= 1

2

∂

∂t
(FT F− I )

= 1

2

∂

∂t
(FT F).

Because �(a, t0, t0) = I , ∇a�(a, t0, t0) = I ; hence, at the point (a, t0, t0):

∂X

∂t
= 1

2

∂C

∂t
= 1

2

(
∂F
∂t
+ ∂FT

∂t

)
.

Because
∂F

∂t
= ∂

∂t
∇a� = ∇a

∂�

∂t
= ∇av, it follows that, at the point

(a, t0, t0):

∂X

∂t
= 1

2
(∇av + ∇av

T ).

Remark 5.3: In the previous reasoning, a denotes the position at time t0
taken as the reference or (initial) time. Hereafter (and especially for Defini-
tion 5.4), t0 is an arbitrary time, and we come back to the Eulerian represen-
tation; a is then replaced by the actual position x and v by U (x, t0). With this
new notation, ∂X/∂t is equal, at time t , to 1

2 (∇xU + ∇xUT ).3

3 We write here ∇xU instead of ∇U to emphasize that the gradient is taken with respect to x .
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Definition 5.4. The tensor D = 1
2 (∇U + ∇UT ) is called the deformation

rate tensor (or deformation velocity tensor). The tensor ω = 1
2 (∇U −∇UT )

is called the rotation rate tensor. We have

∇U = D + ω.

Theorem 5.1. The velocity field U = U (x, t) is, at time t, the velocity field
of a rigid body motion if and only if, at this time, D = 0 at every point of the
system.

Proof: Let us assume that the motion is rigid. Then, there exists �ω ∈ R
3,

�ω = (ω1, ω2, ω3), such that

U (x) = U (0)+ �ω ∧ x = U (0)+
ω2x3−ω3x2

ω3x1−ω1x3

ω1x2−ω2x1

 .

Therefore,

∇U =
∣∣∣∣∣∣

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

∣∣∣∣∣∣ ,
and hence,

ω = ∇U and D = 0.

Conversely, let us assume that, at a given time, D = 0 at every point. Then,
for every i, j, �,

ωi j = 1

2
(Ui, j −Uj,i ),

ωi j,� = 1

2
(Ui, j� −Uj,i�)

= 1

2
(Ui, j� +U�,i j −U�,i j −Uj,�i )

= (Di�, j − Dj�,i )

= 0.

Consequently, ωi j is constant in space and so is ω = ∇U . We deduce that

∇U (x, t) = ω =
∣∣∣∣∣∣

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

∣∣∣∣∣∣ ,
where the ωi are constant in space. It follows by integration that

U (x) = U (0)+ �ω ∧ x,

where �ω is the vector with components ω1, ω2, ω3.
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Remark 5.4: The vector �ω is called the rotation rate vector. It should not
be mistaken for the curl vector, curl U , which appears in particular in fluid
mechanics. Actually, we easily see that �ω = 1

2 curl U .

Remark 5.5: It is useful to note the similarity between the expressions related
to the deformation rates and those related to the linearized deformations under
small perturbations. More precisely, we have the following correspondences:

Velocity U = U (x, t) ←→ Displacement u = u(a, t)
Velocity gradient ∇U = ∇xU ←→ Displacement gradient ∇au

Deformation rate tensor D = D(U ) ←→ Linearized deformation tensor
ε = ε(u)

Rotation rate tensor ω←→ Rotation tensor ω

5.3. Introduction to rheology: the constitutive laws

As stated in the introduction to this chapter, we now address the question of
constitutive laws, also called stress–strain laws, and describe some general
principles of rheology.

By simply counting the number of equations and unknown functions, we
see that there is need for more equations. Indeed, the unknowns of the problem
of mechanics are as follows:

• the displacements in a Lagrangian description, or the velocities in an
Eulerian description,

• the stresses, and
• the kinetic state (mass density ρ).

We must add to these unknowns the internal energy e (or the temperature),
which we have not yet considered and that will be introduced in Chapter 6.

The fundamental law of dynamics (which is a universal law concerning
the displacements) provides the equations

ργi = fi + σi j, j

that result in three scalar equations. We thus have 10 unknowns corresponding
in the Eulerian description to the density ρ (1 unknown), the velocity vector
U (3 components), and the stress tensor (6 components). However, only four
equations are available, namely the three previous ones to which we add the
continuity equation

∂ρ

∂t
+ div(ρU ) = 0.
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By a formal comparison between the number of equations and the number
of unknowns (and without any discussion of the existence and uniqueness of
solutions to these equations), we see that six equations are missing.

To obtain the six missing equations, we will add some equations specific
to the material: these are the stress–strain laws relating U (or u) to σ .

The justification and the discovery of these laws constitute an important
part of continuum mechanics, which is based on thermodynamics, and called
rheology.

In the next section, we briefly describe some fundamental principles of
rheology and, in the following sections, we present some important stress–
strain laws.

Some principles of rheology

The stress–strain laws for materials must satisfy the following fundamental
principles:

1. The laws of thermodynamics and in particular the first and second prin-
ciples: conservation of energy (see Chapter 6) and the entropy principle.

2. Invariance of the laws by a change of Galilean frame of reference (this
principle is also called the material indifference principle).

3. Spatial invariance or localization invariance: the stress–strain law of a
material does not depend on its position in space (e.g., invariance by
translations in x).

4. Isotropy: once expressed in an orthonormal coordinate system, the law
must be invariant (in a sense to be made precise) by a change of or-
thonormal coordinate system (e.g., a rotation).

5. Causality or determinism: according to this mechanical principle,
knowledge of the history of the material up to time t yields knowledge
of the state of the stresses at time t .

This last principle must, however, be properly adapted in the case of internal
constraints such as, for a fluid, the incompressibility law, div u= 0.4

We end this section by recalling some basic tools of linear algebra useful, in
particular, for point 4 above. We consider a linear operator of R

3, represented
by its matrix A = (Ai j ) in an orthonormal basis. We recall that, by the Cayley–
Hamilton theorem, A cancels its characteristic polynomial p = p(λ), namely,

p(A) = 0. (5.1)

4 We refer the reader to the books of Germain (1973) and Truesdell (1977) for further information
on this point and for a more complete description of the principles of rheology.
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We write p(λ) in the form

p(λ) = −λ3 + AIλ
2 − AI Iλ+ AI I I , (5.2)

where

AI = tr A = Aii ,

AI I = 1

2
{(tr A)2 − tr A2}, (5.3)

AI I I = det A.

These quantities AI , AI I , AI I I are invariant by a change of orthonormal co-
ordinate system (i.e., they depend on the linear operator and not on the chosen
basis); these are the only invariants attached to A. In particular, owing to the
Cayley–Hamilton theorem,

A3 = AI A
2 − AI I A + AI I I I,

and it is possible to express the trace of Ak , k ≥ 3, in terms of AI , AI I , and
AI I I . Using the eigenvalues λ1, λ2, λ3 (the roots of p), we have

AI = λ1 + λ2 + λ3, AI I = λ1λ2 + λ2λ3 + λ3λ1, AI I I = λ1λ2λ3.

The stress–strain laws have different expressions for fluids and solids; we
will study these two cases successively.

Main examples in fluid mechanics

In this subsection we do not aim to give a full description of the equations of
fluid mechanics. This study will be outlined in the second part of this volume.

Definition 5.5. For a large class of fluids, the stress–strain law is of the form

σ = f (ε), (5.4)

where εi j (U ) = 1
2 (Ui, j+Uj,i ) is the deformation rate tensor (εwas previously

denoted D).

Remark 5.6: We might consider other laws such asσ = f (∇U ),σ = f (ε, ω),
or σ = f (U, ε, ω). It can be proven that such laws, where f would explicitly
depend on ω (or U ), do not satisfy the principles of rheology recalled in the
previous subsection. We could consider, for nonhomogeneous media, laws of
the form σ = f (ε, x); on the contrary, this generalization raises no difficulty.
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Newtonian viscous fluids

A Newtonian viscous fluid is a fluid for which the stress–strain law is linear;
that is to say the stress tensor σ is a linear affine function of the strain rate
tensor D = ε(U ), namely,

σi j = µ(Ui, j +Uj,i )+ c δi j ,

where U is the velocity; µ is called the dynamic viscosity coefficient. For
thermodynamical reasons, c is of the form λ div U − p, where p denotes the
pressure, and thus

σi j = µ(Ui, j +Uj,i )+ λ(div U )δi j − pδi j .

The second law of thermodynamics yieldsµ ≥ 0. We will also see in Chapter 7
that 2µ+ 3λ ≥ 0, again for thermodynamical reasons.

We deduce from this stress–strain law the Navier–Stokes equations that
govern the motion of a compressible Newtonian fluid (such as, for instance,
water or air)

ργi = ρ

(
∂Ui

∂t
+UjUi, j

)
= fi + µUi, j j + (λ+ µ)(div U ),i − p,i .

For a homogeneous and incompressible fluid ρ = ρ0, div U = 0, and we
obtain the incompressible Navier–Stokes equations

ρ0

(
∂Ui

∂t
+UjUi, j

)
= fi + µ�Ui − p,i ,

div U = 0.

As particular cases, we can consider the stationary Navier–Stokes equations,
or the evolutionary and stationary Stokes equations derived under the small-
motion assumption by suppressing the nonlinear term (see Chapter 7 and the
subsequent chapters).

A fluid is called perfect if µ = λ = 0. In this case, the stress–strain law
becomes

σi j = −pδi j ,

that is, the stress tensor is spherical. A perfect fluid may or may not be
compressible. If it is incompressible and homogeneous, then div U = 0. If
it is compressible and barotropic (see Chapter 7), p is a given function of ρ,
p = g(ρ). This last relation is the equation of state. Such laws, which are
useful in many other cases in fluid mechanics, give a relation between p, ρ,
and the temperature T or the internal energy e. We will come back to this
point in the forthcoming chapters.
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Non-Newtonian fluids

The stress tensor may be a (more or less simple) nonlinear function of the
deformation rate tensor. In that case, we say that the fluid is non-Newtonian.
Classical examples of non-Newtonian fluids are motor oils, melted plastics,
blood, or drying concrete.

Even though this model is not necessarily very realistic, we usually con-
sider, at least for theoretical studies, non-Newtonian fluids whose stress-strain
law is of the form (5.4), f being now nonlinear (e.g., the so-called Reiner and
Rivlin fluids).

Under the isotropy assumption, one can show that, in the absence of internal
constraints, the most general form for Eq. (5.4) then reads

σ = h0(εI , εI I , εI I I )I + h1(εI , εI I , εI I I )ε + h2(εI , εI I , εI I I )ε
2,

where εI , εI I , and εI I I are the invariants of D = ε(U ) (see Eq. (5.3)), namely,

εI = tr ε = εi i ,

εI I = 1

2
[(tr ε)2 − tr ε2],

εI I I = det ε.

We recalled after Eq. (5.3) that any scalar isotropic function of ε is a function
of εI , εI I , and εI I I .

When the fluid is incompressible and homogeneous, the equations become

div U = 0, (5.5)

σ = −pI + h1(εI I , εI I I )ε + h2(εI I , εI I I )ε2, (5.6)

where the pressure p is undetermined.

Remark 5.7: More generally, h1 and h2 depend also on the temperature which
will be introduced in Chapter 6.

Main examples in solid mechanics

In solid mechanics, we consider materials for which the Piola-Kirchhoff tensor
� (see Section 3.5) is a function of X, a, and t , where a is the Lagrangian
variable, u = u(a, t) is the displacement, and X = X (u) is defined as in
section 5.2:

� = f (X, a, t); (5.7)

here Xi j (u) = 1
2 (ui, j + u j,i + ui,kuk, j ), and ui, j = (∂ui/∂a j )(a, t).

In general, we restrict ourselves to small displacements, in which case F
is, at first order, the identity and �(a, t) is simply the tensor σ (�(a, t), t)
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(see the linearization principle in Chapter 13, Section 13.2); then (5.7) simply
becomes

σ = f (ε, a, t), (5.8)

with ε = ε(u), εi j (u)= 1
2 (ui, j + u j,i ).5

Remark 5.8: For the linearized case, we could think, as in Remark 5.6, of
stress–strain laws of the form σ = f (u,∇au). However, it can be proven that
such laws, where f would explicitly depend on u (or ω, or both), are not
consistent with the general principles of rheology described at the beginning
of this section.

Elastic media

a) Linear or classical elasticity

Under the small deformations hypothesis, and if ε = ε(u) denotes the lineari-
zed deformation tensor, a linear elastic medium satisfies the stress–strain law

σ = f (ε),

where f is a linear function. More precisely, the stress–strain law is of the
form

σi j = λεkkδi j + 2µεi j ,

where ε = ε(u), and u = u(a, t) is the displacement; λ and µ are the Lamé
coefficients. The second law of thermodynamics requires that µ ≥ 0 and
3λ+ 2µ ≥ 0.

b) Nonlinear elasticity (hyperelasticity)

We consider the behavior of an elastic medium under the large deformations
assumption. A classical example of such a material is rubber.

The stress–strain law reads, at each time,

σ = G(F),

where G characterizes the material and depends on the space variable x in a
nonhomogeneous material. Moreover, F = RW , and one can prove that, with
another function G, σ is necessarily of the form

σ = RG(W )RT ,

5 The spatial variable is then denoted by x instead of a for reasons that will be explained in
Chapter 13.
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which can also be written as

σ = RH(C)RT ,

where C = FTF = W 2.
Additional thermodynamical considerations further lead to require (in large

deformations) that the function f in (5.7) be the Fréchet-differential (with
respect to X or C) of a scalar function g = g(X, a, t). In the case of small
displacements, the function f in (5.8) is the Fréchet-differential (with respect
to ε) of a scalar function g = g(ε, a, t); in the case of linear elasticity, we
simply reduce g to its quadratic part with respect to ε (Taylor expansion of g
at ε small). The function g is related to the energy; it will reappear under a new
name, w, in Chapter 15 for linear elasticity and in Chapter 16 for nonlinear
elasticity.

Remark 5.9: We briefly describe, in Chapter 16, several problems of nonlinear
elasticity in small deformations. The study of nonlinear elasticity in large
deformations raises considerable difficulties, geometrical difficulties adding
to mechanical difficulties.

c) Hypoelasticity

In this case, a certain derivative of σ , denoted by DJσi j , is a linear function of
D with coefficients depending on σ . The stress–strain law of such materials
reads

DJσi j = Ci jk�Dk�,

where the Ci jk� depend on σ , and where DJσi j is defined by

DJσi j = dσi j
dt

− ωikσk j − ω jkσik .

Viscoelastic materials (materials with memory)

For such media, the stress–strain law contains functions of time derivatives.
In classical viscoelastic theory, we set

s = tr σ = σi i ,

e = tr ε = εi i = div u,

where u = u(x, t) is the displacement,6 and thus

si j = σ D
i j = σi j − s

3
δi j ,

ei j = εDi j = εi j − e

3
δi j .

6 Here also, the spatial (Lagrangian) variable is denoted by x instead of a.
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The stress–strain laws then read

s(x, t) = 3κ(0)e(x, t)+ 3
∫ t

0

dκ

dτ
(τ )e(x, t − τ ) dτ,

si j (x, t) = 2µ(0)ei j (x, t)+ 2
∫ t

0

dµ

dτ
(τ )ei j (x, t − τ ) dτ,

where κ = κ(τ ) and µ = µ(τ ) satisfy κ(0) = κ0, µ(0) = µ0, κ(∞) = κ∞,
µ(∞) = µ∞, the functions κ and µ are monotonically decreasing from their
value at t = 0 to their value at t = ∞, with κ0, κ∞ > 0, µ0, µ∞ > 0. If
µ and κ are constants, (dκ/dτ )= (dψ/dτ ) = 0, we recover the constitutive
law of linear elasticity.

Remark 5.10:

1. To compare with linear elasticity, we can write the constitutive laws of
linear elasticity using the functions s, e, si j , ei j ; they read

s = κe, si j = 2µei j , with κ = 3λ+ 2µ.

2. The constitutive laws of viscoelastic materials can be written in a dif-
ferent form, more similar to linear elasticity. We extend all functions
κ(t), µ(t), e(t), . . . by 0 for t < 0 and consider the Fourier transform
(in time) of these functions, namely κ̂, µ̂, ê, . . .. Then, the constitutive
laws become

ŝ = 3[κ(0)+ κ̂ ′]ê,

ŝi j = 2[µ(0)+ µ̂′]ŝi j .

Remark 5.11: One may also consider viscoelastic fluids; their constitutive
laws are similar, u denoting now the velocity.

Plastic materials

Plastic media are media for which the stresses are compelled to satisfy certain
a priori relations; that is, they are restricted to a certain set in the space of
tensors. We study these media under the small deformations assumption; as
usual, u is the displacement and ε = ε(u) is the linearized deformation tensor.

a) Perfectly plastic (or plastic rigid) materials

We consider a homogeneous, isotropic, and incompressible material for which
e = ε. We set (this notation is not the same as in Eq. (5.3)):

σ D
I I = σ D

i j σ
D
i j = σ D

i j σ
D
ji .
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Then, the material is compelled to satisfy certain constraints on σ D , for ex-
ample σ D

I I ≤ K 2. The material has, in this case, a rigid behavior before this
bound is reached; that is to say

σ D
I I < K 2;

in this region ε(u) = 0, u being then a rigid displacement. Furthermore, ωi j

is constant.
In the region where σ D

I I = K 2, we have the relation

σ D
i j =

K(
εDI I

)1/2 ε
D
i j ,

which yields, of course,

σ D
i j σ

D
ji = K 2

εDi j ε
D
ji

εDI I
= K 2.

b) Elastoplastic materials

As in a), the stresses are subjected to a condition of the type σ D
I I ≤ K 2. For

such media, when σ D
I I < K 2, the material has a linear elastic behavior, that

is, its stress–strain law is of the form

σi j = λεkkδi j + 2µεi j ,

and in the region where σ D
I I = K 2, the material has the same behavior as in

the previous case.

c) Viscoplastic materials

We consider, for simplicity, an incompressible, homogeneous, and isotro-
pic medium. This medium has a rigid behavior if sI I < K 2 and, if sI I ≥ K 2,

we have

si j =
(

2µ+ K

(eI I )1/2

)
ei j ,

σ D
i j =

(
2µ+ K(

εDI I
)1/2

)
εDi j .

The condition sI I ≥ K 2 is equivalent to

σ D
i j σ

D
ji =

(
2µ+ K(

εDI I
)1/2

)2

εDi j ε
D
i j ≥ K 2;
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that is to say, (
2µ+ K

(eI I )1/2

)2

eI I ≥ K 2,

or

2µ+ K

(eI I )1/2 ≥
K

(eI I )1/2 ;

hence,

µ ≥ 0.

One usually calls such stress–strain laws plasticity laws (Hencky’s plasticity
law for perfectly plastic or plastic rigid materials); these are actually nonlinear
elasticity laws with threshold. Actually, plastic phenomena take into account
memory phenomena; they are governed by the so-called Prandtl–Reuss law,
which is even more involved.

d) Prandtl–Reuss law

The Prandtl-Reuss law involves a convex set C in the space (R6) of symmetric
(stress) tensors; for example, for the models a), b) above, it is the convex
σ D
� < K 2, and C contains the origin.

At each point a of �0 (a the Lagrangian variable, �0 being the initial non-
deformed state), at each time t , if σ = σ (a, t) is in the interior of C, then the
law σ = σ (ε) is linear as in case b) above; if σ = σ (a, t) is on the boundary
of C, then

εi j

(
∂u

∂t

)
= Ai jkl as

∂σkl

∂t
+ λ,

where the Ai jkl correspond to the inversion of the stress-strain law of linear
elasticity (see Section 13.1 for the details), and λ = λ(a, t) satisfies the
following relation (which actually characterizes it):

λ · (τ − σ ) ≤ 0, ∀τ ∈ C.

We refer the reader to specialized books for additional details and for the
study of these inequations in the context of variational inequalities and convex
analysis.

Remark 5.12: As mentioned previously, we refer the reader to the books of
Germain (1973, 1986), and of Truesdell (1977), and to the references therein
for a more complete study of stress–strain laws.
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We will briefly come back to these laws in the forthcoming chapters for
Newtonian fluids and elastic solids (linear and nonlinear elasticity).

All the parameters and functions introduced in this chapter such asµ, λ, κ,
h1, and h2 may also depend on the temperature (introduced in the next chap-
ter), and on other quantities, but, in general, we consider them as absolute
constants.

5.4. Appendix. Change of variable in a surface integral

Using the methods and notations of Section 5.1 of this chapter, we prove
formula (3.9) of change of variable in a surface integral given in Chapter 3.

With the notations of Section 5.1 and of Section 3.5, assuming that x, x ′, x ′′

belong to �t , the vector product

(x ′ − x) ∧ (x ′′ − x) = f ′ ∧ f ′′(= O(λ2)),

approximates, at order λ3, the vector nδ�t , where δ�t = δ�t (x, t) is the area
of the parallelepiped constructed over f ′ and f ′′ (and where we have written
n instead of nt (x, t)).

We recall that the i th component of the vector product f ′ ∧ f ′′ can be
written, using the Einstein summation convention:

( f ′ ∧ f ′′)i = εi jk f
′
j f
′′
k ,

where εi jk is equal to+1 or−1 if (i, j, k) is an even or odd permutation of 1,
2, 3 and to 0 in the other cases.

Furthermore

f ′j =
∂� j

∂aα
e′α + O(λ2), (5.9)

ni δ�t = εi jk
∂� j

∂aβ

∂�k

∂aγ
e′βe

′′
γ δ� + O(λ3), (5.10)

ni
∂�i

∂aα
δ�t = εi jk

∂�i

∂aα

∂� j

∂aβ

∂�k

∂aγ
e′βe

′′
γ + O(λ3). (5.11)

Denoting by Fi j the components of the matrix F, we easily verify the
following formulae of linear algebra:

det F = 1
6εi jk εαβγ Fiα Fjβ Fkγ , (5.12)

εαβγ det F = εi jk Fiα Fjβ Fkγ . (5.13)

Thus, (5.11) yields

ni
∂�i

∂aα
δ�t = εαβγ det F e′βe

′′
γ + O(λ3).
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As for n = nt (a, t), we see that

(a′ − a) ∧ (a′′ − a) = e′ ∧ e′′(= O(λ2)) = n0 δ�0 + O(λ3),

where n0 = n0(a, t) and δ�0 = δ�0(a, t) is the area of the parallelepiped
constructed over e′ and e′′; hence

ni
∂�i

∂aα
δ�t = n0α det F δ�0 + O(λ3),

and, in vector form,

n0 det F δ�0 = FT · nt δ�t + O(λ3). (5.14)

Since n0 has norm 1, this also gives

(det F)2 (δ�0)2 = nTt · F · FT · nt (δ�t )
2 + O(λ5),

or, since B = F · FT (see Section 5.1),

(det F)2 (δ�0)2 = nTt · B · nt (δ�t )
2 + O(λ5).

In the limit λ −→ 0, this yields(
d�0

d�t

)2

= (det F)−2 nTt · B · nt . (5.15)

In the limit λ −→ 0, (5.14) also gives, with (5.15):

n0 = (nTt · B · nt )−1/2 FT · nt , (5.16)

and, by inversion, using C = FT· F:

nTt · B · nt = (n0 · C−1 · n0)−1 (5.17)

(
d�0

d�t

)2

= (det F)−2

n0 · C−1 · n0
, (5.18)

nt = 1

(nT0 · C−1 · n0)−1/2
(F−1)T · n0, (5.19)

nt
d�t

d�0
= (F−1)T · n0(det F). (5.20)

Equation (3.9) of Chapter 3 follows simply from (5.20).
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Exercises

1. The velocity field of a continuum in motion is given by

U1 = −A(x3
1 + x1x

2
2 )e−kt ,U2 = A(x2

1 x2 + x3
2 )e−kt ,U3 = 0. (5.21)

Compute the acceleration field, the deformation rate tensor and the rotation
rate tensor.

2. We consider, under the small perturbations hypothesis, the displacement
field

X1 = kx2, X2 = kx3, X3 = kx1, (5.22)

where k is a small constant. Compute the linearized deformation tensor
ε, the principal unit elongations (i.e. the eigenvalues of ε), the principal
directions of ε (i.e., the eigenvectors of ε), and the rotation vector �.

3. We consider a continuum, having a stationary motion with respect to an
orthonormal frame (0x1x2x3), such that all the components of the defor-
mation rate tensor vanish, except D13 and D23 which only depend on x1

and x2. Give the general form of the velocity field.
4. We consider the planar stationary motion defined by the formula U =
∇ϕ, ϕ = ϕ(x1, x2) being the velocity potential.
a) Show that the rotation rate vector vanishes.
b) Compute the deformation rate tensor and its principal invariants.



CHAPTER SIX

Energy equations and shock equations

In this last chapter of Part 1, we return to the fundamental concepts of con-
tinuum mechanics and develop two new independent subjects.

On the one hand, we introduce some thermodynamical concepts, namely,
internal energy, heat, and temperature to express the energy conservation
principle, which leads to a new equation.

On the other hand, we study shock waves: contrary to the regularity as-
sumptions consistently made until now, we consider here the case in which
some physical and mechanical quantities are piecewise regular, that is, every-
where regular except at the crossing of some surfaces. It is this framework
that is used, for instance, in perfect fluid mechanics, to model the shock waves
produced by planes flying at transsonic or supersonic speeds.

6.1. Heat and energy

We consider a material system S that fills the domain �t at time t .

Definition 6.1. For every material system S and at each time t, there exists
a measure carried by �t of the form e(x, t) dx, where e is nonnegative. By
definition

E =
∫
�t

ρ(x, t) e (x, t) dx

is the internal energy of S at time t, e(x, t) is the mass density of speci-
fic internal energy of S at time t, and ρe is the volume density of internal
energy.

90
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Definition 6.2. The energy of the system S at time t is the sum of its kinetic
energy and of its internal energy:

E =
∫
�t

ρ

(
e + 1

2
UiUi

)
dx .

The energy E is sometimes called the total energy of the system and is thus
defined by its volume density

ρ

(
e + 1

2
UiUi

)
.

Remark 6.1: For fluids, thermodynamics yields relations between ρ, p, and
e (p is the pressure). In particular, it postulates the existence of a relation,
called the equation of state, of the form e = g(p, ρ). The assumptions on g
will be made more precise in the next chapter.

Heat

A material system receives heat at each time:

1. Through its boundary, by contact actions. This corresponds to the heat
received by conduction, and we assume that it is defined by a surface
density χ . One can prove that χ is necessarily of the form

χ = −q · n,
n being the unit outward normal to ∂�t ; q is called the heat current
vector. This can be proven exactly as it has been proven in Chapter 3,
after having made reasonable physical assumptions, that, for contact
actions, T = σ · n.

The rate of heat received by S through ∂�t at time t is thus

−
∫
∂�t

q · n d�.

2. In the volume by distance actions. This corresponds to the heat received
by radiation. We assume that it is defined by a volume density r =
r (x, t).

The rate of heat received by radiation by the system S, at time t , is
then ∫

�t

r (x, t) dx .
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Let QS(t) be the heat received by S, from time 0 to time t . The rate
at which heat is received by S at time t is thus

Q̇S(t) = d

dt
QS(t) =

∫
�t

r dx −
∫
∂�t

q · n d�;

that is, upon using Green’s formula

Q̇S(t) =
∫
�t

(r − div q) dx .

The evolution of the system is said to be adiabatic if

Q̇S(t) = 0

at each time.

The energy conservation principle: the first law
of thermodynamics

The energy conservation principle is stated as follows:

At each time t, the derivative with respect to time of the energy E of a system
S is the sum of the power of the external forces applied to the system and of
the rate of heat received by the system:

dE
dt
= Pext + Q̇S.

Remark 6.2: Integrating this last equation between the times t and t ′, we
can also say that the variation of the total energy E between these times,
E(t ′) − E(t), is the sum of the work of the external forces and of the heat
received.

Remark 6.3: By comparing the energy conservation principle to the kinetic
energy theorem seen in Chapter 4 (and by taking into account the expression
for E above), we can see that the rate of variation of internal energy E = E(t)
satisfies

dE

dt
= d

dt

∫
�t

ρe dx = Q̇S − Pint.

The energy conservation equation

Our aim now is to express the energy conservation principle by means of
a partial differential equation for the material system S called the energy
conservation equation. We give here different forms of this equation.
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We assume, as we already have, that the system S is subjected to volume
forces with density f and, on its boundary, to forces with surface density F ;
then

d

dt

∫
�t

ρ

(
e + 1

2
UiUi

)
dx =

∫
�t

( f ·U + r ) dx +
∫
∂�t

(F ·U + χ ) d�.

We apply the energy conservation principle to an arbitrary subsystem
S′ ⊂ S filling the subdomain �′t ⊂ �t at time t . We transform the integral on
∂�′t into a volume integral; hence, because F = σ · n:∫

∂�′t
F ·U d� =

∫
∂�′t

σi j niU j d� =
∫
�′t

(σi jU j ),i dx,

∫
∂�′t

χ d� = −
∫
∂�′t

q · n d� = −
∫
�′t
qi,i dx,

and we obtain∫
�′t

{
∂

∂t

[
ρ

(
e + 1

2
UiUi

)]
+
[
ρUi

(
e + 1

2
UjU j

)
−Ujσi j + qi

]
,i

}

=
∫
�′t

( fiUi + r ) dx .

This relation is valid for every �′t ⊂ �t and yields, as usual, the equation

∂

∂t

[
ρ

(
e + 1

2
UiUi

)]
+
[
ρUi

(
e + 1

2
UjU j

)
−Ujσi j + qi

]
,i

= fiUi + r.

(6.1)

Because

ργ ·U = ρUi

(
∂Ui

∂t
+UjUi, j

)
,

it follows that

∂

∂t

(
ρ
|U |2

2

)
+
(
ρ
|U |2

2
Uj

)
, j

= |U |2
2

(
∂ρ

∂t
+ div(ρU )

)
+ ρ

∂

∂t

( |U |2
2

)
+ ρUj

( |U |2
2

)
, j

.

The underlined term vanishes thanks to the continuity equation, and thus there
remains

∂

∂t

(
ρ
|U |2

2

)
+
(
ρ
|U |2

2
Uj

)
, j

= ρUi
∂Ui

∂t
+ ρUjUiUi, j = ργ ·U. (6.2)
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Similarly,

∂

∂t
(ρe)+ div(ρUe) = e

(
∂ρ

∂t
+ div(ρU )

)
+ ρ

∂e

∂t
+ ρU · (∇e)

= ρ
∂e

∂t
+ ρ(U · ∇)e;

that is,

∂

∂t
(ρe)+ div(ρUe) = ρ

De

Dt
. (6.3)

We deduce from Eq. (6.2) that

∂

∂t

(
ρ
|U |2

2

)
+ (U · ∇)ρ Uj

( |U |2
2

)
, j

− σi j, jUi = fiUi . (6.4)

Therefore, thanks to Eqs. (6.3) and (6.4), Eq. (6.1) becomes

ρ
De

Dt
+ qi,i − σi jUi, j = r. (6.5)

Equation (6.5) is called the energy equation. It indicates that the variation of
specific internal energy

De

Dt
= 1

ρ
σi jUi j + 1

ρ
(r − qi,i )

is due to the power of the internal forces and the exchanges of heat.

Particular cases

For certain materials (for instance for perfect gases), e = CV θ , where θ is the
temperature, q = −κ grad θ,CV , κ > 0, and the energy equation becomes

ρCV
∂θ

∂t
+ ρCV (U · ∇)θ − κ�θ = r + σi jUi, j . (6.6)

When the medium is a perfect incompressible gas, σi j = −pδi j and div U =
0, which yields

σi jUi, j = −pδi jUi, j = −p div U = 0,

and the heat equation becomes

ρ0CV

(
∂θ

∂t
+U · ∇θ

)
− κ�θ = r. (6.7)

For other media, the term σi jUi, j often vanishes or is negligible.



Energy equations and shock equations 95

6.2. Shocks and the Rankine–Hugoniot relations

Although we did not emphasize it, we have already implicitly encountered
the possibility of having discontinuous quantities at interfaces: for example, if
two different materials are in contact, then the density may be discontinuous
at the interface (e.g., air and water), or the stress tensor may be discontinuous
because the constitutive laws are different.

We now address a more fundamental type of discontinuity that occurs
already at the kinematic level (i.e., for velocities) and typically inside a given
medium: the shock wave.

In the modeling of shock waves, the velocities and other physical quantities
may be discontinuous at the crossing of certain surfaces. We develop here the
mathematical framework for the study of such discontinuities. This section is
essentially independent of Section 6.1.

The central axioms of continuum mechanics are modified as follows. We
still assume that the mapping �, which maps the position at time 0 to the
position at time t , is one-to-one. We again denote by x = �(a) = �(a, t, t0)
the corresponding mapping.

Furthermore, we consider a moving surface �t with equation

x = E(a, t), a ∈ �t0 .

When E = �, �t moves with the flow, but this will not be the case in general;
hence, in general �−1(�t ) �= �t0 and �(�t0 ) �= �t (see Figure 6.1). As usual
(∂�/∂t)(a, t) is the velocity of the fluid (again denoted by U (x, t) in the
Eulerian description); similarly (∂E/∂t)(a, t) is the velocity of the surface �t

(also denoted by W (x, t) in the Eulerian description). We finally assume that
�t separates �t into two domains �1

t and �2
t , and that �|�−1(�1

t ) and �|�−1(�2
t )

Σt0 Φ−1(Σt) Φ(Σt0
)

Σt

Ω2
t

Ωt
Ωt0

Ω2
t0

Ω't0 Ω't

Φ

Figure 6.1 The map �.
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are two mappings from �−1(�i
t ) into �i

t , for i = 1, 2, of class C1, and their
inverse are of class C1 also.

Principle of the study

Our first aim is to compute quantities of the form

d

dt

∫
�t

C dx,

where C has discontinuities on �t . We have seen that such derivatives occur
in the derivation of the conservation equations.

We first notice that, thanks to Remark 1.7, the formula

d

dt

∫
�t

C dx =
∫
�t

∂C

∂t
dx +

∫
∂�t

CU · n d� (6.8)

applies to each �i
t , i = 1, 2, in the form

d

dt

∫
�i

t

C dx =
∫
�i

t

∂C

∂t
dx +

∫
∂�i

t∩∂�t

CU · n d� +
∫
�t

CW · n d�, (6.9)

provided we interpret U in Eq. (6.8) as the velocity of the boundary; hence,
U = W on �t . If N denotes the normal to �t , from �1

t to �2
t , then n = N

for i = 1 and n = −N for i = 2.
Summing the relations (6.9) for i = 1, 2, we obtain

d

dt

∫
�t

C dx =
∫
�t

∂C

∂t
dx +

∫
∂�t

CU · n d� −
∫
�t

[CW ] · N d�,

where Xi = X |�i
t
, i = 1, 2, and [X ] = X2− X1 is the jump of X through �t .

Consequently,

d

dt

∫
�t

C dx =
∫
�t

∂C

∂t
dx +

∫
∂�1

t ∩∂�t

CU · n d� +
∫
∂�2

t ∩∂�t

CU · n d�

−
∫
�t

[CU ] · N d� +
∫
�t

[CV ] · N d�

=
∫
�1

t ∪�2
t

[
∂C

∂t
+ div(CU )

]
dx +

∫
�t

[CV ] · N d�,

where V = U −W is the relative velocity of the fluid with respect to �t , and
{∂C/∂t+div(CU )} denotes the piecewise regular function equal to ∂C/∂t+
div(CU ) in �1

t and in �2
t .
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Consequence: the shock conditions

If we know that

d

dt

∫
�′t
C dx =

∫
�′t

f dx, ∀ �′t ⊂ �t ,

then

∂C

∂t
+ div(CU ) = f in �i

t , i = 1, 2,

and ∫
�′t

[CV ] · N d� = 0, ∀ �′
t ⊂ �t ;

hence,

[CV ] · N = 0 on �t .

When C is a scalar, setting v = V · N , we rewrite the last relation as

(Cv)2 − (Cv)1 = 0. (6.10)

Application to conservation laws: the
Rankine–Hugoniot relations

a) Conservation of mass

In this case C = ρ, and Eq. (6.10) becomes

ρ2v2 = ρ1v1,

where v is the normal component of V , v= V · N . Two situations may
occur:

1. The case of a contact discontinuity, that is, v2 = v1. In this case, one
has ρ2 = ρ1. Furthermore U2 · n = U1 · n and W · n = 0. The velocity
of �t is tangent to the stream lines.

2. In the other case, we have a shock wave. In this case, ρ2 �= ρ1, and the
discontinuity wave surface moves with respect to the medium. Its veloc-
ity has a component normal to the streamlines as well as a component
tangential to them.

b) Conservation of momentum

We take here C = ρUi , i = 1, 2, 3, which gives

d

dt

∫
�t

ρUi dx =
∫
�t

( fi + σi j, j ) dx .
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Owing to the presence of the term σi j, j , where σ is discontinuous as well on
�t , we need to modify the previous proof and extend it to the case in which
C is a vector or a tensor. A similar reasoning, not developed here, gives

[ρvU ] = [σ · N ],

and, setting ρ1v1 = ρ2v2 = m, we find

m[U ] = [σ · N ] = [T ].

In the case of a perfect fluid, σi j = −pδi j , and hence,

σi j N j = −pNi ,

which gives

m[U ]+ [pN ] = 0,

or else, by projecting onto N and onto the tangent plane to �t :

(UT )1 = (UT )2,

and

p1 + ρ1v
2
1 = p2 + ρ2v

2
2

because W · N is continuous, UT being the tangential velocity on the shock
surface.

Conservation of energy

We obtain, as a consequence of the conservation of energy, the condition[
ρv

(
e + 1

2
U 2

)
− T ·U + q · N

]
= 0,

with T = σ · N . Writing U = V +W , we see that

[mU 2] = m[V 2]+ 2m[V ] ·W,

[T ·U ] = [T · V ]+ [T ·W ]

= [T · V ]+ [T ]W

= [T · V ]+ m[V ] ·W,

which yields [
ρv

(
e + 1

2
V 2

)]
− [T V ]+ [q · N ] = 0.
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Remark 6.4: Actually, q must be continuous (conduction law), and there is
therefore no discontinuity for q. An interesting case to study is the adiabatic
case in which q = 0.

Remark 6.5: We do not pursue the study of shock waves any further be-
cause we would then need more results from thermodynamics, introducing in
particular entropy and the second law of thermodynamics. This is a natural
continuation of Section 6.1 that we refrain from developing.

To go further:
In the bibliography of Part One, we give several references, in French and
English, which allow to go further into several aspects related to the general
principles: more detailed analysis of the hypotheses, proof of some of the
results that we have assumed, additional developments (rheology, thermody-
namics). In French, the books by Duvaut, Germain, and Salençon are relevant
to this part; the point of view is sometimes different, less mathematical. In
English, the books by Gurtin and Spencer (very concise) are very useful, as
well as the book by Segel. The books by Goldstein and Ziegler emphasize by
analytical mechanics and mechanics of rigid bodies; the book by Truesdell
makes in particular a detailed analysis of the “axioms” of mechanics. The
book by Zemanski is one of the classical references on thermodynamics.

Exercises

1. The second principle of thermodynamics states that there exists a funtion
s, called entropy (per unit mass), such that the variation of entropy, in an
elementary transformation, is the sum of the variation of entropy due to
external supply and of the entropy produced inside the system. For a closed
system, the second principle is often written in the form

δQ = Tds − δ f, δ f ≥ 0 (Jouget relation), (6.11)

where T is the temperature, and δ f is called the non-compensated work.
Furthermore, it follows from the first and second principles that

de = Tds − p d
1

ρ
, (6.12)

where s is the entropy per unit mass and p is the pressure.
a) Show that the enthalpy per unit of mass h = e + p/ρ satisfies

dh = Tds + 1

ρ
dp. (6.13)
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b) We consider a perfect gas. In that case, we have

e = cv
γ
ργ−1es/cv , cv = r

γ − 1
. (6.14)

Show that p/ρ = (γ − 1)e = rT and that e = cvT .
2. Let h and s be defined as in Exercise 1. We call free energy and free

enthalpy the functions F = e − T s and G = h − T s respectively. Show
that

dF = −sdT − pd
1

ρ
, (6.15)

dG = −sdT + 1

ρ
dp. (6.16)

3. Let h and s be defined as in Exercise 1. We consider a two-dimensional
shock wave in a perfect fluid. We assume that the discontinuity is a sta-
tionary vertical straight line. We further assume that the external forces
are negligible and that the evolution is adiabatic. Finally, we assume that
the velocity vector is horizontal. As usual, we will use the index 1 for the
quantities before the shock and the index 2 after the shock.
a) Write the conservation of mass, momentum, energy, and enthalpy.
b) Same question as in a) for a perfect gas for which the state equation is

p = ρrT and the enthalpy is h = cρT .
c) Show that (p2/p1) − 1 = −γM2

1 (ρ1/ρ2 − 1) (here, M = v/c, c2 =
∂p/∂ρ, is the Mach number and, for a perfect gas, p = ργ es/cv ).

4. We consider here the same situation as in 3.a).

a) Show that h2 − h1 = 1

2
v1v2(p2/p1 − ρ1/ρ2) and that p2 − p1 =

v1v2(ρ2 − ρ1).

b) Deduce that h2 − h1 = 1

2
(p2 − p1)(1/ρ1 + 1/ρ2) and that e2 − e1 =

1

2
(p1 + p2)(1/ρ1 − 1/ρ2).

5. Same questions as in 3.a) and b) for a straight line making an angle ε

with the horizontal. Furthermore, we assume that the velocity v1 before
the shock is horizontal and that the velocity v2 after the shock makes an
angle β with the shock.



PART II

PHYSICS OF FLUIDS





CHAPTER SEVEN

General properties of Newtonian fluids

7.1. General equations of fluid mechanics

Our aim in this section is to return to, and study in more detail, the equations
of motion of a Newtonian fluid as well as the boundary conditions that are
associated with them.

Throughout this chapter, the fluid is represented by a material system S
that fills the domain �0 at time t = 0 and the domain �t at time t . We may
have �t = �0, which corresponds, for instance, to the case in which the fluid
in motion entirely fills a container of constant shape.

In the Eulerian representation, we will denote the density by ρ = ρ(x, t),
the volume forces by f = f (x, t), and the surface forces applied to the bound-
ary ∂�t of �t by F=F(x, t). We change our notation and, from now on, we
denote the velocity in the Eulerian representation by u = u(x, t) instead of
U (x, t); u(x, t) is then the velocity of the fluid particle occupying the position
x ∈ �t at time t .

The equations

The general equations governing the motion of a fluid are the continuity
equation (or mass conservation equation)

∂ρ

∂t
+ (ρui ),i = 0, in �t , (7.1)

and the conservation of momentum equation, which is a consequence of the
fundamental law of dynamics, namely

ργi = ρ

(
∂ui
∂t
+ u j

∂ui
∂x j

)
= fi + σi j, j , in �t .

103



104 Mathematical Modeling in Continuum Mechanics

For a Newtonian fluid, we have

σi j = 2µεi j + λεkkδi j − pδi j ,

where p = p(x, t) is the pressure and εi j = εi j (u) = 1
2 (ui, j + u j,i ). Conse-

quently,

σi j = µ
(
ui, j + u j,i

)+ λ(div u)δi j − pδi j ,

which yields

σi j, j = µui, j j + µu j, j i + λ(div u),i − p,i

= µ�ui + (λ+ µ)(div u),i − p,i ,

and thus, the conservation of momentum equation can be rewritten as

ρ

(
∂ui
∂t
+ u j

∂ui
∂x j

)
+ p,i − µ�ui − (λ+ µ)(div u),i = fi , in �t . (7.2)

In vector form, this reads

ρ

[
∂u

∂t
+ (u · ∇)u

]
+grad p−µ�u−(λ+µ)grad divu = f, in�t . (7.2′)

Equations (7.1) and (7.2) (or (7.2′)) are called the Navier–Stokes equations
for compressible fluids.1

By comparing the components, one easily checks that

u j
∂u

∂x j
= grad

|u|2
2
+ (curl u) ∧ u,

and Eq. (7.2) also reads, in vector form, as follows:

ρ

(
∂u

∂t
+ grad

|u|2
2
+ (curl u) ∧ u

)
+ grad p − µ�u − (λ+ µ)grad div u = f, in �t . (7.2′′)

In Eqs. (7.2), (7.2′), and (7.2′′), the constants λ and µ satisfy µ ≥ 0 and
3λ+ 2µ ≥ 0 (hence, (λ+ µ) ≥ 0). These positivity conditions are imposed
by thermodynamic considerations; in Section 7.3, we will come back to the
condition 3λ+ 2µ ≥ 0.

1 Some authors prefer to use the name Navier–Stokes equations for incompressible fluids only.
We will use this name without distinguishing between the two cases.



General properties of Newtonian fluids 105

Inviscid fluid

A fluid for which λ = µ = 0 is called an inviscid, or perfect, or nonviscous
fluid. For such a fluid, σi j = −p δi j (i.e., the stress tensor is spherical) and
Eqs. (7.2), (7.2′), and (7.2′′) become

ρ

(
∂ui
∂t
+ u j

∂ui
∂x j

)
+ p,i = fi , (7.3)

ρ

[
∂u

∂t
+ (u · ∇)u

]
+ grad p = f, (7.3′)

ρ

[
∂u

∂t
+ grad

|u|2
2
+ (curl u) ∧ u

]
+ grad p = f, (7.3′′)

where x ∈�t , t ∈ I. Equations (7.3) are called the Euler equations of inviscid
fluids.

Incompressible fluid

A fluid is said to be incompressible if the volume of any quantity of fluid
remains constant during its motion. For such a fluid, by using Eq. (1.8) of
Chapter 1 (with C = 1), we see that

div u = 0. (7.4)

If we further assume that the initial state is homogeneous, which means

ρ(x, 0) = ρ0 = Const.,

then

ρ(x, t) = ρ0, ∀ x ∈�t , ∀ t ∈ I, (7.5)

and Eq. (7.4) is equivalent to the continuity equation.
When the fluid is incompressible and homogeneous, Eqs. (7.2), (7.2′), and

(7.2′′) become, respectively,

∂ui
∂t
+ u j

∂ui
∂x j

+ 1

ρ
p,i = ν�ui + f ′i , (7.6)

∂u

∂t
+ (u · ∇)u + 1

ρ
grad p = ν�u + f ′, (7.6′)

∂u

∂t
+ curl u ∧ u + grad

( |u|2
2
+ p

ρ

)
= ν�u + f ′, (7.6′′)

where x ∈ �t and t ∈ I ; f ′ = f/ρ and ν = µ/ρ is called the kinematic
viscosity coefficient. Equations (7.4) and (7.6) constitute the Navier–Stokes
equations for incompressible homogeneous fluids.
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Remark 7.1 (Nonhomogeneous Incompressible Fluid): Equations (7.4) and
(7.6) remain valid for a nonhomogeneous incompressible fluid (for which
Eq. (7.5) is not valid). Equation (7.4) is, however, no longer equivalent to the
continuity equation, but the latter can be simplified and becomes

∂ρ

∂t
+ (u · ∇)ρ = 0, in �t . (7.1′)

The vorticity equation

The vorticity is the vector ω = curl u.
We assume that the fluid is incompressible and homogeneous. Setting

ω = curl u and taking the curl of (7.6′′), we find

∂ω

∂t
+ curl(ω ∧ u)− ν�ω = curl f ′, in �t . (7.7)

We can give an alternate formulation of this equation, which is not the
same in space dimension 2 or 3. Let us recall that, in space dimension 3, ω
is a vector function, whereas in space dimension 2, ω = ω3e3 has only one
nonzero component. We will set in this case ω = ω3, and we will say that the
curl is a scalar function.

The term curl(ω ∧ u) is different, depending on whether the flow
is two-dimensional or three-dimensional. A straightforward calculation
gives

curl(ω ∧ u) = (u · ∇)ω, if n = 2,

curl(ω ∧ u) = (u · ∇)ω − (ω · ∇)u, if n = 3.

Indeed, if n = 2, the only nonvanishing component of curl(ω∧ u) is the third
one, which is equal to

D1(ω3u1)+ D2(ω3u2) = u1(D1ω3)+ u2(D2ω3) = (u · ∇)ω

because div u = 0 (u3 = 0, ω3 = D1u2 − D2u1, Di = ∂/∂xi ). If n = 3, we
can derive the relation above by a simple comparison of the components. For
instance, the third component of curl(ω ∧ u) is

D1(ω3u1 − ω1u3)− D2(ω2u3 − ω3u2)

= (div ω)u3 + (u · ∇)ω3 − (ω · ∇)u3

= (u · ∇)ω3 − (ω · ∇)u3
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because divω = 0. The curl equation then becomes

∂ω

∂t
+ (u · ∇)ω− ν�ω = curl f ′, in space dimension 2, (7.7′)

∂ω

∂t
+ (u · ∇)ω− ν�ω= (ω · ∇)u+ curl f ′, in space dimension 3. (7.7′′)

If the fluid is inviscid, one has to take ν = 0 in these equations; for instance,
in space dimension 2, Eq. (7.7′) becomes

∂ω

∂t
+ (u · ∇)ω = curl f ′. (7.7′′′)

Remark 7.2: If f is the gradient (with respect to x) of a function V = V (x, t)
(one says in mechanics that “the forces derive from a potential”), then
curl f = 0. This is true, for instance, for gravitational forces.

Equation of state: barotropic fluid

For a compressible fluid, Eqs. (7.1) and (7.2) are not sufficient to describe the
motion fully. Indeed, they provide four equations for the five unknowns ρ, p,
and u. The missing equation is provided by the equation of state of the fluid
(see Chapter 5).

The equation of state of a fluid expresses p as a prescribed function of ρ
(the density) and e (the internal energy). In the case of a barotropic fluid, p
only depends on ρ as described by

p = g(ρ).

For thermodynamic reasons, g must satisfy

g > 0,
dg

dρ
> 0 and

d2g

dρ2
≥ 0.

We then set c2 = dg/dρ, c being the local sound velocity in the fluid.

Examples
1. If the gas is perfect with constant specific heat in isothermal evolution,

then p = kρ, k > 0, c = √k.
2. If the evolution is adiabatic, then p = kργ , k > 0, γ > 1 (γ = 1.4 for

the air); hence, c2 = kγργ−1 = k1/γ γ p(γ−1)/γ .
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Boundary conditions

To describe the motion of a fluid completely we need to know, in addition to
the general equations described above, the behavior of the physical quantities
at the boundary of the domain filled by the fluid: these are the boundary
conditions.

a) Case of a rigid wall

If the boundary is materialized and, say, fixed in a Galilean frame of reference,
we write first that the fluid cannot cross the boundary, which can be expressed
by the kinematic condition

u · n = 0, ∀ x ∈ ∂�t , ∀ t ∈ I. (7.8)

When the fluid is viscous and the boundary is materialized, the fluid does not
slip along the boundary; hence, the velocity of the fluid particle occupying
position x at time t is the same as the velocity g(x, t) of the material boundary,
that is,

u(x, t) = g(x, t), ∀ x ∈ ∂�t , ∀ t ∈ I. (7.8′)

b) Case of a nonmaterialized boundary (open boundary)

We consider here a nonmaterialized boundary �t (called open boundary), as
in Figure 7.1.(a); we can also consider the interface �′

t between two fluids as
in Figure 7.1.(b).

Kinematic conditions. For a perfect fluid, we write that u ·n is continuous
and that u · n = v · n on �t , where v is the velocity of �t , which may vanish;

Figure 7.1 (a) Nonmaterialized or open boundary; (b) Interface between two fluids.
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that is,

u · n = v · n on�t , case (a),
u1 · n = u2 · n = v · n on�′

t , case (b).
(7.9)

In the case of viscous fluids, the conditions of Eq. (7.9) are still valid; in
case (b), we also write that the velocity u is continuous:

u1 = u2 on�′
t .

Fluid Conditions. We have noted in Chapter 3 (Remark 3.3) that the
constraint vectors are continuous, which gives

σ · n = 0 on�t , case (a),
σ 1 · n = σ 2 · n on�′

t , case (b).

In the case of a perfect fluid, σi j = −p δi j , and these conditions reduce to

p = 0 on�t , case (a),
p1 = p2 on�′

t , case (b).

Other cases

When the temperature is not constant, we need to introduce other thermody-
namic quantities (the internal energy e, the enthalpy h, the entropy s, etc.) and
the equations of thermodynamics, an overview of which was given in Part 1.
Some elementary aspects of thermodynamics will appear in Chapter 9. Simi-
larly, electromagnetic phenomena may be involved: one then speaks of mag-
netohydrodynamics, some aspects of which will be mentioned in Chapter 11.
Finally, in the context of combustion, chemical phenomena are involved; see
Chapter 12.

7.2. Statics of fluids

We consider here a fluid at rest. Consequently u(x, t) ≡ 0, which yields
�t ≡ �0 for every t . The equations studied previously become

f = grad p (7.10)

for every Newtonian fluid, whether this fluid is viscous or not, compressible
or not, because σi j = −pδi j . We can then state the following result.

Theorem 7.1. If a fluid is at rest, the volume forces derive from a potential.

Next, we prove Archimedes’ principle for a body (fully) immersed in a
fluid.
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Theorem 7.2. (Archimedes’ Principle). The pressure forces exerted by a fluid
at rest on a completely immersed body define a helicoidal vector field that is
the opposite of that associated with the gravity forces acting on a volume of
fluid identical to that occupied by the body.

Proof: Let � be the domain occupied by the immersed body. Because the
fluid is at rest, we have, in the fluid,

σi j = −pδi j ,

and, with e3 pointing upwards in the vertical direction,

grad p = −ρge3.

The resultant of the pressure forces exerted by the fluid on the body is thus
equal to

−
∫
∂�

pn d� = −
∫
�

grad p dx,

=
∫
�

ρg�e3 dx ;

this resultant is opposite to that of the gravity forces on an identical volume
of fluid equal to

−
∫
�

ρg�e3 dx .

Furthermore, the momentum at O of the pressure forces is equal to− ∫
∂�

x ∧
np d� (if it is assumed that O is the center of mass of �). The first component
of the momentum at O is thus∫

∂�

(n2x3 − n3x2)p d� = (by Stokes formula)
∫
�

[(x3 p),2 − (x2 p),3] dx

=
∫
�

(x3 p,2 − x2 p,3) dx

= −
∫
�

(x ∧ grad p)1 dx (1st component)

=
∫
�

(x ∧ ρge3)1 dx = 0 (O center of mass of �).

Proceeding similarly with the other two components, we see that the momen-
tum at O of the pressure forces is indeed opposite to the momentum at O of
the gravity forces of the considered volume, namely,

−
∫
∂�

x ∧ np d� =
∫
�

x ∧ ρge3 dx = 0.
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Figure 7.2 Contact between two fluids.

Statics of incompressible fluids

For an incompressible homogeneous fluid, we have

f = grad p and f = −ρ0g�e3.

Therefore,

p = −ρ0g(x3 − h).

We now give some applications of these results.

a) Contact between two fluids

We consider two fluids F and F ′ with their respective densities and pressures
(ρ, p) and (ρ ′, p′); they are put in contact in a U -shaped tube, as shown in
Figure 7.2. We then obtain the following relation determining the position of
the fluids at equilibrium:

ρgh = ρ ′g(h + H ).

b) The Venturi device

The devices represented in Figures 7.3 and 7.4 were very important measuring
devices used in wind tunnels. Nowadays, they are generally replaced by
laser velocimetry devices but, for our purpose, it is interesting to see their
principle.
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Figure 7.3 The Venturi device.

Figure 7.4 The Pitot tube.

In the Venturi device (Figure 7.3), because the tube has a small cross section,
we can assume that the fluid that it contains is at rest. Then, the difference
between pressures at the ends of the tube is ρgh. Thanks to the Bernoulli
theorem that we will encounter in the next chapter, this difference of pressure
gives us the velocity of the fluid in the collar of the wind tunnel.
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c) The Pitot tube

The Pitot tube, which is similar to the Venturi device, measures the difference
of pressure between the front and the rear of an obstacle (e.g., a rocket). With
the help of the Bernoulli theorems, which we will see in Chapter 8, it allows
in some cases the calculation of the difference of velocities.

Statics of compressible barotropic fluids: a first approximation
in meteorology

We assume that the atmosphere is a compressible fluid at rest (in Chapter 10,
we will consider less-simplifying assumptions). Then,

f = −ρg�e3 = grad p;

hence,
∂p

∂x1
= ∂p

∂x2
= 0 and

∂p

∂x3
= −ρg.

Furthermore, the air being a barotropic fluid, the pressure is related to the
density by a relationship of the form2

p = ϕ(ρ),

which yields

∂ρ

∂x1
= ∂ρ

∂x2
= 0 and

∂ρ

∂x3
= − ρg

ϕ′(ρ)
.

When p = kρ (which is true for a perfect fluid with constant specific heat), it
follows that

∂ρ

∂x3
= dρ

dx3
= −ρg

k
,

which yields

ρ = ρ0 exp

(
− gx3

k

)
.

Because k = p0/ρ0, the pressure reads

p = p0 exp

(
−gρ0x3

p0

)
,

where x3 = 0 denotes the ground level, and p0 and ρ0 are, respectively, the
pressure and the density at the ground level.

2 The equation of state was written p = g(ρ) before, but here g is used for the gravitational
acceleration.
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7.3. Remark on the energy of a fluid

Our aim in this section is to show that the coefficients λ and µ appearing in
Eq. (7.2) satisfy the relations µ ≥ 0 and 3λ+ 2µ ≥ 0. To do so, we consider
the power of the internal forces. We have

Pint = −
∫
�t

σi j ui, j dx = −
∫
�t

σi jεi j dx .

Now

σi j ui, j = −pui,i + λ(div u)2 + 2µεi jεi j

= −p div u + ϕ(ε).

Let us set

P (1) = −
∫
�t

p div u dx and P (2) = −
∫
�t

ϕ[ε(u)] dx .

For an incompressible fluid, we will have P (1) = 0. In all cases (i.e., whether
the fluid is compressible or not), P (2) is equal to the power due to friction,
and the laws of thermodynamics require that P (2) ≤ 0; that is to say that ϕ is
a semidefinite positive quadratic form. But

ϕ = λ(ε11 + ε22 + ε33)2 + 2µ
(
ε2

11 + ε2
22 + ε2

33

)
+ 4µ

(
ε2

12 + ε2
13 + ε2

23

)
.

Therefore, ϕ is positive definite if and only if the quadratic form q =
λ(x + y + z)2 + 2µ(x2 + y2 + z2) is positive definite. By homogeneity,
it is necessary and sufficient that q be positive when x + y + z = 1; that is to
say µ ≥ 0 and q is positive for x + y + z = 1.

Thus, there should be no (x, y, z) satisfying

x2 + y2 + z2 < − λ

2µ
and x + y + z = 1,

which implies that the distance from O to the plane R with equation
x + y + z=1 is such that

[d(O, R)]2 ≥ − λ

2µ
.

Because d(O, R) = 1/
√

3, it follows that

3λ+ 2µ ≥ 0.
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Exercises

1. A viscous, homogeneous, incompressible and stationary fluid fills the
volume � ⊂ R

3. It is submitted to volume forces with volume density
f = f (x) and surface forces with surface density F = F(x) on the
boundary � = ∂�.
a) Write the equations of motion in terms of the stress tensorσ , the velocity

u, and f .
b) The constitutive law of such a fluid reads

σ D = 2µεD, (7.11)

σi i = (3λ+ 2µ)εi i − 3p, (7.12)

where p is the pressure and ε the deformation rate tensor. Write the
equations of motion in terms of u, p, and f .

c) Write the virtual power theorem for an arbitrary virtual velocity field
v = v(x).

2. We denote by p, ρ, and T the pressure, density, and temperature of the
atmosphere and we assume that the quantities are related by the perfect
gas law p = RρT . We assume that the atmosphere is at rest and that T
is a known function of the altitude x3. Compute the variation of p with
respect to x3.

3. A perfect, compressible fluid moves in a rectilinear tube with very small
constant section, parallel to the (0x) axis with unit vector −→x (the volume
forces are neglected). Let ρ(x, t), p(x, t), and

−→
U (x, t) = u(x, t)−→x be the

density, pressure, and velocity of the fluid at x , at time t . We assume that
the fluid satisfies the equation of state p = kρ. Show that u satisfies the
equation

∂2u

∂t2
+ ∂

∂x
(2u

∂u

∂t
+ u2 ∂u

∂x
) = k

∂2u

∂x2
. (7.13)

4. Rewrite Archimedes’principle for a partially immersed body, assuming
that the fluid and the body are at rest (thus, we assume that the surface of
the fluid is planar and horizontal).



CHAPTER EIGHT

Flows of inviscid fluids

This chapter is devoted to the study of flows of nonviscous (perfect) Newto-
nian fluids. We give some general results and then consider several specific
flows.

8.1. General theorems

We establish in this section several simple general theorems concerning flows
of perfect fluids; these are known as the Bernoulli and Laplace theorems.

We will only consider incompressible fluids (for which (1/ρ) grad p is a
gradient). We note, however, that the following analysis also applies to perfect
barotropic fluids for which the term (1/ρ) grad p is also a gradient, for, when
p = g(ρ), it can be written as

1

ρ
grad p = 1

ρ
g′(ρ) grad ρ = grad G(ρ),

where G(ρ) is an antiderivative of g′(ρ)/ρ.

The Bernoulli, Kelvin, and Lagrange theorems

We further assume that the mass density of forces derives from a potential,
that is,

f

ρ
= −grad V .

We then deduce from the fundamental law of dynamics that the acceleration
γ satisfies

γ = −grad

(
p

ρ
+ V

)
.
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We set H = (p/ρ) + V + 1
2 |u|2, and we obtain the following equation (see

Chapter 7):

∂u

∂t
+ curl u ∧ u + grad H = 0. (8.1)

This yields the following theorem.

Theorem 8.1 (Stationary Flows). If the fluid is incompressible and inviscid,
if the mass density of forces derives from a potential and the flow is stationary,
then H remains constant along each trajectory.

Proof: Because the flow is stationary, Eq. (8.1) becomes

(curl u) ∧ u + grad H = 0. (8.2)

Taking then the scalar product of Eq. (8.2) with u, we obtain

u · grad H = 0. (8.3)

Along a trajectory, u is parallel to the unit tangent vector and thus, owing
to Eq. (8.3), the derivative of H with respect to the curvilinear coordinate
vanishes; consequently, H remains constant.

Remark 8.1: If the mass density of forces vanishes (that is to say V = 0), then

p

ρ
+ 1

2
|u|2 = const. = p0

ρ0
+ 1

2
|u0|2 ,

along the trajectories, where p0, ρ0, and u0 are the values of p, ρ, and u at
some point of the trajectory. Therefore, the determination of p reduces to that
of kinematic quantities or, conversely, |u| is known once p is given (as well
as p0, ρ0, and |u0|).
Definition 8.1. A flow is irrotational if ω = curl u vanishes everywhere.

For irrotational flows, we have the following result:

Theorem 8.2 (Irrotational flows). Assume that an incompressible inviscid
fluid fills the domain �t at time t. If, moreover, the flow is irrotational, then
there exists a velocity potential, denoted by �(x, t) such that, on any simply
connected part of �t , we have

∂�

∂t
+H = C(t),

where C depends only on time.

Proof: Because curl u = 0, u can be written locally in the form

u = grad �.
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We then deduce from Eq. (8.1) that

grad

(
∂�

∂t
+H

)
= 0,

which yields, locally,

∂�

∂t
+H = C(t),

where C depends on the time t but not on x . This last relation is actually valid
with the same constant C(t) in any simply connected component of �t : the
potential � is then one-to-one. In addition, by replacing � by �−C∗, where
C∗ is an antiderivative of C , we can assume that C = 0. In a connected but
not simply connected component of �t , the functions are not one-to-one and
one has to remove lines or surfaces from �t to make it simply connected.

A straightforward consequence of Theorems 8.1 and 8.2 is the following
result.

Corollary 8.1. We assume, in addition to the hypotheses of Theorem 8.2, that
the flow is stationary. Then, H is constant on every simply connected part of
the domain filled by the fluid.

Theorem 8.3 (Bernoulli’s Theorem). For an irrotational flow of an inviscid
incompressible fluid, the velocity potential � is a harmonic function:

�� = 0.

Proof: Because the fluid is irrotational,

u = grad �,

locally, for some function �. The fluid being moreover incompressible

0 = div u = div grad �

= ��.

We will now give some consequences of the vorticity equation introduced
in Chapter 7.

Theorem 8.4 (Kelvin’s Theorem). We consider an inviscid incompressible
fluid for which the mass (or volume) density of forces derives from a potential.
Then, the flux of the vorticity vector through a surface moving with the flow
remains constant. Also, the circulation of the velocity vector along a closed
curve that moves with the flow remains constant.
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Remark 8.2: Let us recall that “a set that moves with the flow” is a set whose
preimage in the domain filled by the fluid at the initial time remains constant.

Proof: We are given a surface �t that moves with the flow. We admit here
the following equation, similar to Eqs. (1.7) and (1.8) of Chapter 1, in which
n is a unit normal to �t :

d

dt

∫
�t

ω · n d� =
∫
�t

{
∂ω

∂t
+ curl(ω ∧ u)

}
· n d�.

Using the curl equation (Eq. (7.7) of Chapter 7) with ν = 0 and f ′ = 0,
we see that the time derivative of the integral

∫
�t
ω · n d� vanishes, and the

first part of the theorem follows. Then, we recall without proof the following
formula from vector analysis: if �t is a surface with boundary �t , then∮

�t

u · τ d� =
∫
�t

curl u · n d� =
∫
�t

ω · n d�,

τ being the unit tangent vector to �t = ∂�t such that (τ, n) is direct. Hence,
if �t and �t move with the flow, the integrals above remain constant.

A first consequence of Theorem 8.3 is that the curl vector is a vector carried
by the flow (we need differential geometry to define this notion rigorously).
Nevertheless, it is now easy to prove the following result.

Theorem 8.5 (Lagrange’s Theorem). We consider the flow of an inviscid
incompressible fluid. If, at a given time, the flow is irrotational, then the flow
remains irrotational for all times.

Proof: According to Theorem 8.4, if �t is a surface moving with the flow,∫
�t

ω · n d� =
∫
�t ′

ω · n d�,

for every t and t ′. Therefore, if ω = 0 at time t ′, then∫
�t

ω · n d� = 0, ∀ �t ⊂ �t , ∀ t ∈ I.

As a result, ω = 0 in the whole domain �t for every time t.

Remark 8.3: Theorem 8.4 applies only to perfect fluids. In the case of a
viscous fluid, there will be a spontaneous generation of vorticity, even if the
flow is initially irrotational: this is due to the turbulence phenomenon, which
we briefly address in Chapter 9, Section 9.5.
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8.2. Plane irrotational flows

Our aim in this section is to study the plane irrotational and stationary flows of
inviscid incompressible fluids. We begin with several remarks of more general
interest.

Definition 8.2. A flow is a plane flow parallel to the plane π if every velocity
vector is parallel to π and if the velocity field is invariant by any translation
orthogonal to π .

Remark 8.4: In practice, the plane π will be chosen to be parallel to (Ox1x2)
so that every velocity vector will be of the form

�u =

u1(x1, x2, 0)

u2(x1, x2, 0)

0

 .

Velocity potential and stream function

We are given a plane incompressible flow. In what follows, the velocity vector
will be denoted by �u = (u, v), and we will write x, y instead of x1, x2:

�u = [u(x, y), v(x, y), 0].

The flow being incompressible,

∂u

∂x
+ ∂v

∂y
= 0,

and thus, there exists a stream function �, defined locally, such that

u = ∂�

∂y
, v = −∂�

∂x
.

Furthermore, the flow is irrotational; thus, curl �u = 0, and there also exists a
velocity potential �, defined locally, such that

�u = grad �;

that is to say

u = ∂�

∂x
, v = ∂�

∂y
.

Because div �u = 0, we see that �� = 0; that is, � is a harmonic function.
Similarly, because curl �u = 0, we see that �� = 0.
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It is easy to see that the functions � and � satisfy the Cauchy–Riemann
equations

∂�

∂x
= ∂�

∂y
,

∂�

∂y
= −∂�

∂x
,

and, consequently,

f (z, t) = (�+ i�)(z, t), z = x + iy,

is an analytic function of z. The function f is called the complex potential of
the flow. We note that it is not necessarily a one-to-one function in the whole
domain filled by the fluid. Furthermore,

d f

dz
= u − iv = u + iv.

a) Boundary conditions

Let us now specify the boundary conditions. On the boundary of a fixed
obstacle, we write the nonpenetration condition

�u · n = 0,

which is locally equivalent to

∂�

∂n
= 0, or

∂�

∂τ
= 0.

Remark 8.5: The preceding remarks can be extended to compressible baro-
tropic fluids for which (1/ρ)∇ p is a gradient.

b) Stream lines

The stream lines are the curves� = const. Indeed, on a stream line, the normal
is parallel to (�,x , �,y), and the tangent is parallel to (�,x ,�,y) = (u, v).

c) Equipotential lines

The equipotential lines are the curves � = const.

Remark 8.6: The stream lines and the equipotential lines are orthogonal at
every point.

Elementary stationary plane flows

Our aim is now to study elementary flows corresponding to simple functions
f . Apart from its intrinsic interest, this study will be useful, as we will see later,
in the consideration of more complex real flows such as the flow around an
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α
O x

Figure 8.1 Streamlines of a uniform flow.

airfoil in two-dimensional space. This corresponds to the classical approach
of airfoil theory in the early times of aeronautics, which was based on the
theory of analytic functions. At present, we tend to use numerical methods
instead (see the end of Section 8.2) for studying the flows around airfoils, but
these “historical” developments are still of interest.

Let us notice that every stream line that does not encounter a singularity
point of the velocity vector (see below) can be assumed to be a solid (material)
line as far as the boundary conditions are concerned. We thus obtain a perfect
fluid flow in each of the regions limited by the curve.

a) Uniform flows

For a uniform flow, we have f (z) = V0z exp(−iα). In this case, � =
V0(x cos α+ y sin α),� = V0(y cos α−x sin α), u = V0 cos α, v = V0 sin α,
and (d f/dz) = V0e−iα .

This is thus a uniform flow of velocity V0 in a direction at angle α with
Ox. The stream lines are the straight lines making an angle α with Ox, and
the equipotential lines are the straight lines making an angle α with the Oy
axis (see Figure 8.1).

b) Sources and sinks

We consider the case in which f (z) = (D/2π ) log z = (D/2π )(log r + iθ ),
z = reiθ , D being a real constant. Thus,

� = D

2π
log r, � = D

2π
θ,

d f

dz
= D

2π z
= D

2πr
e−iθ ,

u = D

2πr
cos θ, v = D

2πr
sin θ.

The stream lines are the straight lines containing O , the equipotential lines
are the circles centered at O , and O is a source or a sink (see Figure 8.2).
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(a) (b)

O O

Figure 8.2 Streamlines of a source (a), and a sink (b).

By definition, the flowrate of the source is described by∫
C
�u · n d�,

where C is any circle centered at O; hence, the flowrate is given by∫ 2π

0

D

2πr0
(cos2 θ + sin2 θ ) r0 dθ = D.

When D > 0, we say that O is a source, and when D < 0, we say that O is
a sink.

c) Singular point vortex

We set f (z)= (�/2π i) log z=−(i�/2π )(log r + iθ ), � ∈R. Hence, �=
(�/2π ) θ,� =−(�/2π ) log r , (d f/dz)=−(i�/2π z)=−(i�/2πr )e−iθ , u=
−(�/2πr ) sin θ , and v = (�/2πr ) cos θ .

The equipotential lines are the straight lines containing O , and the stream
lines are the circles centered at O . We notice that the flow is invariant by
rotation around O (see Figure 8.3).

d) Doublet

We set f (z)=−(K/2π z)=−(K/2πr )e−iθ , K ∈R. Then, (d f/dz)=
(K/2π z2), � = (K/2πr ) sin θ , � = −(K/2πr ) cos θ . Therefore, the stream
lines are the circles centered on the Oy axis and tangent to the Ox axis. Simi-
larly, the equipotential lines are the circles centered on theOx axis and tangent
to the Oy axis (see Figure 8.4).

We say that we have a doublet located at O , of axis Ox, and with intensity
or momentum K . More generally, we can define a doublet located at a point
M0 with complex coordinate z0 and with a direction making an angle α with
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O

Figure 8.3 Streamlines of a singular point vortex.

x

y

Figure 8.4 Streamlines of a doublet.

the Ox axis by setting f (z) = −Keiα/[2π (z− z0)] (to do so, make the change
of variables z = z0 + Zeiα).

e) Flow in an angle or around an angle

For such flows, f (z)= az2= ar2e2iθ , a ∈R. Then,� = ar2 sin 2θ = (a/2)xy,
�= ar2 cos 2θ = a(x2− y2), and (d f/dz)= 2az. We then conclude that the
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stream lines are the hyperbolas with asymptotes Ox, Oy (and the straight
lines x = 0 and y= 0). Also, the equipotential lines are the hyperbolas whose
asymptotes are the bisectors.

f) Flow with circulation around a circle

This flow brings us closer to the flow around an airfoil; it is obtained by
superposing a doublet in O , a uniform flow, and a singular point vortex.

The complex potential thus reads

f (z) = V0

(
z + R2

z

)
− i�

2π
log z;

in polar coordinates, the equation of the stream lines reads

V0

(
r − R2

r

)
sin θ − �

2π
log r = C,

and, if C = −(�/2π ) log R, we find a circle centered at O and of radius R.
This function f can thus describe the flow around the circle centered at O of
radius R.

We can also consider the flow around a circle with incidence α, which
corresponds to the complex potential

f (z) = V0

(
ze−iα + R2

z
eiα

)
− i�

2π
log z. (8.4)

We will not describe these flows, which can be rather complex depending
on the values of α, �, V0, and R; however, let us mention that the circulation
of the velocity vector around the circle is precisely equal to �. As we will
see, the circulation is important because it is related to the lift (the vertical
component of the resultant of the pressure forces exerted by the fluid on the
airfoil).

Computation of the forces on a wall: Blasius formulas

We indicate here how the resultant of the pressure forces exerted by the fluid
on a closed curve C may be computed using the analytic function f , which
corresponds to the complex potential in one of the regions limited by C (and
such that C is a stream line). The corresponding formulas are called the Blasius
formulas. Of course, for a three-dimensional flow, these are the forces per unit
length in the orthogonal direction to the plane.

The density of surface forces is T = σ · n = −pn and, thanks to
Bernoulli’s theorem, p+ 1

2ρ |�u|2 = p1, where the constant p1 is the pressure
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at the rest point along the stream line (i.e., the point of vanishing velocity or
the point of maximal pressure). Thus,

p = p1 − 1

2
ρ

∣∣∣∣d fdz
∣∣∣∣2 .

We set n = n1 − in2, T = T1 − iT2. Therefore,

T = −pn

= −p

(
dy + idx

ds

)
= −i p dz̄

ds

= −i p1
dz̄

ds
+ i

2
ρ
d f

dz
· d f̄
ds

.

On C,

d f

ds
= d�

ds
+ i

d�

ds
,

d�

ds
= 0, and d f = d f̄ ,

and thus, the general resultant of the pressure forces is equal to

F = −
∫
C
i p1

dz̄

ds
+ iρ

2

∫
C

(
d f

dz

)2

dz;

that is to say

F = iρ

2

∫
C

(
d f

dz

)2

dz. (8.5)

Similarly, the momentum at O of the pressure forces is given by

M =
∫
C

(xT2 − yT1) ds =
∫
C

Re(i zT ) ds

= Re
∫
C
zp1

dz̄

ds
ds − ρ

2
Re

∫
C

d f

dz

d f̄

ds
z ds

= p1Re
∫
C

d

ds

( |z|2
2

)
ds − ρ

2
Re

∫
C
z

(
d f

dz

)2

dz;

hence,

M = −ρ

2
Re

∫
C
z

(
d f

dz

)2

dz. (8.6)
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Equations (8.5) and (8.6) are called the Blasius formulas.

Remark 8.7: The integrals appearing in the expressions of F and M can
be computed, for instance, by the residue method well known in complex
analysis. In particular, for the calculation of these integrals, it is possible to
deform the curve C continuously as long as it does not encounter a singularity
point.

Airfoil theory: the analytic approach

a) The Kutta–Joukowski condition

As we said, in the classical approach, the computation of airfoils is based
on the theory of analytic functions. The aim is to determine the closed curve
C and the analytic function f defined in the infinite open set delimited by
C; C must be a stream line and must satisfy certain desirable properties – in
particular, it should produce a satisfactory lift (vertical component of F).

Such functions f are obtained by adding (superposing) simple functions
f as above and by using conformal mappings, i.e., setting,

z̃ = h̃(z), z = h(z̃),

where h and h̃ are analytic functions in some suitable regions of C. The
interested reader can consult the specialized literature for more details. We
only indicate here a few essential aspects.

An important particular case is the one in which we start with the flow
around a circle as above (see Eq. (8.4)); then, we consider a conformal map-
ping having a singular point on the circle. This gives a flow around a profile
having an angle δπ , 0 < δ < 1, as in Figure 8.5. The function h is then of
the form

z = zF + a(z̃ − z̃ F̃ )q + (terms of order > q),

where

(2− δ)π = qπ, q = 2− δ.

We have

dz

dz̃
= a(2− δ)(z̃ − z̃ F̃ )1−δ + (terms of order > 1− δ),

d f

dz
= d f̃

d z̃
· dz̃
dz

[ f̃ (z̃) = f (h(z̃))];
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Figure 8.5 Trailing edge.

then (d f/dz) and the velocities are infinite at zF , which is unacceptable unless

d f̃

d z̃
(z̃F ) = 0, (8.7)

that is, with z̃F = Reiβ ,

V0
(
e−iα − ei(α−2β)

)− i�

2πR
e−iβ = 0. (8.7′)

The condition defined by Eqs. (8.7) and (8.7′), which is called the Kutta–
Joukowski condition, allows the determination of the circulation �; it is im-
portant in aeronautical engineering.

By applying the Blasius formulas, a simple calculation using analytic func-
tion theory shows that M = 0 and F = iρ�V0eiα; thus, the drag (i.e., the
component of F on the velocity at infinity V0eiα) vanishes, whereas the lift,
which is the component ofF in an orthogonal direction, has an algebraic mea-
sure on this axis equal to−ρ�V0; the lift is proportional to �, which explains
the practical importance of the circulation � and of the Kutta–Joukowski
formula in aeronautical engineering.

b) Numerical methods

As mentioned above, analytic methods tend to be replaced at present by
numerical methods that allow more flexibility in the choice of the line C.
Also, besides solving the fluid mechanics problem, they open the way to the
solution of optimization problems of an economical nature: for instance, we
look for a profile C that maximizes or minimizes certain parameters of the
flow (e.g., that maximizes the lift, but other problems could be important as
well).
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Figure 8.6 Numerical methods.

Numerical methods do not allow us, in general, to make calculations in the
whole space; therefore, we usually replace the space R

2 by a large enough
rectangle, 0 < x < �, |y| ≤ L , and we then solve a boundary value problem
for � or � in the open set consisting of the part of the rectangle outside of C
(see Figure 8.6).

For instance, for �, we write that

�� = 0, in �,

� = γ = const., on C;

the constant γ is unknown, but the Kutta–Joukowski condition gives an alge-
braic condition that “compensates” for this lack of information:∫

C

∂�

∂n
d� = �.

Finally, the boundary conditions on the boundary of the rectangle are fixed
empirically by assuming that the rectangle is large enough so that we can
neglect, on its edges, the perturbations induced by the profile. Thus, for in-
stance, we can reasonably assume that

� = V0y, at x = 0, |y| ≤ L ,

� = V0y, or
∂�

∂n
= ∂�

∂x
= 0, at x = �, |y| ≤ L ,

� = ±V0L , for y = ±L , 0 < x < �.



130 Mathematical Modeling in Continuum Mechanics

The preceding equations constitute a mathematically well-posed problem
whose numerical solution is relatively easy with today’s computers.

8.3. Transsonic flows

In this section, we consider plane, irrotational, and stationary flows of com-
pressible inviscid fluids. As in Section 8.2, the velocity field will be denoted by

�u =

 u

v

0

 (x, y).

The continuity equation then becomes

div(ρ �u) = 0,

that is to say

∂

∂x
(ρu)+ ∂

∂y
(ρv) = 0,

and the irrotationality condition is

∂u

∂y
= ∂v

∂x
.

Furthermore, the momentum equation reduces to

ρ grad

(
1

2
|�u|2

)
+ grad p = f ;

it allows us to compute p once ρ and |�u| are known (provided ρ grad ( 1
2 |�u|2)

is indeed a gradient).
In what follows, we will assume that f = 0 and that the fluid is barotropic.

The momentum equation then becomes (see Chapter 7)

∇
(

1

2
|�u|2

)
+ 1

ρ
g′(ρ)∇ρ = 0, (8.8)

which implies (the integral denoting a primitive):∫
g′(ρ)

ρ
dρ + 1

2
|�u|2 = const. (8.9)

The density ρ is a function of the magnitude |�u| of �u according to Eq. (8.9).
The quantity (dp/dρ) = c2 = g′(ρ) is called (represents) the local sound
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velocity. Finally, we set [dp(ρ)]/ρ = dh(ρ) with h denoting the specific
enthalpy. Then, Eq. (8.9) can be rewritten as

h + 1

2
|�u|2 = const. (8.10)

On the other hand, owing to the irrotationality, a velocity potential � exists
such that, locally,

u = ∂�

∂x
, v = ∂�

∂y
.

Similarly, there exists a funtion � satisfying

ρu = ∂�

∂y
, ρv = −∂�

∂x
.

The functions � and � then satisfy the following equations:

∂

∂x

(
ρ
∂�

∂x

)
+ ∂

∂y

(
ρ
∂�

∂y

)
= 0, (8.11)

∂

∂x

(
1

ρ

∂�

∂x

)
+ ∂

∂y

(
1

ρ

∂�

∂y

)
= 0. (8.12)

According to Eq. (8.9), ρ is a function of |�u|2, and Eqs. (8.11) and (8.12)
are nonlinear equations for � and �, respectively. Despite their apparent
simplicity, these equations are actually very complicated, and their math-
ematical theory (addressing such questions as existence and uniqueness
of solutions and their approximation) is far from being complete at this
time.

In the flow, the functions h, p, ρ, and c are decreasing functions of the
variable q = |�u|. Indeed, h = const. − q2/2, which implies that h(q) is
decreasing. Because (dp/dh) = ρ > 0, the function p(h) is increasing,
and thus q �→ p(q) is decreasing. Furthermore, p = g(ρ), with g′(ρ) > 0.
Therefore, p(ρ) is increasing, which implies that ρ(p) is increasing and ρ(q)
is decreasing. Finally, c2 = (dg/dρ) with (d2g/dρ2) ≥ 0; hence, (dc2/dρ) ≥
0 and c2(ρ) is increasing. We then deduce that c = c(q) is a decreasing
function.

Definition 8.3. The local Mach number of the flow is the number M = (q/c).
The Mach number is an increasing function of q. At a point where M > 1,
the flow is said to be supersonic, and it is said to be subsonic if M < 1. The
line M = 1 is the sonic line.
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We are now interested in the quantity ρq:

d(ρq)

ρq
= dq

q
+ dρ

ρ
= dq

q
+ dh

c2

= dq

q
− q

c2
dq = dq

q
(1− M2).

Thus, ρq, as a function of q, reaches a maximum for M = 1.
All the scalar functions are expressed (or can be expressed) in terms of q;

it remains to express �u in terms of q. We have

dρ

ρ
= dp

c2ρ
= dh

c2
= −q dq

c2
,

1

ρ
∇ρ = − 1

2c2
∇(q2).

Therefore, the equation satisfied by � becomes

ρ�,xx + ρ�,yy + ∇ρ · ∇� = 0;

that is to say

�,xx +�,yy + 1

ρ
∇ρ · ∇� = 0.

Thus,

�,xx +�,yy − 1

c2

(
�2

,x�,xx + 2�,x�,y�,xy +�2
,y�,yy

) = 0.

After simplification, we obtain the following equation for �:(
1− �2

,x

c2

)
�,xx − 2

c2
�,x�,y�,xy +

(
1− �2

,y

c2

)
�,yy = 0. (8.13)

We consider the coefficients of �,xx ,�,xy,�,yy and set

δ

4
= �2

,x�
2
,y

c4
−
(

1− �2
,x

c2

)(
1− �2

,y

c2

)

= �2
,x +�2

,y

c2
− 1

= M2 − 1.

According to the theory of partial differential equations (see Section 8.5),
when the flow is supersonic, M > 1, Eq. (8.13) is hyperbolic and there is
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Figure 8.7 Numerical methods.

wave propagation (shock waves). In the region where the flow is subsonic,
M < 1, Eq. (8.13) is elliptic. As we have already said, Eq. (8.13) is at
this time out of reach from the theoretical point of view. However, it can be
solved numerically fairly well. To do so, as in the incompressible case, we
restrict the spatial domain to a large rectangle containing C, 0 < x < �,
|y| ≤ L (see Figure 8.7). The rectangle is sufficiently large for the pertur-
bations induced by C to be small (negligible) on the outer boundary of the
rectangle.

Then, Eq. (8.13) is solved in the domain � consisting of the part of the
rectangle outside of C. This equation is supplemented by the boundary con-
ditions

∂�

∂n
= 0, on C,

and, for instance (this is an approximation), the following:
±∂�

∂n
= −∂�

∂x
= −V0, for x = 0 or �, |y| ≤ L ,

±∂�

∂n
= ∂�

∂y
= 0, for y = ±L , 0 < x < �.

Remark 8.8:

1. We can derive a similar boundary value problem for the function �.
However, this equation is less interesting than in the plane irrotational
case where the density is a function uniquely defined by the value of
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|∇�| as we just saw. However, for a given value of |∇�|, there exist
two possible values of the density which correspond, respectively, to
subsonic and supersonic flows.

2. The next step, in aerodynamics, is to abandon the irrotationality condi-
tion and to introduce the viscosity.

8.4. Linear accoustics

Sound propagates in air or water by infinitesimal variations of the density
and pressure, for these fluids are compressible. The equations of linear acous-
tics are deduced from the equations of compressible fluids by assuming that
the motions of the fluid (air, water) are very small and by using asymptotic
expansions.

Indeed, because of the complexity of the problems to be solved, we want
to take advantage of the fact that certain parameters are small (or large), and
we are then led to make linearizations that lead to simplified models. The
principle of linearization is very simple: we have a small parameter η, and
we make assumptions on the scale order of the different physical quantities
with respect to η. This last point is the most delicate one, and it necessi-
tates, in the absence of rigorous mathematical proofs, a good understanding
of the physics of the problem. As examples of linearized flows, we can
mention the linearized models for the study of wave propagation in fluids
or gases, or the Stokes equations. Other wave phenomena will be studied
in the fourth part of this book by using much more involved asymptotic
expansions.

Our aim in this section is to study small motions of a perfect compressible
fluid, and this will lead to the equations of linear acoustics. We assume that the
fluid is barotropic, near rest, and that it is not subjected to any external force.
We will denote by p0, ρ0, and c0 the state of the fluid at rest; p0, ρ0, and c0

denote the pressure, the volume density, and the sound velocity, respectively.
We finally make the following assumption.

“Infinitesimal” motion assumption

We assume that the velocity u, the pressure p, and the density ρ are of the form

u = ηū + o(η), p = p0 + η p̄ + o(η), ρ = ρ0 + ηρ̄ + o(η),

the asymptotic expansions above being understood in Ck(�̄× [0, T ]), k = 2
or 3 in general.
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We then make formal asymptotic expansions of the equations. The conti-
nuity equation (at order o(η)) thus becomes

η
∂ρ̄

∂t
+ div(ρ0ηū) = 0;

hence,

∂ρ̄

∂t
+ ρ0 div ū = 0. (8.14)

In the momentum equation, we similarly neglect the terms of order η2 or
higher. There remains

ρ0
∂ ū

∂t
+∇ p̄ = 0. (8.15)

Because p̄ = dg
dρ (ρ0) · ρ̄ + o(1), we find, neglecting the terms in η of order

greater than 2,

p̄ = c2
0ρ̄. (8.16)

Then, by elimination of ū, we finally obtain

∂2ρ̄

∂t2
− c2

0�ρ̄ = 0. (8.17)

This last equation is called the wave equation. It is hyperbolic (see the ap-
pendix to this book), and it models wave propagation phenomena (e.g., here,
propagation of sound); c0 is precisely the velocity of propagation of the waves
(see Chapter 18).

Remark 8.9: The prototype of the wave equation is ✷ρ = 0, where ✷ denotes
the Dalembertian, and corresponds to c0 = 1 in Eq. (8.17).

By proper substitution, we can also obtain similar wave equations for p̄
and ū:

∂2 p̄

∂t2
− c2

0� p̄ = 0,

∂2ū

∂t2
− c2

0 grad div ū = 0.

Exercises

1. We consider the motion of a stationary, perfect, incompressible fluid
with specific mass ρ submitted to gravity and for which the velocity
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U is given by

U1 = − x2

r
�(r ), U2 = x1

r
�(r ), U3 = �(r ), r =

√
x2

1 + x2
2 . (8.18)

a) Show that the motion is compatible with the dynamics of perfect, in-
compressible fluids.

b) Compute the streamlines.
c) Compute � and � for the motion to be irrotational and then give the

pressure law.
2. We consider the planar motion of a stationary, incompressible, irrota-

tional fluid defined by the complex potential f (z) = m log
(
z − 1

z

)
,

m > 0.
a) Compute the stream function ψ and the velocity potential φ.
b) Show that the coordinate axes and the unit circle are streamlines.

3. We consider a planar, non-stationary flow defined at each time t by the
velocity vector U = (u, v),

u = αceky sin[k(x − ct)],

v = −αceky cos[k(x − ct)],

with α, k, c > 0. We denote by 0z the axis orthogonal to (0xy). Show that
the fluid is incompressible and irrotational and compute the streamlines at
t = 0.

4. We consider a perfect gas having an adiabatic, stationary, and irrotational
motion. We assume that the velocity potential is of the form �(r ), r being
the distance of the fluid particle to the origin.
a) Show that the velocity

−→
U and the density ρ only depend on r .

b) Show that r2ρU = const (where
−→
U = U (r )−→er ).

c) Compute r2 in terms of the Mach number M and show that the motion
is impossible inside a sphere (S) to be determined (we assume that U 2 =
c2

0M
2/[1 + (γ − 1)M2/2] and ρ = ρ0(1 + γ − 1

2
M2)−

1
1−γ , c0 being the

sound velocity and γ the adiabatic index).
5. An inviscid fluid of density ρ flows by a small opening of radius r out of

the base of a large container. We further assume that the pressure in the
opening is constant and equal to that at the free surface in the container
and that the equilibrium of the fluid in the container is not affected (i.e.,
the flow remains stationary). Compute the flow rate.



CHAPTER NINE

Viscous fluids and thermohydraulics

This chapter is devoted to the study of some problems of viscous fluid mecha-
nics and of thermohydraulics. We describe several simple classical problems
and introduce through these elementary examples very complex phenomena
of viscous fluids – in particular turbulence and boundary layers.

9.1. Equations of viscous incompressible fluids

To start with, we briefly recall the Navier–Stokes equations governing the
motion of a viscous incompressible homogeneous fluid (these equations have
been described in Chapter 7). The velocity u = (u1, u2, u3) and the pressure
p, functions of x and t , satisfy the equations

ρ0

(
∂u

∂t
+

3∑
i=1

ui
∂u

∂xi

)
+ grad p = µ �u + f, (9.1)

div u = 0, (9.2)

which we supplement with the no-slip boundary condition

u = ϕ at the boundary, (9.3)

where ϕ is a sufficiently regular given function in the case of a rigid boundary;
in the case of a free (open) boundary, the boundary conditions are

u · n = 0, (σ · n)τ = 0, at the boundary, (9.3′)

where (v)τ denotes the tangential component of a vector v.

137
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9.2. Simple flows of viscous incompressible fluids

We now describe several classical examples of viscous incompressible sta-
tionary flows.

Poiseuille flow between two parallel planes

a) The two-dimensional case

We consider stationary two-dimensional flows between two fixed parallel
planes with equations x2 = ±h and without external forces. We look for
velocity fields u = (u1, u2) such that u2 = 0 and u1 = u1(x2) so that
div u = 0. The Navier–Stokes equations then reduce to

−µ∂2u1

∂x2
2

+ ∂p

∂x1
= 0,

∂p

∂x2
= 0,

which yields p = p(x1). Moreover,

dp

dx1
(x1) = µ

d2u1

dx2
2

(x2),

and this common value is necessarily a constant denoted by −K ; K is the
gradient of the pressure drop (linear rate of pressure drop) and is equal to the
pressure drop by unit length. Then,

p = −Kx1,

u1 = − K

2µ
x2

2 + αx2 + β;

the no-slip boundary conditions then yield

u1 = K

2µ

(
h2 − x2

2

)
.

We observe that the velocity profile is parabolic (Figure 9.1).

If we assume that the upper plane x2 = h moves with velocity U0
→
e 1 and

that the lower plane is fixed (in this case, we assume for simplicity that its
equation is x2 = 0), we still have

u1 = − K

2µ
x2

2 + αx2 + β,
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Figure 9.1 Velocity profile for the Poiseuille flow.

and, taking into account the boundary conditions:

u1 = − K

2µ
x2(x2 − h)+U0

x2

h
.

If K = 0, u1 is linear, and the corresponding flow is called the Couette flow.

b) The Three-Dimensional Case

We consider again stationary flows between two parallel planes of equa-
tions x3 = ±h in the absence of external forces, and we look for a veloc-
ity field u such that u2 = u3 = 0 and u1 = u1(x3). As above, it follows
that

p = −Kx1,

u1 = K

2µ

(
h2 − x2

3

)
,

(9.4)

when the planes are fixed, and

u1 = − K

2µ
x3(x3 − h)+U0

x3

h
,

when the upper plane moves with velocity U0�e1 and the lower plane (of
equation x3 = 0) is fixed.



140 Mathematical Modeling in Continuum Mechanics

Figure 9.2 (a) Flow in a cylindrical tube; (b) Section � of the tube.

Poiseuille flow in a cylindrical tube

We now consider a cylindrical tube with axis Ox1 and cross section �, and
we look for a flow such that the stream lines are parallel to Ox1 so that
u2 = u3 = 0 and u1 = u1(x2, x3) (Figure 9.2). It then follows that

−µ �u1(x2, x3)+ ∂p

∂x1
= 0,

∂p

∂x2
= ∂p

∂x3
= 0.

Consequently, p depends only on x1, and we infer, as above, the existence of
a constant K such that

dp

dx1
= µ �u1 = −K .

The flow is entirely determined by the function u1(x1, x2), which is a solution
of the following boundary value problem in � (which is called the Dirichlet
boundary value problem):{

−µ �u1 = K in �,

u1 = 0 on ∂�.

Let us study the particular case in which � consists of the disc with polar
equation r ≤ R. We recall that, in cylindrical coordinates,

�u1 = ∂2u1

∂r2
+ 1

r

∂u1

∂r
+ 1

r2

∂2u1

∂θ2
,
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and we look for a solution u1 such that ∂u1/∂θ = 0; hence,

1

r

∂

∂r

(
r
∂u1

∂r

)
= −K

µ
,

and

u1 = − K

4µ
r2 + α log r + β.

The continuity of u at 0 implies α= 0 and, taking into account the boundary
conditions (u1 = 0 at r = R), we finally obtain

u1 = K

4µ
(R2 − r2). (9.5)

Remark 9.1: This result is at the very heart of empirical (engineering) calcu-
lations for flows in pipes. The flowrate in the channel is given by

D =
∫
�

u1(x2, x3) dx2 dx3 = 2π
∫ R

0
u1(r )r dr.

Hence,

D = KπR4

8µ
.

The flowrate is thus proportional to the linear pressure drop K and to
the fourth power of the radius. We recover the experimental laws of
Poiseuille.

Remark 9.2: In practice, these results are valid for small radii and moderate
pressure gradients. If these conditions are not satisfied, the flow may be turbu-
lent, and the solution may become time dependent or stationary but different
from this one (we will come back to this in more detail in Section 9.5, which
introduces turbulence).

Flows between two coaxial cylinders (Couette–Taylor flows)

We start by writing the Navier–Stokes equations in cylindrical coordinates in
the absence of external forces; we will not present the calculations (change
of coordinate system) leading to these equations. Let (r, θ, z) be the system
of cylindrical coordinates. We set u = urer + uθeθ + uzez , where (e1, e2, e3),
as usual, denotes the canonical basis of R

3 and (er , eθ , ez = e3) is the local
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basis in cylindrical coordinates:

∂ur
∂t
− ν

(
�ur − ur

r2
− 2

r2

∂uθ
∂θ

)
+ u · ∇ur − u2

θ

r
+ 1

ρ

∂p

∂r
= 0, (9.6)

∂uθ
∂t
− ν

(
�uθ + 2

r2

∂ur
∂θ

− uθ
r2

)
+ u · ∇uθ + uruθ

r
+ 1

ρr

∂p

∂θ
= 0, (9.7)

∂uz

∂t
− ν�uz + u · ∇uz + 1

ρ

∂p

∂z
= 0; (9.8)

we have, for a scalar function v:

∇v = ∂v

∂r
er + 1

r

∂v

∂θ
eθ + ∂v

∂z
ez,

�v = 1

r

∂

∂r

(
r
∂v

∂r

)
+ 1

r2

∂2v

∂θ2
+ ∂2v

∂z2
.

We now study the stationary flow between two concentric cylinders of axis
Oz, of radii R1 and R2, with 0< R1 < R2. We assume that these cylinders
rotate with angular velocities ω1 and ω2, respectively. We look for radial
solutions, that is, solutions such that uz = 0, and ur , uθ , and p depend only
on r . Thus,

div u = 1

r

∂

∂r
(rur )+ 1

r

∂uθ
∂θ

+ ∂uz

∂z

= 1

r

∂

∂r
(rur ) = 0,

which yields

rur = c0 (const.);

hence,

ur = c0

r
,

and, according to the boundary conditions (ur = 0, at r = R1, R2), c0 = 0
and ur = 0. It now remains to determine uθ and p. The equations become,
after some simplifications (and also setting ρ = 1)

−u2
θ

r
+ ∂p

∂r
= 0, (9.9)

−ν
[

1

r

∂

∂r

(
r
∂uθ
∂r

)
− uθ

r2

]
= 0. (9.10)
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Equation (9.10) is equivalent to

∂2

∂r2
(ruθ )− 1

r

∂

∂r
(ruθ ) = 0.

We set y = (ruθ )′, (∂/∂r =′), and it follows that

y′ − 1

r
y = 0;

hence,

y = Cr,

which leads to

∂

∂r
(ruθ ) = Cr.

Finally,

uθ = Cr + D

r
,

whereC and D are constants. These constants are determined by the following
boundary conditions:

uθ = Riωi for r = Ri , i = 1, 2.

Hence, by straightforward calculations

C = R2
1ω1 − R2

2ω2

R2
1 − R2

2

,

D = − R2
1 R

2
2(ω1 − ω2)

R2
1 − R2

2

.

Finally,

uθ = R2
1ω1 − R2

2ω2

R2
1 − R2

2

r − R2
1 R

2
2(ω1 − ω2)

r
(
R2

1 − R2
2

) . (9.11)

Substituting Eq. (9.11) in Eq. (9.9), we obtain

∂p

∂r
= C2r + D2

r3
+ 2

CD

r
;

hence,

p = C2 r
2

2
− D2

2r2
+ 2CD log r,

where C and D are as defined in the equations above.
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Remark 9.3: The expressions of uθ and p above allow, by an elementary
calculation, the determination of the torque (per unit of length) that must be
applied to the rotating cylinders to maintain their uniform rotations.

9.3. Thermohydraulics

The general equations of Newtonian fluids described in Chapter 7 were de-
rived under the assumption that the fluid does not conduct heat or that the
temperature remains constant. We now present the Boussinesq equations.
These equations govern the evolution of slightly compressible fluids when
thermal phenomena are taken into account.

The local temperature T = T (x, t) is governed by Eq. (6.6) of Chapter 6,
which is equivalent to the energy equation. With the change of notations
undertaken in Chapter 6 (θ,U, κ replaced by T, u, κ̃ , respectively), assuming
that CV = 1 and, as is customary, neglecting the term σi jUi, j , we find

ρ0

(
∂T

∂t
+ (u · ∇)T

)
− κ̃�T = r ; (9.12)

in the absence of heat sources, r = 0, and, setting κ = κ̃/ρ0, we obtain

∂T

∂t
+ (u · ∇)T − κ �T = 0; (9.13)

κ is called the thermal diffusion coefficient.
In the Boussinesq approximation for slightly compressible homogeneous

fluids, Eqs. (7.1) and (7.2) of Chapter 7, which express the mass and momen-
tum conservation laws, are simplified as follows:

ρ is assumed to be constant (= ρ0) everywhere in the equations, except
in the gravity force term.

For the gravity forces, ρ is replaced by a linear function of T (linear state
equation for the fluid) as follows:

ρ = ρ0 − α(T − T0).

Thus, Eq. (7.1) of Chapter 7 reduces to

div u = 0, (9.14)

and Eq. (9.2) becomes

∂u

∂t
+ (u · ∇)u + ∇ p

ρ0
− ν�u = αg

ρ0
k(T − T0), (9.15)
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where k is the unit upward vertical vector. Equations (9.13), (9.14),
and (9.15) constitute the Boussinesq equations of slightly compressible
fluids.

As usual, we supplement these equations with boundary conditions: for
u, they are those described in Section 1 above or in Chapter 7. For T , the
boundary conditions are of the Dirichlet (conductive material at the boundary,
prescribed temperature) or the Neumann type (prescribed heat rate on ∂�).
Boundary conditions of mixed type combine these two situations.

The Bénard problem in thermohydraulics consists of studying the heating,
from the bottom, of a horizontal layer of fluid confined between the planes
x2 = 0 and x2 = L2.

We assume that the fluid is confined in the domain� = (0, L1)× (0, L2) in
space dimension two, and � = (0, L1)× (0, L2)× (0, L3) in space dimension
three. If (e1, e2, e3) denotes the canonical basis of R

3, e2 vertical pointing
upward, then the equations of motion are (9.13), (9.14), and (9.15) with
k = e2. Let us assume, for instance, that the boundaries of � are ma-
terialized and fixed, that the lower and upper walls conduct heat and are
heated at the temperatures T1 and T2, respectively, and T1 > T2; we finally
assume that the lateral walls do not conduct heat. Under these hypotheses,
Eqs. (9.13), (9.14), and (9.15) are supplemented with the following boundary
conditions:

u = 0, on ∂�, (9.16)

T = T1, for x2 = 0, and T = T2, for x2 = L2

∂T

∂n
= 0, on the lateral boundary of �;

 (9.17)

∂T/∂n = n · grad T is the normal derivative of T, that is, the scalar product
of grad T with the unit outward normal vector n.

It is easy to see that the following relations define a solution of Eqs. (9.14)
and (9.15) that corresponds to the equilibrium of the fluid, the temperature
being diffused by conduction:

us = 0, Ts = T1 + x2

L2
(T2 − T1),

ps = αg

[
(T1 − T0)x2 + x2

2

2L2
(T2 − T1)

]
,

ρs = ρ0 − α(T1 − T0)− αx2

L2
(T2 − T1).


(9.18)

This is a stationary solution.
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Setting θ = T − Ts andq = p−ps , we then obtain the following equations:

∂u

∂t
− ν�u + (u · ∇)u + 1

ρ0
∇q = e2

gα

ρ0
θ, (9.19)

div u = 0, (9.20)

∂θ

∂t
− κ �θ + (u · ∇)θ = −T2 − T1

L2
u2. (9.21)

The boundary conditions are again Eq. (9.16) for u and, for θ :

θ = 0, for x2 = 0 and x2 = L2,

∂θ/∂n = 0, on the lateral boundary of �.

}
(9.22)

Remark 9.4: The boundary conditions of Eqs. (9.16) and (9.17) are an exam-
ple of boundary conditions suitable for this problem. Other suitable boundary
conditions, corresponding to other physical situations, may be considered; for
instance, a free (open) boundary at the upper boundary of the fluid, x2 = L2.

Remark 9.5: We will see in Section 9.5 how the stationary solutions of the
type defined by Eqs. (9.4), (9.5), and (9.11) for fluid flows or of the type
defined by Eq. (9.18) for thermohydraulics can actually appear and persist.
This issue is related to the notions of stability and turbulence.

Before describing these concepts, it is convenient to introduce the nondi-
mensional form of these equations and the related concept of similarity.

9.4. Equations in nondimensional form: similarities

It is common in physics to write the equations describing a phenomenon in
nondimensional form independent of the system of units: the different quanti-
ties (length, time, etc.) are then measured by reference to chosen quantities that
are characteristic of the phenomenon. This produces the following advantages:
Nondimensional numbers appear that regroup several physical quantities.
These numbers are characteristic of the phenomenon; consequently, similari-
ties between different phenomena appear, and the nondimensionalization pro-
cedure highlights small or large parameters whose magnitude is essential for
an understanding of the physical phenomenon. As an example, we will write
the nondimensional form of the Navier–Stokes and Boussinesq equations.

We first consider the Navier–Stokes equations of incompressible fluids:

∂u

∂t
+ (u · ∇)u + 1

ρ0
∇ p = ν �u + 1

ρ0
f,

div u = 0.
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We set

x = Lcx
′, u = Ucu

′, t = Tct
′,

p = Pc p
′, f = Fc f

′,

where Lc,Uc, Tc, Pc, and Fc are, respectively, the characteristic length, ve-
locity, time, pressure, and force for the flow. We will choose, for example,
for Lc the diameter of the volume filled by the fluid for a confined flow or
the diameter of the body bathing in the fluid for the flow around a body; Uc

will be a characteristic velocity of the fluid such as the mean velocity of the
boundaries in a confined flow or the velocity at infinity in a nonconfined flow.
Having chosen these two quantities, we will then be able to choose the other
quantities by their natural expressions corresponding to their physical units
(but this is not compulsory and not always desirable). This choice yields the
following characteristic time, pressure, and force:

Tc = Lc Uc, Pc = ρ0U
2
c , Fc = ρ0Lc/T

2
c .

The Navier–Stokes equations then become

∂u′

∂t ′
+ (u′ · ∇′)u′ + ∇′ p′ = 1

R
�′u′ + f ′, (9.23)

div′u′ = 0; (9.24)

here R = UcLc/ν is called the Reynolds number of the flow.
We deduce from Eqs. (9.23) and (9.24) that the flow now only depends

on one single parameter: the Reynolds number. For instance, if we know the
stationary flow around a sphere of radius 2a placed in a fluid whose velocity
at infinity is U∞/2, the flow around a sphere of radius a placed in a fluid of
the same nature whose velocity at infinity is U∞ is fully determined thanks
to the similarity relations: both Reynolds numbers are equal, and we pass
from one solution to the other by the proper scaling. This corresponds to the
flow similarity phenomenon: such similarity relations between flows are at the
very heart of the scale-model method in aerodynamical engineering by which,
for example, the flow around an airfoil (or an entire plane) is experimentally
simulated in a wind tunnel by the flow around a smaller model.

Remark 9.6: A fundamental difficulty of fluid mechanics arises because the
Reynolds number takes very large values for the most interesting flows – for
instance from 106 to 108 in aerodynamics or in industrial fluid mechanics
(pumps, etc.). This number is already quite large for a flow as common as that
produced by a spoon that one stirs in a cup of coffee. Reynolds numbers of the
order of unity correspond, in fluid mechanics, to very slow flows or to fluids
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as viscous as honey. Reynolds numbers even larger than the values indicated
above appear in meteorology in which other complicated features have to be
taken into consideration.

In a similar way we can obtain the nondimensional form of the Boussinesq
equations (9.19) to (9.21) corresponding to the Bénard problem. The nondi-
mensionalization is performed as above for the variables x, u, t , and p with
Lc= L2, Tc= (L2/g)1/2. For the temperature, we set θ = (T1 − T2)θ ′, and it
then follows that

∂u′

∂t ′
+ (u′ · ∇′)u′ − ν ′�′u′ + ∇′ p′ = e2α

′θ ′, (9.25)

div′ u′ = 0, (9.26)

∂θ ′

∂t ′
+ (u′∇′)θ ′ − κ ′�′θ ′ = u′2. (9.27)

We have set

κ ′ = κL2

T1 − T2
, ν ′ = ν

g1/2L3/2
2

, α′ = α

ρ0
(T1 − T2).

The flow now only depends on two nondimensional numbers, namely κ ′ and
ν ′. It is common in thermohydraulics to consider two numbers among the
following: (

1

ν ′

)2

= Gr = Grashof number,

ν ′

κ ′
= Pr = Prandtl number,

1

ν ′κ ′
= Ra = Rayleigh number.

Remark 9.7: For simplicity of notation, we will drop the primes in the nondi-
mensional equations (9.25) to (9.27), and we will eventually refer to Eqs.
(9.25) to (9.27) written without the primes.

9.5. Notions of stability and turbulence

This section and the next one are brief introductions to extremely complex
phenomena of fluid mechanics that are currently the object of important re-
search work in experimental laboratories as well as from the computational
and theoretical perspectives: stability, turbulence, and boundary layers. We



Viscous fluids and thermohydraulics 149

thought that we could not fully ignore such important phenomena and, alth-
ough our presentation will be very superficial, we will introduce them through
very simple models.

The stability issue (and then the turbulence issue) appears, for instance,
when the following question is asked: Under what conditions can one of the
stationary flows described by Eqs. (9.4), (9.5), (9.11), or (9.18) occur and
persist when the corresponding forces and boundary conditions are applied.
Hereafter, we have rather arbitrarily chosen to discuss the case of thermohy-
draulics, but the phenomena and discussions are quite similar to what follows
in the other cases presented before and in many more similar situations that
we will not depict here.

Returning to the notations of Section 9.3, we perform the following ma-
thematical operation whose interest will be apparent later: We consider Eqs.
(9.25), (9.26), and (9.27), which are the nondimensionalized versions of Eqs.
(9.19), (9.20), and (9.21), but we now omit the primes; we multiply Eq. (9.27)
by θ and integrate the equation thus obtained, in x , over �.
We obtain

1

2

d

dt

∫
�

θ2 dx +
∫
�

[(u · ∇)θ ]θ dx − κ

∫
�

�θ · θ dx =
∫
�

u2θ dx . (9.28)

Using the Green–Stokes formula and the boundary conditions of Eqs. (9.16)
and (9.22) transposed to the nondimensional variables, we find

2
∫
�

[(u ·∇)θ]θ dx =
3∑

i=1

∫
�

ui
∂θ2

∂xi
dx

=
∫
∂�

u · n θ2d� −
∫
�

(div u)θ2 dx = 0,

−
∫
�

�θ · θ dx = −
∫
∂�

∂θ

∂n
θ d� +

∫
�

|grad θ |2 dx =
∫
�

|grad θ |2 dx .

We admit here the following mathematical inequality, called the Poincaré
inequality; for every function θ satisfying Eq. (9.22),∫

�

θ2 dx ≤
∫
�

|grad θ |2 dx .

We then deduce from Eq. (9.28):

d

dt

∫
�

θ2 dx + 2κ
∫
�

θ2 dx ≤ 2
∫
�

u2θ dx . (9.29)
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A similar relation can be obtained in the same way for u, starting from
Eq. (9.25):

d

dt

∫
�

|u|2 dx + 2ν
∫
�

|u|2 dx ≤ 2α′
∫
�

u2θ dx . (9.30)

Adding Eq. (9.30) to Eq. (9.29), we obtain

d

dt

∫
�

(θ2 + |u|2) dx + 2
∫
�

(κθ2 + ν|u|2) dx ≤ 2(1+ α′)
∫
�

θu2 dx . (9.31)

Consequently, if

κν > (1+ α′)2, (9.32)

there exists δ > 0 such that

κθ2 + ν|u|2 − 2(1+ α′)θu2 ≥ δ(θ2 + |u|2);

then,

d

dt

∫
�

(θ2 + |u|2) dx + δ

∫
�

(θ2 + |u|2) dx ≤ 0.

Hence, by integration,∫
�

(θ2 + |u|2)(x, t) dx ≤ exp(−δt)
∫
�

(θ2 + |u|2)(x, 0) dx . (9.33)

This last inequality means that,whatever the initial distribution (at time t = 0)
of the velocities and temperatures in the Bénard experiment, after a certain
time, the stationary regime described in Eq. (9.18) is established: the fluid
is at rest, and the temperature is a linear function of x2. Inequality (9.33)
means that the stationary regime is reached as t → ∞; in practice, because
(for example) exp(−10) is an extremely small number, this regime is reached,
say, for t = 10/δ.

Using the Rayleigh number introduced in Section 9.4, condition (9.32)
becomes

Ra < (1+ α′)−2. (9.34)

A natural question now is: what happens if this condition is not satisfied?
Before answering this question, we notice that if T1 alone varies, with the other
characteristic quantities of the experiment remaining unchanged (T1 ≥ T2),
then for T1 = T2 or T1− T2 small, the Rayleigh number is very small and the
condition of inequality (9.34) is satisfied. On the other hand, it is no longer
satisfied if Ra (or T1) becomes larger.

As we said, forRa small, the flow actually observed after a transient regime
is the fluid at rest with a linear distribution of the temperatures in the z
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Figure 9.3 The Bénard rolls. (a) Three rolls; (b) Five rolls.

direction. When Ra grows, the liquid at the bottom, which is warmer than
the liquid on top, tends to move upward, and the fluid starts moving. The
stationary solution of Eq. (9.18), which still mathematically exists, becomes
physically unstable. Typically, other stationary solutions that are stable appear:
We say that we have a bifurcation of stationary solutions. If L2/L1 and L2/L3

are small enough, the so-called Bénard rolls appear, far enough from the
boundaries x1 = 0 or L1; the number of rolls appearing depends on the
conditions of the experiment; Figure 9.3 indicates the corresponding stream
lines of the flow.

If Ra (or T1) is even larger, the flow never becomes stationary, and we
observe rolls with blurred and moving shapes. Finally, if Ra (or T1) is very
large, the flow does not have an apparent structure at all anymore. Numer-
ous very small nonstationary vortices appear. The flow observed is fully
turbulent.

If we perform a Fourier analysis in time of an observed signal of the flow,
such as the velocity at a point of the fluid measured by laser velocimetry,
then the signal is flat in the stationary regime; in intermediate nonstationary
regimes several frequencies appear, corresponding to frequencies that are or
are not rationally independent (periodic or quasi-periodic flows). In the purely
turbulent regime, we observe a continuous spectrum of frequencies.
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Remark 9.8: All that has just been said for thermohydraulics extends to the
case of the fluid flows described in Sections 9.1 and 9.2, the important pa-
rameter being the Reynolds number.

9.6. Notion of boundary layer

Finally, we describe another important phenomenon of fluid mechanics whose
existence is related to the fact that the Reynolds number is very large: the
boundary layer. In the next subsection we describe the phenomenon in the
context of a physically unrealistic but nevertheless instructive experiment; in
the final subsection, we give a mathematical model.

A plane wall instantaneously set-in motion

We consider the following experiment: a viscous incompressible fluid fills the
whole half-space x3 > 0; it is at rest and, at time t = 0, we suddenly set in
motion the plane x3 = 0 with the constant velocity V�e1. This experiment is
unrealistic because it would require an infinite energy and an infinite quantity
of fluid for its implementation; it is nevertheless enlightening. We then look
for a flow of the form (u, p) = (v(x3, t), 0, 0, const.) (it can be shown that no
other solution actually exists). Consequently, v is solution of the equation

∂v

∂t
− ν

∂2v

∂x2
3

= 0. (9.35)

If we set x ′3 = ax3, t ′ = a2t , we find that this equation is invariant (i.e.,
v(x3, t) = v(ax3, a2t)). Hence, it is natural to look for solutions that depend
only on θ = x3/

√
2νt ; that is,

v(x3, t) = f (θ ), θ = x3√
2νt

.

Therefore,

∂v

∂t
= − θ

2t
f ′(θ ),

∂v

∂x3
= 1√

2νt
f ′(θ ),

∂2v

∂x2
3

= 1

2νt
f ′′(θ ),

and thus we are led, for the determination of f and of the flow, to the resolution
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of the ordinary differential equation

f ′′(θ )+ θ f ′(θ ) = 0;

hence

f (θ ) = A + B
∫ θ

0
e−s

2/2 ds.

We find A and B by using the boundary and initial conditions, and we obtain

v(x3, t) = V

[
1− 2 erf

(
x3√
2νt

)]
,

erf x = 1√
2π

∫ x

0
exp

(
−ξ 2

2

)
dξ.

Because uniqueness has been assumed, we have found the solution to our
problem (see Figure 9.4). Let us comment on this solution:

1. Because erf x ≤ erf(+∞) = 1/2, v(x3, t) > 0 as soon as t > 0.
Thus, the whole fluid is set in motion instantaneously. The propagation
velocity is thus infinite, owing to the viscosity, contrary to hyperbolic
equations (the wave equations, for instance) for which the propagation
velocity is finite (see Chapter 17 concerning the propagation of waves
at finite speed).

Figure 9.4 Velocity profile at fixed t : (a) for ν = O(1), (b) for ν = o(1).
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2. For x3 > 0 fixed, we have limt→+∞v(x3, t) = V . Therefore, the whole
fluid tends to acquire the velocity V .

3. For fixed x3 and t , if ν→ 0, then θ→ +∞ and v→ 0: the velocity at
every interior point of the fluid becomes small (tends to zero). We notice
that for a (nonviscous) inviscid fluid submitted to the same experiment,
the fluid remains at rest. Thus, the solution v = vν(x3, t) tends to the
inviscid fluid solution at every point of the fluid x3 > 0 but not on the
axis x3 = 0.
For small ν, the velocity varies very rapidly in a small region near
x3 = 0; we will comment on this in the next paragraph.

4. Boundary layer
Let 0 < k < 1 be fixed. We look for the set of points where v > kV
(and thus kV < v < V ). Because erf is an increasing function, this is
equivalent to a condition of the form

θ < θ0(k).

Therefore (and the value of k, k = 0(1) does not matter here), we will
have v > kV in a strip of thickness, in the direction of x3, of order

√
ν.

This strip is called the boundary layer (its thickness being thus of order√
ν).

More generally, for large Reynolds numbers, there exists in the neighbor-
hood of the boundaries a layer of thickness of order 1/

√
R, the boundary

layer of the flow, where large velocity gradients of order
√
R occur. This also

happens for nonturbulent flows, but the boundary layer phenomena are much
more complex, and very little is known in the turbulent case.

Mathematical model

There are simple mathematical models that display some of the many di-
verse features of the boundary layer phenomenon (we also speak of singular
perturbation phenomenon). The following simple example is one of the first
mathematical models explaining the Gulf Stream marine currents near the
east coast of America.

We consider the ordinary differential equation

ε u′′(x)+ u′(x)+ a = 0, 0 < x < 1,
u(0) = 0, u(1) = 0,

where 0 < a < 1 and ε > 0 is small. It is easy to check that

u(x) = u(x, ε) = a
1− exp(−x/ε)

1− exp(−1/ε)
− ax .
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X

Figure 9.5 A simple mathematical model of boundary layer. Graphs of u(x, ε) and of
u0(x).

Consequently

lim
ε→0, x>0 fixed

u(x, ε) = u0(x) = a(1− x),

and

lim
ε→0

u(0, ε) = 0 �= u0(0) = a.

We notice the loss of one of the boundary conditions, at the wall x = 0,
and, for ε small, a boundary layer occurs near this wall. Furthermore, u(x, ε)
converges uniformly on [α, 1], ∀ α > 0, to its limit u0(x), but it does not and
cannot converge uniformly to its limit on [0, 1] (see Figure 9.5).

Remark 9.9: Methods that allow the detection and study of the boundary layer
phenomenon starting only from the equations and the boundary conditions
have been developed: this is the subject of asymptotic analysis that is possibly
helped and supplemented by numerical methods.

Exercises

1. We consider in the domain �∞ = {(x1, x2), 0 < x2 < L} the flow of
a viscous, homogeneous, incompressible fluid submitted to gravity and
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which conducts heat. In the Boussinesq approximation, the equations read

ρ0(
∂v

∂t
+ (v · ∇)v)− µ�v + ∇ p = −ρ0g(T − T∗)e2, (9.36)

div v = 0, (9.37)

cv(
∂T

∂t
+ (v · ∇)T )− v0�T = 0, (9.38)

where x ∈ �, 0 < t < Tmax , e2 is the unit vertical vector pointing down-
wards, g is the gravity constant, cv > 0 and T∗ is the reference temperature.
a) We assume that the temperature is maintained at T = T0 on x2 = 0

and at T = T1 on x2 = L . Compute the stationary solution satisfying
v = 0 and T = ψ(x2) (we call p0(x1, x2) the pressure).

From now on, we set T = ψ(x2)+ θ, p = p0 + P . Rewrite (1)-(3)
for the new variables v, P, θ . We will call (1’)-(3’) the corresponding
equations.

b) We assume that the solutions (v, P, θ ) of (1’)-(3’) are periodic with
period 2π in x1 and that v vanishes at x2 = 0 and x2 = L . We set
� = (0, 2π )× (0, L).
• (i) Show that

∫
�

[(v · ∇)v]vdx = 0.
• (ii) Show that

∫
�

[(v · ∇)θ ]θdx = 0.
• (iii) Show that

∫
�
∇ p · vdx = 0.

c) Give an expression of

1

2

d

dt

∫
�

(ρ0|v|2 + cvθ
2) dx, (9.39)

assuming that the boundary conditions onv, P , and θ are homogeneous.
d) Show that (9.39) is negative when g = 0 and T1 = T0.

2. Consider the incompressible Navier-Stokes equations with periodic
boundary conditions in the cube � = (0, L)3 (such boundary conditions
are useful in the theory of turbulence):

∂u

∂t
− ν�u + (u · ∇)u + ∇ p = f,

div u = 0,

u is periodic in x1, x2, and x3,

where, for simplicity, the density is set to 1. Consider the Fourier expan-
sions of u, p, and f :

u =
∑
k∈ZM

uke
2iπk·x

L , p =
∑
k∈ZM

pke
2iπk·x

L , fk =
∑
k∈ZM

fke
2iπk·x

L .

a) Write the equations for uk and pk .
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b) Solve the stationary, linear Navier-Stokes equations

−ν�u +∇ p = f,

div u = 0,

u is periodic in x1, x2, and x3,

using Fourier series.



CHAPTER TEN

Magnetohydrodynamics and inertial
confinement of plasmas

The purpose of this chapter and of the next one is to present complex problems
of fluid mechanics involving other physical phenomena such as electromag-
netism (for this chapter) and chemistry (for the next one).

In this chapter, we consider flows of fluids conducting electricity in the
presence of electric currents and of electromagnetic fields; the purpose of
magnetohydrodynamics (MHD) is to study such flows. The MHD equations
consist of the Maxwell equations, which govern the electromagnetic quanti-
ties, and of the equations of fluid mechanics in which we include the electro-
magnetic forces.

In this chapter, we will limit ourselves to a single fluid flow: in certain
circumstances (e.g., very high temperatures, intense electromagnetic fields),
the conductive fluid is ionized and becomes a plasma; it then becomes desir-
able to study the flows of the positive and negative particles separately and,
in such a case, one has to deal with a multifluid flow, which is a situation
similar to the flow of the mixture of two miscible fluids. That case does not
present any particular difficulty; multifluid flows are considered in the next
chapter.

The modeling of the electromagnetic phenomena leads to the Maxwell
equations, and it can be conducted essentially like the modeling of the me-
chanical phenomena in Chapters 1 to 5: describing the physical quantities
and writing the physical conservation laws, partial differential equations, and
boundary conditions. It would be too long, and not particularly instructive
from the modeling point of view, to conduct this study here; we will be con-
tent with describing the Maxwell equations and will refer the reader to the
specialized literature for their physical justification.

Section 10.1 presents the Maxwell equations, and Section 10.2 addresses
those of magnetohydrodynamics. Finally, in Section 10.3, we present one of
the important applications of MHD: the equilibrium of a plasma confined

158
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in a Tokamak machine. The Tokamak consists of a fluid (plasma) subjected
to intense pressures, temperatures, and magnetic fields; it is one of the ex-
perimental machines with which physicists hope, in the long term, to reach
controlled thermonuclear fusion as a source of nonpolluting energy.

10.1. The Maxwell equations and electromagnetism

We start this section by introducing new physical quantities, namely, the
electromagnetic quantities. These quantities are the electric charge density,
represented by a scalar q, the electric current density J , the electric induction
D, the magnetic induction B, the magnetic field H , and the electric field E
that are vectors in R

3. These quantities are related by the conservation laws
that we will write without justification, but one may derive these equations
by the same methods as those used for obtaining the mass and momentum
conservation laws studied in the first part of this book, starting from the
necessary physical assumptions.

Conservation of the electric charge

The conservation of the electric charge can be mathematically written as:

d

dt

∫
�

q dx = −
∫
∂�

J · n d� +
∫
�

g dx, (10.1)

where � is a bounded regular domain of R
3 with boundary ∂�, and g denotes

the source of electric charges per unit volume and time. Because Eq. (10.1)
is satisfied for every open set �, it follows that, pointwise,

∂q

∂t
+ div J = g. (10.2)

We then introduce the vector D, called electric induction, and a vector G such
that

div D = q,

div G = g.
(10.3)

Because

div

(
∂D

∂t
+ J − G

)
= 0, (10.4)

we deduce the existence of a vector field H called magnetic field such that

∂D

∂t
+ J − curl H = G. (10.5)
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Faraday’s law

The Faraday law, relating the magnetic induction B to the electric field E , is
stated as follows:

For every fixed surface � with boundary ∂�, the derivative with re-
spect to time of the flux of magnetic induction B through � is equal
in magnitude and opposed to the circulation of the electric field E
along ∂�.

This is expressed by the equation

d

dt

∫
�

B · n d� +
∫
∂�

E · d� = 0. (10.6)

Now, a classical vector analysis formula, which we recall without proof,
gives ∫

∂�

E · d� =
∫
�

curl E · n d�, (10.7)

where the orientations of n and of ∂� are consistent. It then follows from
Eqs. (10.6) and (10.7) that

d

dt

∫
�

B · n d� +
∫
�

curl E · n d� =
∫
�

(
∂B

∂t
+ curl E

)
· n d� = 0,

and because � is an arbitrary fixed surface, we obtain the equation

∂B

∂t
+ curl E = 0. (10.8)

Finally, taking the divergence of Eq. (10.8), we see that

∂

∂t
div B = 0.

If div B = 0 at initial time,1 we find the equation

div B = 0, (10.9)

valid at all times.
Equations (10.2), (10.3), (10.5), (10.8), and (10.9) constitute the Maxwell

equations, the fundamental general equations of electromagnetism. We need
to supplement them with a set of interface and constitutive laws.

1 This assumption is related to the question, in physics, of the existence of the magnetic
monopole.
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Interface laws

Let us now consider the case in which an open set � of R
3 is divided into two

subdomains �1 and �2 by a smooth surface � and in which one or several of
the quantities D, H, B, and E are discontinuous at the crossing of �.

Using the conservation laws written in integral form in Eqs. (10.1) and
(10.6) and the equations already derived, namely (10.2), (10.3), (10.5), (10.8)
and (10.9), we can obtain the interface conditions on �.2 For instance, we
write, for D, ∫

∂�1
D · n d� =

∫
�1

q dx,∫
∂�2

D · n d� =
∫
�2

q dx,∫
∂�

D · n d� =
∫
�

q dx,

where n is the unit outward normal (to �1, �2, �). Hence, on �, with n
pointing then from �1 to �2,

(D2 − D1) · n = q on �, (10.10)

where Di = D|�i , i = 1, 2. Similarly, if H, B, and E are discontinuous at
the crossing of �, we deduce from the relation∫

�

curl H dx =
∫
∂�

n ∧ H d�,

from the Faraday law, and from Eqs. (10.5), (10.8), and (10.9) that

n ∧ (H 2 − H 1) = J, (10.11)

(B2 − B1) · n = 0, (10.12)

n ∧ (E2 − E1) = 0. (10.13)

Constitutive laws

As in the case of fluids and solids (see Chapters 5 and 7), the Maxwell
equations are not sufficient to describe the electromagnetic evolution of the
medium because they provide 7 independent scalar equations ((10.3), (10.5),
and (10.8)) for 16 unknowns, namely q, D, J, B, H, and E . They must be
supplemented with constitutive laws that express the difference of behavior
of the medium (for instance, a medium more or less conductive of electricity).
These laws relate D to E on the one hand and B to H on the other hand. We

2 The situation is similar to that of Chapter 6, Section 6.2, but simpler because � is fixed here.
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will only retain the most common form of these laws. For other less classical
forms of these laws, and for a discussion of their physical validity, the reader
is refered to the books mentioned in the reference list. We will thus assume
hereafter that the fields and inductions are proportional, which is expressed by

D = εE,
B = µH,

(10.14)

where ε and µ are called, respectively, the dielectric constant of the medium
and the magnetic permeability of the medium. In the simplest cases, and in
particular in air, they are assumed to be independent of the electromagnetic
quantities and even constant.

A second law, called Ohm’s law, relates the current density to the electric
field by the relation

J = σ E, (10.14′)

where σ is the conductivity, which is also independent of the electromagnetic
quantities. The media for which Ohm’s law is valid will be called stable media.

The three relations written above do provide the nine equations that were
needed to supplement the Maxwell equations.

Remark 10.1: The laws previously described are linear laws. We can note that,
contrary to the Maxwell equations, these laws do not satisfy the Galilean inva-
riance, and thus, in general, we will only be able to apply them in one
specified Galilean frame (this unnatural restriction gives rise to the relativity
theory).

Electromagnetism in a stable medium

To describe the electromagnetic evolution of a medium �, we need to sup-
plement the Maxwell equations and the constitutive laws with boundary and
initial conditions, that is, some equations at the boundary of � and the values
of the electromagnetic quantities at the initial time.

Taking into account the constitutive laws defined by Eqs. (10.14) and
(10.14′) above, the unknowns of the problem, reduced to B, D, and J , satisfy
the equations

∂D

∂t
+ J − curl

(
1

µ
B

)
= G, in �, (10.15)

∂B

∂t
+ curl

(
1

ε
D

)
= 0, in �. (10.16)
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We supplement Eqs. (10.15) and (10.16) with the initial data, at t = 0, as
follows:

B(x, 0) = B0(x), D(x, 0) = D0(x). (10.17)

If the boundary ∂� of � is assumed to be superconducting, the boundary
conditions that we impose (also satisfied by B0 and D0) read

B · n = 0, on ∂�, (10.18)

D ∧ n = 0, on ∂�. (10.19)

Remark 10.2: The quantities ε, µ, and σ may depend on x and t , but they
remain bounded, strictly positive for ε and µ, and positive for σ .

10.2. Magnetohydrodynamics

In this section, we are interested in the motion of fluids that conduct electri-
city. Such situations occur, for instance, in the study of ionized gases, such
as found in lasers; in geophysics (the earth’s magnetic core or atmosphere at
high altitude); in astronautics (for the reentry of space vehicles into the atmo-
sphere); or in the study of seawater subjected to electric currents or magnetic
fields, which is an approach currently considered to reduce turbulence and
resistance to motion for certain ships and submarines.

The equations of magnetohydrodynamics thus consist of the Maxwell
equations coupled with the equations of fluid mechanics to which we must
add the electromagnetic forces.

As in the previous section, we will be content with writing the equations of
magnetohydrodynamics without justifying their derivation via mathematical
modeling of the physical phenomena. The reader interested in more details is
referred, for instance, to Cabannes (1970) cited in the reference list.

As already mentioned, these equations consist of the equations of motion
of the fluid (we keep here the notation introduced in the first part of this book)
coupled with the Maxwell equations as follows:

ρ

[
∂U

∂t
+ curl U ∧U + grad

(
p + U 2

2

)]
= ρ f +�+ div �, (10.20)

∂ρ

∂t
+ div (ρU ) = 0, (10.21)

∂

∂t

[
ρ

(
e + U 2

2

)]
+ div

[
ρU

(
e + U 2

2

)]
= ρ f ·U + em + div (TU )− div θ,

(10.22)
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∂B

∂t
+ curl E = 0, (10.23)

∂D

∂t
− J = H, (10.24)

div D = q, (10.25)

where f denotes the external volume forces (other than electromagnetic
forces).

These fundamental equations (conservation equations) are supplemented
by the constitutive laws as follows:

J = σm(E +U ∧ B), (10.26)

D = εm(ρ, T )E, (10.27)

B = µm(ρ, T )E . (10.28)

We note that Ohm’s law is extended from Eqs. (10.14′) to (10.26) in the case
of moving media and that we allow εm and µm to depend on the density ρ

and on the temperature T for more generality. Furthermore, the following
notations have been used:

� = qE + J ∧ B,

em = J · E,
T = ∂e

∂s
,

p = − ∂e

∂τ
,

� = [−p + λ f (T ) div U ]I + µf (T )(∇U +t∇U ),

θ = −λ(T )∇T .

In the preceding equations, T denotes the temperature, s the entropy, and
τ = 1/ρ.

We thus obtain a system of 21 scalar equations (Eqs. (10.20) to (10.28))
with 21 independent scalar unknowns, ρ, q, T or e,U, D, B, J, E , and H , to
which we must add, as usual, the initial conditions and the boundary condi-
tions. Of course, there is also the unknown p, but this supplementary unknown
is compensated by the equation of state p = ϕ (ρ, τ ) or ϕ (ρ, e) for compress-
ible flows or by the equation ρ= ρ0 for incompressible flows, exactly as for
nonconducting fluids.
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Figure 10.1 The Tokamak machine.

10.3. The Tokamak machine

As we said in the introduction to this chapter, the Tokamak is one of the de-
vices considered to realize thermonuclear fusion, which in the long term
could be used as a source of nonpolluting energy. Schematically, it con-
sists of a torus partially filled with plasma (conductive material submit-
ted to high pressures and temperatures and to intense magnetic fields);
the magnetic fields are produced by electromagnetic coils surrounding the
torus.

In what follows, the plasma is assumed to be at rest, and we thus want to
write the equations that characterize the medium at equilibrium in an axisym-
metric geometry.3

We represent the Tokamak machine as an axisymmetric torus of axis Oz
(see Figure 10.1). We further assume that the cross section of the Tokamak by
the plane Oxz is an open set � of boundary � and that the plasma fills a sub-
domain �p of � with boundary �p. Finally, the domain �v = �\(�p ∪ �p)
is assumed to be empty.

3 Such an equilibrium is rather unstable in reality. At this time, actually maintaining the plasma
in such a state of equilibrium is a major problem of physics (see the remarks on the stability
of stationary solutions in Chapter 9, Section 9.5).
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The electromagnetic state of the medium is described, in the empty region
�v , by the Maxwell equations that reduce here to

div B = 0, in �v, (10.29)

curl B = 0, in �v. (10.30)

In the plasma, the electromagnetic state is governed by the equations of mag-
netohydrodynamics. BecauseU = 0 and the system is time independent, they
reduce to

div B = 0, in �p, (10.29′)
curl B = µ0 J, in �p, (10.30′)

grad p = J ∧ B, in �p. (10.31)

It is natural, in view of the geometry of the problem, to introduce the
cylindrical coordinates r, θ, z,with er , eθ , and ez denoting the corresponding
local orthonormal system. Equation (10.29) (and also Eq. (10.29′)) can be
rewritten, setting B = Brer + Bθeθ + Bzez and J = Jrer + Jθeθ + Jzez as

1

r

∂

∂r
(r Br )+ ∂Bz

∂z
= 0,

because, owing to the axisymmetry, Br , Bθ , Bz, Jr , Jθ , Jz, and p do not de-
pend on θ . This yields the existence, locally, of a function �, called the flux
function, satisfying

Br = −1

r

∂�

∂z
, Bz = 1

r

∂�

∂r
.

One can show that this function � is defined and single valued in the whole
domain � thanks to the boundary conditions described below. By setting
h = h(r, z) = r Bθ , it then follows that

B = ∇c� ∧ eθ
r
+ 1

r
heθ , (10.32)

where ∇c = (∂/∂r )er + (∂/∂z)ez . We can then rewrite Eqs. (10.30) and
(10.30′) in the form

L� = 0, in �v, (10.33)

−L�eθ + ∇ch ∧ eθ
r
= µ0 J, in �p, (10.33′)

where we have set

L = ∂

∂r

(
1

r

∂

∂r

)
+ 1

r

∂2

∂z2
.



Magnetohydrodynamics and inertial confinement of plasmas 167

Finally, Eq. (10.31) becomes

µ0
∂p

∂r
= −1

r
L� · ∂�

∂r
+ 1

2r2

∂H 2

∂r
,

0 = − 1

r2

(
∂�

∂z

∂h

∂r
− ∂h

∂z

∂�

∂r

)
, (10.34)

µ0
∂p

∂z
= −1

r
L� · ∂�

∂z
− 1

2r2

∂h2

∂z
.

A first consequence of Eq. (10.34) is that, in �p,∇ch is parallel to ∇c�,
and thus h depends only on �. More precisely, we set

h2 = g0 (�),

which yields

∇ch
2 = g′0 · ∇�,

where we have written g′0 = dg0/d�. It then follows that

µ0∇c p =
(
−1

r
L�− 1

2r2
g′0

)
∇c�.

Similarly, because ∇c p is parallel to ∇c�, p only depends on �, and we set

p = g1(�), ∇c p = g′1 · ∇c�,

and thus the three equations (Eq. (10.34)) finally reduce to the single equation

L� = −µ0r g′1(�)− 1

2r
g′0(�), in �p. (10.35)

Thus, the unknowns of the problem are all functions of �. However, the
Maxwell equations are not sufficient to determine the functions g0 and g1,
and additional modeling work is necessary to determine these functions in a
satisfactorily approximate way (see the following paragraphs).

Denoting by n and τ the unit vectors, respectively, normal and tangent to
� and �p, we supplement the previous equations by the following boundary
conditions (we assume for instance that the boundary � is conductive):

B · n = 0, on � and �p, (10.36)

B · τ is continuous at the crossing of �p. (10.37)

Because B · n = −(1/r )(∂�/∂τ ) and B · τ = (1/r )(∂�/∂τ ), we obtain that
(locally) ∂�/∂τ = 0, on � and �p, which yields that � is constant on �
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and �p and is therefore defined and single valued in all of �. Furthermore, �
being defined up to an additive constant, we will take

� = 0, on �p, (10.38)

� = γ (unknown constant), on �, (10.39)

and Eq. (10.37) then reduces to

∂�

∂n
= 0, on �p. (10.40)

We also make the simplifying hypotheses

p = Jθ = 0, on �p, (10.41)

Jθ �= 0, in �p, (10.42)

which is considered very realistic, and we then deduce from Eq. (10.38) that
g1(0) = 0. Moreover, Eq. (10.33′) yields

µ0 Jθ = −L� = µ0rg
′
1(�)+ 1

2r
g′0(�),

and it follows that

g′0(0) = g′1(0) = 0.

Finally, thanks to Eq. (10.42), we deduce that � does not vanish in �p.

One of the simplest models is obtained by taking for g0 and g1 (and thus
for p and h2) quadratic functions of � as follows:

g0(�) = b0 + b2�
2,

g1(�) = a2�
2,

where a2, b0, and b2 are positive constants, the pressure and h2 being positive.
In this particular case, Eq. (10.35) is rewritten as

L� = −
(

2µ0ra2 + b2

r

)
�, in �p. (10.43)

In general, we also assume that the total current is fixed in the plasma,
which is expressed by

µ0

∫
�p

Jθdrdz = −
∫
�p

L�drdz =
∫
�p

1

r

∂�

∂n
d� = Iµ0. (10.44)

The set of equations for the problem reduces to the determination of a single
scalar function � defined in � and continuous at the crossing of �p such that
Eqs. (10.33), (10.43), (10.38), (10.39), and (10.44) hold with I given and γ
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unknown. This problem is nonlinear even though Eqs. (10.33) and (10.43)
are linear equations; indeed, the curve �p defining the shape of the plasma at
equilibrium is also unknown, which makes the problem nonlinear. For fixed
�, g0, g1, the number I is the only data of the problem, and the function
{I �→ �} is not a linear function, as one may easily notice.

Remark 10.3: We conclude this chapter with several remarks at various levels
of generality:

1. Concerning the Tokamak machine, it is interesting to consider functions
g0 and g1 other than the quadratic functions introduced above.

One may also study nonaxisymmetric equilibria, or even evolu-
tion problems, but the equations remain very complicated; there are
no simplifications similar to those in the axisymmetric stationary
case.

2. Geometries other than the torus may be considered for the machines
intended to achieve thermonuclear fusion. Let us mention in particular
the Stellerator machine of cylindrical shape.

3. As indicated above, other approaches are also considered for thermonu-
clear fusion using, in particular, power lasers.

4. Many media (of natural origin or industrially produced) are in the
plasma state. Plasma has even been called the fourth state of mat-
ter (with solids, liquids, and gases), that would actually be the most
common. For all these plasmas, the basic equations are those of mag-
netohydrodynamics (Section 10.2) with one or several fluids; these
equations are very complicated, but they can be simplified, as in Sec-
tion 10.3, by taking into account the specificity of the problem under
study.

Exercises

1. Derive from (10.23)–(10.28) an equation for the magnetic field H .
2. Consider the equation obtained in Exercise 1, and assume that there is

no fluid motion and that the electric induction D vanishes. Consider a
volume �.
a) Show that

1

2

d

dt

∫
�

|H |2dx = −
∫
�

H · curl (η curl H )dx, where η = 1

µmσm
.
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b) Show that

1

2

d

dt

∫
�

|H |2dx = −
∫
�

η|curl H |2dx +
∫
∂�

η(H ∧ curl H ) · ndσ.

c) Show that

dM
dt

= −
∫
�

|J |2
σm

dx +
∫
∂�

1

σm
(H ∧ J ) · ndσ,

dM
dt

= −
∫
�

|J |2
σm

dx +
∫
∂�

(H ∧ E) · ndσ,

where M = (µ/2)
∫
�
|H |2dx is the magnetic energy (the above equalities

mean that the change in the magnetic energy inside � consists of a loss
of energy resulting from the Joule effect by the currents flowing into the
conductors and of the Poynting flux of energy flowing from the external
field into the conductor).

3. Consider the equation for the magnetic field H for an infinite resistance
σm and constant magnetic permeability µm

∂H

∂t
− curl (u ∧ H ) = 0.

We further assume that the electric induction D vanishes.
a) Show that

∫
�t

H · ndσ =const., for every surface �t that moves with
the flow.

b) Show that, for every volume �,

dM
dt

= µm

∫
�

H · curl (u ∧ H ) dx .

c) Assume that the fluid is confined into the volume � (i.e., u · n = 0 on
∂�). Show that

dM
dt

= µm

∫
�

u · (H ∧ J )dx + µm

∫
∂�

[(H · u)H ] · ndσ.

4. Consider the following MHD equations for an incompressible, inviscid
fluid in a potential field:

∂ui
∂t
+ u j

∂ui
∂x j

− µm

ρ
Hj

∂Hi

∂x j
= − ∂

∂xi
(
p

ρ
+ µm

|H |2
2ρ

+ V ),

∂Hi

∂t
+ u j

∂Hi

∂x j
= Hj

∂ui
∂x j

,

divu = 0,

divH = 0.
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Show that the relations

ui = ±
(
µm

ρ

) 1
2

Hi ,

∂

∂xi
(
p

ρ
+ µm

|H |2
2ρ

+ V ) = 0,

define a solution of these equations.



CHAPTER ELEVEN

Combustion

The objective of this chapter is the study of mixtures of reactive gaseous or
liquid fluids, that is to say fluids undergoing chemical reactions (fuel, oil and
oxygen, various chemical species, etc.). The equations and models that we
present are commonly used nowadays for the study of phenomena as different
as the propagation of chemical pollution in the atmosphere or in water (seas,
rivers, estuaries) or the combustion of mixtures of fuel, oil, and oxygen in
cars, planes, or rocket engines. The number N of chemical species taken into
account can vary from a few units to several hundreds.

We start, in Section 11.1, by describing the framework for mixtures of non-
necessarily reactive fluids. Section 11.2 is devoted to the equations of che-
mical kinetics. We then formulate in Section 11.3 the general equations of
combustion and describe a typical problem of combustion. In Section 11.4,
we introduce the Stefan–Maxwell equations corresponding to an even more
complex problem of chemical kinetics and combustion. Finally, we finish,
in Section 11.5, with an overview of the case in which the mixture only
contains two chemical species; although much simpler, this case already leads
to very complex mathematical problems that we will be only able to describe
briefly.

11.1. Equations for mixtures of fluids

We consider in this section a mixture composed of N different mis-
cible species. Each fluid may be considered separately; it then has its
own characteristics, density, velocity, and pressure denoted respectively by
ρi , ui , pi in the Eulerian description (ρi = ρi (x, t), etc.), i = 1, . . . , N .
In a complete description of the flow, we would write the Navier–Stokes
equations for each fluid with viscosity coefficients µi (incompressible

172
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case) or µi and λi (compressible case), i = 1, . . . , N , specific to each
fluid.1

Most often, we will be content with a description of the motion of the
mixture treated as a single fluid; the density of the mixture will then be the
sum of the partial densities ρi ,

ρ =
N∑
i=1

ρi ; (11.1)

the pressure will be the sum of the partial pressures pi ,

p =
N∑
i=1

pi ; (11.2)

and the velocity will be the weighted mean velocity

u =
N∑
i=1

ρi

ρ
ui . (11.3)

In this case, we will also need to define the viscosity coefficient µ (or the
coefficientsµ and λ if the fluid is compressible) for the mixture corresponding
to an appropriate weighting of the µi (or the µi and λi ): the definition (the
choice) of these coefficients necessitates undertaking some modeling work.
Once the coefficientsµ, λ (orµ alone) are defined, we write the Navier–Stokes
or the Euler equations of the mixture treated as a single fluid.

Similarly, we will be able to write the energy or the temperature equation
for each fluid. If we consider the mixture as a single fluid, we will write the
energy equation in a form similar to Eq. (6.5) of Chapter 6 or the temperature
equation in a form similar to Eq. (6.6) of Chapter 6. In this last case, we will
need to define the coefficients CV and κ of the mixture from the coefficients
CV,i , and κi of each species; it is customary to set

CV =
N∑
i=1

CV,i ,

whereas additional modeling work will be necessary for κ .
The quantity

Yi = ρi

ρ
, i = 1, . . . , N , (11.4)

which always remains between 0 and 1, is called the mass fraction of the fluid

1 The interested reader can find a detailed study of the equations for mixtures, taking thermo-
dynamics into account, in Appendices C and D of Williams (1985).
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or species i , and the sum of the Yi is equal to one:
0 ≤ Yi ≤ 1, i = 1, . . . , N ,

N∑
i=1

Yi = 1.
(11.5)

The most common model of a mixture of N chemical species, as we undertake
it here, consists of writing, on the one hand, the equations describing the
evolution of each mass fraction Yi and, on the other hand, writing the fluid
equations of the mixture considered as a single fluid with density ρ, pressure
p, temperature T , velocity u, and viscosity µ. We also consider, in a second
step, the mixture as an homogeneous incompressible fluid, and thus div u = 0
and ρ = ρ0 is constant.

11.2. Equations of chemical kinetics

We study the mixture of N chemical species considered, as indicated above,
as a single fluid. Our first objective is to write the equations governing the
evolution of the mass fractions Yi , i = 1, . . . , N .

We call ωi = ωi (x, t) the production rate per unit volume, at point x and
at time t , of species i (its expression is given below) and assume that the total
mass is constant, mass being only transfered from one species to another; this
is expressed by the relation2

N∑
i=1

ωi = 0. (11.6)

Let us consider a volume �t of species i that we follow in its motion; the
corresponding mass conservation for species i reads

d

dt

∫
�t

ρi dx =
∫
�t

ωi dx .

Thanks to Eq. (11.4) and to the formula for differentiation of a volume integral
given in Chapter 1, this yields∫

�t

[
∂

∂t
(ρYi )+ div(ρYiui )− ωi

]
dx = 0.

Because �t is an arbitrary open set, we deduce, by a reasoning already used

2 Of course, ωi > 0 in the case of production and ωi < 0 in the case of removal.
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several times, the equation

∂

∂t
(ρYi )+ div(ρYiui ) = ωi , 1 ≤ i ≤ N . (11.7)

We note that Eqs. (11.7) are not all independent: indeed, by summation in i
and taking Eqs. (11.3), (11.4), and (11.6) into account, we find

∂ρ

∂t
+ div(ρu) = 0;

this is nothing else but the continuity equation for the mixture that will reap-
pear below.

For the time being, we rewrite Eqs. (11.7) in the following way: We intro-
duce the velocities

Vi = ui − u, i = 1, . . . , N , (11.8)

called the diffusion velocities of species i , and the fluxes Fi defined by

Fi = YiVi , i = 1, . . . , N . (11.9)

Taking into account Eqs. (11.3) and (11.8), we have

N∑
i=1

Fi = 0. (11.10)

Using the Fi , we can rewrite Eqs. (11.7) in the form

∂

∂t
(ρYi )+ div(ρYiu)+ div(ρFi ) = ωi , 1 ≤ i ≤ N . (11.11)

To complete the modeling of chemical kinetics, we need to specify the
expression (functional form) of the ωi and the Fi . We assume that the net
production ωi of species i is of the form

ωi = ωi (T, Y1, . . . , YN )

= αi (T, Y1, . . . , YN )− Yiβi (T, Y1, . . . , YN ).
(11.12)

Here, the functions αi and βi are defined for the physically acceptable values
of T and of the Yi , namely, for T ≥ 0 and 0 ≤ Yi ≤ 1, 1 ≤ i ≤ N , and they
are continuous positive and bounded on this domain. The general form of the
functions αi and βi , stemming from chemical kinetics, is made precise in the
next section.

Finally, the diffusive mass fluxes are given by the Fick diffusion law

Fi = ViYi = −Di∇Yi , (11.13)

where Di > 0 is the diffusion coefficient of species i .
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Owing to Eq. (11.13) and the ωi being given by Eq. (11.12), Eqs. (11.11)
become

∂

∂t
(ρYi )+ div(ρYiu)− Di�Yi = ωi , 1 ≤ i ≤ N . (11.14)

11.3. The equations of combustion

We now combine the equations of chemical kinetics introduced in the previ-
ous section with the equations of fluid mechanics to obtain the equations of
combustion. Next, by adding appropriate boundary conditions to these equa-
tions, we obtain a problem of combustion constituting a model of developed
premixed laminar flame.

As indicated at the end of Section 11.1, in the model that we consider,
we treat the mixture as a single fluid, and the equations of chemical kinetics
describe on the other hand the evolution of the mass fractions of the various
species.

To simplify, we now assume that the mixture is incompressible and ho-
mogeneous; the case of a compressible fluid is described in Section 11.4. In
the Eulerian description, the mixture fills the domain �t at time t , and the
unknown functions, defined for x ∈ �t and t > 0, are the velocity u of the
mixture, its pressure p, its temperature T , and the mass densities Y1, . . . , YN

of the N chemical species; the density ρ = ρ0 is a positive constant.
We thus write the Navier–Stokes equations of incompressible fluids, and

the temperature equation for the mixture, in a form similar to Eq. (6.6) of
Chapter 6: the heat source r on the right-hand side is due here to the exothermic
chemical reactions, and it is taken equal to

r = −
N∑
i=1

hiωi , (11.15)

where hi is the enthalpy of species i with the following property being
satisfied:

N∑
i=1

hiωi ≤ 0

for everyT ≥0 and everyY1, . . . , YN , 0 ≤ Yi ≤ 1. We finally write Eq. (11.14)
in which ρ = ρ0 and div u = 0. Hence, we find

ρ0

[
∂u

∂t
+ (u.∇)u

]
− µ�u + grad p = f, (11.16)

div u = 0, (11.17)
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ρ0cV

[
∂T

∂t
+ (u.∇)T

]
− κ�T = −

N∑
i=1

hiωi , (11.18)

ρ0

[
∂Yi
∂t
+ (u.∇)Yi

]
− Di�Yi = ωi , 1 ≤ i ≤ N . (11.19)

The ωi are given by the expressions of Eq. (11.12) that we do not reproduce.
These equations are the basic equations for a combustion problem. As was

stated in the introduction, these equations are used for the study of a variety
of phenomena, including the propagation of chemical pollutants in the air
or in water,3 or combustion in cars, planes, or rocket engines. Depending on
the level of refinement desirable for the model, the number N of chemical
species may vary from a few units to several hundreds, or even a thousand. In
Section 11.4, some even more complicated models will be introduced, whereas
Section 11.5 will be devoted to simplified versions of these equations.

As usual, Eqs. (11.16) to (11.19) must be supplemented by appropriate
boundary conditions: we now derive these boundary conditions in the case of
a model of premixed laminar flame.

Model of premixed laminar flame

In this problem, the domain �t = � filled by the mixture is a cylinder of axis
parallel to Ox3, of height h, and section O, and thus � = O × (0, h). The
chemical mixture enters this channel by the bottom of the cylinder and exits
the channel by the top, the section x3 = h of the cylinder. We also assume
that the lateral boundary of the channel is thermally insulated.

A set of physically reasonable boundary conditions for this problem is
given below; note that these boundary conditions are not all absolutely un-
questionable. A certain flexibility is actually left to the modeler, who will
decide according to the specific aspects of the problem (or experiment) and
the phenomena most important in the investigation. Here is the proposed set
of boundary conditions:

• Base of the channel, x3 = 0.

u1 = u2 = 0, u3(x1, x2) = U (x1, x2),

T = Tu ≥ 0,

Yi = Yi,u > 0, i = 1, . . . , N ,

N∑
i=1

Yi,u = 1,

the function U and the constants Yi,u, Tu being given.

3 For this last point, see also Chapter 12.
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• Lateral boundary of the channel, x ∈ ∂O, 0 < x3 < h.

u = 0,
∂T

∂n
= 0,

∂Yi
∂n

= 0, 1 ≤ i ≤ N .

• Exit of the channel, x3 = h.

ui = 0, i = 1, 2,
∂u3

∂x3
= 0,

∂T

∂x3
= 0,

∂Yi
∂x3

= 0, 1 ≤ i ≤ N .

• Initial conditions.
Finally, we are given initial conditions for u, T , and the Yi ; typically

u(x, 0) = u0(x),

T (x, 0) = T0(x) ≥ 0,

Yi (x, 0) = Yi,0(x), Yi,0(x) ≥ 0,
N∑
i=1

Yi,0(x) = 1.

Problems like this one are the object of many current theoretical and nu-
merical studies in combustion theory.

11.4. Stefan–Maxwell equations

We describe in this section a more general and more complicated model of
combustion by using the so-called Stefan–Maxwell equations of chemical ki-
netics. We also consider a compressible fluid, which is necessary for explosion
and detonation phenomena.

In this model, we first need to introduce other chemical quantities. We
denote by ci = ci (x, t), i = 1, . . . , N , the molar concentration of chemical
species i at x at time t ; that is to say, the number of moles of chemical species
i per unit volume at x at time t ; the total molar concentration c is given by

c =
N∑
i=1

ci . (11.20)

If Mi denotes the molar mass of species i , then

ci = ρi

Mi
. (11.21)
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On the other hand, besides the mass fraction Yi of species i , we introduce its
molar fraction

Xi = ci
c
. (11.22)

It is easy to see that, as in Eq. (11.5)
0 ≤ Xi ≤ 1, i = 1, . . . , N ,

N∑
i=1

Xi = 1.
(11.23)

We have

Xi = ρi

cMi
= ρi

ρ

ρ

cMi
= Yi

Mi

ρ

c

= Yi/Mi

c/ρ
= Yi/Mi∑N

j=1 (ρ j/(Mjρ))
.

Thus the Xi and Yi are related by the following equations, and we can easily
express one set of quantities in terms of the other:

Xi = 1

YM

Yi
Mi

, Yi = XiMi

XM
,

YM =
N∑
j=1

Y j

M j
, XM =

N∑
j=1

X jMj , XMYM = 1.
(11.24)

We now return to Eqs. (11.12) and (11.13) for the ωi and the Fi .
The net production ωi of species i is given by phenomenological relations

of chemical kinetics related to the Arrhenius law. A more precise form of
Eq. (11.12) is the following:

ωi = Mi

N∑
k=1

(ν ′′i,k − ν ′i,k)BkT
αk exp(−Ek/(RT ))

×
N∏
j=1

(
X j,p

RT

)ν ′j,k
, i = 1, . . . , N . (11.25)

We recall and complete the notations: Mi is the molar mass of species i ; R
the constant of perfect gases; T the temperature; p the pressure; Bk, αk, Ek

constants, Bk ≥ 0,−1 < αk ≤ 2; Ek the activation energy; the constants
ν ′i,k and ν ′′i,k are various constants (stoichiometric coefficients) related to the
interactions of species i and k; and finally we recall that X j is the molar
fraction of species (of fluid) j .
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In the model considered here, the Stefan–Maxwell laws below replace
Eq. (11.13) for the determination of the mass diffusive fluxes:

∇Xi =
N∑
j=1

Xi X j

Di j
(Vj − Vi )+ (Yi − Xi )

∇ p

p
+ ρ

p

N∑
j=1

YiY j ( fi − f j )

+
N∑
j=1

Xi X j

ρDi j

(
DT, j

Y j
− DT,i

Yi

)(∇T
T

)
. (11.26)

Here Di j is the binary diffusion coefficient for species i and j, DT,i the thermal
diffusion coefficient for the species, fi is the volume density of external forces
applied to species i , and all other quantities have already been defined.

Under proper assumptions, Eq. (11.26) is simplified by only keeping the
first term on the right-hand side, which gives

∇Xi =
N∑
j=1

Xi X j

Di j
(Vj − Vi ), 1 ≤ i ≤ N . (11.27)

At a point (x, t), where the Yi (x, t) (or Xi (x, t)) are all nonzero (strictly
positive), we determine the Fi as follows: Eqs. (11.27) (or (11.26)) are con-
sidered as a system of linear equations in the Vi ; these equations are not inde-
pendent but are compatible (note that

∑N
i=1 ∇Xi = 0 because

∑N
i=1 Xi = 1).

We can show that, by supplementing them with Eq. (11.10) rewritten in the
form

N∑
i=1

YiVi = 0, (11.28)

we obtain a linear system that uniquely defines the Vi = Vi (x, t) and then
the Fi = ViYi . We can also show that, at a point (x, t) where some of the
Y j vanish, Eqs. (11.27) or (11.26) expressed in terms of the Fj allow, with
Eqs. (11.10) and (11.24), to express the Fi , in a unique way, as linear functions
of the∇Y j with coefficients that are rational functions of the Yk and functions
as well of the other quantities.

Substituting these expressions for Fi in Eq. (11.11), we obtain, for the
Yi , nonlinear partial differential equations of a great level of complexity.
Nevertheless, such equations are taken into account in numerous studies.

Let us now summarize what the combustion model based on the Stefan–
Maxwell equations consists of, without rewriting the equations:

1. The unknowns are u and p, ρ for a compressible fluid, T (temperature)
or e (internal energy), and the Yi , i = 1, . . . , N .

2. The equations are
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• The Navier–Stokes and mass conservation equations for an incom-
pressible or a compressible fluid, depending on the type of phe-
nomenon under study.

• The temperature equation (Eq. (11.18)) for an incompressible fluid
or, for a compressible fluid, the equation of state of the fluid, and
the energy equation (Eq. (6.5), Chapter 6). In this last case, the usual
expression for q is the following:

q = −κ∇T + ρ

N∑
i=1

hiYi Vi

+ RT
N∑

i, j=1

X j DT,i

Mi Di j
(Vi − Vj )+ qR, (11.29)

where qR is a radiant heat flux (which is provided) and hi the mean
enthalpy per unit of mass for species i , which is assumed constant for
simplicity; all other quantities have already been described.

• Equations (11.11) for the Yi with the expression of the fluxes resulting
from previous considerations.

Additional and substantial developments concerning combustion may be
found in Williams (1985).

11.5. A simplified problem: the two-species model

We assume, for simplicity, that the fluid is incompressible, and we consider
the case in which only two chemical species are present. The equations are
thus (11.16) to (11.19) with N = 2. Equation (11.19) is not independent
because Y1 + Y2 ≡ 1. Actually, an interesting case is that in which the ratio

Le = D2/D1,

called the Lewis number, is equal to 1 (D1 = D2). It is then sufficient to
consider one single equation (11.19) such as that of Y1 denoted by Y : if the
velocity u of the fluid is given, it only remains to consider two equations for
the temperature T and the mass fraction Y . Hence, assuming, for simplicity,
that D1 = 1 and ρ0 = 1, we have

∂T

∂t
+ (u.∇)T − κ�T = −hω, (11.30)

∂Y

∂t
+ (u.∇)Y − D�Y = ω. (11.31)
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Here ω = ω1 takes the form (related to Eq. (11.25)) of

ω = BY (1− Y )T exp(−E/RT ),

and h = h1 − h2 because ω2 = −ω1 = −ω and

h1ω1 + h2ω2 = (h1 − h2)ω.

One of the numerous problems raised by Eqs. (11.30) and (11.31) is the
search of traveling waves and the study of their stability in connection with
the study of the propagation of the flame; one then looks for solutions in the
whole space R

3
x × Rt of the form

T (x, t) = T (x −Ut), Y (x, t) = Y(x −Ut),

where the constant vectorU = (U1,U2,U3), which is the propagation velocity
of the front of the flame, is unknown as well as T and Y . We then infer, for
the functions T = T (ξ ) and Y = Y(ξ ) (ξ ∈ R

3), the equations

[(u −U ) · ∇ξ ]T − κ�ξT = −hω, (11.32)

[(u −U ) · ∇ξ ]Y − D�ξY = ω. (11.33)

These equations are already very complex and very rich, even in space di-
mension 1; that is to say, when T and Y only depend on x1 (or, similarly,
when T and Y only depend on ξ1). A large part of the book of A. I. Volpert,
V. A. Volpert, and V. A. Volpert (1994) is devoted to their study.

Exercises1

1. Semenov’s theory of heat explosion.
If we assume that the gas in the reactor is well mixed and that the tem-
perature is homogeneous in space, then at the initial stage of the reaction
where the consumption of the reactants can be neglected, the temperature
evolution can be described by the equation

dT

dt
= qke−E/RT − σ (T − T0), T (0) = T0.

This is the so-called Semenov’s model of heat explosion. The Frank-
Kamenteskii transformation

E

RT
≈ E

RT0
− E

RT 2
0

(T − T0)

1 These exercises are intended for more advanced readers. We thank V. A. Volpert for providing
us with them.
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allows its reduction to the model

dθ

dt
= βeZθ − σθ, θ(0) = 0, (11.34)

where θ = (T − T0)/q is the dimensionless temperature, Z = qE/(RT 2
0 )

is the Zeldovich number, β and σ are positive parameters, β characterizes
the heat production due to the reaction, and σ the heat loss through the
wall of the reactor.
a) Let α = σ/β. Show that there exists a critical value α∗ of the parameter

α such that Eq. (11.34) has two stationary solutions for α > α∗ and it
does not have any solution for α < α∗.

b) In the case where there are two solutions, θ1 and θ2, θ1 < θ2, verify
that the solution θ1 is stable with respect to the nonstationary problem
(11.34), and the solution θ2 is unstable.

c) What happens with the solution of the nonstationary problem (11.34)
if α < α∗? What is the physical interpretation of this solution?

2. Frank-Kamenteskii’s theory of heat explosion.
If we do not suppose that the temperature is homogeneous in space, then
instead of Eq. (11.34) from Exercise 1, we have the Frank-Kamenteskii
model of heat explosion. In the one-dimensional case, it has the form

∂θ

∂t
= ∂2θ

∂x2
+ βeZθ , 0 < x < 2L , θ (0) = θ (2L) = 0. (11.35)

Assuming that the stationary solution is symmetric with respect to the
middle of the interval, we obtain the following problem

θ ′′ + βeZθ = 0, 0 < x < L , θ (0) = θ ′(L) = 0. (11.36)

a) Reduce (11.36) to a problem on the interval 0 ≤ x ≤ 1 and find its
explicit solution.

b) Show that there exists a critical valueα∗ of the parameterα = L2β such
that there exist two solutions for α < α∗, and there are no solutions for
α > α∗.

c) Consider the value θm = θ (L) as a parameter and show all solutions
on the parameter plane (α, θm).

3. Existence of gaseous flames.
Consider the system of two reaction-diffusion equations

κT ′′ + cT ′ + qK (T )(1− α) = 0,

dα′′ + cα′ + K (T )(1− α) = 0,
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describing stationary one-dimensional flames in the moving coordinate
frame. Here T is the temperature, α the depth of conversion, the kinetic
function (1− α) corresponds to the reaction of the first order.
a) Show that if the Lewis number Le = κ/d equals 1, then this system of

two equations can be reduced to the single equation

κT ′′ + cT ′ + F(T ) = 0. (11.37)

We will look for solutions of this problem having limits T (+∞) = T0,

T (−∞) = Ta , where Ta is a zero of the function F(T ). To avoid
the so-called “cold boundary difficulty”, we assume that F(T ) = 0 for
T ≤ T∗ for some T∗ < Ta . The function F(T ) is positive on the interval
T∗ < T < Ta . To find a solution of this problem means to find a value
of the parameter c (the wave speed) such that there exists a solution of
Eq. (11.37) with the given limits at infinity.

b) Reduce Eq. (11.37) to the system of two first order equations

T ′ = p, p′ = 1

κ
(−cp − F(T )), (11.38)

and find its stationary points.
c) Show that the stationary point T = Ta, p = 0 is a saddle. Find the cor-

responding eigenvectors and prove that there exists a trajectory leaving
the stationary point into the quarter plane T < Ta, p < 0.

d) Show that this trajectory “descends” when c is decreased.
e) Show that there exists a value of c such that system (11.38) has a

trajectory connecting two stationary points, T = Ta, p = 0, and T =
T0, p = 0.



CHAPTER TWELVE

Equations of the atmosphere
and of the ocean

Weather forecasting in meteorology is based on two complementary
approaches:

1. Accumulating a very large amount of data and interpreting these statis-
tically (wind velocity, humidity, and temperature measured over very large
intervals of time and over large regions of the earth). Here, the mathematical
techniques that are necessary for the assimilation and the exploitation of these
data are those of statistics and of stochastic processes.

2. Modeling of atmospheric phenomena by ordinary and partial differ-
ential equations and the numerical simulation of these equations. From the
computational point of view, one obtains, by discretization of such partial
differential equations, systems of equations with millions, even billions, of
unknowns whose numerical resolution could saturate the most powerful com-
puters currently available. The memory size and computational speed capac-
ities needed for such calculations are very high even in the context of the
teraflop (1012 operations per second), which is the next step in the foreseeable
future.

In this chapter, we are interested in the second approach, and we intend
to give a very modest description of the most fundamental equations widely
accepted in the field. The atmosphere is a fluid whose state is described by
the velocity vector, the temperature, the density, and the pressure at every
point in the Eulerian description. The equations are essentially variants of the
Navier–Stokes and of the temperature equations that take into account the
particular aspects of the problem.

Section 12.1 is devoted to various preliminaries. Section 12.2 gives the
fundamental equations of the atmosphere, which are called primitive equa-
tions of the atmosphere (PEs). In Section 12.3 we proceed to a similar study of

185
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the ocean; apart from the intrinsic interest of studying the motion of oceans,
we know at present (considering, for example, the El Niño phenomenon) that
the ocean plays a fundamental role in the study of meteorology through the
thermal and dynamic exchanges between the ocean and the atmosphere.

Finally, Section 12.4 is a brief introduction to even more complex (and
important) phenomena: the study of the equations governing the concentration
in the atmosphere of water and gases and rare gases such as those related to
pollution, namely ozone, carbon dioxide, chlorinated fluorocarbons (CFCs),
nitrous oxides, sulfides, and so forth. Their concentrations are governed by
the equations of chemical kinetics, which are very close to the equations
considered for combustion in the previous chapter; a brief description of a
relevant model is given in Section 12.4.

Of course, these problems give rise to very complex studies that rally
important teams in large laboratories all over the world owing to the human
and economic interests at stake. One should thus not lose sight of the fact that
the study presented here is extremely superficial. It would be misleading to
believe, after reading this chapter, that geophysical fluid dynamics consists just
of the juxtaposition of well-known equations. This field has its own rationale
and raises its own problems, which are not present at all in this chapter. We
thought, nevertheless, that it would be useful to show how these studies are
related to the preceding chapters.

12.1. Preliminaries

The fundamental law of dynamics on a frame
attached to the earth

In the study of meteorological phenomena, one assumes that the earth is sphe-
rical (of radius a); that its center is fixed, as well as the line joining the poles;
and that the earth rotates uniformly around the line of the poles with respect
to a fixed (Galilean) frame. Except in the study of specific problems such as
the tides, which are very much influenced by the moon and the sun, the earth
is generally assumed isolated and thus is not subjected to any external force.

Hence, in a frame related to the earth, the only forces are those resulting
from the Coriolis acceleration and the transport acceleration (see Chapter 2,
Section 2.5); we now want to make these forces explicit. We denote by u the
velocity of the wind with respect to the earth; hence, according to Eq. (2.16)
of Chapter 2, the mass density of the Coriolis force is

−2ω ∧ u.
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The same formula gives the transport acceleration, which reads, because
ω̇= 0,

γe = ω ∧ (ω ∧ OM).

We easily check that (with OM = x)

γe = 1

2
grad|ω ∧ x |2.

It is then possible to add this force to the pressure, and we are led to consider
the total (or augmented) pressure:

P = p + 1

2
|ω ∧ x |2, (12.1)

(0x3 upward vertical). In the sequel, the pressure P will be denoted by p.

Static equations of the atmosphere

We have derived in Chapter 7 the simplified equations of the atmosphere
considered as a static barotropic fluid: p is function of the altitude x3 only
(and of the time t) and

∂p

∂x3
= −ρg. (12.2)

With an equation of state of barotropic fluid

p = ϕ(ρ), (12.3)

ϕ′ > 0, ϕ′′ ≥ 0, we can express both p and ρ as functions of x3. For instance,
if it is assumed that the air is a perfect fluid with constant specific heats,
p = kρ and then

p = p0 exp

(
−1

k
gx3

)
; (12.4)

x3 = 0 corresponding to the surface of the earth, and p0 and ρ0 are, respec-
tively, the pressure and density at the surface of the earth.

The differential operators on the sphere

Our aim in the following paragraphs is to write the equations of the atmosphere
and ocean around the whole globe. It is thus natural to introduce the spherical
coordinates (r, θ, ϕ), where 0 ≤ θ ≤ π is here the colatitude of the earth,
0 ≤ ϕ ≤ 2π is the latitude, and r is the distance to the center of the earth.
We further introduce the variable z = r − a, where a denotes the radius of
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the earth, that measures the altitude with respect to the sea level. We also
introduce the corresponding local orthonormal system er , eθ , eϕ , and, for a
vector v, we write v = vr er + vθeθ + vϕeϕ .

The height of the atmosphere (20 to 100 km, depending on its definition)
is small when compared with its horizontal dimension and the radius of the
earth ( 6000 km). Consequently, and this is confirmed by meteorological
observations, the vertical scales of the terrestrial atmosphere are small when
compared with the horizontal scales. A first consequence of this is that we
will neglect the variations of the vertical variable z and will replace, wherever
legitimate, the variable r by the earth’s radius a. In particular, we replace the
operator of total differentiation

D

Dt
= ∂

∂t
+ vθ

r

∂

∂θ
+ vϕ

r sin θ

∂

∂ϕ
+ ∂

∂z

by the operator

d

dt
= ∂

∂t
+ vθ

a

∂

∂θ
+ vϕ

a sin θ

∂

∂ϕ
+ ∂

∂z
.

This simplification consists essentially of replacing the domain actually
filled by the atmosphere by the product of the sphere S2 (representing the
surface of the earth) and an interval for the variable z.

We will give, in the appendix at the end of this chapter, the expression in
spherical coordinates of the differential operators that we use in this chapter.

12.2. Primitive equations of the atmosphere

The general equations of the atmosphere are those of a compressible fluid
subjected to the Coriolis and gravitational forces, to which we add the tem-
perature equation (a consequence of the first law of thermodynamics, see
Chapter 6). The resulting equations are particularly rich and complex, and
thus, they seem to defy, for the time being and in the foreseeable future, every
possibility of analysis. It is thus necessary to make simplifying hypotheses.

Because the vertical scales of the atmosphere are small with respect to
the horizontal scales, a dimensional analysis that corroborates meteorolo-
gical observations and historical data shows that the large scales satisfy the
hydrostatic equation (see Eq. (12.2) and below). This equation, as a result
of its good precision, is acknowledged as fundamental and is considered as
a starting point for the study of large classes of atmospheric phenomena.
Furthermore, it furnishes an equation relating the pressure to the density. The
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general equations of the atmosphere then reduce to a set of equations called
primitive equations of the atmosphere (PEs).

In a moving frame rotating with the earth, the fundamental law of dynamics
for a mobile frame (see Section 12.1) furnishes the equation of conservation
of momentum (in vector form):

DV3

Dt
= (total) pressure gradient+ gravity forces

+Coriolis forces+ dissipative forces;

that is,

DV3

Dt
= − 1

ρ
grad3 p + G − 2ω ∧ V3 + D, (12.5)

where V3 denotes the velocity. The general equations of the atmosphere are
thus made of the momentum equation (Eq. (12.5)); the continuity equation

Dρ

Dt
+ ρ div3V3 = 0; (12.6)

the first law of thermodynamics,

cp
DT

Dt
− RT

ρ

Dp

Dt
= DQ

Dt
; (12.7)

and the equation of state

p = RρT . (12.8)

In these equations, G = −ge3 represents the gravity forces, D represents
viscosity terms that we will make precise in Section 12.4 (see also, for the
interested reader, Lions, Temam, and Wang (1993)), DQ/Dt is the heat flux
by unit volume and in a unit time interval (mainly through solar heating),
and ω is the angular velocity of the earth. Moreover, grad3 and div3 denote,
respectively, the gradient and the divergence in three dimensions.

As indicated above, we are led, in order to study these equations, to make
simplifying assumptions. In particular, we make the (fundamental) hydro-
static assumption, which furnishes Eq. (12.2) (called the hydrostatic equation)
rewritten in the form

∂p

∂r
= −ρg, (12.9)

which relates the variables p and ρ. This equation replaces the equation of
conservation of momentum (Eq. (12.5)) projected on the vertical, and it rep-
resents an approximate form of that equation (owing to the small height of



190 Mathematical Modeling in Continuum Mechanics

the atmosphere). Also, as noted, we neglect the variations of the vertical vari-
able z, which amounts to replacing r by the earth’s radius a when appropriate
(and in particular in the differential operators). Finally, we decompose V3 into
the form

V3 = v + w, (12.10)

where v denotes the horizontal velocity and w the vertical velocity. In view of
the preceding simplifications, we obtain the following system of equations,
which are called the primitive equations of the atmosphere (we refer the
reader to the chapter’s appendix for the definition of the differential operators
appearing in the equations):

∂v

∂t
+ ∇vv + w

∂v

∂z
+ 1

ρ
grad p + 2ω cos θ �k ∧ v = D, (12.11)

∂p

∂z
= −ρg, (12.12)

dρ

dt
+ ρ

(
div v + ∂w

∂z

)
= 0, (12.13)

cp
dT

dt
− RT

p

dp

dt
= dQ

dt
, (12.14)

p = RρT, (12.15)

where �k denotes the unit vertical vector pointing upward.1 Here, we have
written the primitive equations in the system of coordinates (t, θ, ϕ, z).

Remark 12.1: In the primitive equations (12.11) to (12.15), we have not taken
into account the humidity of the atmosphere. This, and other atmospheric
components, will be considered in Section 12.4.

A straightforward consequence of the hydrostatic equation (Eq. (12.12))
is that the (total) pressure p is a strictly decreasing function of the vertical
variable z. It is thus possible, by an appropriate change of variables, to rewrite
the equations in the system of coordinates (t, θ, ϕ, p), called the pressure
coordinates. We will further assume that the pressure p is restricted to an
interval of the form [p0, P], where P is the pressure at the surface2 of the
earth and p0 > 0 is the pressure at some high isobar in the atmosphere. Strictly
speaking, the region between the isobar p = P and the earth is not taken into

1 The definition of∇v is given at the end of the chapter’s appendix. It is the proper mathematical
(geometrical) definition of the term (v.∇) used in Cartesian coordinates.

2 An average pressure at some small altitude above the earth.
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account, as well as the region p < p0; the latter is, however, made of rarefied
and ionized gases (plasmas), and the physics is different.

In the pressure system of variables (t, θ, ϕ, p), the altitude z is an unknown
function of t, θ, ϕ, and p. It is customary to introduce the function

� = gz, (12.16)

which is called the geopotential; on the other hand, we set

' = dp

dt
. (12.17)

We then obtain, thanks to this change of coordinates, the new system

∂v

∂t
+ ∇vv +'

∂v

∂p
+ 2ω cos θ k ∧ v + grad� = D, (12.18)

∂�

∂p
+ RT

p
= 0, (12.19)

div v + ∂'

∂p
= 0, (12.20)

R2

c2

(
∂T

∂t
+ ∇vT + ω

∂T

∂p

)
− Rω

p
− R2

c2
ω
∂ T̄ (pa)

∂pa

=µT�T + νT
∂

∂p

[(
gp

RT̄

)2
∂T

∂p

]
+ QT . (12.21)

In Eq. (12.21), the function T̄ ∈ C∞([p0, P]) is known (given). It satisfies a
relation of the form

c2 = R

(
RT̄

cp
− p

∂ T̄

∂p

)
= const. (12.22)

The temperature T̄ (p) represents the mean climatic temperature on the isobar
p; it is determined by meteorological measurements. Moreover, we have

µT = R2

c2

µ̃T

cp
, νT = R2

c2

ν̃T

cp
, (12.23)

QT = R2

c2

E
cp

, (12.24)

where µ̃T and ν̃T are diffusion coefficients and E is the diabatic warming of
the air. We refrain from expressing here the right-hand side D of Eq. (12.18),
but it is similar to the right-hand side of Eq. (12.21).

Equations (12.18) to (12.24) constitute the primitive equations of the at-
mosphere in pressure variables. They must be supplemented by boundary
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conditions on the isobars p = p0 and p = P , for which we refer the inter-
ested reader to the books and articles cited in the references.

12.3. Primitive equations of the ocean

It is generally assumed that the ocean is a slightly compressible fluid sub-
jected to the Coriolis and gravity forces for which we make the Boussinesq
approximation described in Chapter 9. The general equations of the ocean
consist thus of the momentum and continuity equations:

ρ0
DV3

Dt
+ 2ρ0 ω�k ∧ V3 + grad3 p + ρg = D, (12.25)

div3V3 = 0; (12.26)

of the equation for the temperature

DT

Dt
=QT + diffusion; (12.27)

of the equation for the salinity (concentration of salt):

DS

DT
= diffusion; (12.28)

and of the following equation of state expressing that the density is a linear
function of temperature and salinity:

ρ = ρ0 + α(T − T0)− β(S − S0), (12.29)

where α and β are constants and ρ0, T0, S0 are, respectively, reference density,
temperature, and salinity.

As for the atmosphere, we note that the vertical scales of the ocean are
small in comparison with the horizontal scales. We are thus led to make the
hydrostatic approximation3

∂p

∂r
= −ρg. (12.30)

As in the atmosphere, we neglect the variations of the variable z = r − a in
the ocean and, wherever this is legitimate, we replace the variable r by the
earth’s radius a.

In view of these simplifications, and writing again V3 = v + w, where v

is the horizontal velocity of the water and w the vertical velocity, we deduce

3 Note that, in the Boussinesq approximation (see Chapter 9), ρ is everywhere constant in the
equations, ρ = ρ0, except in the gravity term, which thus produces the so-called buoyancy
force.



Equations of the atmosphere and of the ocean 193

from the general equations above the following system of equations:

∂v

∂t
+∇vv + w

∂v

∂z
+ 1

ρ0
∇ p + 2ω cos θ �k ∧ �v = D, (12.31)

∂p

∂z
= −ρg, (12.32)

div v + ∂w

∂z
= 0, (12.33)

∂T

∂t
+∇vT + w

∂T

∂z
− µT�T − νT

∂2T

∂z2
= QT , (12.34)

∂S

∂t
+∇vS + w

∂S

∂z
− µS�S − νS

∂2S

∂z2
= 0, (12.35)

ρ = ρ0 + α(T − T0)− β(S − S0), (12.36)

where µT , νT , µS , and νS are diffusion coefficients. Equations (12.31) to
(12.36) are called the primitive equations of the ocean. They must be sup-
plemented by boundary conditions (at the surface, the bottom, and on the
lateral boundaries of the ocean) for which we refer the interested reader to
the books and articles cited in the references. The primitive equations of the
ocean constitute the fundamental equations of the ocean.

12.4. Chemistry of the atmosphere and the ocean

The study of the propagation of pollutants in the atmosphere or in the oceans
is based on the equations that we will now describe (or on some simplified ver-
sion of these equations). These equations result essentially from the coupling
of the primitive equations of the atmosphere and of the ocean with the equa-
tions of chemical kinetics quite similar to those considered in the previous
chapter for the study of combustion.

Our aim here is only to give an overview of the methodology because
the subject is very complex, and one can indeed consider a large variety of
problems, depending on the objectives. Roughly speaking, the equations of
fluid mechanics (motion of the air or of water) must be coupled with an energy
or temperature equation and with equations describing the spatiotemporal
evolution of the chemical pollutant concentrations such as ozone, carbon
dioxide, sulfurous compounds, and so forth. One may also be led to make
local and global studies. Local or small-scale studies are those that would
concern for instance a city, a region, or an estuary. Global or large-scale
studies are those that would concern, for instance, a whole ocean, or the
entire earth’s atmosphere (for studying for example the ozone holes above
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the poles). Because of the very limited pretensions of this section and of this
chapter (see Remark 12.2), we will be content with writing the chemistry
equations for the atmosphere only.

The vertical variable being the pressure variable p, as in Section 12.2, all the
unknown quantities are functions of t, ϕ, θ, p (time t , spherical coordinates
longitude, and colatitude ϕ, θ).

The unknown functions are

• The velocity of the wind V3, where V3 = v + ', v is the horizontal
velocity, and ' is the vertical velocity (in p coordinates);

• The density ρ, the geopotential � = gz (the height z is a function of
t, ϕ, θ, p);

• The temperature T ;
• The mass fractions Y1, . . . , YN , of the N chemical species contained in

the atmosphere, one of them, say Y1, being water.

The equations governing the spatiotemporal evolution of these quantities
are

• Equations (12.18) to (12.21) of this chapter (with Eqs. (12.22) to (12.24));
• Equations (11.19) of Chapter 11 with the expressions of the ωi given by

Eqs. (11.12) and (11.25) of chapter 11.

With an explicit expression of D in Eq. (12.18) (similar to that on the
right-hand side of Eq. (12.21)), the following system is obtained in which the
underlined term is usually neglected:

∂v

∂t
+ ∇vv + ω

∂v

∂p
+ 2� cos θ k ∧ v + ∇�

−µv�v − νv
∂

∂p

[(
gp

RT

)2
∂v

∂p

]
= 0, (12.37)

R2

C2

{
∂T

∂t
+ ∇vT + ω

∂T

∂p

}
− Rω

p
− µT�T − νT

∂

∂p

[(
gp

RT

)2
∂T

∂p

]

= R2

C2

[
E
cp
−

N∑
i=1

hiwi (T, Y 1, . . . , Y N )

]
, (12.38)

∂Y i

∂t
+ ∇vY

i + ω
∂Y i

∂p
− µYi�Y i − νYi

∂

∂p

[(
gp

RT

)2
∂Y i

∂p

]
=ωi (T, Y 1, . . . , Y N ), i = 1, . . . , N , (12.39)
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∂�

∂p
+ RT

p
= 0, (12.40)

div v + ∂'

∂p
= 0. (12.41)

All the quantities have been defined; hi is the enthalpy of species i , as in
Eq. (11.15) of Chapter 11.

All these equations must be supplemented with initial and boundary con-
ditions that we do not describe here.

The unknown functions divide into two groups: the prognostic variables,
for which one defines evolution equations and prescribes initial conditions,
and the diagnostic variables that are determined at each time in terms of
the prognostic variables by using the equations and the boundary conditions
(not given here): v, T , and the Yi are the prognostic unknowns; �,' , and ρ

(= p/RT thanks to Eq. (12.8)) are the diagnostic unknowns.

Remark 12.2: As mentioned earlier, we have just touched upon the prob-
lems and difficulties related to the modeling of the atmosphere and oceans.
Numerous problems, such as the boundary conditions, the coupling of the
atmosphere and oceans, or taking into account other phenomena (for instance
radiation, the earth’s topography, and the vegetation) have not been devel-
oped, and it is of course impossible to treat them, even superficially, within
the scope of this book.

Appendix. The differential operators in spherical coordinates

Let (eθ , eϕ, er ) be the local canonical basis in spherical coordinates, let
V3 = vθeθ + vϕeϕ + vr er be a vector and F a scalar. Our aim in this appendix
is to write a list of formulas giving the expressions of the gradient, divergence,
curl, and Laplacian operators in spherical coordinates. For the Laplacian op-
erators, we have to distinguish between the scalar and vector cases because
the Laplacian of a vector function on a manifold is not defined in a unique
way. We obtain, after some calculations

grad3F =
1

r

∂F

∂θ
eθ + 1

r sin θ

∂F

∂ϕ
eϕ + ∂F

∂r
er , (12.42)

div3V3 = 1

r sin θ

∂(sin θ vθ )

∂θ
+ 1

r sin θ

∂vϕ

∂ϕ
+ 1

r2

∂(r2vr )

∂r
, (12.43)
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curl3V3 = 1

r

(
1

sin θ

∂vr

∂ϕ
− ∂(rvϕ)

∂r

)
eθ + 1

r

(
∂(rvθ )

∂r
− ∂vr

∂θ

)
eϕ

+ 1

r sin θ

(
∂(vϕ sin θ )

∂θ
− ∂vθ

∂ϕ

)
er ,

�3F = 1

r2 sin θ

∂

∂θ

(
sin θ

∂F

∂θ

)
+ 1

r2 sin2 θ

∂2F

∂ϕ2

+ 1

r2

∂

∂r

(
r2 ∂F

∂r

)
,

�V3 =
(
�vθ + 2

r2

∂vr

∂θ
− vθ

r2 sin θ
− 2

r2 sin θ

∂vϕ

∂ϕ

)
eθ

+
(
�vϕ + 2

r2 sin θ

∂vr

∂ϕ
+ 2

r2

cos θ

sin2 θ

∂vθ

∂ϕ
− vϕ

r2 sin2 θ

)
eϕ

+
(
�vr − 2vr

r2
− 2

r2 sin θ

∂(vθ sin θ )

∂θ
− 2

r2 sin θ

∂vϕ

∂ϕ

)
er .

In view of the approximations made in the preceding paragraphs, which
consist of replacing the domain filled by the atmosphere (or by the ocean)
by the product of the sphere S2

a with an interval (i.e., of making the approx-
imation r  a), we will also need to define these operators on the sphere
S2
a . Thus, if v = vθeθ + vϕeϕ is a vector tangent to the sphere and if F is a

scalar, we obtain the following expressions for the two-dimensional operators
below:

grad F = 1

a

∂F

∂θ
eθ + 1

a sin θ

∂F

∂ϕ
eϕ,

div v = 1

a sin θ

∂(sin θvθ )

∂θ
+ 1

a sin θ

∂vϕ

∂ϕ
,

�F = 1

a2 sin θ

∂

∂θ

(
sin θ

∂F

∂θ

)
+ 1

a2 sin2 θ

∂2F

∂ϕ2
,

�v =
(
�vθ − vθ

a2 sin2 θ
− 2

a2

cos θ

sin2 θ

∂vϕ

∂ϕ

)
eθ

+
(
�vϕ + 2 cos θ

a2 sin2 θ

∂vθ

∂ϕ
− vϕ

a2 sin2 θ

)
eϕ.

Furthermore, we set, for v = vθeθ + vϕeϕ, F denoting a scalar function and
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w = wθeθ + wϕeϕ a vector function tangent to the sphere:

∇vF = vθ

a

∂F

∂θ
+ vϕ

a sin θ

∂F

∂ϕ
,

∇vw =
[
v · gradwθ − vϕwϕ

a
cot θ

]
eθ +

[
(v · grad)wϕ + vϕwθ

a
cot θ

]
eϕ.

These functions are called, in differential geometry, the covariant derivatives
of F and w in the v direction.

To go further:
Much more important developments in fluid mechanics can be found in the
books cited in the bibliography: the recent book by Candel in French and, in
English, the classical books by Batchelor, Chorin and Marsden, Lamb, and
Landau and Lifschitz; see also the recent book by Majda and Bertozzi, with
a particular emphasis on Euler equations and vortices.

The books by Hinze and Schlichting are classical references, in turbu-
lence and boundary layers (possibly turbulent) respectively. The books by
Chandrasekhar and by Drazin and Reed are devoted to the study of the stabil-
ity in fluid mechanics (and in magnetohydrodynamics for Chandrasekhar’s).

The mathematical aspects of the Navier-Stokes equations are developed
in the books, cited, by Doering and Gibbon (more physically oriented),
Ladyzhenskaya, Temam, in the large article by Serrin, and in many other
references quoted therein.

The book by Cabannes is a very complete book on magnetohydrodynamics
(see also that of Chandrasekhar). The book by Williams is a reference in
combustion; the mathematical developments can be found in the book by the
Volperts.

Among the numerous references concerning the equations of the atmo-
sphere and the ocean, one can find in the bibliography the classical books
by Pedloski and by Washington and Parkinson; mathematical developments
appear in the cited articles by Lions, Temam and Wang, and in a book in
preparation.

Of course, for all these huge subjects, the reader can also refer to the
bibliography of the books and articles cited.
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CHAPTER THIRTEEN

The general equations of linear elasticity

Our aim in this chapter is to study in more detail the equations of linear
elasticity as well as the boundary conditions that are associated with them.

Throughout Part 3 of this book, we change our notations and call x
the Lagrangian variable and x ′ the Eulerian variable. Hence, x ′ =�(x, t)=
x + u(x, t) represents the position at time t > 0 of the particle occupying the
position x at time 0, u(x, t) denoting the displacement of this particle.

13.1. Back to the stress–strain law of linear elasticity:
the elasticity coefficients of a material

We recall that for an elastic material, and under the small deformations as-
sumption, the stress–strain law, which is linear, is

σi j = 2µεi j + λεkkδi j ,

where εi j = 1
2 (ui, j + u j,i ), u being the displacement and ui, j = ∂ui/∂x j

denoting the derivative of ui with respect to the (Lagrangian) variable x j .

The quantities λ and µ are the Lamé coefficients of the material, and the
second principle of thermodynamics implies that µ ≥ 0 and 3λ+ 2µ ≥ 0 (as
for fluids; see Chapter 7). These coefficients may be functions of the position,
the time, the temperature, or even of other quantities. However, in general
and at first approximation, they are considered to be constant, which we will
assume hereafter.

We consider the “deviatoric” parts εD and σ D of the tensors ε and σ , whose
components are

εDi j = ei j = εi j − 1

3
εkkδi j = εi j − e δi j ,

σ D
i j = si j = σi j − 1

3
σkkδi j = σi j − s δi j ,

201
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where

e = 1

3
εkk, s = 1

3
σkk .

Thus,

si j + s δi j = 2µ(ei j + e δi j )+ 3λ e δi j ,

and hence, by summation (s j j = e j j = 0):

s = (3λ+ 2µ)e,

so that

si j = 2µ ei j .

Other elasticity coefficients: the Young and Poisson moduli

By inverting the previous relations, other coefficients (related to λ and µ) that
have a physical significance appear. We only write here the algebraic formu-
las, and we will come back later to the physical meaning of the coefficients
introduced.

We first write

3κ = 3λ+ 2µ ≥ 0;

κ is called the rigidity to compression modulus (see the experiment of uniform
compression of a rod in Chapter 14, Section 14.2). We then set

1

E
= λ+ µ

µ(3λ+ 2µ)
, ν = λ

2(λ+ µ)
.

Because 3λ + 2µ ≥ 0 and µ ≥ 0, it follows that λ ≥ −2µ/3, λ + µ ≥
µ/3 ≥ 0, and then E ≥ 0; E is the Young modulus and ν the Poisson
coefficient of the material.

Furthermore, 3κ = 3λ+ 2µ = E/(1− 2ν), which yields 1− 2ν ≥ 0, that
is, ν ≤ 1/2.

We easily check that

µ = E

2(1+ ν)
, λ = νE

(1− 2ν)(1+ ν)
,

and because µ ≥ 0 and E ≥ 0, it follows that 1+ ν ≥ 0. Thus,

−1 ≤ ν ≤ 1

2
, E ≥ 0.
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By inverting the stress–strain laws, we then find

s = 3κe = E

1− 2ν
e,

and because ei j = (1/2µ)si j ,

εi j − e δi j = 1

2µ
(σi j − s δi j ).

Consequently,

εi j = σi j

2µ
+
(

1− 2ν

E
s − s

2µ

)
δi j

= 1+ ν

E
σi j +

(
1− 2ν

E
− 1+ ν

E

)
s δi j

= 1+ ν

E
σi j − 3ν

E
s δi j ,

and finally

εi j = 1+ ν

E
σi j − ν

E
σkkδi j .

13.2. Boundary value problems in linear elasticity:
the linearization principle

We start this section by briefly recalling the general concepts of linear elas-
ticity.

For the study of a problem of linear elasticity, we have the fundamental
law of dynamics

ργi = fi + σ̃i j, j , (13.1)

and the linear stress–strain law

σi j = 2µεi j + λεkkδi j ,

εi j = 1

2
(ui, j + u j,i ),

(13.2)

where u is the displacement, at our disposal. The notations in this paragraph
are not the usual notations. In the formulas above, σ̃ = σ̃ (x ′, t) is the stress
tensor expressed in Eulerian variable x ′, and the derivative σ̃i j, j is relative
to the x ′j variable. However, in the stress–strain law, the displacement
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ui = ui (x, t) is expressed in the Lagrangian variable x , and the derivative ui, j
is relative to the Lagrangian variable x j . For consistency, we also express the
stress tensor in (2) in the Lagrangian variable, and denote it by σ . This com-
plication will disappear in linear elasticity thanks to the small displacements
hypothesis that will allow us to approximate the equations (and the boundary
conditions) by linearizing them with respect to the displacements. Eventually,
all the equations and boundary conditions will be written in the nondeformed
(Lagrangian) variable x .

Remark 13.1: It is of course necessary to check the validity a posteriori of
the approximations made. We will come back to this problem in Section 13.4
where we will study the limit of elasticity criteria, giving empirical rules
(which we will be content with but which cannot replace rigorous convergence
theorems that are difficult to prove and not always available).

Linearization of the equations

We consider an elastic body filling the domain�0 at time 0 and the domain�t

at time t. As already mentioned, we will denote by x ′ = �(x, t) the position
at time t > 0 of the particle located at x at time 0 (x ∈ �0, x ′ ∈ �t ). We call
ũ(x ′, t) = ũ[�(x, t), t] = u(x, t) the displacement. Thus, according to the
definitions and results of Chapter 1:

γi = ∂2ui
∂t2

(x, t),

σ̃i j,k = ∂

∂x ′k
σ̃i j (x

′, t) = ∂

∂x ′k
σi j (ψ(x ′, t), t)

= ∂σi j

∂x�
· ∂ψ�

∂x ′k
,

where we have set x = ψ(x ′, t) and σ (x, t) = σ̃ [�(x, t), t]. We have

∂� j

∂xk
= δ jk + ∂u j

∂xk
.

Because the displacement and its derivatives are small (infinitesimally small
at first order) and ψ is the inverse function of the displacement �,

∂ψ j

∂x ′k
= δ jk − ∂u j

∂xk
+ o(η)  δ jk − ∂u j

∂xk
,
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∂ψ j/∂x ′k being equal to the element ( j, k) of the inverse matrix of ∇�.
Consequently,

σ̃i j,k = ∂σi j

∂x�
·
(
δ�k − ∂u�

∂xk

)
+ o(η);

hence, to first order (i.e., to order o(1)):

σi j, j = σ̃i j, j .

This means, in an informal way, that one can replace σ̃i j by σi j in Eq. (13.1)
or else that we can differentiate with respect to x j rather than to x ′j ; this solves
one of the difficulties mentioned above.

The linearized momentum equation then becomes

ρ
∂2ui (x, t)

∂t2
= fi (x, t)+ ∂σi j

∂x j
(x, t).

We again transform this equation by using the relation

εi j = 1

2

(
∂ui
∂x j

+ ∂u j

∂xi

)
,

and the stress–strain law:

σi j = µ

(
∂ui
∂x j

+ ∂u j

∂xi

)
+ λ

∂uk
∂xk

δi j .

We deduce the following equation for the displacements, which is also called
the Navier equation:

ρ
∂2u

∂t2
= f + µ �u + (λ+ µ) grad div u.

We recall that u and f depend on x and t, t ≥ 0, x ∈ �, which is the name
that we give, from now on, to the undeformed state �0.

The next step is the linearization of the boundary conditions.

Linearization of the boundary conditions

We are given two disjoint parts of ∂�, �u and �T such that �u ∪ �T = ∂�

(= ∂�0), and we assume that u is prescribed on �u and that T = σ · n is
given on the image of �T by �. This corresponds to the natural boundary
conditions for a problem of solid mechanics. Hence, part of the boundary
conditions relates to the undeformed state and part relates to the deformed
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state. As for the equations, this complication, inevitable in general, will be
removed here by the linearization of the boundary conditions.

a) Prescribed displacement

We set

u = ϕ (given), on �u .

As already noted, this boundary condition is automatically prescribed in the
undeformed geometry.

b) Prescribed stress

We provisionally return to the notation with ∼ and use the variable x ′ to write
the boundary condition on �(�T ):

σ̃ (x ′, t) · ñ(x ′, t) = F(x ′, t) (given), x ′ ∈ �(�T , t).

Here, ñ denotes the unit outward normal to �(�T ), but we easily check that,
to first approximation, ñ(x ′, t) = ñ[�(x, t), t] = n(x, t), where n is the unit
outward normal to ∂�0. Indeed, if the equation of ∂�t is g̃(x ′, t) = 0, then
g̃[�(x, t), t] ≡ g(x, t) = 0 is the equation of ∂�0, and

ñ = ∇x ′ g̃

|∇x ′ g̃| ,

∂ g̃

∂x ′i
= ∂g

∂x�

∂ψ�

∂x ′i

 ∂g

∂xi
+ o(1).

Therefore, to first order

ñ = ∇x ′ g̃

|∇x ′ g̃|  
∇x g

|∇x g| = n.

Using σ (x, t) = σ̃ [�(x, t), t], the boundary condition on �(�T ) becomes,
after linearization

(σi j n j )(x, t) = Fi [�(x, t), t] = Fi (x, t)+ o(1), on �T .

Returning to the notation without tildes, we will then retain the condition

σi j · n j = Fi , on �T ,

σi j being expressed in terms of the derivatives of u, by using the stress–strain
law of the medium and the definition of the εk�.
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In summary, the fundamental equations of linear elasticity for a time-
dependent problem are

ρ
∂2u

∂t2
= f + µ �u + (λ + µ) grad div u, x ∈ �, t ≥ 0, (13.3)

u = ϕ, on �u, (13.4)

σ · n = F, on �T . (13.5)

Particular cases

a) Statics

In this case, u being independent of t, ∂2u/∂t2 = 0, and the displacement
equation (Eq. (13.3)) becomes

f + µ �u + (λ+ µ) grad div u = 0. (13.6)

b) Evolutionary case

In this case, we have to prescribe, in addition to f, ϕ, and F, the initial
displacements and velocities θ0, θ1

u(x, 0) = θ0(x), x ∈ �, (13.7)

∂u

∂t
(x, 0) = θ1(x), x ∈ �. (13.8)

Remark 13.2: We can also consider the limit cases where �u = ∂� and
�T = ∅ or where �T = ∂� and �u = ∅. In the static case, and if �u = ∅, the
solution to the displacement problem is not unique; it is defined up to a rigid
body displacement.

Boundary value problems

One can prove that, with proper hypotheses on the data �, f, ϕ, F , and possi-
bly θ0, θ1 (regularity assumptions, in particular), the boundary value problems
of elastostatics and of elastodynamics possess a unique solution in a proper
class of functions. These boundary value problems are as follows:

a) Elastostatics

An elastostatic problem consists of the study of Eq. (13.6) and of the bound-
ary conditions defined by Eqs. (13.4) and (13.5). This problem is related to
the projection theorem and to the variational formulation of elliptic boundary
value problems. We will come back to this in more detail in the following
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chapters. The problem possesses a unique solution except for the case men-
tioned in Remark 13.2. The uniqueness of solution in elastostatics is proved
in Chapter 15, Section 15.4.

b) Elastodynamics

We study in this case the boundary value problem consisting of Eq. (13.3), of
the boundary conditions defined by Eqs. (13.4) and (13.5), and of the initial
conditions set by Eqs. (13.7) and (13.8). One can prove the existence and
uniqueness of solutions for this problem in a suitable mathematical setting;
further remarks concerning this case are given hereafter.

c) Linearity

We easily observe that the solution u (and thus σ and ε) is a linear func-
tion of the data, that is, the function ( f, ϕ, F) �→ (u, σ, ε) is linear. Thus,
if (u1, ε1, σ 1) (respectively, (u2, ε2, σ 2)) is the solution that corresponds to
( f 1, ϕ1, F1) (respectively, ( f 2, ϕ2, F2)), and if α and β are real numbers,
then (αu1 + βu2, αε1 + βε2, ασ 1 + βσ 2) is the solution that corresponds to
(α f 1+β f 2, αϕ1+βϕ2, αF1+βF2); this is the additivity principle of linear
elasticity.

13.3. Other equations

We will supplement the set of equations for u obtained in the previous section
with other equations on the deformations and on the stresses that are some-
times useful. Of course, these equations are not independent of the previous
ones.

Compatibility equations ( for the deformations)

We have

εi j = 1

2
(ui, j + u j,i ), (13.9)

ωi j = 1

2
(ui, j − u j,i ), (13.10)

where ω is the rotation tensor. Consequently,

ωi j,� = 1

2
(ui, j� − u j,i�)

= 1

2
(ui, j� + u�,i j )− 1

2
(u�,i j + u j,i�),
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and thus

ωi j,� = (εi�, j − ε j�,i ). (13.11)

Then, because ωi j,�k = ωi j,k�, it follows that

εi�, jk − ε j�,ik = εik, j� − ε jk,i�. (13.12)

Remark 13.3: Equation (13.12) is necessary and sufficient for a given tensor
field ε = (εi j ) to be locally the deformation tensor of a vector field u. Indeed,
if Eq. (13.12) holds, we can conversely recover the ui from the εi j . We first
recover the ωi j using Eq. (13.11) and then the ui from

ui, j = εi j + ωi j (13.13)

if the necessary and sufficient Schwarz conditions are satisfied for Eqs. (13.11)
and (13.13). They are satisfied for Eq. (13.11): the Schwarz conditions are
precisely the relations of Eq. (13.12). It remains to check that ui, jk = ui,k j ,
that is,

εi j,k + ωi j,k = εik, j + ωik, j ,

which is straightforward with Eq. (13.11). We notice that if it possesses a
solution, the problem of the determination of the ui by the εi j also possesses
other solutions that are deduced from one another by the addition of a rigid
displacement.

We now rewrite Eq. (13.12) in the form

0 = εi�, jk + ε jk,i� − (ε j�,ik + εik, j�)

and notice that the right-hand side is antisymmetric with respect to the pair
(i, j) and to the pair (�, k). Thus, we can limit ourselves to the pairs (i, j) and
(k, �) chosen among the pairs (1,2), (1,3), and (2,3). The expression is also
invariant by exchange of the pair (i, j) and of the pair (k, �). Consequently,
we would obtain all the relations by taking

(i, j) = (1, 2), (k, �) = (1, 2), (1, 3), (2, 3);

(i, j) = (1, 3), (k, �) = (1, 3), (2, 3);

(i, j) = (2, 3), (k, �) = (2, 3);

this gives six independent relations.
Now, if for every i, � we take j = k = 1, 2, 3 in Eq. (13.12), we obtain by

summation

�εi� + (3e),i� −
(
εik,�k + ε�k,ik

) = 0. (13.14)
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These six equations are independent and form a system equivalent to the initial
equations.

The equations obtained above are the compatibility equations for the εi j .As
mentioned before, they are necessary and sufficient for the εi j to be locally a
deformation tensor ( just as the Schwarz relations are necessary and sufficient
conditions for a vector field to be locally a gradient).

The Beltrami equations

The preceding equations were purely kinematic. We now obtain other equa-
tions by also taking into account the fundamental law of dynamics.

We saw that

e = 1− 2ν

E
s,

εi j = 1+ ν

E
σi j − 3ν

E
s δi j .

We immediately deduce from the compatibility equations (13.14) that

1+ ν

E
�σi� − 3ν

E
(�s) δi� + 3(1− 2ν)

E
s,i�

−1+ ν

E
(σik,�k + σ�k,ik)+ 3ν

E
[(sδik),�k + (sδ�k),ik] = 0,

and, because in statics,

σik,k = − fi ,

it follows that

�σi� − 3ν

ν + 1
(�s) δi� + 3(1− 2ν)

1+ ν
s,i� + ( fi,� + f�,i )+ 6ν

ν + 1
s,i� = 0.

Because −3�s = [(1 + ν)/(1 − ν)] div f (this relation is proven indepen-
dently hereafter), we deduce the Beltrami equation, which is valid in elastosta-
tics:

�σi� + 3

1+ ν
s,i� + ν

1− ν
fk,kδi� + fi,� + f�,i = 0.

If the external forces are constant, this reduces to

�σi� + 3

1+ ν
s,i� = 0.
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Other equations

We deduce from the Navier equation that

ρ
∂2

∂t2
div u = div f + µ � div u + (λ+ µ)� div u,

that is

ρ
∂2

∂t2
div u = div f + (λ+ 2µ)� div u.

Because div u = εkk = 3e, it follows that

ρ
∂2e

∂t2
− (λ+ 2µ)�e = 1

3
div f,

or else, by introducing the function s = [E/(1− 2ν)]e,

ρ
∂2s

∂t2
− (λ+ 2µ)�s = E

1− 2ν

div f

3
.

In statics, we have

−3�s = E

1− 2ν

1

λ+ 2µ
div f.

Now,

λ+ 2µ = νE

(1− 2ν)(1+ ν)
+ E

1+ ν

= (1− ν)E

(1− 2ν)(1+ ν)
.

Therefore, we recover the equation mentioned above as follows:

−3�s = 1+ ν

1− ν
div f.

13.4. The limit of elasticity criteria

The fundamental hypothesis in linear elasticity is that the displacements re-
main small. In general, we are unable to prove convergence or approximation
theorems rigorously, and it is necessary, at least, to check a posteriori the va-
lidity of this assumption. To do so, we have at our disposal empirical criteria
that are commonly used in mechanical engineering; the Tresca and von Mises
criteria are the most well known. We recall that elastic deformations are re-
versible, contrary to nonelastic deformations, and that, in general, engineers
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want structures working in the elastic domain so that they can predict their
behavior at all times.1

The Tresca criterion

We write that the modulus of the tangential stress remains, at every point x
and at every time t, lower than a constant denoted by g/2, g> 0. One can
show, using the so-called Mohr circles theory (not presented in this book),
that

Max |Tt | = Max
1

2
|σi − σ j |,

where the σi are the principal normal stresses. The first maximum is taken for
all directions n (T = σ · n); the second one is for i, j = 1, 2, 3. We then have
to write

Max|σi − σ j | ≤ g,

at all points x ∈ � and all time t , that is

Max|si − s j | ≤ g,

where the si are the eigenvalues of the deviator σ D of σ , so that si − s j =
σi − σ j ,∀i, j . The last maximum is taken with respect to i and j and with
respect to x, t, x ∈ �, t ≥ 0.

The von Mises criterion

We write in that case

si j si j ≤ const. = g′2;

that is to say,

s2
1 + s2

2 + s2
3 ≤ g′2.

Again, this relation must be satisfied at every point x ∈ � and at every
time t ≥ 0 if we are dealing with a time-dependent problem. We will see
later how one can experimentally determine the values of g and g′. The
Tresca and von Mises criteria are in good agreement with experimental
results.

1 If a media becomes unelastic after undergoing large deformations or after being subjected to
important forces, or both, then its mechanical state is not fully known because it depends on
the history of the loading; its response to future forcing becomes unpredictable.
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Exercises

1. a) Show that the components σ11, σ22, σ12 of the stress tensor correspond-
ing to a planar deformation field can be expressed, when the volume forces
vanish, in terms of a function χ (x1, x2) (solution of the bi-Laplacian equa-
tion �(�χ ) = 0) as follows:

σ11 = ∂2χ

∂χ2
2

, σ22 = ∂2χ

∂χ2
1

, σ12 = − ∂2χ

∂x1∂x2
.

b) We consider the functions χ of the form χ = f (x2) cos(ωx1), ω > 0.
Give the most general form of the function f .

2. An elastic body is at equilibrium with respect to an orthonormal frame
(0x1x2x3). We set −→r = −→0M .
a) We look for solutions of the Navier equation of the form

−→
X = −→X0 +−→B + ∇χ,

where
−→
X0 is a particular solution of the Navier equation and

−→
B is a

harmonic vector (i.e., such that �
−→
B = 0). Show that

∇(�χ + λ+ µ

λ+ 2µ
div
−→
B ) = 0,

and that χ is of the form

χ = − λ+ µ

2(λ+ 2µ)
(−→r · −→B + B0)+ b−→r 2

,

where B0 is harmonic.
b) Show that these solutions of the Navier equation are of the form

−→
X = −→X1 +−→B − λ+ µ

2(λ+ 2µ)
∇(−→r · −→B + B0),

X1 being a particular solution.
3. The stress field of an elastic medium is defined by

σ11 = x2
2 + k(x2

1 − x2
2 ), σ12 = −2kx1x2, σ22 = x2

1 + k(x2
2 − x2

1 ),

σ13 = σ23 = 0, σ33 = k(x2
1 + x2

2 ).

Compute the associated force field. Is this force field compatible with such
a stress field in an elastic medium?
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4. We consider an elastic medium at equilibrium and we assume that the
volume forces vanish and that the stress tensor is defined by

σ11 = σ22 = σ12 = 0, σ13 = ∂F

∂x2
− mx2

1

2
,

σ23 = − ∂F

∂x1
− nx2

2

2
, σ33 = mx1x3 + r x2x3.

Show that we may assume that, without loss of generality, F is independent
of x3 and show that �F is affine with respect to x1 and x2.

5. Reconsider Exercise 3, Chapter 4, assuming that the body is an elastic
material (i.e., that σ satisfies the stress-strain law of linear elasticity).



CHAPTER FOURTEEN

Classical problems of elastostatics

Our aim in this chapter is to treat several classical problems of elastostatics.
Strictly speaking, elasticity problems such as those described below cannot
be solved exactly in general: they can be solved exactly in very particular
cases (e.g., special geometry); otherwise, approximate numerical solutions
are obtained using computers. However, in the examples treated below, we
are going to find approximate solutions giving an idea of the exact solution
under some reasonable conditions that will be made precise in each case (by
using, in particular, the Saint-Venant principle described in Section 14.7).

For each of the mechanical problems that we will consider, we will find (by
guessing) an exact solution for a modified problem related to the one under
consideration. By the uniqueness theorem for elastostatics, there is no other
solution to the modified problem. Then, the relation between the solutions
of the initial and modified problems is made precise using the Saint-Venant
principle. We will also interpret the mathematical results from the mechanical
point of view, which leads in general, but not always, to conclusions that are
consistent with practical intuition.

14.1. Longitudinal traction–compression of a cylindrical bar

We consider an elongated cylindrical bar in traction (or in compression). We
assume that the axis of the cylinder is parallel to Ox1 (see Figure 14.1).

For the study of the problem, we formulate the following simplifying
assumptions that are realistic when the bar is long enough and when we
remain far enough from its ends:

• The volume forces are negligible;
• The external forces on the lateral surface vanish;

215
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Figure 14.1 A cylindrical bar in traction – compression.

• The stresses on the faces �0 and �1 with respective equations x1 = 0
and x1 = L are of the form

σ11 = F, σ21 = σ31 = 0, on x1 = L ,

σ11 = −F, σ21 = σ31 = 0, on x1 = 0.

We then propose the following solution for this elastostatic problem con-
cerning the stress tensor:

σ11 = F and σi j = 0, for all the other i and j,

which yields

σkk = F, εi j = 1+ ν

E
σi j − ν

E
F δi j , ∀ i, j.

The quantity

ε11 = 1+ ν

E
F − νF

E
= F

E
is called the elongation rate by unit length in the Ox1 direction. We have
furthermore

ε22 = ε33 = − ν

E
F, εi j = 0, if i �= j.

The equilibrium equations are satisfied, as well as the compatibility
equations for the εi j . Thus, there exists a displacement field u such that
ui, j + u j,i = 2εi j ; we find for instance the field

u1 = F

E
x1, u2 = − ν

E
Fx2, u3 = − ν

E
Fx3.

Every other solution (displacement field) can be obtained by adding a rigid
displacement to this vector field.

For the chosen displacement field, the section �0 is fixed, whereas the
section �1 has moved in the Ox1 direction of a distance FL/E ; this last
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quantity, proportional to L and F , is the elongation of the bar. Moreover,
every section undergoes a translation parallel to Ox1, and a homothety in the
directions Ox2 and Ox3 of ratio (1 − νF/E). Its area is thus multiplied by
(1 − νF/E)2. We will speak of elongation and contraction when F > 0, and
of shortening and dilation when F < 0 (it is assumed here that ν ≥ 0).

Remark 14.1: According to the Saint-Venant approximation principle that we
describe in Section 14.7, the solution just obtained is a good approximation
to the exact solution in the case of an elongated bar having one extremity, say
�0, fixed, and if we are sufficiently far from �0 and from �1.

Comparison with experiment

This experiment is a basic one in continuum mechanics. It allows us to check
Hooke’s law experimentally: Eε11= F , where ε11 is the elongation rate; al-
ternatively, for new materials whose behavior is unknown, the experiment
allows us to determine the Young modulus E . We will see subsequently that
it also allows us to relate the Tresca and von Mises limit-of-elasticity criteria
by comparing the constants g and g′ appearing in these criteria.

For a given rod, the relation between the traction F and the elongation by
unit of length ε11 is that described in Figure 14.2. As long as the absolute value
of F remains smaller than a limit value k, this relation is linear, as assumed
by linear elasticity. It stops being linear for |F | > k.

The experimental determination of k allows us to make the values of the
coefficients g and g′ appearing in the Tresca and von Mises criteria precise;
these criteria can then be applied, by extrapolation, to other situations.

Figure 14.2 Hooke’s law.
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The Tresca criterion gives, with σ1 = F, σ2 = σ3 = 0

Max|σi − σ j | = |F | ≤ g,

and we thus choose g = k. Similarly, for the von Mises criterion, we calculate
(σ D

i = si ):

s1 = 2

3
F, s2 = s3 = − F

3
;

hence,

s2
1 + s2

2 + s2
3 =

2

3
F2 ≤ g′2.

This is equivalent to |F | ≤ √3/2g′ and, for consistency, we choose for the
von Mises criterion g′ = √2/3k (and thus, g′ = √2/3g).

14.2. Uniform compression of an arbitrary body

We assume that a body S is subjected, on its boundary, to a uniform compres-
sion F = −pn, where p denotes the pressure, n is the unit outward normal,
and that it is not subjected to volume forces ( f = 0).

We propose, for the stress field, the solution

σ11 = σ22 = σ33 = −p, and σi j = 0 if i �= j.

The equilibrium equations, as well as the boundary conditions, are satisfied.
This solution is thus appropriate (there are no boundary conditions on u in this
problem). The corresponding deformation tensor field is given below; it de-
fines a displacement u unique up to the addition of a rigid displacement.
Indeed,

σ D = 0, εD = 0,

which yields

σI = (3λ+ 2µ)εI ,

and then

εi i = − 3p

(3λ+ 2µ)

and

ε11 = ε22 = ε33 = − p

3λ+ 2µ
= − p

3κ
.
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Figure 14.3 Uniform compression of an arbitrary body: practical realization.

We finally obtain a displacement of the form

u(x) = − p

3κ
x .

In practice, the body S will generally be fixed at one of its points (vanishing
displacement and rotation at this point), which specifies the rigid displacement
to be added to u (in what precedes, S is fixed at O; see Figure 14.3).

The limit-of-elasticity criteria imply that the behavior remains elastic for
arbitrarily large values of p (because si j = σ D

i j = 0). This somehow un-
expected fact is well confirmed by experimentation. This experiment is also
used in practice to determine κ for new materials (S being, for instance, a
sphere fixed at one point of its surface).

14.3. Equilibrium of a spherical container subjected to external
and internal pressures

We consider a body limited by two concentric spheres of radius R1 and R2,
R1 < R2. We assume that the volume forces vanish and that the body is sub-
jected to uniform normal pressures, p1 at the inner surface and p2 at the outer
surface (Figure 14.4).

We look (which is reasonable) for a radial displacement of the form

u(x) = g(r )x, r = |x |.
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Figure 14.4 Spherical container.

Because ∂r/∂xi = xi/r , it follows that

curl u = grad g ∧ x + g curl x

= g′(r )
x

r
∧ x = 0.

One easily checks that

�u = grad div u − curl curl u,

and thus the Navier equation may be rewritten in the form

µ curl curl u − (λ+ 2µ) grad div u = f.

The Navier equation thus reduces to grad div u = 0, which gives

div u = rg′(r )+ 3g(r ) = const. (denoted by 3α).

By integration, we infer that

g(r ) = α + β
1

r3
,

where α and β are constants.
Consequently, the expression for the εi j is

εi j = ui, j = g(r )δi j + 1

r
g′(r ) xi x j ,
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and, for the stress tensor, we have

σI = (3λ+ 2µ)εI = 3α(3λ+ 2µ),

σi j = 2µεi j + λεI δi j

= 2µ
g′(r )

r
xi x j + [2µg(r )+ 3λα] δi j .

The principal directions of stresses at x areOx and all the orthogonal directions
with eigenvalues

σ1 (corresponding to Ox) = 3ακ − 4µβ

r3
,

σ2 = σ3 = 3ακ + 2µβ

r3
.

Boundary conditions

On the surface r = R2, the unit outward normal is n = x/r , and thus

σn = σ1n = −p2n;

hence, the boundary condition

σ1|r=R2 = −p2,

that is to say,

3ακ − 4µβ

R3
2

= −p2.

Similarly, for r = R1, we have

σ1|r=R1 = −p1,

3ακ − 4µβ

R3
1

= −p1.

It then follows that

β = p2 − p1

4µ

R3
1 R

3
2

R3
1 − R3

2

,

3κα = p1R3
1 − p2R3

2

R3
2 − R3

1

.

As a result, σ, ε, and u are entirely determined, u being known up to a rigid
displacement.
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Limit of elasticity

It is particularly interesting, for this example, to make explicit the limit of
elasticity criteria.

For that purpose, we first compute the principal normal stresses σi . At an
arbitrary point x , we have

σ1 = −p1
R3

1

r3

R3
2 − r3

R3
2 − R3

1

− p2
R3

2

r3

r3 − R3
1

R3
2 − R3

1

,

σ2 = p1
R3

1

2r3

R3
2 + 2r3

R3
2 − R3

1

− p2
R3

2

2r3

R3
1 + 2r3

R3
2 − R3

1

.

Therefore,

|σ1 − σ2| =
∣∣∣∣6µβr3

∣∣∣∣ = 3

2
|p1 − p2| R3

2 R
3
1

r3
(
R3

2 − R3
1

) ,
σ D
I I =

1

2
σ D
i j σ

D
i j =

12µ3β3

r6

= 3

4

(p1 − p2)2

r6

R6
2 R

6
1(

R3
2 − R3

1

)2 .

The maxima of |σ1 − σ2| and of σ D
I I are both reached on the inner surface

r = R1, and they are equal to

3

2
|p1 − p2| R3

2

R3
2 − R3

1

and
3

4
|p1 − p2|2 R6

2(
R3

2 − R3
1

)2 .

By taking, as in Section 14.1, g′ = √2/3g = √2/3k, we see that the Tresca
and von Mises criteria coincide, and they give

|p1 − p2| ≤ 2

3
k

(
1− R3

1

R3
2

)
.

The right-hand side of the last inequality tends to 2k/3, as R2 → ∞. This
result means that it is not necessarily useful to increase the thickness of
the container too much; for a container of given capacity (R1 fixed) sub-
mitted to inner and outer pressures p1 and p2, there is no point in increas-
ing the width (R2 → +∞) indefinitely because the difference of pressures
that the container can bear in the elastic regime remains limited to 2k/3, as
R2 →∞.
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Figure 14.5 Vertical body subjected to gravitation.

14.4. Deformation of a vertical cylindrical body under
the action of its weight

We now consider a vertical cylindrical body deforming solely under the action
of gravity (Figure 14.5).

We assume that Ox3 is the upward vertical and that this axis coincides with
the axis of the cylinder and with the line joining the centers of mass of the
sections (of the cylinder). Let � be the lateral surface, �1 the upper section,
and �0 the lower section. We will specify later what happens on �1 (we will
assume that a “small” region around A is fixed).

The volume forces (gravity forces) are given by

f = −ρge3.

We propose, for the stress tensor, a solution of the form

σ33 = ρgx3,

σi j = 0 for the other pairs (i, j).

Then, all the equilibrium relations are satisfied. Furthermore, the boundary
condition σ · n = 0 is satisfied on � and �0.
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We thus obtain

ε11 = ε22 = −νρg

E
x3, ε33 = ρg

x3

E
,

εi j = 0 if i �= j.

We then need to determine u (the existence of u is guaranteed because the
compatibility conditions for the εi j are satisfied). Because ui,i = εi i , we obtain

u1 = −νρg

E
x1x3 + ϕ1(x2, x3),

u2 = −νρg

E
x2x3 + ϕ2(x3, x1),

u3 = ρg

2E
x2

3 + ϕ3(x1, x2);

the functionsϕ1, ϕ2, ϕ3 remain to be determined. The relations ui, j + u j,i = 0,
i �= j, give

ϕ1,2 + ϕ2,1 = 0,

ϕ2,3 + ϕ3,2 = νρg

E
x2,

ϕ1,3 + ϕ3,1 = νρg

E
x1.

We set ψ1 = ϕ1, ψ2 = ϕ2, ψ3 = − 1
2 (νρg/E)(x2

1 + x2
2 )+ ϕ3, and we find

ψ1,2 = −ψ2,1, ψ2,3 = −ψ3,2, ψ3,1 = −ψ1,3.

Because, moreover, ϕ1,1 = ϕ2,2 = ϕ3,3 = 0, we have, similarly, ψ1,1 =
ψ2,2 = ψ3,3 = 0. Consequently, εi j (ψ) = 0, with ψ = (ψ1, ψ2, ψ3); that is
to say, ψ is a rigid displacement. This yields ψ = α ∧ x + β, where α and β

are constant vectors, that is,

ψ1 = α2x3 − α3x2 + β1,

ψ2 = α3x1 − α1x3 + β2,

ψ3 = α1x2 − α2x1 + β3.

We now assume that the displacement and the rotation at the point A =
(0, 0, �) vanish, which yields finally

u1 = −νρg

E
x1x3,

u2 = −νρg

E
x2x3,

u3 = ρg

2E

[
x2

3 + ν
(
x2

1 + x2
2

)− �2
]
.
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On the section �1, we have already imposed the condition that the dis-
placement and the rotation vanish at A. Furthermore, observing that

σ · n = ρg�e3, on �1,

we see that the resultant of the external forces on�1, equal toρg�e3×area(�1),
is opposed to the gravity force and the resulting momentum at A vanishes.
This situation does not correspond to reality but, by the Saint-Venant principle
(see Section 14.7), and if the bar is long enough (� & diameter of �1), the
solution found is a rather good approximation to the exact solution if we are
far enough from �1.

For a point on the Ox3 axis, the displacement is downward:

u1 = u2 = 0,

u3 = − ρg

2E

(
�2 − x2

3

)
.

The section x3 = c becomes, after deformation,

x ′1 = x1

(
1− νρgc

E

)
,

x ′2 = x2

(
1− νρgc

E

)
,

x ′3 = c + ρg

2E
(c2 − �2)+ νρg

2E

(
x2

1 + x2
2

)
 (to first order)

 c + ρg

2E
(c2 − �2)+ νρg

2E

(
x ′21 + x ′22

)
.

The deformed surface of the section x3 = c is a revolution paraboloid with
axis Ox3. Finally, the contraction of the lateral dimensions is proportional to
x3 (the distance to the basis).

14.5. Simple bending of a cylindrical beam

We consider in this section a cylindrical bar of axis Ox3 whose lateral surface
� is not submitted to any force, the face �1 being submitted to a torque M2e2

orthogonal to Ox3, and the face �0 to the opposite torque (see Figure 14.6).
We make the following simplifying hypotheses that lead to a realistic

solution if the bar is long enough and if we are far enough from the ends of
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Figure 14.6 Bending of a cylindrical beam.

the bar (see also the Saint-Venant principle):

• The volume forces, including gravity, are negligible;
• The external forces on the surface � are neglected;
• The stresses on the surfaces �1 and �0 are of the form

F =
{−cx1e3, on �1,

cx1e3, on �0,

and the axes Ox1x2x3 are chosen as follows:
• ∫

�i
x j dx1 dx2 = 0, i = 0, 1, j = 1, 2, that is, (0, 0) is the center of

mass of �0 (and �1);
• e1 and e2 are the principal directions of the inertia tensor at O of �0 (and
�1), that is, ∫

�i

x1x2 dx1 dx2 = 0, i = 0, 1,

and we denote by I j the moment of inertia with respect to Ox j , j = 1, 2.

The reduction elements of the helicoidal vector field associated with the
external forces are then

R =
∫
�0

F dx1 dx2 = ce3

∫
�0

x1 dx1 dx2 = 0,

and

M =
∫
�0

x ∧ (cx1e3) dx1 dx2

= −c
∫
�0

x2
1e2 dx1 dx2 + c

∫
�0

x1x2e1 dx1 dx2

= −cI2e2 = −M2e2.

Similarly, on �1, the resultant vanishes, and the resulting moment is
equal to

M2e2 = cI2e2.
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This problem can be solved for stresses only because there are no boundary
conditions on the displacements. We will check that there exists a solution of
the form

σ33 = −M2

I2
x1,

σi j = 0 for the other pairs (i, j).

We have, of course,

σi j, j = 0 = − fi ,

and

σi j n j = 0, on�.

Furthermore, on �1,

Fi = σi j n j = σ13;

hence,

F = σ33e3 = −M2

I2
x1, on�1,

and similarly

F = −σ33e3 = M2

I2
x1, on�0.

It remains to determine the displacements. Thanks to the preceding for-
mulas and to the stress–strain laws,

εi j = 1+ ν

E
σi j − ν

E
σI δi j ;

thus,

εi j = 0 for i �= j, and, for i = j,

ε11 = ε22 = ν

E

M2

I2
x1 = u1,1 = u2,2,

ε33 = − M2

E I2
x1 = u3,3,

u1,2 + u2,1 = u1,3 + u3,1 = u2,3 + u3,2 = 0.
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We can then take for u

u1 = M2

2E I2

[
x2

3 + ν
(
x2

1 − x2
2

)]
,

u2 = νM2

E I2
x1x2,

u3 = − M2

E I2
x1x3.

As we have already said, this result is a good approximation to the actual
solution for a sufficiently long beam fixed at O or on �0 far enough from �0.

Remark 14.2: If we apply a more general torque M1e1 + M2e2 whose com-
ponents on the principal inertia axes of the section are M1 and M2, one would
obtain the same type of result. We will treat separately the case of a torque of
the form M3e3 (torsion problem) in the next section.

Discussion of the result

We assume in what follows that the section �0 is fixed.

1. Every part (or every segment) of the beam corresponding to a fixed x1

and x2 is called a fiber. A fiber is elongated or stretched if x1 < 0, that is
u3 > 0; it is contracted or shortened if x1 > 0, that is u3 < 0.

2. The neutral fiber, corresponding to x1 = x2 = 0, becomes, after defor-
mation

x ′2 = x2 = 0, x ′3 = x3,

x ′1 =
M2

2E I2
x2

3 = (since x ′3 = x3)
M2

2E I2
x ′23 .

It is a parabola whose curvature is equal to 1/R = M2/E I2 to first order.

Because we are dealing with small deformations, the arc of the parabola
can be assimilated to the tangent circle at O of radius R (the osculatory circle
at O).

This result is known as the Euler–Bernoulli law: the bending torque is
proportional to the curvature of the beam. The coefficient of proportionality
EI2 is called the rigidity-to-bending modulus for the axis Ox2. To increase
EI2, one has to increase I2 =

∫
�0

x2
1 dx1 dx2.

Let us interpret this last point: For a given section area (prescribed amount
of material volume), one increases the resistance to bending by reducing I2;
this leads to the classical I-shaped beams used in high-rise buildings and more
generally in civil engineering.
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3. The section Da = {x3 = a} of the initial state is found, after deforma-
tion, in the plane

x ′3 = x3 + u3(x) = a

(
1− M2

E I
x1

)
,

x3 = a

(
1− x1

R

)
.

This plane is perpendicular to the parabola corresponding to the deformation
of the neutral fiber.

These results are classical ones in the theory of the elasticity of curvilinear
materials in civil engineering.

14.6. Torsion of cylindrical shafts

A cylindrical shaft with axis Ox3 is subjected to torques−Me3 and Me3 (see
Figure 14.6) on its faces �0 (x3 = 0) and �1 (x3 = �).

We assume that there are no volume forces and no forces exerted on the
lateral surface �. The actions on �0 and �1 will be specified later on. We will
further assume that Ox3 coincides with the line joining the centers of mass of
the sections of the cylinder.

For the stresses, we look a priori for a solution for which all the σi j van-
ish except for σ13 and σ23, which we will assume independent of x3. The
equilibrium equations then give

σ13,3 = 0, σ23,3 = 0,

σ31,1 + σ32,2 = 0 = σ13,1 + σ23,2.

Thus, σ13,1=−σ23,2, (σ23,−σ13) is then a gradient, and there exists a function
θ = θ (x1, x2) such that

σ13 = µαθ,2, σ23 = −µαθ,1,
where α is the rotation angle, which is assumed to be small. Because s =
σI = 0, the Beltrami equation becomes

�σi� = 0,

which yields

�θ,2 = �θ,1 = 0,
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and thus

�θ = const. = C.

We obtain the strain tensor in the form

ε13 = α

2
θ,2, ε23 = −α

2
θ,1,

εi j = 0 for all the other pairs (i, j).

Finally, for the displacements, we are going to show that there exists a solution
of the form

u1 = −αx2x3, u2 = αx1x3, u3 = αϕ(x1, x2, x3),

where ϕ, as well as θ and the constant C , remain to be determined.
Because u3,3 = 0, we deduce that ϕ only depends on x1 and x2. Further-

more,

ε13 = 1

2
(−αx2 + αϕ,1) = α

2
θ,2,

ε23 = 1

2
(αx1 + αϕ,2) = −α

2
θ,1;

hence,

2(ε13,2 − ε23,1) = −2α = α�θ,

and thus C = −2, and

�θ + 2 = 0.

Let us now consider the function ψ = θ + 1
2 (x2

1 + x2
2 ). It satisfies

�ψ = �θ + 2 = 0

and

ψ,2 = ϕ,1,

ψ,1 = −ϕ,2,

which yields

�ϕ = 0.

The function ϕ + iψ is holomorphic, and we are thus able to use the theory
of complex analysis. Furthermore, we will have the complete solution of the
problem as soon as we know one of the functions θ , ϕ, or ψ .
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Boundary conditions

On �, the condition σi j n j = 0 reads

σ31n1 + σ32n2 = 0,

and thus

θ,2n1 − θ,1n2 = 0.

Consequently,

θ,2τ2 + θ,1τ1 = 0;

that is to say,

∂θ

∂τ
= 0;

that is, θ is constant on �. Because θ is defined up to an additive constant,
we can assume that the constant vanishes and that

θ = 0, on�.

Thus, θ is the solution of the following boundary value problem, which is
called the Dirichlet problem:{

�θ + 2 = 0, on �0,

θ = 0, on ∂�0.

One can prove that this problem possesses a unique solution (that thus only
depends on the section �0 of the cylinder). The function θ is sometimes
called the stress function of the torsion problem. It allows us to determine the
displacements and the stresses.

To complete the mechanical study, we now specify more precisely the
forces exerted on �1, where σ · n = (σ13, σ23, 0). The resultant of the external
forces on �1 vanishes:

R =
∫
�1

(σ13, σ23, 0) dx1 dx2 =
∫
�1

µα(θ,2,−θ,1, 0) dx1 dx2

=
∫
∂�1

µα(n2,−n1, 0) θ d� = 0.

Their resulting momentum at O is equal to Me3, with

M =
∫
�1

(x1σ23 − x2σ13) dx1 dx2

=
∫
�1

−µα(x1θ,1 + x2θ,2) dx1 dx2
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= −µα
∫
�1

[
∂

∂x1
(x1θ )+ ∂

∂x2
(x2θ )− 2θ

]
dx1 dx2

= −µα
∫
∂�

x · nθ d�+ 2µα
∫
�1

θ dx1 dx2.

Therefore, setting D = 2µ
∫
�1

θ dx1 dx2, we find

M = Dαe3.

The constant D is called the rigidity-to-torsion modulus of the shaft. We see
that the moment of the torque applied to �1 is proportional to the rotation
angle α.

In the particular case of a cylindrical shaft of radius a, it is easy to see that
2θ = a2 − x2

1 − x2
2 is a solution of the Dirichlet problem defining θ ; then, by

a straightforward calculation, we find

D = πa4µ

2
.

The rigidity-to-torsion modulus of a circular shaft is thus proportional to the
fourth power of its radius.

Elasticity limit ( for a cylindrical shaft of radius a)

We have

σ 2
13 + σ 2

23 = σ D
I I = µ2α2|∇θ |2

= µ2α2
(
x2

1 + x2
2

)
.

The maximum of σ D
I I is reached on ∂�0 (it can be proved that this fact is true

for a general cylinder), and it is equal to µ2α2a2. The von Mises criterion
then gives

µ2α2a2 ≤ k2

3
;

that is,

α ≤ k

µa
√

3
.

The maximal intensity of the torque that can be applied is given by

M ≤ πa3

2
√

3
k.
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14.7. The Saint-Venant principle

In this short section, we restrict ourselves to stating the Saint-Venant prin-
ciple inasmuch as the previous sections contain numerous applications and
illustrations of this principle.

According to this principle, if on some part �0 of ∂�, instead of the
condition u= 0 on �0, we write that the displacement u(A) and the rotation
ω(A), at a point A of �0 vanish, or if �0 ⊂ ∂� and we replace, on �0,
the surface forces of density F (σ · n = F) by another set of surface forces
producing the same helicoidal vector field (on �0), then, far from �0, the
displacements and the stresses are unchanged to first approximation.

This principle justifies the simplifying hypotheses we have made in the
previous sections. Several forms of it that are more precise in their formulation
have been rigorously proven.

Exercises

1. We consider the tensor σ with components, with respect to an orthonormal
frame, given by

σ11 = σ12 = σ22 = 0, σ13 = Ax2
1 + Bx2

2 + C,

σ23 = Dx1x2, σ33 = Ex1 + Fx1x3.

a) Find the conditions that the constants A, B,C, D, E, F must satisfy
for this tensor to be able to be the stress tensor of an elastic material
with Poisson’s coefficient ν, the volume forces being negligible.

b) We assume that these conditions are satisfied and that σ is the stress
tensor of a cylindrical body (C) defined by x2

1 + x2
2 ≤ a, 0 ≤ x3 ≤ l,

and such that
• (i) the external forces on the lateral surface vanish;
• (ii) on the base x3 = l, the HVF associated with the external forces

is equivalent to a slider (a single force) with intensity P with support
containing the center of the section (i.e., R = (P, 0, 0) and M = 0);
we consider the resulting moment at the center of the base.
Compute the constants A, B,C, D, E , and F .

2. We consider an elastic medium at equilibrium with respect to an orthonor-
mal frame (0x1x2x3) such that the stress tensor has components

σ11 = σ22 = σ12 = σ13 = σ23 = 0,

σ33 = α(l − x3).
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a) Compute the external forces.
b) Compute the components εi j of the deformation tensor in terms of the

Young’s modulus E and the Poisson’s coefficient ν.
c) Compute the displacement field u, assuming that the origin O belongs

to the medium.
3. An elastic body with density ρ and with Lame’s coefficients λ andµ is rep-

resented by a cylindrical pipe limited by 2 circular, coaxial cylinders with
axis (0x3) and radii R1 and R2. We assume that the body is at equilibrium
and that the volume forces are negligible. Let M be a point of the pipe, H

its orthogonal projection onto (0x3) and set HM = r, er = 1

r
−−→
HM .

a) We assume that the displacement is of the form

u = U (r )er .

Compute div u and curl u. Write the ordinary differential equation
satisfied by U .

b) Solve this equation, assuming that the pressures inside and outside the
pipe are P1 and P2 respectively.



CHAPTER FIFTEEN

Energy theorems, duality,
and variational formulations

In this chapter, we present some principles of energy minimization that char-
acterize equilibria in elastostatics; we also introduce two related concepts,
namely the concept of duality (duality for the variational principles and du-
ality between displacements and stresses), and the concept of variational for-
mulations. Apart from their relevance to mechanics, these concepts also play
an important role in the numerical approximation of the problems we consider
(but we do not address this here of course), and, in other related forms, in
many other areas of science.

15.1. Elastic energy of a material

In an isotropic elastic material, we can define a quadratic functionalw = w(ε),
called the energy function, such that:

∂w(ε)

∂εi j
= σi j , ∀ i, j, (15.1)

for every tensor field ε, and thus Eq. (15.1) is then identical to the stress–strain
law of the material. This function is thus defined by

w(ε) = 1

2
{λεkkε�� + 2µεi jεi j };

hence,

2w(ε) = 2µ

(
εDi j +

ε��

3
δi j

)(
εDi j +

εkk

3
δi j

)
+ λ(εkk)2,

or else

w(ε) = 1

2

(
2µ

3
+ λ

)
(εkk)2 + µεDi j ε

D
i j . (15.2)

235
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Consequently, w is a positive definite quadratic form in ε (we will always
assume that µ and κ = λ+ 2µ/3 are strictly positive).

If we now consider a tensor field ε defined on �, x ∈ � �→ ε(x), we can
associate with it the functional

W (ε) =
∫
�

w[ε(x)] dx .

We have the following result, which provides a physical interpretation of W
and justifies its introduction:

Proposition 15.1. We consider an elastic system S that is in its natural state
(ε = 0) and fills the volume � at time t = 0 and that is at time t = t1 in the
deformation state corresponding to the deformation tensor ε. Then, −W (ε)
is, to first approximation, the work of the internal forces between times 0 and
t1. Thus, W (ε) is the amount of energy stored in stresses between 0 and t1.

Proof: We know that the power of the internal forces is, at each time, given by

P int = −
∫
�t

σ̃i j (x
′, t)ε̃i j [U (x ′, t)] dx ′

= −
∫
�0

σ̃i j [�(x, t)]ε̃i j

[
∂�(x, t)

∂t

]
D�

Dx
dx .

In linear elasticity, we saw in Chapter 13 that D�/Dx  1 up to first order,
and thus, to first approximation

Pint = −
∫
�

σi j (x, t)
∂εi j

∂t
(x, t) dx,

where � = �0 is the undeformed state (at t = 0). Consequently,

Pint = −
∫
�

∂w[ε(x, t)]

∂εi j

∂εi j (x, t)

∂t
dx

= − d

dt

∫
�

w[ε(x, t)] dx

= − d

dt
W [ε(t)].

The work of the internal forces between times 0 and t1 is, by definition, the
integral of Pint between 0 and t1; it is thus equal to

−
∫ t1

0

d

dt
[W (ε(t)] dt = −W [ε(t1)]+W [ε(0)]

= −W (ε),

because ε = ε(t1) and ε(0) = 0.
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Taking this result into account, we adopt the following definition:

Definition 15.1. If ε is a tensor field defined on �, we say that W (ε) is the
elastic deformation energy of the field ε; w[ε(x)] is the volume rate of defor-
mation energy at x, x ∈ �.

15.2. Duality – generalization

We can also consider the conjugate quadratic form of w that is defined by

w∗(σ ) = Sup
εi j
{εi jσi j − w(ε)}. (15.3)

A straightforward calculation gives

w∗(σ ) = 1

2

[
1+ ν

E
σi jσi j − ν

E
(σ��)

2

]
;

we note that, in a symmetric way,

∂w∗(σ )

∂σi j
= εi j , ∀ i, j. (15.4)

We can also write

2w∗(σ ) = 1+ ν

E

(
σ D
i j +

σkk

3
δi j

)(
σ D
i j +

σ��

3
δi j

)
− ν

E
(σ��)

2

= 1+ ν

E
σ D
i j σ

D
i j +

1+ ν

3E
(σkk)2 − ν

E
(σ��)

2

= 1+ ν

E
σ D
i j σ

D
i j +

1− 2ν

3E
(σkk)2.

Thus,

w∗(σ ) = 1+ ν

E

(
σ D
I I

)2 + 1− 2ν

3E
σ 2
I , (15.5)

and, therefore, w∗(σ ) is also a positive definite quadratic form in σ (upon the
assumption that −1 < ν < 1

2 and E > 0).
A direct consequence of Eq. (15.3) is that

w(ε)+ w∗(σ )− εi jσi j ≥ 0 (15.6)

for every pair of tensors ε, σ . Furthermore, σ and ε are related by the stress–
strain law if and only if

w(ε) = w∗(σ ) = 1

2
εi jσi j . (15.7)
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Indeed, when Eq. (15.7) holds, εi jσi j−w(ε) = w∗(σ ), and thus the supremum
in Eq. (15.3) is indeed reached at ε. By writing that the derivatives with respect
to the εi j of εk�σk� − w(ε) vanish, we obtain the following relations:

σi j = ∂w(ε)

∂εi j
, ∀ i, j ; (15.8)

this relation is identical to the stress–strain law. Conversely, because the func-
tion of ε, ε �→ εi jσi j −w(ε) is convex, the conditions of Eq. (15.8) mean that
this function reaches its maximum at ε.

Now, for every pair of tensor fields ε, σ defined on �, we set

W ∗(σ ) =
∫
�

w∗[σ (x)] dx,

〈ε, σ 〉 =
∫
�

εi j (x)σi j (x) dx ;

as a consequence of the relations of Eqs. (15.6), (15.7) and (15.8), we have
the following.

Proposition 15.2. For every pair of tensor fields σ, ε defined on �, we have

W (ε)+W ∗(σ )− 〈ε, σ 〉 ≥ 0. (15.9)

Furthermore, equality occurs in inequality (15.9) if and only if

W (ε) = W ∗(σ ) = 1

2
〈ε, σ 〉, (15.10)

and, in this case,

σi j (x) = ∂w

∂εi j
[ε(x)], (15.11)

for every x ∈ �.

Proof: Inequality (15.9) is deduced from inequality (15.6) by integration.
Furthermore, if equality occurs in (15.9), then∫

�

[w(ε)+ w∗(σ )− εi jσi j ] dx = 0;

hence, according to inequality (15.6):

w[ε(x)]+ w∗[σ (x)]− εi j (x)σi j (x) = 0, ∀ x ∈ �.

Therefore, Eq. (15.7) is true for every x , which yields Eq. (15.10) by inte-
gration, and in this case Eq. (15.8) is true for every x , which is equivalent
to saying that Eq. (15.11) holds. Conversely, if the condition of Eq. (15.10)
takes place, we easily check that there is equality in inequality (15.9).
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Definition 15.2. Let σ be a tensor field defined on �. We say that W ∗(σ )
is the elastic stress energy of the field σ ; w∗[σ (x)] is the volumetric rate of
stress energy at x.

Generalization

Until now, we have restricted ourselves, as far as linear elasticity is concerned,
to homogeneous isotropic materials; that is to say, materials that possess the
same behavior at every point (homogeneity) and in every direction (isotropy).
When this is not so, the stress–strain law has the following more general form:

σi j = ai jhkεhk, (15.12)

where the elasticity moduli ai jhk satisfy the symmetry conditions

ai jhk = a jihk = ai jkh,

and the positivity condition

ai jhkεi jεhk ≥ αεi jεi j , ∀ ε,
α being a strictly positive constant. The ai jhk can depend on x , and the posi-
tivity condition would then be required at every point x ∈ �.

We recover the isotropic case by taking

ai jkh = λδi jδkh + µ(δikδ jh + δihδ jk).

By inverting the relations of Eq. (15.12), we can write

εi j = Ai jkhσkh, (15.13)

the Ai jhk satisfying the same symmetry relations

Ai jhk = A jihk = Ai jkh,

and the positivity condition

Ai jkhσi jσkh ≥ α′σi jσi j , ∀ σ,
with α′ > 0.

All that precedes (and, in particular, Eqs. (15.1) and (15.4)) then extends
to the nonisotropic case by taking

w(ε) = 1

2
ai jkhεi jεkh,

w∗(σ ) = 1

2
Ai jkhσi jσkh .
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Remark 15.1: We have restricted ourselves to linear elasticity. However, all
that precedes can be extended to the case of nonlinear elasticity. The functions
w,w∗,W , and W ∗ are then no longer quadratic forms of ε and σ but more
general convex functions of ε and σ . A brief discussion of such situations will
appear in Chapter 16.

15.3. The energy theorems

We consider, as in Chapter 13, the general problem of elastostatics: to find
σ, ε, and u that are solutions of

(P)



σi j, j + fi = 0, in �,

σi j = 2µεi j + λεkkδi j ,

εi j = 1

2
(ui, j + u j,i ),

σi j n j = Fi , on �F ,

u = Ud , on �u,

with �u ∪ �F = ∂�, �u ∩ �F = ∅. We assume here that �u and �F are
nonempty. Certain limit cases, corresponding to empty �u or �F will be
studied separately.

Before stating the energy theorems, we give some definitions that will be
useful hereafter.

Definition 15.3. We say that a displacement field u defined on � is kinema-
tically admissible for (P) if it satisfies u = Ud on �u and if it satisfies certain
regularity assumptions.1

Definition 15.4. We say that a stress tensor field σ defined on � is statically
admissible for (P) if it satisfies

σi j, j + fi = 0, in �,

σi j n j = Fi , on �F ,

as well as certain regularity assumptions.2

Definition 15.5. We denote by (Ph) the homogeneous problem associated
with (P) corresponding to fi = 0, Fi = 0, and Ud = 0. As in Definitions 15.3

1 In general, we will assume that u is piecewise C1 or C2. However, in modern functional
analysis, we prefer to consider functions that belong to spaces called Sobolev spaces that are
directly related here, from the physical point of view, to the set of functions with finite energy.

2 As for u, we will consider, in general, continuous or piecewise C1 tensor fields, but it may be
desirable simply to consider tensor fields that are square integrable.
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and 15.4, we define the admissible displacement and stress tensor fields for
(Ph).3

Definition 15.6.

1. The potential energy of a kinematically admissible vector field u is
defined by the expression

V (u) = 1

2
W [ε(u)]− L(u),

where ε(u) is the deformation tensor of elements

εi j (u) = 1

2
(ui, j + u j,i ),

and

L(u) =
∫
�

f · u dx +
∫
�F

F · u d�.

2. The potential energy of a statically admissible tensor field σ is defined
by the expression

V ∗(σ ) = −1

2
W ∗(σ )+ K (σ ),

where

K (σ ) =
∫
�u

σi j n j (Ud )i d�.

If u and σ are respectively kinematically and statically admissible
for (P), a straightforward calculation gives

L(u)+ K (σ ) =
∫
�

f · u dx +
∫
∂�

(σ · n)u d�

= −
∫
�

σi j, j ui dx +
∫
∂�

(σ · n)u d�

=
∫
�

σi j ui, j dx =
∫
�

εi j (u)σi j dx .

We thus obtain the relation

L(u)+ K (σ ) = 〈ε(u), σ 〉, (15.14)

a consequence of which is the following theorem.

Theorem 15.1. Let u′ be a kinematically admissible displacement field for
(P) and let σ ′ be a statically admissible stress field for (P). Then,

V ∗(σ ′) ≤ V (u′).

3 The solution of problem (Ph) vanishes everywhere (σ =ε=u=0), but of course the admissible
stress tensor or displacement fields for (Ph) do not all vanish.
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If we further assume that problem (P) possesses solutions, and if (u, σ ) is
such a solution, then

V ∗(σ ′) ≤ V ∗(σ ) = V (u) ≤ V (u′). (15.15)

It follows, in particular, that u achieves the minimum of V (u′) among all
the kinematically admissible displacements u′ for (P), and σ achieves the
maximum of V ∗(σ ′) among all the statically admissible stress fields σ ′ for
(P).

Proof: The relation V ∗(σ ′) ≤ V (u′) immediately follows from Eq. (15.14)
and the definition of V and V ∗. For Eq. (15.15), we assume that the problem
(P) possesses solutions, and we denote such a solution by (u, σ ). Of course,
u is kinematically admissible, and σ is statically admissible. Furthermore, if
u′ is a kinematically admissible field,

W [ε(u′)] ≥ −W ∗(σ )+ 〈ε(u′), σ 〉.
Because

〈ε(u′), σ 〉 = L(u′)+ K (σ ),

we see that

W [ε(u′)]− L(u′) ≥ −W ∗(σ )+ K (σ );

hence,

V (u′) ≥ V ∗(σ )

for every kinematically admissible field u′.
Similarly, if σ ′ is a statically admissible field,

V ∗(σ ′) = −W ∗(σ ′)+ K (σ ′)

= [by Eq. (15.14)]

= −W ∗(σ ′)+ 〈ε(u), σ ′〉 − L(u)

≤ [by inequality (15.9)]

≤ W [ε(u)]− L(u) = V (u).

Let us further observe that

V (u) = V ∗(σ )

because

W [ε(u)]+W ∗(σ ) = 〈ε(u), σ 〉 = L(u)+ K (σ ),
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which yields

W [ε(u)]− L(u) = −W ∗(σ )+ K (σ ).

Finally, we have proved that

V ∗(σ ′) ≤ V ∗(σ ) = V (u) ≤ V (u′)

for every kinematically admissible field u′ and every statically admissible
field σ ′. This completes the proof of the theorem.

Remark 15.2: We infer from the preceding theorem that the solution of the
problem of elastostatics (P) is related to two variational problems concerning,
respectively, the displacements and the stresses as follows:

To minimize V (u′) among the vector fields u′ kinematically admissible
for (P);

To maximize V ∗(σ ′) among the tensor fields σ ′ statically admissible for
(P).

These two variational problems (problems of calculus of variations) are dual
to each other in a sense that is defined in calculus of variations and in convex
analysis. Theorem 15.1, and in particular Eq. (15.15), provide some of the
relations existing between two general dual problems.

Let us finally notice that V and V ∗ are quadratic functions of u′ and σ ′,
respectively. From the physical point of view, Theorem 15.1 provides the
energy principles (or theorems) that govern (P).

Section 15.4 extends the study of the variational formulations related to
(P) in a sense that is useful for mechanics as well as for the mathematical
theory and the numerical analysis of the problem.

15.4. Variational formulations

We introduce the symmetric bilinear forms associated withW andW ∗, namely

W(ε′, ε′′) = 1

2
[W (ε′ + ε′′)−W (ε′)−W (ε′′)] and

W∗(σ ′, σ ′′) = 1

2
[W ∗(σ ′ + σ ′′)−W ∗(σ ′)−W ∗(σ ′′)].

(15.16)

Let (u, σ ) be a solution of problem (P). We saw in the previous section that

V (u) ≤ V (u′)
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for every kinematically admissible vector field u′; because V is convex, this
relation is equivalent to

d

dλ
V [u + λ(u′ − u)]|λ=0 = 0, ∀ u′,

or else

W[ε(u), ε(u′)− ε(u)]− L(u′ − u) = 0 (15.17)

for every kinematically admissible vector field u′. Similarly, V ∗ being a con-
cave function, the relation

V ∗(σ ′) ≤ V ∗(σ ), (15.18)

valid for every statically admissible vector field σ ′, is equivalent to

W∗(σ, σ ′ − σ )− K (σ ′ − σ ) = 0, ∀ σ ′. (15.19)

On the other hand, we notice that Eq. (15.17) is equivalent to

W[ε(u), ε(v)]− L(v) = 0 (15.17′)

for every vector field v kinematically admissible forPh. Similarly, Eq. (15.19)
is equivalent to

W∗(σ, τ )− K (τ ) = 0 (15.19′)

for every tensor field τ statically admissible for Ph.
We also notice that Eqs. (15.17) and (15.19) possess at most one solution.

Indeed, if u′ and u′′ are two solutions of Eq. (15.17), we set u = u′ − u′′ and
observe that

W[ε(u), ε(u)] = W [ε(u)] = 0,

which yields

ε(u) = ε(u′)− ε(u′′) = 0

because W (ε) is positive definite. Therefore, u′ = u′′ if �u �= ∅ and u′ = u′′+
a rigid displacement if �u = ∅. Similarly, if σ ′ and σ ′′ are two solutions of
Eq. (15.19), and if σ = σ ′ − σ ′′, then

W∗(σ, σ ) = W ∗(σ ) = 0;

hence, σ = 0 and σ ′ = σ ′′.
Thus, Eq. (15.17) possesses at most one solution, namely u, and the same

is true for Eq. (15.19). Furthermore, each of these equations is equivalent to
problem (P).
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We could just as well derive this result by direct variational methods or,
equivalently (for Eq. (15.17)), by writing the virtual power theorem for the
kinematically admissible virtual velocity field v for (Ph) and by using the
stress–strain laws. This will be the objective of Section 15.5.

We will now make Eqs. (15.17) and (15.19) explicit.
We saw that, under proper regularity assumptions, u is kinematically ad-

missible if and only if u = Ud on �u . Therefore, Eq. (15.17) is equivalent to

2µ
∫
�

εDi j (u)εDi j (u − u′) dx + κ

∫
�

εkk(u)ε��(u − u′) dx

=
∫
�

f · (u − u′) dx +
∫
�F

F · (u − u′) d�
(15.20)

for every u′ such that u′ = Ud on �u ; hence, for u = Ud on �u and for every
v such that v = 0 on �u

2µ
∫
�

εDi j (u)εDi j (v) dx + κ

∫
�

εkk(u)ε��(v) dx

=
∫
�

f · v dx +
∫
�F

F · v d�.
(15.20′)

Similarly, apart from the regularity properties, σ is statically admissible if
and only if

σi j, j + fi = 0, in �,

σi j n j = Fi , on �F ,

and Eq. (15.19) is thus equivalent to

1+ ν

E

∫
�

σ D
i j

(
σ ′Di j − σ D

i j

)
dx + 1− 2ν

3E

∫
�

σ j j (σ ′kk − σ��) dx

=
∫
�u

(σ ′i j − σi j ) n j (Ud )i d�
(15.21)

for every σ ′ such that σ ′i j, j + fi = 0 in �, and σ ′i j n j = Fi on �F ; or else
Eq. (15.19) is equivalent to

1+ ν

E

∫
�

σ D
i j τ

D
i j dx +

1− 2ν

3E

∫
�

σkkτ�� dx

=
∫
�u

τi j n j (Ud )i d�
(15.21′)

for every τ such that τi j, j = 0 in � and τi j n j = 0 on �F .
In conclusion, we have established the following:
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Theorem 15.2. The solution σ, ε, u of problem (P) is unique; if �u = ∅,
then u is unique up to a rigid displacement.

This solution is characterized by Eqs. (15.20′) (for u) and (15.21′)
(for σ ).

We say that Eqs. (15.20′) and (15.21′) are the variational formulations
associated with the variational problems introduced in Theorem 15.1 and
Remark 15.2. In the calculus of variations, we also say that they are the Euler
equations of the variational problem.

15.5. Virtual power theorem and variational formulations

We now show how the variational formulations may be directly deduced from
the virtual power theorem. They can also be deduced from the equations of
problem (P) by direct mathematical calculations, but we will not do so.

Let (u, ε = ε(u), σ ) be the solution of problem (P) and let u′ be an
arbitrary virtual velocity field on �, ε′ = ε(u′) being the deformation rate
field associated with u′. Then,

−W(ε, ε′) = −2µ
∫
�

εDi j (u)εDi j (u
′) dx − κ

∫
�

εkk(u)ε��(u
′) dx

= −
∫
�

[
εDi j (u

′)+ ε��(u′)
3

δi j

][
2µεDi j (u)+ 3κ

εkk

3
(u)

]
dx

= −
∫
�

εi j (u
′) · σi j dx .

This last quantity is precisely the power produced by the stress field σ in the
virtual velocity field u′. If u′ is a displacement field (again arbitrary), we then
find the work produced by these forces in the displacement field u′.

Thus, we deduce from the virtual power theorem that

W(ε, ε′) =
∫
�

f · u′ dx +
∫
�

(σ · n) · u′ d�

is the power of the external forces. We then recover Eqs. (15.17) and (15.19)
if u′ is kinematically admissible for Ph. Furthermore, for u′ = u, we obtain

W(ε, ε) = 2W (ε) =
∫
�

f · u dx +
∫
�

(σ · n) · u d�,

which means that, for an elastic system, the work of the external forces in the
displacements u(x) of the points of the system starting from the natural (rest)
state is equal to twice the deformation energy.
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We conclude with a mechanical interpretation of the variational formula-
tions.

Reciprocity theorem

Let (u, ε, σ ) and (u′, ε′, σ ′) be two equilibrium states of an elastic system;
then,∫

�

f · u′ dx +
∫
�

(σ · n) · u′ d� = W(ε, ε′)

= W(ε′, ε)

=
∫
�

f ′ · u dx +
∫
�

(σ ′ · n) · u d�,

and we deduce the following theorem.

Theorem 15.3 (Reciprocity Theorem). Given two equilibrium states of the
same elastic system, the work of the external forces of the first state in the
displacement field of the second one is equal to the work of the external forces
of the second one in the displacement field of the first one.



CHAPTER SIXTEEN

Introduction to nonlinear constitutive
laws and to homogenization

Linear elasticity represents only a simplified and very particular behavior
of solids. The purpose of this chapter is to present some simple examples
of problems encountered when the constitutive laws are nonlinear, like some of
the laws described in Chapter 5, when the stress tensorσ is a nonlinear function
of the deformation tensor ε(u) in the framework of nonlinear elasticity in small
displacements (see Chapter 5). As a result, the corresponding equilibrium
equations are nonlinear, contrary to the equations encountered in the previous
chapters in Part 3 of this book. Nonlinear mechanical phenomena are at this
time a very active domain of solid mechanics in connection with the research
of new materials and with the study of their mechanical properties (polymers,
composite materials, etc.).

This chapter will be rather short; we only consider stationary problems
and sometimes limit ourselves to problems of mechanics that involve only
one space variable.

In the first three sections of this chapter, the presentation is based on energy
theorems similar to those of Chapter 15 and, as indicated in Remark 15.1, we
consider energy functionals w(ε) that are no longer quadratic functions of ε.
In Section 16.1, in connection with nonlinear elasticity, we consider cases
in which w is a strictly convex function of ε. In Section 16.2, in connection
with plasticity, we consider energy functionals possessing some degeneracies:
typically, w(ε) is convex but not strictly convex, which may lead to discon-
tinuities (cracks, sliding lines). Finally, in Section 16.3, we consider cases in
which the law ε �→ σ is not monotone, and then w(ε) is a nonconvex func-
tion; this may lead to surprising and sometimes nonintuitive behaviors that
have indeed been observed in materials. Section 16.4 is a brief introduction
to nonhomogeneous materials (nonhomogeneities at the microscopic level);
these materials have, to first approximation, a linear elastic behavior, but the
study of their properties pertains to nonlinear analysis.

248
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16.1. Nonlinear constitutive laws (nonlinear elasticity)

As indicated in the introduction, we consider in this section and in the two
following ones materials whose equilibrium equations are given by energy
principles similar to those presented in Chapter 15 (see also Section 5.3,
Elastic media).

We start, as in Chapter 15, with a function w = w(ε) such that

∂w(ε)

∂εi j
= σi j , ∀i, j, (16.1)

which means that Eq. (16.1) is the constitutive law of the considered mate-
rial (stress–strain law). The function w(ε) will be nonquadratic in the case
considered here, and thus Eq. (16.1) will be nonlinear. If, moreover, u is the
displacement field of the material, and ε(u) is the linearized displacement
tensor, we also consider the quantity

W [ε(u)] =
∫
�

w[ε(u)(x)] dx . (16.2)

As in Chapter 15, the minimization of certain quantities related to w and W
leads to the energy principles.

Before specifying the equilibrium equations and the associated energy
principles, let us describe the type of functions w(ε) that we consider in this
section.

A typical example is given by a model of ice for glaciers for which

w(ε) = c
∑
i, j

|εi j |p, p > 1, (16.3)

where c> 0 is a physical constant to be specified, say c= 1. We then infer
the constitutive law

σi j = ∂w(ε)

∂εi j
= p|εi j |p−2εi j , (16.4)

where εi j = 1
2 (∂ui/∂x j + ∂u j/∂xi ).

Let us consider a nonlinear elastic body that would be in equilibrium under
the action (as in Chapter 15) of volume forces f , of a prescribed displacement
Ud on �u , and of a prescribed traction σi j n j = Fi on �F . Then, the equations
of equilibrium are exactly the equations of the problem (P) considered at the
beginning of Section 15.3, Chapter 15, where the linear constitutive law is
replaced by the law of Eq. (16.4). One can show, as in Chapter 15 (but the
reasoning is now more difficult) that the displacement field at equilibrium
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minimizes the function

V (u) = 1

2
W [ε(u)]− L(u), (16.5)

among all the displacement fields u that are kinematically admissible in the
sense of Definition 15.3; here W [ε(u)] has the expression given by Eqs. (16.2)
and (16.3), and L(u) is defined as in Chapter 15:

L(u) =
∫
�

f · u dx +
∫
�F

F · u d�. (16.6)

We can also define an energy principle dual to the previous one. To do so, we
introduce the conjugate function w∗ of w (also called the Fenchel–Legendre
transform of w):

w∗(σ ) = Sup
εi j

{σi jεi j − w(ε)}, (16.7)

where the supremum is taken among all the symmetric tensors εi j . For exam-
ple, Eq. (16.7) yields, after a computation that we omit:

w∗(σ ) = pp−1 − 1

pp

∑
i, j

|σi j |p/(p−1). (16.8)

Also, given a stress–tensor field σ = σ (x), we consider the integral

W ∗(σ ) =
∫
�

w∗(σ (x)) dx . (16.9)

With the same quantity K (σ ) as in Chapter 15,

K (σ ) =
∫
�u

σi j n j (Ud )i d�, (16.10)

we can show that the stresses at equilibrium are solutions of the problem of
minimizing

V ∗(σ ) = −1

2
W ∗(σ )+ K (σ ) (16.11)

among all the stress fields σ that are statically admissible in the sense of
Definition 15.4 of Chapter 15.

One can prove (and we assume this here) the existence and uniqueness
of solutions for the equilibrium equations, or, equivalently, for each of the
variational principles above, when the function w(ε) is as given in Eq. (16.3)
or for other classes of strictly convex functions w(ε) that have a polynomial
growth at infinity (in a suitable sense).
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Remark 16.1: The analogue for fluids of the previous model corresponds, for
instance, to the model of turbulence of Smagorinsky, where u is the velocity
and σ is replaced by σ̇ = ∂σ/∂t .

16.2. Nonlinear elasticity with a threshold (Henky’s
elastoplastic model)

What follows is a model of nonlinear elasticity with a threshold closely related
to some problems of plasticity (see in Section 5.3 the parts related to Nonlinear
elasticity and to Plasticity).1

We limit ourselves to the one-dimensional problem known as the antiplane
shear problem. In this case, ε reduces to its first component ε11, and thus we
will write ε instead of ε11.

We have [see Figure 16.1(a)]:

w(ε) =


ε2

2
, if |ε| ≤ 1,

|ε| − 1

2
, if |ε| ≥ 1.

We note here that the function w is convex, but not strictly convex, contrary
to the examples introduced in the previous section.

We deduce that σ = σ11 = ∂w(ε)/∂ε satisfies

σ (ε) =
{
ε if |ε| ≤ 1,
sign ε if |ε| ≥ 1,

(16.12)

where sign ε= 1 if ε > 0, and −1 if ε < 0 [see Figure 16.1(b)]. We then
compute the function

w∗(σ ) = Sup
ε∈R

{εσ − w(ε)};

it follows, by an elementary calculation, that

w∗(σ ) =

σ 2

2
, if |σ | ≤ 1,

+∞, if |σ | > 1.
(16.13)

This type of constitutive law is connected with the elastoplastic constitutive
laws introduced in Chapter 5: the constitutive law is linear below a certain

1 The real plasticity phenomena are evolutive, nonrevertible phenomena that we do not consider
here at all (see the Prandtl-Reuss law, section 5.3, Plasticity).
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Figure 16.1 The functions (a) w(ε) and (b) σ (ε) for ε ≥ 0.

threshold. We also recover the limit of elasticity criterion of von Mises: the
material is elastic, linear for |σ |< 1. The condition |σ |< 1 thus corresponds
to the limit of elasticity criterion of von Mises.

Let us consider the antiplane shear problem. We consider a section 0 <

x = x1 < 1 of the material; the displacement occurs in the direction x1 and is



Introduction to nonlinear constitutive laws and to homogenization 253

independent of x2 and x3. Concerning the boundary conditions, we assume,
for instance, that the displacement u = 0 is given at x = 0 and that σ = σ11

is given for x = L (σ = F).
We then introduce the functions

W (ε) =
∫ L

0
w[ε(x)] dx,

W ∗(σ ) =
∫ L

0
w∗[σ (x)] dx,

for every tensor fields ε = ε(u(x)) and σ (x) defined on (0, L).
The analogues of the quantities L and K are

L(u) = Fu(1),

K (σ ) = 0 (Ud = 0 at x = 0).

The energy principles associated with the problem are then exactly those from
the previous section (or, as in Chapter 15):

To minimize V (u) among all the u that are kinematically admissible
and satisfy certain regularity assumptions, where

V (u) = W (ε(u))− Fu(1);

and

To maximize V ∗(σ ) among the σ that are statically admissible, where

V ∗(σ ) = W ∗(σ ).

The problem of the existence of solutions is difficult in this case; one of
the new difficulties, if we make comparisons with the previous examples, is
that the function w is no longer strictly convex but only convex. We refer
the reader interested in existence problems for this type of functional to the
specialized literature (see, e.g., Temam (1985) and the references therein).

16.3. Nonconvex energy functions

The stress-strain laws are generally deduced from the experiment of simple
traction of a bar, such as described in linear elasticity in Chapter 14, Section
14.1. In the case of linear elasticity, as well as in the previous section in the case
of nonlinear elasticity, the one-dimensional stress-strain law is monotonic,
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Figure 16.2 The function w(ε).

yielding an energy functional w(ε) that is convex with respect to ε. Even
though this is not intuitive, the stress-strain law can be non-monotonic for
some materials and for some regimes (the material then retracts when it is
pulled); the fuction w(ε) is nonconvex in that case. We give hereafter an
overview of the complications that appear in the study of such materials.

We thus consider in this section nonlinear models of elasticity of the van
der Waals type for which the energy functionals are no longer convex. For a
one-dimensional problem for which ε  ε11 and σ  σ11, as in the previous
section, we have, for instance, a function

w(ε) = (ε2 − 1)2, (16.14)

(see Figure 16.2), and hence the constitutive law becomes

σ = 4ε(ε2 − 1). (16.15)

When the energy functional w(ε) is no longer convex, the corresponding
variational problems are more complicated, and the existence of solutions is
not known (and is not true) in general.

Let us consider, for example, the problem of the minimization of

W [ε(u)] =
∫ L

0
w[u′(x)] dx =

∫ L

0

[∣∣∣∣dudx
∣∣∣∣2 − 1

]2

dx (16.16)

among all the functions u that satisfy u(0) = 0 and u(L) = 1.
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Figure 16.3 A minimizing sequence of Problem (16.16).

Figure 16.4 The periodic structure.

Figure 16.5 A period of the composite material.

One can easily check that when L > 1, the infimum is 0. However, this
infimum is not attained, but it can be approached arbitrarily closely {W [ε(u)]
arbitrarily small} by, for example, the following functions un: un(x)= x for
0< x < 1, and for 1< x < L , a sawtooth behavior with amplitude 1/n and
u′n(x) = ±1 alternately, as in Figure 16.3.

The reader interested in this problem (and in problems of buckling) may
consult the books of Antman (1995) and Ericksen (1998).

16.4. Composite materials: the problem of homogenization

We consider in this section a material with a periodic structure in one space
dimension, as in Figure 16.4. We further assume that each period is composed
of two or more different materials (see Figure 16.5), each one characterized by
a linear elastic constitutive law linkingσ to ε. The principle of homogenization
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consists typically of looking for a linear and homogeneous material equivalent,
for small δ, to the periodic structure.

To illustrate the approach for the problem of homogenization, we consider
the following “model” problem:

d

dx

[
a

(
x

δ

)
duδ

dx
(x)

]
= f (x), 0 < x < 1,

uδ(0) = uδ(1),
duδ

dx
(0) = duδ

dx
(1),

(16.17)

where a = a(y) is periodic with period 1 and bounded from above and from
below by 0 < a ≤ a ≤ ā < +∞ and f is a function given and smooth
on (0,1). We assume, for the sake of simplicity, that δ = 1/N , N ∈ N ∗, and
thus that a(x/δ) is periodic in x with period δ. Our aim is to find the limit
of uδ when δ → 0. We will actually obtain the limit u0 of uδ as the solution
of an equation called the homogenized equation of Eq. (16.17). To do so, we
set

b(x) = 1

a(x)
, F(x) =

∫ x

0
f (τ ) dτ,

and we have

pδ(x) = a

(
x

δ

)
duδ

dx
= F(x)− cδ; (16.18)

hence,

duδ

dx
= b

(
x

δ

)
[F(x)− cδ], (16.19)

where cδ is given by the relation

0 =
∫ 1

0

duδ

dx
dx =

∫ 1

0
b

(
x

δ

)
[F(x)− cδ] dx . (16.20)

It is clear that, as δ goes to 0, b(x/δ) converges in a weak sense (weak topology
of L2(0, 1)) to the average of b over the period denoted by 〈b〉, which does
not vanish because it is between ā−1 and a−1. It thus follows from Eq. (16.20)
that

lim
δ→0

cδ =
∫ 1

0
F(x) dx .

Then, we infer from Eqs. (16.18) and (16.19) that duδ/dx and pδ converge,
in the same sense (weak topology of L2(0, 1)), to the functions du0/dx and
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p0 defined by

du0

dx
(x) = 〈b〉[F(x)− 〈F〉],

p0(x) = F(x)− 〈F〉,
where

u0(x) =
∫ x

0

du0

dx
dx,

and where 〈·〉 denotes the average over the period. It follows that

p0 = 〈b〉−1 du
0

dx
,

dp0

dx
= f,

and u0 is the solution of the following linear problem:
d

dx

(
〈a−1〉−1 du

0

dx

)
= f,

u0(0) = u0(1),
du0

dx
(0) = du0

dx
(1),

(16.21)

where a0=〈a−1〉−1 is called the homogenized coefficient of the
function a.

The reader who is interested in the subject may refer, among others, to the
books on homogenization mentioned in the reference list, in particular the
books by Bensoussan, Lions, and Papanicolaou (1978), and by Jikov, Kozlov,
and Oleinik (1991).

Exercises

1. We consider the 1-periodic function f (x) = sin(2πx) defined on R and
we set

fε(x) = f (
x

ε
), x ∈]a, b[, a, b ∈ R.

a) Show that fε cannot converge at every point.
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b) Show that, for every interval I =]α, β[⊂]a, b[,∫ β

α

fε(x) dx → 0 as ε→ 0.

It follows from this result that fε converges to 0 in the weak topology
of L2(a, b), since

∫ b
a fε(x)2dx is bounded independently of ε.

c) Show that
∫ b
a fε(x)2dx does not converge to 0 as ε → 0 (i.e., fε does

not converge to 0 in the strong topology of L2(a, b)).



CHAPTER SEVENTEEN

Nonlinear elasticity and an application
to biomechanics

In this chapter, we describe the equations of nonlinear elasticity in the context
of large deformations. The particular case of hyperelasticity is then consid-
ered, and finally we present an application to biomechanics for the modeling
of soft tissues. This chapter follows very closely the book by Ciarlet (1988),
hereafter called [C88]; the models of soft tissues are borrowed from S. Jemiolo
and J. J. Telega (2001).

17.1. The equations of nonlinear elasticity

We consider a system S corresponding to a nonlinearly elastic medium which
occupies the domain � ⊂ R

3 in its reference state and the domain �� =
�(�) in the deformed state. As usual � is the deformation, and we write
x = �(a), a ∈ �, x ∈ ��; u(a) = �(a) − a is the displacement of the
point a.

Assuming that the body undertakes large deformations, we recall the gen-
eral equations of motion in Lagrangian variables, introduced in Chapter 3:

fa + Diva� = 0, in �, (17.1)

where

fa(a) = f (x) det F(a) = f (�(a)) det F(a); (17.2)

here, f is the density of the applied body forces per unit volume in the
deformed configuration and fa their density per unit volume in the refer-
ence configuration; F is the Jacobian matrix ∇a� = Dx/Da, and Diva� is
the vector with i th component

∑3
j=1 ∂�i j/∂a j . Furthermore, � is the first

259
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Piola-Kirchhoff tensor, defined by

� = (det F) σ · (F−1)T , � · FT = F ·�T , (17.3)

where σ (a) = σ (x) = σ (�(a)), σ being the Cauchy stress tensor in the
deformed state. We also introduce the second Piola-Kirchhoff tensor

P = F−1 ·�. (17.4)

We recall that P is symmetric, while � is not in general.

Constitutive laws

It can be proven, using the principles of material indifference and isotropy,1

that any constitutive law of nonlinear elasticity is of the form:

P = β0 I + β1C + β2C
2, (17.5)

where I is the identity tensor, C = FTF is the Cauchy–Green deformation
tensor and β0, β1, and β2 are functions of a ∈ � and CI ,CI I ,CI I I which
are the three invariants of the tensor C . The reader interested in a proof of
this assertion is referred to [C88]. As mentioned in Chapter 5, an essential
complication here is that the equation of equilibrium (17.1) involves the first
Piola-Kirchhoff tensor � and not P, whereas the constitutive law (17.5) is
for P; and there is no simple equivalent form of the constitutive law (17.5) for
� (see, however, Chapter 5, Section 3, for an equivalent equation involving
the Cauchy stress tensor σ ).

Reference configuration and natural state

In the reference state �, we have � = I, u = 0 and C = 0. It thus follows
from (17.5) that

P = β0 I, (17.6)

so that P is diagonal. This quantity is called the residual stress tensor at
a point a of the reference state � and is denoted by PR . Now, since, in
view of (17.5), P is not diagonal in general, it follows that isotropy only
holds for particular reference configurations. Indeed, even though it is a priori
possible to choose as a new reference configuration an arbitrary deformed
configuration, the material will not be isotropic in general in such an arbitrary
reference configuration.

1 These are some of the general principles of rheology described in Chapter 3, Section 3.



Nonlinear elasticity and an application to biomechanics 261

Definition 17.1. A reference configuration is called a natural state if the
residual stress tensor PR vanishes at each point.

Remark 17.1: One can show (see [C88]) that, if a reference configuration is
a natural state, then so is every reference configuration obtained from it by a
rigid deformation.

Remark 17.2: Contrary to fluid mechanics, we assume in solid mechanics
that that there exist natural reference states.

Constitutive laws near a reference configuration

It is natural to linearize the constitutive law (17.5) around X , where X =
1
2 (C − I ) is the deformation tensor. Indeed, in some sense, X measures the
discrepancy between a given deformation � and a rigid deformation (for
whichC = I ). We thus wish to linearize the stress tensor P corresponding to a
deformed configuration�� around the reference configuration corresponding
to the particular rigid deformation I . One can show (see [C88]) that, thanks to
isotropy, the linearization only involves two coefficients λ = λ(a), µ = µ(a),
that is:

P = −pI + λ(Tr X )I + 2µX + o(X ), (17.7)

where µ > 0 and 3λ + 2µ > 0 from experimental tests (see [C88], Section
3.8).

We then find that, near a natural state, pI ≡ 0, so that, neglecting the o(X )
term,

P = λ(Tr X )I + 2µX. (17.8)

This relation is precisely the one that defines linear elasticity in small defor-
mations studied in Chapter 3.

Saint Venant-Kirchhoff material

A Saint Venant-Kirchhoff material is a material for which the stress tensor P
is of the form

P = λ(Tr X )I + 2µX, (17.9)

where I + 2X = C .
In what follows, we will consider the general constitutive law (17.5) and,

sometimes, when indicated, Saint Venant-Kirchhoff materials. The Saint
Venant-Kirchhoff materials are the simplest among the nonlinear models
[C88], and they are quite popular in actual computations, where they are
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often used to model engineering structures in conjunction with finite elements
methods.

17.2. Boundary conditions – boundary value problems

We consider, as in the previous chapters, a typical mechanical problem for
which the exterior applied forces, defined in the deformed configuration,
consist of:

(i) given body forces with volume density f (in the deformed configura-
tion);

(ii) given surface traction forces with surface density g (in the deformed
configuration)2 on a part �T of � = ∂�;
and,

(iii) prescribed displacement on the complementary �u = �\�T of �T .

An important difficulty appearing here is that (i) and (ii) will be easier
to write in the deformed configuration, whereas (iii) will be simpler in the
reference configuration. The same difficulty was mentioned in Chapter 13 for
linear elasticity but we could, in that case, overcome the difficulty very easily
through linearization.

Another difficulty is that some boundary value problems are global; this,
typically, occurs when nonlocal surface or volumes forces are applied, that is
the value of the force at one point depends on the values of the deformation
at other points. We refer the interested reader to the book by Ciarlet ([C88],
Section 2.7), for more details. Such situations can be encountered, e.g., with
the balloon problem, for which the exterior boundary is subjected to a constant
pressure load, whereas the interior boundary is subjected to a pressure which
is a given function of the enclosed volume.

So, the typical mechanical problem will be described by the following
boundary value problem:

Diva �+ fa = 0, in �,

� n = ga, on �T ⊂ ∂�,

� = �0, on �u = �\�T ,

(17.10)

together with the constitutive law

P = β0 I + β1C + β2C
2, (17.11)

2 In other parts of the book, the density of surface forces is denoted F instead of g, but we want
here to avoid confusion with F.



Nonlinear elasticity and an application to biomechanics 263

ΩΦ

Figure 17.1 Superposition.

ΩΦ

Figure 17.2 Contact.

where

� = F · P, (17.12)

F = grada �, (17.13)

� · FT = F ·�T . (17.14)

We will also need some geometric conditions, in order to exclude inter-
penetrations (see Figure 17.1), which, even though they are geometrically
admissible, are unthinkable from the physical point of view. We will thus
assume that � is one to one on �, and not only on �. Additional mechanical
conditions will be needed in case of contacts (see Figure 17.2).
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To conclude, we will call admissible a deformation field � such that

det grada� > 0, in �, (17.15)

� = �0, on �u, (17.16)

� is one to one on �. (17.17)

17.3. Hyperelastic materials

A hyperelastic material is a material for which the first Piola-Kirchhoff tensor
� = �(a,F) satisfies

�i j (a,F) = ∂W

∂Fi j
(a,F), ∀a ∈ �, (17.18)

for every 3 × 3 positive definite matrix F, where W = W (a,F) is a given
function, called the stored energy function (which was already introduced in
the context of linear elasticity in Chapter 16 and denoted by w).

The virtual power theorem, applied in the reference configuration (see
[C88], Section 2.6, for a direct derivation, starting from the equations of
equilibrium), yields the following variational formulations:∫

�

� · ∇v da =
∫
�

fa · v da +
∫
�T

ga · v d�, (17.19)

for every sufficiently smooth vector field v = v(a) on �, which vanishes on
�u . We defined fa in (17.2); ga is defined in a similar way: g is the surface
density, in the deformed configuration, of the traction forces applied on �T

and ga is their surface density in the reference configuration, that is, according
to Chapter 5, Section 4, g(x)d�x = ga(a)d�a or equivalently

ga(a) = g(x)
d�x

d�a
,

with the expression of d�x/d�a given by formula (5.18) (where it is called
d�t/d�0).

We will actually restrict ourselves to a special class of volume and surface
forces according to the following definition.

Definition 17.2. (i) The applied volume forces with density fa = fa(a) =
f (�(a))detF(a) in the reference configuration are called conservative if the
integral ∫

�

fa · vda
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is the Gâteaux derivative of a functional F : {� : � → R
3} �→ F(�) =∫

�
F(a, �(a))da, namely

F ′(�)v =
∫
�

fa · vda, (17.20)

where the function F is called the potential of the applied volume forces and
� is the deformation.
(ii) The applied surface forces with density ga in the reference configuration
are called conservative if the integral∫

�T

ga · vd�

is the Gâteaux derivative of a functional G : {� : � → R
3} �→ G(�) =∫

�T
G(a, �(a),∇�(a))da, namely

G ′(�)v =
∫
�T

ga · vd�, (17.21)

where the function G is called the potential of the applied surface forces and
� is the deformation.

For instance, the centrifugal force in a body rotating with a constant angular
velocity is a conservative volume force when expressed in a frame rotating
with it. Similarly, an applied surface force which is a deadload, i.e., the density
is independent of the particular deformation � considered, is conservative.

One advantage of considering conservative applied volume and surface
forces is that we can prove that the solutions of the boundary value problem
(17.10) are critical points of the functional L(�) defined by

L(�) =
∫
�

W (a,F)da − (F(�)+ G(�)), (17.22)

for smooth mappings � : �→ R
3. That is

L ′(�)v = 0, (17.23)

for every smooth field v : �→ R
3 that vanishes on �0 (see [C88], p. 142).

The functional

W(�) =
∫
�

W (a,F)da (17.24)

is called the strain energy; the functional L is called the total energy.
Using the principles of material indifference and isotropy, we then deduce

(see [C88], Section 4.2) that the stored energy takes the form

W = W (a,C), C = FTF. (17.25)
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Furthermore, one then finds, in view of (17.4) and (17.18), that

Pi j = 2
∂W

∂Ci j
. (17.26)

Isotropy also implies that the stored energy function satisfies the following
additional relation:

W (a,C) = W (a, QCQ), ∀Q ∈ O(3), (17.27)

where O(3) is the orthogonal group.
Finally, we assume the existence of a stress-free natural state such that

W (a, I ) = 0, (17.28)

�(a, I ) = 0, (17.29)

I being the identity tensor.
For such materials, the equilibrium problem becomes a calculus of vari-

ations problem. See the studies in the book by Ciarlet [C88], and in the
references therein, in particular a number of references by J. M. Ball.

17.4. Hyperelastic materials in biomechanics

Saint Venant-Kirchhoff materials

We recall that a Saint Venant-Kirchhoff material is a material for which the
stress tensor P is of the form (17.9). One then deduces that a Saint Venant-
Kirchhoff material is hyperelastic, with a stored energy function W of the
form

W = λ

2
(trC)2 + µtrC2. (17.30)

In particular, this shows that the definition of a Saint Venant-Kirchhoff mate-
rial is intrinsic (i.e. frame invariant) and that such a material is isotropic.

Hyperelastic materials in biomechanics

In order to model the behavior of soft tissues including muscles, the following
types of stored energy functions have been proposed (see, e.g., the review
article by Jemiolo and Telega and the references therein):

W = W (C) = λ

µ
(eµψ(C I ,C I I ,C I I I ) − 1). (17.31)
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Here C I and C I I are the first and second invariants of the tensor C ; C and F
are defined by

C = F
T
F, F = C1/3

I I IF, (17.32)

so that det F = det C = C I I I = 1, and λ and µ are coefficients which
depend on the material.

Assuming the existence of a strain-free natural state, we deduce, at first
approximation, from (17.28)–(17.29), for the materials considered in biome-
chanics, e.g., soft tissues, that

ψ(3, 3, 1) = 0, (17.33)

�(I ) = 0. (17.34)

Having a stored energy function (17.30), we can show that the correspond-
ing Cauchy stress tensor has the form

σ = β0 I + β1BD + β−1B
−1
D , (17.35)

where

B = FF
T
, BD = B − 1

3
C I I, B

−1
D = B

−1 − 1

3
C I I I, (17.36)

and

β0 = λeµψ
∂�

∂CI I I
, β1 = 2

CI I I
λeµψ

∂�

∂C I
, β−1 = − 2

CI I I
λeµψ

∂ψ

∂C I I
.

(17.37)

It is reasonable here to consider functions ψ of the form

ψ = µ1(C I − 3)+ µ2(C I I − 3)+ µ3(CI I I − 1)+ µ4(C IC I I − 1)+ · · · ,
(17.38)

where the constants µi depend on the material. A particular case is given by
incompressible materials, i.e., materials such that CI I I = 1. In that case, we
take

W = λ

2µ
(eµ(C I−1) − 1), (17.39)

where λ is called the shear modulus. For such materials, the constitutive law
(17.35) takes the form

σ = −pI + λeµ(C I−3)B. (17.40)
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More generally, we can consider functionsψ in (17.30) of one of the following
forms:

ψ = ψ(C I ,C I I ),

ψ = ψ1(C I ,C I I )+ ψ2(CI I I ),

ψ = ψ1(C I ,C I I ,CI I I ).

Remark 17.3: For a compressible material, the following stored energy func-
tion is considered:

W = λ

e
(eµ1(C I−3)+µ2(C I I−3)+µ3(CI I I−1)2 − 1). (17.41)

To go further:
Several of the books cited in the first part contain additional developments

in solid mechanics; in particular, in French, the books by Duvaut, Germain
and Salençon and, in English, the books by Gurtin and Spencer, the book by
Landau and Lifschitz (more physically oriented), and the book by Truesdell,
in a more formal style.

More advanced books on linear or nonlinear elasticity are those by Antman,
Ciarlet, Ericksen, Gurtin, Sokolnikoff and Truesdell (1977). Concerning vis-
coelasticity, the reader can refer to the book by Renardy, Hrusa and Nohel
(mathematical aspects) and, concerning plasticity, that by Hodge (physical
aspects) or that by Temam (mathematical aspects).

Homogenization is a subject that has developed greatly in relation with
new composite materials. Some mathematically oriented books are those
by Bensoussan, Lions and Papanicolaou, and by Jikov, Kozlov and Oleinik,
and the introductory (and advanced) book by Cioranescu and Donata.



PART IV

INTRODUCTION TO WAVE PHENOMENA





CHAPTER EIGHTEEN

Linear wave equations in mechanics

Before studying, in Chapters 19 and 20, some nonlinear wave equations oc-
curing in mechanics, we consider in this chapter several linear wave equations
arising in mechanics and study some fundamental aspects of the correspond-
ing vibration phenomena.

In Section 18.1, we start by recalling the fundamental wave equations that
appeared in the previous chapters: the equations of linear acoustics that ap-
peared in Chapter 8 in the context of fluid mechanics and the Navier equation
that appeared in Chapter 13 in the context of linear elasticity. We also special-
ize these equations to specific phenomena such as sound pipes and vibrating
cords and membranes.

In Section 18.2, we show how to solve the one-dimensional wave equation
considered in the whole space R. Then, in Section 18.3, we are interested in
bounded intervals, leading us to introduce the normal (self-vibration) modes,
which also depend on the boundary conditions; some typical examples of
boundary conditions are considered and the corresponding eigenmodes made
explicit. In Section 18.4, we show how to solve the wave equation in a gen-
eral bounded domain of R

3 by using the corresponding eigenmodes again;
however, in this case, the solution is not complete because we cannot com-
pute the eigenmodes, in general. Finally, in the last section of this chapter,
Section 18.5, we give some indications on other important vibration pheno-
mena such as superposition of waves, beats, and wave packets.

18.1. Returning to the equations of linear acoustics
and of linear elasticity

Returning to the wave equations of linear acoustics

The equations of linear acoustics have been introduced in Chapter 8,
Section 8.4. They are deduced from the equations of compressible
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fluids under the small motions assumption by using asymptotic expans-
ions.

A typical equation of linear acoustics is

∂2u

∂t2
− c2�u = 0, (18.1)

where c denotes the velocity of the sound in the air near rest and u denotes
the density or the pressure. A similar equation has also been obtained for the
velocity, which is denoted here by �u (linearized motions around equilibrium):

∂2 �u
∂t2

− c2grad div �u = 0. (18.2)

Equation (18.1) is called the wave equation; it is a hyperbolic equation
(see the appendix to this book). As we will see, it leads to wave propagation
phenomena in which the waves propagate with velocity c. This equation is
a model equation for linear wave phenomena, both in mathematics and in
physics.

A noteworthy particular case is that of sound pipes.

a) Particular case: sound pipes

We assume in this experiment that air moves in a long cylindrical pipe of axis
Ox, that the velocity �u is parallel to Ox, �u = (u, 0, 0)T , and that this velocity
depends only on x and t. Equation (18.2) then reduces to the one-dimensional
wave equation, namely

∂2u

∂t2
− c2 ∂

2u

∂x2
= 0. (18.3)

Remark 18.1: As we will see, Eq. (18.3) also characterizes the longitudinal
vibrations of an elastic string (and many other “simple” vibration phenomena).

Returning to the Navier equation of linear elasticity

In Chapter 13, we have derived, for an elastic homogeneous medium, and
under the small deformations assumption, the equation for displacements,
which is the Navier equation:

ρ
∂2 �u
∂t2

− µ��u + (λ+ µ)grad div �u = �f ; (18.4)

here �u is the displacement, ρ is the density (assumed constant), �f denotes
the volume forces, and λ and µ are the Lamé coefficients of the medium
(we recall that a consequence of the second principle of thermodynamics
is that µ > 0 and 3λ+ 2µ ≥ 0; hence, λ+µ ≥ 0). Equation (18.4) was
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Figure 18.1 The sound pipe.

Figure 18.2 The vibrating cord.

obtained by linearizing the equation of conservation of momentum. The
Navier equation is also an important linear wave equation; we present some
noteworthy particular cases.

Particular cases

a) The vibrating cord

We consider a thin elastic infinite cord supported along theOx axis. We assume
that the cord moves only in the Oy direction so that

�u =
 0
u
0

 ;

because the cord is thin, we can assume that u depends only on x and t . We
then have div �u = 0, and the vector equation (18.4) reduces to a single scalar
equation for u:

∂2u

∂t2
− ν

∂2u

∂x2
= 0, (18.5)

where ν = µ/ρ. We thus recover Eq. (18.3) with c2 replaced here by ν.
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b) The vibrating membrane

Another important particular case of Eq. (18.4) is that of a thin vibrating
membrane (a drum, for instance). The membrane fills the domain � of the
plane Oxy and moves in the orthogonal direction Oz; therefore,

�u =
 0

0
u

 .

The membrane being thin, we can assume that u depends only, to first ap-
proximation, on x and y (and t).

Again, automatically, we have div �u = 0, and the vector equation (18.4)
reduces to a scalar equation for u:

∂2u

∂t2
− ν�2u = 0, in �. (18.6)

We have set ν = µ/ρ, and �2 denotes here the Laplace operator with respect
to the variables x and y (�2 = ∂2/∂x2 + ∂2/∂y2).

Assuming, for instance, that the boundary of the membrane is fixed (the
case of the drum), we supplement Eq. (18.6) with a Dirichlet-type boundary
condition as follows:

u = 0 on the boundary ∂� of the membrane. (18.7)

Flexion of an elastic string

We studied in Chapter 14, in the context of linear elasticity, the simple bending
of a cylindrical beam; this study was made, in the context of statics, for the
stress-tensor field.

If the string is thin, and very elongated, we can study its dynamical flexion
in a direction orthogonal to the string. With proper simplifying assumptions
and a modeling that we will not undertake here, we are led to introduce
a function u= u(x, t) that completely characterizes the flexing motion, the
string being supported along the Ox axis. The wave equation obtained for u
differs from Eqs. (18.3) and (18.5); it contains the fourth-order derivative of
u in x , and it reads

ρ
∂2u

∂t2
+ E I

∂4u

∂x4
= 0, (18.8)

where E is the Young’s modulus (assumed constant) and I is the inertia
moment of the sections in the Ox direction.
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18.2. Solution of the one-dimensional wave equation

We consider in this section the vibrations of an infinite cord governed by
Eq. (18.5). We can also consider an infinite sound pipe (Eq. (18.3)), but the
cord provides a better visualization of the solution.

Because the cord is infinite, no boundary conditions need to be taken into
account. We thus study the one-dimensional wave equation

∂2u

∂t2
− c2 ∂

2u

∂x2
= 0, (18.9)

where c = √ν. We supplement this equation with the following initial con-
ditions (at t = 0) for position and velocity:

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = u1(x), (18.10)

where the functions u0 and u1 are given and are, as usual, sufficiently regular,
say in C1(R).

To solve this equation, we perform the change of independent variables

r = x + ct, s = x − ct,

and set

ū(r, s) = u(x, t).

A straightforward calculation shows that Eq. (18.8) reduces to

∂2ū

∂r ∂s
= 0, (18.11)

the solution of which is easily found:

ū(r, s) = f (r )+ g(s),

where the functions f and g are arbitrary. Hence, u may be written in the
form

u(x, t) = f (x + ct)+ g(x − ct). (18.12)

Remark 18.2: Equation (18.12) describes the general form of the solutions of
Eq. (18.9). If g = 0, u(x, t) = f (x + ct) describes a wave that moves to the
left at velocity c without changing shape. If f = 0, u(x, t) = g(x − ct) is a
wave moving to the right with the same velocity. The general solution is thus
the sum of two waves moving in opposite directions, at velocity c, without
changing shape.
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When Eq. (18.9) is supplemented by the initial conditions of Eq. (18.10),
we can compute f and g using the initial conditions. We assume that the
functions f and g are also of class C1. We deduce from Eq. (18.10) that

f (x)+ g(x) = u0(x), ∀ x ∈ R, (18.13)

and

f ′(x)− g′(x) = 1

c
u1(x), ∀ x ∈ R, (18.14)

which yields, by differentiating Eq. (18.13) with respect to x ,

f ′(x) = 1

2

[
u′0(x)+ 1

c
u1(x)

]
,

g′(x) = 1

2

[
u′0(x)− 1

c
u1(x)

]
.

It then follows that

f (x) = 1

2
u0(x)+ 1

2c

∫ x

0
u1(s) ds + k1,

g(x) = 1

2
u0(x)− 1

2c

∫ x

0
u1(s) ds + k2,

where k1 and k2 are two constants. We deduce from Eq. (18.13) that k1+ k2 =
0, and we can actually take k1 = k2 = 0. We finally obtain

u(x, t) = 1

2
u0(x + ct)+ 1

2
u0(x − ct)

+ 1

2c

∫ x+ct

0
u1(s) ds − 1

2c

∫ x−ct

0
u1(s) ds;

that is,

u(x, t) = 1

2
u0(x + ct)+ 1

2
u0(x − ct)+ 1

2c

∫ x+ct

x−ct
u1(s) ds.

18.3. Normal modes

The previous method of resolving the wave equation does not apply to the case
of a bounded domain. From the physical point of view, the waves described
in Remark 18.2 reach the boundary, reflect, and are superposed with the
waves moving towards the boundary; the method of Section 18.2 is totally
inappropriate.
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A method well suited to our problem consists in looking first for the eigen-
modes (also called normal or self-vibration modes) of the form

u(x, y, z, t) = V (x, y, z) exp(iωt). (18.15)

In this section, we will only describe the eigenmodes for some of the exam-
ples considered in Section 18.1. The eigenmodes are actually solutions of
an infinite dimensional eigenvalue–eigenfunction problem, but we will not
address this aspect here.

Cord fixed at endpoints

We consider here a vibrating cord fixed at its endpoints x = 0 and x = L (see
Figure 18.3).

Consequently, we associate with the wave equation

∂2u

∂t2
− c2 ∂

2u

∂x2
= 0 (18.16)

characterizing the vibrations of the cord (c2 is equal to ν in that case, see
Section 18.1) the following Dirichlet-type boundary conditions:

u(0, t) = u(L , t) = 0, ∀ t ≥ 0. (18.17)

We look for a solution of the form u(x, t) = U (x) exp(iωt), and we obtain
the following equation for the function U :

U ′′ + ω2

c2
U = 0.

This is a second-order ordinary differential equation with constant coeffi-
cients. We deduce that

U (x) = a sin

(
ω

c
x + ϕ

)
,

Figure 18.3 Cord fixed at endpoints.
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where a and ϕ ∈ R. Then, Eq. (18.17) yields U (0) = U (ϕ) = 0, and it
follows that

ϕ = 0,

ωL

c
= kπ, k ∈ N

∗.

The vibration eigenmodes are thus given by

uk(x, t) = Uk(x) exp(iωk t),

where

Uk(x) = ak sin
kπ

L
x, k ∈ N

∗,

and

ωk = kπc

L
, k ∈ N

∗

is the corresponding eigenfrequency.
We can easily verify that the eigenfunctions Uk satisfy the orthogonality

property1 ∫ L

0
Ui (x)Uj (x) dx = 0, ∀ i �= j. (18.18)

One can actually show that they form an orthogonal basis of the space L2(0, L)
(this can be proven by using the spectral properties of symmetric unbounded
operators; see also below).

Sound pipe

The wave equation is the same as in Section 18.3 with c denoting the velocity of
sound. We associate, for instance, with this equation the boundary conditions

u(0, t) = ∂u

∂x
(L , t) = 0, ∀ t ≥ 0, (18.19)

corresponding to wind at rest at the entry of the pipe and to a free (open) exit
of the pipe.

Proceeding as in Section 18.3, we find

U (x) = a sin

(
ω

c
x + ϕ

)
,

1 This is a particular case of a more general result recalled below.



Linear wave equations in mechanics 279

and because, according to Eq. (18.19), U (0) = U ′(L) = 0, it follows that

ϕ = 0,

ωL

c
= (2k + 1)

π

2
, k ∈ N.

The vibration eigenmodes are thus the functions

uk(x, t) = Uk(x) exp(iωk t),

where

Uk(x) = ak sin

(
(2k + 1)π

2L
x

)
, k ∈ N,

and

ωk = (2k + 1)πc

2L
, k ∈ N,

is the corresponding eigenfrequency.
The eigenfunctionsUk(x) satisfy the orthogonality property of Eq. (18.18)

and they also form an orthogonal basis of L2(0, L).

Remark 18.3: The boundary conditions of Eq. (18.19) also correspond to a
vibrating cord, which is fixed at x = 0, and free at x = L .

Membrane fixed at its boundary

We recall the equation characterizing the vertical vibrations of a membrane
filling the domain � ⊂ R

2:

∂2u

∂t2
− c2�2u = 0, (18.20)

where c2 = ν = µ/ρ. We assume that the membrane is fixed on its boundary,
which is expressed by the boundary conditions

u = 0, on ∂�. (18.21)

The vibration eigenmodes are the solutions of the form

u(x, y, t) = U (x, y) exp(iωt). (18.22)

Replacing, in Eq. (18.20), u by its expression given by Eq. (18.22), we
obtain the following equation for U :

�2U + ω2

c2
U = 0, in �, (18.23)
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and, owing to Eq. (18.21),

U = 0, on ∂�. (18.24)

Thus, ω2/c2 is an eigenvalue of the operator −�2 associated with the
Dirichlet-type boundary conditions, and U is the associated eigenfunc-
tion. One can prove (we refer the reader interested in more details to the
book of Courant and Hilbert (1953)) that this operator possesses an infinite
family of eigenvalues 0 < λ1 ≤ λ2 ≤ . . . ≤ λn ≤ . . . satisfying λn → +∞
as n →+∞. The corresponding eigenfunctionsUn form an orthogonal basis
of the Hilbert space L2(�).

Remark 18.4: Actually, the eigenmodes described in Section 18.3 correspond
to similar eigenvalue and eigenfunction problems that we could solve explic-
itly in one dimension. In two dimensions, Eqs. (18.23) and (18.24) cannot
be solved explicitly by analytical methods except for simple domains such as
rectangles or circles.

Remark 18.5: If it is assumed, for example, that � is a drum, the eigenvalues
λi give the accoustic signature of the drum. The inverse problem, namely
that of recovering the shape of � given its self-vibration frequencies λi , is an
outstanding problem in mathematical physics mostly solved in recent years.
Mathematicians and physicists refer to it by the question: Can we hear the
shape of a drum?

The self-vibration eigenmodes for the membrane are thus given by

uk(x, y, t) = Uk(x, y) exp(iωk t), k ∈ N
∗, (18.25)

the associated eigenfrequencies being defined by

ωk =
√
λkc, k ∈ N

∗.

Let Ui and Uj be two eigenfunctions associated with two distinct eigen-
values λi and λ j . Then, using the Green formula and considering Eq. (18.24),
we see that(

λi − λ j
) ∫

�

UiU j dx dy = −
∫
�

(Uj�2Ui −Ui�2Uj ) dx dy

=
∫
�

(∇2Uj∇2Ui − ∇2Ui∇2Uj ) dx dy

= 0,

where∇2 is the gradient with respect to the variables x and y. We assume here
that the functionsUi and Uj , as well as the domain �, are sufficiently regular.
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We thus recover the orthogonality property that has already been described:∫
�

UiU j dx dy = 0, (18.26)

for all eigenfunctionsUi andUj associated with distinct eigenvaluesλi andλ j .

Furthermore, we can choose the eigenfunctions Uk associated with the same
eigenvalue to be orthogonal (in the sense of Eq. (18.26)) to one another (the
eigenspace corresponding to a specific eigenvalue has finite dimension). We
thus obtain an orthogonal (or orthonormal) family of eigenvectors; one can
show that the family is complete; that is, its linear combinations are dense in
L2(�). The eigenfunctions form a basis of L2(�).

18.4. Solution of the wave equation

Our aim in this section is to solve the wave equation (18.1), supplemented
with the boundary and initial conditions, by using spectral expansions, that is
to say expansions of the form

u(x, y, z, t) =
∞∑
k=1

uk(t)Uk(x, y, z), (18.27)

where the Uk(x, y, z) are the eigenfunctions of the stationary problem (as
defined in the previous section). We will assume throughout this section that
the expansion defined by Eq. (18.27) is convergent and differentiable term by
term.

We note that, if a solution of Eq. (18.1) is of the form u(x, y, z, t) =
f (t)U (x, y, z), then

f ′′

c2 f
= �U

U
, (18.28)

and the common value of these two quantities is a constant (denoted−λ), since
the left-hand side depends only on t , while the right-hand side is independent
of t .

Under these circumstances, and assuming thatU vanishes at the boundary,√−λ is an eigenfrequency for U = Uk and, in Eq. (18.27), we can thus take
for fk ,

fk(t) = ck cos(ωk t)+ dk sin(ωk t), (18.29)

where ωk =
√
λkc is the eigenfrequency associated with the eigenmode Uk .

We first consider the particular cases described in the previous sections,
and then give some indications on the general three-dimensional problem.
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General vibrations of a cord fixed at its endpoints

We consider the boundary value problem

∂2u

∂t2
− c2 ∂

2u

∂x2
= 0, 0 < x < L , t > 0, (18.30)

u(0) = u(L) = 0, (18.31)

that we supplement with the initial conditions

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = u1(x). (18.32)

We saw in the previous section that the eigenfunctions are given (we take
here ak = 1) by

Uk(x) = sin
kπ

L
x, k ∈ N

∗. (18.33)

We thus look for a solution of the form

u(x, t) =
∞∑
k=1

sin

(
kπ

L
x

)
(ck cosωk t + dk sinωk t) , (18.34)

where ωk = (kπc)/L , k ∈ N
∗. The problem consists thus of finding the

coefficients ck and dk . We can compute the coefficients ck and dk using the
initial conditions. Indeed, taking t = 0 in Eq. (18.34), we find

u0(x) =
∞∑
k=0

ck sin

(
kπ

L
x

)
. (18.35)

Furthermore,

∂u

∂t
(x, t) =

∞∑
k=1

ωk sin

(
kπ

L
x

)
(−ck sinωk t + dk cosωk t) ;

hence, for t = 0

u1(x) =
∞∑
k=1

ωk dk sin

(
kπ

L
x

)
.

It finally follows from the orthogonality property of Eq. (18.18) that

ck = 1∫ L
0 U 2

k (x) dx

∫ L

0
u0(x)Uk(x) dx,

dk = 1

ωk
∫ L

0 U 2
k (x) dx

∫ L

0
u1(x)Uk(x) dx .

This finishes the resolution of the wave equation in this case.
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Remark 18.6: We can obtain a similar result for sound pipes.

General vibrations of a membrane fixed on its boundary

We consider the two-dimensional wave equation

∂2u

∂t2
− c2�2u = 0, in �, (18.36)

u = 0, on ∂�, (18.37)

where � is the domain filled by the membrane. We supplement this equation
with the initial conditions

u(x, y, 0) = u0(x, y),
∂u

∂t
(x, y, 0) = u1(x, y). (18.38)

Again, we look for a function u under the form of a spectral expansion

u(x, y, t) =
∞∑
k=1

Uk(x, y)(ck cosωk t + dk sinωk t),

where the eigenfunctions Uk and the eigenfrequencies ωk are as has been
defined in Section 18.3.

As above, we have

u0(x, y) =
∞∑
k=1

ckUk(x, y),

and

u1(x, y) =
∞∑
k=1

dkωkUk(x, y).

Hence, because the Uk are orthogonal,

ck = 1∫
�
U 2

k dx dy

∫
�

u0Uk dx dy,

dk = 1

ωk
∫
�
U 2

k dx dy

∫
�

u1Uk dx dy.

When the functionsUk are known, we obtain, in principle, the general solution
of Eqs. (18.36) to (18.38). The main difficulty for the resolution reduces to
the determination of the eigenfunctions Uk (which is not an easy task, except
for “simple” domains �).
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The three-dimensional case

In the general case, we essentially follow the same procedure as in the pre-
vious examples and look for a function u in the form of a spectral expan-
sion

u(x, y, z, t) =
∞∑
k=1

Uk(x, y, z)(ck cosωk t + dk sinωk t). (18.39)

Here, (Uk)k∈N∗ will be an orthogonal family of eigenvectors corresponding to
the eigenvalues of the operator −� associated with the boundary conditions
of the problem; ωk is the associated eigenfrequency.

The problem will then be reduced to the computation of the eigenmodes
Uk . As mentioned above, these eigenmodes cannot be computed explicitly
in general. We observe, however, that in certain cases we can still make a
separation of variables for the search of the eigenfunctions. Let us consider for
instance the case of a cylindrical domain� of section S ⊂ R

2 and delimited by
the planes z = 0 and z = L (i.e., � = S× (0, L)). We further assume that the
wave equation is supplemented with the Dirichlet-type boundary conditions.
In this case, we can write

U (x, y, z) = f (z)g(x, y), (18.40)

and the relation −�U = λU gives

− f ′′

f
= �2g

g
+ λ = k, (18.41)

where k is a constant independent of x, y, and z. It then follows that k = n2,
n ∈ N

∗,

f (z) = sin n2z, n ∈ N
∗, (18.42)

and g is solution of the problem

�2g + (λ− n2)g = 0, in S, (18.43)

g = 0, on ∂S. (18.44)

The problem is then reduced to a two-dimensional problem. The problem is
thus simplified by reducing the space dimension, but it is not solved com-
pletely.
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18.5. Superposition of waves, beats, and packets of waves

What follows is valid in a more general context, but we can think, for visual-
ization purposes, of waves propagating on a long vibrating cord – preferably
away from the ends of the cord to avoid reflection problems.

It follows from Section 18.3 that the vibrations of the cord are superposi-
tions of elementary waves of the form

ak sin λk x cosωk t, and bk sin λk x sinωk t.

The first ones can be written as

ak
2

{
cos

(
λk x − ωk t + π

2

)
− cos

(
λk x + ωk t + π

2

)}
,

and the second ones can be also written in a similar fashion (see also
Section 18.2). Hence, we will consider waves of the form a cos (λx−ωt+ϕ),
which are customarily written in the complex form Re aei(λx−ωt+ϕ); ω is the
frequency of the wave, T = 2π/ω is the period (in time), λ represents the
period (in space) or wavelength, and k = 2π/λ is the wave number; a mea-
sures the intensity of the wave; finally, ϕ is called the phase of the wave and
v = ω/λ is the phase speed.

The superposition of waves with the same frequency and wavelength, but
with different phases, produces a wave with the same frequency and wave-
length but with a different phase. Indeed

a1e
i(λx−ωt+ϕ1) + a2e

i(λx−ωt+ϕ2) = aei(λx−ωt+ϕ),

with

aeiϕ = a1e
iϕ1 + a2e

iϕ2 ;

hence,

a = {(a1 cos ϕ1 + a2 cos ϕ2)2 + (a1 sin ϕ1 + a2 sin ϕ2)2}1/2,

tan ϕ = a1 sin ϕ1 + a2 sin ϕ2

a1 cos ϕ1 + a2 cos ϕ2
.

Let us now consider the superposition of two waves with different frequen-
cies; we assume, for the sake of simplicity, that they have the same intensity
and phase,

u1 = a cos (λx − ωt), u2 = a cos (λ′x − ω′t).
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V

x

Figure 18.4 Linear superposition of two sinusoidal waves producing a long wave of
modulated amplitude.

Then, setting δλ = λ′ − λ, δω = ω′ − ω,

u = u1+ u2 = 2a cos

[
1

2
(δλx − δωt)

]
× cos

[(
λ+ δλ

2

)
x −

(
ω + δω

2

)
t

]
. (18.45)

An interesting case is that in which δλ and δω are small, δλ) λ, and
δω ) ω; we then obtain the beats. The new wave u = u1 + u2 described by
Figure 18.4 is a wave of modulated amplitude. It consists of a wave with high
frequency ω+ δω/2 and large wavenumber λ+δλ/2, of modulated intensity,
and that is contained in an envelope that is itself a wave of low frequency and
small wave number; its amplitude is thus

U = 2a cos

[
1

2
(δλx − δωt)

]
.

The superposed wave is itself periodic with slow variation and is of period
4π/δω and wavelength 4π/δλ. Here appears the beat phenomena used, for in-
stance, in music to tune an instrument by comparing a vibration to a reference
frequency.

Each long wave is formed from a packet of short waves. The short waves
propagate with a phase speed

v = 2ω + δω

2λ+ δλ
,

and the envelope (which contains the wave group or packet), propagates with
the phase velocity

δω

δλ
.
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When δω and δλ tend to 0, this velocity approaches the velocity

vg = dω

dλ
,

called the group velocity.

Exercises

1. Assume that u0 and u1 belong to C2(R). Show that the function u given in
Section 18.2 is indeed a solution of the wave equation (18.9)–(18.10), i.e.
u ∈ C2(R× [0,+∞)),

∂2u

∂t2
− c2 ∂

2u

∂x2
= 0 in R×]0,+∞[,

lim
(x,t)→(x0,0)

u(x, t) = u0(x0),

lim
(x,t)→(x0,0)

∂u

∂t
(x, t) = u1(x0),∀x0 ∈ R.

2. Give the explicit solution of the wave equation on the half line:

∂2u

∂t2
− c2 ∂

2u

∂x2
= 0, in R+×]0,+∞[

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = u1(x), x ∈ R+,

where u0 and u1 belong to C2(R+).
3. Consider the wave equation on a bounded domain � ⊂ R

n:

∂2u

∂t2
−�u = f, in �× (0, T ),

u = 0, on ∂�,

u(x, 0) = u0(x), in �,

∂u

∂t
(x, 0) = u1(x), in �.

Show that this problem possesses at most one solution u such that u ∈
C2(�× (0, T )).

4. (Finite propagation speed) Assume that u ∈ C2(Rn × [0,+∞)) solves the
wave equation

∂2u

∂t2
−�u = 0, in R

n×]0,+∞[.

Assume that u and ∂u/∂t vanish in the ball B = B(x0, t0) of center x0 and
radius t0. Then show that u vanishes in the cone

C = {
(x, t) ∈ R

n × (0,+∞), |x − x0| ≤ t0 − t, 0 ≤ t ≤ t0
}
.
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5. Consider equation (18.8) modeling the flexion of an elastic string

∂2u

∂t2
+ E I

ρ

∂4u

∂x4
= 0.

We assume that the string is fixed at its endpoints x = 0 and x = L so that

u(0, t) = u(L , t) = 0,∀t ≥ 0,
∂u

∂x
(0, t) = ∂u

∂x
(L , t) = 0,∀t ≥ 0,

and we look for solutions of the form

u(x, t) = U (x) exp(iωt)

a)

• (i) Show that u is the solution of the ordinary differential equation

U (4) − m4U = 0,

where m4 = ω2ρ

E I
.

• (ii) Deduce that U is of the form

U (x) = A cosmx + B sinmx + Cchmx + Dshmx .

b) We set σ = mL . Show that

U = A[(sin σ−shσ )(cosmx−chmx)−(cos σ−chσ )(sinmx−shmx)],

with

cos σchσ = 1,

and compute the eigenfrequencies σ .
6. Same exercise as above but assuming that the string is simply supported

by its endpoints.
7. Same exercise as above but assuming that the endpoint x = 0 is fixed and

that the endpoint x = L is free.



CHAPTER NINETEEN

The soliton equation:
the Korteweg–de Vries equation

Solitons are a type of nonlinear wave whose discovery and study are rela-
tively recent. Solitons appear in numerous wave propagation phenomena, and
they should eventually play a major role in telecommunications by optical
fibers. Two well-known equations possess soliton solutions: the Korteweg–
de Vries equation and the nonlinear Schrödinger equation; we will present
these equations in Chapters 19 and 20, respectively. These equations may
be obtained by passing to the limit in various equations (e.g., fluid me-
chanics, electromagnetism). Let us mention here two remarkable proper-
ties of solitons. On the one hand, these are waves that propagate by keep-
ing a constant shape; on the other hand, when two solitons that propagate
at different velocities meet, they interact for some time and then recover
their initial shapes and continue their propagation with their own initial
velocity.

Solitons appear in particular in the small-amplitude motions of the sur-
face of a shallow fluid; they are then governed by the Korteweg–de Vries
equation. In this chapter, we write different water-wave equations and show
how the Korteweg–de Vries equation may be deduced from the Euler equa-
tion of incompressible fluids; we finally present the soliton solutions of the
Korteweg–de Vries equation (KdV).

Solitons were discovered by the Englishman John Scott Russell. He no-
ticed the appearance of waves with constant shape propagating over large
distances in shallow canals, and he used to follow them on horseback
along the banks of the canal (J.S. Russell, 1884). The theoretical (analyti-
cal) study of these waves was then undertaken by Korteweg and de Vries,
who introduced the equation bearing their names (Korteweg and de Vries
(1895)).

289
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Figure 19.1 The domain �t .

19.1. Water-wave equations

In this section, we study two-dimensional flows of an incompressible irrota-
tional fluid filling the region � = �t defined by 0 < x < �, 0 < y < h(x, t).
The surface � = �t of the liquid with equation y = h(x, t) is a free surface
(see Figure 19.1).

Because the flow is incompressible and irrotational, there exists (see
Chapter 8) a function ϕ = ϕ(x, t) such that

u = grad ϕ and div u = �ϕ = 0;

that is to say,

ϕ,xx + ϕ,yy = 0. (19.1)

To determine the boundary conditions satisfied by ϕ on the free surface �,
we start from the Euler equation

∂u

∂t
+ curl u ∧ u + grad

(
p

ρ0
+ u2

2

)
= f,

and, because curl u = 0, u = grad ϕ, and f = −grad (gy), we deduce the
Bernoulli equation

ϕ,t + p

ρ0
+ 1

2

(
ϕ2
,x + ϕ2

,y

)+ gy = const.

On the surface �t , the pressure is equal to the outer atmospheric pressure p0,
and we then have

ϕ,t + 1

2

(
ϕ2
,x + ϕ2

,y

)+ gh(x, t) = c(t), on �t .
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Because ϕ is defined up to the addition of a function of t (which is spatially
constant), we can replace ϕ(x, y, t) in the preceding equality by ϕ(x, y, t)−∫ t

0 c(s) ds, and we then obtain

ϕ,t + 1

2

(
ϕ2
,x + ϕ2

,y

)+ gh = 0, on �t . (19.2)

On the other hand, by the nonpenetration condition, the normal velocity of
�t is the same as the normal velocity of the fluid. A point of �t that is at
[x, h(x, t)] at time t will be at [x, h(x, t + �t)] at time t + �t ; we deduce
from this that the velocity of �t is (0, h,t ). Because (−h,x , 1) is normal to �t

and u = grad ϕ, it follows that

−ϕ,xh,x + ϕ,y = h,t , on �t ,

which we rewrite in the form

h,t + ϕ,xh,x − ϕ,y = 0, on �t . (19.3)

Finally, on the lower horizontal wall, the nonpenetration condition u · n= 0
gives

∂ϕ

∂y
= ϕ,y = 0, at y = 0. (19.4)

Small amplitude waves in shallow water: nondimensional
form of the equations

We now assume that the equation of �t is of the form h = h0 + η, where h0

is a constant and η = O(a) with a denoting the amplitude of the wave (see
Figure 19.2).

In what follows, we will assume that a ) h0 and h0 ) �, which means
that we are interested in waves of small amplitude in shallow water.

Figure 19.2 Small-amplitude waves in shallow water.
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To obtain the nondimensional form of the wave equations, we set

x = �x ′, y = h0y
′, t = �t ′

c0
, c0 =

√
gh0,

η = aη′, ϕ = g
�a

c0
ϕ′, α = a

h0
, β = h2

0

�2
.

We then delete the primes in the equations obtained by this change of variables.
The equation of �t thus becomes y = 1+ αη, and Eqs. (19.1)–(19.4) can be
rewritten as

βϕ,xx + ϕ,yy = 0, 0 < x < 1, 0 < y < 1+ αη,

η,t + αϕ,xη,x − 1

β
ϕ,y = 0, at y = 1+ αη,

ϕ,t + 1

2
αϕ2

,x +
1

2

α

β
ϕ2
,y + η = 0, at y = 1+ αη,

ϕ,y = 0 at y = 0.

(19.5)

19.2. Simplified form of the water-wave equations

Our aim in this section is to solve, in an approximate way (for small β), the
equation

βϕ,xx + ϕ,yy = 0,

ϕ,y = 0, at y = 0.

To do so, we look for a solution having a series expansion with respect to y
of the form:

ϕ = ϕ(x, y, t) =
∞∑
n=0

fn(x, t)yn.

Thus, ϕ,y =
∑∞

n=0 ny
n−1 fn(x, t), and we obtain, for y = 0,

f1(x, t) = 0.

Then the Laplace equation βϕ,xx + ϕ,yy = 0 yields

β

∞∑
n=0

yn
∂2 fn
∂x2

+
∞∑
n=2

n(n − 1)yn−2 fn = 0;

that is to say
∞∑
n=0

[
β
∂2 fn
∂x2

+ (n + 1)(n + 2) fn+2

]
yn = 0.
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It then follows that

β
∂2 fn
∂x2

+ (n + 1)(n + 2) fn+2 = 0, n ≥ 0.

We can solve these equations recursively for even n and for odd n separately.
Because f1 = 0, we deduce that f3 = 0 and, by induction, f2 j+1 = 0,

∀ j ∈N.
Then, for even n, we obtain

β
∂2 f0
∂x2

+ 2 f2 = 0,

β
∂2 f2
∂x2

+ 12 f4 = 0;

hence,

f2 = −β

2

∂2 f0
∂x2

f4 = β2

24

∂4 f0
∂x4

;

we can prove by induction that, similarly,

f2 j = (−1) j

(2 j)!
β j ∂

2 j f0
∂x2 j

.

By now setting f0(x, t) = f (x, t), we obtain the following expression for ϕ:

ϕ = ϕ(x, y, t) =
∞∑
j=0

(−1) j
y2 j

(2 j)!
β j ∂

2 j f

∂x2 j
.

Asymptotic expansions

Next, we substitute this expression for ϕ in the equation for η, and we make
asymptotic expansions for small β (and possibly also for small α). We have,
with y = 1+ αη:

ϕ = f − β
y2

2
f,xx + β2 y

4

24
f,xxxx + O(β3),

− 1

β
ϕ,y = y f,xx − β

y3

6
f,xxxx + O(β2),

ϕ,x = f,x − β
y2

2
f,xxx + O(β2),
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and, because

αη,x f,x + (1+ αη) f,xx = [(1+ αη) f,x ],x ,

the first equation in η gives

η,t + [(1+ αη) f,x ],x

−
[

1

6
(1+ αη)3 f,xxxx + 1

2
α(1+ αη)2η,x f,xxx

]
β + O(β2) = 0.

(19.6)

Furthermore,

ϕ,t = f,t − β
y2

2
f,xxt + O(β2),

and we deduce from the second equation for η the following equation:

η + f,t − 1

2
βy2 f,xxt + 1

2
α f 2

,x

− 1

2
αβy2 f,x f,xxx + 1

2
αβy2 f 2

,xx + O(β2) = 0. (19.7)

Simplified equations (based on asymptotic expansions)

A first simplification of Eqs. (19.6) and (19.7) consists of neglecting the terms
of order β (i.e., O(β)). Setting w = f,x and differentiating Eq. (19.7) with
respect to x , we then obtain

η,t + [(1+ αη)w],x = 0, (19.8)

w,t + η,x + αww,x = 0. (19.9)

These equations are called nonlinear shallow water equations.
Another simplification consists of keeping the terms in β but of neglecting

the terms of order αβ (i.e., O(αβ)). We thus obtain

η,t + [(1+ αη)w],x − β

6
w,xxx + O(αβ, β2) = 0, (19.10)

η,x + w,t + αww,x − 1

2
βw,xxt + O(αβ, β2) = 0. (19.11)

These last equations are a variant of the so-called Boussinesq equations.

Remark 19.1:We saw that

ϕ,x = w − β
y2

2
w,xx + O(β2).
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Consequently, by averaging over y (over the depth), we note that the averaged
velocity ũ satisfies

ũ = w − 1

6
βw,xx + O(αβ, β2),

which gives, upon inverting:

w = ũ + 1

6
βũ,xx + O(αβ, β2).

By then replacing w with this expression, we find

η,t + [(1+ αη)ũ],x +
β

6
ũ,xxx + O(αβ, β2) = 0,

ũ,t + αũũ,x + η,x − 1

3
βũ,xxt + O(αβ, β2) = 0.

19.3. The Korteweg–de Vries equation

Our aim in this section is to deduce the Korteweg–de Vries equation from
the preceding equations. This equation, very important for historical reasons
because it has led to the discovery of the concept of the soliton, can actually
be deduced from any one of the equations derived in the previous sections by
considering the waves propagating to the right.

Hence, Eqs. (19.9) and (19.10) give, if we take α = β = 0,

η,t + w,x = 0,

w,t + η,x = 0,

which yields

η,t t + w,xt = 0,

and

η,t t − η,xx = 0.

As we saw in Chapter 18, all the solutions of this equation propagating to
the right are of the form

η(x, t) = a(x − t) = η(x − t, 0),

which yields ηt + ηx = 0 and, for ψ = η − w,

ψ,t = η,t − w,t = η,t + η,x = 0,

ψ,x = η,x − w,x = η,x + η,t = 0;
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hence,

ψ = η − w = 0,

η,t + η,x = 0.

Next, we look for a correction, to first order in α and β, of the form

w = η + αA+ βB+ O(α2 + β2)

and

η,t + η,x = O(α, β).

We then deduce from Eqs. (19.10) and (19.11) that

η,t + η,x + α(A,x + 2ηη,x )+ β

(
B,x − 1

6
η,xxx

)
+ O(α2 + αβ + β2) = 0,

η,t + η,x + α(A,t + ηη,x )+ β

(
B,t − 1

2
η,xxx

)
+ O(α2 + αβ + β2) = 0.

But η,t = −η,x + O(α, β), which implies that, to first order, for the terms
involving η,

∂

∂t
≡ − ∂

∂x
,

and thus we obtain the following equations:

η,t + η,x + α(A,x + 2ηη,x )+ β

(
B,x − 1

6
η,xxx

)
+ O2 = 0, (19.12)

η,t + η,x + α(A,t + ηη,x )+ β

(
B,t − 1

2
η,xxx

)
+ O2 = 0, (19.13)

where O2 = O(α2+αβ+β2). The compatibility of Eqs. (19.12) and (19.13)
and the asymptotic expansions require then that

A,x + 2ηη,x = A,t + ηη,x ,

B,x − 1

6
η,xxx = B,t − 1

2
η,xxx .

The first equation can be rewritten as

A,t − A,x = ηη,x .

We then perform the change of variables

r = x − t, s = x + t,

x = 1

2
(r + s), t = 1

2
(s − r ),
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and, for every function ϕ(x, t), we write ϕ(x, t) = ϕ̄(r, s). We obtain

η̄,s = η,x x,s + η,t t,s ;

that is,

η̄,s =
1

2
η,x + 1

2
η,t = O(α, β),

because η,t + η,s = O(α, β). Similarly,

η̄,r = 1

2
η,x − 1

2
η,t

= η,x + O(α, β).

Moreover,

A,t = − Ā,r + Ā,s,

A,x = Ā,r + Ā,s ;

hence,

A,t − A,x = −2 Ā,r .

Therefore,

−2 Ā,r = η̄η̄,r + O(α, β),

that is to say

Ā,r = −1

4
(η̄2),r + O(α, β).

We can then take, to order O(α, β),

A = −η2

4
.

Proceeding similarly for the equation for B,

B,t − B,x = −2

3
η,xxx ,

we obtain

−2B̄,r = −2

3
η̄,rrr + O(α, β);

that is,

B̄,r = 1

3
η̄,rrr + O(α, β),
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which yields

B = 1

3
η̄,rr + O(α, β),

B = 1

3
η,xx + O(α, β).

We will then take

B = 1

3
η,xx .

Replacing A and B by these values in Eqs. (19.12) and (19.13), we obtain

η,t + η,x + 3

2
αηη,x + 1

6
βη,xxx + O(α2, β2, αβ) = 0,

that is, to first order,

η,t + η,x + 3

2
αηη,x + 1

6
βη,xxx = 0, (19.14)

which is almost the Korteweg–de Vries equation.
To obtain the slightly simpler Korteweg–de Vries equation, we now per-

form the change of variables

x = t ′ + x ′,

t = t ′;

setting

η(x, t) = η̃(x ′, t ′),

we deduce from Eq. (19.14) the equation

η̃t ′ +
3

2
αη̃η̃,x ′ +

1

6
βη̃,x ′x ′x ′ = 0. (19.15)

Finally, we rescale x ′, t ′, and η̃ and set

x ′ = kx,

t ′ = �t,

η̃ = u,

where k and � will be chosen later. We find
1

�
u,t + 3

2

α

k
uu,x + 1

6

β

k3
u,xxx = 0.

We then choose k and � such that
3

2

α�

k
= 1,

1

6

β�

k3
= 1;
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hence,

�

k
= 2

3α
,

�

k3
= 6

β
,

and

k = 1

3

√
β

α
,

� = 2

9

√
β

α3
,

and we finally obtain the Korteweg–de Vries (KdV) equation

u,t + uu,x + u,xxx = 0. (19.16)

19.4. The soliton solutions of the KdV equation

We conclude this chapter by the derivation of the soliton solutions of the KdV
equation. These solutions correspond to waves that propagate with a constant
velocity and keep a given shape; we will then have

u(x, t) = �(ξ ) = �(x − V t),

where ξ = x−V t . Substituting this expression of� in Eq. (19.16), we obtain,
for �, the following ordinary differential equation:

(� − V )
d�

dξ
+ d3�

dξ 3
= 0.

It follows by integration that

1

2
�2 − V� + d2�

dξ 2
= k1, (19.17)

where k1 is a constant. We multiply both sides of this equation by d�/dξ and
integrate again to obtain

1

6
�3 − 1

2
V�2 + 1

2

(
d�

dξ

)2

= k1� + k2, (19.18)

k2 being another constant. The constants k1 and k2 are determined by the
boundary conditions: the wave is flat at infinity, and thus � and its derivatives
vanish at infinity. This gives k2 = 0 in Eq. (19.18); then, by letting ξ → ∞
in Eq. (19.17), we find k1 = 0.
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Equation (19.18), in which k1= k2= 0, can be solved by using the elemen-
tary transcendental functions. We find the solution

� = �(ξ ) = 3V

[
1+ sinh2

(
1

2

√
V ξ

)]−1

= 3V

cosh2
(

1
2

√
V ξ

) ;

therefore,

u(x, t) = 3V

[
1+ sinh2

(
1

2

√
V (x − V t)

)]−1

= 3V

cosh2
[

1
2

√
V (x − V t)

] = 3V sech2

[
1

2

√
V (x − V t)

]
.

It is easy to check that this function u solves Eq. (19.16). We notice that
u almost vanishes as soon as ξ is larger than a few units (e.g.,

√
V |ξ | =√

V |x − V t | ≥ 20).

Exercises

1. Consider the Sine-Gordon equation

∂2θ

∂t2
− c2

0
∂2θ

∂x2
+ ω2

0 sin θ = 0.

This equation is obtained, e.g., when one considers a mechanical trans-
mission consisting of elastically coupled pendulums.
a) We first assume that the angle θ is small. Then, one approximates the

Sine-Gordon equation by the Klein-Gordon equation

∂2θ

∂t2
− c2

0
∂2θ

∂x2
+ ω2

0θ = 0.

Under what condition (dispersive relation) is

θ = θ0 cos(kx − wt)

solution of the Klein-Gordon equation?
b)

• (i) Show that, under the change of variables t �→ ω0T, x �→ ω0

c0
x,

the Sine-Gordon equation can be rewritten in the form

∂2θ

∂t2
− ∂2θ

∂x2
+ sin θ = 0.
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• (ii) We look for solutions of the above equation in the form

θ = θ (s) = θ (x − ut), −1 < u < 1.

Show that

(1− u2)θ,ss = sin θ,

and that,

θ,s = ±
√

2(c − c∞θ )

1− u2
,

where c is an integration constant.
• (iii) Compute the value of c if we assume that we look for localized

solutions (i.e., such that θ and its derivatives vanish as s −→ ±∞).
• (iv) Give the expression of the soliton solutions.

2. Consider the following system of equations which describes small ampli-
tude and long waves in a water channel

η,t +u,x +(uη),x +u,xxx −η,xxt = 0,

u,t +η,x +uu,x +η,xxx = 0.

We set ξ = x + x0 − ct and we look for solutions of the above system of
the form

η(x, t) = η(ξ ), u(x, t) = αη(ξ ), α �= 0,

where η is localized.

a) Show that c = 2− α2

α
and that

(α2 − 1)η,ξ +α2ηη,ξ +η,ξξξ = 0.

b) Consider the equation

aη,ξ −bη,ξξξ = ηη,ξ , ab > 0.

Show that

η = 3a sech2(
1

2

√
a

b
(ξ + ξ0)),

where ξ0 is an arbitrary constant, is the solution of the above equation.
c) Deduce that

η(x, t) = η0sech
2(λ(x + x0 − ct),

u(x, t) = ±
√

3

η0 + 3
η0sech

2(λ(x + x0 − ct)),
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where

η0 > 0, c = 3+ 2η0

±√3(3+ η0)
, λ = 1

2

√
η0

η0 + 3
,

is a soliton solution of the initial system.
3. Give a soliton solution of the following Whitham’s system:

η,t +u,x +(uη),x −1

6
u,xxx = 0,

u,t +η,x +uu,x −1

2
u,xxt = 0,

such that η(x, t) = η(ξ ) = η(x + x0 − ct), u(x, t) = αη(ξ ).



CHAPTER TWENTY

The nonlinear Schrödinger equation

The purpose of this chapter is to introduce another equation describing non-
linear wave phenomena: the nonlinear Schrödinger equation (NLS), which
should not to be confused with the linear Schrödinger equation from quantum
mechanics (see below).

As indicated in Chapter 18, this equation, like the KdV equation, has been
discovered rather recently. The two equations appear in, and are used for, wave
phenomena of various types. In particular, the NLS equation, like the KdV
equation, can describe water-wave phenomena, and it can also be deduced
from the Euler equation of perfect fluids under appropriate hypotheses.

However, the NLS equation also describes phenomena that are very im-
portant nowadays: the propagation of waves in wave guides in relation to the
design of optical long-distance communications lines and all-optical signal-
processing devices for reliable and high-bit-rate transmission of information.

Owing to the importance of the subject, and to diversify the mathematical
techniques developed in this book, we will in this chapter derive the NLS
equation from the Maxwell equations in the context of wave guides rather
than deduce them from the Euler equations in the context of fluid mechanics.

We start in Section 20.1 by recalling the Maxwell equations, and we intro-
duce a new phenomenon that is essential for optic fibers, namely polarization,
which corresponds to, and describes, the electromagnetically anisotropic be-
havior of the medium. In Sections 20.2 and 20.3, we complete the modeling
of electromagnetic wave propagation in polarized media by introducing the
constitutive laws of the medium that link the polarization and the electric
field together (these constitutive laws are similar in many respects to those
that appeared in Chapters 5 and 10). The nonlinear Schrödinger equation is
then introduced in Section 20.4. Finally, in Section 20.5, we give the soliton
solutions of the undamped NLS equation. The developments of Sections 20.1
and 20.2 are general and contain basic elements used in a large variety of
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photoelectric phenomena in wave guides. The next sections are specific to
optic fibers, and take into account the isotropy of the medium and its geome-
try (section very small by comparison with the length).

20.1. Maxwell equations for polarized media

We are interested in this section in the propagation of signals in polarized
media such as optical fibers. These phenomena, of electromagnetic nature,
are governed by the Maxwell equations introduced in Chapter 10 to which
we add the polarization.

We thus start by recalling the Maxwell equations as they appeared in
Chapter 10. The electric and magnetic fields E, H, and the electric and mag-
netic inductions D, B, satisfy, in the medium, the equations

∂B

∂t
+ curl E = 0, (20.1)

curl H = J + ∂D

∂t
, (20.2)

div D = q, (20.3)

div B = 0, (20.4)

where q is the charge density. In the case of optical fibers, and more generally
in the absence of free charge in the medium, we have J = 0 and q = 0;
hence,

curl H = ∂D

∂t
, (20.5)

div D = 0. (20.6)

As in Chapter 10, the inductions D and B are related to the fields E and H
by the constitutive laws of the electromagnetic medium. It is at this level that
polarization appears and that the first differences with Chapter 10 occur. We
introduce the induced electric and magnetic polarization vectors P and M .
The constitutive laws, similar to Eqs. (10.14) of Chapter 10, then read

D = ε0E + P, (20.7)

B = µ0H + M, (20.8)

where ε0 and µ0 are, respectively, the permittivity and the permeability of
vacuum. Henceforth, we will take M = 0 because the magnetic polarization
vanishes for nonmagnetic media such as optical fibers; hence,

B = µ0H. (20.9)
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Taking the curl of Eq. (20.1), it follows, in view of Eq. (20.9) that

curl curl E = − ∂

∂t
curl B

= − ∂

∂t
µ0 curl H.

Therefore, because J = 0, we find

curl curl E = −µ0
∂2D

∂t2
,

and, finally, we deduce from Eq. (20.7) the following wave-type equation:

curl curl E = − 1

c2

∂2E

∂t2
− 1

ε0c2

∂2P

∂t2
, (20.10)

where we have set µ0ε0 = 1/c2, c denoting the speed of light in the vacuum.
Equation (20.10) is the fundamental equation for the propagation of the

electric field E in optical fibers. It must be supplemented with suitable consti-
tutive relations between E and the induced electric polarization vector P: we
develop this question in the following sections. For the time being, we give
different forms of Eq. (20.10).

In particular, we will use the Fourier transform with respect to time defined
for E by

FE(x, ω) = Ê(x, ω) =
∫ +∞

−∞
E(x, t) exp(iωt) dt.

By Fourier transform, Eq. (20.10) becomes

curl curl Ê = ω2

c2
Ê + ω2

ε0c2
P̂.

In isotropic media, E and D are proportional (with a scalar proportionality
coefficient independent of t). It follows that Ê and D̂ are also proportional;
then, div D = 0 yields div E = 0, and div Ê = 0, so that

curl curl E = grad div E −�E = −�E,

curl curl Ê = −�Ê,

and the last equation becomes

−�Ê = ω2

c2

(
Ê + 1

ε0
P̂

)
. (20.11)

In some circumstances, it is important to consider nonisotropic media for
which D = [ε]E , where [ε] is a tensor of order two; in this case div E �= 0,
but this issue will not be addressed here.
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20.2. Equations of the electric field: the linear case

In the most general case, the derivation of the relations between the elec-
tric field E and the polarization P relies on quantum mechanics; quantum
mechanics is needed in particular when the optical frequency is close to res-
onance with the medium.1 Far from the resonances, which is in particular the
case for optical fibers with wavelengths contained between 0.5 and 2 µm, we
can use simpler phenomenological relations between P and E – for instance a
relation corresponding to the beginning of a Taylor expansion in E around 0.
This expansion is justified by the fact that E is small (in a proper nondimen-
sional form), which expresses, from the physical point of view, the fact that
the electromagnetic forces are weak by comparison with the cohesion forces.

We will then have an expansion of the form

P = ε0
{
L(1)(E)+ L(2)(E ⊗ E)+ L(3)(E ⊗ E ⊗ E)+ · · ·

+L( j)(E ⊗ · · ·⊗︸ ︷︷ ︸
j times

E)+ · · · }, (20.12)

where the L( j) are linear functional operators. A phenomenological study
similar to that of rheology, described in Chapter 5, must then be performed
here, and one must take into account, in particular, the isotropy (invariance by
a change of orthonormal system), causality (the past does not depend on the
future), and temporal invariance (invariance by translation in time). Through
an analysis not developed here, these principles lead to the following form
for the terms L( j) (we limit ourselves to j = 1, 2, 3):

L(1)(E)(t) =
∫ +∞

−∞
χ(1)(t − τ ) · E(τ ) dτ,

L(2)(E)(t) =
∫ +∞

−∞

∫ +∞

−∞
χ(2)(t − τ1, t − τ2) · E(τ1)⊗ E(τ2) dτ1 dτ2,

L(3)(E)(t) =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
χ(3)(t − τ1, t − τ2, t − τ3)

× E(τ1)⊗ E(τ2)⊗ E(τ3) dτ1 dτ2 dτ3,

where · denotes a contracted tensorial product and χ( j) is a tensor of order

1 One then needs the linear Schrödinger equation of quantum mechanics. As indicated in the
introduction, this equation is totally distinct from the NLS equation below as far as its role
and the use that is made of it are concerned.
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j + 1 called the multiimpulsional response tensor; its Fourier transform in
time is the susceptibility tensor. By causality, the χ( j) vanish for t < 0.

For symmetry and isotropy reasons, the term L(2) vanishes.2 If we thus
limit ourselves to the term of order 3, there remains

P = PL + PNL, (20.13)

where PL is the linear part; for reasons of isotropy, we can take χ(1) diagonal,
χ(1) = χ (1) I, χ (1) scalar, and thus

PL(x, t) = ε0

∫ +∞

−∞
χ (1)(x, t − τ )E(x, τ ) dτ. (20.14)

It follows, by taking a Fourier transform in time, that

P̂L(x, ω) = ε0χ̂
1(x, ω)Ê(x, ω). (20.14′)

In Eqs. (20.14) and (20.15), x denotes, as usual, the point of R
3 with coordi-

nates x1, x2, x3 (x3 = z hereafter).
We assume that, in the nonlinear term PNL (which represents lower-order

effects, E being small), the response is instantaneous, which is expressed by

χ(3)(x, t, t ′, t ′′) = χ3(x)δtδt ′δt ′′,

where δt denotes here the Dirac mass at 0 for the variable t , and χ(3) is a
tensor of order four independent of t . It follows that

PNL(x, t) = ε0χ
(3)(x) · E(x, t)⊗ E(x, t)⊗ E(x, t). (20.15)

The expression of χ(3) and its dependence on x will be further discussed
below.

Linearized equation

In a first step, we will neglect the nonlinear term PNL and study the linearized
form of Eq. (20.10). Because

D = ε0E + P  ε0E + PL,

it follows, owing to Eq. (20.14), that

D̂ = ε0 Ê + P̂L,

D̂ = ε0
(
1+ χ̂ (1)

)
Ê .

(20.16)

2 Every function, tensor of odd order, invariant by central symmetry, vanishes; from this, we
deduce that L(2) = 0.
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Equation (20.11) becomes�Ê + ε(ω)
ω2

c2
Ê = 0,

ε(ω) = 1+ χ (1)(ω).
(20.17)

Let us note here that, because χ̂ (1)(ω) is complex, the same is true for ε(ω).
By definition

ε =
(
n + iαc

2ω

)2

= n2 − α2c2

4ω2
+ i

nαc

ω
, (20.18)

where n+ iαc/2ω is the complex refraction index of the medium, n = n(ω)
is the real part of this index; α = α(ω) denotes the absorption coefficient of
frequency ω, and c denotes as usual the speed of light in vacuum. Thus,

α = ω

nc
Im

[
χ̂ (1)(ω)

]
,

where Im denotes the imaginary part (the real part will be denoted by Re);
this relation is exact. Furthermore, we have χ̂ (1) ) 1, so that, to first approx-
imation,

n + iαc

2ω
= ε1/2  1+ 1

2
χ̂ (1),

that is

n  1+ 1

2
Re

[
χ̂ (1)(ω)

]
.

Thus, and always to first approximation, we will have

ε  n2  1.

We now turn to the resolution of Eq. (20.17) for a long fiber of section
�⊂R

2
x1x2

(let us observe here that we will arrive at a problem similar to that
of Eq. (20.17) in the nonlinear case). To do so, we look for a solution of the
form

Ê(x, ω) = A(ω) F(x1, x2) exp(iβz),

where we have set z = x3. Dividing by exp(iβz), we deduce from Eq. (20.17)
that

A�2F − Aβ2F + ε(ω)
ω2

c2
AF = 0,

where�2 denotes the two-dimensional Laplacian with respect to the variables
x1 and x2 and where A is a normalization factor. We arrive at the following
eigenvalue problem for F :{

�2F + κ2F = 0, x1, x2 ∈ �,

F = 0, on the boundary ∂� of �.
(20.19)
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We make here the assumption that E (and thus F) vanishes on ∂� (we refer
the reader interested in more details to Agrawal (1989)).

Therefore κ2 is an eigenvalue of the Laplacian in � associated with the
Dirichlet boundary condition on ∂�. This corresponds to an infinite di-
mensional spectral problem (several similar problems have appeared in
Chapter 17). The possible values of κ2 form a sequence of nonnegative real
numbers λn

0 < λ1 ≤ λ2 ≤ . . . , λn →∞ for n →∞.

Choosing for κ2 one of these eigenvalues, β = β(ω) will be defined for each
frequency ω by the relation

ε(ω)
ω2

c2
− β(ω)2 = κ2. (20.20)

Finally, it remains to normalize the eigenvector F (defined up to a multiplica-
tive constant). If we choose, for instance, F such that∫

�

F2(x1, x2) dx1 dx2 = 1,

A(ω) will then be called the intensity factor.

20.3. General case

We return here to the study of Eq. (20.10) in the nonlinear case; that is to
say, we no longer neglect the nonlinear term PNL. We assume, for the sake
of simplicity, that the waves propagate in the direction x3 = z and that the
polarization is in the direction Ox1 (with unit vector e1), and thus

E(x, t) = E1(x, t)e1,

PL(x, t) = P1L(x, t)e1,

PNL(x, t) = P1NL(x, t)e1.

(20.21)

On the other hand, for glass fibers, the frequencies ω are close to a central
frequency ω0 (|ω − ω0| ) ω0). We then set

E1(x, t) = Re[E(x, t) exp(−iω0t)], (20.22)

P1L(x, t) = Re[PL(x, t) exp(−iω0t)], (20.23)

where E and PL are complex; in view of Eq. (20.14), it is natural to require
that PL and E satisfy

PL(x, t) = ε0

∫ +∞

−∞
χ̂ (1)(t − t ′) E(x, t ′) exp(iω0(t − t ′)) dt ′. (20.24)
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Moreover, because Eq. (20.24) is equivalent to

PL(x, ·) = ε0
{
χ̂ (1)(·) exp(iω0·)

}
( E(x, ·),

where ( is the convolution product, we have

P̂L(x, ω) = ε0F
{
χ̂ (1)(·) exp(iω0·)

}
(ω) Ê(x, ω)

(where FG = Ĝ). Furthermore,

F
{
χ̂ (1)(·) exp(iω0·)

}
(ω) =

∫ +∞

−∞
χ̂ (1)(t) exp(iω0t) exp(iωt) dt

= χ̂ (1)(ω + ω0),

and thus

P̂L(x, ω) = ε0χ̂
(1)(ω + ω0) Ê(x, ω),

which finally gives, by inverse Fourier transform:

PL(x, t) = 1

2π

∫ +∞

−∞
χ̂ (1)(ω′ + ω0) Ê(x, ω′) exp(−iω′t) dω′

= (Setting ω′ + ω0 = ω) (20.25)

= 1

2π

∫ +∞

−∞
χ̂ (1)(ω) Ê(x, ω − ω0) exp(−i(ω − ω0)t) dω.

We then deduce from Eqs. (20.15) and (20.21) that

P1NL = ε0χ
(3)
1111(E1)3,

where χ (3)
1111=χ(3)

x1,x1,x1,x1
is the component on e1⊗ e1⊗ e1⊗ e1 of the fourth-

order tensor χ(3). Relation (20.22) then furnishes

E1 = Re a = 1

2
(a + ā),

where

a = E(x, t) exp(−iω0t),

which gives

E3
1 =

1

8
Re(a3 + 3a2ā + 3aā2 + ā3)

= 1

8
Re[E3exp(−3iω0t)+ 3E2Ē exp(−iω0t)

+ 3EĒ2exp(iω0t)+ Ē3exp(3iω0t)].
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The terms of the form exp(±3iω0t) correspond to very fast oscillations and
are negligible by comparison with the terms of the form exp(±iω0t). Then
there remains, to first approximation

E3
1  

3

4
EĒ Re[E exp(−iω0t)] = 3

4
|E |2E1.

Consequently,

P1NL  Re(PNL exp(−iω0t)), (20.26)

where PNL  ε0εNLE,
εNL  3

4
χ

(3)
1111|ε(x, t)|2. (20.27)

To write Eq. (20.11), we need to take the Fourier transform in time of
Eqs. (20.26) and (20.27). We thus specify (assume) – which is reasonable –
that, for an optic fiber, χ (3)

1111 and |E(x, t)|2 are very close to their time mean
values. Everything thus behaves, to first approximation, as if εNL were inde-
pendent of time, and thus

P̂NL  ε0εNLÊ . (20.28)

By applying the Fourier transform to Eq. (20.7), we then see that div D̂
is again proportional to div Ê ; we thus have again div Ê = 0, curl curl
Ê = −�Ê . Equation (20.10) then gives

�Ê + ε(ω)k2Ê = 0, (20.29)

where

ε(ω) = 1+ χ̂1(ω)+ εNL,

and k = ω/c; εNL is independent of ω.3

Now our aim is to solve Eq. (20.29) in an approximate way and, at the end
of the calculations, the nonlinear Schrödinger equation will appear. To do so,
we need some preliminary computations and some remarks concerning ε(ω).

As in the linear case, we have

ε =
(
ñ + i α̃

2k0

)2

,

3 We have actually implicitly set it to its value at ω0: The dispersive effects (corresponding to
ω �= ω0) are taken into account in the linear part PL, whereas the nonlinear part does not take
into account the dispersive effects.
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where ñ and α̃ are defined as in the linear case, and k0 = ω0/c; however,
the different quantities depend now on the intensity |E |2. It is usual to write
ñ and α̃ in the form

ñ = n + n2|E |2, α̃ = α + α2|E |2, (20.30)

where n and α have been defined in the previous section (linear case). It then
follows that

ñα̃

k0
= Im

(
1+ χ̂ (1) + 3

4
χ

(3)
1111|E |2

)
= nα

k0
+ 3

4
Imχ

(3)
1111|E |2;

hence,

α̃ = α
n

ñ
+ k0

ñ

3

4
Imχ

(3)
1111|E |2.

We will have, as a first approximation, ñ ≈ n (and also ω ≈ ω0), so that

α2 = 3

4

ω0

nc
Imχ

(3)
1111.

Moreover,

ε = ñ2 − α̃2

4k2
0

+ i
α̃ñ

k0

= 1+ χ̂ (1) + 3

4
χ

(3)
1111|E |2,

and hence,

ε = 1+ Re χ̂ (1) + 3

4
Re

(
χ

(3)
1111|E |2

) = ñ2 − α̃2

4k2
0

.

On the other hand,

(n + n2|E |2)2 = n2 + 2nn2|E |2 + n2
2|E |4

 n2 + 2nn2|E |2,
where we have neglected, as a first approximation, the term n2

2|E |4. Because
1+ Reχ (1)  n2 and α̃ ) ñ, it follows that

3

4
Reχ (3)

1111 = 2nn2,

and thus, to first approximation,

n2  3

8n
Reχ (3)

1111.

This last quantity measures the nonlinearity of the fiber.
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20.4. The nonlinear Schrödinger equation

We are now in a position to solve (in an approximate way) Eq. (20.29). To do
so, we look for a solution of the form

Ê(x, ω − ω0) = F(x1, x2) Â(z, ω − ω0) exp(iβ0z),

where we have again set z = x3. We insert this expression of Ê in Eq. (20.29)
and obtain, upon dividing by exp(iβ0z):

Â�2F − ÂFβ2
0 +

∂2 Â

∂z2
F + 2iβ0

∂ Â

∂z
F + ε(ω)

ω2

c2
ÂF = 0.

Under the assumption of slow variation along the fiber, the term ∂2 Â/∂z2 is
neglected by comparison with β0 ∂ Â/∂z. If we divide by ÂF , it then follows
that

�2F

F
+ ε(ω)

ω2

c2
= β2

0 −
2iβ0

Â

∂ Â

∂z
.

Let β̃
2 = β̃(z, ω)2 be the common value of these two quantities (the right-

hand side depends only on z and ω). Thus,

�2F +
[
ε(ω)

ω2

c2
− β̃2

]
F = 0, (20.31)

and

2iβ0
∂ Â

∂z
+ (

β̃2 − β2
0

)
Â = 0. (20.32)

We first solve Eq. (20.31), which we supplement, as before, with the Dirichlet-
type boundary condition. The corresponding eigenvalue problem is a bit dif-
ferent from that encountered in the linear case because the coefficient of F
also depends on x1 and x2 (and z). One can show, using perturbation theory
for eigenvalue problems,4 that F is unchanged at first order, that is

�2F + κ2F = 0, in �,

F = 0, on ∂�,

to first approximation, as in the linear case. Similarly, we will have

β̃(ω) = β(ω)+ δβ,

where β(ω) has been computed in Section 20.2 (i.e., when PNL = 0). Thus,

κ2 = ε(ω)k2 − β̃2,

4 See details and references in Agrawal (1989).
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and

ε = (n + δn)2  n2 + 2n · δn

=
(
n + n2|E |2 + iα

2k0
+ i

α2|E |2
2k0

)2

 n2 + 2nn2|E |2 + n
iα

k0

+ lower-order terms,

which yields, to first approximation,

δn  n2|E |2 + iα

2k0
.

Moreover,

β̃2  β2 + 2β · δβ.
The eigenfunction F is thus, to first approximation, a solution of

�2F +
[
k2

0(n2 + 2n · δn)− β2 − 2β · δβ] F = 0,

where δn depends on x1 and x2, but n, β and δβ do not depend on x1 and x2.
Multiplying the previous equation by F and integrating over �, we find∫

�

|∇F |2 dx1 dx2 =
∫
�

[
k2

0(n2 + 2n · δn)− β2 − 2β · δβ] F2 dx1 dx2.

Because, owing to Eqs. (20.19) and (20.20),∫
�

|∇F |2 dx1 dx2  
∫
�

(
k2

0n
2 − β2

)
F2 dx1 dx2

to first order, we deduce that

β · δβ
∫
�

|F |2 dx1 dx2  k2
0n

∫
�

δn|F |2 dx1 dx2,

and thus

δβ  k2
0n

β

∫
�
δnF2 dx1 dx2∫
�
F2 dx1 dx2

.

Now, κ2 is an eigenvalue of the linear problem and ε  n2; hence, n2k2
0−β2 =

κ2, which gives

δβ  k2
0n√

n2k2
0 − κ2

∫
�
δnF2 dx1 dx2∫
�
F2 dx1 dx2

. (20.33)
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Once the functions F and β̃ are determined as indicated before, we turn to
the resolution of Eq. (20.32). Because β̃ β0, we have β̃2−β2

0  2β0( β̃−β0),
and thus we obtain, to first approximation, the equation

∂ Â

∂z
= i(β + δβ − β0) Â.

Because ω  ω0, we write the beginning of the Taylor expansion:

β(ω)  β0 + (ω − ω0)β1 + 1

2
(ω − ω0)2β2,

where

βn = dnβ

dωn

∣∣∣∣
ω=ω0

.

We infer from these equations that

∂ Â

∂z
(z, ω − ω0) = i

[
(ω − ω0)β1 + 1

2
(ω − ω0)2β2 + δβ

]
Â(z, ω − ω0),

and, by applying the inverse Fourier transform, we finally obtain the following
equation for A:

∂A

∂z
= −β1

∂A

∂t
− i

2
β2

∂2A

∂t2
+ iδβA.

The term δβ includes the loss effects of the fiber and of the nonlinearity. We
deduce from the preceding relations, and in particular from Eq. (20.33), that

δβ  γ |A|2 + iα

2
,

where

γ = n2ω0

c Aeff
,

Aeff =
(
∫
�
|F |2dx1 dx2)2∫

�
|F |4 dx1 dx2

,

and where F is the eigenfunction computed; we thus find Aeff once the eigen-
mode F has been determined.

Finally, A is a solution of the equation

∂A

∂z
+ β1

∂A

∂t
+ i

2
β2

∂2A

∂t2
+ α

2
A = iγ |A|2A.
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To conclude, we perform the change of variables z = z′, t = t ′ + β1z′. The
previous equation then becomes, with the primes omitted:

∂A

∂z
+ i

2
β2

∂2A

∂t2
− iγ |A|2A + α

2
A = 0, (20.34)

which is the nonlinear Schrödinger equation.

Remark 20.1: The linear Schrödinger equation (known and studied long be-
fore the NLS equation) consists of Eq. (20.34) with γ = α = 0 and its
analogue in space dimension two or three. The term involving γ is the non-
linear term specific to the present study. This is the term that gives rise to
solitons, γ > 0. The term involving α, α > 0, is a damping term.

20.5. Soliton solutions of the NLS equation

In the absence of damping (α= 0), the nonlinear Schrödinger equation (20.34)
possesses soliton solutions like the KdV equation, namely, waves propagating
without changing their shape along the z axis. We conclude this study by
giving, as in the previous chapter, the expression of the soliton solutions. We
assume, for the sake of simplicity, that β2 = −1 (β2 is negative for physical
reasons) and γ = 1. We observe that we can arrive at these values by a mere
change of scale for A, z, and t .

For these values of β2, γ , and α, it is easy to verify that the following func-
tion is an exact solution of Eq. (20.34) for every value of the real constant b
and of the complex constant a of modulus 1:

A(t, z) = a exp
(

1
2 i z

)
cosh (t − b)

. (20.35)

To go further:
Continuations of Part 4 are numerous: acoustics, general wave phenomena,

soliton theory.
It is worth mentioning, as basic references, the books by Courant and

Hilbert and by Roseau; concerning acoustics and aeroacoustics, see the books
by Goldstein, Lightill, or Rayleigh. The physical or mathematical aspects of
musical sounds are developed in the books by Benade, Fletcher and Rossing,
Roederer, and Sundberg.

As explained in the introduction to the fourth part, solitons, which origi-
nally appeared as a curiosity which could occur in certain channels, turned
out to be a fundamental phenomenon for the propagation of digital signals in
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optic fibers and wave guides. The books by Agrawal, Boyd, and Remoissenet
are examples of basic or advanced books on this very important subject.

Exercises

1. Consider the following weakly dispersive nonlinear wave equation which
appears in the modeling of elastic networks:

u,t t − δ2

LC0
u,xx = δ4

12LC0
u,xxxx +bu,2t t .

We look for a soliton solution u(x, t) = U (x − vt) of this equation.
a) Write the ordinary differential equation satisfied by U .
b) We look for localized solutions of this equation (i.e., such that U and

its derivatives tend to zero at+ and−∞). Show that U is a solution of

(v2 − v2
0)U = bv2U 2 + δ2 v

2
0

12
U,ss .

c) Show that

2bv2

3
U 3 − (v2 − v2

0)U 2 + δ2 v
2
0

12
(U,s )2 = 0.

d) Show that

U 2 = 3(v2 − v2
0)

2bv2
sech2[

√
3(v2 − v2

0)

v0

(x − vt)

δ
]

is a soliton solution of the equation.
2. Consider the following NLS equation which appears in the modeling of

electric networks:

i
∂�

∂t
+ ∂2�

∂ξ 2
+ q|�|2� = 0, q > 0.

We write � in the form � = a(ξ, t)ei[θ (ξ,t)+nt], where a and θ are real
functions and n is a real constant.
a) Write the equations satisfied by a and θ .
b) We look for a solution of the form a = a(ξ − ct) and θ = θ (ξ − ct).
• (i) Show that

a,ss +a[cθs − n − (θ,s )2]+ qa3 = 0,

aθ,ss +2a,s θ,s −ca,s = 0.
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• (ii) Show that

a2(2θ,s −c) = A,

where A is an integration constant, and that

a,ss = (n − c2

4
)a + A2

4a3
− qa3.

• (iii) Show that

(a,s )2 = (n − c2

4
)a2 − A2

4a2
− q

a4

2
+ κ,

where κ is an integration constant, so that

4(a a,s )2 = 4(n − c2

4
)a4 − A2 − 2qa6 + 4κa2.

• (iv) Deduce that S = a2 is a solution of

1

2q
S2,s = E + BS + V 2

mS
2 − S3,

where E = − A2

2q
, B = 4κ

2q
and Vm = 2(n − c2/4)

q
.

• (v) We look for localized solutions (i.e., such that S and its derivatives

vanish at ±∞), so that E = B = 0. Show that S = Vmsech
(√

2q
2 Vms

)
is a solution.

• (vi) Show finally that �=Vmsech

[√
2q
2 Vm(ξ−ct)

]
exp

[
i c2 (ξ−ct)+ int

]
is a solution of the initial equation.



APPENDIX

The partial differential equations
of mechanics

Although we chose to refrain from introducing functional analysis and the
theory of partial differential equations (PDEs) in this book, it is desirable to
have an overview and make a few comments on the tremendously rich and
diverse set of PDEs that we have introduced. In fact, some important PDEs
that we introduced are well understood, whereas others are still at the frontier
of science as far as their mathematical theory is concerned, which deals with
“well-posedness in the sense of Hadamard.” This means existence and unique-
ness of solutions in suitable function spaces and continuous dependence on
the data.

For simplicity, let us restrict ourselves to space dimension two. Several
interesting and important PDEs are of the form

a
∂2u

∂x2
+ b

∂2u

∂x∂y
+ c

∂2u

∂y2
= 0. (A.1)

Here a, b, c may depend on x and y or be constants, and then Eq. (A.1) is
linear; they may depend also on u, ∂u/∂x, and ∂u/∂y, in which case the
equation is nonlinear.

Such an equation is

• elliptic when (where) b2 − 4ac < 0,
• hyperbolic when (where) b2 − 4ac > 0,
• parabolic when (where) b2 − 4ac = 0.

Among the simplest linear equations we have seen already are the elliptic
equation

�u = 0, (A.2)

which appeared in Chapter 8, Section 8.2, and in Chapter 14, Section 14.6,

319
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and the hyperbolic equation

∂2u

∂t2
− ∂2u

∂x2
= 0, (A.3)

(t instead of y), which appeared in Chapter 8, Section 8.4, and throughout
Chapter 17. Finally, we saw also the linear parabolic equation

∂u

∂t
− ∂2u

∂x2
= 0, (A.4)

which corresponds to the heat equation [Eq. (6.6) of Chapter 6] when the
fluid is at rest [in space dimension one, with suitable values of the quantities
appearing in Eq. (6.6) of Chapter 6].

Much more difficult, and still raising many unsolved mathematical prob-
lems are the Navier–Stokes and Euler equations described in Chapters 5 and
7 and corresponding (somehow) to parabolic nonlinear equations.

Even more difficult and barely touched from the mathematical point of
view is the equation of transsonic flows [Eq. (8.13) of Chapter 8], which is a
mixed second-order equation: it is elliptic in the subsonic region, hyperbolic
in the supersonic region, and parabolic on the sonic line M = 1. This equation
is furthermore nonlinear.

Finally, let us recall that still different nonlinear PDEs were introduced in
Chapters 18 and 19, the Korteweg–de Vries and the nonlinear Schrödinger
equations. These are nonlinear wave equations very different from Eqs. (A.1)
to (A.4) and reasonably well understood from the mathematical point of view;
they produce and describe an amazing physical wave phenomenon, the soliton.



Hints for the exercises

CHAPTER 1

1. U = ∂�(a, t, t0)/∂t. Compute U1,U2, and U3 in terms of x1, x2, x3, x =
�(a, t, t0).

2.

1

2
∇|U |2 + (curl U ) ∧U = (U · ∇)U.

3. U = ∂�(a, t, t0)/∂t and x = (x1, x2, x3) = �(a, t, t0) = (�1(a, t, t0),
�2(a, t, t0),�3(a, t, t0)); note that �1∂�1/∂t +�2∂�2/∂t = 0.

4. Note that U1 = −ωx2 and U2 = ωx1 and that x2
1 + x2

2 = a2
1 + a2

2 .
5. Use proper coordinates with a proper choice of the reference frame: e.g.,

if �A, �B �= �0, then choose �A parallel to the first vector of the frame, and �B
in the plane 0x1x2.

7. (i) Note that, if vi = u and v j = 0 when j �= i, then div v = ∂u/∂xi .
(ii) Use (i) for ∂u/∂xi and then sum over i .

(iii) Use (ii).
(iv) Note that div (u ∧ v) = v curl u − u curl v.

CHAPTER 2

1. Use the fundamental law mγ = F .
2. Consider the equations D = {(x, y) ∈ R

2, y ≥ 0 and x2 + y2 ≤ R2} and
use polar coordinates.

3. Write the fundamental law in polar coordinates.
4. Use Green’s formula

∫
∂�

f �nd� = ∫
�
∇ f dx .

321
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CHAPTER 3

1. Compute the eigenvalues and eigenvectors of the matrix (σi j ).
3. Note that

∫
A σi j, jθi dx = −

∫
A σi j∂θi/∂x jdx +

∫
∂A(σ · n) · θd� and show

that
∫
A σi j ∂θi/∂x jdx = 0.

4. In the basis with axes the principal directions, one of the σi j �= 0 and all
the others vanish.

5. Note that the stress tensor has the dimension of a force times a length.
Use the equilibrium relation σi j, j = 0 to compute c1 and c2 in a)(i). Note
finally that the surface density of forces is given by F = σ · n on S0 and
S1.

CHAPTER 4

1. a) Consider for each material point the forces exerted by each spring and
pay attention to the direction of these forces (choose an oriented axis).
For the system consisting of the two material points, the virtual power
theorem is given by Theorem 4.2.

b) Consider, in addition to the forces in a), the action of gravity.
2. We have Pa = Pext + Pint ,Pext =

∫
∂�

(σ · n) · Vd� + ∫
�
f · Vdx and

Pint = −
∫
�
σ ·ε(V )dx, ε(V )i j = 1

2 (Vi, j+Vj,i ). Then, note that σ ·n = F
on �1(σ · n is unknown on �0).

CHAPTER 5

1. γ = ∂2�/∂t2, with x = �(a, t, t0) and U = ∂�/∂t.
2. Note that ωx = � ∧ x , where ω is the rotation tensor.
3. Note that U1 (resp. U2,U3) only depends on (x2, x3) (resp. (x1, x3),

(x1, x2)). Set D13 = f and D23 = g, where f and g only depend on x1

and x2. Show that ∂ f/∂x2 − ∂g/∂x1 = −∂2U2/∂x1∂x3 = ∂2U1/∂x2∂x3,
so that ∂ f/∂x2 − ∂g/∂x1 does not depend on x1 and x2.

4. a) ωx = � ∧ x , with ω = 0 (rotation rate tensor).
b) ∇U = D + ω, DI = −TrD, DI I = 1

2 [Tr (D)2 − Tr (D2)], DI I I =
det D.

CHAPTER 6

1. a) Note that d
p

ρ
= 1

ρ
d p − p

ρ2
dρ.
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b) Note that it follows from (6.12) that

T = ∂e

∂s
and

p

ρ2
= ∂e

∂ρ
.

3. a) Note that σ = −pN and q = 0.

c) Prove that c2 = γ
p

ρ
.

4. a) Combine the conservation of enthalpy and mass equations and of mo-
mentum and mass.

b) Eliminate the velocity in the relation derived in a).
5. If we call vi t and vin the tangential and normal components of the velocity

vi with respect to the shock, then

v1t = V1 cos ε, V1n = V1 sin ε, v2t = V2 cosβ,

v2n = V2, V
2
i = v2

i , i = 1, 2.

CHAPTER 7

1. a) Note that ρ = const., div u = 0, and γi = u jui, j .
b) We have σ D = σ − 1

3 (Trσ )I and εD = ε − 1
3 (Trε)I and note that

u j, j i = (divu),i = 0.
c) P = ∫

�
ργ · vdx,Pext =

∫
�
f · vdx + ∫

∂�
F · vd� and Pint =∫

�
σi j, jvi dx −

∫
∂�

σi j n jvi d�.

2.
dp

dx3
= −ρg, with ρ = p

RT
. Thus,

1

p

dp

dx3
= − g

RT
= f (x3).

3. Differentiate the Euler equation
∂u

∂t
+ u

∂u

∂x
= − 1

ρ

∂p

∂x
with respect to t to

obtain

∂2u

∂t2
+ ∂

∂x
(u

∂u

∂t
) = −k ∂

∂x
(

1

ρ

∂ρ

∂t
).

Then, use the continuity equation
∂ρ

∂t
+ ∂

∂x
(ρu) = 0 and use again the

Euler equation (with p = kρ).

CHAPTER 8

1. a) Check that div U = 0 and that γ is a gradient (since it follows from

the Euler equation that γ = −∇(
P

ρ
+ gx3), 0x3 pointing downwards).

Write γ = 1
2∇U 2+ (curl U )∧U and show that, in cylindrical coordi-

nates, curl U ∧U = −[ψψ ′ + φ

r
(rφ)′]−→r .
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b) Prove that x1dx1 + x2dx2(= 1
2dr

2) = 0 and that x1dx2 − x2dx1 =
φr

ψ
dx3 (where (r, θ, x3) denote the cylindrical coordinates), so that, on

the streamlines, dx3 = (
rψ

φ
)dθ , with

rψ

φ
= Const.

c) Note that, in cylindrical coordinates, Ur = 0,Uθ = φ(r ),U3 = ψ(r ),
so that curl U = (0,−ψ ′(r ), (φ/r )+ φ′). Then,γ +∇(P/ρ + gx3) =
0, with γ = 1

2∇U 2.
2. a) Use polar coordinates (set z = reiθ ).

b) The equation for the streamlines read

r2 + 1

r2 − 1
tan θ = λ,

which gives, in cartesian coordinates,

(x2 + y2 + 1)y = λx(x2 + y2 − 1).

Take then λ = 0 and λ = +∞.
3. At t = 0, the streamlines are given by dy = −dx/ tan(kx). Study the

solutions on ]0, π/k[ and draw the picture.
4. a) Note that

−→
U = ∇� = �′(r )−→e r . Apply Bernoulli’s theorem, with

p = f (ρ) (the gaz being perfect) to obtain f (ρ)/ρ = c(r ).

b) Use the continuity equation and show that div (ρ
−→
U ) = 1

2d(r2ρU )/dr
(use spherical coordinates).

c) Note that r2ρ U = const. Study the variation of the function M �→
r2(M) and show that it has a minimum at M = 1.

5. Apply Bernoulli’s theorem between a point A at the free surface in the
container and a point B at the opening. We have, if h denotes the height
of fluid between the opening and the free surface in the container

v2
B

2g
= h + v2

A

2g
,

and, neglecting vA (since the section of the container is large with respect
to that of the opening), we find vB .

CHAPTER 9

1. a) Show that p0 does not depend on x1 and that dp0/dx2 = −ρ0g(ψ−T∗).
Then, show that κψ ′′ = 0 and deduce that ψ = T1−T0

L x2 + T0.
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b) (i) Note that [(v · ∇)v] · v = viv j,iv j = 1
2vi (v j )2

,i . Then integrate by
parts and use the incompressibility condition. Proceed similarly for (ii),
(iii). Use Green’s formula to integrate by parts and take into account
the incompressibility condition.

c) Use equations (1′) and (3′) and b) to show that

1

2

d

dt

[∫
�

(ρ0|v|2 + cvθ
2)dx

]
= µ

∫
�
�v · vdx + κ

∫
�
�θ · θdx

−cv
∫
�

[
(ρ0g + T1−T0

L )v2θ
]
dx .

Then, integrate by parts.
2. b) We obtain, for k �= 0

−ν4π2|k|2
L2

uk + 2iπk

L
pk = fk, k · uk = 0.

Taking the scalar product of the first equation by k, we find pk thanks
to the incompressibility condition, and the uk then follow.

CHAPTER 10

1. Note that it follows from (10.26) and (10.28) that E = (1/σm)J−µmu∧H .
Insert then this expression into (10.23).

2. a) Multiply by H the equation for H and integrate over �.
b) Use (iv) Exercise 7, Chapter 1.
c) Use (10.24) (with D = 0) and (10.26) (with u = 0).

3. a) See the proof of Kelvin’s theorem (Theorem 8.4).
b) Proceed as in Exercise 2.
c) Proceed as in Exercise 2, b) to show that

dM
dt

= µm

∫
�

(u ∧ H ) · curl Hdx − µm

∫
∂�

[H ∧ (u ∧ H )] · ndσ.

Then use (10.24) (with D = 0) and Exercise 5, (i) and (ii), Chapter 1,
noting that u · n = 0 on ∂�.

CHAPTER 11

1. a) Study the variations of the function f (θ ) = ezθ − αθ . Note that it

reaches its minimum for θ = 1

z
log(

α

z
) and that this minimum is strictly

negative for
α

z
> e.
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b) Note that the equation linearized around θi , i = 1, 2, reads

dθ

dt
= βzθezθ i − σθ,

i.e., noting that ezθ i = αθi ,

dθ

dt
= βα(zθi − 1)θ.

The solution of this equation reads

θ = θ (0)eβα(zθi−1)t .

Then, note that zθ2 − 1 > 0. Keeping the equation in the form

dθ

dt
= β(zezθi − α)θ,

note that zezθi − α < 0

2. a) Make the change of variable x ′ = x/L . Then note that the problem
reduces to

θ ′′ + L2βezθ = 0, 0 < x < 1,

θ (0) = θ (1) = 0.

Multiply the reduced equation by θ ′ and integrate to obtain, noting that
θ ′(1) = 0,

(θ ′)2 = 2L2β

z
(ezθ (1) − ezθ ).

Thus

θ ′ = ±
√

2L2β

z
ezθ (1)

√
1− ez(θ−θ(1)).

Set u = z(θ − θ (1)). Then

du√
1− eu

= ±
√

2L2βzezθ (1) dx .

Integrating, we find∫
du√

1− eu
= ±

√
2L2βzezθ (1) x + c.

Setting v = √1− eu , we have dv = − eudu

2
√

1− u
, so that

du√
1− eu

=

− 2dv

1− vL
. Therefore∫
du√

1− eu
= −2

∫
dv

1− v2
= −

∫ (
1

1− v
+ 1

1+ v

)
dv,
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and

log

∣∣∣∣1− v

1+ v

∣∣∣∣ = ±√2zL2βezθ (1) x + c,

which yields

1− v

1+ v
= ce ±

√
2zL2βezθ (1) x .

Finally, compute c by taking x = 1 and show that

θ (x) = θ (1)− 2

z
log

[
ch

(√
zL2βezθ (1)

2
(x − 1)

)]
.

b) Note that we must have θ (0) = 0 and study the variations of the

function f (x) = −2

z
log

[
ch

(√
zd

2
ezx/2

)]
. We have f ′(x) =

1 −
√
zα

2
ezx/2th

[
ezx/2

√
αz

2

]
. Then note that f ′ is strictly decreas-

ing.

3. a) If Le = 1, then v0(T − qα)′′ + c(T − qα)′ = 0, and one can thus
express α in terms of T.

b) Consider the system linearized around (Tα, 0):

T ′ = p

p′ = 1

v0
(−cp − F ′(Tα)T ).

Then show that the eigenvalues of the matrix(
0 1

−F ′(Tα) − c

κ

)
have opposite signs (note that F ′(T0) < 0)

CHAPTER 13

1. a) Note that, necessarily, χ is of the form

χ =
∫ x2

0
ds

∫ s

0
σ11(x1, ξ )dξ + x2F(x1)+ G(x).

Furthermore, it follows from the equilibrium equations σi j, j = 0 that
σ11,11 = σ22,22. This yields

∂2χ

∂x2
1

= σ22(x1, x2)− σ22(x1, 0)− x2σ22,2(x1, 0)+ x2F
′′(x1)+G ′′(x1).
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Now, since σ11,1 = −σ12,2,

∂2χ

∂x1∂x2
= −σ12(x1, x2)+ σ12(x1, 0)+ F ′(x1).

When specifying F and G, note that σ12,1 = σ22,2. Finally, note that

�(�χ ) = σ11,22 − 2σ12,12 + σ22,11.

b) Show that f is solution of the ordinary differential equation

f ′′′′ − 2ω2 f ′′ + ω4 f = 0,

where ′ = d/dx2.
2. a) The Navier equation reads in that case

(λ+µ)∇(div−→χ0 + div
−→
B +∇χ )+µ(�−→χ0+�

−→
B +�∇χ ) + −→f = 0,

hence the result, −→χ0 being a solution of the Navier equation. Then,

�χ + λ+ µ

λ+ 2µ
div
−→
B = const = a,

and show that�(−→r ·−→B ) = 2 div
−→
B , and, noticing that�(a−→r 2) = 6a,

deduce that

�(χ + λ+ µ

2(λ+ 2µ)
−→r · −→B − a

6
−→r 2) = 0,

so that χ + λ+ µ

2(λ+ 2µ)
−→r · −→B − a

6
−→r 2 is a harmonic function that we

can rewrite as − λ+ µ

2(λ+ 2µ)
−→
B0, with

−→
B0 harmonic.

b) Note that −→χ1 = −→χ0 + b−→r is solution of the Navier equation.
3. The relations σi j, j + fi = 0 yield f = 0.

The Beltrami equations

(1+ ν)�σi j + (Trσ ),i j = 0

then yield (for i = j = 1 and i = j = 3) that k = 0 and ν = −2, which
is impossible since, necessarily, ν ≥ 0.

4. The equilibrium equations σi j, j = 0 yield that (for i = 1 and 3) ∂F/∂x2

and ∂F/∂x1 are independent of x3. Then, note that only the derivatives of F
appear in σ . The Beltrami equations (for i = 1, j = 3, and i = 2, j = 3)
finally yield that �F is affine.
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CHAPTER 14

1. a) The equilibrium equations yield 2A + D + F = 0 and the Beltrami
equations yield 2(1+ ν)(A + B)+ F = 0.

b) Consider a point M with cylindrical coordinates (a cos θ, a sin θ, x3)
on the lateral surface. Thus, −→n = (cos θ, sin θ, 0) and use the relation
T = σn = 0,∀ θ, to obtain

A = B + D

C + Aa2 = 0.

On the base x3 = �, n = (0, 0, 1), and we find

R = ((A + B)a4π

4
+ πa2, 0, 0)

and

M = (0,−(E + F�)
πa4

4
, 0).

We finally obtain 6 equations for the 6 unknowns A,B,C,D,E,
and F.

2. b) Note that εi j = 1+ ν

E
σi j − ν

E
(Trσ )δi j .

c) Note that ε = 1
2 (ui, j + u j,i ).

3. a) In cylindrical coordinates, div u = 1

r

∂

∂r
(rU (r )) and curl u = 0. The

Navier equation then yields, noting that �u = − curl curl u+∇div u,

∇[
1

r

∂

∂r
(rU )] = 0.

b) We have U (r ) = ar

2
+ b

r
. The constitutive law

σ = 2µε + λ(Trε)I,

yields, noting that ε = 1
2 (ui, j + u j,i ) and u = U (r )er , er =( x1

r
,
x2

r
, 0
)
,

σ11 = λa + 2µ

[
U

r
+ ∂

∂r
(
U

r
)
x2

1

r

]
,

σ12 = 2µ
x1x2

r

∂

∂r

(
U

r

)
.
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Consider finally the boundary conditions (see, e.g., Section 14.3) to
find

a = 1

λ+ µ

P2R2
2 − P1R2

1

R2
2 − R2

1

,

d = (P2 − P1)R2
1 R

2
2

2µ(R2
1 − R2

2)
.

CHAPTER 16

1. a) A picture can help. Take, e.g., a = 0, b = 2 and consider the values
ε = 2−n, n ∈ N.

b) Note that
∫ β

α
sin(2π

x

ε
)dx = − ε

2π

[
cos(π

x

ε
)
]β
α
.

c) Note that
∫ b
a f 2

2 dx =
b − a

2
+ ε

8π

[
sin

(
4πa

ε

)
− sin

(
4πb

ε

)]
(use

the relation sin2 y = 1− cos 2y

2
).

CHAPTER 18

2. Set

ũ(x, t) =
{
u(x, t) if x ≥ 0, t ≥ 0,
−u(−x, t) if x ≤ 0, t ≥ 0,

and define ũ0 and ũ1 similarly. Then, consider the equation satisfied by ũ
(for simplicity, assume that ũ0 and ũ1 belong to C2(R)).

3. Consider the “energy”

E(t) = 1

2

∫
�

[(
∂u

∂t

)2

+ |∇u|2
]
dx, 0 ≤ t ≤ T,

and show that
dE
dt
= 0.

4. Set

E(t) = 1

2

∫
B

[(
∂u

∂t

)2

+ |∇u|2
]
dx .
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Use (1.8) in Proposition 1.3 to show that

dE
dt
=

∫
B

∂u

∂t

(
∂2u

∂t2
−�u

)
dx +

∫
∂B

∂u

∂ν

∂u

∂t
d�

−1

2

∫
∂B

[(
∂u

∂t

)2

+ |∇u|2
]
dx .

Then, use the Cauchy-Schwarz inequality to obtain

|∂u
∂ν

∂u

∂t
| ≤ 1

2

(
∂u

∂t

)2

+ 1

2
|∇u|2,

and conclude that
dE
dt
≤ 0. Here, ν denotes the unit outer normal vector

to ∂B.
5. a) ii) Note that the solutions of the characteristic equation

r4 − m4 = 0,

are ±m and ±im.
b) Use the boundary conditions. The solutions of the equation

cos σ chσ = 1 can be written in the form σp, p ∈ N
∗ (a picture can

help: draw, on the same picture, the curves η = cos ξ and η = 1

chξ
),

hence the eigenfrequencies

ωp =
σ 2
p

L2

√
E I

ρ
, p ∈ N

∗.

(Note that ω2 = m4 E I

ρ
= σ 4

L4

E I

ρ
.)

6. In that case, we have u(0, t) = ∂2u

∂x2
(0, t) = u(L , t) = ∂2u

∂x2
(L , t) = 0.

This yields U = B sinmx and the eigenfrequencies are given by σp =
pπ, p ∈ N

∗.

7. In that case, u(0, t) = ∂u

∂x
(0, t) = ∂2u

∂x2
(L , t) = ∂3u

∂x3
(L , t) = 0,∀t ≥ 0,

and we find

U = A [cos σ + chσ )(cosmx − chmx)

+ (sin σ − shσ )(sinmx − shmx)] , chσ cos σ + 1 = 0.
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CHAPTER 19

1. b) Multiplying the first equation in (ii) by θ,s and integrating, we obtain
the second equation. For localized solutions, we have c = 1, and we
obtain, by integration

± s − s0√
1− u2

= ln(tan
θ

4
);

hence

θ = 4 arctan

[
exp

(
± s − s0√

1− u2

)]
.

2. a) Insert the expressions for η and u in the system (with η,x = η,ξ and
η,t = −cη,ξ ) and note that the two equations obtained must be com-
patible.

c) Set η0 = 3(1− α2)

α2
and use b).

3. Proceed as in Exercise 2, a) to show that α = ± 2
√

15
5 , c = ∓

√
15

15 and that
η satisfies the equation

−7

5
η,ξ +1

5
η,ξξξ = 12

5
ηη,ξ ,

and use Exercise 2, b) to show that

η(x, t) = −7

4
sech2(λ(x + x0 − ct)),

u(x1, t) = ∓7
√

15

10
sech2(λ(x + x0 − ct)),

where λ =
√

7
2 .

CHAPTER 20

1. a) Set s = x − vt and note that
∂

∂x
= d

ds
and

∂

∂t
= −v ∂

∂x
.

b) Integrate the equation twice and note that the integration constants
vanish.

c) Multiply the equation in b) by 2dU,s and integrate. Note also that the
integration constant vanishes.
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2. a) Separate the real and imaginary parts to obtain

θ,ξξ −a(θ,t +n)− a(θ,ξ )2 + qa3 = 0,

aθ,ξξ + 2a,ξ θ,ξ +a,t = 0.

b) (i) Set s = ξ − ct.
(ii) Integrate the second equation in (i), then inject the value obtained

for θ,s into the first equation.
(iii) Multiply the equation in (ii) by 2a,s and integrate.
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Index

acceleration 9, 39
Coriolis 40
dynamical momentum 30
dynamical resultant 30
in Eulerian variables 12
quantities of acceleration HVF 30
transport 40

acoustics
linear 134, 271

action and reaction principle 33
adiabatic system 92
Archimedes’ principle 110
asymptotic analysis 155
asymptotic expansion 293
atmosphere 185

chemistry of 193
equations of 185
primitive equations of 188

beam 225, 274
beats 285, 286
Bénard experiment 145, 150
Bénard problem 145, 150
bending 225
Biomechanics 259, 266
Blasius formula 125
boundary conditions 49, 50, 108, 121, 153,

205, 231, 277
Dirichlet 309

boundary layer 152, 154
boundary value problems 207

Cauchy stress tensor 42
Cauchy–Green tensor 72
center of inertia (of mass) 26
chemical kinetics 174

chronology 7
cohesion forces 42
combustion 172, 176, 181
composite materials 255
compression 5
constitutive laws (see also stress–strain laws)

70, 77, 160, 161, 248
nonlinear 248, 255, 260

continuity equation 26
convective derivative 27

deformations 3, 70, 208
rigid 5

density
volumic mass 24

differential operators
in spherical coordinates 195
on the sphere 187

differentiation
of a determinant 18
of a volume integral 18

displacement 4, 5, 72
displacement field 240
duality 235, 237
dynamical momentum 30
dynamical resultant 30

eigenmode, eigenfrequency, eigenfunction (see
also at modes) 283

eigenvalue 309
elasticity 82

coefficients of 201
limit of, criteria for 211, 222, 232
linear 82, 201, 271
nonlinear 82, 240, 248, 249, 251
viscoelasticity 83

339



340 Index

elastic media 82
elastic energy 235
elastostatics 207, 215
electric charge 159
electric field 159, 160, 306
electric induction 159
elongation 5
energy 90

conservation of 98
conservation of equation 92
conservation of principle 92
internal 90
kinetic 29
theorem 235, 240, 248
total 91

energy equation 90
energy functions 235, 253

nonconvex 253
entropy 99, 164
equations

Beltrami 210
Bernoulli 290
Boussinesq 144
compatibility 208
continuity 26
electric field 306
energy 90
equilibrium 49
Euler 105, 303, 320
heat 94
hydrostatic 188
Korteweg–de Vries 289, 295, 320
Laplace 118, 229, 308, 309, 319
linear wave 271, 275, 281
linearization 73, 77, 134, 203,

205, 307
Maxwell 158, 160, 163, 303, 304
Navier 205, 272
Navier–Stokes 80, 320
nondimensional 146
partial differential 319

elliptic 319, 320
hyperbolic 319, 320
parabolic 319, 320

Schrödinger
linear 306, 316
nonlinear 303, 311, 313,
316, 320

shallow water 291
Stefan–Maxwell 178
temperature 94

vorticity 106
water-wave 290

equipotential lines 121
Eulerian derivatives 10
Eulerian variable 201

Fenchel–Legendre transform 250
flame 177
flows

Bénard 145, 150
Couette–Taylor 141
in or around an angle 124
irrotational 117, 120
moving with, set 18, 21
plane irrotational 120
Poiseuille 138
stationary plane 121
stationary or steady 10, 121
transsonic 130

fluids 27, 79
barotropic 80, 107, 113, 187
energy of 114
ideal, invoiscid, or perfect 80, 116
incompressible 27, 105, 290
mechanics of 79, 103
mixtures of 172
Newtonian 80, 103
non-Newtonian 81
statics of 109
viscous 80

forces 30
HVF associated with 31
linear resultant of 31
resulting momentum of 31

frame of reference 7
determination of 40
Galilean 32, 38, 40
non-Galilean 38

fundamental law of dynamics 32
fundamental law of statics 33

general equations of motion 48
Green strain tensor 73

heat 90
heat equation 94
Helicoidal Vector Fields (HVF) 13, 29

associated with forces 31
momentum HVF 29
operation on 15
quantities of acceleration HVF 30
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Henky’s model 251
Hilbert space 280
homogenization 248, 255
hyperelasticity 82, 259

inertia
center of 26

kinetic energy 29
kinetic energy theorem 67
kinematically admissible 240, 253
kinematics 6
Kutta–Jukowski condition 127

Lagrangian derivatives 10
Lagrangian variable 201
Lamé coefficients 201
Laplacian or Laplace equation 118, 229, 308,

309, 319
law

constitutive 70, 77, 160, 161, 248
Faraday’s 160
Fick’s 175
Hooke’s 217
interface 161
Ohm’s 162
Prandt–Reuss 86
stress–strain 77, 201, 245
(see also constitutive laws)

linearization
of boundary conditions 205

linearization principle 205
linearized equation 205, 307

magnetic field 159
magnetic induction 159, 160
magnetohydrodynamics

(MHD) 158, 163
mass

center of 26
motion of 34

concept of 24
conservation of 25, 28, 97

material derivative 27
material points 3, 34, 57
material systems 3
membrane 279
meteorology 113
modes

eigenmodes or normal 277
self-vibrating 277

modulus, moduli
Poisson’s 202
Young’s 202

momentum
angular 29, 36

conservation of, theorem of 32, 36
linear 29

conservation of 97
conservation of, theorem of 32

momentum HVF 29

Navier equation 205, 272
Navier–Stokes equation 80, 320
numbers

Grashof 148
Mach 131
nondimensional 146
Prandtl 148
Rayleigh 148, 150, 151
Reynolds 147, 152

numerical methods 128, 129

ocean 185
chemistry of 193
equations of 185
primitive equations of 192

open boundary 108
optic fibers 304, 312

partial differential equations 319
elliptic 319, 320
hyperbolic 319, 320
parabolic 319, 320

pitot tube 113
plasma 158, 169
plasticity 84, 86, 248

elasto 85
rigid 84, 86
visco 85

Poincaré inequality 149
poisson’s coefficient 202
polarization 303, 304, 309
power

real 57
virtual 57

pressure 80, 219
primitive equations

atmosphere 188
ocean 192

principle
action and reaction 33
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principle (cont.)
Archimedes’ 110
conservation of energy 92
linearization 205
Saint-Venant 217, 225, 233

Rankine–Hugoniot relations 95, 97
reference system 7
regularity assumption 4, 240
rheology 77
rigid body 13, 34, 36, 76

velocity field of 13, 76
rigid wall 108

Saint-Venant principle 217, 225, 233
set moving with the flow 18, 21
shaft 229
shear 6
shock waves 90, 95
similarity 146
singular perturbation 154
sinks 122
soft tissues 259, 266
solid 81
solid mechanics 81, 199
soliton 289, 299, 316, 320
sound pipes 272
sources 122
stability 149
statically admissible 240, 253
Stefan–Maxwell equation 178
stream functions 120
stream lines 9, 121
stress vector 45

continuity of 49
stress–strain laws (see also constitutive laws)

77, 201, 245
stress tensor 42, 240

Cauchy 42
string (or cord) (see also or vibrating cord

vibration) 274, 277

temperature 94, 164
temperature equation 94
theorem

Bernoulli’s 116, 118
energy 235, 240, 248
Kelvin’s 116, 118
kinetic energy 67
Lagrange’s 116, 119
virtual power 59, 66, 245, 246

thermodynamics 90, 91, 99
first law of 92
second law of 80, 99

thermohydraulics 144
tensor

Cauchy–Green 72
deformation 70, 72
deformation rate 70, 75
Green strain 73
inertia 37
linearized deformation 73
Piola-Kirchhoff 52, 259

Tokamak machine 159, 165, 169
torsion 229
trajectory 8
Tresca criterion 212, 217
turbulence 148, 151, 251

Smagorinsky model of 251

variational formulations 235, 243, 246
velocity 8, 39, 76

of sound 107
virtual 58, 245

rigidifying a partition 62
rigidifying a system 59

velocity potential 120
Venturi device 111
vibrating cord 273, 277, 282, 285
vibrating membrane 279, 283, 274
vibration 272
virtual power theorem 59, 66, 245,

246
von Mises criterion 212, 217, 252
vorticity 106

equation for 106
vortex

singular point 123

wave 271
frequency of 285
packets of 286
phase of 285
superposition of 285

wave equation
linear 271, 272, 281
nonlinear (see also, equations Korteweg-de

Vries and Schrödinger) 320
wave guides 303
wavelength 285

Young’s modulus 202


