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Preface

The aim of this book is to provide an introduction to operational calculus and related
topics: integral transforms of functions and generalized functions. This book is a cross be-
tween a textbook for students of mathematics, physics and engineering and a monograph on
this subject. It is well known that integral transforms, operational calculus and generalized
functions are the backbone of many branches of pure and applied mathematics. Although
centuries old, these subjects are still under intensive development because they are useful in
various problems of mathematics and other disciplines. This stimulates continuous interest
in research in this field.

Chapter 1 deals with integral transforms (of functions), historically the first method to
justify Oliver Heaviside’s (algebraic) operational calculus in the first quarter of the twentieth
century. Methods connected with the use of integral transforms have gained wide acceptance
in mathematical analysis. They have been sucessfully applied to the solution of differential
and integral equations, the study of special functions, the evaluation of integrals and the
summation of series.

The sections deal with conditions for the existence of the integral transforms in consider-
ation, inversion formulas, operational rules, as for example, differentiation rule, integration
rules and especially the definition of a convolution f * g of two functions f and g, such that

for the transform ¥ it holds that

T[f *g] = T([f]- Fg].

Sometimes applications are given. Because of the special nature of this book some extensive
proofs are only sketched. The reader interested in more detail is referred for example to the
textbooks of R.V. Churchill [CH.2], L.W. Sneddon [Sn.2], and A.H. Zemanian [Ze.1]. Short
versions of many integral transforms can be found in A.I. Zayed’s handbook Function and

Generalized Function Transformations [Za]. For tables of integral transforms we refer to
[EMOT], [0.1]-[0.3], [OB], [OH], and [PBM], vol. IV, V.

In this book we deal only with integral transforms for R! - functions. The reader interested
in the multidimensional case is referred to [BGPV].

In Chapter 2 (algebraic) operational calculus is considered. This complete return to
the original operator point of view of Heaviside’s operational calculus was done by Jan
Mikusiniski; see [Mi.7]. He provided a strict operator basis without any references to the
theory of the Laplace transform. His theory of convolution quotients provides a clear and

simple basis for an operational calculus. In contrast to the definition of the multiplication
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xii

of functions f and g, continuous on [0, c0) given by J. Mikusiriski,

(1) (f * g)(t /‘f ot — 2) da,

in Chapter 2 functions with a continuous derivative on [0, 00) are considered and the mul-

tiplication is defined by means of

¢l Ueo =4 [ 1@t -2)dr

Both definitions have advantages and disadvantages. Some formulas are simpler in the one
case, otherwise in the case of definition (2). In the case of definition (2) the #-product of

two functions constant on [0, 00),

f(Q?) =a, g(l‘) =b, ze€ [O’OO)

equals a function h with h(xz) = ab, =z € [0,00), such that the *-product of two numbers
equals their usual product. In the case of definition (1) this product equals abt. In both
cases the field of operators generated by the original space of functions is the same; the
field of Mikusinski operators. For our version of the starting point we refer to L. Berg,
[Be.1] and [DP]. After an introduction a proof of Titchmarsh’s theorem is given. Then the
operator calculus is derived and the basis of the analysis of operators is developed. Finally,
applications to the solution of ordinary and partial differential equations are given.

Chapter 3 consists of the theory of generalized functions. Various investigations have been
put forward in the middle of the last century. The mathematical problems encountered are
twofold: first, to find an analytical interpretation for the operations performed and to justify
these operations in terms of the interpretation and, second, to provide an adequate theory
of Dirac’s, §-function, which is frequently used in physics. This “function” is often defined
by means of

+00
) =0, 220, [ 8@ e(w)ds = p(0),
—o0

for an arbitrary continuous function ¢. It was introduced by the English physicist Paul
Dirac in his quantum mechanics in 1927; see [Dir]. It was soon pointed out that from the
purely mathematical point of view this definition is meaningless. It was of course clear to
Dirac himself that the d-function is not a function in the classical meaning and, what is
important, that it operates as an operator (more precisely as a functional), that related to
each continuous function ¢ its value at the point zero, ¢(0); see Laurent Schwartz [S.2].
Similar to the case of operational calculus of Chapter 2, J. Mikusinski together with R.
Sikorski developed an elementary approach to generalized functions, a so-called sequential
approach; see [MiS.1] and [AMS]. They did not use results of functional analysis, but only

basic results of algebra and analysis. In Chapter 3 we follow this same line.
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Preface xiii

Because this book is not a monograph, the reference list at the end of the book is not
complete.

We assume that the reader is familiar with the elements of the theory of algebra and
analysis. We also assume a knowledge of the standard theorems on the interchange of limit
processes. Some knowledge of Lebesgue integration, such Fubini’s theorem, is necessary
because integrals are understood as Lebesgue integrals. Finally, the reader should be famil-
iar with the basic subject matter of a one-semester course in the theory of functions of a
complex variable, including the theory of residues. Formulas for special functions are taken
from textbooks on special functions, such as [E.1], [PBM] vols. I-III, [NU], and [Le].

The advantage of this book is that both the analytical and algebraic aspects of opera-
tional calculus are considered equally valuable. We hope that the most important topics
of this book may be of interest to mathematicians and physicists interested in application-
relevant questions; scientists and engineers working outside of the field of mathematics
who apply mathematical methods in other disciplines, such as electrical engineering; and
undergraduate- and graduate-level students researching a wide range of applications in di-
verse areas of science and technology.

The idea for this book began in December 1994 during A.P. Prudnikov’s visit to the
Mathematical Institute of the Friedrich Schiller University in Jena, Germany. The work
was envisioned as the culmination of a lengthy collaboration. Unfortunately, Dr. Prudnikov
passed away on January 10, 1999. After some consideration, we decided to finish our joint
work in his memory. This was somewhat difficult because Dr. Prudnikov’s work is very
extensive and is only available in Russian. We were forced to be selective. We hope that

our efforts accurately reflect and respect the memory of our colleague.

Hans-Juergen Glaeske and Krystyna A. Skornik
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Chapter 1

Integral Transforms

1.1 Introduction to Operational Calculus

In the nineteenth century mathematicians developed a “symbolic calculus,” a system of
rules for calculation with the operator of differentiation D := %.

The papers of Oliver Heaviside (1850-1925) were instrumental in promoting operational
calculus methods. Heaviside applied his calculus in the solution of differential equations,
especially in the theory of electricity. He had a brilliant feel for operator calculus, but
because he did not consider the conditions for the validity of his calculations his results
were sometimes wrong. Heaviside published his results in some papers about operators
in mathematical physics in 1892-1894 and also in his books Electrical Papers (1892) and
Electromagnetic Theory (1899); see [H.1]-[H.3].

Heaviside used the operator D and calculated with D in an algebraic manner, defining

k. dk

D=1, DF.=—
b dtk?

k e N,

where I is the identity. This method seems to be clear because of the following rules of

calculus
D(cf)(t)=cDf(t) (1.1.1)
D(f+9)(t)=Df(t) + Dy(t), (1.1.2)
DF(D'f)(t) = D" f(t), k,1€N,. (1.1.3)

If one replaces derivatives in differential equations by means of the operator D, then there
certain functions of D appear. Because of (1.1.1) through (1.1.3) it is easy to understand

the meaning of P, (D), where P, is a polynomial of degree n € N,. Because of

fom =52 o - 5 02
n=0

= P f(1)

one can interpret the operator e”” as the translation operator:

PP f(t) = f(t+h).
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2 Integral Transforms

According to the rules of algebra one has to define D~! := & as

DYf(t) = [ f(r)dr.
/

Example 1.1.1 Look for a solution of
Y (t) +y(t) =2 (1.1.4)
The solution of this first-order linear differential equation is well known as
y(t) = ce ™t 4 (1 — 2t +2), (1.1.5)

with some arbitrary constant c¢. By means of the operator D, equation (1.1.4) can be

rewritten as

(1+ D)y =t
and therefore,
1
y(t) = =D t2. (1.1.6)

There are various interpretations of H%' Quite formally one has, for example,

1
- —1—-D+D?=...
1+D +DTF

and applying the right-hand side to (1.1.6) one has
y(t) =t* — 2t +2;

this is the solution (1.1.5) of (1.1.4) with y(0) = 2. On the other hand one can write

1 1 1 1

= =— -+
1+D D(1+%> D D2

Interpreting

o = p(ps):  ken

as k-time integration of f from 0 to t we obtain from (1.1.6)

3 4 o
t)= — — —— PR e
v =3 -33t3 5T
[ A
] L ———j:m} 22t 2
ol 1 a3 + +

=2 '+ 12— 2 +2,

and this is the solution (1.1.5) of (1.1.4) with y(0) = 0. So depending on the interpretation

of the expression one obtains different solutions of (1.1.4). In this manner one can

1
1+D’
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Introduction to Operational Calculus 3

develop an elementary legitimate calculus for the solution of linear ordinary differential

equations with constant coefficients. Let us look for a solution of

Lyyl(t) :== y(n) (t) + aly(nfl)(t) + o any(t) = h(t)
ag e]R, ]{):O,]_7 ,n, (117)

with the initial value conditions

y(0) =y (0) =--- =y D(0) = 0. (1.1.8)

Setting L, (D) = D" +ay D"~ + .-+ a, one has

or

For the interpretation of ﬁ we start with L1(D) = D. Then we have the equation

Dy=h
and .
y(t) = %h(t) = /h(T)dT. (1.1.9)
0

In the case of L1(D) = D — X we have (D — X))y = h or
eAtD(e#‘ty) =(D—-X\Ny=h.

Therefore,
D(efvy@ﬁ::efﬂh@%

and according to (1.1.9),

y(t) = e)‘t/ef)‘Th(T)dT = ——h(t) (1.1.10)
0

Similarly one can perform the case of a polynomial L,,(\) with a degree n > 1 and n zeros
Aj, J=1,2,---,n, where \y # X\j if i # j. Then

Ln(A) = A= A)(A = A2) - (A= An),

and
1A n Ay P A,
LN A=A A— X X —
with
1
A = k=12
k i ()\k;)’ k) ,
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4 Integral Transforms

From (1.1.7) we obtain, applying (1.1.10)

t

= Z h(t) = ZAkeAkt/e*Wh (1.1.11)
k=1

k=1 = 0

One can easily verify that (1.1.11) is the solution of (1.1.7) with vanishing initial values
(1.1.8).

This method can also be extended to polynomials L, with multiple zeros.

Problems arose applying this method to partial differential equations. Then one has to
“translate” for example functions of the type D"~%/2, n e N or e=*VD_ Heaviside gave
a translation rule for such functions in the so-called “Expansion Theorem.” The solutions
often took the form of asymptotic series, often better suited for applications than conver-
gent series. Sometimes incorrect results appeared because conditions for the validity were
missing. In Heaviside’s opinion:

“It is better to learn the nature of and the application of the expansion theorem by actual
experience and practice.”

There were various attempts to justify Heaviside’s quite formal operational methods. At
the beginning of the twentieth century mathematicians such as Wagner (1916), Bromwich
(1916), Carson (1922), and Doetsch used a combination of algebraic and analytic methods.
They used two different spaces: A space of originals f and a space of images F', connected

with the so-called Laplace transform (see section 1.4)

o0

F(p) = £[f](p) = / cTiWd,  peC, (11.12)

0

provided that the integral exists. Integrating by part one has

L[f'l(p) = pF(p) — f(0). (1.1.13)

This formula can be extended to higher derivatives. So Heaviside’s “mystique” multiplica-
tion with the operator D is replaced by the multiplication of the image F' with the complex
variable p. From (1.1.13) we see that nonvannishing initial values also can be taken into
consideration. In the space of images the methods of the theory of functions of a complex
variable can be used. Of course one needs a formula for the transform of the images into
the space of originals. This is explained in section 1.4. The disadvantage of this method
is that it is a mixture of analysis and algebra. Because of the convergence of the integral
(1.1.12) quite unnatural restrictions appear. So, for example, E[etQ] does not exist, and
Dirac’s § also cannot be included in this theory. Nevertheless, the Laplace transform was
used and is still used today in many applications in electrotechnics, physics, and engineer-

ing. In the following, similar to the Laplace transform, many other integral transforms are
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Integral Transforms — Introductory Remarks 5

investigated and constructed for the solution of linear differential equations with respect to
special differential operators of first or second order.

A radical return to the algebraic methods was given by J. Mikusinski. His theory is free
of the convergence-restrictions of integral transforms, and Dirac’s § appears as a special
operator of the field of Mikusiniski operators. This is explained in Chapter 2.

Chapter 3 introduces spaces of generalized functions. Their elements have derivatives of
arbitrary order and infinite series can be differentiated term-wise. Moreover, they include
subspaces of “ordinary” functions. They are linear spaces in which a multiplication of its

Wy ”

elements, called convolution “+” is defined, such that, for example,
(D"6)x f=D"f

is valid. So one again has an operational calculus for the solution of linear differential

equations with constant coefficients.

1.2 Integral Transforms — Introductory Remarks

In Chapter 1 we deal with (one-dimensional) linear integral transforms. These are map-

pings of the form
b
Flz) = T[f](z) = / FIOK (x, 8)dt. (1.2.1)

Here K is some given kernel, f : R — C is the original function and F' is the image of f
under the transform ¥. Sometimes x belongs to an interval on the real line, sometimes it
belongs to a domain in the complex plane C. In these cases the transform ¥ is called a
continuous transform; see sections 1.3 through 1.9. If the domain of definition of the images
F is a subset of the set of integers Z the transform % is sometimes called discrete, sometimes
finite; see section 1.10. We prefer the latter. Sometimes the variable of the images appears
in the kernel as an index of a special function. Yakubovich [Ya] called these transforms
index transforms. Index transforms can be continuous transforms (see sections 1.8.3 and
1.9) or finite transforms (see section 1.10).

In the following chapters we deal with transforms of interest for applications in mathemat-
ical physics, engineering, and mathematics. The kernels K (x,t) “fall down from heaven,”
since otherwise the sections would become too voluminous. The kernels can be determined
by means of the differential operators in which one is interested. For example, to find a

kernel for the operator D with Df = f’ on Ry one has

FIDA@ = [ FOR @ 0d = FOK @0~ [ 105K w0
0 0
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6 Integral Transforms

To obtain a kernel K such that the operation of differentiation is transformed into multi-

plication with the variables of images one can choose

0
aK(w, t) = —xK(z,t)

and

tLH(I)1+K(I’t) =1, lim K(z,t) =0.

t——+oo
A special solution is
K(z,t)=e " axtecR,,

and so we derived the kernel of the Laplace transform (1.1.12), with the differentiation rule
(1.1.13). This transform is considered in detail in section 1.4.
Another problem is as follows: Let u(z,y) be a solution of the Laplace equation on the

upper half plane
Dou(x,Y) = Uge (2, Y) + Uyy(z,y) =0, reR,yeRy (1.2.2)
with the boundary conditions
u(x,0) = e**, &, xeR, (1.2.3)
\w\,zl;iin—koo u(z,y) = 0. (1.2.4)

One can easily verify that
u(x,y) = etér—l€ly

is a solution of the problem. To solve the problem under a more general condition than
(1.2.3)

u(z,0) = f(x) (1.2.5)

one can choose the superposition principle since A5 is a linear differential operator. This
leads to the attempt to set

o0

u(x,y) = / F(g)es Evag (1.2.6)
for some function F. Condition (1.2.5) yields
flz) = / F(§)e'*"dg, x €R. (1.2.7)

This is an integral equation for the function F and the solution leads to an integral transform

F =<[f]. (1.2.8)
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Integral Transforms — Introductory Remarks 7

The formulas (1.2.8) and (1.2.7) are a pair consisting of an integral transform and its
inversion. In this special example we have the Fourier transform, investigated in section
1.3.

Readers interested in the derivation of the kernel of an integral transform are referred to
Sneddon [Sn.2], Churchill [Ch.2], and especially to [AKV].

The sections that follow start with the definition of a transform, conditions of the exis-
tence, inversion formulas and operational rules for the application of the transforms, such
as differentiation rules considered in the examples above. A convolution theorem plays an

important part. Here a relation f,g — f * g has to be defined such that

T[f = g] = T([f] - Tg].

All these operational rules are derived under relatively simple conditions, since in applica-
tions one has to use the rules in the sense of Heaviside; see section 1.1. One applies the
rule, not taking note of the conditions of their validity (pure formally), and afterward one
has to verify the result and state the conditions under which the formally derived solution
solves this problem. Here often the conditions are much less restrictive than the set of
conditions for the validity of the operational rules that have been used for the calculation

of the solution.

Remark 1.2.1 For every transformation there is a special definition of the convolution.
Because there are few unique signs “«” sometimes the same sign is used for different trans-
forms and therefore for different convolutions. In this case this sign is valid for the transform
discussed in the section under consideration. If in such a section the convolution of another

transform is used, then we will make additional remarks.

Notations. In the following, N is the set of natural numbers N = {1,2/3 ---},
N, = NU {0}, Z is the set of integers, Q the field of rational numbers, R the field of
real numbers, R, the set of positive real numbers, Ry = R, U {0}, and C is the set of
complex numbers. All other notations are defined, when they first appear; see also the

“List of Symbols” at the beginning of this volume.
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8 Integral Transforms

1.3 The Fourier Transform

1.3.1 Definition and Basic Properties

Definition 1.3.1 The Fourier transform (FT) of a function f : R — C is the function f
defined by

oo

P =FNm = [ s rer (13.1)
provided that the integral exists.

Remark 1.3.2 Instead of the kernel e~ sometimes '™, e=2™7t  (271)~1/2e%7t gre cho-

sen and in certain instances these kernels are more convenient.

Remark 1.3.3 The convergence of the integral (1.3.1) can be considered in a different
manner: As pointwise convergence, as uniformely convergence, in the sense of the principal

value of Cauchy, in the sense of L,—spaces or others.

We consider the Fourier transform in the space
Li(R) = Ly ={f : f measurable on R, Ifl: = / |f()|dt < oo}

The space Ly is obviously suited as the space of originals for the Fourier transform. The

Fourier transforms of Ly —functions are proved to belong to the space

C(R)=C={f:f continuous on R, | £l = sup | f(t)] < oo}
teR

Theorem 1.3.1 Let f € Ly, then f* = F[f] € C. The FT is a continuous linear transfor-

mation, t.e.,

Flaf + Bg]l = af + 89", a,8€C, fgely (1.3.2)

and if a sequence (frn)nen s convergent with the limit f in Ly then the sequence (f1)nen

of their Fourier transforms is convergent with the limit f" in C.

Proof. We have

@< [ Iride= 111,
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The Fourier Transform 9

and, therefore, there exists || f"|| = sup,cg |f(7)]. If h € R and T > 0 then

= POl [l e

T T [e'e)
s/wwmﬁumwua /u@w+/umw <e,
_ — OO T

T

since |e~""* — 1| becomes arbitrarily small if || is sufficient small and the last two integrals

become arbitrary small if T' is sufficiently large. As such we have f* € C. The FT is

obviously linear. From
I = fall = Sléﬁl(f — ) (DI < f = fall
we obtain the continuity of the F'T. I

Example 1.3.2 If f € Ly then f" € C, but the image f" must not belong to L. Let

(1) = {1’ =1

0, [t] > 1.

Then f € Ly, but
1

M) = /e_”tdt =27 tsinT
21

does not belong to L1. But there holds
Theorem 1.3.2 Let f € Ly. Then (1) = F[f](7) tends to zero as T tends to +oo.

Proof.

Step 1. Let f be the characteristic function of an interval [a,b], —co0 < a < b < o0, i.e.,

1, t € la,b]

J(t) = X () = {0, teR\ [a,b].

Then we have

and f(7) tends to zero as T — +oo.

Step 2. Let f be a “simple function,” i.e.,

f(t):ZQjX[aj,bj], a; €C, j7=1,2,...,n,
j=1
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10 Integral Transforms

where the intervals [a;, b;] are disjointed. Then

and f*(7) tends also to zero as 7 — Foo.
Step 3. The set of simple functions are dense in L;. Therefore, for every € > 0 there

exists a simple function f, such that

If = folls </2,

and there exists a number 7" > 0 such that
1f2(7)] < /2, IT|>T

according to step 2.

Therefore,
A= = fo) 7)) + 2O <N = fo) MO+ 115 (7)]
<|\f = follh + 12 ()] <g+g:5
if |7 >T. 0

Remark 1.3.4 Not every function g, continuous on R, uniformly bounded with g(7) — 0
as T — 00 is an image of an Li—function f under the F'T. One can prove that the function

g which is defined by means of

g(T){l/logT, T>e

T/e, 0<r<e

and g(—7) = —g(7), is not a FT of a function f € Ly (see [Ob.], pp. 22-24).
Remark 1.3.5 Let C, be the Banach space
CoR)=Co={f:f€C: lim f(r)=0}
T—*o00
Then because of Remark 1.3.4 we have:
Theorem 1.3.3 The FT is a continuous linear mapping of L1 into C,.
Finally we obtain by straightforward calculation:

Proposition 1.3.1 If f is even (respectively odd), then f" is even (respectively odd) and

we have

A7) = P () =2 / F(t) cos rtdt (1.3.3)
0
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The Fourier Transform 11

and

A =1)=—f"(r 2z/f t) sin Ttdt. (1.3.4)
0

The integrals in (1.3.3) respectively (1.3.4) are called the Fourier—cosine respectively

Fourier—sine transform:

Felfl(r) = /f(t) cos Ttdt, 7>0 (1.3.5)
0

Flf)(r) = / F(t)sinrtdt, >0, (1.3.6)
0

1.3.2 Examples

Example 1.3.3 Let 1, be Heaviside’s step function:

1 ift >0
14(t) = 1.3.7
+®) {0 if t < 0. (1.3.7)
Then we obtain
sinT't
FLT = thl(r) =2——, T >0. (1.3.8)

Example 1.3.4 Let o > 0. Then we have

/6 a|t|+z7’t]dt / (a— zT)t —(a—i—ir)t]dt: 1 _ 4 1 _ 2
—0o0 0

oa—it  a+it 12402’

i.e.,
2
Fle—ol)(r) = Waoﬂ a>0. (1.3.9)
Example 1.3.5 Using the Fresnel integral
/ ¢ dx = /memi/4 (1.3.10)
(see [PBM], vol. I, 2.3.15, 2) we obtain
0o b 0
/ eit2—i7tdt _ Em / i(t—3)2—1i72 dt = ¢ —is2 / eindx — \/7?6—%(7'2—77)7
—0oQ ' —a — 00
i.e.,
Fle)(r) = Vae 3™, (1.3.11)
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12 Integral Transforms

Remark 1.3.6 The original exp(it?) does not belong to Ly. So one should not wonder that
the right-hand side of (1.3.11) tends not to zero as T tends to foo.

Example 1.3.6 Let o > 0. Then we have

oo o0
f[e_a2t2}7 =a! / e~ (FHEN gy = gl T /407 / e (e +30) 4y
—00 — o0
iT /20400
—q e /e / e dz.
—oo+iT/2c

By means of the theory of residues one can easily prove that the integral on the right-hand

side is equal to

/ e dr = N
Therefore we have
Fle-o*?)(r) = Y=/ 45 (1.3.12)

«

Example 1.3.7 Now we are going to prove that
Flt[P~1)(r) = 2cos mp/2T(p)| 7|77, 0<p<l. (1.3.13)
For the proof of formula (1.3.13) we consider the function

fiz— 2P tem % O<p<l, a>0, 0<arg(z) <m/2.

Figure 1
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If £ is the closed contour of Figure 1 by means of the theorem of residues we have

j{:f(z)z:O:/f(z)dz+/Rf(x)dx+/f(z)dz—z’/Rf(z'y)dy.
£ c Lo £

The integrals on £1 respectively £o tend to zero as e — 40 respectively R — +oo. Therefore,

we have
oo oo
e”p/g/yp_le_iaydy = /xp_le_”dm = a PT(p)
0 0

by means of the integral representation of the Gamma function. Furthermore, we obtain

0 00
e—ﬂ'ip/2 / |y|p—le—io¢ydy _ e—ﬂ'ip/2/yp—leiay dy — a—pl-\(p)
e 0

because this is the conjugate complex value of the upper integral and the result is real-valued.
Adding the last two formulas and substituting y — t, « — 7 leads to the result (1.3.13).

Analogously taking the difference of the last two formulas we obtain by means of 1.5.1,
Proposition 1.3.1:

Flt|P~ sgn t)(1) = —2isinmp/2 T(p)|r| Psgn T, 0<p<l (1.3.14)

For many examples of Fourier transforms we refer to the tables [0.1], [EMOT], vol. I

1.3.3 Operational Properties

For the application of the F'T' we need certain operational properties. By straightforward

calculation we obtain:

Proposition 1.3.2 Let f € L1, a,be R, b#0. Then

FIf(t = a)l(r) = e " f (1) (1.3.15)
Fle fO)(r) = [ (7 —a) (1.3.16)
FIF®O)(r) = [bI 7 f (7 /D). (1.3.17)

For the application on differential equations the F'T of derivatives is of interest. Let as
usual

C*={f:f k— times continuous differentiable on R}, k€ N.

Then the following holds:
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14 Integral Transforms
Proposition 1.3.3 Let f € L1 NCY, f' € L1. Then we have
Ff(r) = it f (7). (1.3.18)

Proof. From f € C! we know

0= 10+ [ F@)ds
0

Since f’ € Ly there exists the limit of the right-hand side as ¢ tends to +o0c. Therefore, f(t)

tends to zero as t tends to +o00. So we obtain
FIN = [ PO = o) e R virg (o).

From the consideration above we conclude that the first expression on the right-hand side
is zero.

By complete induction we obtain I

Corollary 1.3.1 Let f € CF, D’f € Ly, j=0,1,...,k, k € N. Then
FID*f)(r) = (i1)" f"(7) (1.3.19)
and

)=o), 71— £ (1.3.20)

Remark 1.3.7 Analogous to formula (1.3.18) one can derive differentation rules for the
Fourier cosine and Fourier sine transform, defined by 1.3.1., (1.3.18), and (1.3.19),

Felfl(r) = 7F[f1 = £(0)
FlfUr) = =1 Fel (7).
For the proof see [Ch.2], 140, (2), and (1).
The differentiation rule is the basis for operational calculus with respect to the operator
—iD (respectively D = d/dt). Tt can be used for the solution of linear differential equations

with respect to this operator; see 1.3.5, Example 1.3.5. A differentiation rule in the space

of images is the following:
Proposition 1.3.4 Let f,tf € L. Then there exists Df" and
DfN1) = Fl—itf(t)](7). (1.3.21)

Proof. From f,tf € L, we see that the F'T of f and of ¢ f converge absolutely and uniform-
ly with respect to 7 and therefore one can interchange differentiation and integration of the
FT of f. I
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Corollary 1.3.2 Let t/f € Ly, j=0,1,....k, k € N. Then there exist D* f" and

DF M) = Fl(—it)* f(0)](7). (1.3.22)
Remark 1.3.8 Analogously one can derive formulas for the Fourier cosine and the Fourier
sine transform; see [Ch. 2], 140, (1.3.19), and (1.3.18), namely,

DF.[f1(7) = Fs[—tf()](7), D =d/dr,
DF[fI(r) = FeltFD))(7).
Conversely, one can easily prove rules for the F'T of integrals in the domain of originals

and of images.

t
Proposition 1.3.5 Let f € L1 NC, [ f(x)dz € Ly. Then we have
o

t

F /f(x)dz (1) = (iT) " (7). (1.3.23)

0

¢
Proof. Let ¢ : t — [ f(z)dz. Then ¢ fulfills the requirements of Proposition 1.3.3 and

o

therefore from (1.3.18) we get

FlN(r) = f2(r) = it (7).

By means of Fubini’s theorem we obtain a rule for the integration in the domain of images.

I

Proposition 1.3.6 Let f € Ly. Then we have

t o ity 1
Aa)yde=i | S fy)dy (1.3.24)
or
FA) = iD / iy_l Fy)dy. (1.3.25)

Finally we would like to derive some product formulas. From f,g € L1 we get f(¢t)g(7) €
L (R x R). Using

[f(Bg(m)e™ T = f()g(7)]

and Fubini’s theorem we have:
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16 Integral Transforms

Proposition 1.3.7 If f,g € L1, then f"g, fg" € L1 and

/fA T)dT = /f (1.3.26)

Now we are going to define a “product” of two originals such that its F'T yields the

product of the Fourier transforms of the two originals.

Definition 1.3.2 Let f,g : R — C. Then as the (Fourier) convolution f*g of f and g we
define

/ f(z)g(t —x)d (1.3.27)

provided that the integral exists (in some sense).

Theorem 1.3.4 (Convolution Theorem) Let f,g € L. Then fxg € Ly. The convolu-

tion is commutative, associative, and

1+ gl < If11ullgll- (1.3.28)

For the F'T it holds that
(fro) =F-g". (1.3.29)

oo
Proof. For every z € R we have gl = [ |g(t — z)|dt. Therefore,

111 ||g||1—/\f |/|gt—x|dtdx—//\f ot — )\dtda
/7“ e sz [ 107000 = 15l

by means of Fubini’s theorem and this yields the first part of Theorem 1.3.4. Furthermore,

again by means of Fubini’s theorem,

(f*g)" / /f g(t —x)dx | e ldt = /f 7 (t — x)e "dtdx
/ fa / ey = / fla ’”dmf()”ydy

= fA(T) g™ (7).
The commutativity and the associativity of the convolution can be proved by straightfor-

ward calculation. Another proof can be performed by use of the F'T', but then Theorem 1.3.7

is necessary. I
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1.3.4 The Inversion Formula

An inversion formula can easily be proved for piecewise smooth L;-functions.

Theorem 1.3.5 Let f € Ly, piecewise smooth in each interval [a,b] C R. Then we have
for every tp € R

(oo}

(27) 1 /BitOTfA(T)dT ) f(to), Zf f c?ntznu?us at ty
(Af)(to), 4f f discontinuous at to,

where
(Af)(to) = 31f(to +0) — (1o~ O) (1.3.30)

is the arithmetical mean value of the right-sided and of the left-sided limit of f at ty and the
integral has to be understood in the sense of Cauchy’s principal value (PV') in the second

case.

Proof.  'We follow the lines of a proof of J. Koekock, [Koe]. We choose tg = 0. If ty # 0 we

choose instead of f the function
Jo(t) = f(t+to).

Using Proposition 1.3.2, we have f\(7) = e'*e7 f/(7) and therefore

(2m) 7 fr(r)etterdr = (2m) ™! 7 fo(r)dr = (2m)~" 7 fo(r)etrdr

Case 1: f continuous at t =0, f(0) = 0.
By the mean value theorem we have as well in a right-sided neighborhood as in a left-sided

neighborhood of the origin
f(t) =tf (vt), 0<d<1.

Therefore, the function g(¢) = f(¢)/t belongs to L. Setting

b

I (t) = (2m) 7t / fAN(r)ettTdr, a,b>0,

—a

we obtain by means of Fubini’s theorem

2 I f7(0) = / /b /OO f®)e "tatdr = 7 f(t) /b e tdrdt

oo

=i [ g™ - et =ilg®) - g"(~a)).

—00
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18 Integral Transforms

Since g € Ly the right-hand side tends to zero as a, b tend to infinity and this is the statement
of the theorem in the case of ty =0, f(0) =0, f continuous at the origin.
Case 2: f(0—) =p, f(0+) = q (p = q is allowed!).
We consider the function h defined by
¢ - t<0
h (t) _ {pe s oo <t <

get, 0<t<oo.

The function ¢ with ¢ = f — h fulfills the assumptions of case 1 and therefore we have

lim I2f7(0) = lim I’h"(0). (%)
a,b—o0 a,b—o0
But
00 0 1
rNT) =q / e~ tA+IT) gy +p / et gt = ——p+qg+ilp—q)7]
1+ 72
0 —00

It follows that

b

bEAY “1f 1A _DPp+tgq a-p L0y
I5RN0) = (2) / W\(r)dr = == (arctg (a) + (arctg (b)) + 5 log(l T )

—a

If ¢ = p we obtain
lim I°h"(0) = p.

a,b— o0

If ¢ # p we have to choose b = a (principal value) and get

lim 1% B (0) = %.
This completes the proof of Theorem 1.3.5 because of (x). I

Corollary 1.3.3 Let f € L1 NC, piecewise smooth in each interval [a,b] C R. Then it
holds that

f(t):(%)fl/fA(T)e“TdT:f’l[fA}(t) (1.3.31)

Remark 1.3.9 The integral in (1.3.31) is called the inverse FT of .

Remark 1.3.10 If (1.3.31) is fulfilled then we have

FHME) = @2m) L F(-1) (1.3.32)
FIF(=0)](r) = 2m)F{f)(7) (1.3.33)
Flf)(r) = 22 FHf](=7). (1.3.34)
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Because of the last property the tables of Fourier transforms contain only the Fourier trans-
forms f" of originals f and not conversely the originals of given Fourier transforms f/.

So from section 1.3.2, Example 1.3.3, we obtain

[sin at

p” } (1) = §1+(a —|7), a>0. (1.3.35)

Remark 1.3.11 One can prove that the inversion formula (1.3.31) holds if f € L1 NC,
fN € Ly and it holds a.e. if f, f € Li. Of course under these conditions the proof is not
so simple. In [SW] it is proved that from f € Ly, f continuous at zero and f" > 0 it follows
that f € L1 and, therefore, (1.3.31) holds a.e.

Remark 1.3.12 Combining the convolution theorem, Theorem 1.3.4, with the inversion
formula (1.3.31) and Remark 1.3.11, we obtain

frg=F[f 9"
provided that f,g, f* € Ly.
Remark 1.3.13 If f,g € L1 such that f*,g" € L1 we have
(f g™ =2nF 7 " x g" = (F) (™) = @eF ) @rF ™)
and applying the F'T' on both sides we get
fhxgh =2m(fg)".

Remark 1.3.14 Analogously one can derive inversion formulas for the Fourier—cosine and
for the Fourier—sine transforms (1.3.33) and (1.3.34):

™

2 yi 2
fla) = FIUFSI@) = = /fc[f](T) costrdr = —F[F[f]I(t)
0
and -
2
/ Flflr)sintrdr = 2 F[FLF0)
0
see [Ch. 2] 139, (3) and 138, (3).
Another inversion formula for Li-functions is given in the following

Theorem 1.3.6 Let f € L1. Then a.e. on R it holds that

eitT —1
dr, D =d/dt, (1.3.36)

iT

f0 =50 [ 1)
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the integral has to be understood in the sense of the Cauchy principal value.

Proof. For every t € R the function 7 — (i7)~!(e’” — 1) belongs to Cy. Since the Fourier

integral (1.3.30) is uniformly convergent by means of Fubini’s theorem we have

1 T i+ 1 ) T i+
A e -1 e -1 —i'rw
— — drd
) JRICSIY oy -
~r

(1.3.37)
= / f(@)Kp(t,x)drdx.

The kernel Kr(t,z) is continuous and bounded on R? for every T > 0, since

T T
1 elTlt=e) _gmite pmir(t-w) _ gite 1 [ sin(t —z)7 +sin7tz
— - - dr = — dr
o iT T T
0 0

and
1, t>x>0

Thrf Kr(t,z) =10, O<t<z and z<t<0 (1.3.38)
-1, t<a<0.
Therefore, we have
|f(2)Kr(t,x)| < M|f(x)], T >0, (t,r) € R

By means of the Lebesgue theorem of dominated convergence the limit 7" — 400 may be

performed under the z-integral:

T—+oco T—+o00

lim 7 F(@)Kr(t,x)da = 7 fz) lim Kp(t,z)d j fla (1.3.39)
e’} —00 0

where formula (1.3.38) was used. From f € L; we know that the right-hand side of formula
(1.3.39) has a.e. a derivative and this derivative is f(¢). This is formula (1.3.36). I

From (1.3.39) we conclude a uniqueness property.

Theorem 1.3.7 Let f € Li. Then from f" =0 it follows that f =0 a.e.
Corollary 1.3.4 Let f,g € L1. Then from f* = g” it follows that f = g a.e.

Remark 1.3.15 If f € L1 NC then the supplement “a.e.” in Theorem 1.53.7 and in Corol-
lary 1.3.4 can be omitted.
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1.3.5 Applications

Now we consider some applications of the F'T' to the theory of special functions, integral
equations, and partial differential equations. The method is the following: The problems
are formulated in some space of originals. Then the problems are transformed by means of
the integral transformation under consideration, here the F'T', into the space of images. The
transformed problem is solved if it is easier to handle than in the original space. Finally
the solution is transformed into the original space by means of the inversion formula, tables
or other rules of operational calculus of the F'T. In every case the rules of the operational
calculus are used quite formally. It is not proved if the conditions of the validity of the rules
are fulfilled. At the end one has to consider if the result is really a solution of the original
problem and under which conditions it is a solution. These conditions are often proved to

be less strong than the conditions for the validity of the rules of operational calculus.

Example 1.3.8 Let h,, be the Hermite functions
ha(t) = e U2H,(t), neNg (1.3.40)
where H,, are the Hermite polynomials
Ho(t) = (-1)"" D" ",  neN,. (1.3.41)
One can easily prove that
Dhy () = —thy (t) + 2nh,_1(t) (1.3.42)

and

his1(t) = 2th (t) — 2nhn_1 (t). (1.3.43)

By means of complete induction one can easily prove
H, (iD)e™/2 = (=i)"hn (b).

Using the differentiation rule of the FT in the space of images, see 1.8.3, Corollary 1.3.2

in the form
FIE"f0))(7) = @D)"f"(7)

we obtain with f(t) =e /2
Flhn)(r) = Ha(iD)Fle™"?)(7).
and by use of 1.3.2, Example 1.3.6, and (1.3.11) we have

Flha)(r) = V2rH,(i D)e™™ /2 = V2 (—i)"hn (1),
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i.e.,

Flha)(7) = V21(=i)" b (7). (1.3.44)

Result. The Hermite functions h,, are the eigenfunctions of the operator F of the FT
with respect to the eigenvalues A, = v/2m (—i)™.

Example 1.3.9 By means of a simple example we would like to illustrate the evaluation of

definite integrals using F'T-technique. Let us consider the integral

7 dt
I(a, B) = / RSOk o, 3> 0.

By means of formula (1.3.9) and f(t) = e~ g(t) = e7Pll we obtain f (1) = 2,
g T) = %%2 and the convolution theorem in the form 1.3.4, Remark 1.3.12, specialized

for the case t =0, i.e.,

[ g =2n [ sz
leads to
a,b) = (2a8)"Ir [ e~@+Dlelgy = (af) i [ e@Prgp = T
Ia,t) = 2ap) x| dr = (o) / o=

Example 1.3.10 Now we consider linear differential equations with constant coefficients:
Px(t) = h(t), (1.3.45)

where

P=P(D)=a,D" +a, D" ' +---+a; D+ ao,

with a; € C, 5 =0,1,...,n and D = d/dt. Applying the FT to (1.3.45) by means of the
differentiation rule (1.3.18) we have

P(it)z" (1) = (7).
The image x"(T) of the solution z(t) we are looking for is

2(r) = 5= = Q(r)h" (1),

where Q(1) = 1/P(i1). If there exists ¢ = F1[Q] then we obtain a solution of (1.3.45) in
the form

z(t) = (g h)(t).
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If, for example,
P(D) = —D?* 4 a?, a >0,

then
Qr) = :
[y
and by means of formula (1.3.8) we have
1
t) = — —alt|
q(t) = 5-e™",

such that a solution of (1.3.45) in this special case is given by

oo

u(t) = % / h(x)e~*t=ldz,

— 00

provided that h € C is bounded.

Example 1.3.11 We are going to solve Volterra integral equations of the first kind and of

convolutional type
oo

/ k(t — z)u(x)dx = f(t) z €R, (1.3.46)

— 00
where k and f are given functions. Quite formally by means of the convolution theorem,
Theorem 1.8.4, we obtain

k/\uA — f/\
or

u = Rf", R=1/k". (1.3.47)

If R is the FT of a function r, R = v, resp. r = FL1/k"] we get the solution u of

(1.3.46) by means of the convolution theorem:
u=rx*f. (1.3.48)

Often r does not ezist, because, for example, if k € Ly then k"(7) tends to zero as T — +o00

and therefore 1/k” (1) is not bounded. But if it happens that there exists some n € N such

i

that there exists

or

then from (1.3.47) it follows that

u (1) = [(ir)" 2 (7)]m" (7).
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From the differentiation rule 1.5.3, Corollary 1.3.1 we have
u=(D"f)*m. (1.3.49)

Let us consider for example k(t) = [t|71/2, i.e.,
/ it — 2|~ 2u(z)dz = f(2). (1.3.50)
— 0o

From 1.3.2, Example 1.53.7 we have
ENT) = V2r|r| Y2,

Therefore F~1[1/k] does not exist. But by means of (1.3.14) and (1.3.34) we get

m(t)=F ! LT];\(T)} (t) = —\/2.2?.7:71 [|7‘|71/259ﬂ7'} (t) = ;—;|t|71/25gnt

and by means of (1.3.49) we obtain
O A WP )
x x
t

— 00

One easily can prove that (1.3.51) is a solution of equation (1.3.50) provided that f € LiNC?,
fle L.

Example 1.3.12 Now we are going to solve the Cauchy problem for the wave equation on

the real line, i.e., we are looking for the solution u(x,t) of the wave equation
gy (2,1) — ug(x,t) =0, z,teR, >0

with the initial value conditions

u(z,0) = ug(z), ut(x,0) = up (),
with given functions ug,uy. By means of the F'T' with respect to x

u (€, t) = Flu(- )](€)
we have with 1.3.3, Corollary 1.3.1
uy(€,1) + (a€)* u(€,1) = 0.

The solution of this ordinary differential equation is well known:

u™(€,t) = A(E) cos aét + B(€) sin aét.
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The transformation of the initial value conditions leads to
u™(€,0) = up (&) = A(¢)
up (€,0) = uy'(§) = a€B(§).

In all three steps we assume that the Fourier transform and the limit processes (differentia-
tion with respect to t, t — 0) can be interchanged. So we obtain for the FT of the solution
under consideration R

uf (§)

u™(€,t) = ul (&) cos alt + “af sin at.

Expressing the trigonometrical functions by the exponential function and using the inversion
formula (1.3.31) we have

oo

(@, ) = %{% / b (€) |:ei§(w+at) n ei&(w—at)}dg}

—00

1 1 7 Ui\ (g) & (z+at) i€(xz—at)
*oatan | i T - e ag)

From the inversion formula (1.3.31), and the integration rule, Proposition 1.5.5, we have

z+at
w(a t) = % [uo(z + at) + up(x — at)] + (2a)~! / wn (€)de. (1.3.52)

z—at

This is the well-known d’Alembert solution of the Cauchy problem.
If ug € C?, uy € C! the formula (1.3.52) is the classical solution of the Cauchy problem.
The existence of the FT and all other conditions for the operational rules used above are

not necessary in the final form (1.3.52) of the solution!

Example 1.3.13 Now we are going to solve the Dirichlet problem of the Laplace equation
for the upper half-plane, i.e., the solution of

Uz (T, ) + Uyy(2,y) =0, ,yeER, y>0

under the conditions

u(z, 0) = uy(z), reR
u(z,y) =0 if 2?2 +y* — +oo, y > 0.

Denoting the F'T' with respect to x by

u”(§,y) = Flu(,9)|(€)

again with 1.3.3, Corollary 1.3.1 our problem is transformed into the ordinary differential
equation
ug/;\y(é-a y) - 5211,(5, y) =0
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and the conditions

UA(§7 O) = uO(g)
u(&y) =0 if y— +oo.

The solution of the ordinary differential equation is
W (& y) = Al + Bge .

Because of the behavior as y — 400 we conclude that A(§) = 0. From the boundary
condition on y = 0 we have B(§) = ul)(£). Therefore,

u" (€ y) = up (e,
By means of the convolution theorem, section 1.3.3, Theorem 1.3.4 we have
u(@,y) = uo(x) * F~H e V) (x),

Making use of 1.3.2, Example 1.3.4 this yields

. 1y
u(x,y)fuo(x)* ng_'_yga
i.e.,
] uo(?)
)y =L [ g 1.3.53
) = L [ (135)

One can verify that (1.3.53) is the classical solution of the Dirichlet problem, provided that
ug € L1 NC is bounded.

Example 1.3.14 Now we consider the Cauchy problem for the heat conduction on the real

line. We look for the solution of the heat equation:
ug(x,t) — a*uge (x,t) = 0, z,teR, t>0

with the initial condition

w(z,0) = uy(x), z € R.

As usual we consider the F'T with respect to x. By means of the differentiation rule 1.3.3,

Corollary 1.3.1 we obtain
up (&) + (ag)*u”(&,1) = 0
and

u”(§,0) = ug (§)-

The solution of this initial value problem is

uNE,t) = ud (€)e (O
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and the convolution theorem, section 1.3.3, Theorem 1.3.4, leads to
u(w,t) = (ug * F e (7)) (z).

By means of 1.3.2, Example 1.3.6 we obtain

u(z,t) = (dmwa’t)~1/? / uo(y)ef(zfy)Q/‘m%dy. (1.3.54)
It can be proved that (1.3.54) is the classical solution of the Cauchy problem if u, € L1 NC

or if ug is continuous and bounded on R.

1.4 The Laplace Transform
1.4.1 Definition and Basic Properties

The application of the F'T is restricted to a relatively poor class of functions. Polynomials,
exponential functions, for example, cannot be transformed. One possibility is to extend the
domain of originals to distributions (see Chapter 3).

Another possibility is to change the kernel of the transformation in such a manner that
the integral converges for a larger class of functions. For example, one can consider the

integral
o0

/ (F(H)e="Ne=i™dt, o €R. (1.4.1)
—o0
This leads to the two-sided or bilateral Laplace transform (see section 1.4.7). In applications
there often appear functions f(t), which vanish for ¢ < 0. Then we obtain the one-sided or

unilateral Laplace transform. Putting p = o + i7 € C we obtain the following definition.

Definition 1.4.3 The (one-sided) Laplace transform (LT) of a function f : Ry — C is the
function F' defined by

F(o) = £111(0) = [ f0e (142)
0
provided that the integral exists.

Definition 1.4.4 As the space of originals of the LT we consider the space E, of functions
f:R—=C, fe L), and that there exists a number a € R such that f € Li(Ry;e™)
and f(t) vanishes if t < 0, equipped with the norm

o0

1fls, = / e~ (1))t (1.4.3)

0
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Remark 1.4.16 Originals are sometimes written by means of the Heaviside function as
14 () f(t). We usually omit the factor 14(t) and we assume that originals f have the
property f(t) =0 fort < 0. So in concrete cases we give only the formula for f(t) if t > 0.

Remark 1.4.17 Functions f € L'*°(R.) with the property
|f(t)] < Me™, t>T>0

(functions of exponential growth) belong to Eqtc, € > 0, arbitrary.

Remark 1.4.18 Sometimes instead of the LT (1.4.2) the Laplace—Carson transform

LC[f](p) = pF(p)

is considered (see, for example, [DP]). In this notation some formulas become more simple.

Remark 1.4.19 The advantage of the LT is that the images are functions of a complex
variable and so the method of the theory of functions can be used in the space of images.

The Laplace transforms appear to be analytic functions in some half-plane.

Theorem 1.4.8 Let f € E,. Then the Laplace integral (1.4.2) is absolutely and uniformly
convergent on H, = {p : p € C, Re(p) > a}. The LT F is bounded on H, and it is an
analytic function on H, = {p:p € C, Re(p) > a} and it holds that

DF(p) = (-D)FL fF)](p),  kEN (1.4.4)
Furthermore, it is a linear transformation, i.e.,

Llof + Byl = aF + G, a,B€C, f,g€ Eq.

Proof. Let 0 = Re(p) > a. Then for every v € Ry we have

oo

/|e"’tf(t)|dt < /e_’”|f(t)|dt< o,
0

0

because of Definition 1.4.4. Therefore, the Laplace integral (1.4.2) is absolutely and uniform-
ly convergent on H,. From

oo oo

F(p)| < / et f()|dt < / e~ £ (1) dt < o0

0 0

we see that F(p) is bounded on H,. Since

v

/ e PLE(t) dt

0
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is an entire function the Laplace transform

v

F(p) = lim /e*ptf(t)dt

v——+00
0

is analytical on the interior of the domain of convergence, i.e., on H,.

Now let € € Ry, arbitrarily, and p € H,4.. Because of
[tf(t)e ™| < e | f(t)|te™=" < et | f(t)]

one can differentiate (1.4.2) under the integral sign and we obtain
d
DE(p) = [ f)g e dt = —LItF#)](p).
0

By induction we have formula (1.4.4). The linearity of the LT is obviously true. I
If f € E, then e7® f(t) € L; and together with Theorem 1.4.8 we have the following
connection between the F'T and the LT.

Corollary 1.4.5 Let f € E,, then for o > a we have
L[f)(p) = Fle=" fF(0))(7). (1.45)
By means of this connection and section 1.3.4, Corollary 1.3.4 we obtain immediately
Theorem 1.4.9 Let f € E,, g € Ey and ¢ = max(a,b). If

F(p) = G(p), p € He,

then f(t) = g(t) a.e.

The number a in Definition 1.4.4 is not uniquely determined. Therefore, one can define

oo

Oqe = inf{o: /e“’t|f(t)|dt < oo} (1.4.6)

0

0ac 18 called the abscissa of absolute convergence.

Proposition 1.4.8 L[f](p) is (absolutely) convergent on H,, , it is not (absolutely) con-

ac?

vergent on R\ H,, .

Proof. Let 0 > 04.. Then there exists a number ¢’ € (04, 0) such that

oo

/e"’,t|f(t)|dt < .

0
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From Theorem 1.4.8 we conclude that L[f](p) is absolutely convergent on H,,_.

It 0 < 04c and 0" € (0,04.) and L[f](p) absolutely convergent then from Theorem 1.4.8
we have that L[f](p") is also absolutely convergent and this is a contradiction to the defi-
nition (1.4.6) of oge. I

Remark 1.4.20 The domain of absolute convergence of a Laplace integral (1.4.2) is H,

Oac

or H,, ..

Example 1.4.15 Let f(t) = —=. Then o,. = 0 and the half-plane of absolute convergence

1+t2 -
18 Ho.

Example 1.4.16 Let f(t) = 1. Then oqc = 0 but the half-plane of absolute convergence is

o0
Hy since [ |e™"7|dt is divergent.
0

Remark 1.4.21 The Laplace transform F(p) of a function f is defined only in a half-plane.
By analytical continuation one can sometimes obtain a larger domain of definition for the
image F'. Relations in the image domain proved for some half-plane are then also true in

this larger domain.

Remark 1.4.22 Instead of the investigation of the absolute convergence of the Laplace
integral (1.4.2) one can consider its ordinary convergence. Similar to the case of the absolute
convergence one can prove: If the Laplace integral (1.4.2) is convergent for p = p1, then it
converges in the half-plane H,,, One defines an abscissa of convergence o. by means of

oo

o. = inf{o : /e*"tf(t)dt finite}. (1.4.7)

0

The domain of convergence is the half-plane H, . Obviously 0. < 4. and the case 0, < 04

is possible (see, for example, [Doe. 3], p. 29. Analogous to the asymptotic behavior of the
FT f™(7) of L1-functions as T tends to +oo (see 1.8.1, Theorem 1.3.2) one can prove:

Theorem 1.4.10 Let f € E,. Then F(p) = L[f](p) tends to zero as p tends to co in the
half-plane H,.

Proof. Let 0 < u <wv. Then

F(p) = (/u+/v+7>e‘mf(t)dt.

Let ¢ € Ry arbitrarily. Then the absolute value of the first integral becomes less than &/3

as u is sufficiently small (¢ € R;). The absolute value of the third integral becomes less

© 2006 by Taylor & Francis Group, LLC



The Laplace Transform 31

than £/3 as v is sufficiently large (since the LT is absolutely and uniformly convergent on

H,). Now let ¢ > 0¢ > max(a,0). Then for the second integral we have

/e*ptf(t)dt < e*”0“/|f(t)|dt <e/3

u

and therefore |F(p)| < € in the half-plane H,,. I

Remark 1.4.23 The functions sinp and p®, o € R, for example, cannot be Laplace trans-
forms of originals of some space E,. The function e™P also cannot be a Laplace transform
of a function of E,, although it tends to zero as o tends to £oo, since it does not tend to

zero as T tends to oo, o > a, fized.

From Theorem 1.4.10 we obtain immediately:

Corollary 1.4.6 Let f € E, and F(p) = L[f](p) analytical at p = co. Then F(c0) = 0.

1.4.2 Examples

In the following examples let A\, v be complex parameters.

Example 1.4.17 From

we obtain
L[e)‘t](p) = —, o > Re(\) = oqe. (1.4.8)

Example 1.4.18 By means of the linearity of the LT we obtain by means of

Lo —1 : L. —i
cos)\tzg(e)‘u—e M, sm)\tza(eM—e A

and formula (1.4.8) by straightforward calculation

p
and \
L[sin At](p) = pE VL o > |[Im(\)| = oge. (1.4.10)

Example 1.4.19 Now we are going to calculate the LT of the function f(t) = t*,
Re(X) > —1. For p > o and substituting st = x we obtain

/e*ptt/\dt =p 1 /e*%c’\dx =T\ +1)p 1,
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where the Gamma function is defined by

[(z) = /e‘ttz_ldt, Re(z) > 0. (1.4.11)

By means of analytical continuation we have

'(A+1)
A = = —
L[t (p) = AT 0 >0 =04, Re(N) > —1. (1.4.12)
Especially for A =n € Ny we have
n n!
L[t"](p) = oo 0> 0=0u (1.4.13)

Example 1.4.20 Using formula (1.3.12) we obtain, substituting t = u?,

oo oo

1 2 2 1 2
L|—=coszvt = 7/67;)” cos zudu = — / e P e Uy,
s () = 2 !

o — 00

6_12/4177 pEeR,.
By means of analytical continuation with respect to p we get

L |:7Ti/£ cosx\/i] (p) = \/77?1)6_902/41)’ p € Hy. (1.4.14)

Example 1.4.21 Now we are going to evaluate the LT of the image (1.4.14). Preparing

the calculation we prove first that

/U_Qe(%_”)zdv = g, aeR;. (1.4.15)
0

The proof runs as follows. Substituting a/u = v we obtain

o0 o0
/ef(%fu)zdu: oz/vﬂe*(”*%)zdv.
0 0
We then obtain
2/6_(%_“)2du = /(1 + %)6_(%_")2% = / e dw = /7,
v

where we substituted ¢ —v = w. This is formula (1.4.15). Now let x,p > 0. Substituting
x/2v/t = u we have

N ER PRy )
0

\/E Tt
oo
= —e xﬁ/uﬁe*(%*“) du = e VP /\/p,
s
0
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where formula (1.4.15) with o = \/px/2 was used. If x < 0 then we have to set || instead

of x. So we have proved

1 1
L [\/Ee_zz/‘lt] (p) = %e_lg”l\/ﬁ, x €R, p € Hy, (1.4.16)

where analytical continuation with respect to p was performed. For a list of Laplace trans-
forms and inverse Laplace numbers we refer to the tables [PBM], vol. IV, V, [EMOT], vol.
I and [OB].

1.4.3 Operational Properties

In the following we assume that the originals belong to E, such that their Laplace trans-
form converges absolutely in the half-plane H,. So we obtain the following three rules by

straightforward calculation.

Proposition 1.4.9 (Shifting Rule) Let tg > 0. Then we have

LIf(t—to)](p) = "PF(p), o>a (1.4.17)
Proposition 1.4.10 (Similarity Rule) Let ¢ > 0. Then it holds that

L[f(ct)](p) = 1F(?) o> ca. (1.4.18)

Cc C

Proposition 1.4.11 (Damping Rule) Let p € C. Then we have
Ll f(O)(p) = Fp+ 1), o >a— Re(p). (1.4.19)

Example 1.4.22 From 1.4.2, Example 1.4.19 and using the Damping Rule (1.4.19) we

obtain immediately

T(A+1)
(p — p) 1’

Proposition 1.4.12 (Multiplication Rule) Let n € Ng. Then we have

Lt (p) = Re()\) > —1, 0 > Re(p). (1.4.20)

LI(=)"f®O](p) = D"F(p),  o>a. (1.4.21)
For the proof we remark that this rule is only part of 1.4.1, Theorem 1.4.8.

Proposition 1.4.13 (Division Rule) Let f(t)/t € E,. Then it holds that

CHELFO] () = / Fwdu o> a. (1.4.22)
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Proof. Putting L[t~ f(t)](p) = ¢(p) from Proposition 1.4.12 we obtain

L[f]=-D¢p=F
and therefore o
o) = [ Flaydu-+ o0m).

Let pg — oco. Then from Theorem 1.4.10 we know that ¢(pg) — 0. Therefore, we arrive at
formula (1.4.22). I

Example 1.4.23 If the integrals in (1.4.22) converge if p = 0, then we obtain

f(t
/%dt: F(p)dp
So, for example,
T sint T . T dp oo
[ Trde= [ gty = [ = et =7
] o o
i.e.,
sint us
—dt = —. 1.4.2
[ 5= (1.423)
o
Example 1.4.24 From
—1/2 —zv/u 2 9 —z\/u 2 —x\/p
U e duy = —— —(e )du:fe P x>0
x ) Ou x
o p
and formula 1.4.2, (1.4.16) we have
1 . g2 2 —
L [ﬁt 3/2¢ Mt] (p) = e VP, x € R4, p € H,p. (1.4.24)

Now we are going to prove two product formulas. By means of the definition of the Laplace

transform and of Fubini’s theorem the proof is straightforward.

Proposition 1.4.14 Let g € Ey and F = L[f] be defined and bounded on Hy. It then holds

that N _
/ f)G(t)dt = / F(t)g(t)dt.

Now we are going to formulate the convolution theorem for the LT. Since functions of

E, vanish on the negative real axis the convolution (1.3.27) has the form

¢
(fxg)(t f(x)g(t — x)dz. (1.4.25)
-] o
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Theorem 1.4.11 (Convolution Theorem) Let f € E,, g € E,. Then fxg € E,,

¢ = max (a,b). Furthermore, we have

and the convolution is commutative and assoctative and it holds that

gl (1.4.26)

L[f*gl(p) = F(p)G(p),  pE€ He. (1.4.27)

Proof. Making use of Fubini’s theorem and of the substitution y =t — x we have

oo o

1l gl = / ¢~ f (z) d / ~00)g(y)|dy > /\f |/ ~e(at) |g(y) | dyda

/|f |/ gt — ) |dtdx—/_Ct |f(x)g(t — x)|dxdt

> /e’“l(f*g)(t)\dt: 17 *glls.
0
where the double integral was considered as a two-dimensional integral on the second octant
{0<z<o0, 2<t<oo}={0<z<t 0<t< oo} of the (x,t)-plane. Therefore, (1.4.26)
holds.

For the LT we obtain again by virtue of Fubini’s theorem

Ll * 9l / fa / e Mgl ~ a)dtds = [ P F@)Gp) = FIG()
0
Here in the first integral (0,00) was used as the interval of integration because g(t — x)
vanishes if x > ¢ and then the shifting rule (1.4.17) was applied. So formula (1.4.27) is
proved. Taking the LT of fxg resp. (f+*g)+h we conclude by means of 1.4.1, Theorem 1.4.9
that the convolution is commutative and also associative. I

Next we consider two applications.

Example 1.4.25 Let

t Tn x3 T2
t) = /dm"/dxn_l.../darg/f(xl)dajl. (1.4.28)
0 0 0 0

Then this can be written as
n times

——
I,(t)=f*1s1%---x1.

The convolution theorem leads to
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Therefore, we obtain

L(t) = (nil)!/f(x)(t—x)"_lda:. (1.4.29)
0

Example 1.4.26 Let B(u,v) be Euler’s first integral or Beta function, defined by

1
71— z) e, Re(u), Re(v) > 0
0/ (), Re(v) (1.4.30)
— (tu—l " tv_l)tzl-
By means of 1.4.2, formula (1.4.12) we obtain

I'(w)l(v)

£l W) = —

)

where T is Euler’s Gamma function; see equation (1.4.12). Again making use of formula

(1.4.12) (in the opposite direction) we have
I'(w)l(v)

(xufl * {Evil)(t) _ F(u - U) tu+v71’
and for t =1 we have
I'(uw)l
B(u,v) = Im (1.4.31)

Now we will derive rules for the LT of the primitive and of the derivative of a function.

Proposition 1.4.15 (Integration Rule) Let f€ E, and p(t fo x)dx. Then p€ E.,
where c =a if a € Ry and c = e € Ry, arbitrarily if a < 0 and it holds that

/f(ac)da; (p) =p 'F(p), o > max(0,a). (1.4.32)
Proof. From ¢ =1« f and applying the convolution theorem we obtain formula (1.4.32).
Since 1 € E, for arbitrary € € Ry from Remark 1.4.16 we obtain the rest. I

Proposition 1.4.16 (Differentiation Rule) Let f € E, and let there exist Df € E, on
[0,00). Then it holds that

L[Df](p) = pF(p) — f(40), o > max(0, a). (1.4.33)

Proof.  Because of f(t) — f(0+) = [ f'(u)du and Proposition 1.4.15 we get

o o

LI — F(HO)](p) = %E[f’] (p) = F(p) — p~ ' £(04),

and this is formula (1.4.33). I
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Corollary 1.4.7 If there exists f*) € E, on [0,00), k = 0,1,...,n, then it holds for
o > max(0,a), that

LID" fl(p) = p"F(p) = p" = f(0+) = p" 2 f'(+0) --- = 7D (+0). (1.4.34)

Remark 1.4.24 One can prove that if f(t) is n-time differentiable on Ry and L[f™)](p)
converges in a real point p = o9 > 0, then L[f] also converges in the point o,, the
limits f*)(04), k = 0,1,...,n — 1 exist and (1.4.34) holds for ¢ > oo and L[f*](p),
k=0,1,...,n—1 converge absolutely on H,, (see [Doe.3], Th. 9.3).

1.4.4 The Complex Inversion Formula

The connection between the FT and the LT, see 1.4.1 Corollary 1.4.5, allows us very
easily to derive an inversion formula for the LT. If f € E, is a original of the LT which
is piecewice smooth in every interval [a,b] C [0,00), then e 9t f(t) € Ly for every o > a

and one can use formula (1.4.5) and the inversion theorem, Theorem 1.3.5, of the F'T. We

obtain -
1 .
e T f(t) = 5 / F(o +it)e"dr

if f is continuous in the point ¢. Otherwise we obtain e~7*Ay(¢), where the integral has
to be chosen as the Cauchy PV. Substituting p = o + i7 leads to the complex inversion

formula
ft) = QLﬂ'Z /F(p)etpdp = L7YF)(t), c>a (1.4.35)
(e)
in points of continuity, where the path (c¢) of integration is the vertical line from ¢ — ico to

¢+ ico. L1 is called the inverse LT. So we have:

Theorem 1.4.12 Let f € E, be smooth on every interval (a,b) C Ry. Then in points t
of continuity the complex inversion formula (1.4.35) holds. In points of discontinuity the
integral in (1.4.35) represents the arithmetical mean of the left-sided and right-sided limit
of f in the point t, and the integral in this case has to be taken as Cauchy’s PV .

Now we are going to derive the inversion formula (1.4.35) under conditions on the image
F. Not every function F analytical on a half-plane H, is an image of a function f € E,
(see 1.4.1, Remark 1.4.23). But we have

Theorem 1.4.13 Let F(p) be analytic on a half-plane H, and let F(p) — 0, |p| — oo,
p € Hg, uniformly with respect to arg(p). Furthermore, let

ﬂﬂM@<w (1.4.36)
©
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for every ¢ > a. Then F is the Laplace transform of a function f € Eqyc, € > 0, arbitrarily,

and f is continuous on R.

Proof.

j____
|
|
|
I
|
|
|

A N—

R o TR SPRYEI S AP B ST S SYRYE I S

— T =G
IH C C
1, 8 SR :r ______ .
Figure 2
Step 1. We have
ctiy v v
‘ / e’ F(p) dp‘ = e / e"TF(c+ir) dr‘ = e / |F(c+iT)|dr.
cif e s

As 8,7 — +oo the latter integral is convergent and therefore the integral in formula (1.4.35)
is absolutely convergent and defines a function f. Since the integral in (1.4.35) because of
(1.4.36) is uniformly convergent with respect to ¢, if one separates the factor e, the function
f is continuous. The value f(t) does not depend on the number ¢ > a. For the proof from

Figure 2 we obtain

¢ —if c'+i'y c+iy c—if3
OZ%eptf(t)dtZ / ce / ce / +/
7 c—if3 c'—if c'+iy c+iy

As 3,7 — 400 the integrals on the horizontal segments vanish according to our assumptions
and therefore
/eptF(p)dp = / e’ F(p)dp. (1.4.37)
(©) (¢")
If ¢ < 0 then the integral on the right-hand side of formula (1.4.37) tends to zero as
¢’ — 400 and therefore we conclude that f(t) =0,¢ < 0.
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Step 2. From step 1 we have for each ¢ > a
£O1 < @07t [ Fle-+in)|dr = Me,

i.e., for every € € R} we have

/e—(a—i-e)tlf(t)'dt < M/e—(a+e—c)tdt
0 0

and this is convergent, since we can choose ¢ € [a,a + €). Therefore, f € E, . for every
€ € R+.
Step 3. Finally we have to prove that for every p, € H, it holds that

L[f1(po) = F(po)- (1.4.38)

By use of the absolute and uniform convergence of the integral (1.4.36) and Fubini’s theorem

we have for a < ¢ < Re(pg)

/ e POl f(¢) (27ri)_1/e‘pot/eptF(p)dpdt
0 o (©)

oo

:(2W07{/1WpX/e@7mﬁdum (1.4.39)
(o) °
= 2ri) " [ F o ) .
(o)
Choosing the numbers 3,7, ¢’ such that pg is lying inside the rectangle 2R of Figure 1 by

means of Cauchy’s integral formula we obtain

F(p)

F(po) = (2mi)~*
(po) = (2i) s P Do

dp.

As 3,7 and ¢’ tend to +oo the integrals on the vertical segments and also the integral on

the vertical segment through ¢’ tend to zero and, therefore,

c—100

F F
F(po) = (2mi)~* / ﬂ dp = (2m‘)71/ (p) dp.
c+100 (c)
Together with formula (1.4.39) we obtain (1.4.38). 0

Remark 1.4.25 The condition on the absolute convergence of [ F(p)dp is, for example,

©
Fulfilled, if
|[F(p)| < Clp|™®,  pe€ H,.
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1.4.5 Inversion Methods

A general method for the calculation of the original f from a given image F' is the
application of the theory of residues on the complex inversion formula 1.4.4, (1.4.35). We

first prove the following.

Lemma 1.4.1 (Jordan’s Lemma) Let

¢, ={p: peC, |p—p|=Rn., Ri<Ry<...lim R, =00,
Re(t(p—po)) <0, 0#teR}

be half-circles (see Figure 3). Let F be continuous on €,, n € N and F(p) tend to zero

uniformly on €, as n tends to infinity. Then we have

lim [ eF(p)dp =0, t#0. (1.4.40)

n—oo

Cn

Proof. From our assumptions we know that for every ¢ € Ry there exists a number

ng = no(e) such that

|F(p)| < e, z €€y, n > ng.

Step 1. t < 0.

Here we have

p=po+ Rne™, —nm/2 <@ <m/2

Therefore, we get

/2 w/2
‘/F(p)eptdp‘ < eR, et / etfincosedy, — ¢ R, e0! / elBncose oy,
[ —m/2 o

Set 1 = § — ¢. Then sin¢y > %w, 0 < < m/2. It follows because of t < 0

/2 w/2 /2

/etRncosapd@: /6tRnsinwd¢S /B%R"wdﬂ}
o o o
and therefore
/2

e

(=)

o

‘/F(p)eptdp‘ < 2eR, et / eF Rnt gy — %eaot(eant 1)<
Q:n

as n > ng.
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1T
) /.?.
: s
! R, _~ L, <0
| s v
[ \
[
&
P,
> -G
C,.t=0 2 |
Figure 3

Step 2. t > 0. The proof runs analogously. Here we are setting ¢) = ¢ — 7/2 and we have

T /2
/ et R,, cos (‘Dd(p — / 6(_t)R” Sinwdip.
/2 0
We proceed as in step 1 with (—t) instead of ¢. I

U,

<

_

Figure 4
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By means of Jordan’s lemma we are going to prove the following.

Theorem 1.4.14 Let F(p) = L[f](p) be a meromorphic function, analytical on the half-
plane Hyy. Let €, ={p:|p| = Rn}, R1 < R2 < --- < R, — +00 as n — +00 a sequence
of circles and let F(p) tend to zero uniformly with respect to arg(p) as p — oo, p € €,.
Furthermore, let [ F(p)dp be absolute convergent for every ¢ > ao. Then it holds that
(c)
Z Res(F(p)e) (1.4.41)

peC

where the summands have to be arranged according to ascending absolute values of the

singularities.

Proof. Let 'y, = €/, U, (see Figure 4). Then by means of the theorem of residues we

1 ¢ t t
Tm% e’ F(p ZResepF 27”/ /epF

have

" [p|<Rn

The second integral vanishes (see Jordan’s lemma) as n — oo. By means of the complex

inversion formula (1.4.35) we obtain

and this is formula (1.4.41). I

Example 1.4.27 Let F(p) = P(p)/Q(p) be a rational function, where deg(P) < deg(Q).
Then the assumptions of Theorem 1.4.14 are fulfilled. Let py be a pole of F(p) with the
multiplicity ni. By the well-known formulas of the theory of residues we obtain

= ( L g 422 [F(p)eP (p — pi)™]. (1.4.42)

— (g, — D! p—pi dpme—1

In particular, if n, = 1 for every k we have

_1 [P(p) B P(px)
£ [Q(p)} =2 Q' (pr)

k

ePrt. (1.4.43)

In practice one does not use the general formulas (1.4.42) and (1.4.43), but one performs
the partial-fraction expansion of F(p) and with help of formula 1.4.3, (1.4.20) one can

evaluate the original f(t). For example, if

-1 1 1

pP-p p p-1
then from (1.4.43) or directly from 1.4.3, (1.4.20) we obtain

F(p) =

fit)=1+¢€", t>0.
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Another method is the inversion by means of the development in series. If F(p) is ana-
lytical at co and F'(0o) = 0 then the Laurent expansion with the center co can be inverted

term by term, using 1.4.2, formula (1.4.13).
Theorem 1.4.15 Let F'(p) be analytical at oo and F(oo) =0,
o0
F(p)=> ap ¥, Ip| > R. (1.4.44)
Then F(p) = L[f](p) and
f(t) =1,(t) ytk (1.4.45)

and the series is convergent for every t € C.

Proof. Let p— p~! and ¢(p) = F(p~'). Then

o0
p) =Y ap™t
k=0

is analytical on |p| < p < R™!. By means of the Cauchy inequality for the Taylor coefficients

we have
lex| < MpMFT.

Setting s, (t) = Z = we get

= \t|
s, (1) Z Z (p = Mpesltl.
k=0

=1

From the Weierstrass convergence theorem we conclude that the series

. . t
Jim on(®) = i 3 ey = St
k=0
is uniformly convergent on C and it defines an entire function f of exponential order, i.e.,
|f ()] < el

Multiplication of the series of f(t) with e ?* and integration on R4 leads to

=Y ap T =F(p).
k=0

Remark 1.4.26 One can prove that conversely if f is an entire function of exponential
type then there exists F(p) = L[f](p), F(p) is analytical at co, F(oc0) = 0 and the formulas
(1.4.44), (1.4.45) are valid (see [Doe. 3], Th. 30).
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Example 1.4.28 Let

Since

(_2> = (=1)"/y/7nIT(n+1/2)
we obtain from Theorem 1.4.15 and formula (1.4.13)

fO) =L =) = +%i)!<_1)n (;:)!'

n=0
By means of Legendre’s formula for the Gamma function we have

Vr(2n)! = 22! T (n + 1/2)

and this leads to

=3 UL <;> — Jo(), (1.4.46)

— (n!)?

where Jo is the Bessel function of the first kind and zero order.

1.4.6 Asymptotic Behavior

Sometimes in applications of the LT we obtain the image F'(p) of an original f(¢) and we
are not interested in the explicit form of the function f(¢) but only in their behavior as ¢t — 0

resp. t — +o00. Very simple results in this direction are the following two propositions.

Proposition 1.4.17 (Final-Value Theorem) Let F' = L[f] be analytical on Hy except

possibly a simple pole at the origin and let there exists f' on Ry, f' € Ey, then we have

lim f(t) = Zl)ii%pF(p). (1.4.47)

t—+oo

Proof. From the differentiation rule 1.4.3, Proposition 1.4.16 we obtain

. / —pt T _ _ . S _
lim [ f(t)e™dt = lim pF(p) — f(+0) = lim f(t) [To= lim f(t) — f(+0).
0
This is the desired result. I

Analogous we have the following.

Proposition 1.4.18 (Initial-Value Theorem) Let F = L[f] be analytical on Hy except
possibly a simple pole at the origin and let there exist f' on RT, f' € Ey, then it holds that

Jm f(t) = lim pF(p). (1.4.48)
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Proof. Obviously, it holds for p € Hy
P = [ FOpe =~ F(0e [T +L1B) = F040) + £1F)p)
0

From f’ € Ey and Theorem 1.4.10 we know that L[f’](p) tends to zero as p tends to infinity
and this yields formula (1.4.48). I

Example 1.4.29 Let f(t) = sint. From formula (1.4.9) we have F(p) = (p*> + 1)~ and
therefore

lim pF(p) =0.

p—oo
But 75lim sint does not exist and therefore formula (1.4.48) is not fulfilled because the poles
of F(p) are at p = =i.

Now we are going to prepare a more general theorem for the behavior of a original f(t)
as t tends to +o00. It appears that the singularities with the greatest real part of the image
F(p) are of importance for this behavior of f(¢).

Lemma 1.4.2 Let [ |F(p)|dp < oo for a wvertical line (c) and f(t) = L7 [F|(t); see
(¢)
formula (1.4.35). Then it holds that

and this is the assertion. I

Lemma 1.4.3 Let f € E, and F = L[f]. Then it holds that a.e. the inversion formula

d
f(t) = (2mi) 1£/ PER(p)p~tdp, c>a. (1.4.49)
(o)
Proof. Setting ¢(t ff )dT, then from the integration rule 1.4.3, Proposition 1.4.15

we know that ¢ € Ec, where c=aif a € R} and ¢ € Ry, arbitrarily, if ¢ < 0 and it holds
that

o(t) = (2mi) ! / ePlp~ L F (p)dp. (1.4.50)
(e)
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Furthermore, there exist the derivative ¢’ a.e. and ¢’ = f. From (1.4.50) we find
/ -\ —1 d pt, —1
Plt)=f(t) = @2mi)~ - [ ePp  Flp)dp,  ae.,
(e)

i.e., formula (1.4.49). I

Lemma 1.4.4 Let F, = L[f.], f, € Ea, v = 0,1,2 and ¢(p) = Fo(p) — Fi(p) — Fa(p)

analytical and bounded on a half-plane H., ¢ > a, and moreover

/|¢(p)|dp <00 (1.4.51)
(e)
and
fa(t) = O(e), t — +o0. (1.4.52)
Then it holds that
fo(t) = f1(1) + O(e), t — +o0. (1.4.53)

Proof. From Lemma 1.4.3 we deduce

o) = folt) = £i0) - o(0) = (2m0) 5, [ P o(p)dp.
(e)

Because of condition (1.4.51) we can differentiate under the integral and Lemma 1.4.2 leads
to
ft)=0(e"), t — 400.

Taking into account that fo has the same behavior, we have (1.4.53). I
Lemma 1.4.4 is the base of the proof of the following.

Theorem 1.4.16 Let

F(p)=0(p|™?), p—o0, p€ Hy, (1.4.54)
analytical on H, with the exception of a finite number of poles in the points

py =09 +11,, v=1,2,...,n, 09 > a.

If
F(p) NAu(p_pu)ikila D — Py, k €Ny,

then it holds that

F(t) = e (i Ae™t 4 O(t‘1)> . t— oo (1.4.55)
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Remark 1.4.27 We would like to remark that the p, are the poles with the greatest real
part of F(p) (they all have the same real part Re(p,) = 09, v =1,2,...,n) and these poles

have the same order k + 1.

Proof. We choose

n k+1 a
Z Z il Ap4+1,0 = AV7
v=1k=1 p pV
i.e., the sum of the singular parts of the Laurent expansion at the poles p,, v =1,2,...,n

and F5 = 0. Then the conditions of Lemma 1.4.4 are fulfilled and we have

f(t) = fi(t) + O(e™), ¢ > oo,

ie.,
k+1 k—1 . . tk oot n
05 5 o ) o= (S )

since O(e") = O(e7°!) = e7°'O(1). I
Example 1.4.30 Let F(p) = 672:2/%, a > 0. It has poles of the order 1 at p = +i, i.e.,
we have o9 = k = 0. From

1 1 1 1 a(i—1) —2a(141)

Pip = e (Lo L) o (S ) o
21 p—i p+i 20\ p—1 p+i

Lemal=9) " A, = A;. Theorem 1.4.16, formula (1.4.55) yields

we have Ay =

f(t) =e %sin(t+a) +O@t™) t — +oo.

Analogously one can prove a theorem for branching points instead of poles. For this and

many other results in this direction we refer to [Doe.1], [Doe.3], [Me], and [Be.3].

1.4.7 Remarks on the Bilateral Laplace Transform

As stated in the introduction to section 1.4.1 we give the following definition.

Definition 1.4.5 The bilateral (or two-sided) Laplace transform (BLT) of a function
f:R — C is the function F defined by

FID ) = £001)p) = [ Fit)emat (1.4.56)

provided that the integral exists.
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As suitable space of originals we choose:

Definition 1.4.6 E, —oco < a < b < oo, is the linear space of functions f : R — C,
f € LI°¢(R), belonging to L1(R;e~%) as well as to L1 (R;e).

Similar to the one-sided case (section 1.4.1) one can prove:

Theorem 1.4.17 Let f € Eb. Then the bilateral Laplace integral (1.4.56) is absolutely and
uniformly convergent on H? = {p : p € C, a < Re(p) < b}. The BLT is analytical on
HY ={p: peC, a< Re(p) <b} and it holds that

DRI (p) = LUD[(-t)" f(®)](p), K EN. (1.4.57)
Furthermore, it is a linear transformation, i.e.,
LUDaf +Bg) = aF + 3G,  a,B€C, f.g€E.

Since e=7!f(t) € L1, a < o < b, provided that f € E’ we have analogously to 1.4.1,
Corollary 1.4.5:

Corollary 1.4.8 Let f € Eb. Then for p = o + it it holds that

FUD(p) = Fle ™' f(t))(r),  pe H.. (1.4.58)

The complex inversion formula and Theorem 1.4.12, Theorem 1.4.13 are valid for the
BLT, too. One has only to substitute Ry — R, F — FUD B — Eb, ceR:a<c<b,
H, — H?.

The operational properties of section 1.4.3 hold analogously. One has only to change the
assumptions and the conditions of the validity of the formulas in an easily understandable
manner. In the case of the convolution theorem one must of course choose the Fourier

convolution 1.3.3, (1.3.27). The differentiation rule becomes simpler:

Proposition 1.4.19 (Differentiation Rule) Let f € C", n € N and let f and its deriv-
atives up to the order n belong to E°. Then there exist LT [D" f] and

I fi(p) =p"FUD(p),  pe HL. (1.4.59)

Because of the relation (1.4.58) the determination of the original f of a given F' = LU1)[f]
can be made by the use of Fourier transform tables (see [O.1] and [EMOT], vol. I).
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1.4.8 Applications

Similar to section 1.3.5 we would like to give some examples for the application of the

Laplace transformation. We will consider integral equations and differential equations.

Example 1.4.31 Let us consider the Volterra integral equation (IGL),

/f(;v)k(t —z)dr =g(t), ¢(0)=0, (1.4.60)
0

where g and k are known functions and f is the function we would like to determine.

Applying the LT on equation (1.4.60) leads quite formally to

or

The application of the convolution theorem leads to

F(t) = gL /K )]().

Very often L~1[1/K] does not exist. If there exist L~1[1/pK (p)](t) and L(p) = 1/pK (p) we

have
F(p) = pG(p)L(p).

Setting | := L7Y[L] by means of the convolution theorem and with the help of the differen-

tiation rule we obtain

o) = /g(t)l(:v—t)dt. (1.4.61)

Let, for example,

Then from formula (1.4.12) we have
E(p)=T(1 - a)p™

and, therefore,

—x

L(p) = 1/pK(p) = ﬁ
and again by formula (1.4.12)
B ro1 _sin(ma)
i) I'l—a)l(a) =« 1
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Hence we have in this case as the solution (1.4.61) of (1.4.60)

F(z) = 7 sin(ra) d‘i / : 90 o (1.4.62)

x —t)l-«
0

By simple substitutions one can transform this to integrals with other limit points. For

example, let us consider the IGL

b f) _
/t(x_t)adxg(t), 0<t<b O<a<l, g()=0.

Substituting t — b —1t and then x := b — u we have from (1.4.62)

du ) (u—t)l-o

-1 _: d [ g(b—1)
fb—u)=7n""sin(ra)— [ ————dt.
0/ (

Substituting conversely u := b — x, and then b —t = z and replacing at the end z — t we

have
b

f(z) = —ntsin(ma) d(fzc / (g(t)adt.

This result can be generalized in substituting x — (), where p(x) is monotonic increasing
and there exist ¢’ and ¢'(x) # 0. Then the IGL is

b
/Aadm:g(t), a<t<b 0<a<l, g(b)=0.
t

Substituting

we have

Let, for example,
p=cosh, z=7, b=o0, t=¢ a=1/2

Then, obviously,

d [ g(©)sinh¢
h(r) = —m1— d¢ (1.4.63)
dr / (cosh§ — cosh ’7')) i
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and therefore
o0

h(r)

9(§) = dr. (1.4.64)

1/2
¢ (COShT — cosh §)

For further examples of the solution of linear integral equations we refer to [Sn. 2], [Me],
[Doe. 3], [Be. 2], and [De. 6].

Example 1.4.32 Let us consider a general initial value problem (IVP) for a linear ordinary

differential equation of order n, which has the form

L[z](t) = D™z (t) + a1 D" ta(t) + - - + anz(t) = f(t) (1.4.65)
with the initial value conditions at t = 0+

z(04) =20, 2'(04) =z1,..., 2" V(04) = 2,1, (1.4.66)

wherea; €C, j=1,2,...,n, 2, €C, k=0,1,...,n—1.
By means of the differentiation rule 1.4.3, Proposition 1.4.16 we obtain the equation in

the domain of images

L(p)X(p) = F(p) + P(p), (1.4.67)
X(p) = 1283 - ];Eg. (1.4.68)

Here L(p) is the characteristic polynomial of Llz], i.e.,

Lp) =p" +aip" "+ +an
and P(p) is a polynomial of degree n — 1, which contains the initial values xg, 21, ..., Tn_1
in the coefficients. The original is

a(t)=L7" [féﬁ;] (t)+ L7t []LD((;?))} (t) = x4(t) + zp(t). (1.4.69)

Obviously, xs is a special solution of the inhomogeneous equation with initial values zero and
xy s the general solution of the homogeneous equation with arbitrary initial values. The
determination of xp, is possible, since P(p)/L(p) is a rational function and the degree of
L(p) is greater than the degree of P(p). So one obtains according to formula 1.4.3, (1.4.20)
a linear combination of terms of the form t*e*. The inversion of F(p)/L(p) is possible, if
we assume that f € E,. So such functions as f(t) = et’
we consider the IV P

are not enclosed. To close this gap

LIF(p) = 14(t),  t>0, (1.4.70)

with
#(0+) = 2/(04) = --- = 2D (0+) = 0.
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The LT leads to
L(p)X(p) =p " (1.4.71)

For the solution of the inhomogeneous equation with right-hand side f and vanishing initial

values at zero we have

By inversion we get
/f "t —7)dT = (f *7')(¢). (1.4.72)

This formula is the well-known Duhamel formula. It allows the calculation of the solution

of equation (1.4.65) with vanishing initial values also if L[f] does not exist. Let us consider

the equation
") +x(t) =€, @(+0)=2/(+0) =0, t >0, (1.4.73)
Following Duhamel’s method we consider first
')+ 1 =1, Z(+0) = z(04) =0, ¢t > 0.

The differentiation rule 1.4.3, Proposition 1.4.16 yields

P*+1DX@p) =p~",
or
~ 1 1
Xp)=—5—==- .
®) P +1) p pPH1
The application of L~ using 1.4.2, (1.4.8), (1.4.9) yields

Z(t) =1 — cost.

For the solution of (1.4.73) following Duhamel’s formula (1.4.72) we obtain

2(t) = /t e sin(t — 7)dr.
0

Sometimes these methods also can be used for linear ordinary differential equations of the
form (1.4.60), where the coefficients a; are polynomials of a degree less than or equal to m €
N. Using the multiplication and the differentiation rules in 1.4.3, Proposition 1.4.12, and
Proposition 1.4.16, we obtain in the image domain an ordinary linear differential equation

of order m with polynomial coefficients of a degree less than or equal ton € Ng. If m <n
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then this differential equation can perhaps be solved more easily than the original. As an

example we consider the Laguerre differential equation:
tz” (t) + (1 — )2’ (t) + nz(t) = 0, n € No, z(0) = 1.
The application of the LT yields
—[Llz"](p)]" + L[2')(p) — [£[2"](p)]" + nax(p) = O,

—[p*X(p) — pro — x1)' + pX(p) — w0 + (pX (p) — z0)' + nX(p) =0,

p(1 —p)X'(p) + (n+1-p)X(p) = 0.

The separation of the variables yields

dX_p—n—ldp_< n _n—i—l)dp
X p(l-p) p—1 p

and it follows that

=11 _ —1\n _ — (n (=D*
Xp)=Cp'(t-p )" =C)_(, R (1.4.74)
k=0
The application of L™, using formula (1.4.13) and x(0) =1 (i.e., C = 1) yields
_ — (n) (=D)* kE_
z(t) 71;0 (k> ot = In(t). (1.4.75)

These are the well-known Laguerre polynomials. Another representation can be derived in
the following manner. By means of the damping rule, Proposition 1.4.11, and formula
(1.4.74) with C =1 we get

7

Lle ()] (p) = —2

VR (1.4.76)

From formula (1.4.20) we know

el o= g

n! p+ 1)t

By means of the differentiation rule, Proposition 1.4.16 we obtain from the last equations

(the initial values xg,x1,...,Tn_1 are equal to zero)
tn pn
L|D"e t— =
|: e TL':| (p) (p + 1)n+1’

and together with equation (1.4.76) and Theorem 1.4.9 we have the Rodrigues formula for

the Laguerre polynomials

et

L, (t) D" (e™'t"), n € No. (1.4.77)

n!
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Remark 1.4.28 One obtains at most n —m solutions of equation (1.4.60) with polynomial

coefficients of a degree less than or equal to m.

Remark 1.4.29 The transfer to systems of ordinary linear differential equations with con-

stant coefficients can be done in an easily understandable manner.

Remark 1.4.30 For further examples we refer to [Daf, [De.6], [Doe.3], [Fé], [Me], and

other books on Laplace transforms.

Example 1.4.33 Now we are going to derive the solution of a linear partial differential
equation with initial and boundary conditions. The LT transfers a linear ordinary differen-
tial equation of the form (1.4.60) to an algebraical equation (1.4.67). A partial differential
equation for R?2 — C functions leads after application of the LT with respect to one vari-
able to an ordinary differential equation. As an example we investigate the heat conduction

equation in a semiinfinite linear medium.

Uz (2,t) —uw(x,t) =0, 0<z,t<oo (1.4.78)
u(z,0) =0, 0<z<oo (1.4.79)
u(0,t) = up(t), 0<t<oo0. (1.4.80)

As usual, we apply the LT (with respect to the variable t) quite formally. Let U(xz,p) =
Llu(z,)](p) by means of the differentiation rule Proposition 1.4.16, because of
U (2,0) =0 we get

W +pU(z,p) =0 (1.4.81)
and
U(0,p) = Uo(p)- (1.4.82)

The solution of the ordinary linear differential equation (1.4.81) for the function U under

the initial condition (1.4.82) is possible by means of the classical methods. One has
U(x,p) = Ae” VP 4 BeVPT,

where /p is that branch of the square-root function, which is positive when p is positive.
Since every LT of our spaces of originals tends to zero as p tends to 00 we obtain B = 0.
The initial condition (1.4.82) yields = Uy(p) such that the solution of (1.4.78)—(1.4.79) in
the domain of images yields

U(x,p) = Uo(p)e "VP. (1.4.83)

By means of the convolution theorem and formula 1.4.5, (1.4.24) we obtain

f 7@2/4 t—7)
/ U—rp2 — a7 4 = (uo x Y(x,))(b), (1.4.84)
0
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with

Pz, t) = %t‘gﬂeﬂ:z/‘“. (1.4.85)

One can prove that (1.4.84) is the solution of the problem (1.4.78) through (1.4.81) provided
that
Ug € C(R+)

For further examples of solutions of partial differential equations by means of the LT we
refer to [Dal, [De. 6], [Doe. 3], [Me], [Ob], and [Sn. 2].

1.5 The Mellin Transform

1.5.1 Definition and Basic Properties

The Mellin transform (MT) is closely connected with the F'T as well as with the two-sided
LT. It is defined as follows:

Definition 1.5.7 The MT of a function f: Ry — C is the function f* defined by

oo

£*(s) = MIf](s) = / 57 f(z)de, (15.1)

0

where s = 0 + 117 € C, provided that the integral exists.
As space of originals we choose:

Definition 1.5.8 The space P?, —co < a < b < o0, is the linear space of Ry — C functions
such that 2571 f(x) € Li(Ry) for every s € H?.

Remark 1.5.31 Functions f € L°(R.) with the estimate

T~ x € (0,1]
—b

el sc {x , x € (1,00)

belong to PLLE for every e € (0,(b— a)/2).

Theorem 1.5.18 Let f € P°. Then the Mellin integral (1.5.1) converges absolutely and
uniformly on H°. The MT f* is an analytic function on HS. If k € N then we have

D" f*(p) = Mllogz)* f(x)](p)- (1.5.2)
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Furthermore, it is a linear transformation, i.e.,

Miof + Bgl =af*+8g*, «.BEC, fgeP..

Proof. The integral (1.5.1) converges (absolutely) if f € P?. This follows directly from the

definition of the space. From

a—1
, € (0,1
|£CS_1| S mb ) €z ( ]
x’~ e (1

;. w€(l00)
and o . .
THf(x)de| < [ 2t f(x)|d P f()ld
‘O/x x x‘ O/x x erl/x x)|dx

it follows that the integral (1.5.1) is uniformly convergent on H’. Since the integral is an

analytic function (with respect to s) and from

cx® = f(x)], x € (0,1]

d
’ ca® P f(@),  we(1,00),

2t f(@)| = l(og 2)a* f ()] < {

where €, € R, arbitrarily, we deduce that the integral (1.5.1) after differentiation with
respect to s under the integral sign is also uniformly convergent on Hg;g and therefore we
have (1.5.2) with k = 1. The general case follows by induction. The linearity is obviously
true.

A connection between the Fourier and the Mellin transforms can be derived as follows.
Substituting z = e~ *, t € (—o00, 00) in the integral (1.5.1) we have

o0

fflo+1ir) = / e St fle Ndt = Fle 7' f(e”)](1), (1.5.3)

— 00

i.e., the following: I
Theorem 1.5.19 Let f € P°. Then et f(e™*) € Li(R), a < o < b, and it holds that
F(s) = Fle=" f(eN)](r). (1.5.4)
By virtue of Theorem 1.3.1, and Theorem 1.3.2 we have two corollaries:

Corollary 1.5.9 If f € PP, then f*(s) is bounded for each fived o, a < o < b.

Corollary 1.5.10 If f € P, then for each fized o, a < o < b it holds that

lim f*(c+ir)=0.

T—+00

Analogously from (1.5.4) one can obtain a connection between the MT and the bilateral
LT.
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By means of Definition 1.4.6 we have:

Theorem 1.5.20 If f € P?, then f(e™*) € E® and it holds that
£o(s) = LUD[fF(eN)](s). (1.5.5)

Finally, we would like to derive a connection between the MT and the (one-sided) LT.

Theorem 1.5.21 If f € P3, then it holds that
MIL[f)(s) =D(s)M[f](1 —s), s € Hy. (1.5.6)

Proof. Using formula (1.4.11), and the definition of the MT we obtain (using Fubini’s

theorem)
T()M[f](1—s)= [ 75 e Tdr [ t~5f(t)dt
[7re]
= [ f(t) | 25 e " dadt = [ 257 | e " f(t)dtdx
[*] [
= MIL[f]](s),
ie., (1.5.6). I

By means of Theorem 1.5.19 and section 1.3.4, Corollary 1.3.4 we obtain

Theorem 1.5.22 Let f € P°, g € P4 and a = max(a,c) < 8 = min(b,d). If

f*(8>:g*(8)’ SEH57
then f(x) = g(z) a.e. on R,.

Next we give some examples of Mellin transforms of elementary functions.

Example 1.5.34 From formula (1.4.12) we have in another formulation
M[e™*"](s) = a”°T'(s), Re(a),0 € R (1.5.7)

Putting o = i3, 8 > 0 we have for 0 < o < 1 from (1.5.7), in the sense of ordinary

convergence

Me= ) (s) = /xs_l(cos Bx — isin Bx)dr = e‘”sﬂﬁ_sf(s)
0
= B7°T'(s)( cos(ms/2) — isin(ms/2)).
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Comparing the real respectively imaginary part we get by means of analytical continuation

with respect to s
M (cos Bzx](s) = B7°T'(s) cosms/2, BeRy, 0<o<1, (1.5.8)

and
M(sin Bz](s) = B7°T'(s) sin7ws/2, BeERy, —1<o<1. (1.5.9)

Putting o = e~ , o € (—7/2,7/2) from (1.5.7) we obtain
M[e*”_wz](s) =T'(5)e'?* = T'(s)[cos ps + i sin ps].
Comparing the real and the imaginary part we have
M[e™? %% cos(x sin )] (s) = T'(s) cos s, o>0
M[e™ %50 cos(x sin )] (s) = I'(s) sin s, o> -1, || <m/2. (1.5.10)
Example 1.5.35 Substituting u = s, v=p—s, and x = (t + 1)~! in the definition of the
Beta function, see equation (1.4.30), we obtain

B(s,p—9) /1+t )P, 0 < o < Re(p),
0

or equivalently
M|+ z)"?](s) = B(s,p— s), 0 < o < Re(p). (1.5.11)

For further examples of Mellin transforms and inverse Mellin transforms we refer to [EMOT],

vol. I, [0.3], and [M].

1.5.2 Operational Properties

Analogously to the investigation in sections 1.3.3 and 1.4.3 we obtain rules of operational
calculus for the MT. By straightforward calculation we obtain the following elementary

rules.

Proposition 1.5.20 Let f € PP and so, « € R, a #0, 3 € Ry. Then it holds that

a

Mz™ f()](s) = f*(s+s0),  s€HZ3, (1.5.12)
Mf@@))(s) = o] f*(s/a),  s/a € Hy, (1.5.13)

and
Mf(Bz](s) = B°f*(s),  seH]. (1.5.14)
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Example 1.5.36 From formulas (1.5.8), (1.5.9), and Proposition 1.5.20, formula (1.5.12)
we have for a € R, § € Ry

M[z“ cos fz|(s) = B7° *I'(s + «) cos @, —a<o<l-a (1.5.15)
Mz sin Bz](s) = f7°7 T (s + ) sin mlsta) —-l-a<o<l-oa. (1.5.16)

2 b

Example 1.5.37 From formula (1.5.10) with p =1 and rule (1.5.12) we obtain

zt/? 11 ™
s$)=B(s+=-,-—8) = ———,
{1+x} (s) ( 272 ) sin7(s + 3)
i.e.,
zl/2 s 1 1
= —— —. 1.5.17
M[l—i—x] (s) cosms’ 2 =753 ( )
Here the reflection law of the Gamma function
T
I'(z)I'1—-2) = 1.5.18
(AT —2) = =" (1518)
was used. By means of rule (1.5.13) from (1.5.17) we obtain, putting « — 1/,
L @ Ry, —1/2 1/2 1.5.1
|:Hx1/a:|(8)—cosas, a € IR, —/a<0</a. (59)

Now we are going to derive differentiation rules in the domain of images as well as in the
space of originals. In the domain of images we have only to formulate 1.5.1, Theorem 1.5.18
in a new manner. Since the absolute value of logx for x € R, together with its powers is

less than z° resp. 7%, ¢ € Ry, arbitrary small, as z is sufficient large resp. small we have:
Proposition 1.5.21 Let f € P’, k € N. Then (logz)*f(z) € P21, e € Ry arbitrary
small and it holds that

M(log 2)* f(x)](s) = D* f*(s), s € H. (1.5.20)
By means of integration by parts one easily can prove:

Proposition 1.5.22 Let f € P? and there exists Df € L'°°(R.). Let there exist numbers
a, b eR, witha+1<da <b <b+1 such that

lim 2% ' f(z) = lim 2" "'f(z) =0.

r—40 T — 400
Then there exists
M[DFl(s) = —(s = 1)f*(s — 1), se HY. (1.5.21)

By induction and using

(51)(82)”'(571)1‘(2(5)@’ necN

we obtain
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Corollary 1.5.11 If f®) k =0,1,...,n — 1, satisfy the conditions of Proposition 1.4.11

then
I'(s)

M[D"f](s) = (—l)nm

fr(s =n).

(1.5.22)

Now we are going to derive some further differentiation rules (without an explicit formu-

lation of the conditions for their validity). From (1.5.22) and (1.5.12) we obtain

[(s+n)
I'(s)

By means of (1.5.21) and (1.5.12) and further by induction it follows that

M[z"D" f(x)](s) = (=1)" [ ().

M[(=zD)" f(2)](s) = s" f*(s)

and
M[(=Dz)" f(2)](s) = (s = 1)" f*(s).

Replacing f(x) with f f(t)dt from formula (1.5.21) we obtain

M| / F(t)dt] () = =571 (s 1),

Applying formula (1.5.21) to [ f(t)dt we obtain by straightforward calculation

M [/Oofa)dt} (s) =81 f"(s +1).

Analogously by straightforward calculation we obtain

M[/oof(x,u)g(u)d / /fz:u w)duda
0

= 7g(u) 7ms_1fxu)dmdu = /u‘ g(u)d /ts Lf(t)dt
0 0 0 0

and therefore we have

M| [ Fawg(udu(s) = £*(s)g"(1 - 5).

(1.5.23)

(1.5.24)

(1.5.25)

(1.5.26)

(1.5.27)

(1.5.28)

Example 1.5.38 From formulas (1.5.7) and (1.5.21) by means of (1.5.28) we obtain

e~ (@eos e DU o6 (1 sin @)du} (s) =T (1 —s)[(s)cosps

1+ zcosy
1+ 2z cosp + x2

=M [L[cos(z sin p)u](1 +  cos @)} (s) =M {
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where the LT (1.4.10) with A = xsing was used. By means of the reflection law of the

Gamma function (1.5.18) we obtain

o] < 7/2. (1.5.29)

1
M [Wl +xcosy ](5) _ c'osgos,
sin s

1+ 2z cos p + 22
Replacing ¢ — vy and then using (1.5.13) with « = v we have

M [ﬂ_ly 1+ 2¥ cosvy }(s _ cosps

1+ 2z¥ cosvp + x2  sinws/v’ (1.5.30)
v>0, —m/2v < p < 7/2v, 0 <0 <.
Analogously we have
_ ¥ sinve sin s
M|rt ==
[W YT o coswp—i—xb} () sinms/v (1.5.31)
v>0, —1/2v < p<7m/2v, 0 <o <.

Finally we define the Mellin convolution:

Definition 1.5.9 Let f,g: Ry — C. The function fV g defined by means of
(f V) /f g(x/t)t™ dt (1.5.32)
is called the Mellin convolution of f and g, provided that the integral exists.

Now we have:

Theorem 1.5.23 (Convolution Theorem) Let f,g € P’. Then fV g € P’ and the

Mellin convolution is commutative and associative. Furthermore, it holds that
M[fVvygl=fg". (1.5.33)

Proof.

o0 o0

(F v g)*(s)] < / (V) (@))de = / 21 / F(t) /)t b de

o0 o0

/x" Yg(x/t)|t™ dt = /t" Hf(t |dt/ L g(u)|dt.
0 0
€

Since the integrals on the right-hand side exist if o
left-hand side, i.e., fV g € P’
For the proof of formula (1.5.33) we have

IN
et~ °

[a, b], we conclude the existence of the

oo oo

MIfV gl(s) = / / F (g (/) (/1) 45 2dtda

0

I
o — g °

7 f () / g(wyut  du = f*(s)g"(s),
0
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and this is the result (1.5.33). The commutativity and the associativity can be obtained
by straightforward calculation or by taking the MT on both sides of the equations and
making use of the commutativity resp. associativity of the ordinary product in the domain

of images and of the uniqueness theorem; see Theorem 1.5.22. I

Example 1.5.39 The convolution theorem is very useful for the computation of integrals.
For details we refer to [M]. As an example we consider the integral representation of the
MacDonald function K.

oo

KO(Q\/E):% / e 2VEhE e (1.5.34)

— 00

Substituting e = u and afterward u\/z =t we obtain

2K (2v/x) = /e*<“+u‘1>ﬁu*1du = /e’t"”/tt’ldt. (1.5.35)
0 0

From the convolution theorem with f(x) = g(x) = e¢™® and 1.5.1, (1.5.7) with o = 1 we

obtain
o0

M[/ e~ M (s) = [D(s))2.
0
Together with formula (1.5.35) we have

2MIKo(2V/2)](s) = [T(s)] (1.5.36)

1.5.3 The Complex Inversion Formula

From the connection (1.5.4) between the MT and the FT we obtain by straightforward

calculation

e fe") = FHf (o —i)](D).
Substituting e/ = z by virtue of formula (1.3.31), and Remark 1.3.11 we have after the
substitution 7 — —7 in formula (1.3.31)

o0

fx) = (2m)~* / ac_(‘”'”)f*(a +iT)drT.

— 00

With s = ¢ + i7 and using Theorem 1.3.5 and Remark 1.3.11 we obtain:

Theorem 1.5.24 Let f € PY, f* = M[f], a < c < b and f*(c+i1) € Li(R) with respect

to 7. Then at all points of continuity of f the complex inversion formula holds:

flz) = (2mi)~" /fc’sf*(s)ds = M7(s). (1.5.37)
(c)
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In this theorem we put conditions on the original f as well as on the image f*. There exist
sufficient conditions for f such that f(c+1i-) belongs to L;(R). So from 1.3.4, Corollary 1.3.3

we have:

Corollary 1.5.12 Let f € C(Ry) N Pb. Furthermore let there exist Df and D(z° f(z)) €
Li(Ry4), a <o <b. Then the inversion formula (1.5.37) is valid for every x € R,.

Analogous to the inversion theorem for the LT respectively the bilateral LT (see The-
orem 1.4.13 and section 1.4.7) one can formulate an inversion theorem for the MT using
Theorem 1.5.20.

Theorem 1.5.25 Let f*(s), s = o+iT be analytic in the infinite strip H® and let f*(o+iT)
tend to zero as T — +oo uniformly with respect to o, o € [a+¢,b—¢], e € Ry, arbitrary

small. Furthermore, let

/ |[f* (o +i7)|dT < 0.

Then the function f defined on Ry by means of formula (1.5.37) with ¢ € (a,b) belongs to
P2 and f* = M(f].

For a direct proof we refer to [Sn.2], section 4.3.

1.5.4 Applications

Example 1.5.40 We first apply the MT to the summation of (convergent) series. As usual
quite formally we have by means of 1.5.2, (1.5.14) and 1.5.3, (1.5.37)

f(nz) = M0 () () = (2mi) " / om0 £ (s)ds,
(c)

where ¢ € (a,b) if f*(s) is analytical in H®. Denoting Riemann’s Zeta function by

C(s) = infs o>1 (1.5.38)
n=1
we have
> () = (2mi) [ a7 G (5)ds = M) ()]0 (15.39)

(e)

Let us consider the sum

S(B) = Zn*Q cos 3n, 0< 6 <2m.
n=1
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From formula (1.5.8) and with the help of formula (1.5.12) we have for 2 < o < 3
M{z~% cos B](s) = —32"% cos(ns/2)[(s — 2)

and therefore from (1.5.39) with x =1 and 2 < ¢ < 3

S(B) = —(2mi)~! /52*Sr(s — 2) cos(ms/2)((s)ds.
(e
By means of the theorem of residues by left-shifting of the path (c¢) of integration, S(3)
appears to be the sum of the residues of —3?~°T'(s — 2) cos (ms/2)((s) at their three (!)

simple poles at s =2, s =1 and s = 0. An easy calculation leads to

2 7'('/8 EQ

7r
=55 "7
Example 1.5.41 The FT and the LT are very well suited for operational calculus with
respect to the operator D and they can be applied to the solution of linear differential equa-
tions with respect to this operator. Such equations are transformed into algebraic equations.
Because of rule (1.5.22) such ordinary differential equations are transformed by the MT
into linear difference equations and their solution is not easier than the solution of the orig-
inal differential equations. But from the rules (1.5.23) through (1.5.25) we see that linear
ordinary differential equations with respect to the operator x™ D" respectively xD and Dx
and its powers are transformed in the domain of images into algebraical equations. We use

Euler’s differential equation (we confine ourselves to the order 2)
@®D?y(xz) + pDy(z) + qy(z) = f(2),
where p,q € C can be written in the form
PlzDly(z) = (D) + (p — DaD + q)y(z) = f(2), (1.5.40)

i.e., it is a linear differential equation with constant coefficients with respect to the operator
xD. Application of the MT using rule (1.5.24) yields

P(=s)y*(s) = f*(s). (1.5.41)

If P(—s) = 82+ (1 — p)s + q has no zeros in a strip H® we have

y(@) = M~ [P{*((j)s)] (). (1.5.42)
Let, for example,
22 D?y(z) + 4aDy(x) + 2y(x) = e~ *. (1.5.43)

The MT leads to, see formula (1.5.7),

(52 — 35+ 2)y*(s) = ['(s).

© 2006 by Taylor & Francis Group, LLC



The Mellin Transform 65

From that we obtain
I'(s)

S P} Ty
By means of formulas (1.5.7), and (1.5.12) we have a particular solution of equation (1.5.43),

=TI'(s—2).

namely
y(z) =z 2", (1.5.44)

Example 1.5.42 Now we would like to find the potential u(r, @) in an infinite wedge, i.e.,

we will solve the potential equation in polar coordinates (r, )
2ty (1) + 1up(r, ) + tgpp(r, @) =0 (1.5.45)

in the infinite wedge 0 <1 < 00, —a < p <, « € (0,7/2), with the boundary conditions

u(r,a) = ug(r), 0<r<oo
{“(Tv —a) =u_(r), 0<r<oo (1.5.46)
u(r,p) >0 as r—o00, @€ (-aa) (1.5.47)

Applying, as usual quite formally, the M'T with respect to the variable r we have from 1.5.2,
(1.5.23) the ordinary differential equation

d*u* (s, o)

3,2 + s2u*(s,0) =0 (1.5.48)

with the boundary conditions
j(s) (1.5.49)
“(
The solution of (1.5.48) is
u* (s, ) = A(s) cos ps + B(s) sin ps.
With the help of the boundary conditions (1.5.49) we get

ul (s) +ur(s) i (s) —uZ(s)

A(s) = B(s) =
() 2cosas () 2sin as
i.e.,
. . sin(a+ @)s . \sin(a—p)s
_ sl — 9)s 1.5.
w(s,¢) = uils) sin 2acs +ut(s) sin 2as (15.:50)
Putting )
. sin s
h =
(5:) sin 2acs
we have
u*(s,) = ul(s)h"(s,a +¢) + ul (s)h"(s,a — )
with v =7/2a, v € (—1,1). By means of formula (1.5.31), namely,
h(r,p) = 2 SP¥ (1.5.51)

1+ 2r cosvp + 12V’
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and with the help of the convolution theorem of the MT we obtain the formal solution of

our problem after a simple calculation:

u(r, o) =uq Vh(,a+e)+u_ Vh(,a—p)

_ vr¥cosvp o ug () dp
v 2V — 2(rp)¥ sinvep + r2¥
P P ¥ (1.5.52)

n—1

p"tu_(p)
dp|, —1<v<l.
*/ P2+ 2(rp)? sinvp + 12 ”] .
0

For further applications of the MT we refer to [Sn.2], [Tra.2] and [De.6].

Example 1.5.43 Now we consider Fourier-type integral transforms. Let

_ / F@)k(ay)da (1.5.53)
0

exist and let there exist an inversion formula of the type

_ / F(y)h(xy)dy (15.54)

with some kernel h. Then we have from (1.5.53) (provided that all calculations in the
following can be justified)

M[F](s):/ sSSP (y /f /ys Ye(zy dy d

0 0 0

Substituting y — u by xy = u we have
MIF)s) = [ 5wy [ ki)
0 0

that is,

M([F](s) = M[f](1 — s) - M[E](s). (1.5.55)
Analogously from (1.5.54) we obtain

M(f](s) = M[F](1 — s) - M[h](s). (1.5.56)

From (1.5.55) and (1.5.56) we have:

Proposition 1.5.23 Let k and h be the kernels of a Fourier-type transform (1.5.53) and
its inverse (1.5.54), respectively, then it holds that

MIK|(1 = s) - M[R](s) = 1. (1.5.57)
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The kernel h of the inversion formula (1.5.54) can therefore be calculated by means of

1

) = MO MR (@) = M| proe—s

} (). (1.5.58)

These calculations can (under appropriate conditions) be done in inverse direction, that is,
if two kernels h, k fulfill the equation (1.5.57) then the transform (1.5.53) has the inversion
formula (1.5.54).

1.6 The Stieltjes Transform
1.6.1 Definition and Basic Properties

Definition 1.6.10 The Stieltjes transform of a function f : Ry — C is defined by means

of
:/fwﬁ
t+ 2z
0

(1.6.1)
provided that the integral exists.
For the existence we have the following three theorems.

Theorem 1.6.26 If the integral in (1.6.1) converges for a point z = zg € C\ (—00,0] then

it converges for every such point z € C\ (—o0,0].

Proof. Set

t

folt) = / ufj—uz)'od% t € [0, 00). (1.6.2)
0

Then for any z € C\ (—00,0] and for any R € R} we have

R
=/”+“mu = (R0 o—z/ holt
0

Since fo(R) tends to S[f](z0) as R tends to +oo the last integral converges absolutely as

0

R — +o00. Therefore, (1.6.1) converges and we have: I
Corollary 1.6.13 Under the conditions of Theorem 1.6.26 it holds that

f

S[f)(=) = SIf)(z m—Z/ (1.6.3)

the integral being absolutely convergent.
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Theorem 1.6.27 If the integral in (1.6.1) converges in some point zg € C\ (—o0,0] it
converges uniformly in any compact subset K of C not containing points of the negative real

azis (—oo, 0].

Proof. Let

M = max |z|.
zeK

Then we have for any R > M (with the notations of the latter proof) and (1.6.3)

o) R oo
=16 = [ = sl — R G2+ o) [
3 R
and therefore
J < [S17)0) — FolR) + Lo + oo 2 I/ ||tfi 0

< IS171G0) ~ FalR) + LR el 4 (01 + ) [ L
R

The right-hand side is independent of z and it tends to zero as R tends to 4+oo. This
completes the proof. I

From Theorem 1.6.27 we have:

Theorem 1.6.28 If the integral in (1.6.1) converges then the Stieltjes transform S[f](z)

represents an analytic function in the complex plane cut along (—oo,0] and

k k
D*S[f)(z k'/ szﬂ dt, k€N,
0

Sufficient conditions for the existence of the Stieltjes transform (1.6.1) are given in the

following:

Theorem 1.6.29 Let f € LI(R,) and for some positive §
f®)=0(t"%), t— +oo.

Then the Stieltjes transform S[f](z) exists on C\ (—o0,0].

Remark 1.6.32 Stieltjes considered more generally the transform

T da(t)
- / “lar, (1.6.4)

0
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where o must be of bounded variation in [0, R] for every positive R. The theorems 1.6.26
through 1.6.28 are valid also in this case and in Theorem 1.6.29 one has to replace the

condition on the behavior at +0o by
alt) =0(t'%),  t— 4oo.

For details and proofs we refer to [Wi.1] and [Wi.2].

Remark 1.6.33 Still more general sometimes one considers the transforms

silfle) = [ g (165)
0

resp.

T da(t)
Ck—>0/(t_"_z)g7 (1.6.6)

where 0 € Ry. The theorems 1.6.26 through 1.6.28 are again valid in those cases. In

Theorem 1.6.29 one has to replace the condition on the behavior at +o00 by
F&) =000, t— +oo,

resp.
alt) =0(te7°%),  t— +oo.

For details see again [Wi.1] and [Wi.2].

Now we are going to derive the connection between the Stieltjes and the Laplace trans-

forms.

Proposition 1.6.24 Under the conditions of Theorem 1.6.29, but with 6 > 1, it holds that

S[fl(z) = LIL[f](@)](2),  Re(z) >0. (1.6.7)

Proof. From
1
= /ef(Hz)zda:
t+z
0
it follows that
S[fl(z) = /f(t)/e_(t"’z)wda:dt = /e_” f(t)e "tdtdz,

0 0 0 0

and the interchanging of the integration is permissible under our conditions. {0

By means of the connection (1.6.7) and of the uniqueness theorem for the Laplace trans-

form (see Theorem 1.4.9) we obtain
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Theorem 1.6.30 If the Stieltjes transform of f and g are absolutely convergent and S[f] =
Slg], then f =g.

For examples of Stieltjes transforms we refer to the tables EMOT, vol. 2, Chapter XIV
or the tables of Laplace transforms [PBM], vol. IV, [EMOT], vol. 1, or [OB] together with
Proposition 1, and to the textbooks [De.6] and [Sn.2].

1.6.2 Operational Properties

The operational properties of the Stieltjes transform are valid if all the expressions appear-
ing in the formulas exist, but we add sufficient conditions for the validity of the formulas.

By straightforward calculation we have

Proposition 1.6.25 Let f fulfill the conditions of 1.6.1, Theorem 1.6.29 and let f(t) =0
if t <0. Then for a,b € Ry we have the translation rule

S[f(t = a)l(z) = S[f](z + a), z € C\ (—o0, —al (1.6.8)

and the similarity rule

SIFBO)(z) = SIf(b2), 2 €T\ (—00,0] (16.9)
From the identity
t z
t+z = t+z

we obtain the multiplication rule.

Proposition 1.6.26 Let f € L1(Ry). Then it holds that
Slef0)(z) = [ e~ =Slr(e) (1.6.10)
0
Integrating by parts we deduce the differentiation rule (using Theorem 1.6.28).

Proposition 1.6.27 Let there exist f' a.e. and let f, [ fulfill the conditions of 1.6.1,
Theorem 1.6.29. Then we have

d

SIf)(z) = = - SI/1(z) — 271 f(0). (1.6.11)
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More generally, we have:

Corollary 1.6.14

n—1) (n—2) (n—1)
SID")() = (—=1)"D"SIf)(=) - [(zn”'f«n PR i B (0)} (612)
For the iteration of two Stieltjes transforms we have quite formally
S[Sm](z)zo/(“z)< )i /f (/ e
_ 7log(t/2)f(t) i
t—z
0

Therefore we have under the assumptions that S[f] and S[S[f]] exist the connection

S[S[f) (z) = / 18(1/2) a1, (16.13)

t—z
0

The operational properties can also be formulated for the Stieltjes transform of index g €

R, ; see formula (1.6.5). Without proof we give only the results:

Solf(t —a)l(z) = Selfl(z +a),  a€Ry, (1.6.14)

Solf(0)](2) = b7, [f1(b2),  beERy, (1.6.15)

Soltf()](2) = Sp-1[f1(2) = 28, [f](2), (1.6.16)

Solf'1(2) = 0Sp+1[f1(2) — 271 f(0), (1.6.17)

SulSef](z) = B(Lp+o—1)z7" /tl_Q2F1 (150 + 031 — é)dt, (1.6.18)
0

where B is the Beta function, see equation (1.4.31), and oF; is Gauss’ hypergeometric
function. In this case one also can easily prove an integration rule.

Setting
¢
/f )(t —u)* " tdu, u >0,
0

one can derive
I'(o— )

Solgl(z) = (o) Sonlflz), o> p. (1.6.19)
In this case p = 1 this leads to
Sl [ fau]2) = (e~ V7S,llE), o>t (16.20)
0

For details we refer to [Za], Chapter VIIL

Following [SV] we prepare the proof of a convolution theorem for the Stieltjes transform.
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Definition 1.6.11 As convolution h = f ® g of two functions f and g : Ry — C we define

h(t) = (f®g)(t l/j du+ﬂﬂ/5@) (1.6.21)
0 0
provided that the integrals exist.
Remark 1.6.34 Setting
= / u(—) g~ (t) = u(—)tdu (1.6.22)
0 0

one has f~ =H[1.(t)f(t)], ¢~ = H[1+(t)g(t)], where 1,(t) is the Heaviside function and
‘H is the Hilbert transform, investigated in section 1.7, which follows. From this section we
know that f~, g~ exist if f,g € L1(Ry.), provided that the integrals are understood in the
sense of Cauchy’s principal value (PV').

So we can prove:

Theorem 1.6.31 (Convolution Theorem) Let f,g € L1(Ry) and let the Stieltjes trans-
forms of fg~ and f~g be absolutely convergent. Then there exists the Stieltjes transform
of the convolution f ® g and it holds that

S[f @ g] = S[f]- Slgl. (1.6.23)

Proof. Under our assumptions we have

Ry o

0
Interchanging the order of integration we obtain

N

0\8
S |

I =

S~—

oo o0 oo

f(t)(/(tjti)%—tdu dt+/f O/u+zt(tt) ) )

t—&—z_uiz (O/tf—f—t)z O/g

Slf ®gl(z) =

o\

Remark 1.6.35 In [SV] H.M. Silvastrava and Vu Kim Tuan have proved that for
f€Lly,g€Lly, pg>1andpt+qt=r~1 <1itholds that h € L, and (1.6.23) is

valid.
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1.6.3 Asymptotics

We first would like to investigate the behavior of the originals at +o0.

Theorem 1.6.32 Let f >0 (or f <0) on Ry and let the Stieltjes transform 1.6.1, (1.6.1)
exist. Then it holds that
f(®) = o(1), t — +00. (1.6.24)

Proof. Let f > 0 and set

and

fot) = fo(1 =/tf /tu+1)d<p( ) = (t+1)<p(t)—/t<p(u)du.

Therefore,

=R (-

S
)—‘\
5
<
~—
QU
<

and it follows by the mean value theorem for the integral

fo(t)
; ~ P

fot) =o(t),  t— +oo. (1.6.25)

By differentiation, which is permissible since fy is nondecreasing, we obtain (1.6.24). In the
case of f < 0 we consider g = —f. I

Now we are going to derive the asymptotics of the images at +o0.

Theorem 1.6.33 If the Stieltjes transform (1.6.1) exists, then

D"S[f](z) =o(z™"), = — +oo, n€ No. (1.6.26)
Proof.
1. n > 1: Setting F(z) = S[f](z), = € Ry we have from 1.6.1, Theorem 1.6.28 integrating
by parts
[ [
t
D"F(z) = (=1)"n! | ———<—dr = ) 1.6.2
@ =it [ LS o= et [ e e
0 0
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where the notations of Theorem 1.6.32 and the result (1.6.26) have been used. Again using

Theorem 1.6.32 for arbitrary e € Ry we determine a positive number R so that
|f0(t)| <5t7 te [R,OO)

From (1.6.27) we obtain for z > R

@l )I

DM E @) < Mt 1) [

R

”“ /|fO )t + )

where in the latter integral the nominator was written as (¢t + z) — z. As x tends to +oo
we obtain (1.6.26) in the case of n > 1.
2. n =0: Using 1.6.1, Corollary 1.6.13 with zy = 1 we have

oo

F@) = F) +(1-a) [ L)
0

(t+x)?

dt,

where

¢
[ 1,
u+1
0
For the proof of (1.6.26) in the case of n = 0 it is sufficient to show:

[ AW
lim z dt = F(1) = f1(0).
/

z—400 (t+ x)?
From
T A filt
A'_x/(wrx)?dt / t-l—x dt
0

and since for arbitrary € € Ry there exists a number R € Ry with

|fi(t) = fi(oo)| <e/2,  t€[R,00)
we have

\A|<x/‘f1 )|dt+6/2<5

if z is sufficiently large. I
Finally, we consider the behavior of S[f](z) at z = 0.
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Theorem 1.6.34 Under the conditions of Theorem 1.6.32, the Stieltjes transform F(z) =

S[f1(z) has a singularity at z = 0.

Proof. We consider again only the case that f is nonnegative. Let us assume that z = 0

is no singularity of F(z). Then the radius of convergence of the series

— 1)
Fz)=3 1™ (Gl
(2) n:Of O
is greater than one, i.e., the series
F(—g) = 1 (q (57
(=0 = 2

is convergent for some ¢ € Ry which is taken such that f(¢) > 0. Then by means of
Theorem 1.6.29 and Theorem 1.6.26 we get

O 7 (e+1)" o 7 (e+1)"
Floe) =Y / e O =3+ ) / EEnTti0

Therefore, the series

Z:‘B(n +1) / m Ft)dt (1.6.28)

is also convergent. Since the expression under the integral is nonnegative and since the

series
o0

(e+1)™ 1
2 (D) e = o

n=0
converges for ¢ > € one may interchange integration and summation in (1.6.28) and we have

the convergent integral
o0

)
7

€

But this integral is divergent because of

lim f(t)/(t — €) = +o0.

t—ey

Therefore the assumption that z = 0 is no singularity of F(s) is wrong. {0

1.6.4 Inversion and Application

Now we are going to derive a complex inversion formula for the Stieltjes transform.

Following Widder [Wi.1], Chapter VIII, §7 we need two preliminary results.
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Lemma 1.6.5 Let f € L1(0, R) and let f(0+) exist. Then

R
lim 3/ 1O gy 104 (1.6.29)

for every R € R,.

Proof. We can assume that f(0+) = 0 since

R
. dt R
lim y = lim arctg— =
R— 400 f,2 —+ y2 R—+oc0 i

0

m.\ 3

For arbitrary ¢ € Ry we determine a positive § < R so that |f(t)| < e for t € [0,d]. Then

/ f(@) [ R|f()
t t t
<
’y t2+y2dt“€y/t2+y2+y/ 2
0 5

0

and it follows that

- ft) ™
< —
ylir([)lﬂL 12 4 92 dt) < 2°
0
and this is (1.6.29) in the case of f(0+) = 0. I

Lemma 1.6.6 Let f € L1(0,R) and « € (0, R). If f(x+) and f(x—) exist, then
lim y/(‘f(t)dt: %(f(x—k) +f(33—)). (1.6.30)

Proof.  The result follows from Lemma 1.6.5 by writing the integral in (1.6.30) as the sum
of two integrals corresponding to the intervals (0, z) and (z, R). I

Now we are able to prove:

Theorem 1.6.35 Let f € LI°°(Ry) such that the Stieltjes transform F(z) = S[f](z) con-

verges, then

i FT—iy) — _F(—w + iy)
y—0+ 271

_ %(f(x—i—) +f(@-)) (1.6.31)

for any x € Ry at which f(z+) and f(x—) exist.

Proof. By straightforward calculation we have for R > z

R o0

/+/ dtf11+12.
t—x

0 R

mw

t—x

F(—z —iy) — F(—x + iy) g/
2mi o
0
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From Lemma 1.6.6 we know that

b 1, = J@H) + 1)
y—0+ 2
and we have only to show that
lim I, =0.
y—0+

Set

t
:/f(u)du, 0<t< 0.
0

Then integration by parts leads to

_ —yfo(R 2y°o fo t—:r
e e R e
R

The first term on the right-hand side tends to zero as y — 0+. Denoting the second term
by I3 and using
|f()(t)|<Mt, 0§f<00,

see formula (1.6.25), we have

5| < ——

The integral converges and, therefore, I3 tends to zero as y — 0+ and, hence,

lim I, =0,
y—0+

and the proof is completed. I

Remark 1.6.36 The formula (1.6.31) gives the inversion only for the original f at points

of the positive real axis.

Remark 1.6.37 Formula (1.6.31) may be written symbolically as
f(z) = 2mi) " (F(ze ™) — F(ze™)) (1.6.32)

m an easily understandable manner.

As an application we consider the Stieltjes integral equation

B AO/ tufic

dt, Mz eRy, (1.6.33)
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where f is a given function and u is the solution of the integral equation we are looking for.

Quite formally applying formula (1.6.32) we have
u(z) = (2miN) " (f(ze ™) — f(ze™)). (1.6.34)

One can prove, for example, that a necessary and sufficient condition for (1.6.33) to have a
solution (1.6.34) of L?(R) is that f(2) should be analytic on C \ (—o0,0] and that

/ (') 2dr
0

should be bounded for ¢ € (=7, 7) (see [T.2], 11.8). For further applications refer to [De.6],
section 7.10; [Wi.1], Chapter VIII, sections 25-27; and [Za], 8.10.

1.7 The Hilbert Transform

1.7.1 Definition and Basic Properties

Definition 1.7.12 The Hilbert transform of a function f : R — C is the function f~
defined by

, (1.7.1)
provided that the integral exists.

As space of originals we choose the space L1(R) = L;. One can prove:

Theorem 1.7.36 Let f € Ly. Then the Hilbert transform f~ ezists a.e., provided that the

integral in (1) is understood in the sense of Cauchy’s principal value (PV), i.e.,

ro=Lew) [ 10 D ([ )% o

—oo x+6

The proof is too lengthy to be presented here. We refer to the functional analytic proof
n [BulN], section 8, and a proof by means of the continuation into the complex domain
T — z =x+1iy, y > 0 and by use of theorems on the existence of the limit of analytic

functions defined in the upper half-plane as y tends to +0; see [T.2], section 5.10.

Remark 1.7.38 From (1.7.2) we derive the following form:

oo

@) =< lim /f t)dt:%(PV) / f(%—’_t)dt. (1.7.3)

T d—+0
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Remark 1.7.39 Similar as in the case of the FT, see 1.3.1, Example 1.3.2, the Hilbert
transform f~ of a Li-function f is (in general) not a Li-function. Let f be the Li-function
defined by

fO=Q+t)""  teR.

Then by fractional decomposition we have

1 T —T t 1
~ =—(1 2_1P - .
;@) = 20427 V)/ [t2+1 o f s L

— 00

Considering the integral as (PV) not only with respect to x but also with respect to +00

the last two integrals vanish and we obtain

() =

x
14 22’

such that f~ ¢ Lq.

Remark 1.7.40 If f € L,(R) = L,, p > 1, then we have a stronger result. The Hilbert

transform also exists a.e. and f~ € L,. In the case of p = 2 it holds moreover that

1M = [1L£1]2-

For the proofs we refer to [BuNJ, section 8, or [T.2], section 5.10.

Now we derive the connection between the Hilbert transform on the one hand and the

FT and the Stieltjes transform on the other hand.
Proposition 1.7.28 Let f, f~ € Ly. Then it holds that
FIHIA(z) = isgn(x) F[f](z). (1.7.4)

Proof. We have

oo

(1) @) = fractn [ (

5 (i‘)tdu> dt = i/oo f(u)< 7 Zf_z; dt) du

8 8°—3y

- - - (1.7.5)
1 ) 1TV
- / f(u)e—m< / < dv> du.
T v
Now we have
o0 N 2. o0 )
! / vledy = 2F o (x) = —ngn(x)/ Smydy = isgn(x),
T
—0o0 0 Y
because of (1.4.23). Replacing z by —x we get
Fl(rt) Y(z) = —isgn(z). (1.7.6)
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Together with (1.7.5) we obtain the result (1.7.4).

By quite formal calculation we obtain the connection between the Hilbert transform and

]

the Stieltjes transform; see formula (1.6.1). We have for x > 0

Hm(x):jr7t£tldt:3r[7t£tldt_7£t?dt
0 0

—o00
o0 o0
[ s [ ] L 4
o tere’” t+xe 7” ™ t+x
0 0 0
Similarly we obtain a result in the case of z < 0. So we have I

Proposition 1.7.29 Let f € L1. Then it holds for x > 0 that

HIfI(r) = o [SIF)ae™) + Sl71(re™)] — LS[F(~1)](x), (1.7.7)
and for x <0
HIA)(@) = 5-SU(-2) = 5o [SU-00le™) + SIF0)ehe ™), (179

2

where the integral has to be taken as (PV).

For examples of Hilbert transforms we refer to the tables [EMOT], vol. 2, Chapter
XV or to the tables of Stieltjes transforms [EMOT], vol. 2, Chapter XIV, together with
Proposition 1.7.29.

Now we derive an inversion formula, but only quite formally. The Hilbert transform
(1.7.1) can be written as the Fourier convolution 1.3.3, (1.3.11) of the functions f and g,

where

g(t) = e

it

Using (1.7.6) and the convolution theorem (1.3.29) of the FT we have

(f™)" (@) = isgn(x) f"(x),
or equivalently,
fi @) = —isgn(z)(f7)" (@).
Again using the convolution theorem of the FT (see 1.3.4, Remark 1.3.12) we have
1T
SR i (1.79)

™ t—x
— 00

fz) =
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The result is:

Theorem 1.7.37 Let f, f~ € Li. Then it holds a.e., the inversion formula (1.7.9) or

equivalently

F=—(f). (1.7.10)

Remark 1.7.41 The inversion formula (1.7.9), (1.7.10) is also valid a.e. if f € L,, p > 1.
For the proofs of this result and of Theorem 1.7.37 we refer to [BuN], Proposition 8.2.10 or
[T.2], Th. 101.

1.7.2 Operational Properties

By straightforward calculation we obtain the following elementary results of operational

calculus of the Hilbert transform.

Proposition 1.7.30 Leta € R, 0 #b € R and f € L1. Then it holds that

H[f(t+a)l(z) = f~(z +a), (1.7.11)
HLf ()] (x) = sgn(b) f~ (bx), (1.7.12)

and N
H[Ef (1)) () ::ﬂf”(x)+% / f(t)dt. (1.7.13)

Integrating by parts we obtain a differentiation rule.
Proposition 1.7.31 Let there exist ' a.e. and let f, f' € L. Then it holds that
/ d ..
HI\ ) = 5 (@) (1.7.14)

A convolution theorem for the Hilbert transform was published by Tricomi; see [Tri],

section 4.2. Following [G1V] we have

Theorem 1.7.38 Let f, g, fg € L1 such that their Hilbert transforms f~,g~, (fg)~ belong
also to Li. Setting

oo

(tog@ =" [ [ +g@io - fog0] ;2 1)
(convolution of the Hilbert transform), then (f ® g)~ € Ly and it holds that
(f@g)~ =19 (1.7.16)
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Proof. Under our conditions obviously (f ® g)~ € Ly. Applying the Hilbert transform
on equation (1.7.15) and using the inversion formula 1.7.1, (1.7.10) in the last summand of
(1.7.15) we have

=(f@g9)” =)+ (79" + fg.

Using the connection (1.7.4) between the FT and the Hilbert transform, the definition

(1.3.27) of the convolution of the FT and 1.3.4, Remark 1.3.13, namely,
fregh =2n(fg)",
which holds under our conditions, we have
2 F[h~](@) = 2nF[(fg™)™ + (f79)™ + fgl(z)
= —2misgn(z)F(fg~ + f~gl(z) + 2nF[fg](x)

—isgn(@)[(f" * (97)") (@) + ()" * g")(@)] + (f" + ") (@)
= —sgn(a)[(f" * sgn(z)g")(x) + (sgn(z)f" + g")(@)] + (f" * g")(2)

= [(isgn(x)) " * (isgn(z))g"](x)
[(f7)" * (g7)"] ().

Consequently,
h™ =179~
and this is formula (1.7.16). I

Remark 1.7.42 One can also prove:
Let f€L,, g€ Ly, 1<p,g<oo,p'+q'<l Thenf®ge€L,,rt=pt+t+qg!
and formula (1.7.16) is valid.

A connection between the Hilbert transform and the Fourier convolution is given in:

Theorem 1.7.39 If f,g € L1 and f~,g~ € Ly then

H[fxgl=f"*xg=fxg" (1.7.17)
and

frg=—(f"*g"). (1.7.18)

Proof.  Following [Za] section 14.5.4 we have

H[f*g](x)zi/t—z (/f )dt—i/oof@)(/wz_g(fly)dz)dy

~ [ 1w @ n = ()@
The second half of (1.7.17) is proved analogously. Formula (1.7.18) follows from (1.7.17)
by replacing g with ¢~ and using formula (1.7.10). I
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1.7.3 Applications

Example 1.7.44 We would like to explain a method for the calculation of Cauchy integrals.
Let f,f~ € Ly and set g = [~ in 1.7.2, (1.7.15). By means of the inversion formula 1.7.1,
(1.7.10) this leads to

F& I~ =4 ()2 = (F7) (1.7.19)

But from the convolution theorem (1.7.16) we obtain in the special case g = [~
(fef)~=-ff".
Therefore,
(fofm)™=Urm".
Together with (1.7.19) this can be written in the form

UNQDQ—U@D2=% /f%¥¥Qm. (1.7.20)

Formula (1.7.20) can be applied to evaluate Cauchy integrals in the following manner: If
the Hilbert transform f~ of f is known, then the Hilbert transform of ff~ is [(f~)* — f?]/2.
For example, let

F(t) = 5 exp(=[t)o(),
where Iy is the modified Bessel function of the first kind and order zero. Then from [EMOT],
vol. II, section XV, 15.3, (48) we have

[ (x) = — sinh(z) Ko(|z[)

where Ky is the modified Bessel function of the second kind or the MacDonald function of

order zero. Therefore,

(o}

/ eXP(*W)SiI;hEtiKO(m)IO(t)dt:sinhQ(x)Kg(|x|)— (g) e RB(2).  (17.21)

— 00

Example 1.7.45 Let us look for the solution f of the nonlinear singular integral equation

 fa) %dt—%/%dt:g(x) (1.7.22)

on the real line, where g is a given function. As usual quite formally it can be rewritten in

the equivalent form
fef=g
Applying the Hilbert transform to this equation by means of the convolution theorem
(1.7.16) we get
(f7)?=g".
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Therefore,
[~ =%vy~,
where /g~ denotes that branch of the square root for which Re(\/g~) is nonnegative. Let

g€ Ly, p>2. Then g~ € L, and f~ € Ly, /5. Furthermore, let ) be any measurable subset
of R. Then one can prove that the function fo with the Hilbert transform

f&(m)z{ g~ (x) if e

g~ (x) elsewhere

consists of all solutions of the integral equation (1.7.22); see also [GIV].

1.8 Bessel Transforms

There exist many integral transforms with Bessel functions as J,, Y,, Hl(,l)7 H,SQ), Ky,

and others in the kernel.

We restrict ourselves to three different types of examples. In section 1.8.1 we deal with the
so-called Hankel transform, an integral transform with the Bessel functions of the first kind
and order v, J,, in the kernel, v being fixed. It is closely connected to the n—dimensional
Fourier transform of circular symmetric functions. We point out that the Hankel transform

is a generalization of the Fourier transform.

In section 1.8.2 we investigate the Meijer- or K-transform, a transform with the modified
Bessel functions or MacDonald functions K, in the kernel, v being again fixed. While
the Hankel transforms depend on a real variable, in case of the K-transform the “image
variable” is a complex number. It was first considered by C.S. Meijer in 1940. It is proved

to be a generalization of the Laplace transform.

Another type of transform is investigated in section 1.8.3. Again there are MacDonald
functions in the kernel, but they are of the type K;; and ¢ is the variable of the trans-
forms. Such transforms are called index transforms; see Yakubovich [Ya]. The Kontorovich—
Lebedev transform was first investigated by M.J. Kontorovich and N.N. Lebedev in 1938-
1939 and by Lebedev in 1946.

All the transforms considered in section 1.8 can be used for the solution of boundary

value problems in cylindrical coordinates; see, for example, [Sn.2], [Za], and [Ze.2].
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1.8.1 The Hankel Transform

Definition 1.8.13 The Hankel transform (HT) of order v of a function f : Ry — C is
defined by means of
HAAW) = 120 = [ VT Iula) fa)de, yeRe, v > 172 (181)
0
provided that the integral exists.

Here J, is the Bessel function of the first kind and order v, defined by means of

R e
Ju(z) = kz:;) ERCEDESE arg(z) <, (1.8.2)

see [E.1], vol. 2, 7.2.1, (2).
From (1.8.2) we conclude that

() ~ (x/2)", x — 0+, (1.8.3)
and from [W.2], 7.21, (1) we have
Jy(x) ~ (2/mz)Y? cos(z — yv /2 — 7 /4), xr — +00. (1.8.4)
From (1.8.3) and (1.8.4) we see that v/zJ,(z) is bounded on R, if v > —1/2,
Wzd,(z)| < C,, zeRy, v>-1/2 (1.8.5)

Therefore, we choose as space of originals of the HT the space L;(R;) of measurable

11 = [ 17t

functions on R with the norm

Then we have:

Theorem 1.8.40 Let f € Li(Ry) and v > —1/2. Then H,[f] exists. It is a linear
transform and

Hu[A] < Cull fll- (1.8.6)

Remark 1.8.43 From [W.2], 8.4, (8), or directly from (1.8.2) we have
Jija(z) = (2/m2) % sin 2

and hence, by means of formula (1.3.6) we have
Hogalf) = @/ [ fa)sin(eg)do = 2/m) 2 F 1)) (18.7)
0

Therefore, the HT is a generalization of the Fourier sine transform.
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Remark 1.8.44 There are also other definitions of the HT, for example,

oo

F(y) = /xJuf(xy)dw; (1.8.8)

0
see [Sn.2], (1.1.4).

Remark 1.8.45 The HT is closely connected with the n-dimensional Fourier transform of
radially symmetric functions. Let'y = (y1,y2, -+ ,yn) and (y3 +y3 4+ +32)/? = p and
let f(y) = F(p). Then the n-dimensional Fourier transform

Fulf)(x) = / e £ (y)dys -~ diy,
]Rn

X = (21,22, ..., 2n), (X,¥) = (T1y1 + ToY2 + ... TpYn), depends also only on r = (x5 + 23 +
222 FLlf)(x) = FA(r) and

1—-n)/2 n—1)/2
FA(r) = (2m)0"/24y y[p=D/2(p)]
For details see, for example, [BGPV], 1.1.5.

Remark 1.8.46 For tables of Hankel transforms we refer to [EMOT], vol. 2, Chapter
VIII

For a (quite formal) derivation of an inversion formula for the HT (1.8.1) we write the

Mellin transform of the kernel of (1.8.1),
s— 3 v
2-20(3+5+1)
v s 3 '

F(§ —5 z)
see [EMOT], vol. 1, section 6.8, formula (1) and section 1.5.2, Proposition 1.5.20, formula
(1.5.12). Obviously,

MV J,(2)](s) =

ML =9 = Sy oy

and hence the HT is a Fourier type transform in the sense of 1.5.4, Example 1.5.43. So we

have the inversion formula
@) = [ VI 5 ) dy = 1, 520 (1.8.9)
0
More exactly we have:

Theorem 1.8.41 (Inversion Theorem) Let f € L1(Ry) and of bounded variation in a
neighborhood of a point x of continuity of f. Then for v > —1/2 the inversion formula
(1.8.9) holds.

For a rigorous proof we refer to [Sn.2], section 5-3 or [W.2], 14.12.
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Remark 1.8.47 [t holds that H, = H,*.
Now we prove a Parseval equation for the HT.

Theorem 1.8.42 Let f,g" € Li(Ry), v > —1/2 and f" = H,|[f], g =H, [¢"]. Then

7f dw—/fA (1.8.10)
0

Proof. By means of Fubini’s theorem we have

s

oo o0

7f /g YINTTTy xy)dy)d / 7f )Ty, xy)dm)d

0

/fA(y) 9" (y)dy.
0

0

Now we are going to derive some operational rules of the HT'. In the following we assume

that the transforms under consideration exist.

Proposition 1.8.32 Let f)) = H,[f]. Then it holds that

Holf(ax)l(y) = o= ) (y/a),  acRy, (1.8.11)
Ml F)w) = () W W) ne N, (1.812)
Hy[2va ™ f(2)](y) = ylfLo1 () + [l ()], (1.8.13)

and
Ho2vf|(y) = (v = 1/2)yf (y) — (v +1/2)y £ (). (1.8.14)

Proof. The rule (1.8.11) is proved by substitution.
For the proof of (1.8.12) we use

(z_ldilz)n< Y (2 )) =z"J,(2), n € Ny; (1.8.15)

see [E.1], vol. 2, 7.2.8, (52). Starting with n = 1 and setting z = zy we obtain

v+1/2 £A

v+n (y)} = yy+1/2

%[y zf(x)/zryJ, (vy)de

and this is (1.8.12) in the case of n = 1. The general case n > 1 is proved inductively

making use of (1.8.15).
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For the proof of formula (1.8.13) we refer to
2vd,(z) = Z(Jl,_l(Z) + Jl,+1(z)); (1.8.16)

see [E.2], vol. 2, 7.2.8, (56) and perform the HT on both side of (1.8.16).
Formula (1.8.14) is proved integrating by parts on the left-hand side and using

2‘]1// = dJy—1— Ju+17 (1817)

and
J(2) = Jy_1(z) — %J,j(z); (1.8.18)
see [E.1], vol. 2, 7.2.8, (57), and (54). We omit the straightforward calculation. I

Preparing the proof of a differentiation rule we need some preparation (following [Ze.2],

section 5-4).

Lemma 1.8.7 Let M,, N, be differential operators defined by means of
d

(M, f)(z) = ™2 D" 2 f(z), D, = o (1.8.19)
and
(N, f)(x) = 2" T2 D712 f (), (1.8.20)
where v > —1/2. Furthermore, let
fl@)y=o(z™""Y%), & -0+
in the case of (1.8.19) and
flx) = o(a:*”*l/Q), x — 0+
in the case of (1.8.20) and
f(z) = o(1), xr — 400.
Then it holds that
Ho M fI(y) = yfoha (), (1.8.21)
and
Hua [N fl(y) = =y f). (1.8.22)
Proof. For the proof of (1.8.21) we use [E.1], vol. 2, 7.2.8, (51)
D, [zf”,]u(z)] = —2""J,11(2). (1.8.23)

It follows that
D, [ac_”J,,(;vy)} = —yz "I 41(zy).
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Integrating H, [M, f](y) by parts we have

Ho[M, f1(y) = (zy)'/* ], (xy) f () 0 /(fl?y)l/Qz”Dx[I*”Ju(l"y)]f(x)dif = —yfia (),
0

because the first term vanishes under our assumptions.

Formula (1.8.22) can be proved in the same manner using
D.[2" T, 1(2)] = 2" T, (2); (1.8.24)

see [E.1], vol. 2, 8.2.8, (50). I
Combining the two differential operators of Lemma 1.8.7 we obtain a differentiation rule
for a second-order differential operator. We consider the differential operator S,, defined by

means of
(S, f)(x) = 7V 2D [a* T D™ 2 f(2)]. (1.8.25)

Obviously, from (1.8.19), (1.8.20) we have
S, = M,N,, (1.8.26)
and in another form,
(Su1)@) = 1" (@) = (v* = 1/4)a~2 f(2). (1.8.27)
Combining (1.8.21) and (1.8.2) we obtain:

Proposition 1.8.33 (Differentiation Rule) Let f € L1(R,)NC?(R,) and
f(l') = 0($_V—3/2)’ (Nl,f)(.’L‘) c 0(.7/,—1/—1/2>7 T — 0+
f@), (N, f)(x) = o(1), x— +oo.

Then
Ho[S. 1Y) = =4 £ (y). (1.8.28)

Proof. From (1.8.26) and (1.8.21), (1.8.22) we obtain

HL1S,](y) = yHusa [N f1(y) = =y £ ().

[
Now we are going to derive a convolution for the HT. Following [Za], 21.6 we choose a
slightly modified form of the HT (1.8.1).
Let
J,(x) =2"T(v 4 Da~"J,(z) (1.8.29)

and
1,'2V+1

dp,
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We define the modified Hankel transform 7-ZV by

H,[f](t) /f L (tz)dp, (z). (1.8.31)

We obtain the connection with the HT H,:
H, [TV 2 f(2)](t) = tV Y2 H, [f] (1) (1.8.32)

From the inversion formula (1.8.9) of the Hankel transform we obtain an inversion formula

for the modified version (1.8.31),

L (xt)dp, (1), (1.8.33)

which is valid, provided that f* € Li(R4). It is derived from the integral in (1.8.33)
by straightforward calculation using (1.8.32), (1.8.29), and (1.8.30) and taking note that
Ht = Ha.

Definition 1.8.14 The convolution f x g of two functions f,g associated with the Hankel

transform H,, is defined by means of

//f (x,y,2)dp,(y)dp,(2), (1.8.34)

provided that the integral exists.

The kernel D, is defined as
23V—1F2(V + 1)A2V_1(£L',y, Z)
VAT 1@y

where A(x,y, z) is the area of the triangle whose sides are z,y, z if there is a triangle with

Dl/(x7y’z) =

(1.8.35)

these sides and zero otherwise. The expression for the nonzero part of A is given by
4A(x,y, 2) = [2(22y® + 4227 + 222?) — ot — oyt — 242 (1.8.36)

From [Hi] we have the product formula

(oo}

/jl,(tz)D,,(:r,y,z)dpy(x) = J,(ty)J, (tz). (1.8.37)

0

For the kernel D, we have because of (1.8.37) and J,(0) = 1, see (1.8.29) and (1.8.2):

Lemma 1.8.8 The kernel D, of the product formula (1.8.37) is nonnegative, symmetrical

with respect to its variables and it holds that

/Dl,(x,y,z)dp,j(x) =1 (1.8.38)
0
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Remark 1.8.48 Because of the symmetry of D,(x,y,z) with respect to its variables the

integration in (1.8.38) can be done with respect to the variable y or z.

Let Ly ,,(R4) be the space of measurable functions on Ry with respect to the measure

dp, and let

1£llp, = / (@) ldpy ()
0

be the norm in Ly ,, (Ry). Then we have:

Theorem 1.8.43 (Convolution Theorem) Let f,g € L1 ,,(Ry). Then (f*g) € L1, (Ry)

and
1f* gl <M1 fll1p, - 19]1,0,- (1.8.39)

Furthermore it holds that
Holf %9 = fo - o (1.8.40)

Proof. For the proof of (1.8.39) we have by means of (1.8.38)

15 9ls, = [ 107+ 9)(2)] dpu o)
0

oo

= [ ([ ([ 156101 Dot .24 0) )2 ) o0
0 0 0

— [11@lanuto) [ 19}l dou () = 1], - o
0 0

1,00

For the proof of (1.8.40) we obtain using (1.8.37):

Holf xgl(t) = | (f*9)(=) j,,(tx) dpy ()

Jutta) / / F(5) 9(2) D, .2) dpu () dpu (2) ) dp ()

() [ Tult) D) dp () ) o 1) 2
0

0/
0/
0/
[ 10t donw) [ o) e do () = F(0)- 3,00
0 0

Remark 1.8.49 To complete the above we followed [Za).
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Remark 1.8.50 In [Hi] a more general version is proved. Let 1 < r,s < oo and p~! =

rt+st—1. IfFeL,, (Ry), g€ Ls, (Ry) then h = f x g exists on Ry and

1

Py S ||f||r,pu : Hg

S5Pv "

Moreover, if p= oo then h € C(R,.). Furthermore, (1.8.40) holds.

Finally we consider an application of the HT. We look for a solution of an axially
symmetric Dirichlet problem for a half-space. We look for a solution of Laplace’s equation

in cylindrical coordinates (r, ¢, z) independent of the polar angle ¢:

O?v(r,o) 1ov 9%

— - —+ = = R 1.8.41
or? ror 022 0, mzeRy (1.841)
with the boundary condition
v(r,0) = f(r) (1.8.42)
and with the asymptotic behavior
v(r,z) = 0 as r2 4+ 22 — +o0. (1.8.43)

Substituting
u(r, Z) = \/77’0(7“, Z), g(?") = \/;f(r)

we have from (1.8.41)
0*u 1 0%u

— + — -— = 1.8.44
o Y2t t o 0 (1.844)
with
u(r,0) = g(r), (1.8.45)
and
u(r, z) = o(\/1), r2 + 22 — +o00. (1.8.46)
Applying the HT of order v = 0 to (1.8.44) we obtain
2,/ A
(o) + T g

022
The solution of this ordinary differential equation with the growth (1.8.46) is

uy (p, 2) = A(p)e.

Because of (1.8.45) we have A(p) = g/'(p) and therefore

o
upy (p,z) = g5 (p)e™ "=

Making use of the inversion formula (1.8.9) of HT we obtain the solution of the problem
(1.8.41) through (1.8.43):

oo

v(r, z) = 7“_1/2/gg(p)\/ﬁe_szo(rp)dp. (1.8.47)
0
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1.8.2 The Meijer (K-) Transform

Definition 1.8.15 The Meijer- or K -transform (KT) of a function f : Ry — C is defined

as

Ko [f](s) /f t)Vstk, (st)dt, Re(v) >0, (1.8.48)
0
provided that the integral exists.

Here K, is the modified Bessel function of the third kind and order v or MacDonald
function, defined by means of

K,(z) = /e_ZCOSh“cosh(uu)du7 Re(z) > 0; (1.8.49)
0

see [E.1], vol. 2, 7.12, (21).

Remark 1.8.51 The condition Re(v) > 0 is no less of generality since from (1.8.49) it
follows that K, = K_,,.

Remark 1.8.52 From [E.1], 7.2.6, (43) we have
Ky o(2) = (m/22)2e™*

Therefore, it follows that
K1y2[f1(s) = (x/2) 2L [f)(s), (1.8.50)

and therefore the KT is a generalization of the Laplace transform (LT). It will be pointed
out that the K'T' has operational properties similar to the LT.

Remark 1.8.53 For tables of K -transforms we refer to [EMOT], vol. 2, Chapter X.

The kernel K, has the following asymptotic behavior: From [E.1], vol. 2, 7.2.2, (12), and
(13) we deduce that

K,(z)=2""T'(v)[1 4+ 0(1)], 2z —0, |arg(z)] <7/2, Re(v)>0, (1.8.51)
and from 7.2.4, (38) we have
K,(z) = —log(z/2)[1 + 0(1)], z—0, |arg(z)|] <m/2. (1.8.52)
From the same source, section 7.4.1, (1) we know
K, (z) = (1/22)"2e*[1 + 0(1)], z—0, |arg(z)| <m/2, Re(v)>0. (1.8.53)

From these estimates we obtain
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Theorem 1.8.44 Let f € L¢(R.) and f(t) = 0(t*) as t — 0+ where a > v — 3/2 if
veRy and a > —1 if v = 0. Furthermore let f(t) = 0(e®) ast — +oo. Then its KT of

order v exists a.e. for Re(s) > a.

Now we are going to prove an inversion theorem for the KT.

Theorem 1.8.45 (Inversion Theorem) Let —1/2 < Re(v) < 1/2 and F(s) analytic on
the half-plane H,, a < 0 and s*~Y/?F(s) — 0, |s| — 400, uniformly with respect to arg(s).

For any number ¢, ¢ > a set

f@:i/ﬂm@umw (1.8.54)

Y

(e)

Then f does not depend on the choice of ¢ and
F(s) = K,[f](s),  s€H.. (1.8.55)

Here I, is the modified Bessel function of the first kind and order v; see [E.1], vol. 2, 7.2.2.

Proof. From Cauchy’s integral theorem we have

2/s v—1/2
F(s) = L/LF(z)dz,

211 zZ— 8
I

where I is the contour of Figure 5. Because of

2z 1 1

= +
22—-52 z—s z+s

we have
s—vE1/2 [ oLut1)/2
F(s) = F(z)dz,
()= [ S
1
for the integral with the denominator z+ s vanishes because z = —s is outside of the contour
I. Writing
—1/+1/2
o= s

c+iR

and tending R — +oo we see that | vanishes as R — +o0o under our assumptions and so
H
we obtain

—v+1/2 v+1/2
F(s) =2 /Z F(2)dz.

i 52 — 22
()
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1y

cHR

c-1R

\
g o T
\

Figure 5

Now from [PBM], vol. 2, 2.16.28, 1. we have
U E2E, () (s) = 25~ 412 (52 — 22)
and, therefore,

/fF /\fK (st)tY/21,, (zt)dt)d

o0

~ [ VzsF(2) /tKU ztdt)d
)

( 0

Interchanging the order of integration we obtain

/ VstK, st / VatF(z (zt)dz)dt

and this is (1.8.54), (1.8.55).
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Remark 1.8.54 Formula (1.8.54) is the inversion formula for the KT (1.8.48):

£(t) = % / VL (st) fo (s)ds = KU F,](0). (1.8.56)
()

Now we are going to derive some operational rule for the K'T. In the following we assume

that the transforms under consideration exist.

Proposition 1.8.34 Let f, = K,[f]. Then it holds that

Ko[f(at)](s) = a™ ' f.(s/a), a€eRy, (1.8.57)
KultF()(s) = —s~* /2 L[ 2, o), (1858)

and
Ko 20t F(0)(5) = slfus1(s) — for(5)] (18.59)

Proof. Formula (1.8.57) is proved by straightforward calculation substituting at — .
The basis for the proof of (1.8.58) is

%(ZVK,@) = 2" K, (2);

see [E.1], vol. 2, 7.11, (25). Setting z — st, v — v+ 1, multiplying both sides by /st f(t)
and integrating over Ry one easily has (1.8.58).
Formula (1.8.59) is proved by means of

K,i1(2) — K, _1(2) = 2v27 'K, (2);

see [E.1], vol. 2, 7.11, (25). With z = st, multiplying by v/stf(¢) and integrating on R we
have immediately (1.8.59). I

The derivation of a differentiation rule is similar to the process for the Hankel transform.
Again as in 1.8.1, Lemma 1.8.7 we consider diferential operators M,,, N,, (see formulas 1.8.19

and 1.8.20), and we obtain the formulas
K. [M, f](s) = sfu+1(s) (1.8.60)

Ku+1[NLf1(s) = sfu(s). (1.8.61)

This is proved analogously to the proof of Lemma 1.8.7, using the formulas
D,[z7"K,(zx)] = =27V K, +1(2) (1.8.62)

and
D[ K, 1(2)] = —2" T K, (2); (1.8.63)
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see [E.1], vol. 2, (22), (21). The only difference between (1.8.23), (1.8.24) of 1.8.1, with
J, — K, and (1.8.62), (1.8.63) is that the second formula has also the sign “—” on the
right-hand side. Therefore, in (1.8.61) we have the sign “+” instead of “—” in 1.8.1, (1.8.22).

So we can use the same differential operator as in the case of the Hankel transform and

we obtain:

Proposition 1.8.35 (Differentiation Rule) Let S, be the differential operator 1.8.1,
(1.8.25). Furthermore, let

f@), N, f(t) =o0(t*"Y?),  t—0+
f(t), N, f(t) = O(e™), t— 400, a<1.
Then it holds that
Ko[Suf](s) = s> fu(s). (1.8.64)

Now we define a convolution for the KT" and similar to the case of the Hankel transform
we will use a slightly different form of the KT (1.8.48), following Kréatzel [K].

Instead of K, according to (1.8.48) we consider the transform K, with

o0

K, [f1(s) = gu(s) =2 / (st)"/2K, (2V/50) f(t)dt,  Re(v) > 0. (1.8.65)
0

The connection with the transform /C, can be calculated as follows:
Ko [f](s) = 227V s"7V2C, [tV Y2 £(12))(s). (1.8.66)

The transform K, can be factorized by means of Laplace transforms. From [W.2], 6.22,
(15) we have

K,(z) = z_”_lz”/T_”_l exp(—7 — 22 /47)dr, Re(2%) > 0. (1.8.67)
0

Putting K, according to (1.8.67) into (1.8.65) we have the factorization formula

Kulfl(s) = £ 2L FO)1/7)] (9). (1.8.68)
Analogously substituting v — —v in (1.8.67) and using K_, = K, we have
Kolfl(s) = s“L[7 1 £1111/7)] (5). (1.8.69)

Now we are going to derive a convolution for KT K,

Definition 1.8.16 As convolution fxg of two functions f, g with respect to the K -transform
K. we define f* g by

(F +a)(t) =
L / | / e( / (1= " femaltn - )1 - ) dn)e) o, T
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where D = d/dt and
Re(v) <n< Re(v)+1, meN. (1.8.71)

Using the factorization formula (1.8.68) and then the differentiation rule and the convo-

lution theorem of the Laplace transform we obtain quite formally

oo o0

Ku[f * 9] :s”/e_STT”_l(/e_t/T(f *g)(t)dt)dr

[’} oo t

s e / wrpn( [(e-apioe

0 0

/ ¢ / )" S(€ngl(o — €)1 = n))dn) € dor)de

By means of the differentiation rule of the Laplace transform (1.4.34) applied on the inner

Laplace transform we obtain

Rf #0() = frosy 7 oo /Ooe—w( / (t - oyt
0 0 0

(/Su(/(l —n)"f(mglle =& - n)]dn)df)da)dt)dT

Now applying the convolution theorem of the Laplace transform, Theorem 1.4.11, again on

the inner Laplace integral by means of (1.4.12) we obtain

Eu[f*ng)—s”]Oe - /*”T / e ( / ) F(Engl(t ~€)(1~))dn) d€ ) e )
0

Substituting € — t£, 1 — t~'n we have

o] t

/a[f*gks):s"]oe-”fl( / e ([etrm( [ w-nrstensgla-oe—nldn)at)de)ar.

0

From the similarity rule of the Laplace transform (see formula 1.4.18) we obtain

LIFEN](1/m) = LI /ET),

and analogously

g - on]a/m = -9 e gl (1/0 - &r).

Again applying the convolution theorem of the Laplace transform we have

Kolf*gl(s)=s" [ emTr t( [ & Q/En) (1 =) - Llurg(w)](1/(1 = &)r ) dE )dr
0 0

© 2006 by Taylor & Francis Group, LLC



Bessel Transforms 99
Substituting v = 7€ we have
Rulf «gl(s) = s" L[ LIAA/D](s) L[t Ll g(w)](1/8)] (5)
and by means of the factorization formulas (1.8.69), (1.8.68) we have
Ku[f % gl = K.1f]- K [g)- (1.8.72)

Because of the connection between the Laplace and the K, transform the calculations above
can be justified if K, [f] and K, [g] are absolutely convergent in the point s. Because of the
definition of the convolution (1.8.70) f,¢g must be n-time differentiable. Therefore, we

proved:

Theorem 1.8.46 (Convolution Theorem) Let f,g be n-time differentiable on Ry, n €
N, and according to (1.8.71), and let K, [f] and K, [g] be absolutely convergent in the point
s. Then K,[f = g](s) is absolutely convergent and (1.8.72) holds.

Remark 1.8.55 For details we refer to Kritzel [K].
Remark 1.8.56 As usual, one can prove that the convolution is commutative.

Now we are going to consider an application of the KT. As usual, the KT can be used
for the solution of boundary value problems with respect to the differential operator S, ; see
(1.8.25). We refer to [Za], 23.8, [Ze.2], 6.8, 6.9, and [K]. Here, we give an application for
special functions (see [K]) and we will derive an addition theorem for the Bessel functions
of the first kind with respect to the order. By means of the factorization formula (1.8.69)

for the transform K, we have with v =0
Kolt?/2Js(2vD)](s) = £ Tﬁlﬁ[tp/QJp(Q\/f)](l/T)} (s)-
From [PBM], vol. 4, 3.12.3, 8, we know
LI,V (r ) =7 e

Therefore,
K, [t(#+y+1)/2<]u+u+1(2\/£)} (s) = W
Otherwise
K, [t“/QJH(Q\/Z) * tV/QJV(Q\/E)} (s) = F(éi?;(fyjzl)
= A [ v 0

_ B(M +1,v+ 1)ICO[[t(“+”+1)/2JM+V+1(2\/%)} (s)7

where B is the Beta function; see equation (1.4.21). Applying the inverse IC, transform on

both sides of this equation we have:
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Proposition 1.8.36 Let u,v > —1. Then the Bessel functions J, fulfill the addition theo-

rem

27, 2VE) * 1720, (2VE) = B+ 1,v + D)t 0/2 7 L (2V). (1.8.73)

1.8.3 The Kontorovich—Lebedev Transform

Definition 1.8.17 The Kontorovich—-Lebedev Transform (KLT) of a function f: Ry — C
is defined by means of

oo
dx
KLU0 = [ f@Kale) S, te Ry, (18.74)
0
provided that the integral exists.

Here K;; is the modified Bessel function of the second kind or MacDonald function,
defined by, see equation (1.8.48)
Ki(z) = /e‘rCOSh“ cos(t)udu, x €R,. (1.8.75)
0

From (1.8.75) we have |K;;(z)| < K,(x) and hence,
T d
K] < [ 7@K
0

If the integral above converges then the integral in (1.8.74) converges absolutely and uni-
formly and it defines a continuous function.
From
Ky(z) ~ —logz/2, x — 0+, (1.8.76)

see formula (1.8.52), and

7T)1/2 ~

Ko(x) ~ (% e’ x — 400, (1.8.77)

(see formula 1.8.53) we deduce sufficient conditions for the existence of the K LT.

Theorem 1.8.47 Let f(x)/z € L'*(Ry) and f(x) = 0(e**),x — 4+00,0 < a < 1. Then
the integral (1.8.74) converges absolutely and uniformly and therefore KL[f] € C(R).

In the following we consider the space L_1 1(Ry) = L_1 1 of measurable functions on Ry

such that

T
[£1-1.1 =/|f(a:) ?f (1.8.78)
0

is finite. Then we have:
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Theorem 1.8.48 Let f € L_q11. Then KL[f] exists and
IKLIf1(t)] < Coll fll-1,1-
Moreover, KL[f] € C*(R,).

Proof. From (1.8.76) and (1.8.77) we have x K,(x) < C,, x € R, with some constant C,.
+

Therefore

e \</|f Neko(@) 55 < Collfl-1:
Differentiating (1.8.74) under the sign of integral we obtain KL[f] € C*°(Ry). I

Remark 1.8.57 For the definition of the KLT in various spaces of measurable functions
on Ry see [YaL] and [Ya].

Remark 1.8.58 Sometimes instead of Definition 1.8.17 the K LT is defined by means of

the integral
[ fx
0

see, for example, [Ya] and [Za], sometimes as

7 dx
O/f(x)Kit(x)ﬁ.

Remark 1.8.59 Another version is the transform with respect to the index

znd /f
0
see [Za], section 24.

Now we are going to derive an inversion formula for the K LT, but we do it in an opera-
tional manner, following [Sn.2], section 6.2, or [Za], section 24.4.
Using the Fourier cosine transform (see formula 1.3.5) the integral representation (1.8.75)
can be written as
Ki(w) = Fo[e™ <] ).

By means of the inversion formula of the Fourier-cosine transform (see 1.3.4, Remark 1.3.14)

)
—ax coshu dd?
e f(x
T
0

we obtain

Al

wm
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and this can be written as

Lla! f(2)](coshu) = %]—"C [rcif]] ).

Putting p = cosh u we have

Llz™" f(z) /ICE ) cos(t cosh™ p)dt, (1.8.79)

where cosh™! is the inverse of the function cosh. Making use of the division rule for the

Laplace transform, Proposition 1.4.13, namely,

L1 f(t) /£

by differentiation with respect to p we have

L[f(p) = —(1775[1?_1 f®1(p)- (1.8.80)

Applying this result to (1.8.79) we get

2 T sin(t cosh ™" p)
L[flp) =— thE[f](t)Q—dt. (1.8.81)
71'! \Vpe— 1

From [PBM], vol. IV, section 3.16.1, 1. we know that

-1 [sin(t cosh™ p)

VP

—1 1 - . .
x = cosh™" z has to be used and cos™! is the inverse function of cos.

} (z) = n~ L sinh(nt) Kir(z),
where i cos™!
Therefore, from (1.8.81) it follows (performing the inverse Laplace transform on both

sides of the equation) that

oo

f(z) :j /t51nh(7rt) H(2)KLLf)(t)dt =: /cc—l[/cc[f]] (). (1.8.82)

0

With a more rigorous proof (see [Sn.2], 6-2) we have:

Theorem 1.8.49 (Inversion Theorem) Letz~'f(z) € C(Ry) and zf(x), x ( (= ))
Li(Ry). Then with KL[f] =: F we have

oo

o) = % / sinh(mt) Koy () F (8)dt = KL~V [F](2).
0
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Applying the inversion formula leads to a Parseval relation for the K LT. Assuming that

the integrals in the following exist we have

2 2 o0 oo
= /tsmh (mt)KL[f1()KL[g](t)dt = = /tsmh (rt)KL[f /g )dt
0 0
2 T T dz
:7/ /tsmh (mt) K () KL[f](t)d )?
0 0
T dz
~ [ 1@
0
Among applications we look for a differentiation rule of the K LT. Let
A, = 2?D* + 2D — 22, D= di. (1.8.83)
x
From [E.1], vol. 2, 7.2.2, (11) we have
A Ki(x) = 2Ky (). (1.8.84)

Applying the K LT on A, f and integrating by parts we require that the terms outside of

the integral signs vanish at 04 and at +oo. After straightforward calculations this leads to:

Proposition 1.8.37 (Differentiation Rule) Let f be such that the KLT of f and A.f
exist and furthermore
lim K, = i Ku(2)f (x) = i (PKu(@)) f(@) =0.
, t(z)f(2) gm t(z)f(2) dim t(z) ) f(z)

Then it holds that
KL[ALf](t) = —2KL[f](t). (1.8.85)

Now we derive a convolution theorem for the KLT. First we determine a linearization

formula for the product of two MacDonald functions. From [W.2], 13.71, (1) we have

/exp{ — %(u + #)} Kl,(%y)d—u (1.8.86)

u
0

N | =

Ku(x)Ku(y) =

Substituting v = it, xy/u = z after a straightforward calculation we have the kernel form

of the product formula.

Lemma 1.8.9 Forz,y € Ry, t € R it holds that

K /K .y, 2 z)% = KLIK (2,9, )](0), (1.8.87)
0
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with the kernel

K(z,y,2) = %exp [ ;( + % + %)} (1.8.88)

By means of the product formula one defines a generalized translation operator (G70) T,

Definition 1.8.18 As GTO for the KLT one defines
dz
y) = | K@,y2)f(z)—,  wyeRy (1.8.89)

provided that it exists.

Proposition 1.8.38 Let f € L_1 1. Then the GTO T,,x € Ry exists, it is a positive

linear operator of L_1 1 into itself and it holds that
(i) 1T fll-11 < 2™ I fll-1,-1,
(i) (Txf)(y) = (T, f)(x),

(iii) (To Kit)(y) = Ki(x) - Kit(y),

(iv) KL[T: fI(t) = Ku(x) - KLIf](2).

Proof. T, is obviously a linear operator and it is positive, since the kernel K from (1.8.88)

is positive. From (1.8.89) we have because of exp [ yLQIZZ } <e¥<1
Z y _zz y Z
Tellss = [ ] [ Ka e Z|% <3 /|f ([eEl)T
0 0 0
oo
Putting u := ;’3;, du = %d% ie., % = —%du we have because of Je_“du = 1 the

estimate

i dz _ _
Teloas < 27 [I@I5 = 1w
0

and this is (i).

Formula (ii) follows from the symmetry of K(x,y, z) in its variables and (iii) is nothing
other than the product formula (1.8.87).

Formula (iv) follows by straightforward calculation:

o0

KLIT, (1) :/Kit(y)(/l((sc,y,z)f(z)%)% :/f<2')(/Kit(y) Y, % )C;y)dzz

FEKale) Kin() S = Ku(a) - KLLANO),

I
oy °
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where again the symmetry of K(z,y,2) and the product formula (1.8.87) were used. I
Definition 1.8.19 The convolution f * g of the KLT is defined by means of
y
(f * g)( / f(z , (1.8.90)
y
0
provided that it exists.

Then one can prove:

Theorem 1.8.50 Let f,g € L_1,1. Then f * g exists and it holds that

(i) If*gll—10 < Nfll=11 - llgll-11

and
(i) KLIf = gl = KL[f] - KL[g].

Proof. By means of Proposition 1.8.38, (i) we obtain

Vi dz
1511 < / / 10)I1T2s(0) / fI( [ o))
0
dy
< Hg\l—l,l/lf(y)\? = [l - gll-r.1,
0
and this is (i).

The formula (ii) can be derived by straightforward calculation using Proposition 1.8.38,
(i) and (iv). I
Corollary 1.8.15 The convolution of the K LT is commutative,

frg=gxf

This can easily be proved taking the K LT of both sides of this equation and interchanging

the factors in the product of the images.

Remark 1.8.60 For an extensive investigation of the convolution of the K LT in various

spaces of measurable functions on Ry we refer to [YaL] and [Yaj.
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1.8.4 Application

We consider a boundary value problem for the Laplace equation in cylindrical coordinates.
In cylindrical coordinates {(r,0,z) : 0 <r < oo, 0<6 <21, 0<z< oo} the

Laplace equation can be written

0%u  10u 1 0%u @_

525 " T o (1.8.91)
We look for a solution of (1.8.91) in the wedge
¢ ={(rp): 0<r<ss, 0<p<a a<i)
with the boundary conditions
u(r,0) =0,  u(r,a)=f(r), (1.8.92)

which additionally has the form wu(r,0,2) = e“?u(r,0), o > 0. Putting p = or from
(1.8.91) it follows that v(p,0) = u(p/o, )
0%v(p,0)
06?

where A, is taken from (1.8.83). Performing the K LT on the equation by means of Propo-
sition 1.8.37 we obtain setting KL[v(-,0)](t) = V(¢,0)

— =tV =0.

06?

The solution of this (ordinary) differential equation is

Apv(p,0) + =0,

V(t,0) = A(t) cosh(td) + B(t) sinh(t6).
Applying the K LT to the boundary values (1.8.92) we have
V(t,0) =0, V(t,a)=F(t)=KL{]WL),

and, therefore,

V(t,0) = silﬂ;((t(it) sinh(6t).

By means of the inversion formula (1.8.82) we obtain

oo

o(p, 0) = % / mKit(p)F(t) sinh (61)..
0
Therefore -
u(r, 0) = % / ’mff (o) F(t) sinh(01)dt. (1.8.93)

This is the solution of the boundary value problem (1.8.91), (1.8.92) provided that f has a

sufficient “good” behavior.
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1.9 The Mehler—Fock Transform

The Mehler—Fock transform (M FT) was first considered by Mehler, see [Meh], and later
on by Fock, see [Fo]. It was extensively investigated by Lebedev, see [Le] and the original
papers cited there. It has applications for the solution of integral equations and of bound-
ary value problems, especially of axial symmetrical problems and of problems in torodial

coordinates in the theory of elasticity, see [Sn.2], [Le], and [U].

Definition 1.9.20 The Mehler—Fock transform of a function f : (1;00) — C is defined as

MEF(f(t) / F(@)Prer jo(@)de, (19.1)

provided that the integral exists.

Here P, are the Legendre functions of order v, connected with Gauss’ hypergeometric

function o F} by

1—
Py(@) =2 Fi(-vv+ 1L =

see [Le], (7.3.4). Sometimes the Legendre functions P, with index v = it — 1/2 are called

); (1.9.2)

cone functions; see [Er.1], vol. 1, section 3.14.

Putting z = cosh &, £ € R from [Le], (7.4.1), we have the integral representation

£
V2 cos(tT)
Pj_1/2(cosh§) = 7/ (cosh € — cosh 7)172 dr, (1.9.3)
0
and from [Le], (7.4.7) we obtain
T sin(t7)
Pji_1/2(cosh§) = — coth t) / T cosh§)1/2 (1.9.4)
1
From (1.9.2) we have
Py_q12(1) = 1. (1.9.5)

By means of connection formulas for Gauss’ hypergeometric functions (see [E.1], vol. 1,

section 3.2, formulas 9 and 23) we obtain for z > 1

I(it) i1y (3 it it L,
Py S S A— F(S—21— 21—t
it 1/2(.’£) ﬁF(zt—i—l/Q)( x)Z 1(4 9’ 9’ wx ) (196)
I'(—it) i—1j2,, (it 3 it 1 T o
—_ (2 F; —+ -1 t; .
T ATz =i 22 1(2 po Tyt )
Formula (1.9.6) leads to

Piy_1p(x) = 0(x %), & — +oo. (1.9.7)
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From here we deduce sufficient conditions for the existence of the M FT.

Theorem 1.9.51 Let f € Li°°(1,00) and f(x) = 0(z®),z — +oo for some o < —1/2, then
the MFT F, of f exists.

From (1.9.5) and (1.9.7) we conclude that F, exists too if f(x)/v/x € L1(1,00). This
is certainly fulfilled if f € L1(1,00), the space of measurable functions on (1, 00) with the

norm

£l = /|f(x)|dx < 0.
1

In the following we deal with functions belonging to this space. Then we have:

Theorem 1.9.52 Let f € L1(1,00). Then MF[f] exists and with some constant C

IMFfI] < ClIflh-

Proof.  From (1.9.5) though (1.9.7) we know that |P;;_; /2()| is bounded by some constant

C on [1,00) and therefore

IMFfI()] < C / @)z = ClIf |-

Remark 1.9.61 For the investigation of the M FT in several spaces of measurable func-

tions on (1,00) we refer to [Ya], section 3.

Remark 1.9.62 Sometimes instead of the cone functions (of order zero) Py_y /o the cone

functions of order n,n € N, are used as the kernel in (1.9.1). They are defined by

(1.2 _ 1)n/2

Pt () = 2n

1—
Fl(n—u,n—i—l/—i—l;n—i—l;Tx),
2

with v =14t —1/2, P = P,.

The M FT is closely connected with the K LT; see section 1.8.3, (1.8.74). From [PBM],

vol. III, section 2.17.7, formula 1, we know that

12 T
P _
K, 11/2(ap) = (%) /6 PV P,(y/a)dy, a,p€R,.

a

With a =1, p =, v =it — 1/2 we obtain

Kiy(x) = (n/2)"/? / TPy () dy. (19.8)
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From 1.8.3, (1.8.74) we deduce

oo o0

ke =07f Ko >dx—(/2>1/2/ ) [

—~
3
~
N
—
~
]
L
~
l\')
)
\8
&
<
8
L
~
[V
kh
\_/
U
8
N——
U
<

= (n/2)V/2 / Piv1ja(0) Ll £ ()] () dy.

= \/EM]—'[E[J[\([?H (t),

In the same manner one can derive the formula

V2 cosh(rt)

Therefore, we have the relation

where L is the Laplace transform.

MEF[fI(t) =

Here the integral representation

o

- KLV uLl(x = 1) f(2))(w)](?)-

V/2 cosh(rt) T —
Pzt 1/2( ) /K’Lt 7 T > 1a
0

(see [PBM], vol. 2, section 2.16.6, formula 3) is used. As usual we use the notation

109

TPy /2(y)dy) dx

(1.9.9)

(1.9.10)

Now we are going to derive an inversion formula for the MFT. We do so in a quite

formal, operational manner, following [Sn.2], section 7.5 or [Za], section 25.5.

Substituting in (1.9.1) x := cosh&, f(x) = g(&) we have

oo

Fuft) = [ Pucsjaleosh€)g(€) sinh e

0

By means of formula (1.9.3) we obtain

F(t) =

13
\f / cos(tr)
T

(cosh& — cosh T
0

ﬁ‘& 9?8

T

- \7/?}1[/ (cosgﬁ(g—)sci(r)ﬁli)lﬂ 5} ®),

T
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where F, is the Fourier cosine transform; see formula (1.3.5).
By means of the well-known formulas for the Fourier cosine and the Fourier sine trans-

forms (see 1.3.3, Remark 1.3.7) namely
Falh)(t) = —tF[hl(t)

we have

 V2_d [ g(®)sinh¢
LR, (1) = _7?3 [%/ (cosh & — cosh 1)1/2 de | (1)-

Using the inversion formula for the Fourier sine transform (see 1.3.4, Remark 1.3.14) we

obtain

FLltF, () (r) = _¢1§ddT / - hgéfzscizshhi)l/g 3

This is an integral equation for the function g. By means of 1.4.8, formulas (1.4.64), (1.4.63)
with h = gtFo(t) we have the solution

= ? /fs[tFo(t)](T) (COShT —dZOSh£)1/2

13
\/5 oo oo
=V LF,(t) sin(tr)dt ) dr
™ /(coshT—coshf 1/2 / ) sin(tr
¢ 0
- ﬁ/tFo / sin(tr) dr )dt.
T cosht — cosh§)1/2
0 ¢

Substituting the inner integral by means of formula (1.9.4) we have

g(&) = /ttanh(wt) Pji_1/2(cosh §) F,(t)dt.
0

Resubstituting = := cosh &, g(§) = f(z) we have

o0

fla) = /ttanh(m‘) o1 a(2) Fo(8)dt = MFVE,|(x). (1.9.11)

0

Conditions for the validity of (1.9.16) can be given as follows. Because of

V2

(rtsmba)if2 sin(at + 7/4)

Pitfl/Q(COSh Oé) ~

ast — 400, 0 < a < a < oo; see [Le|, formula (7.11.8), and Problem 14 of Chapter 7.
Therefore,
Pi_1)2(z) = 0t™1%), t— +oo
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and consequently the integral (1.9.11) exists if t'/2F,(t) € L;(R*t). Taking into consider-
ation the asymptotic behavior of Pj;_1/2(x) as x tends to +o0, see formula (1.9.7), we have

the following result:

Theorem 1.9.53 (Inversion Theorem) Let f € Li°°(1,00) such that f(z)//z € Li(1,00).
Furthermore, let /tMF[f](t) € Li(Ry). Then (a.e.) we have the connection (1.9.1),
(1.9.11) between the MFT of an original f and f itself.

Remark 1.9.63 For further conditions for the validity of the inversion formula (1.9.10)
we refer to [Le], section 8.9, [Sn.2], section 7.5, and [Ya], section 3.1.

Remark 1.9.64 The pair of formulas (1.9.1), (1.9.11) is often called the Mehler—Fock the-

orem.

By means of the Mehler—Fock theorem one can easily derive a Parseval-type relation for
the MFT. If F,,G,, are the Mehler-Fock transforms of f and g, respectively, then we
obtain from (1.9.1) and (1.9.10)

/ttanh (mt)F, /g Py_1/o(x )dx)dt:/ /ttanh ) Fo(t) Py—12( ))d
0 1 0

[ @
1
Therefore, we have:

Theorem 1.9.54 Let F, = MF[f] and G, = MFlg] and furthermore f and g fulfill the
conditions of Theorem 1.9.53. Then

/ Ftanh(nt) F, ()G (1) dt = / F(2)g(x)da. (1.9.12)
0 1

In view of applications we look for a differentiation rule of the M FT.
Let
B=D(x*-1)D+1/4, D =d/dx. (1.9.13)

From [E.1], vol. 1, 3.2, (1) we have
B(Ht_l/z(m)) = —tQPit_l/Q(fE). (1914)

Applying the M FT on Bf and integrating by parts we have to look for conditions on f
such that the terms outside the integral signs vanish at 1+ and +oco. After straightforward

calculation we obtain:
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Proposition 1.9.39 (Differentiation Rule) Let f be such that the MFT of f and of

Bf exist and let furthermore

xﬁ%i}rr#oo(mQ —1)f(x)Py_1/2(x) = mﬁ%if}_Fm(xQ - 1)(DPit,1/2(x))f(ﬂc) =0.

Then it holds that
FIBf](t) = -2 MF[f](1). (1.9.15)

The investigation of the convolution structure of the M FT starts as usual with a lin-
earization formula for the product of two cone functions, see [Vi], Chapter VI, 4., formula

(2), which after some substitutions can be written as
Piy_1/2(%) Pig—1/2(y) = W_l/Pit71/2(Z(33’y79))d9’ (1.9.16)
0

with
2(z,y,0) = 2y + [(2% — 1)(y? — 1)]Y/2 cos . (1.9.17)

Substituting 6 by z we obtain the kernel form of (1.9.16). We have

dz = —[(x? — 1)(y* — 1)]"/? sin 0d0

or
do = —[(2® — 1)(y® — 1)]72(1 — cos® 0)~/2d0
_ 2 —1/2
2 2 —1/2 (z — y)
— -1 -1 1l d
(@® = 1) ~ 1) ey G
—(2wyz+1— 2% —y? — 227V,
Here
€ (xy —[(2? = 1)@ = D]Y2 2y + (2 — 1) (¢ — 1)]1/2) =1,y (1.9.18)
Since the left-hand point of this interval is greater than one, we have:
Lemma 1.9.10 For x,y > 1, t € R it holds that
Pucajola) Paayaly) = [ Koy 2)Pacsole)ds = MK (g l)) (1919)
1
with the kernel
~1(9 1= g2 — g2 _ 52)-1/2 I,
K(r,yo) =" Gzt oo =i =70z loy, (1.9.20)
0, otherwise.
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Lemma 1.9.11 The kernel K(x,y,z) is positive and symmetrical with respect to x,y, z.

Furthermore, it holds that

/K z,y,z)dz = 1. (1.9.21)
1

Proof. The positivity and the symmetry follow directly from (1.9.20). Putting ¢ = —% in
(1.9.19), because of P, =1, see (1.9.2), we obtain (1.9.21). I

By means of the product formulas one defines a generalized translation operator (GTO)
T,.

Definition 1.9.21 As GTO for the MFT one defines the operator T, by means of
0= [ Ky (19.22)
provided that it exists.

Proposition 1.9.40 Let f € Li(1,00). Then the GTO T,, © > 1 exists, it is a positive

linear operator from Ly (1,00) into itself and it holds that
(i) 1T fll < £l
(i) (T2 f)(y) = (Ty f)(x),

(iii) (Txpit—l/Q)(y) = Pit—1/2(x) : Pit—1/2(y)

—

(iv) FITo fI(t) = Pig—1/2(x) - MF[f](t).

Proof. Obviously, T, is a linear operator and it is positive since K is positive. For the

proof of estimate (i) we have by means of (1.9.21)

1750l = [| [ Kloas@e|dy < [15GI( [ 5 v.2)a5)az =171

The results (ii)—(iv) follow in the same manner as derived in the case of the KLT in section
1.8.3. I

Definition 1.9.22 The convolution f * g of the MFT is defined by means of
(F + 9)( / f(y Y)dy, (1.9.23)
provided that it exists.

Then one can prove:
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Theorem 1.9.55 (Convolution Theorem) Let f,g € L1(1,00). Then f*g € L1(1,00)
and it holds that

(i) 1+ gl < 1F1 - llglh

and

(i) MF[f * g] = MF[f] - MFg].

Proof. By means of (1.9.23) and Proposition 1.9.40, (ii) and (i) we obtain

|f*gl = /Ool(f * g)(x)|dz = 7‘ /Oof(y) ng(y)dy‘dx

< [1swI( [ mtaids) s = [ 1Ty

o0

< gl [ 17)ldy = 111 - gl
1

Property (ii) can easily be derived by straightforward calculation using Proposition 1.9.40,
(i) and (iv). I

As usual one has:

Corollary 1.9.16 The convolution is commutative, i.e.,
frg=gx*f

For application of the M F'T we refer to [Sn.2], sections 7.8 through 7.12. There boundary
value problems for partial differential equations and dual integral equations are solved. We
restrict ourselves to a simple application of the Parseval relation; see Theorem 1.9.54 formula
(1.9.12). Taking

flx)=e g(x)=e"", a,becR,

from equation (1.9.8) we obtain

Fo(t) = \/ZKit(a)v Go(t) = \/ng‘t(b)-

(o}

7f(x)g(x) do = / e~ (atDegy _

1

Now
67(a+b)

a+b’

So from (1.9.12) we obtain

oo W\/%

‘ . _ —(a+bd)
[ ¢ tanb(et) Kl au(t)at 20+
0
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1.10 Finite Integral Transforms
1.10.1 Introduction

In the preceding section we investigated integral transforms where the images (transforms)
were functions defined on some interval of the real axis or on some domain of the complex
plane. They are sometimes called continuous integral transforms.

Now we deal with integral transforms, where the images are functions defined on an
(infinite) subset of the set Z of integers. They are sometimes called finite integral transforms
(see Sneddon [Sn.2], Chapter 8, Churchill [Ch.2]) sometimes discrete integral transforms (see
Zayed [Za], Definition 4.2). So the concept of finite or discrete integral transforms is not
uniform.

The kernels of the transforms investigated in the following subsections are polynomials
of a complete orthogonal system in some Hilbert space of square-integrable functions (with
some weight) on some interval of the real line. The transforms are the (standardized) Fourier
coefficients with respect to this orthogonal system and quite formally one has an inversion
formula, namely the Fourier series with respect to the orthogonal system in consideration.
We will not develop the Ls-theory. The originals of our transforms are L;-functions on
some interval with some weight.

Such integral transforms were investigated first by Scott; see [Sc], (Jacobi transform,
1953); Churchill, see [Ch.1], Churchill and Dolph [ChD], (Legendre transform, 1954); Conte,
see [Col, (Gegenbauer transform, 1955); McCully, see [MC], (Laguerre transform of order
zero, 1960); Debnath, see [De.1], [De.5], [De.7], (Laguerre transform of arbitrary order,
1960, 1961, 1969); [De.3], [De.4], (Hermite transform, 1964, 1968); and others.

We consider the case of a finite interval, as usual standardized as (—1,1), and this leads
to the Jacobi transform and its special cases, the Chebyshev transform, Legendre transform
and Gegenbauer transform, the case of a semi-infinite interval, standardized as (0, 0o) with
the Laguerre polynomials and the case of the interval (—oo, +00), which leads to the Hermite
polynomials.

The reader interested in some other discrete integral transforms is referred to Churchill
[Ch.2], Firth [Fi], Jerry [Je], Sneddon [Sn.2], Zayed [Za], and others.

Many examples of transforms of concrete functions are given by Debnath, [De.6].

The subsections are organized as follows:
e Foundation (Definition, Spaces of originals, Inversion formula,...)
e Operational Rules (Differentiation, Integration, Convolution theorem)

e Applications (Solution of boundary value problems).
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116 Integral Transforms

The properties of the kernels — the classical orthogonal polynomials — are assumed to be
known to the reader and they can be found in textbooks of special functions and orthogonal
polynomials. We refer mostly to Erdeyi, [E.1], vol. 2.

Designation: The transform %[f] of a function f is written in simplified form as f",

also if the transform depends additionally on parameters

O‘aﬁ7(a;ﬂ)a"': T[f]:(fa)/\:f/\

So f” means another transform in each subsection. The designation (f%)”, — is only used

if in some formula transforms with different parameters appear.

1.10.2 The Chebyshev Transform

Definition 1.10.23 The Chebyshev transform (CT) of a function f : [—=1;1] — C is defined

by means of

T[fl(n) = f(n) = %/f(x)Tn(x)(l — %)%, n € Ny, (1.10.1)

—1

provided that the integral exists. Here T,, are the Chebyshev polynomials (of the first kind),
defined by
T, (z) = cos(n arccos ), n € N,. (1.10.2)

Remark 1.10.65 For the properties of the Chebyshev polynomials we refer to [R] or tables
of special functions, for example [E.1], vol. II, 10.11.

As space of originals we choose the space L{(—1;1), written in abbreviated form as LY,

of measurable functions on (—1;1) such that

1

I£lho =1 [ 1f@I(1 -2 da (1103

-1

is finite. It is well known that it is a Banach space with the norm (1.10.3).

Remark 1.10.66 The considerations in the following also can be extended for originals in

the space Lg of measurable functions on (—1;1), 1 < p < oo with the norm

1
1 Flpo = [+ / F@P(— 222

-1

]l/p (1.10.4)

or in the space C[—1;1] of continuous functions on [—1; 1] with the norm || f]| = sup |f(z)], = €
[—1,1], see [BuS].
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Theorem 1.10.56 Let f € LY and k,n € N,. Then the Chebyshev transform ¥ is a linear

transform and moreover it holds that

(i) [ZLIM) <[ fllro, neN,

() lim T(f(n) =0,
(i) S[fl(n) =0, neN, if and only if f(x) = 0 (a.c),
I, n=k=0
(v)  T[Tn) = % n=k#£0%, nkeN,
0, n#k

Proof. The linearity follows from (1.10.1), as does the estimate (i), taking into account

that |T,,(z)| <1 (see 1.10.2).
Putting = cosf, 6 € [0;7] the CT takes the form

Zfl(n) = %/(f o cos)(#) cos nfdb (1.10.5)

0

and this are up to a constant factor the Fourier coefficients of the function ¢ = f o cos,

which belongs to L;(0; ) if f € LY.
The properties (ii) and (iii) then follow from well-known results of Fourier series theory.

Formula (iv) is nothing other than the orthogonality relation of the Chebyshev polyno-

mials (see [E.1], vol. II, 10-11, (7). I
The result (iii) can be formulated as a uniqueness theorem for the CT.

Theorem 1.10.57 (Uniqueness Theorem) Let f,g € LY and T[f](n) = Z[g](n) for
every n € N,. Then f =g (a.e.).

An inversion formula for the CT can be easily derived by means of Lebesgue’s dominated

convergence theorem.

Theorem 1.10.58 If f € LY can be expanded into a series of the form

fl@)=ao+2) arTi(z)  (ae.), (1.10.6)
k=1

the series being dominatedly convergent, i.e., for each m € N, it holds that
m
‘ Zaka(m)‘ < g(x) (a.e.),
k=0

where g € LY, then ap = T[f](k).

So, under the conditions of Theorem 1.10.58 we have:
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Corollary 1.10.17 (Inversion Formula)
f@) = f20) +2) 7 AR Ti(x) = T (). (1.10.7)
k=1

Now we are going to formulate some rules of operational calculus.

Proposition 1.10.41 Let f € LY and k,m,n € N,. Then it holds that

TTo f1(n) = 5 [ £ m -+ 0) + 7 =) (1.105)
Tlaf(z)](n) = %[f/\(n—l—l)—&-f/\(n— 1)}, (1.10.9)
and, more generally,
TP f (k)] (n) = 27F Zk: (?) 420 — k). (1.10.10)
=
Proof. Formula (1.10.8) follows directly from
T, T, = %[me + T (1.10.11)

which itself follows from (1.10.2) by means of the addition theorem of the cosine function (see
also [E.1], vol. II, 10.11, (34)). The result (1.10.9) follows from the three-term recurrence
for Chebyshev polynomials

Tht1(z) = 22T (x) — Th—1(2), (1.10.12)

see [E.1], vol. II, 10.11, (16). Finally, formula (1.10.10) can easily be proved by mathemat-
ical induction. I

The Chebyshev polynomials are eigenfunctions of the differential operator T defined by

means of p
(Ty)(z) = —(1 —22)Y?2D(1 —2*)?D, D= o (1.10.13)
x
with respect to the eigenvalues n?, i.e.,
TT, = n°T,, n € N,. (1.10.14)

Therefore, we obtain:

Proposition 1.10.42 (Differentiation Rule) Let f € L¢ be two times differentiable
(a.e.) on (—=1;1) and

: _o2\1/2 T _a2\1/2 gy
Tim (1= a?)1V2 () = T (1-2%)2 f'(2) = 0.

Then it holds that
T[T f)(n) = n?f"(n). (1.10.15)
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Proof. We have by means of integration by parts

7)) = —— / DI~ 2) 2 (@) Ty () = / F@)(1 ~ a) /2T (a)da
i/f )T ) e =~ /f () @)1 — %)™ do
e
i
Corollary 1.10.18
TIT* £l(n) = n**T[f)(n). (1.10.16)
Now let
Tf=g.
Then .
(1= )27 (@) = = [ =) (oo
fl@) = — /(1 )12 /(1 )2 () dudu = (T~g)(x). (1.10.17)

Because of T[T f](n) = n?f"(n) = g"(n) we have to assume that g"*(0) = 0.
Performing the Chebyshev transform on (1.10.17) we have

[ (n) = ST g)(n) = n~2g" (),
or:
Proposition 1.10.43 (Integration Rule) Let g € LY and g"(0) = 0. Then it holds that
T[T g](n) = n"2g"(n), n €N, (1.10.18)
where T~ is defined by means of (1.10.17).

Now we are going to derive a convolution theorem for the Chebyshev transform. First
of all we note a linearization formula for the product of two Chebyshev polynomials which

easily can be proved by (1.10.2) and by means of the addition theorem of the cosine function.
Lemma 1.10.12 [t holds that

= %[Tn (my + \/m> + 7, (xy /(1 —22)(1 - yg))] (1.10.19)

Ty (x)Tn (?J)
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Definition 1.10.24 As the generalized translation operator (GTO) we denote the operator
€ [—1;1], defined by

(T2 f)(y) = %[f(xy + m) + f(:cy VA= y2)>], (1.10.20)

y € [-1;1].
Then we have:

Proposition 1.10.44 Let f € LY, z € [~1;1]. Then we have

(1) 72 is a bounded linear operator of LY into itself and |72 f]l1.0 < ||fl1.0s

(i) (2 F)(y) = (7yf) (@),
(iif) 22 f1(n) = Tulz) f" (),

(iv) (72T0) (y) = To(2) T (y)-

Proof. Substituting x = cosf, 0 <60 <7, we obtain

72

1
1
0= [ (vt 0422
™
-1

+ f(yeost — (1= ) 2sing) (1 - y?) 7/ dy.

Putting y = cosp, 0 < ¢ <, after a short calculation leads to

Iz £

o= 0/ [ (costp =) + 1 (coso+0)) |

%/‘f(cos(go—ﬁ))+f(cos(<p+0))‘dg0

—T

;ﬂ/ﬂ‘f(cosw@)’dw;ﬂ/wf(cowﬂdw

T 1
1 _ 1 _a2\-1/25
- / Fleoslde =1 [ 1711~ 4*) P 2dy = |l

™
-1

and this is (i). The symmetry (ii) follows from the definition (1.10.20). With the same
substitutions as in part (i) we obtain easily (iii), and (iv) is another formulation of the
product formula (1.10.19). I

Definition 1.10.25 As the convolution f x g of f and g we denote
1

(F9)@ =+ [ 10w - )y, (11021)

-1
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provided that it exists.

Theorem 1.10.59 (Convolution Theorem) Let f,g € LY. Then f * g ewists (a.c.), it

belongs to LY and
(i) I1f = gllio < 1 fllvo - llgllo,
(i) T(f xg] = f"g",

(iii) frg=g=*f.

Proof. First we are going to prove (i). Obviously, by Proposition 1.10.44, (ii) it holds that

1 1
15 59ha =5 [ | [ 1)o@ - ) 20— o) 2yl
1 -1

1

%/|f(y)|(1—y2)_1/2/|(T§g)(x)|(l—x2)_1/2dxdy

-1

IN

1,0,

11,0 - [lg]

fllio-lITygllio < IIf
where for the latter Proposition 1.10.44 was used, and this is (i). Furthermore, by means

of Proposition 1.10.44, (iii) we have

1
1

*z/f(y)(l —yz)‘l/Q/l(Tﬁg)(x)Tn(w)(l — 2?)7 2 dzdy

T *gl(n) = —

1

— (5 [ 1m0 - ) P 2dy)g ) = £ ) -9 ),

21
The commutativity (iii) follows directly from (ii) by means of the uniqueness theorem,

Theorem 1.10.57. I

Remark 1.10.67 The results can be genmeralized to originals of the spaces Lg; see Re-
mark 1.10.66 and [BuS], Theorem 1.10.56. Here we have to consider functions f € Lg and
g € LY. The convolution belongs to LY and (ii) takes the form

[1,0-

1f* gllp.o < 1 fllpo - llg

Remark 1.10.68 All the considerations of this section are valid also in the space C[—1;1]

(with minor changes).

Now we are going to consider an application. We look for a solution of the initial value

problem
(1-— x2) Uge (2,1) — 2 ux(z,t) = (1 — tz)utt(x,t) — tug(z, t),

u(z, 1) = uo(z), z,t € [-1;1].
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The partial differential equation can be written as
Tou(z,t) = Tyu(z, t),

where T); resp. T; is the operation T defined in (1.10.19) considered as a partial differential
operator with respect to x resp. t. The application of the Chebyshev transform with respect

to x and the use of the differentiation rule (1.10.15) lead to
n*Tlu(, 1)](n) = T, u(- )] (n).
This is the eigenvalue equation (1.10.14) and, therefore, we have
Flu(-,)](n) = anTn(t), n € Ny,
where a,, € R are constants. By means of the boundary conditions we obtain
Tl D)) = Tluo)(n).
From Proposition 1.10.44, (iv) and Theorem 1.10.57 we conclude
an = Tluo](n)
and Proposition 1.10.44, (iii) leads to
Tlu(, D](n) = Tluo) () Tn(t) = Flruol (1)
and by inversion we have
w(a, ) = (T0u,)(z) = %[u (xt + \/m) +u, (:rt — /A=) - t2))},

which is the solution of the initial value problem, if u, is sufficiently smooth.

1.10.3 The Legendre Transform

Definition 1.10.26 The Legendre transform (LeT) of a function f : [—1;1] — C is defined

by means of

1
Bfl(n) = f(n) = §/f(ac)Pn(x)dx, n € Ny, (1.10.22)
S1
provided that the integral exists. Here P, are the Legendre polynomials, defined by
_ (_1)71 a 2\n
Po(2) = 5t (1 =a®)", neN,. (1.10.23)

Remark 1.10.69 For the properties of the Legendre polynomials we refer to [E.1], vol. II,
10.10. We note especially that |P,(z)| <1, =1 <a <1 and P,(1) =1, n € N,.
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As space of originals we choose the space Li(—1;1) = L; of measurable functions on
(=1;1) such that

1
1
15 = 5 [ 1#(e)ldo (1.10.24)
21
is finite. It is a Banach space with the norm (1.10.24).

Remark 1.10.70 The considerations in the following also can be extended to originals in

the space L,, 1< p < oo, of measurable functions on (—1;1) with the norm

1

I =[5 [ 1r@pas] (1.1025)

1
or in the space C[—1;1] of continuous functions on [—1;1] with the sup-norm; see [StW].

Theorem 1.10.60 Let f € Ly and k,n € N,. Then the Legendre transform B is a linear

transform and moreover it holds that

(i) B < £

(i) PBIP:](n) = 5757 Onks

(iii) PBfl(n) =0, n €N, if and only if f(x) =0 (a.e.).
Proof. From (1.10.22) we have the linearity of the transform and also the estimate (i),
since |P,(x)] <1, =« € [—1;1]; see [E.1], vol. I, 10.18, (1).

Property (ii) is nothing other than the orthogonality property of the Legendre polynomi-

als; see [E.1], vol. II, 10.10, (4).
For the proof of property (iii) we consider the mapping

dug () = 3 f(w)do.

It assigns a bounded measure py on [—1;1] to every f € Li. Let g € C[-1;1]. It is
well known that every continuous linear functional on C[—1;1] can be determined in unique

manner by a bounded measure, i.e.,
1
Fylo) = [ a(@)dus(a).
-1

From our assumption we have P[f](n) = Ff(P,) = 0 for every n € N,. Since every
polynomial is a linear combination of the set of Legendre polynomials, we have Fy(p) = 0 for
every polynomial p. By means of the Weierstrass approximation theorem every continuous

function g on [—1; 1] can be approximated by means of polynomials. Therefore, we conclude
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Fr(g) = 0 for every g € C[—1;1] and so we have duys(z) = 0, ie., f(z) = 0 a.e., This
concludes the proof of one direction of the assertion (iii). The proof of the other one is
trivial. I

The result (iii) can be formulated as a uniqueness theorem for the LeT.

Theorem 1.10.61 (Uniqueness Theorem) Let f,g € L1 and P[f](n) = Plg](n) for
everyn € N,. Then f =g (a.e.).

For the derivation of an inversion formula we assume that f can be expanded into a series
o0
flx) = Z cn (),
n=o

the series being uniformly convergent on [—1;1]. Then, as usual in the theory of Fourier

series, by means of Theorem 1.10.60, (ii) we conclude
cn = (2n+1)f"(n).

So we have quite formally an inversion formula for the LT:

o0

f@) =Y "@n+1)f (n)Pu(x) = P )(@). (1.10.26)

n=o

This formula is not valid for originals f € Ly or f € C[—1;1] but for f € L,(—1;1) with
p € (4/3;4); see [StW], section 2. Furthermore, we refer to conditions for the validity
of (1.10.26) given in [NU], Paragraph 8, Theorem 1 for series expansions with respect to
orthogonal polynomials. The proof is too lengthy to be given in this text. In particular, we

have:

Theorem 1.10.62 Let f € C'[—1;1]. Then the inversion formula (1.10.26) holds, the

series being uniformly convergent on [—1;1].
Now we are going to formulate some rules of operational calculus.

Proposition 1.10.45 Let f € Ly and n € N,. Then it holds that

Pl s (@)](n) = 5

n+1[(n—kl)fA(n—i—l)—&-an(n—l)}, (1.10.27)

Proof. Formula (1.10.27) follows immediately from (1.10.22) by means of the three-term

recurrence for Legendre polynomials
(n+1)Pyyi(z) = 2n+ D)zP,(x) — nPp_1(z); (1.10.28)

see [E.1], vol. 1I, 10.10, (9). I
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The Legendre polynomials are eigenfunctions of the differential operator P defined by

means of
d
(Py)(x) = —D(1 — 2*)D, D= (1.10.29)
with respect to the eigenvalues n(n + 1), i.e.,
PP, =n(n+1)P,, n € N,. (1.10.30)

Therefore, we have:
Proposition 1.10.46 (Differentiation Rule) Let f € L; be two times differentiable
(a.e.) on (=1;1) and
. _ 2 _ . _ 2 / —
Jim (1 2%) f(x) = lim (1—2%) f'(2) = 0.
Then it holds that
BIPf(n) =n(n+1)f"(n). (1.10.31)

Proof. The proof is straightforward by means of (1.10.29) and integration by parts, similar
to the proof of 1.10.2, Proposition 1.10.42. I

Corollary 1.10.19

BIP*f(n) = [n(n + 1) (n), k € N,. (1.10.32)
Now let
Pf=g.
Then
(1 =2 f'(z) =~ [ glv)dv
/

and '

flz)=— /(1 — )7t /g(v)dvdu = (P 1g)(x). (1.10.33)

21 S1

Because of P[P [f](n) =n(n+1)f"(n) = ¢g"(n) we have to assume that g"(0) = 0.

Performing the Legendre transform on (1.10.33) we have

7n) = BIP g)(n) = g (),

(n+1)

ie.,
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Proposition 1.10.47 (Integration Rule) Let g € L1 and g”(0) = 0. Then it holds that
PP gl(n) = [n(n+1)]'g"(n), neN, (1.10.34)

where P~ is defined by means of (1.10.33).

Now we are going to derive a convolution theorem for the Legendre transform. First we
note a linearization formula for the product of two Legendre polynomials, which is a special
case of a formula for spherical harmonics, see, for example, [Vi], Chapter III, Paragraph 4,

formula (3).

Lemma 1.10.13 For the Legendre poynomials it holds that

s

P, (z)P,(y) = %/Pn (ﬂcy +vV(1=22)(1-9y2) cosgo)dcp. (1.10.35)

0

Substituting ¢t = cos ¢ we have:

Corollary 1.10.20
1 1
Po(z)P,(y) = = /Pn (zy +t/(1 — 22)(1 — y2)>(1 — 13724y, (1.10.36)
T
-1

Substituting z = 2y + /(1 — 22)(1 — y?)t in formula (1.10.36) we obtain by straightfor-

ward calculation:

Corollary 1.10.21 Let z; = xy + (—1)7\/(1 —22)(1 —y?), j = 1,2, then the product

formula (1.10.36) can be written in the so-called kernel form

1
Pu@)Paly) = 5 [ K(p,2)Pae)ds = B (2.9 (0), (1.10.37)
-1
where
211 — g2 — 2 - 2249 —1/2
K(z,y,2) = Al =2t =yt =P ey, s <z <m, (1.10.38)
0, otherwise.
Lemma 1.10.14 K (z,y, 2) is positive, symmetrical in x,y,z and it holds that
) 1
g/K(x,y,z)dz =1 (1.10.39)

By means of the product formula we define a generalized translation operator (GTO) for

the Legendre transform.
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Definition 1.10.27 Let f € Ly and x € [-1;1]. Then a GTO 7, is defined by means of

1

(o f) () = % / K(a,y, 2)f(2)dz. (1.10.40)

-1

We have:

Proposition 1.10.48 The GTO 1, is a positive bounded linear operator of Ly into itself
satisfying

M lrflh <17
() (h) = @He.
() (P)) = Pale) - Paly),
() Plr)n) = Pal@)f (n),
() dim s = fl=0.

Proof.  Since K is positive (see Lemma 1.10.14) 7, is a positive (linear) operator. Now let

f € Ly. Then we have

1 1
et = [1enwlar=3 [ |3 [ s8]
e Z1

By means of the Hélder inequality, Fubini’s theorem and formula (1.10.39) we conclude

1 1 1 1
It <5 [ 5 [ 1K@y 2y < 5 [ 175 [ Koy
-1 -1 —1 -1
1
=5 [ 1)z = £l
21

The symmetry relation follows from the symmetry of the kernel K; see Lemma 1.10.14.
Formula (iii) is nothing other than the product formula (1.10.37).
For the proof of formula (iv) we use |P,(z)] < 1, « € [-1;1], formula (1.10.39) and

Fubini’s theorem:

11
()N i//f (x,y,2)dzP,(y)dy =
210

»M»—‘

1 1
f(2) | Pu(y)K(2,y,2)dydz
]
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where K(x,y,2) = K(x, z,y) and the product formula (1.10.37) were used.

Preparing the proof of assertion (v) we consider the case f = P,. From (iii) we have
|70 Bn = Pr| = [Pp(z) = 1] [Py.
Since |P,(z)| < 1if z € [-1;1] and P,(1) =1, n € N,, see Remark 1.10.69, we obtain
i [Py~ Pall =0

Since every polynomial is a linear combination of Legendre polynomials the assertion is
valid for polynomials. Since the set of polynomials is dense in Ly there exists for every

€ >0 and f € Ly a polynomial p such that

If =l <e

Therefore, from Proposition 1.10.48, (i) we obtain

I f = fllt < l7ep = pll + |7 f — eplls + [ f = plli < e+ [[7(f = D)1 + € < 3e.

Now we define the convolution of the Legendre transform.

Definition 1.10.28 As the convolution of the Legendre transform we denote

1

(F+9)@) =5 [ F0) o)Wy (110.41)

-1

provided that it exists.

Theorem 1.10.63 (Convolution Theorem) Let f,g € L1. Then there exists f*g (a.e.),
f*xg € Ly and it holds that

(i) 1f*glle < £l - gl
(i) Pl gl = 9",
(iii) frg=gx*f.

Proof. By means of Proposition 1.10.48, (ii) and (i) we have

1 1 1

1 1

3| [t owali <3 [5 [ 1wl 16, 9@idsdy
-1 -1 -1

FHImyglady = (1 £ - llgll

1S * glla

DO =
N =

M| —

1
/1

1
/1
and, therefore, f * g € Ly and (i) is valid.
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The result (ii) follows by Fubini’s theorem, using Proposition 1.10.48 and |P,| < 1:

(f*9)"(n) =

l\’)\»—t

L\H m—-

(f*9)(x) i/l/lf )(7, 9)(w) Py ()

1
— 1 [ 10 [ ng@)Pa@)dody = 5 /f (ry 9)" ()
1

1
/f (w)dy = f(n) - g"\(n)

and this is (ii). The commutativity follows directly from (ii) and Theorem 1.10.61, applying

the Legendre transform to one side of equation (iii). I

Remark 1.10.71 The results can be generalized to originals of the spaces Ly, 1 < p < 0o;
see Remark 1.10.70 and [StW], Lemma 3. For the convolution we have to consider functions

f€L,andge L. The convolution belongs to L, and in place of (i) we have

1F* glly < 171l - gl

Remark 1.10.72 All the convolutions of this section are valid also for functions of the

space C[—1;1].
Finally, we prove a Riemann—Lebesgue type result for Legendre transforms.

Theorem 1.10.64 Let f € Ly. Then
lim f"(n) = 0. (1.10.42)

n—oo

Proof. Let x,, be the largest root of P,. From Proposition 1.10.48, (iv) we obtain
(Tzn f)/\(n) = Pn(xn) f/\(n) =0
and, therefore, from Theorem 1.10.60, (i) it follows that

)] = I(f = 72, )" ()] < I = 72, fll1- (1.10.43)

From Bruns’ inequality, see [Sz], formula (6.21.5), we know that

lim z, =1
and using Proposition 1.10.48, (v), from (1.10.43) with n — oo it follows (1.10.42). I

Now we consider an application. We are looking for the solution of the Dirichlet problem

for the Laplace equation in the unit ball of the three-dimensional Euclidian space. Let
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Ki={x,y,z: 2?2 +92+22 <1}, Ky ={z,y,2: 22 +y*+22 <1} and 9K; = K1 \ K; the
unit sphere. We look for a function u € C?(K1) such that

ASU(%%Z) :ua:a:+uyy+uzz :0; z,y,z GKI
with the boundary condition

lim u(z,y,z) = u,, r=(z% 4%+ 22)Y2

r—1-

Introducing spherical coordinates

x = 1 cos? cos ,
y = rcos¥sin p,

z=rsind, where 0<r<1,0<9<m 0<p<2m,

and assuming that the solution is independent of ¢, with the notation
u(z,y,z) =U(r,9), u,=Uy()

after straightforward calculation we have

02U U1 9
—— T = ———— —(sindUy) = 0.
o T o T g g S0 =0

Putting ¢t = cost, —1<t¢<1 and
U(r,9) =V(rt), U,(9) = V,(t)

after a short calculation we obtain

S50) 4l

ot 8‘/} =0

ot
and the boundary condition is
lim V(r,t) = V,(t).

r—1-
By means of the Legendre transform with respect to ¢ and using formulas (1.10.29) through
(1.10.31) we have quite formally

02V (r,n) AV (r,n)
2 9 )
" or? o or

—n(n+ 1)V r,n)=0

and

lim V*(r,n) = V,\(n).

r—1-—
The differential equation is a Euler type and can be solved by means of V" = r®, and so
we obtain

ar=n or ay=—(n+1).
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Because of the continuity of the solution at » = 0 we obtain
VA(r,n) = c(n)r™

and the boundary condition yields ¢(n) = V. (n).
Applying P! according to (1.10.26) we have

oo

V(rt) = Z(Qn + 1) V()P (t)r™
n=0

U(r,9) = i@n + 1)V P, (cos9)r".
n=0

One can prove that this formal solution of the Dirichlet problem is the solution of our

problem, if u, is sufficiently smooth.

1.10.4 The Gegenbauer Transform
Definition 1.10.29 The Gegenbauer transform (GT) of a function f : [-1;1] — C is
defined by means of

1

PAf](n) = f (n) = /f(x) PMx)dp (z), AERT, neN,, (1.10.44)

-1

provided that the integral exists. Here P are the Gegenbauer polynomials, defined by

—1)n L dn
pX _ ( 1 _ 2y 1— 22 n+A—1/2 1.10.4
n (2) FMJF%)”( e) (1 -a) , meN, (1.10.45)
and
P(A+1
dp () = M(l — 2 2y, (1.10.46)

VAT (A +3)

Remark 1.10.73 Sometimes the Gegenbauer polynomials are defined in another standard-

ization and notation:
(2)\)n

n!

Cp =

n

P, (1.10.47)

see, for example, [E.1], vol. 2, 10.9.
Moreover, sometimes these C; are denoted by P and are called ultraspherical polynomials;

see, for example, [Sz], 4.7. Therefore, one has to look carefully at the definitions.

Remark 1.10.74 For the properties of the Gegenbauer polynomials we refer to [E.1], vol.

2, 10.1. In particular, we note that, in our standardization (1.10.45) we have

|PMx)| <1, ~1<z<1 and P)M1)=1, neN,.
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Remark 1.10.75 In the case of A = % we obtain the Legendre polynomials and (1.10.44)
is the Legendre transform with dp'/?(z) = Ldx, see formulas (1.10.22), (1.10.23).

Since the proofs of many properties of the GT follow the same line as the proofs for the

Legendre transform we will omit these proofs and make remarks only if there are differences.

As space of originals we choose the space L}(—1;1) = L7 of measurable functions on
(—1;1) such that

1
I£10a = [ 1£(@)ldn @) (1.10.48)
21

is finite. It is a Banach space with the norm (1.10.48). We remark that L{ is the space of
section 1.10.2 and L}/Q = Ly; see section 1.10.3.

Lemma 1.10.15 We have
1

mmA:/ﬁM@:L (1.10.49)

-1

Proof.  Using (1.10.46) and substituting @ = 1 — 2t we obtain

1

L TOr1)22 s, T(A41)22 1.1
s = M/[m_tm = DS B (ke g,

0
where the Beta function is defined by equation (1.4.30). Using formula (1.4.31) and the
duplication formula of the Gamma function, see [E.1], vol. I, 1.2, (15),

1
_92:-1_—1/2 1
I'(2z) =271 F(Z)F(Z—i— 2)

we obtain (1.10.49). I

Remark 1.10.76 The considerations in the following also can be extended to originals of

the space L;, 1 < p < oo of measurable functions on (—1;1) with the norm

1

16 = [ [ 15 pan )] (1.10.50)

-1

or of the space C[—1;1] of continuous functions on [—1;1] with the sup-norm; see [VP].

Theorem 1.10.65 Let f € Ly and k,n € N,. Then the Gegenbauer transform P is a

linear transform and moreover it holds that

© 2006 by Taylor & Francis Group, LLC



Finite Integral Transforms 133

(i) B < Il
ni\ h)\

S k=n
. AT DA _ ) V(N n
CN (0 {0’ e

(iii) P f](n) =0, n € N, if and only if f(x) =0 (a.c.).

Proof.  For the proofs of (i) and (iii) look at the proofs of Theorem 1.10.60, (i), (iii) in
section 1.10.3 for the Legendre transform. The formula (ii) is the orthogonality relation of
the Gegenbauer polynomials; see, for example, [E.1], vol. II, 10.9, (7). I

The result (iii) can be formulated as a uniqueness theorem for the GT.

Theorem 1.10.66 (Uniqueness Theorem) Let f,g € L7 and B f](n) = B*[g](n) for
every n € N,. Then f =g (a.e.).

Analogous to the derivation of an inversion formula for the Legendre transform we obtain

quite formally an inversion formula for the GT:

fl@)=>" h%fA(n)P,i(x) =: (mk)fl[m(x). (1.10.51)

This formula is not valid for originals f € L} or f € C[—1;1] but for f € L;‘(—l; 1) with
pe€(2—(1+XAN)712+ A71); see [Po]. Similar to Theorem 1.10.62 we have

Theorem 1.10.67 Let f € C'[—1;1]. Then the inversion formula (1.10.51) holds, the
series being uniformly convergent on [—1;1]. Here f is taken from (1.10.44) and h}) is
defined in Theorem 1.10.62, (ii).

Now we derive some rules of operational calculus.

Proposition 1.10.49 Let f € L} and n € N,. Then it holds that

P [z f(2)](n) = (n+ 20 f (n + 1) + nf (n — 1)] (1.10.52)

1
2(n+X)
Proof. Formula (1.10.52) follows directly from (1.10.44) by means of the tree-term-recurrence
for Gegenbauer polynomials

(n+ 2\ P 1 () = 2(n + NP (z) — nP)_; (2); (1.10.53)

see [E.1], vol. 11, 10.9, (13). I
The Gegenbauer polynomials are eigenfunctions of the differential operator P* defined

by means of
(P y)(z) = —(1 — 2®)2*D(1 — 22) 2 Dy(x) (1.10.54)
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with respect to the eigenvalues n(n + 2X), see [E.1], vol. 11, 10.9, (14), i.e.,

P P} =n(n+2\)P),  neN,. (1.10.55)
Therefore, we have:

Proposition 1.10.50 (Differentiation Rule) Let f € L3 be two times differentiable
(a.e.) on (—=1;1) and

; _ 2\ A3 _ T 25 e
i (1= A () = Tim (1= 22 () =0

Then it holds that

PP fl(n) = n(n + 20) f(n). (1.10.56)
Corollary 1.10.22
PAPM*F(n) = [n(n+ 20" (n), keN,. (1.10.57)
Now let
Pf=g
Set
wy(z) = (1 —2%)2 (1.10.58)
Then .
_ g2 s _ _ 9(v) .
(1-22+Dyf /luu(v)d
and . .
_ —u2)A 3 g(v) vdu —: (P Lol
fz) = /(1 ) /w/\@)d du =: (PN tg(x). (1.10.59)

1 1
Because of PP f](n) = n(n + 2\)f"(n) = g"(n) then ¢g"(0) = 0. By means of the GT
from (1.10.59) we have

7 ) = R P gllm) = ——

mg/\("),

ie.,

Proposition 1.10.51 (Integration Rule) Let g € Ly and g (0) = 0. Then it holds that
PPN gl(n) = [n(n+20)] 71" (n), neN, (1.10.60)

where (PN~ is defined by (1.10.59).

Preparing the definition of the convolution for the GT we note a linearization formula for

Gegenbauer polynomials, see [Vi], Chapter IX, Paragraph 4, (2).
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Lemma 1.10.16 For the Gegenbauer poynomials it holds that

A+3)

P VA -22)(1-y )P tdp.  (1.10.61
fr()/ (nyr x2 cosgp) sin ) . (1.10.61)

P ()P (y) =

Substituting t = cosp we have

Corollary 1.10.23

PNx)PM(y) /P,ﬁ nyrt\/ 1— 22)( ) 22=3dt. (1.10.62)

-1

Substituting z = 2y + t /(1 — 22)(1 — y?) in formula (1.10.62) we obtain by straightfor-
ward calculation the kernel form of (1.10.61):

Corollary 1.10.24 Let z; = xy + (—1)7/(1 — 22)(1 — y2), j = 1,2, then

1

PY@PA) = [ 1wy PN 2) = BN w90, (1.10.63)
Z1
where
I2(A+1) [(1—7;2)(1—y2)(1—z2)]1/2**
K’\(x,y,z) - F(A)F(A2+1) [—a2—y?—22+42zyz[- > ° z21 <z <z (1.10.64)
0, otherwise.

From (1.10.64) and (1.10.63) with n = 1 because of P;' = 1 we obtain immediately:

Lemma 1.10.17 K*(z,y, 2) is positive, symmetrical in x,y, z and it holds that

1

/K’\(x,y,z)du’\(z) =1. (1.10.65)

-1

In the same manner as in sections 1.10.2 and 1.10.3 we are able to define a generalized

translation operator (GTO) for the Gegenbauer transform.

Definition 1.10.30 Let f € Ly and x € [-1;1]. Then a GTO 7)) for the GT is defined by

means of
1

(2 F)(y) = / KNy, 2)f(2)dp2 (2). (1.10.66)

—1

We have

Proposition 1.10.52 The GTO 7 is a positive bounded linear operator of L7 into itself
satisfying

© 2006 by Taylor & Francis Group, LLC



136 Integral Transforms

(i) 172 fllx < [1F 1l
(i) (2N ) = (7 f)(2),
(iif) (2 P () = P (=) - P (y),

(iv) P2 fl(n) = PR () f* (),
() w2~ flia =0,
The proof follows the same line as the proof of Proposition 1.10.48 in section 1.10.3.

Definition 1.10.31 As the convolution of the Gegenbauer transform (GT) we denote

1

(frg)(x) = /f(y)(Tig)(y)duA(y% (1.10.67)

-1

provided that it exists.
Analogous to Theorem 1.10.63, section 1.10.3 one can prove:

Theorem 1.10.68 (Convolution Theorem) Let f,g € L. Then there exists fxg (a.e.),
f*g¢€ Ly, and it holds that

(i) £ *gllia < Il gl
(i) PAS gl = 9",
(iii) fxg=gxf.

Remark 1.10.77 The results can be generalized to originals of the spaces L;‘, 1<p<oo;
see Remark 1.10.76 and [VP]. For the convolution we have to consider functions f € L;‘

and g € L. The convolution belongs to L;} and in place of (i) we have
1 # gllpa < Fllpx - llglla

Remark 1.10.78 All the considerations of this section also are valid for functions of the
space C[—1;1].

Finally we have a Riemann-Lebesgue type result for Gegenbauer transforms.

Theorem 1.10.69 Let f € Ly. Then

lim f(n) = 0. (1.10.68)

n—oo
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The proof is analogous to the proof of Theorem 1.10.64 in section 1.10.3 in the case of

the Legendre transform.

Proof. 1In the case of 0 < A < % the proof follows the line of the proof of Theorem 1.10.64,
section 1.10.3. Only the Bruns’ inequality for the roots of the Gegenbauer polynomials is
here; [Sz|, formula (6.21.7). In the general case (A € R1) we refer to [VP].

For an application we refer to [De.6], section 13.6. I

1.10.5 The Jacobi Transform

Definition 1.10.32 The Jacobi transform (JT) of a function f : [—1;1] — C is defined by

means of
1

B0 = 70 = [ SR @O o), (110.69)

—1

where a > > —1/2, n € N,, provided that the integral exists. Here R%a’ﬁ) are the Jacobi

polynomials, standardized in such a manner that

RE(a) = g (1= (1 ) (=0 0% =) (L10.70)
and
dﬂ(a”g)( ) = QGF(aF—f—al_;Fl()ﬂ ) (1—2)*(1 4 z)’dz, (1.10.71)
where

a=a+p+1. (1.10.72)

Remark 1.10.79 Sometimes the Jacobi polynomials are defined in another standardization

and notation:
(a+1),

P (@) =
n:

R (1) (1.10.73)

see, for example, [E.1], vol. 2, 10.8. Here one also can find all important properties of these

polynomials.
Remark 1.10.80 In our standardization we have

|IR@A ()] <1, —1<x<1 and R™P(1)=1,neN,;
see [Sz], (7.32.2).

Remark 1.10.81 Ifa=0= )\ — % one gets the Gegenbauer polynomials P), see 1.10./,
(1.10.45) in particular for a« = 8 = 0, one gets the Legendre polynomials, see formula
(1.10.2) and for a =3 = f% the Chebyshev polynomials, see formula (1.10.2).
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Lga:ﬁ)

As the space of originals we choose the space Lﬁ“’ﬁ )(—1; 1) = of measurable func-

tions on (—1;1) such that

1

1f111,a.8) =/|f(w)|du(“’5)(x) (1.10.74)

-1

is finite. It is a Banach space with the norm (1.10.74).

Lemma 1.10.18 We have
1
(1011 (08) = /dff"ﬁ)(x) =1. (1.10.75)
-1

Proof. The proof follows the same line as the proof of Lemma 1 in section 1.10.4. Sub-
stituting * = 1 — 2¢ and using the definition of Euler’s Beta function and the duplication

formula of the Gamma function the result (1.10.75) is derived. I

Remark 1.10.82 The considerations in the following also can be extended to originals of

the space L,(,a’ﬂ) , 1 < p < oo of measurable functions on (—1;1) with the norm

1

/
£l = [ [17@Pau @] (1.10.76)

-1

or of the space C[—1;1] of continuous functions on [—1;1] with the sup-norm.

Theorem 1.10.70 Let f € Lga’ﬁ) and k,n € N,. Then the Jacobi transform P(*7) is a

linear transform and moreover it holds that

(i) (B < N F 10,

n!l'(a+1)T(a+1)T'(n+8+1) _. h(aﬂ) k=n
(11) ;B(aﬂ) [Rl(ga’ﬁ)](n) — ) T(B+D)T(n+a)L (n+a+1)(2n+a) ~ "7 )
0, k#mn,

(iii) PEA[fl(n) =0, n €N, if and only if f(z) =0 (a.e.).

Proof. The property (i) follows directly from the definition (1.10.69) and \R%a’5)| < 1; see
Remark 1.10.80. Property (ii) is the orthogonality relation of the Jacobi polynomials; see
[E.1], vol. 2, 10.8,(4), taking note of the standardization (1.10.73). The proof of (iii) follows
the same line as the proof of 1.10.3, Theorem 1.10.60, (iii). I

The result (iii) can again be formulated as a uniqueness theorem for the JT.

Theorem 1.10.71 (Uniqueness Theorem) Let f, g € Lga‘ﬂ) and B[ f](n) = PP g](n)
for everyn € N,. Then f =g (a.e.).
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For the derivation of an inversion formula we assume that f can be extended into a series

f@) =) eaRY(2),

n=o

the series being uniformly convergent on [—1;1]. Then as usual in Fourier series theory by
means of Theorem 1.10.70, (ii) we have

1

= 7}7/1(10[,6) f/\ (n)

Cn

So quite formally we have an inversion formula for the JT:

fl@)=3 h(im FA )R (z) =: (qs<aﬂ>)_1[fﬂ(x). (1.10.77)

n=o

Again, as in section 1.10.3, from [NU], § 8, Theorem 1 one has:

Theorem 1.10.72 Let f € C[—1;1]. Then the inversion formula (1.10.77) holds, the
series being uniformly convergent on [—1;1]. Here f" is taken from (1.10.69) and R s
defined in Theorem 1.10.70, (4i).

Now we are going to formulate some rules of operational calculus.

Proposition 1.10.53 Let f € Lga’ﬁ) and n € N,. Then it holds that

(B,2)
@B F(—a)(m) = (—1yn D10,
BOA ) = (" B ) (110.78)
FD S0 +1) =PI )n) - T g9 ) (110.79)

@t 1) = — 2 tatl s - "2 L@s i,
BN f](n+1) = T () - T 7). (11080
PO = P g0 ) + DLty a0y

a+1 a+1

2(n+a)(n+a+1)
2n+a)2n+a+1)

PO f(2)](n) = PO (n+1)

f? — a? .
T onta- 1)(2n+a+1)q3( Df1(n) (1.10.82)
2t D) o (),

2n+a)2n+a—1)
where the value a is taken from (1.10.72).

Proof. The proof is straightforward using appropriate formulas for the Jacobi polynomials;
see [E.1], vol. 2, 10.8, (13), (32), (23), (11), the proof of (1.10.78), (1.10.79), (1.10.80), and
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(1.10.82), respectively. Formula (1.10.81) follows from (1.10.79) and (1.10.80) by subtrac-

tion. I

The Jacobi polynomials are eigenfunctions of the differential operator P(®%) defined by
means of

(P<aﬁ>y) (r) = —(1—2)~%(1 +2)PD[(1 - z)**+1(1 + x)ﬁ“D] y(z) (1.10.83)

with respect to the eigenvalues n(n + a); see [E.1], vol. 2, 10.8, (14), i.e.,
PR pleB) — nin+a)PP  neN,. (1.10.84)

Therefore, we have:

Proposition 1.10.54 (Differentiation Rule) Let f € Lga”@) be two times differentiable
(a.e.) on (—1;1) and
lim (1 —2)*"' (1 +2)P M f(z) = lim (1 —2)°T (1 +2) T f(z) = 0.

r—=+1 r—+1

Then it holds that

PR PB) fl(n) = n(n+ a)f(n). (1.10.85)
Corollary 1.10.25
PEA (PO f1(n) = n(n+a)]F A (n),  keN,. (1.10.86)
Now let
Pelf =g,
and let
w(z) = (1 —z)*(1 +z)°. (1.10.87)

Then we obtain

and
f(z) = — /[(1 —u?)w(u)] ! /w(v)g(v)dvdu =: (PP g (). (1.10.88)
Because of

PP f(n) = n(n+a) f*(n) = g"(n)

we require that g (0) = 0 is valid. Applying the Jacobi transform to both sides of equation
(1.10.88) we have:
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Proposition 1.10.55 (Integration Rule) Let g € Lga’ﬁ) and g"(0) = 0. Then it holds
that
PP Tl (n) = n(n+a)] g (n),  neN, (1.10.89)

where (P(9)=1 s defined by (1.10.88).

Now we are going to define a convolution for the Jacobi transform. First, we note a

product formula for Jacobi polynomials; see [Koo].

Lemma 1.10.19 Let o > > —1/2 and z,y € [-1;1]. Then for the Jacobi poynomials it
holds that

R%a,ﬁ) (I)Rﬁlaﬁ)(y) _ //Rglaﬁ) {%(1 +z)(1+y) + %(1 —z)(1—y)r? (1.10.90)
00 o

+(1- x2)1/2(1 — y2)1/2r cosf — 1]dm(a’ﬁ) (r,0),

where

(a.8) _ 2l(a+ 1) o2Na—B-1,2041 /0 020
dm (r,0) = (e AT(G © 1/2)(1 %) r2P+1 (sin 6)*" drd. (1.10.91)

Substituting (r,0) with (z,¢) by means of

V2rcos 0+ [(1+ z)(1 +y)]V/? = (22)% cos p
[(1—2)(1—y)]"?rsing = (22)"/%singp
we obtain formula (1.10.90) in the so-called kernel form, first proved by Gasper; see [Ga.1],
[Ga.2].

Lemma 1.10.20 Let o > 3> —1/2, a > —1/2, x € (—1;1). Then

1
RED @ RED ) = [ KOO0,y 2) RO (2) D). (1.10.92)
-1

The kernel K(P) s well defined. It is positive, symmetrical with respect to x, y, z and it

holds that )

/me (@9, 2)dp @B (2) = 1. (1.10.93)

-1

Remark 1.10.83 For details on the kernel K(“%) we refer to [Ga.1], [Ga.2].
Remark 1.10.84 Here and in the following we assume o > 3 >1/2, «a > —1/2.

In the same manner as in sections 1.10.2, 1.10.3, and 1.10.4 we are able to define a

generalized translation operator (GTO) for the Jacobi transform.
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Definition 1.10.33 Let f € Lga’ﬁ). Then a GTO Tm(aﬁ) =: 7, is defined by means of

1
(T2 f)(y) = /K(“’ﬁ)(w,y,Z)f(z)du(“ﬁ)(z). (1.10.94)

21
Then we have

a,0)

Proposition 1.10.56 The GTO 7, is a positive bounded linear operator of Lg into itself

satisfying

D 7eflos) < 1),
(i) (H) = (@),

(i) RV (y) = RO (@) RO (),
i) PO fln) = R (@) (),

(V) mligli ||Tzf - f”L(aﬂ) =0.

Proof. The proof is analogous to the proof of Proposition 1.10.48 in section 1.10.3 in the
case of the Legendre transform because the properties of the Legendre polynomials and of

the kernel are the same in the case of the Jacobi polynomials. Therefore, we omit the proof.

0

Definition 1.10.34 As the convolution of the Jacobi transform we denote f * g defined by

1

(f * 9)(x) = / £ () (729) (@) dn P (3), (110.95)

—1

provided that it exists.

Analogous to Theorem 1.10.62, section 1.10.3 one can prove:

Theorem 1.10.73 (Convolution Theorem) Let f,g € Lga,g)‘ Then there ezists f x g
(a.e.), fxg€ Lga’ﬁ) and it holds that

(i) I1f*9ll1,a,8) < 11,8 - 19l a,8),
(ii) PR [fxg] = A g",
(iii) frg=gxf.
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Remark 1.10.85 Because of the equivalence of (1.10.90) and (1.10.92), (1.10.93) for
a> [ >—1/2 we have

s

1 1 —x — 7‘2
(2 )y 0// S+ a)(d+y) + 51 —a)(1~y) (1.10.96)

+ (1= 2)Y2(1 =y % cosh — 1] dm P (r, 0)drdo,
where dm'®P)(r,0) is taken from (1.10.91). Because the expression for the kernel K(®#)
in formula (1.10.92) is very complicated and for the proof of Proposition 1.10.56 and The-

orem 1.10.73 one needs only properties of the kernel proved in [Ga.1], [Ga.2] we have with
(1.10.96) an explicit expression for 1,, and therefore also for the convolution f+g in (1.10.95).

Remark 1.10.86 The results can be generalized; see [Ga.2]. Let f € Lz(ja”ﬂ),g c L((f‘ﬁ) and
r1 zp_l + q_l — 1. Then f *g € Lﬁo"ﬁ) and

1F % glrsy < WUy 19, ca-
In particular, if f € Lé""ﬁ) and g € Lgo"ﬁ)} then f*g € Lz()aﬁ)‘

Remark 1.10.87 All the considerations of this section are also valid in the space C[—1;1]

of continuous functions on [—1; 1] with the sup-norm.

Finally we explain an application. Let us look for a solution of

(1- :EQ)% — o+ (a+ 2)x] 8u((9:1; t = g I(;(;’t)

where @ > —1, =z,t € Ry and with the initial conditions

Ou(x,t)

u(z,0) = uo(x), praml AR

= u(x).

Applying the Jacobi transform §(*0) with respect to x to the differential equation, by
means of (1.10.83), (1.10.85) we get

p(0) [%} (n) = —n(n + o+ )P u(-, )] (n)

or
52 ‘B(“ Oul-t)](n) + n(n + a + RO (u(-, )] (n) = 0.
The solution of this ordinary differential equation (with respect to t) is
PO [u(-, )] (n) = ¢1 cos ( n(n+a+ 1)t) + co8in ( n(n +a+ 1)t>. (1.10.97)
From the (transformed) initial value condition we obtain

c1 = PO](n), e = D)) (1.10.98)

nn+a+1)
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Applying the inversion formula (1.10.77) to equation (1.10.97) we have
oo 1
- . X (,0)
u(z,t) = g ) {cl (n) cosv/n(n+ a+ 1)t + ca(n)siny/n(n +a+ 1)4 Ry% (z),

n=0 '‘n

where ¢1, co must be taken from (1.10.98).
This is the solution of the initial value problem above provided that u,,u; are sufficiently

smooth.

1.10.6 The Laguerre Transform

Definition 1.10.35 The Laguerre transform (LaT) of a function f : [0;00] — C is defined

by means of N
La®[f](n) = [ (n) = /f(x)Rﬁ(a:)dw“(:c), (1.10.99)
0

where a« > —1, n € Ny, provided that the integral exists. Here RS are the Laguerre

polynomials of order a and degree n, standardized in such a manner that

Ly (x)
RO () = =2 (1.10.100)
L3(0)
where p
e} _ ewm—a n( . —x, .nta _
LY (x) = oy D" (e ®z"T), D= e (1.10.101)
are the Laguerre polynomials in the usual designation and
1
Ly (0) = {etla Z, L3 (1.10.102)
Furthermore,
dw® (z) S (1.10.103)

= T
Remark 1.10.88 From [E.1], vol. 2, 10.18, formula (14) we have with (1.10.100), (1.10.102)
Ry (x)| <%, a>0 (1.10.104)

and
Ry(0)=1, a>-1

Remark 1.10.89 We follow Gérlich and Markett throughout this section; see [GGM].

As the space of originals we choose the space L o (Ry) = L1 4o of measurable functions

on R such that
fll1we = / |f(x)]e™ 2dw® () (1.10.105)
0

is finite. It is a Banach space with the norm (1.10.105).
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Lemma 1.10.21 We have
11w = 1.

Proof. Substituting ¢ = F in (1.10.105) and using the integral formula for the Gamma

function, see formula (1.4.11), we obtain the result: I

Remark 1.10.90 The considerations in the following also can be extended to originals of

the space Ly e, 1 < p < oo of measurable functions on Ry with the norm
p/2 a+1 B 1/p
1fllp = If e P Patda|

see [GoM].

Theorem 1.10.74 Let I’ € Ly o and k,n € N,. Then the LaT is linear and moreover it
holds that

(i) [La®[f](n)] <

(ii) La®[R}](n) = m Okn =t Nn,aOkn -

, a=0,

Proof. 'The property (i) follows from (1.10.99), (1.10.105) and
|[Rp(z)] < €%, a>0;

see Remark 1.10.90.
Property (ii) is the orthogonality relation of the Laguerre polynomials (see [E.1], vol. 2,
10.12, II) taking note of (1.10.100), (1.10.102), and (1.10.103). I
Now we formulate (without proof) an expansion theorem for series in Laguerre polyno-
mials, particularly a general theorem for the classical orthogonal polynomials; see [NU], §8,

Theorem 1.

Theorem 1.10.75 Let f € C1[0;00) and let furthermore the integrals

[f(2))?dw®(x) and / 1? & dw® (z)
0
be convergent. Then we have the inversion formula
= caRp(x) =: (La®) 7 [f")(x)
n=0

with
Cp = f/\(n)/hn,om
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the series converging uniformly on every interval [z1,x2] C Ry.

Directly we obtain:

Corollary 1.10.26 It holds that £a®[f](n) = 0 for every n € N, if and only if f(x) =
(a.e.).

The result can be formulated as a uniqueness theorem for the LaT":

Theorem 1.10.76 (Uniqueness Theorem) Let f, g fulfill the conditions of Theorem 1.10.75
and let
La®[f](n) = La®[g](n) for every n € N,.

Then f(z) = g(x) (a.e.), i.e., f =g.

Now we are going to formulate some rules of operational calculus. The Laguerre polyno-

mials are eigenfunctions of the differential operator L® defined by means of
(L%y)(z) = —e"z~*D(e *2*THD, D =d/dx (1.10.106)
with respect to the eigenvalues n, i.e.,
LRy =nR;, n € N. (1.10.107)
From (1.10.107) we obtain:

Proposition 1.10.57 (Differentiation Rule) Let f, f' € Ly o and f be two times dif-
ferentiable (a.e.) on Ry. Then it holds that

La®[L*f](n) = nf"(n), n € N. (1.10.108)

Proof. By means of integration by parts we have from (1.10.99) and (1.10.103)

£ L 00) = ~grprpiagy | Dl DI @R (@)
0

)
_ —x o/+1 OO / —'r a+1D [}
2a+1ra+1 { f'( +/f Ry (w)de
0
_ —x oc-‘rl « oo e~ a+1 «a
_ 2a+1r ey { F(x) DR /f @ DRn(:c)>da;
0

/ F@) LR (2)dw® (z) = na®[f](n).
0
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Corollary 1.10.27
La®[(L*)* fi(z) = n" [ (n),  kneN (1.10.109)

Now let L*f = g. Then

x

e Tt (2) = —/g(v)e‘”uadv,

0

and
T u

f(z) = —/euu*a’l/g(v)e*“v“du = (L) g(x). (1.10.110)

0 0

Now we apply the LaT (1.10.99) to both sides of (1.10.110). Because of (1.10.108) we have
g"(n) =n f*(n) and so we require that g (0) = 0. This yields:

Proposition 1.10.58 (Integration Rule) Let g € Ly o and g™ (0) = 0. Then it holds
that

La*[(L*) tg](n) =n"'g"(n), neN, (1.10.111)

where (L*)~t is defined by means of (1.10.110).

Preparing the definition of a convolution for the LaT we note a product formula for

Laguerre polynomials given by Watson; see [W.1].

Lemma 1.10.22 Let a > —1/2 and z,y € Ry, n € N,. Then it holds that

2°T(a+1) [
R (x)Ry(y) = M /Rz(ﬂ;‘—l— y + 2/Ty cos 9)6—\/@cos9
Var
0 (1.10.112)
. Ja—l/z(@ sin 6) 2 0dp.
(y/@ysin@)«—1/2
This formula can be extended to the case a« = —1/2. We follow a proof of Boersma,

published by Markett; see [Ma.1], Lemma 3.

Lemma 1.10.23 For every z,y € Ry, n € N, it holds that
—-1/2 —-1/2 Ly jmmp-1/2 2 VET p—1/2 2
RV @) R 2 () = S e VTR (W + Vi) + eV TR (Ve = Vi)

- \/a:y/Rgl/z(x—Fy—&— 2/Ty cos B)e VEI SV I (( /zysin G)dﬁ}.
0

(1.10.113)
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Proof.  We write the power series of J,_1/ in the form

. (. /zy sin §)*—1/2
Jaryja(/7 sin ) = VLTS

(1.10.114)

)2]@—}-(1—1/2

—1)* 1
+Zk'1‘k;(+03+1/2)< Y sin 0 . a>—1/2.

The series tends to —Ji(\/Zy sin ) as & — —%. Inserting this limit into (1.10.112) we
obtain the integral term of (1.10.113).
Substituting the first term of the right-hand side of equation (1.10.114) into (1.10.112)

we have the term

I'a+1) [ 0 in?
l=———— | R 2\/x f)e~ VT cos *0do.
ﬁr(aﬂ/z)/ n(@+y+2y/aycosbe
The integral has nonintegrable singularities at 6 = 0 and at § = # when a = —1/2. To

remove these singularities I is rewritten as

/2

I =e VYRV + ) )\ﬂ“((O;—:—ll)ﬂ) / sin®* 0 d o
0

+ VIR (VT — i) )\fl“a—:ll)ﬂ) /sin2a9d9

w/2
w/2

INa+1) _ JEycos b

TY CoS g 2 .
+—ﬁf(a+1/2) / {e Ry (x4 y + 2/xy cos )
0

— e VIR ([T + \/§]2)} sin®® 0df

T(a+1) ] . ]
" {e VIYCOSI R (x4 y + 24/Ty cos 6)
ml(a+1/2 "
val(a+1/ )ﬁ/z

— VIR ([T — \/?;]2)} sin®® 4de.
The third and the fourth terms tend to zero as & — —1/2 since the integrals are convergent

for « = —1/2 and 1/T'(a + 1/2) tends to zero. Furthermore, by means of [PBM], vol. I,

section 2.5.3, formula 1., namely,

T

/(sin 0)2°d0 = B(a +1/2,1/2) = Lo ;(L/i)f)(lm, a>—1/2, (1.10.115)
0
we have
Flat1) [ Ta+1) [
_ladl) in2® S e e S + in%«
Jal(a +1/2) O/ S 00 = e T 1/2) és bt

T(a+1)  T(a+1/20(1/2) 1
T(1/2)T(a+1/2) 20(a+1) 2
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as a — —%. Thus, the sum of the first two terms in I tends to
1
S{eVTRIA (VR + Vi) + TR (VE - Vi) }

as & — —1/2 and so we arrive at (1.10.113). I
Substituting z = z(0) = x + y + 2,/zy cosf, 0 <0 < 7 in (1.10.112) we have

1
Vzysind = 5[2(:10@/ +yz + zx) — 2% — % — 22 = p(x,y, 2), (1.10.116)

and after a short calculation

(Vr+/y)?
o o 20‘711_\(&4—1) o E-—r—y a—1/2
Rn(m) Rn(y) = W Rn(z) €xXp ( - T)Ja—lm(ﬂ)ﬂ dz.
(Vz—/y)?

From formula (1.10.103) we have d z = 2°T!T'(a + 1) €* 2~ “dw®(2) and setting

2a e 2 T 2 _
AU oxp (52 ) Ty 1ya(p)* Y2, for

Ky(z,y,2z) = z e ([Vz — 92 VT + Vi)?) (1.10.117)

0, elsewhere

we obtain the product formula (1.10.112) in the kernel form.

Lemma 1.10.24 Let a > —1/2, z,y € Ry,n € N,. Then it holds that
oo
Ry (x) Ry (y) = /Ka(x,%Z)R%(Z)dwO‘(Z) = La[Ka(z,y,)](n). (1.10.118)
0

Remark 1.10.91 Analogous to (1.10.118), the formula (1.10.113) can also be written in
kernel form. From (1.10.118), (1.10.117), and (1.10.113) we obtain the following after a

straightforward calculation

R,V (2)R; V2 (y) = %{e*mR;”2([\/E+ VIP) + e/ TRVA(VE - i) |

) VE+yvo)?
~ 3 / VIYZR Y2 (2) exp ( - #)Jl(p)p_ldz.
Vz—vy)?

(1.10.119)

Lemma 1.10.25 The kernel K, (z,y,z) is symmetrical in x,y,z and it holds that
(oo}
(i) [ Ka(z,y,2)dw(z) = 1
0
and

(i) 1Ko (@, y, )l we < e@H)/2,
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Proof.  Formula (i) follows directly from (1.10.117) with n = 0 and R§ = 1; see (1.10.100).
For the proof of (ii) we quote that for o > 0

o1 a(t)] < = t)a_l/Q teRy; 1.10.120
w1201 s (5) + (1.10.120)

see [W.2], 3.31, (1).

Then substituting inversely z by 6 we have

1Tt ) (VE+vi)’
eetr2 / [Kaoy,2)lePdut() = 22O [ a2
V2 (xy)® /
(VE—D)?
et X (Vo+y/a)? y 7
< - 1(a+ ) pPoldy = 1 a—|— /sm9 2ad9 =1,
2T(3)T(a+ 3) (zy) r(;)r
(VE—y7)? 0
using (1.10.115). I

Remark 1.10.92 Because of the alternating property of the Bessel function the kernel is

not positive as in the case of the polynomials P,, P} and P,(La’ﬂ).

As usual in the preceding section now we are able to define a generalized translation
operator (GTO) for the LaT.

Definition 1.10.36 Let f € Ly . Then a GTO T for the LaT is defined by means of
/Ka z,y, 2) f(z)dw*(z). (1.10.121)
0

Proposition 1.10.59 Let a > 0 and f € Ly ye. Then one has
(i) T8 fll1 e < €/2(| Fll1 05
(i) (T2 )y) = (T3 f)(=),
(i) T3 Ry(y) = Ry(z) - Ry(y),
(iv)  La®[T2f](n) = Ry (2)f"(n).

Proof. Let x € Ry. Then we have

T 7l e < / ( / )| Kala,y, 2w (2) ) e/ 2duc(y)

oo

/ (2, )]V 2w (9) ) £ ()] (2)
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Because of the symmetry of K and Lemma 1.10.25, (ii) applied to the inner integral we

obtain

T2 Fll1 e < €12 / 1F(2)]e*/2dw™ () = /2| f|1we-
0

The result (ii) follows from the symmetry of the kernel K, and (iii) is the product formula
(1.10.117). Finally, we have

La®[T7 f](n) =

again using the symmetry of K and (iii). I

Definition 1.10.37 As the convolution of the LaT we call f % g defined by

(f*g)(z fly y)dw®(y), (1.10.122)
=

provided that it exists.

Theorem 1.10.77 (Convolution Theorem) Let o > 0 and f,g € Ly . Then there
exists f * g (a.e.), f*g € L1 o and it holds that

(i) ||f*g||1,w” < Hf”l,w”Hng,w”;
(ii) La[f*g] = [ g",
(iiii) fxg=gxf.

Proof. The estimate (i) follows from

I/

DI W) < [ 1T WITS G0 ()
0

oo
< ||9||1,wf*/|f(y)|€y/2dwa(y) = [1f e gl we
0

using the generalized Minkowski inequality

oo o0

7|7f @dylds < [ ([ 1£.0)ldz)ay
0 0 0
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and Proposition 1.10.59, (ii) and (i).

Now o s
(f*9)"(n) = fly y)dw®(y) | Ry (z)dw® (z)
o[ ([ rmat)
= [ fly (z)dw® (z)dw™ (y)
J 0/
9"0) [ F R W) = 1 g (),
0
where the properties of Proposition 1.10.59, (ii), (iii) of the GT'O were used. I

Remark 1.10.93 The results of Proposition 1.10.59 and Theorem 1.10.77 can also be gen-
eralized to spaces Ly o ; see Remark 1.10.90. For details we refer to [GoM]. It holds that
if f € Lpwo, g € Lo, 772 =p 1 +q 1 =1, then f* g € Ly o and

If

In particular,

if PELpwe and g€ Liye, then [fxg€ Lpype.

Now we consider an application. Following Debnath [De.7] we investigate the problem of
oscillations u(z,t) of a very long and heavy chain with variable tension. The mathematical

model of this problem is given by the differential equation

0?u(x,t) ou(x,t)  0%u(zx,t)
with the initial value conditions
u(z,0) = uo(w),
1.10.124
{"”“é’i’” L, =), 20 0120

The left-hand side of (1.10.123) can be written as L%u(x,t), when the differentiation is

taken with respect to the variable x. Therefore,
(L) (z,t) + ug(z, t) = 0. (1.10.125)
Applying the LaT with respect to x, by means of the differentiation rule (1.10.108) we have
uyy(n,t) +nu’(n,t) =0,

where u” is the LaT La®[u(-,¢)](n). The solution of this (ordinary) differential equation

with respect to t is

u™(n,t) = A(n) cos(v/nt) + B(n)siny/nt. (1.10.126)
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Applying the LaT on the initial value conditions (1.10.124) we have
u(n,0) = ug(n), n €N,
up (n,0) = up (n), n € N.

Therefore, from (1.10.126) we conclude

N p) — u(0), n=>0
ui 1) = /\(n)cosft—i— sm\ft n € N.

Applying (quite formally) the inversion formula, Theorem 1.10.75, we get

u(z,t) = 2a1+1 u) (0) + Zl hla [ug(n) cos v/nit + ”i/(g) sinv/nt|RY(z),  (1.10.127)

with hy, o from Theorem 1.10.74, (ii). The series expansion (1.10.127) is the solution of the
initial value problem (1.10.123), (1.10.124) provided that g, u; are sufficiently smooth.

1.10.7 The Hermite Transform

Definition 1.10.38 The Hermite transform (HeT) of a function f : R — C is defined by

means of
Helf)(n) = 1" (n) m / J@)Ho(@)e " de, neN, (1.10.128)

provided that the integral exists. Here H,, are the Hermite polynomials of degree n standard-

ized in such a manner that

Hap (x) TR
H,(z) = {H%Z(QL’(I) Z,fn =2k, ke No, (1.10.129)
DHan i) (0) ifn=2k+1,
where
H,(z) = (—1)"e” D" "), D=d/dx (1.10.130)
are the Hermite polynomials in the usual designation and
Hop,(0) = (—1)*(2k)!/k!
1.10.131
{ (DHapy1)(0) = 2(2k + 1) Hoy (0) = (—1)F2EEL ( :

For formulas for Hermite polynomials we refer to [E.1], vol. 2, 10.13.

Because of the connection between Laguerre and Hermite polynomials we have

—1/2 .
H,(z) = R’QZQ (#%), it n =2k, (1.10.132)
zR, " (2?), ifn=2k+1,

where RS are the Laguerre polynomials; see section 1.10.6, (1.10.100), (1.10.101).
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Remark 1.10.94 From [E.1], vol. 2, 10.18, (19) we have
e_m2/2|Hn(x)| < 2v2rnl.

Therefore, in our standardization (1.10.129), (1.10.131) we obtain

ok+1__k! if n =2k
—22/2 (2K’ ’
e 2| H, ()| < 2k+1/2( " ifn—oki1 (= Cn (1.10.133)
@E+1)

As the space of originals we choose the space L1 exp(R) =: L1 exp 0f measurable functions
on R such that

/]

]. 2 2
_ ’ xX)le / dﬂ: 1 ].O 134
ex . .
1,exp /72 / | ( ) ‘ ( )

is finite. It is a Banach space with the norm (1.10.134). From

o0

/ e dr = /1

— 00

we have

Lemma 1.10.26 It holds that
[1]1,exp = 1. (1.10.135)

Remark 1.10.95 The investigations in the following also can be extended to the space

Ly exp, 1 <p < oo of measurable functions on R with the norm

W lpop = —= | |f@)e72|" da (1.10.136)
p,exXp m

see Markett [Ma.2]. This paper is the basis for many explanations in this section.

Theorem 1.10.78 Let f € Ly exp and k,n € N,. Then the HeT is a linear transform and

moreover it holds that
(i) [He[f](n)| < Cull fll1,exps
(11) He[ﬁk](n) = ilnakn;

with Cy, from (1.10.133) and

22""1/2(k!)2

7 2k ifn = 2k7 ke Noa
B = {52 f (1.10.137)
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Proof. Part (i) follows directly from (1.10.128), (1.10.133), and (1.10.135). The formula
(ii) is nothing other than the orthogonality relation of Hermite polynomials; see [E.1], vol.
2, 10.13, (4), taking note of (1.10.129) and (1.10.131). I

Now we formulate (without proof) an expansion theorem for Hermite polynomials; see
[NUJ, §8, Theorem 1.

Theorem 1.10.79 Let f € CY(R) and furthermore let the integrals

/Oo[f(x)]Qe_mzdx and 7[f’(a;)]2xe * e

be convergent. Then we have the inversion formula
fl@) =) eally(x) = (He) ' fM)(a),
n=0

with
Cp = f/\(n)/ﬁm

the series being uniformly convergent on every interval [x1,x2] C R.
Directly, we conclude:

Corollary 1.10.28 He[f](n) =0 for every n € N, if and only if f(z) =0 (a.e.).
This result can be formulated as the uniqueness theorem for the HeT'.

Theorem 1.10.80 Let f,g fulfill the conditions of Theorem 1.10.79 and let He[f](n) =
Helg](n) for every n € N,. Then f(x) = g(z) (a.e.), i.e., f =g.

Now we are going to formulate some rules of operational calculus. The Hermite polyno-

mials are eigenfunctions of the differential operator H defined by means of

d

(Hy)(x) = —e* D(e™* )Dy, D= g (1.10.138)
x
with respect to the eigenvalues 2n, i.e.,
HH, =2nH,, neN. (1.10.139)

Therefore, we obtain:

Proposition 1.10.60 (Differentiation Rule) Let f, f' € L exp and f be two times dif-
ferentiable (a.e.) on R. Then it holds that

HelH f](n) = 2nf"(n), n e N. (1.10.140)

© 2006 by Taylor & Francis Group, LLC



156 Integral Transforms

Proof. By means of integration by parts we have with (1.10.138), (1.10.139)

vﬁ%Hdﬂan>=—-/ED@-“>Dfunﬁauym

— 00

- _e*w"‘(pf(x))ﬂn(x)‘i+ / f(x)e " DH,(z)dx
= f@)e= DIl ()|~ / F(@)D(e= DI, (z))da

— 00

— 0o

— [ s HE @) de = 2mbtel ).

I
Corollary 1.10.29
He[H" f](n) = (2n)* f(n), k,n eN. (1.10.141)
Now let Hf = g. Then N
@) = [ e,
and i . h
fz) = — / e’ / g()e ™ dv =: (H 'g)(x). (1.10.142)

Now we apply the HeT on both sides of equation (1.10.142). Because of (1.10.140) we have
g"(n) = 2nf"(n) and, therefore, we require ¢”(0) = 0. Then the following holds:

Proposition 1.10.61 (Integration Rule) Let g € Ly ¢y and g”(0) = 0. Then it holds
that
He[H 1 g](n) = (2n) g™ (n), n €N, (1.10.143)

where H=1 is defined by means of (1.10.142).

Preparing the definition of a convolution for the Hel we note a product formula for

Hermite polynomials given by Markett; see [Ma.2].
Lemma 1.10.27 Let x,y € R, n € N,. Then
H,(z)Hu(y)

- i{ Hy(=2 = y) + Halw + y)}e*wy + [ To(y — ) + Hy(z — y)} ewy} (1.10.144)
+ He[K (2, y,-)](n).

—
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Here
T I (A) — 222 7 (A (z?+y°+27) /2 S
K(z,y.2) = VE[Jo(8) = 2D (B) ] sgn(ay2)e o #€S@Y) 40,145
0, elsewhere,
with
S(@,y) = (= Iz = lyl,~llzl = Iyl1) U (llal = lyll,lz| + Iy1) (1.10.146)

1 1/2
Az,y,2) = 5 {2(3321/2 +yP2 4 2t —at -yt - 24} =p(a®,y%2%),  (1.10.147)

where p is defined in 1.10.6, (1.10.116).

Proof. Following [M.2] we use for convenience the functions

£3(z) = 67I2/2Rg(m2), x>0 (1.10.148)
and
Ho(z) =e % /?H,(z), ax€R. (1.10.149)
From (1.10.132) we obtain
€ (al),  n=2k,
Ho(z) = ke N, (1.10.150)
22%(|a)), n=2k+1.

Case 1: n = 2k. From (1.10.150), (1.10.148), and 1.10.6, (1.10.119) we obtain (substitut-

ing z — 22)
_ _ 11 _ _
Hon (o) Han(y) = £, (22 21y = 5802 el + D) + €72 (1 = y)]
1 flelHyl
- 5/ 12 (2) |yl i (D) A V.
llel—lyll
Substituting z — —z we have

Mo (@) Hon(y) = 3 [ 72 — ) + 2 (Jal + 1)

1 —Uel=luh)
- 5/ 22 (2] wyz] J (D) AV 2.
—~(Jz|+Iy1)

Taking the arithmetical mean of these two formulas we get (again using formula 1.10.150)

1 1
S(z.y)
Case 2: n = 2k + 1. Now from (1.10.150), (1.10.118), and (1.10.117) we obtain (again

substituting z — 2?)

1 flel+lyl
Harsn (@ Hani (y) = 2y (2 & () = 5 /| oy B @sanlay)Jo(2)d
z[—|y
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Substituting z — —z we have

=llz|=1yll
1
Horv1(z)Horg1(y) = 3 / 212 (2)sgn(zyz) Jo (L) dz.

—lz|—1yl
Again we take the arithmetical mean of these two equations and we obtain
Hopy1(2)Hopy1(y) = / Hok+1(2) sgn(zyz)Jo(LD)dz. (1.10.152)
S(r,y)

Since Hay, (respectively Hop41) are even (respectively odd) functions we have
/ Haokt1(2)|2|ld z = / Hor(z)sgn(z)dz = 0.

Therefore we have a unified form for (1.10.151) and (1.10.152):

P& Ha(y) =  [Hu (=2 = 9) 4 M+ 9) + Halw = y) + Haly - 2)|

(1.10.153)
/ Ho( sgn (xyz)Jo(A) — |zyz|J1(A)A*1}dz.

Because of |zyz| = sgn(xyz) zyz we obtain, returning to the polynomials H,, with the
help of (1.10.149) the product formula (1.10.144) with the kernel (1.10.145). I

Lemma 1.10.28 The kernel K(x,y,z) is symmetrical in its variables. Furthermore, it
holds that

R K (g, 2 e < Mgz, yz £ 0, (1.10.154)

where M is a constant, M > 1.

Proof. 'The symmetry of the kernel K follows directly from (1.10.145). For the proof of
(1.10.154) we obtain from (1.10.145)

A= e*(y2+z2)/2”K(,7y’z)Hchp _ 2 / ’ _ % JU(A) + Jo(A)|dz
S(y z)
1 Ji(A
< i[ / |$yz|‘ 1(A )|dx+ / |J0(A)|dx]
S(y,2) S(y,2)

S(y, z) is (see formula 1.10.146) symmetrical with respect to the origin and the integrals

are even functions (with respect to x). Therefore,

ly|+|z| . lyl+|z
A< @ / xA*1|J1(A)|d:E+§ / |Jo(D)|d. (1.10.155)
[ly|—lz|| [lyl—|=]|
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FI"OIn WatSOn [\/V 2], 331 (1) and Szegé [SZ], Theorem A 312 we haVe Simultaneously fOI“
o — o —
J X 1 all(l J x -

|J1(z)] <z/2 and |J1(x)|§M\/z

and

with some constant M > 1. Preparing the estimate of A we note Markett’s lemma [Ma.2],
Lemma 3.1: [

Lemma 1.10.29 Let b <0, a+0b> —1 and let A be defined as in (1.10.147). For all

Y,z € RY one has

y+z
I(a,b) := /‘A%f“ﬂm:v@a%“@+wfh

ly—=|

V7T (a+1)

with some positive constant vy, v > T(at3/2)

Using the estimates for J, and J; we see with the help of this lemma (after a short
calculation) that the first (respectively second) expression on the right-hand side of equation
(1.10.155) is less than const - min(|yz|?, |yz|'/?) (respectively const - min(1, |yz|*/?)). A

careful discussion of the appeasing constants leads to (1.10.154).

Remark 1.10.96 The kernel K (see equation 1.10.145) is not nonnegative for all x,y €
R\{0}, z € S(z,y); see [Ma.2], Corollary 2.4.

Now we are able to define a GTO for the HeT'.

Definition 1.10.39 Let f € Ly cxp. Then a GTO T, is defined by means of

(TH)) = ({17 +9)+ F = p)]e™ + [fz —9) + fy — )™}

L i (1.10.156)
+\/%_/ f()K(z,y,2z)e” " dz.
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Proposition 1.10.62 Let f,+/|z] f € L1 exp. Then it holds that
@) 1T e < Me? 2 { Il e + V12T IV W) l1ex0 -
(i) (T2 f)(y) = (Ty f)(2),

(iii) (T Ho)(y) = Ho(2)Ha(y),

(iv) He[T, f](n) = Hy,(z) f"(n).

Proof. From (1.10.156) and Lemma 1.10.28, (1.10.154) we have

oo

VERITeflasn < 32 [ [1f@ )]+ 11 (=2 = )] e 2y
+ 7 [\f(w — )l +1fly - x)\} e‘(r‘y)zﬂdy}

le?/ |f<z>|(_/ (K (2, y, 2™ Pdy)e ™ dz

<2 { | fllnese + M VIl - IVZFE) e }

and this is (i) (because of M > 1).

The result (ii) follows directly from the symmetry of K (z,y, z) with respect to the vari-
ables x,y, z by means of (1.10.156).

Formula (iii) is nothing other than the product formula (1.10.144). Relation (iv) is proved
straightforward, similar to the case of the LaT’; see 1.10.6, Proof of Proposition 1.10.59. I

Definition 1.10.40 As convolution for the HeT we call f * g defined by

(f*9)(x) = jﬂ / F)(Tog) (9)e " dy, (1.10.157)

provided that it exists.

Theorem 1.10.81 (Convolution Theorem) Let +/|z|f, +/|zr|g € Liexp- Then
f*9 € Liexp and it holds that

(i) Helf gl = ["g",

(ii) frg=gx*f.
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Proof. From (1.10.157) it follows by means of Proposition 1.10.62, (i), (ii)

v [o1 T PN
sl < <= [ (= [ UWITamle " dy)e = 2aa

<<= [P (lalhesp + VBT IVZE )

= m{lls

Lexp * 19ll1exp + VY (W) l1exp - H\/Eg(Z)IILexp}

and therefore f * g € Ly cxp.

Formula (ii) follows by straightforward calculation analogous to the proof of 1.10.6, The-
orem 1.10.77, (ii). The commutativity (ii) is proved in calculating the HeT of f g and of
g*f, taking into account that f"¢g” = ¢" f", and then performing the inverse transformation
(He)~L.

Now we consider an application. We are looking for the solution of the differential equa-

tion
0u(z,t) du(x,t)
22 = R RT 1.10.1
92 T zf(t), reR, teR", (1.10.158)
under the condition
u(z,0) = 0. (1.10.159)

Applying the HeT on both sides of equation (1.10.158) using the differential rule (see
Proposition 1.10.60) we obtain

—2nuN(n,t) = f(t)(H)"(n) = hidin f(t),
since & = H,(z). So we obtain
hy
0" (n,t) = ——0d1n f(t).
@ (n,) = =5 60 (1)
By means of the inversion theorem, Theorem 1.10.79, we have
1
u(z,t) = —§xf(t),

and this is the solution of (1.10.158) under the condition (1.10.159). I

© 2006 by Taylor & Francis Group, LLC



Chapter 2

Operational Calculus

2.1 Introduction

In Chapter 1 we considered integral transforms, which can be used for the solution of
linear differential equations with respect to a certain differential operator. For example,
in section 1.4 we considered the Laplace transformation, which is fit for the solution of
linear differential equations with respect to the operator of differentiation D = %. The
disadvantage of the use of integral transforms is that some integral has to be convergent.
So one should look for a pure algebraic version of operational rules with respect to the
operator D for the application to the solution of differential equations. This was first done
by D. Heaviside [H.1] through [H.3] in a quite formal manner. In the 1950s the problem was
solved by J. Mikusiriski, see [Mi.7], who used elements of algebra to develop an operational
calculus for the operator D in an elementary but perfect manner; see also [DP] and [Be.1]
for similar representations of the same topic. Meanwhile, operational calculi for many other
differential operators were developed; see, for example, [Di]. In this book we deal only with
the classical one, i.e., operational calculus for the operator D.

The basis of the construction is the algebraic result that every commutative ring without
divisors of zero can be extended to a field. Its elements are fractions of elements of the ring.
So in a manner similar to how the field Q of rational numbers is constructed by means of the
ring Z of integers, a field of operators can be constructed by means of a ring of functions,
which is without divisors of zero with respect to a later defined multiplication.

We will now explain this in more detail. Let R be a commutative ring without a divisor

of zero, i.e., that from the equation
fg=0

where f,g € R and g # 0 it follows that f = 0. Two pairs (f, g) and (f1,¢1) of elements
of R with g, g1 # 0 are called equivalent if fg; = f1g, and if this condition is fulfilled we
write (f,g) v (f1,91). This relation is an equivalence relation and, therefore, it divides
the set R x R into disjointed classes of pairs of equivalent elements. A pair (f,g) is called
a representation of the class of all pairs equivalent to (f,g). This class is denoted by the

symbol 5. For this symbol we define the operators of addition and multiplication according
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to the rules of calculation with fractions in elementary arithmetics:

g g 99
foF_ g
9 g 99

These definitions are correct since gg # 0 and one can easily prove that result on the
right-hand side does not depend on the representation of the classes g and Z%. The set
of symbols 5 with the operations of addition and multiplication defined above is easily
proved to be not only a commutative ring, but also a field, K. Its elements (the “symbols”

5, fig € R, g # 0) are called operators. The field K is the quotient {ield of the ring R.

Sometimes operators are denoted only by one letter: a = 5, b= g.
We denote
0
€= i , 0=-, fa g 7& 0
f g

and they are called the unit respectively zero element of K. Obviously, they are the unit
and zero element of the field K:
0-

0+ =0, e-L =12,

Q [

oot f_f

9’ 9
In the field K equations of the form ax = b, a,b € K, a # 0 have a (unique) solution.
Defining the inverse operator a~! of a = % by a=! = % (which exists since a # 0), we have

2 = a~'b, which easily can be verified.

Operators of the form £ comprise a subfield of the field K since
froo_J+9 J9_ Ty
e e e e e e’

One can easily prove that this subfield is isomorphic to the ring R, whose elements f can
also be denoted by (f, e). In this sense the field K is an extension of the ring R to a field
of quotients of elements of R and in K the usual calculations for fractions are valid. So we
have given a short version of the construction of the field of quotients of the elements of a
commutative ring without divisors of zero.

An example of this construction is the extension of the field Z of integers to the field Q of

m
n’

rational numbers, i.e., to the set of quotients m,n € Z, n # 0 with the usual calculation
for fractions. The zero element is the number 0, the element e is identical with the number
1. This was the model for the general construction. A second example is the extension of
the ring of polynomials on the real line to the field of rational functions, whose elements
are quotients of polynomials.
In operational calculus one considers rings of operators generated by a differential oper-
d

ator. Here we choose the operator D = —-=. We start with a ring of functions defined on

the interval [0,00) with the usual addition and multiplication of functions. We consider
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functions of the space L, which are measurable on every finite interval [0, a], a € Ry. The
zero element 0 is the function that is zero almost everywhere on [0, c0), the unit element
is the function that has the value 1 on [0, 00) with the exception of a set of points of mea-
sure zero. The set L considered as a commutative ring contains the product Af as a usual
product of a function f by a number A or as the product of elements of the ring L. We will
later define the product in such a manner that these two products coincide. (For another
version see [Mi.7].) Then we have 1. f = f, therefore e = 1. In the field of quotients of
the ring L (which will be constructed later on) the quotient of operators %, where X\ and p
are numbers, can then be identified with the usual quotient of numbers. The operator of

integration (denoted by %) of an element f € L will be defined by means of

t):/f(u)du. (2.1.1)
0

Later one can see that this somewhat strange notation makes sense. % is an operator of L

into L. Therefore, one can consider powers of this operator. Obviously,

«;fﬂ@f—!!fwwwu—!ﬁ—wﬂwm
() 7=t

and from elementary calculus we know that

and in general

t

(O = gz [ =0 s, men,

p" n—1)!
0
and this can be written in the form
p t
t —
( %/ O fw)dv, € No, (2.1.2)
0

The product of p% with f € L is derivative of the convolution of the function % with the

function f (see formula 1.4.25) and therefore sometimes one describes the relation between

1 tn
— and —
p n!
by
1 tn
— == (2.1.3)
pm  n!

This notation will be understood later, see section 2.3.1.
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Formula (2.1.3) can be considered as a particular case of formula (2.1.2),if f(¢) =1, 0<
t < co. Let us consider formula (2.1.3) in more detail. Obviously, according to (2.1.3), we

have for m,n € Ny

1 A" 1 1 t™m tm
A = \ = (2.1.4)
pn n! pm  p* m!  nl
On the one hand
1 gmrn

T G (2.1.5)

and on the other hand from (2.1.3) and (2.1.2) we obtain for an arbitrary function f €

L, mneN
1 /1 d / t—ov)™ d r v—u)"
() ® = @/%@/%ﬂu)dudv
0 0
t )M v ,U_un—l
0 0

_d / / (t—v)™(v—u)" !
_&/f(“)/ TCR
0 u

after interchanging the order of integration. Substituting v — u = £ we get

00— [0 [ Se
0

Taking into account that

t

mé-nl nlgm _ tm+n
/m'n—l d = /m'n—l dg_(m—i—n)!

0

from (2.1.7) we obtain

t
1 d m+n
— — f(u)du.
pm ( Tt / (m + n) )
0
Therefore, the product of operators me and 1% is adjoint the function
tm+n
(m+n)!

and, therefore (see formula 2.1.5), we have

11 1

= . 2.1.8
pm pn pm—i-n ( )
Formula (2.1.8) can be rewritten in the form
11 d / mf"
— — = — . 2.1.9
pm pn T dt m‘n' de ( )
0
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On the left is the product of operators, and on the right is some type of product of the
adjointed function, in fact, it is the definition of the convolution of these functions. We

denote this product by a bold star:

t
t?n tn B d (t _ f)mgn

—_— % — = —
m! n! dt m!n!
0

de. (2.1.10)

Later we will generalize this notation to the arbitrary functions f,g € L. So we can include
om

more general functions, than power functions and therefore also more general functions

ml?
of the operator %. Formula (2.1.10) by means of (2.1.9), (2.1.8), and (2.1.5) can be written
as
g = My, (2.1.11)
(m+n)!
Finally in the next chapter we will start to construct the field of operators by the set L
of functions. One also could choose some other ring, for example, the ring of continuous

functions on [0, 00), and one arrives at the same field of operators (see Mikusiriski [Mi.7]).

2.2 Titchmarsh’s Theorem

First we recall the definition of the convolution of two functions f and g, defined on [0, 00)

(see section 1.4.3, formula 1.4.25) namely,

Wt = (7 +9)(0) = [ £t~ wglu)du. (2.1)

If f and g are continuous in the interval [0,00), then the function

p(u) = f(t —u)g(u)

is continuous on the segment 0 < w < t. Therefore, integral (2.2.1) exists. It is easy to
prove that the function h is also continuous on [0,00).
In addition to Example 1.4.25 and Example 1.4.26 in section 1.4.3 we consider three more

examples.

Example 2.2.46 Let f(t) = e, g(t) = %, Then

t t
h(t) = /ea(t_“)eﬁudu: e“t/e(ﬁ_a)“du,
0 0
and hence, we obtain
t oBt_gat .
/ et Py = { R (2.2.2)
) te®t, if o = (3.
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The operation of convolution (2.2.1) may be applied not only to continuous functions. It

may be shown that the convolution of two locally integrable functions on Ry is also locally

/meS/uww/mmw
0 0 0

integrable on Ry and

for any a € Ry

Example 2.2.47 Let f(t) = g(t) = t=3/*. Obviously, at the point t = 0 these functions
are discontinuous. From Example 1.4.26, section 1.4.3, it follows that their convolution has

the form
t

/(t - u)*%u*%du =

0

(1) 1

L) vt

and it has also a discontinuity at the point t = 0.

Example 2.2.48 Let us define a family of functions n(t; \) depending on the parameter A
by the condition

0, f0<t<A,
n(t;A) = .
1, if A <t.

Obviously, the parameter \ varies in the bounds 0 < X\ < co. In the case of A = 0 we have
n(t;0) = n(t) =1 for all t > 0. Let us find the convolution of the functions n(t;\) and

n(t; p). We have
t

n(t) = [ 0t = ws s .

0
Since n(u; p) = 0 for u < p and n(u;pu) = 1 for u > p, we have h(t) = 0 for t < u. For
t
t > p we have h(t) = [(t — u; N)du. On putting t —u =&, du = —d§, we find for t > pu the

o
t—p
equality h(t) = [ n(&N)dE.
0
t—p
Reasoning similarly, we deduce h(t) = 0 fort—p < A. Fort—pu > X we have h(t) = [ d€.
A
Thus, the desired convolution has the form
/ 0 f A
, ort < A+,
() = [ n(t = i ntus ) =
t—A—pu, for A+u<t,
0
or
t t
/n(t —w; A)n(u; p)du = /n(u; A+ p)du. (2.2.3)
0 0
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Properties of the Convolution

1. Commutativity:
frg=gxf

To prove this we change the variable of integration in the first integral, assuming t—u = &,

then du = —d¢. We obtain the relation

ft=u)g(u)du = — [ f(E)g(t = §)dE = [ g(t = &) f(§)de.
/ / /

2. Associativity:
(fxg)xh=fx(gxh)

For the proof let us recall one more formula from the theory of multiple integrals. If

f(x,y) is an arbitrary function integrable in the triangular region 7" limited by the lines
y=a, x=>b and y=uz,

then the following relation holds:

/bdgc/ggf(ac,y)aly:/bdy/bf(gc,y)dac7 (2.2.4)

which is often called the Dirichlet formula for double integrals. To prove formula (2.2.4)
it is sufficient to note that both of the iterated integrals in (2.2.4) are equal to the double

/ / f(z, y)dzdy,

calculated on the triangular region 7. The reader can easily check this fact, applying the

integral

formulae reducing the double integral to the iterated one.

Now we consider the integral

Making the change in the variable of integration by the formula v = w — u, dv = dw, we

have
/ F(t =1 —v)g(v)dv = /f(t —w)g(w — w)duw
hence, O '
/t [ t/_uf(t —u— v)g(v)dv] h(u)du = jh(“)du /t £t = w)g(w — w)dv.
0 0 0 J
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Applying Dirichlet’s formula (2.2.4), where a =0, b=t, y=u, x=w, we find

/t { t/uf(t —u— v)g(v)dv} h(u)du = /tf(t — w)dw /wg(w — w)h(u)du,

as was to be proved.
3. Distributivity:
(f+g)*h=f*xh+gxh.

4. Multiplication of the convolution by a number:

A fxg)=f)*xg=[f*(\g).

5. If f,g € L and their convolution f x g vanishes on Ry, then at least one of these
functions vanishes (a.e.) on R4, we can say: if the convolution of two functions is equal to
zero, then at least one of these functions is equal to zero. In the general case, without any
additional conditions on the functions, property 5 was first proved by Titchmarsh; therefore,
property 5 is often called Titchmarsh’s theorem. We first prove property 5 for a special
case, when the Laplace integrals for the functions f and g converge absolutely.

Let (f*g)(t) =0 for all ¢t € [0,00). By the assumption there exists a number v € R such
that the Laplace integrals

F(z) =

f(t)e #*dt and G(z):/g(t)efmdt
0

converge absolutely in the region H.; see 1.4.1, Theorem 1.4.8. By virtue of the convolution
theorem for the Laplace transform, section 1.4.3, Theorem 1.4.11, the product F'G is the
Laplace transform of the function f* g, which vanishes on R, whence F(z)G(z) = 0 in the
region H,. The functions F' and G are analytic in the region H.; hence, if G(z) does not
vanish identically, then there exists a point zgp € Hy and G(zp) # 0. Then in a sufficiently
small neighborhood of zg the function G(z) is not equal to zero, whence in this neighborhood
F(z) vanishes everywhere, and because F'(z) is an analytic function it follows that F'(z) =0
for all z, such that z € H,. On applying Theorem 1.4.9 of section 1.4.1, we conclude that
f(t) =0 at every point ¢ of the interval (0, 00), where f(¢) is continuous. In particular, if f
is a continuous function in [0, c0), then f(¢) = 0 for all ¢ € [0, ).

Now we are going to formulate and prove Titchmarsh’s theorem.

Theorem 2.2.82 If f, g € C[0,00) and their convolution
(fxg)(t)=0,  0=<t<oo, (2.2.5)

then at least one of these functions vanishes everywhere in the interval [0,00).
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Remark 2.2.97 The condition of continuity of the functions f and g on [0,00) is not
essential.
Indeed, let

filt) = / Fw)du,  gu(t) = / o(u)du.
0 0

On integrating (2.2.5), we obtain

j j £(€ — u)g(u) dudg = C.

But the left-hand side for t = 0 is equal to zero; hence,

t £
O/ O/ 1€ = w)g(u) dudg = 0.

From this, applying (2.2.4), we find

0/ g(u)du / F(E — wyde = 0;

putting & —u =mn, d& = dn, we have
t—u

] #e~wdg = [ flndn = it ).

0

Hence, we have

or

/g(t —u) fi(u)du = 0.
0
Integrating the latter relation once more, we find

/fl(t —u)g(u)du =0, 0<t<oo. (2.2.6)
0

If the theorem holds for continuous functions, this immediately implies its validity for
locally integrable functions on Ry. In order to prove Titchmarsh’s theorem we need a series
of lemmas.

If a sequence of functions f,(x) converges uniformly for a < x <b, then it is known that

b

b
lim fn(x)dx:/ lim f,(x)dz.

n—oo n—oo
a
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However, the uniform convergence on [a,b] is only a sufficient condition, supplying a possi-
bility of permutation of the operations of integration and passage to the limit. If f,(x) are
continuous functions and the limit f(z) = lm f,(x) is discontinuous, then the convergence
is necessary not uniformly and the questioztzogout the passage to the limit under the sign of

the integral requires further investigation.

Lemma 2.2.30 If
lim fo(z) = f(z), a<z<b

n—oo

and
1) the function f(x) has a finite number of points of discontinuity;

2) there exists a number @ such that for alla <z <b andn=1,2,3,...

3) the sequence (fn(x))n inn converges to f(x) uniformly on the segment [a,b] except
arbitrary small neighborhoods of points of discontinuity of the limit function f(x), then the

following relation holds:
b

b
lim fn(m)dxz/f(x)d:c. (2.2.7)

e a
Proof. 1t is sufficient to prove the lemma for the special case, when [a,b] contains only
one point of discontinuity of f. The general case may be reduced to this one by partition
of the interval of integration into a finite number of intervals, each of which contains only
one point of discontinuity of f. Thus, let the function f(z) have a gap at x = t. Let
a < t < b. The cases when t = a, or t = b are considered similarly. Let ¢ > 0 be an
arbitrary sufficiently small number and § = %. Let us take as a neighborhood of the point

t the interval (¢ — d,t + &). We have

/bfn(fﬂ)dx—/bf(x)dw = t/éfn(x)dw— t/ﬁf(ﬂc)dihL /b fn(z)dz
' ' ab t:ﬁ t:rfa
_/f(x)dx+/fn(m)dx— /f(x)dx,
t+48 t—4 t—6

Under this assumption |f(z)| < @, therefore, we have the inequalities

t+6 t+6

/ f(x)de| < 26Q and / Fulz)dz| < 25Q.
-5 5
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Under this assumption, the sequence (f,,(x))nen converges to f(x) uniformly in the intervals

a<zx<t—dandt+d <z <b. The uniform convergence implies the relations

t—6 t—6
lim fo(x)dz = / f(z)dz;
b b
lim frn(x)de = / f(z)dz.
t+48 t46

Therefore, there exists a number ng such that

76fn(x)dx - t/_éf(x)d:r < 2,
/fn dx—/f da;<1

t+06
for all n > ng. Now for n > ng we have the inequality

b b
/f”(x)df_/f(m)dx Z#— +20Q + 26Q = 7+45Q

On putting § = é, we finally have

b b

/fn(m)d:c—/f(x)dx <eg forall n>ng.

a a

Lemma 2.2.31 If f € C[0,T), then there exists the limit

t

T
© 1)k
nhHH;OZ( kl') /efk”(tfu)f(u)du: /f(u)du (2.2.8)
0

k=0 0

for any t €10,T).

Proof. Let 0 <t < T and
Q@ = max [f(t)].

0<t<T

Let us consider the series

(]2
—
\
—
S~—"
B
('b‘
3
>
=
£
~
—
S
=

Al (2.2.9)
k=0 ’

Let us fix the numbers n > 0 and t. The general term of the series satisfies the inequality

’ (_1)k QenkT

—nk(t—u)
) < 4
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But the series
el enkT

k!

k=0
converges and its terms do not depend on the variable w; hence, series (2.2.9) converges

uniformly in the region 0 < u < T and

,i (—kl!)’“ O/Te_"k(t—“)f(u)duz O/T (,i (—kl!)ke_nk@_u))f(u)dw

We have the relation

i (_1)ke—nk(t—u) — 6—67”(““),

k! '
k=0

hence

T T
- (71)76 —nk(t—u _e—n(t—uw)
g e f()du = [ e f(uw)du.
! O/ 0/

k=0

Taking account of the relation

1 for u < t,
. e nt—u)
lim e~ ® =e ! foru=t,
n—oo
0 foru>t

—n(t—u)

for the sequence f, (u) =e~¢ f(u) we have the relations

lim fp(u) = f(u), if 0<u<t,
and
lim f,(u) =0, for wu>t.

—n(t—u)

Let p,(u) = e ¢ ; then, obviously, we have

7e—n(t—u)

on(u) = —ne et <,

Therefore, the function ¢, (u) decreases when the variable u increases. If § > 0 is sufficiently

small, and 0 < u < ¢ —§, then 1 — p,(u) < 1—@,(t —9§). For t + < u < T we have
on(u) < @n(t+ 0). Therefore, the inequalities follow:

[f(w) = fa(w)| < QL = @n(t = 9)) for 0<u<t—4,

[fr(w)] < Qen(t+0) for t+6<u<T.

These inequalities imply the uniform convergence of the sequence (f,(u))nen on the seg-
ments [0,¢ — d] and [t + 6, T]. Hence, the third condition of Lemma 2.2.30 is also fulfilled.
Thus, we have the relation

T

T T
. — (_1)k —nk(t—u : —en(tmw)
lim e f(u)du = [ lim e fwdu= | f(u)du.
Sy / J

n—oo
k=0 o
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Lemma 2.2.32 If f € C[0,T) and there exists a number Q such that the inequality

T

/e”tf(t)dt <Q (2.2.10)

o

holds for all n € N,, then f(t) = 0 on the whole interval [0,T].

Proof. Lemma 2.2.31 implies

T t
k —nkt
lim g e f(u)du = | f(u)du. (2.2.11)
n—oo / 0/

0

On the other hand, condition (2.2.10) implies

k e—nkt T s e—nkt ot
/e”}“‘f )du §QE =Q* —-1)—0
k 1 B

for n — oo. From (2.2.11) we have for n — oo

T t
/f(u)duz/f(u)du, 0<t<T,
0 0

therefore,

¢
/f(u)duzo for all ¢€0,7T);
0

hence,
f)y=0 for te[0,T).

Lemma 2.2.33 If f € C[0,T] and

then f(t) =0 on the whole interval [0,T].

Proof. Let t = ax; we have

A /z”f(az) dx = 0.
0

Suppose that o > 0 is small enough in order for g > 1. Then the relation holds

z 1
2" f(ax)dx = — | 2" f(ax)dz,
/ /
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therefore,
z 1
/x"f(a:c)dz < / |f(az)|dz = Q.
1 0

On putting = = €f, dr = efd¢, we find

T
In =

/e”gf(aeﬁ)egdﬁ <Q, n=01,2,....

0

Applying Lemma 2.2.32, we conclude that f(ae®) = 0 for all 0 < ¢ < In %, or f(t) =0
for a« < ¢t < T. Since the function f(¢) is continuous on [0,7] and a > 0 is an arbitrary

sufficiently small number, we have f(t) =0for 0 <t <T. I

Lemma 2.2.34 If h(t) = (f * g)(¢), then the relation holds

T T T T T
h(t)e *tdt = | f(t)e ?tdt | g(t)e tdt —e 1% | e *tdt | f(t+ T — €)g(€)dE.
[ frocza] [

t

Proof. We have

T Tt
Hr(z) = /h(t)e_tht = /dt/e‘z(t_“)_zuf(t—u)g(u)du.
0 0o 0

Let us make the change of variables in the double integral. On putting ¢t — u = x, u = y,
then 0 < z+y < T,y >0, c > 0. Hence, the new domain of integration is the triangle
ABO (Figure 6) and

=
-

Figure 6
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o7 -V
Figure 7
T—g T T
HT(Z)_/ T f(w)dw / gy _ZydyzFT(Z)GT(Z)—/e_”f(x)dx / g(y)e *¥dy.
0 0 0 T—x

1z T
— /f(t)e—ztdt and GT(Z) — /g(t)e_“dt,
0 0

and the domain of integration is the triangle ABC' (see Figure 6). On changing in the last
double integral the variables of integration by the formulae = + y = v, y = £, we find that
0<v—¢<T,v>T,¢& < T, and the new domain of integration is the triangle PQR
(Figure 7); therefore, the following formula holds:

flv=8)g(&)de.

~—=

2T
Hr(z) = Fr(2)Gr(z) — /e*“’dv

~

v—

Finally, on putting v =t + T, dv = dt, we have

T T
Hr(2) = Fr(2)Gr() — / e+ T) gy / FE+T — E)g(e)de. (2.2.12)
0 t

Proof of Titchmarsh’s theorem for the case: f =g

Let f be a continuous function in the region 0 <t < co and

ht)=(f*=f)t)=0 for 0<t< o0. (2.2.13)
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Applying Lemma 2.2.34, we conclude that

T

T 9 T
<0/f(t)eztdt> = T 0/6 dt/f(t+T—§)f(§)d§,

t

where T > 0 is an arbitrary fixed number. If we put z = n and denote ¢(t)

§)f(£)d¢, then

T T
onT ot Y p—"
(b/f dt) b/e o(t)dt,

or
T , T
</f(t)e _t)dt> :/e_"tgo(t)dt.
0 0
Hence,
T 2 T
[roeoal < [emipla< [lowla
0 0 0
therefore,

T T

FerEdt) < | [ |o(t)]dt.
/ /

0

From this inequality we find

T/2 T T
/ F(t)eE0ar| - / FyerE0at| < / () dt,
0 /2 0

or taking into account that e"(%_t) <1, fort> %,

T/2 T

/ seEtal < | [ el + /T (Bt = Q

0 T/2
Finally, on putting % —t=¢, we find

T/2
/f(ﬁ—&)e”gdg <Q, n=0,1,2,....
0

By virtue of Lemma 2.2.32 we deduce from here that

f(g—s>=o for  0<e<

or

ro|
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and since T > 0 is an arbitrary number, hence, f(¢) = 0 for all ¢ > 0.
Proof of Titchmarsh’s theorem in the general case. Let f and g be continuous functions
for 0 <t < oo and
(fxg)(t)=0 for all 0<t< oo (2.2.14)

Then we have

t t t

/(t —u)f(t —u)g(u)du + /f(t —u)ug(u)du =t / ft—u)g(u)du = 0.

0 0 0
On denoting f1(t) = tf(t) and g1(¢) = tg(t), we rewrite the previous relation in the form

t

/ f1(t — w)g(u)du + / £t — u)ga (u)du = 0,

0
ie.,

Jixg+ fxg1 =0,
which implies
(fxg)*(fixg+ fxrg1) =0,
or, using the properties of convolution, we obtain
frauxfixgt+frgixfrg=(fxg)*(frxg)+ (fxg)*(fxg1)=0.

But f * g = 0, therefore, (f * g1) * (f * g1) = 0. By virtue of Titchmarsh’s theorem proven

for the case f = g, we have f*xg; =0, or

ft —wug(u)du=0 (2.2.15)

o .

for all ¢ > 0. Thus, (2.2.14) implies (2.2.15).
Suppose that

/f(t —w)u"g(u)du =0, t>0. (2.2.16)
0

In the same way that we obtained (2.2.15) from (2.2.14), we find from (2.2.16) that
¢
/f(t —w)u" M g(u)du =0 for all t>0. (2.2.17)
0

Thus, (2.2.16) holds for all n > 0. By Lemma 2.2.33 we deduce from here that
fEt—uwgu)=0 for all 0<u<t<oo. (2.2.18)

If there exists a point ug € [0, 00) such that g(ug) # 0, then (2.2.18) implies
flt—up) =0, up <t <oo,ie f(t)=0forallt>0.
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2.3 Operators
2.3.1 Ring of Functions

Let us denote by M the set of all functions defined in the region 0 < t < oo, differentiable
in this region and whose derivative belongs to the set L{°*(R,) = L. Then every function

F belonging to the set M may be represented in the form
t
F(t) = F(0) + /f(u)du, where f € L.
0
Conversely, if F'(t) has the form

/f(u) du+ X\, where f € L and )\ is a number, then F' € M.

Obviously, M is contained in the set L and is a linear set with respect to the ordinary

operations of addition of functions and multiplication of a function by a number.

Lemma 2.3.35 If F € M and g € L, then the convolution H of these functions, defined

by
t

H(t) = [ Pt~ wglu)du,
0
belongs to the set M.

Proof. The condition F' € M implies that
F(t) = /f(u) du + F'(0), where f € L.

Let

then

[ :/uo/fu—v dv.

On changing the order of integration in the double integral, we obtain

O/h(u)d z/g dv/fu—v
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or, on putting u —v =¢, du = d§, we have

/th(U) du = /tg(v)dv 7 f(&)de.

t
But [ f(§)d¢ = F(t) — F(0); therefore, the following equality holds
0

t t ¢
/h /Ft—v v)dv — F /g
0 0 0

and hence,
t
H(t) = /F(t —v)g( /g Ydv + / (u)du. (2.3.1)
0 0
Both functions on the right-hand side of the latter equation belong to M; hence, H € M. I

Corollary 2.3.30 If the functions F' € M and G € M, then there exists the derivative

% / Pt — u)G(u)du = H(t)

0

and H also belongs to M.

Proof. Indeed, replacing in (2.3.1) the function g(t) by G(t) we obtain

t t
/Ft—v v)dv =F /G dv—l—/ 1(w)du,
0 0

where
u

= /f(u —0)G(v)dv = /G(u —v)f(v)dv.
0 0
Lemma 2.3.35 implies that H; € M, therefore, for all ¢ > 0 there exists the derivative

t) = %/F(t —v)G(v)dv = F(0)G(t) + H1(¢),

and obviously, H € M. I
Let F € M and g € L. According to Lemma 2.3.35 the convolution of these functions

belongs to M; hence, this convolution is differentiable. Let us introduce the notation

h(t) =

S

/F(t —u)g(u)du. (2.3.2)
0
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The function i belongs to the set L. This follows from the definition of M. Obviously,
(2.3.2) is a linear operator defined on the set L, whose range also belongs to L. This

operator is uniquely defined by the choice of the function F. For instance, if F(¢t) = t, then

O/t—u zo/g(u)du. (2.3.3)

Therefore, the function F(t) =t is associated with the integration operator.

we obtain

&\&

Let G(t) € M. Consider two linear operators:

h(t) = %/F(t —u)g(u)du
0
and
q(t) = %/G(t —u)g(u)du. (2.3.4)
0

t
Let us find the product of these operators. In order to do this, we have to compute % f G(t—
0

u)h(u)du, where h(u) is defined by (2.3.2). We have

t t u

d
Gt —wh(u)du = | G(t —uw)du— [ F(u—&)g(&)d¢

O/G(tu)du[ +O/F’ dg]

u

:F(O)/G(tfu du+/G (t —u)d /F’(uff)g(ﬁ)df.
0

On changing the order of integration in the last integral we find

t t t

/G(t —u)h(u)du = F(0) / Gt —u)g(u)du+ [ g(&)dE / G(t —u)F'(u — &)du.

0 0 0 3

—

In the second integral we change the variables of integration by means of u = t — 7,
du = —dn:
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Let us introduce the notation

then we obtain

u / Gt~ u)h(u)du = & / K(t - €)g(€)de.
0 0

This implies that the product of operators (2.3.4) is associated with the function

t

d

=— | F(t— .

dt/tu u)du
0

Let us introduce in the set M an operation of multiplication. We shall call the function
p t
K(t) = F(t) % G(t) = d—/F(t — w)G(w)du (2.3.5)
0

by the product of the functions F' € M and G € M. It was proved (see Corollary 2.3.30)
that K also belongs to M. It is easy to check on the basis of properties of the convolution

(see 2.2) that the product (2.3.5) satisfies the following properties:

F xG = G % F (commutativity), (2.3.6)
Fx(GxH)=(FxG)*H (associativity), (2.3.7)
*x(G+ H)=F %G+ F*H (distributivity), (2.3.8)

AF+G = \F Q). (2.3.9)

Therefore, the linear set M with the above-defined operation of multiplication (2.3.5) is a
commutative ring; this ring is called Mikusinski’s ring. It was noted that a linear operator
(2.3.2) is associated with every function F' belonging to M. The ring M is a ring of linear
operators. The ring M also contains functions which are constant on [0,00). We identify
such a function with its constant value, say A\. So we can consider the product AxF, F € M.
In the ring M is also defined the product of a function F' € M by a number A: AF. In our
case those two products coincide, i.e., the product (2.3.5) has also the property that

for any function F € M the relation (2.3.10)

(P o]

holds, where A is a number.

The proof follows from the equation

Ax F(t) = % / NF(u)du = AF (1),
0
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Property (2.3.10) in the special case F(t) = u for every t € [0, 00) yields
A pr= Ap,

i.e., the multiplication of numbers in the ring M satisfies the ordinary rules of the arithmetic.
Let us note once more that in the general case the product in this ring differs from the
ordinary product of functions. In section 1.4.3, Example 1.4.26 we computed the convolution

of the functions t* and t° with the result

1 fB — I'(a+ 1B+ 1)ta+[3+1
Fa+5+2) ’
Differentiation leads to
T 1 1
1 % tP = m+)(ﬂ+)aw. (2.3.11)

Fla+B+1)

We took here into account the formula
Ma+B8+2)=(a+B+ 1)l (a+B+1).

Let us compute the product L, (t) * L,,(t), where L, (t) and L,,(t) are Laguerre polyno-
mials of degree n and m. The Laguerre polynomial of degree n has the form, see formula
(1.4.77),

n

La(t) =Y (~1) <Z> g

k=0
Taking into account (2.3.11), we have

n

La(®) * Ln(®) = (D2 (-1 ()Z)*(i ( ) )

k=0
=3 () (R
=3 () (D @

In the last line we make the change of indices of summation. On putting k& +r = v, we

obtain

Ln@)*Lm@)zfgfl—ly;;§;<Z>(mG>.

v=0

In order to compute the sum »j_, (Z) (V’fk) we compare the coefficients for the equal powers

> (S-S (")

(0" -()

of x in the identity

We easily find
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and, therefore, finally, we obtain
L, (t) % Lin(t) = Ly (). (2.3.12)

For a proof of (2.3.12) see also [KS.2].

2.3.2 The Field of Operators

In the previous section we introduced the ring M. Let us prove that M has no divisors
of zero.
Let Fe M, G &€ M and let

t

F(t)* G(t) = % / F(t — w)G(u)du = 0 (2.3.13)
0

¢
on [0, 00). Then the convolution [ F(t—u)G(u) du is equal to a constant for all ¢ > 0. Setting
0

t = 0 we conclude that this constant has to be zero. Applying Titchmarsh’s theorem (see
2.2.), we conclude that at least one of the functions F' or G vanishes in the interval [0, o).
Thus, M has no divisors of zero. From algebra it is well known that every commutative
ring without divisors of zero may be extended to a field of quotients (see, for example, [BL],
Chapter II, 2, Theorem 7). So M may be extended to the quotient field. This field we
denote by 9 (M). Below we often shall write simply 9t instead of 9t (M). The elements
of M we shall call operators.

Recall that elements of the field are sets. Every such set consists of mutually equivalent
pairs (F,G), G # 0. An element of the field is denoted by %. Two pairs (F, G) (Fi,G1)
are called equivalent if F'x G1 = Fy xG, g = g—ll if and only if F x G; = F1 *x G. The sum
and product of operators satisfy the usual rules of arithmetic, only the product is computed
by formula (2.3.12). Hence,

F Fl_F*G1+F1*G

c e GrGr

F F _Fxh
G GliG*Gl.

The set of all operators of the field, which may be represented by the form %, forms a
subring of this field isomorphic to the given ring M. Therefore, we shall write F' instead of
%, % = F. If FF = X\, where )\ is a number, then % = \. In particular, % =1 and % =0.
An expression g may be considered as an operation of division in the field 9t. The latter

ie.,
is essentially different from the usual operation of division. Only in the case when F' and G

are constants, F = \, G = u, will the relation % be equal to the usual fraction of constants,

i.e., only for constants does the operation of division coincide with the usual division.
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Consider all operators in 9T which may be represented by the form ?, F(0) =0, where

is the function defined by I(¢t) =t, t € [0,00). Obviously, the collection of these elements is

a linear set. The function F is differentiable and F”’ = f. Let us associate with the operator

? the function F’ = f. If two operators ?, F(0) =0, %, G(0) = 0, are different, then

the associated functions, f = F’, g = G’, are different too. Indeed, if f coincides with g,

ie., ftf(u) du = ftg(u) du for all t > 0, then F(t) = G(t) for all £ > 0. Then we obtain
0 0

? = %, and this contradicts the assumption § #* % Thus, the correspondence between

the set of all operators of the form £, F(0) = 0, and the set of all functions f = F' (F
is an arbitrary function of the original ring) is one to one (bijective). This correspondence
maps a sum of operators ? + % onto the sum of functions F’ 4+ G’. This follows from the
equations £ + ¢ = £ and F' + G' = (F + G)'.

The product of an operator § by a number A is associated with the product of A by the
function f = F’. Indeed, AX = 2 and (AF)’ = AF’. Thus, the linear set of all operators
of the form %, F(0) = 0 is isomorphic to the set of all functions f = F’. Operators of the
field 90 reducible to the form £, F(0) = 0 are called functions and we shall write f instead

of % Thus,
F
S=F=f i Fo)=0

Not every operator is reducible to a function. For instance, the operator 3

1, obviously,
cannot be reduced to the form ?, F(0) = 0. Hence, the operator % is not reducible to a
function. It was said that a sum of functions is always a function. A simple example shows
that a product of functions will not always be a function, i.e., that the product of operators
L and €, F(0) = 0, G(0) = 0 is not always reducible to the form @, H(0) = 0. Indeed,
let F(t) = G(t) = V/t; then the following formula holds:
F(t) G(t) Vtxvit
t 4 txt
By virtue of 2.3.1, (2.3.11) we have
Vi Vi VisdE_ T
t t txt T2)txt 4t

because F(%) =T (1 + %) = %F(%) = ? and I'(2) = 1. Consequently, in general a product

of functions is an operator.

Theorem 2.3.83 The product of functions ? = f and % = g is a function if and only if
the convolution of the functions f and g belongs to the original ring M and vanishes at the

origin.

Proof. Let the product ? * % be a function. In this case the formula holds
F G H

T*T =7 where HeM and H(0) =0.
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By the definition we have

t

C‘ftoftF(tu)G(u)du F0)G(t) + [ F'(t — u)G(u)du

Ft) G@) _ _ 0
I(t) * I(t) txt N txt
) Off(t—u)G(u)du ) H()
txt t

which implies

or

/G(tfu)f(u)du:t*H(t) :/H(u)du.
0

0

Differentiating and taking into account that G(0) = 0, we find

t
and therefore [ f(t —u)g(u)du € M.
0

t
Conversely, if the convolution [ f(¢t —u)g(u)du = H(t) € M and H(0) = 0, then from
0

bff(t —u)G(u)du % j ft—u)G(u)du

F@) G) _ _ _ H(?)
t t txt t t
we conclude that the product of the functions @ and @ is a function, too; obviously,
t
frg=4 [ f(t—ug(u)du. I
0

Corollary 2.3.31 The product of a function F' € M with an arbitrary function g € L is

again a function.

¢
Indeed, the convolution [ F(t —u)g(u)du (2.3.1, Lemma 2.3.35) belongs to the ring M
0

and at t = 0 is equal to zero.
In section 2.2. we introduced the function n(t;\) =0, if t < Aand n(t; A) =1if ¢t > A It
was proved that the convolution of n(¢; A) and n(¢; p) is equal to

/n(t—U; An(u; p) du = /U(U;A+u)dw
o 0
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This implies that the convolution of this functions belongs to M. Hence, the product

n(t; A) x n(t; 1) is a function, and, obviously,

n(t; A) *n(t; p) = n(t; A+ p). (2.3.14)

Thus, the field 9t contains all locally integrable functions on R;. Complex numbers also
lie in 91, and the product of numbers in 9 coincides with the ordinary product of complex
numbers. Thus, an operator is a generalization of the notion of a function and a complex
number; the elements of the field 91 could be called generalized functions. However, taking
into account established operational calculus terminology, we consider as the best name for
an element of M the term “operator.” An operator is essentially different from a function.
In contrast to functions, one cannot speak about the value of an operator at a point.

On defining the ring of operators M we departed from the relation

nt) =5 [ F(e- gt du

0
where the operator F' € M acts on the function g € L. The range of this operator lies in
L. And both of the functions F' and g belong to the field 9. Therefore, one can compute
the product of the operators F = % and g = % This product is equal to

Py sc 4 FETwelde

F(t) »g(t) = 2D t -2
0

F(t — u)g(u)du.

Thus, the operation of application of the operator F' to the function g coincides with the

t
product of the operators F' and % = g, where G(t) = [ g(u)du.
0

The operator % may be considered as the product of the operator % by the function F':

F_1_F
T=I1*7T"

The operator % plays a fundamental role in the operational calculus. A special notation

is introduced for it:

1
=2 2.3.15
p=7 ( )
In this case formula (2.3.12) takes the form
pxF=F; F(0)=0, (2.3.16)

hence, in the case F(0) = 0 the multiplication of the function F', belonging to M, by

the operator p = % denotes the differentiation of the function F. The operator p may
F
G
g € M. In the general case the product p x g is an operator. The operator p is called the

be multiplied by any operator i.e., the product p % g has a meaning for any operator

differentiation operator. If F is an arbitrary function belonging to M, then (2.3.16) implies

px (F—F(0) = F,
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px F =F' +pF(0). (2.3.17)

If F/ € M, then (2.3.17) implies
px(pxF) =px F' 4 p?F(0),

or

p?x F = F"+pF'(0) + p*F(0). (2.3.18)

In the general case, when F has an nth order derivative F(™) belonging to the set L,

successive application of (2.3.17) yields
Ptk F=FM 4 pF=0) + p? F=2(0) + - - - + p"F(0), (2.3.19)

where p" denotes the product px p---xp of n operators. The inverse of the operator p is
obviously equal to ]% = I. The function I belongs to the set M. It therefore follows from
(2.3.15) that

t t

%*f(t) = %/(t —u) f(u)du = /f(u)du, (2.3.20)

0 0
hence % is the operator of integration. On applying the operator % to both sides of the
relation
=1, (2.3.21)

2 2 n n—1 n
= () 5w () -1 () -5
p p ' p p \P n
3

.15), we have

<;>n*f(t) = %/(t%)nf(u)du;
0

we find from (2.3.20) that

1
P
Then taking into account

(2

but
(1)” 11 11
—) =k k= —
p p p p p"
therefore,
1 "
— = — (2.3.22)
p*  nl
and ,
1 d [({t—u)"
— t)=— | ———— du. 2.3.23
et =5 [ (232
0
Formula (2.3.22) is proved for positive integer n; however, it can be extended to arbitrary
values n = v, where v > 0. Let us denote the function #:V), where v > 0, by p%. It

follows from formula (2.3.23) that in such notation we have
111
P e
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hence for all v > 0 the following formula holds:

1 tY
—_ = 2.3.24
pv T(1+v) ( )

Let us agree below, for the sake of simplicity of notations, to omit the asterisk in the

product of operators, if it will not cause ambiguities. Hence, we often shall write g g—ll
instead of g * g—ll Thus, formula (2.3.23) may be represented in the form
1 d [(t-w
t—u)”
—ft)=— | ——— du; 2.3.25
i =5 [ (23.25)
0
and formulae (2.3.17), (2.3.19) take the form
F' =pF —pF(0), (2.3.26)
FM = p"F —p"F(0) — p" 1 F'(0) — - -- — pF"=(0). (2.3.27)
Often we shall denote operators of the field 90t by a single letter, for instance, g =a, % =0,

etc.

2.3.3 Finite Parts of Divergent Integrals

It was proved that the field 91 contains all locally integrable functions on R;. The
question arises if is it possible to prove in the same way that some nonintegrable functions
also belong to the field 9. Let us consider nonintegrable functions with power or logarith-
mic singularities at ¢t = 0. Let Ny denote the set of all functions satisfying the following

conditions:

1. In some neighborhood of t = 0, i.e., for 0 < t < 4 the function f(¢) may be represented
in the form .
FO) =33 Bt log" t + h(t), (2.3.28)
i=0 k=0
where «;; and ;. are arbitrary real or complex numbers, and the function h is

absolutely integrable on the interval (0,¢) and bounded for ¢t — +0.
2. The function f is absolutely integrable on the interval 6 <t < T.

Obviously, Ny is a linear set.
Let us find the indefinite integrals of the functions t* logk t, k=0,1,2,..., which appear
in the right-hand side of (2.3.28). If a = —1, then obviously

1 k-‘rlt
/t*llogktdt: %8

k1 +C.
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If a # —1, then integrating by parts we find that

t* log” tdt 2l logh t i t* logh ! tdt
O = O _ (0] .
& atl BT &

Repeatedly applying this formula, we obtain the relation

/t“lo Ftdt = e lo kt—ﬂlo Rl g +(—1)kk7!/to‘dt
& Tar1l ® (a+1)2 & (a+ 1)k ’

/ta logh tdt = e (logkt __k
a+1 o+

k(k—1)

(117

Let us define the function ®x(¢t;«), k=0,1,2,..., on putting

or

_ k!

k!
(a+ 1)k

ta+1
D (t; ) = <logk t—

logh= 1 ¢4 ...
a+1 & + +

1 ) if a#-1,
«

logk—‘rl t

0 a=-1
kj—|—1 1 o

D (t; ) =

In this case we can write for all «
/t"‘ logh t dt = By (t; ) + C.

Let f € Ny. Consider the integral

ﬂazfﬂwm,

where 0 < € < § < t. Taking into account (2.3.28) we have

n m

5 t 5 5 t
J(e):/f(u)du—f—é/f(u)duzZZﬁike/ua““ logkudu-i-e/h(u) du+0/f(u)du

p i=0 k=0

) t
= Zﬂqu)k(é, Oéik) — Zﬂikq}k(e; Oéik) +/h(u) dqu/f(u)du,
i,k i,k € 4

or
& t

/f(u) du+ Y Bix®i(e; i) :Zﬂikék(é;aik)+/h(u)du+/f(u)du.
p ik

i,k € §

We see from the last relation that as ¢ — +0 there exists the limit

t
[tim [ ; Bir @ (€; i) + / f(U)dU}
! e (2.3.29)

t

5
:Zﬂik@k(fs;aik)-k/h(u)du—&—/f(u)du.
0

ik 5
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¢
This limit is called the finite part of the (in general divergent) integral [ f(u)du and is
0

t
0
Thus, if we introduce the notation

O(e) = > Bin®r(e; air),
ik

denoted by

then we obtain for all t > 0

Jim [(I)(e)—&—/tf(u)du} = ’/tf(u)du. (2.3.30)

Let us give, for instance, the following finite parts of integrals:

7
2) |Of%‘:1ogt;

3) It follows from (2.3.29) and the definition of the finite part that
¢
’/ua log® udu = & (t; o). (2.3.31)
0

Properties of Finite Parts of Integrals
1. If the following relation holds:

t

Jim, / fwdu= | fwn

0

then also the relation holds:

t
Let us note that the condition of convergence as € — +0 of the integral [ f(u)du implies

€
the existence of the limit limO ®(e); and from the structure of the function ®(e) we see that
€e—

this limit is equal to zero.

2. If a is a number, then it can be taken out of the symbol of the finite part of the integral,

i.e.,
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¢ ¢
3. If there exist the finite parts U f(u)du and Ug(u)du, then there exists the finite part
0 0

t

| / (F () + g(w)) du

and the following relation holds:

‘/tf(u) du + ‘/tg(u)du— '/t(f(u)Jrg(u))du'
’ 0 0

¢
4. The definite integral f fw)du is equal to the difference of the finite parts of the integrals

t

| [ f(w)du and Im, ie.,
0 0

j () = ‘/f(u)du - ‘/f(u)du

This property follows as € — +0 from the equation
t t o
/f(u)du =P(e) + / flu)du — ®(e) — /f(u)du
Corollary 2.3.32 Fort > 0 we have
v
L pwydu = 1)
o u) du = .
0

Let the function f € Ny be differentiable, and the derivative f’ also belongs to the set

No. In this case one can consider the finite part (see Property 4)

’jff(u)du: ‘jf’(u)du+/tf’(u)du.
0 0 4

However (see (2.3.28)), for 0 < u < § we have

/() = 3 B (% Tog* ) + B ()
ik

therefore,

5
(u®ir log® u)du + /h’(u)du.
0

)

[ =5 s

r ik

SIS

/
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For all values of @ and nonnegative integers k we have (see Property 4)

0 )
d
’/ d (u log" w)du = ‘/ o~ log" udu + ’/ kue=1log" ! udu
u

=a®(d;a—1)+ kPp_1(6;a— 1) =6° log” &;
therefore, the following formula holds:

)

hence also

Thus, finally we have
t
- ‘ / F(u)du = h(+0). (2.3.32)
0
It is convenient to introduce for this difference a special notation
h(+0) =1=0 | (1),

then
t

‘/f()du_ ) —i=o | F(£) (2.3.33)

0

If a € C*°[0, 00), then we can write the equation

n-y

k=0

Oé(k) tn—i—l
(n +1)!

o, 0<e<l,

where n may be taken arbitrarily large. Therefore, af € Ny if only f € Ny. Now let f be
a function such that f” € Ny. In this case the following formula holds:

‘ / w)du = a(t)f(t) — =0 [a(D F (D).

On the other hand we have

’/t[a(u)f(u)]’du = ‘/a’(u)f(u)du+ ’/ta(u)f,(u)du
0 0 5

We obtain from here the following property of integration by parts of the finite part of an

integral
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t t

‘/a(u)f/(u)du =a(t)f(t) —i=0 |a(t)f(t) — ‘/a’(u)f(u)du. (2.3.34)
0 0
Let us compute the finite part of the integral

t

1
(n_1)|/(t—u)n 1 alog udu.
0

Using the Properties 2 and 3 and the formula (2.3.31), we find the finite part of the integral:

1
m /(t — u)"*luo‘ logk udu
0

n—1 t

1 n—1
(_1)r( >tn—1—r
— 1)
19 st T )

/u””’“ log" udu

n—1
r n—1 n—1—r
tr=0

Taking into account the relation

trtet! k k=1 (=1)*k!
ra+tl (log t— r+a+1 log" "t +---+ ()

r+oa+1)k
Op(tir+a) = for r 4+ a+1£0,
loght1 ¢
k+1 forr+a+1=0,
we find
,/t—u” Ly log® udu
0
= nzl (—1)7'; n—1 ﬁ lo kt—Llo F=1y (2.3.35)
_,.:0,.7&,./ m=1D!'\" r Jr+a+1 & T rarl 08
(—1)kk! 1 Jin—=1 longrl /
- " =—a-1).
T rarr +(n_1)!( A F - (=—a-

Ifr+a+1z#0forr=01,...,n—1, then the sum in the right-hand side of the last

equation is taken over all r from 0 to n — 1, and the summand
;o1 - logh ™ ¢
(_l)r n tn+a og
(n=11\ kE+1

From the relation (2.3.35) we obtain the following lemma.

is absent.
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Lemma 2.3.36 The functions

en(t)

/t—u” Lue logh u du, n=123,...
0

belong to the ring M for all n > —a.

Indeed, if n+a > 0, then the function ¢, (t) is continuous for 0 < ¢ < co and its derivative

is integrable on any interval 0 < t < T'. Besides, obviously, ¢(0) = 0.

Corollary 2.3.33 If f € Ny, then for all sufficiently large n the functions

Fot) = | — )/(t—u)”*lf(u)du (2.3.36)

(n—1)!
0

belong to the set M and F,,(0) = 0.

The property 4 with @ = € and the change of f(u) by eI (t —u)" " f(u) imply

'] S ) ‘(nil)!/t(t—u)"_luaf(u)du
0

,/t—un e f (u)du
0

(2.3.37)

Obviously, the expression

Pn 1(t6 ‘ '/t—un lf )

0

is a polynomial in t of degree n — 1, whose coefficients depend on e. In the conventional

notation the expression (2.3.36) may be written in the form

F(t

t
'/ )" f(u)du + Py (t;€). (2.3.38)

On noting that

d d = n—1\ T
7P _ . — -1 r -
dt™ " 1) dt 2( ) ( r )(n—l)!

O/UTf(u)du

S (e /f()d— 1-altie).
= 0
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we obtain from (2.3.38) with n > 1

t

! /(t —w)" 2 f(u)du + Pp_o(t;€) = F_1(t).

i) = gy
0

For n =1 it follows from (2.3.38) immediately

F{(t) = f(t) = Fo(1). (2.3.39)
Thus, for all n > 1 we have
Fo(t) = Faa(1), (2.3.40)
and
dni’;(t) = f(t). (2.3.41)

Now let ng be such that F,,, € M. Then we have F,, € M for all n > ng; hence, the
operator p"F,, belongs to the field 9.

Let us prove that the operator p™F,, does not depend on n. Let m > n > ng and
I =m —n. It follows from (2.3.40) that

F),=Fpn1,....,F\) =Fn 1 =F,,

m

and F,(0) = 0 for all n > nyg, therefore,

Fn _ 0 — plF — pmanm

m
or
p"F, =p™F,, forany m>n > ng.

Hence, the operator p"F,, depends only on the choice of the function f. Thus, one can

put into correspondence to any function f € Ny the operator

(n—1 1)! /(t —u)rtf(u) du € M.

This correspondence has the following properties (see Properties 2 and 3 of finite parts):

1. If the function f corresponds to the operator a, then the function Af, where X\ is a

number, corresponds to the operator Aa.

2. If the function f corresponds to the operator a and the function g € Ny corresponds to

the operator b, then the sum of the functions f 4+ g corresponds to the operator a + b.

3. If f € L, then the following formula holds:

n

p

(nll)!/(t—u)"_lf(u)du:p"/%f(u)du:f(t);
0 0

in this case the operator a coincides with the function f.
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Let us denote the operator p"F,, see formula (2.3.36), where f € Ny, by f:

f(t) =p"

/ ﬁ(t — )1 f(w)du. (2.3.42)
0

This notation is justified by the Properties 1, 2, 3, and the equation (2.3.41).
Suppose that the function f has the derivative f’ € Ny on Ry. Taking into account the
Property 5, we find

7(71 _1 ol /(t — )" 1 (u)du
0

t

O/Mf’(u)du

n—1

(e

=0

n—1
1

g () e

r=0

_—
r [ ur—f(u) du}
/
n—1 t

= _ﬁ S (1) (n; 1)tn—1—7"t_0‘t7‘f(t)+ ‘/ (t(;u);)_!zf(u) du.

r=0 0

Let us introduce the notation
=0t f() = fr, T=0,1,2,..; (2.3.43)

then we have, see formula (2.3.36),

t

1 frtnflfr
[ t — )1 du = — 1y E, (1)
gy [ = ) d S gy a0
0 r=
Taking into account that
n—1—r (n—l—r)!
t -7
pnflfr ’
we obtain
1 ! n—-1 ,f pr+1
7 n— _ _\rdr n
p (n_l)!/(t—u) L/ (u) du = ;0( 1)+ " P (8),

0
or, taking into account (2.3.42),

n—1 _1\r r+1
[T o o L,

r!

It is convenient to represent the last equation in the form

o0

f'=p [f -y (1)Tfrpr] . (2.3.44)

r!
r=0
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In fact, the series in this equation has only a finite number of nonzero terms, because,
obviously (see formula 2.3.32) f, = 0 for all sufficiently large r (r > ny).

If we suppose that f' € L in (2.3.44), then f,. = 0 for all » > 0 and fo = f(0). Hence, the
expression (2.3.44) takes the form

f=plf = O,
i.e., it coincides with 2.3.2, (2.3.26).
The results above may be formulated as follows:

Theorem 2.3.84 The set Ny is contained in the field 9.

Let consider special cases. Suppose, that f(¢) = t*, where « is not equal to a negative

integer. In this case (see formula 2.3.32) we have
fr =t=0 [t f(t) =4=0 [T f(t) =0

for all » > 0; therefore, (2.3.44) implies

d
%ta = pt°. (2.3.45)

Hence, if a is not equal to a negative integer, then the product of the operator p by ¢ is
to be computed by the rule of differentiating of the power function. If « = —m, where m is

a positive integer, then f,, = 0 for r # m and f,, = 1 and from (2.3.44) we obtain

% (t}n) - p[t}n - (_%pr] (2.3.46)

Let find F,,(t) when f(t) = ¢*. If o is not a negative integer, then we have from (2.3.35)

gotn L 1 1

r a+r+1°

The sum in the right-hand side may be represented in terms of the Euler Gamma function.

Indeed, if « is positive, then the following relation holds:

S (e S e () [
- - 0

I'(l1+ a)l(n)
Ma+n+1)

1
[era-omae=
0

By virtue of the principle of analytical continuation the latter equation holds for all « for
which the right- and left-hand sides have a meaning. Hence, we have

o (14 a)

Falt) = IFa+n+1)’
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therefore, the formula holds

LT (1 + @)

1 =p"Fo(t) = p" ————
P =P S T
However, for n + a > 0 we have

thra B 1 .
T(a+n+1) prte’

therefore, finally we obtain

te 1
=~ a#-1,-2

'l+a) po 7

Thus, the formulae (2.3.23) and (2.3.24) in section 2.3.2 hold for all «, which are not equal
to negative integers.

If « is equal to a negative integer & = —m, then for m > 1 we have (see (2.3.35) when

Fo(t) = ﬁ [m_Q (-1)?(’"? 1) Ly logt}

r+1—m

n=m:

i

If m =1, then Fy(t) = logt.

Now we compute the sum

- mf(—l)?" (m; 1) = mi(—n’“ (m; 1) 0/18"—7"—%5

then we obtain

1
(1 _f) n—1 1
n+1 df = (1 - 5) d§ = -
0/ / n

0

Thus, I41 — I, = %; however, I; = 0, whence the following equation holds:

e [ B
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and
i ~1 P |
r:O < )m—l—r_(_l) k=1 K
ie, fora=-m, m=1,23,... we have
Fi(t) =logt, Fn,(t)= ﬂ [logt + mzf 1} (2.3.47)
oo (m—1)! =k

Because of the lack of the space we note only that by the similar method it may be proven
that nonintegrable functions with power or logarithmic singularities at a finite number of

points of the region 0 < ¢t < oo also belong to the field 9.

2.3.4 Rational Operators

One of the main goals of operational calculus is the study of the operators of the form
R(p); R(z) is a function of the variable z. In the simplest case, when R(z) = Ypaz2" is a
polynomial, the operator R(p) is equal to Ypaxp®. The operations with such polynomials

are executed in the same way, as in elementary algebra, for instance,
P*+2p+ D)o —)=p +p" —p—1=p*(p+1) —(p+1) =’ -1)(p+1).
If two polynomials in the operator p are equal, i.e.,
n n
= o’ = Q) = Bipr”,
k=0 k=0
then the corresponding coefficients a and [ are also equal. Indeed, if
n n
Z ak:pk = Z ﬂkpka
k=0 k=0

then by multiplying both sides of this equation by the operator ﬁ we obtain

an’

k=0

or
Zak Zﬁk A1k 0<t<oo.

By virtue of the known theorem for (ordinary) polynomials it follows from this relation that
ar = B, k=0,1,2,...,n

Theorem 2.3.85 If a polynomial

n
K
D> ap
k=0
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is reducible to a function, then oy = as = -+ = a, = 0.

This theorem implies that if the degree of a polynomial ¥7_ Oakz is greater than or equal

to one, then the corresponding operator 7 k:()Oékp cannot be reduced to a function.

Proof. X}_ooup® = f(t), n>1. Multiplying this relation by the operator p%, by virtue
of 2.3.2, (2.3.25) we have

n t t
(092 - u
Z n—k / n _ 1 u)du’
0

k=0 p

or

n Oéktn_k B L (t_u)n—l o\
kZ:O (n—k)!_o/ (D J (W

Putting ¢ = 0 in this relation, we find «,, = 0. Hence,

Z app® = f ).

If n — 1> 1, then multiplying the last relation by paoT, We find a1 =0;if n—2 > 1,
then similarly we obtain «,,_s = 0 and so on, until we obtain oy = 0.
Let P,(p) = 3 axp®, and Q. (p) = > Brp”. The collection of all operators of the form
k=0 k=0

n

S app®, 0 < n < oo, is a ring. This ring may be extended to the quotient field. The
k=0
elements of this field are rational fractions of the operator p, i.e., operators of the form

- k
Qgp
kgo _ P, (p)

in: ﬁkpk Qm (p)
k=0

= R(p).

The operators P, (p) and Q,,(p) belong to the field 9. Hence, their ratio R(p) also belongs

to 9. The operator R(p) is called a rational operator. A rational operator is associated with

every rational function R(z) = 5’”‘ ((ZZ)). This correspondence gives an isomorphism between

the field of all rational functions and the field of rational operators. The field of rational
operators is contained in the field 991, which is a subfield of 1.
Let us consider several examples. Suppose that F(t) = e#! in formula (2.3.26). Then we

have pett = pett +p, or pett — pe*t = p, whence (p — pu)ett = p. Therefore,

- ——a (2.3.48)
p—h

Multiplying this relation by the operator % =t, we find

t

1
7=t*e“t:/e“udu=
p—n

ettt — 1

1

0
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Thus,

B et (2.3.49)
p—p

It follows from (2.3.48) and (2.3.49) that

p_)\ _ p _ A :e“t—i(eﬂt—l),

p—p p—p p—p 1
pPoA (1— A) et 42 (2.3.50)
p—p 1 1

Thus, (2.3.49) and (2.3.50) imply that any rational operators of the form ﬁ and % are
functions belonging to the ring M.
Multiplying (2.3.48) by (2.3.49), we find

¢
S 5 = et % L —1 = l(e“t *eht — e”t).
(p—n) I j
However,
t

d d
Mt x ettt = yr / eht—uw)tmu gy, — %(te”t) = e 4 ptelt.
0

Hence, we have

1

Let us prove that following the formula holds:

D B tneut

T (2.3.51)

Indeed, if (2.3.51) holds for some n, then multiplying (2.3.51) by ﬁ we obtain

thett et —1 1
( p)nﬁ =—% = —'(t”e“t * el — ekt
p—p n! 7 !

However,

t

+1 put +1,, ut
telt x et = i/e"(t_“)u"e““ du = A (e T et + t"ett:
dt dt\ n+1 n+1
0
therefore,

+1 t +1 t

L:L m+tneut_tneut = " .

(p—p)"2  pn! \ n+1 (n+1)!

Thus, (2.3.51) holds for n 4+ 1 and for n = 0. Hence, it is proved for all positive integers n.

0

The question arises: for what rational functions R(z) is the associated operator R(p)

reducible to a function? The answer to this question is given in the following theorem.
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Theorem 2.3.86 A rational operator R(p) = % is reducible to a function if and only if

the degree of the polynomial P(p) is less than or equal to the degree of the polynomial Q(p).

Proof.  Suppose that the degree of P(p) is n, the degree of Q(p) is m and n < m. Let us

factorize the polynomials into linear factors:
P(p) = an(p—A1)(p—X2)...(p— An);

QP) = Bm(p — p1)(p— p2) - (P — pm)-

Here, A1, Ao, ..., A\n; 1, o, ..., Uy are the roots, perhaps multiple, of the polynomials
P(p) and Q(p), respectively. Then for n < m we obtain

P(p)_%p_/\lp_AQ P—An 1

R(p):Q(p) _ﬁnp—,ulp—,uz”.p_/in(p_,un+1)...(p_ﬂm).

We see from this factorization that the operator R(p) is the product of a finite number of
operators of the form 2 ﬂ and ——. However (see function 2.3.49 and 2.3.50) the operators
of this form belong to the ring M7 i.e., the operator R(p) also belongs to M. Thus, R(p)
is reducible to a function belonging to M. Hence, the condition n < m is sufficient for the
operator R(p) to be reducible to a function.

Conversely: suppose that R(p) is a function. Let us prove that n < m. If n < m then

R(p) may be represented in the form

R(p) = N(p) + Ri(p),

where N(p) is a polynomial, whose degree is greater than zero, and R;(p) is a rational
operator, whose nominator has a degree less than or equal to the degree of the denominator.
According to the above reasoning, Ry (p) is a function. Hence, the operator N(p) = R(p) —
Ri(p) is reducible to a function. However, in this case Theorem 2.3.85 implies that the
degree of the polynomial N(p) is equal to zero, i.e., N(p) is a constant. This contradicts
the supposition that n > m. Hence, n < m.

Thus, if n < m then there exists a function () such that R(p) = ¢(t), where ¢ € M.
The value of R(p)f(t) for an arbitrary function f € L may be computed by the formula

E:\&

t
/cp (t—r)f(r)dr, o(t) € M. (2.3.52)
0

If the roots p1, 42, - - . , im of the denominator of Q(p) are simple and Q(0) # 0, then

Pp) _1P0) N o
Q0 " pQ0)

where
o = T PZHP®) o Pl) Plw)
P— Uk pQ(p) pP— g pQ(P;—S(Hk) MkQ/(,uk)
—HE
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Hence,

Pp) _ PO o~ Plw) p _PO) N~ Plw)
z:luk )p— ukiQ(O)Jrz:l Q) P

Thus, we have

_PO) N~ Pl
@) = 5oy +; () Pt (2.3.53)

If Q(0) = 0, then it means that Q(p) = pQ1(p), where Q1(p) # 0. Using (2.3.53) one can
find P(gg = p1(t), and then we obtain

t
p(t) = **@1 /wl
0

The case of multiple roots is more complicated. If, for instance, p = pp is a root of

multiplicity r, then the partial fraction decomposition of p%((’;)) contains fractions of the

form Hence, o(t) contains terms of the form A,t"~!e#it. Thus, in the general case

(r— u )
the function ¢(¢) has the form

=3 Agtrte
k,r

This case will be investigated in detail when solving the differential equations in section
2.6.1. [

2.3.5 Laplace Transformable Operators

Let S denote the set of all functions f, for which the Laplace integral

= /f(t)e*ztdt (2.3.54)
0

is absolutely convergent, while S* denotes the set of all functions of the complex variable
z = x + iy representable by the integral (2.3.54), where f € S.

The set S* consists of functions analytical in half-planes H., (see 1.4.1). Obviously, S* is
a linear set. In addition, the convolution theorem (see 1.4.3, Theorem 1.4.11) implies that
if two functions belong to S*, then their product also belongs to S*, i.e., S* is a ring with

respect to the ordinary operations of addition and multiplication.
Definition 2.3.41 An operator a € M is called Laplace transformable if there exists a

representative (F,G) such that a = g and the Laplace integrals of the functions F and G

are convergent, i.e., there exist the integrals
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F(t)e *'dt;

G(t)e *'dt. (2.3.55)

It is known from the properties of Laplace integrals that if the Laplace integral of the
¢

function F is convergent, then the Laplace integral of the function Fi(t) = [ F(u)du =
0

t x F(t) is absolutely convergent. Besides, obviously, a = g = izggg Therefore, if the
F

operator a = ¢ is Laplace transformable, then without loss of generality we may always

assume the integrals (2.3.55) absolutely convergent. This has to be taken into account

below.

Theorem 2.3.87 The set of all Laplace transformable operators is a field.
This field will be denoted by MM(S).

Proof. Let the operator a = g € M be Laplace transformable and a # 0. In this case,

obviously, the operator % = & is also Laplace transformable. Furthermore, if a; = g—ll

F
and as = &= are two Laplace transiormanble operators, then their sum aj; + G and produc
d £ are two Laplace transformabl tors, then thei +az and product

a1 * as are also Laplace transformable operators. Indeed, we have

FixGy+ Fo x Gy
a; +ag = )

Gl*Gg

or

Ot —

t
4 [Fi(t—u)Ga(u)du+ & Ong(t —u)G1(u)du

a1+a2:

4 [Gy(t — u)Ga(u) du

o &

_OfFl (t = u)Ga(u) du + E)ng(t —u)G1 (u) du

OftGl(t —u)Ga(u)du

The Laplace integrals of the functions Fy, F5, Gy, G2 are absolutely convergent. According
to the convolution theorem for the Laplace transform the Laplace integral of the convolution

of such functions is also absolutely convergent. Hence, Laplace integrals of the functions

t t

H(t) = /Fl(t — u)Ga(u) du + / Fy(t — u)G1(u)du,
0 0

t

R(t) = / Gt — u)G () du

0
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are absolutely convergent; therefore, the operator a; + as is Laplace transformable. I
Similarly, the relation

t

4 (t — u)Fy(u)du JFl(t —u)Fy(u)du

al xag =

[ B
0
of 1(t — u)Ga(u)du {Gl(t—u)Gg(u)du

a4
dt

implies Laplace transformability of the operator a; x as. Obviously, 9(S) is a subfield of
m.

Almost all problems of application of operational calculus are connected with the field
M(S). Therefore, it is sufficient for the reader interested in operational calculus as a tool
for solving practical problems to restrict himself or herself to the investigation of the field

m.

Definition 2.3.42 Let a = g € M(S). The function of the complex variable z = x + iy

_ L[F)(z)
Az) = ZGG) (2.3.56)

is called the Laplace transform of the operator a = g

Let us prove that the definition of the function A(z) does not depend on the choice of
the representative (F, G). Indeed, if the formulae

a= g = g—ll and Aj(z) = f[[(};i]]((i))
hold, then the condition
t t
F+«Gi=FxG, or /F(tfu)Gl(u)du:/Fl(tfu)G(u)du
0 0

implies, by means of the convolution theorem of the Laplace transform, the relation
LIF](2)L[G1](2) = LIFA](2)L[G](z), or Ai(z) = A(z).

Hence, the function A(z) is uniquely defined by the operator a € M(.S).
Thus, the function A(z), defined by (2.3.55), is associated with every operator a € M(.S).
This transformation of a into A(z) is often denoted by the symbol

a=Az)] (2.3.57)

We denote by M(S) the image of M(S) under the transformation (2.3.57); the elements
of the set 9M(S) are the functions A(z) = ﬁg}gg, where L][F|(z) and L]|G](z) are absolutely

convergent Laplace integrals.
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Theorem 2.3.88 The transformation (2.3.57) establishes a one-to-one correspondence be-
tween the fields M(S) and M(S) such that the sum of operators a; + ag corresponds to
the sum of functions A1(z) + Aa(z) and the product of operators ay x ag corresponds to the
ordinary product of functions A1(z)As(2). Zero and unity of the field MM(S) map onto zero
and unity of the field IM(S).

Proof. Let ayp € M(S), a2 € M(S) and a1 = A1(z), az = As(z). Let us prove that the

following formulae hold:
ay + az = Al( ) + AQ(Z) and aj *ag = Al( )AQ(Z)
We have

t t
Fi(t —uwGa(uw)du+ [ Fo(t —u)G1(u)du

Fow Gt Fyx G ({1( )G2(u) ({2( )G1(u)

a1+ a2 = Gl*GQ -

bfGl(t — u)Ga(u)du

As a representative of the operator a; + ag, we take the pair

t t

/Fl(t —u)Go(u) du + / Fy(t — u)Gl(u)du,/Gl(t —u)Ga(u)du |,
0

0 0

which will be denoted briefly (H, R). The convolution theorem of the Laplace transform
implies that
LIH] = LIR]L[Gs] + LIF2]L[GA],

L[R] = LIG1]L[Gs].

Hence, the following relation holds:

= =A A
a1+a2 O ,C[Gl} + E[GQ] 1(Z)+ 2(2)
Similarly, we have
t
Fi(t —u)Fy(u)du
a;xa Fux 1 Of R
1xaz = = )
G xG ¢
2 Gt w) G () du
0
therefore, we obtain
LIF]L[F]
= = = A(2)A(2).
al xaz = L[Gh]Ga(z) 1(2)A2(2)

Obviously, the transformation (2.3.57) maps the zero element of 9t(S) onto the zero
element of the field 901(S) and none of other operators of the field M(S) maps onto the zero

of the field 90(S). Indeed, if some operator a = 0, then [ F(t)e *!dt = 0 and by virtue
0
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of Theorem 1.4.9, section 1.4.1, we have F' = 0, i.e., a = 0. Thus, the bijectivity of the
mapping (2.3.56) is proved.

Finally, if a is the unit operator a = 1, then

[e#tdt
R
[ e—=tdt
0
i.e., the unit of the field 9t(S) maps onto the unit of the field 9(S). I

The proven theorem states an isomorphism of the fields 9(S) and 99t(S). The structure
of the field 9M(9) is clear. Its elements are functions of a complex variable z. Every such
function is a ratio of functions representable by absolutely convergent Laplace integrals.

Now we are going to investigate the properties of this isomorphism.

Properties of the Field Isomorphism 9M(S) = 9M(9).

1. Under the isomorphism 9(S) = M(S) the operator p = % corresponds to the function

I(z) = z.

Proof. Indeed, the following formula holds:

) e *tdt 1
[teztdt =2
0
thus,
p=z| (2.3.58)

2. If the operator a is reducible to a function belonging to S,

=W _jes ro=0).
then the following formula holds:
ft) = zL[f](z) = A(2). (2.3.59)

Proof. Indeed, on assuming Rez > «, we have (see Definition 2.3.42) the operational

Correspondence
T ¢
F(t)e *tdt 0o
F t —zt
o= §)=°oo :ZQ/F(t)d<e )

fte_tht 0 F

0
— o0 o0

= F(O)e |+ / Flt)e=tdt = / F(e—dt.
t=
0 0
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[
3. If the formula g = ggg% = A(z) holds, and o, € Ry, then we have
Flat) . SEIFIG) (2.3.60)
G(Bt) ~ aLlG)(5)
In particular, we have
F(at) | L[F](Z) z
= al —A(Z). 2.3.61
G(at) E[G}(i) (a) ( )
Proof. The proof is by straightforward calculation. I

4. The formula & = LIFIZ) imnlies the formula ¢UF(t) . LIF)(z—a) Here, o and 3

LIG](2) ePrG(t) LIG](2—p)
are arbitrary numbers and e**F(t), ePtG(t) denote the ordinary product of functions. In
particular,
at . Z £
t) = — ). 2.3.62
(D) = Fo - o) (23.62)
Proof. We have the relations
/eo‘tF(t)e_tht = L[F](z —«a) and /eﬂtG(t)e_tht = L[G)(z — B),
0 0
which imply (2.3.58). I
5. If F(t) =0 fort <0 and G(t) =0 fort <0, then for a« > 0 and B > 0 the formula
F . L[F](2)

G~ 6l = a(z) implies the formula

F<t —Oé) - e—azE[F](Z) _ o~ (a=pB)z
GU—p) ~ e PLGl2) e A(z). (2.3.63)
Proof. We have
/F(t —a)e *ldt = /F(t —a)e *dt, t—a=u,
0 «
then - -
/F(t —a)e *tdt = /F(u)e‘z(o‘+“)du = e *LIF](2),
0 0

and similarly

/G(t — B)e *tdt = e *PLIG](2).
0

For the operator %, a >0, B>0 wehave
e¥*[LIF](2) — [ F(t)e~*dl]
F(t—i—a): { (2.3.64)
G(t+0) g8 B ' o
eP*[L[G](z) — [ G(t)e#tdt]
0
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Indeed,
/F(t +a)e #dt = /F(u)e‘z(“_o‘)du = e (E[F](z) - /F(u)e‘”dt)
0 « 0
and analogously for the other integral. I

6. The operational correspondence % = 2@8 implies the formula

d (L[F](z)) L () | F() 1G()
dz\Z[G)(z)) T Git) ' GH) TG

(2.3.65)

Notice that ¢F(t) and tG(t) denote the ordinary product of functions, therefore, the

operator tg((tt)) is not reducible to %

Proof. We have

d(qF}(z)) LLF)(2)  LIF]() fLIG)(2)

a:\ziel) e T Lde) Lee)

o0
however, d%L[F](z) = f{tF(t)e*“dt (see 1.4.1, Theorem 1.4.8). Taking into account

this property, we see that (2.3.65) holds. In particular, if the operator g is reducible to a

function (see formula 2.3.59) belonging to S, we have

A (10

dz z

) = —tf(t). (2.3.66)
[

7. Suppose that F has the derivative F' = f € S. In this case
F'(t) = 2F(2) — 2F(0). (2.3.67)

Proof. Tt follows from (2.3.59) that

oo

Ft) = / Ft)e—"dt = = / e~ dP(t) = —2F(0) + 22 / Flt)edt = 7 () — 2F(0).
0 0

0

In the same way one can prove the more general formula
FM(t) = 2"F(z) — 2"F(0) — 2" LF'(0) — - - — zF(™=D(0). (2.3.68)

The fields MM(S) and M(S) are isomorphic. This isomorphism put into correspondence
to the operator p the function a(z) = z. Hence, an arbitrary polynomial of the operator p,

namely P(p) = X aip”, corresponds to an ordinary polynomial,

P(z) = Zakzk, ie.,
k

© 2006 by Taylor & Francis Group, LLC



212 Operational Calculus
P(p)=> ap’ => arz¥ = P(2). (2.3.69)
k k

Any rational operator R(p) = % corresponds to a rational fraction R(z) =

P(z) .
oty e

R(p) = R(z) | (2.3.70)

Comparing the formulae (2.3.68) and 2.3.2, (2.3.27) for the derivative F(™(t), we obtain

the formula
FO(t) = p"F(t) — p"F(0) — - -- — pF("=D(0)

_ (2.3.71)
= 2"F(2) — 2"F(0) — 2" 'F'(0) — - - - — zF(”_l)(O),

Let a = £ € M(S). In this case a = A(2) (see (2.3.60)). It is natural to introduce for the
operator a the designation a = A(p). Thus, we put into correspondence to every function
A(2) of the complex variable 2 belonging to the field 91(S) the operator A(p). It is just the
operator a of the field 9, which under the mapping 9 = 9(S) maps onto A(z). Thus, we
select in the field 90t the subfield 9t(S) of operators, which we can represent in the form of
functions of the operator p:

a = A(p) = A(z). (2.3.72)

The formal difference between the right- and left-hand sides of formulae (2.3.70), (2.3.71)
and (2.3.72) consists only of writing the letter z in the right-hand sides and the letter p
in the left-hand sides. In fact, the letter p denotes the operator %, z denotes a complex
variable, A(p) is an operator, A(z) is a function of the complex variable z. However, in view
of the isomorphism of the fields 9(S) and 9(S) the difference between 90(S) and 90(S)
in most cases is not essential. Therefore, the operator p and the complex number z may be
denoted by the same letter. Below we shall write p instead of z. Sometimes the designation
of the operator % and the complex number z by the same letter makes the presentation
more simple. Thus, the letter p denotes the operator % in the field 9, and p is the complex
number p = ¢ + 47 in the field 9(S). Hence, all Laplace transformable operators, i.e., the

elements of M(S) may be represented by the form

(2.3.73)

In particular, every function f(t) of the set S, see formula (2.3.58), may be represented by

the form
f(t)=fp)| (2.3.74)

The expression f(p) will be called the operational transform of the function f(t). Here

f(p)=p | ft)e P'dt = pL[f](p). (2.3.75)
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2.3.6 Examples

1. Now we are going to compute the operational transforms of functions. Let f(t) = ¢¢.
Then we find f(p) = pL[f](p) by means of formula (1.4.12):

1 te
t* =p °T'(1 —_ = . 2.3.76
p “T(l+a), or e~ T Ta) ( )
2. Let a function e be given by
0 if t<A
N =nt:\)=<¢" ’
o) =t A) {1, if > A
Obviously, we have
p/n(t;)\)e_ptdt = p/e_ptdt =e PN
0 A
hence,
n(t; A) = e PN (2.3.77)

This relation immediately implies that

n(t; A) xn(t; p) = n(t; A+ p).

This relation was proved in another way in section 2.2; see formula (2.2.2).
Let us find the product e P2 f(t) = e™P* x f(t), A > 0. In order to find it we compute
the convolution of the functions e ?* = n(t; ) and f(t). We have

¢ 0, ift <A,

t
[t wns@an= [ wnndi= e 0
2 0 5 ’ -

We see from this that the convolution also belongs to the ring M. Hence, we have

t

—pA _i . . 0, if t < A,
‘ f(t)—dto/n(t u,w(u)du—{f(t_& N,
and finally
oA 0, if t < A,
e P ft) = {f(t_A)’ 1> A (2.3.78)

3. Let f(t) =logt.
In order to compute f(p) we use relation (2.3.76), which implies

oo

_ I'a+1)

«@ t _ .

/t e p dt = paT,

0

therefore,

7 d [T(1+ ) (1) logp
logte P'dt = — | ——5—> =—" - —=

/Oge da[ pot! L_ p p’
0
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or

o0
p/logte*”tdt = —C —logp,
0

where I"(1) = —C' is the Euler constant; finally we have

logt = —C' —logp | (2.3.79)

4. Let f(t) =log?t.
Obviously,

(o)
d* [T(1 I(1) 2r'(1)l log
/lothe*ptdtzi ( +Ol) — ( )_ ( )ng+ Og p’
da2 pa+1 a=0 p p b
however, IV(1) = —C and I'(1) = C? + %2; therefore,

_ 7T2

f(p) = % +(C +logp)”. (2.3.80)

If instead of a = 0 we put a = n, where n is an integer, then we easily obtain

tm _logp

—l(n+1) —logt] ==, (2.3.81)
" s log® p
[+ 1) —logt)” —¢'(n+1)] = e (2.3.82)
here )
I (z
5. Prove that
t"xlog”t = t"[(logt — ¢(n+1) — C)* + %2 —¢'(n+1)]. (2.3.83)

‘We have
t

t" *log?t = %/(t — &) log? de.
0

Taking into account that

n! 2
"= log”t = - + (C'+ logp)*,

we obtain

| 2

2
t" xlog?t = ;(2 + (C+logp)2) =

nlr?2  C?n!  2n!Clo n!log?
+ gp + g p_

6p™ p" " p"

Replacing the operational transforms of the functions by their inverse transforms (see for-
mulas 2.3.82 and 2.3.81) we obtain (2.3.83).
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6. Prove the identity

8

We have 75 = [ te~*dt; therefore,

o

Sp = 2/[1 — (1 —eH)")dt,
0
on putting 1 — e~ = &, we find

d
~ € log(1 - )77

o—__

n

£ og?(1 - €)de,

1\3
O\H

or

1
=n [ (1—&)" " log? dt.
/

t
d
fn(t) =t" xlog?t = p /(t — &)™ log? £d¢,
0

then, obviously, f,(1) = S,; therefore, see formula (2.3.83),

If we denote

Sp=@Wn+1)+C)*+ . Y (n+1).
Taking into account the relations
"1 2 1
1)=-C — ! )= — — —
P(n+1) +kZ:1k, P (n+1) 5 k:1k2,

we finally obtain

k=1 k=1
7. Let o 1
og- 7 .
oy (t) = { TOFOD if0<t<l,
0, for t > 1.
Prove that for the operational transform of the function ¢, (¢) the following formula holds:
- d@g+1(p)
o(p) = p——2 7 2.3.84
Po(p) =p="0, ( )
We have
) 1 1
Po(p 1 |- 1 / —pt o+1
= log? —e™P'dt te”P'd| 1
»  T(1+o) / & 3 r2to)) ¢ °8
0 0
. 1 1
log” ! ZePldt P / te P log”! — dt
I‘(2+J)/ %7 T2+o)) ¢ ' ’
0 0
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or
@a(p) _ ¢a+1(p) + i@(rkl(p)
p P p p
which implies formula (2.3.84).
8. Let
" 1
S M) S, ez0n=12...
k) ke
k=1
Prove that .
_ 5 Sklo) (2.3.85)
k
k=1
We have
11 7
Il ta'fl 7ktdt,
ke~ T(o) / o
0
therefore,
)/[t— 1—e Y™ tat
0
On putting 1 — e~ = £, we find dt = % and
T L1 de
1—&")0log" ' | — | ——
N (e e
0
or
i 1
n -1 o
n = ' d )
510 = iy [ €710 (g
0
therefore,
1
— " 1 Z
Sul) = gy [ (L= € loa” e
0
Let us consider the function
p t
Ba(ot) = 5 [t - €ga(©)c (2.3.86)
0
where the function ¢, () was defined in Example 7.
Obviously,
Sp(o) = @, (0, 1). (2.3.87)
Furthermore, formula (2.3.86) implies
n! _
D, (0,t) = E(pg(p); (2.3.88)

therefore,
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or -
(n+1)! _ nly’, 1 (p)
1P, (0 +1,t) = _W‘Paﬂ(p) + TH
Taking into account (2.3.84) and (2.3.78) we find
nlo, (p)
_t(I)n(U + 17t> = _‘I)ﬂ-‘rl(a' =+ 17t) + pn+1 )
or
P, 1(0,t
Bpy1(0+1,t) — tdy(o+1,t) = % (2.3.89)
It follows from (2.3.89) with ¢t = 1 and (2.3.87) that
Spi1(o
Snt1(c+1) = Sp(c+1) = #(1),
or
Sk(o)

Si(c+1)—Sy_1(c+1) =

k
Taking into account that Si(c) = 1, we find

k=2 k=2
or
S
Sn(o'+1)—1zz kéﬂv
k=2
or
" S (o
Sn(a+1):Z k]i )
k=1
Note that S;(0) = 1; therefore,
"1
Snp(l) = X
k=1
therefore,
L e 5 A A
2 = _ = — — — —_
s@=331=3(X) *1rw
k=1r=1 k=1 k=1

(compare with Example 6).

2.3.7 Periodic Functions

To conclude this section we find the operational transform of a periodic function f. Let

w > 0 be the period of the function f, hence
ft+nw) = f(1t), O<t<w, n=1,2,3,....
Let us consider the integral

f(t)e Pidt;

St~
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suppose the integer n is chosen such that wn < A < (n + 1)w. In this case, we have

A
O/f e Pldt = /f *Ptdt+/f Pt

kw

Il
Bl
1
3

ft) e*i’tdtJr/f(t)e*Ptdt
(k—1)w

/ft+ — 1)w)e PHE—Dw) dt—i—/f e Pldt
0

nw

=~
Il

1

n A
i) —pt(ze(k—l)wp)dt+/f(t)e_ptdt

k=1

StY~—c¢

 l—emwp

A
f(t)e_ptdt+/f(t)e_ptdt.

S~

Let us put Re(p) > € > 0 and A — oo; hence, n — oo. Then we obtain

A (n+1)w (n+1)w
\ / f(t)e‘ptdt’S [ i reras s a

/lf(t)lefé(mw)dt = efm/lf(t)ldt-
0 0

This implies that for Re(p) > € > 0 we have

Alim /f(t)e_ptdt = 0.

nw

However, Alim e~ "™P = 0 when Re(p) > e > 0; therefore,
— 00

w

[ ft)e~Ptdt
. —pt —pt 0
;zr;o/f it = /f =t

Thus, any periodic function is Laplace transformable and its operational transform has

the form
w

) p [ f(t)e Pdt
flp) = Ol_ﬁzf(t)

Conversely, if the operational transform of the function f(¢) has the form

D f ft)e Ptdt
0

1—ewp 7

flp) =
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then f is a periodic function, whose period is equal to w. Indeed, the last relation implies

f@), ift <w,
0, ift > w;

(1 —e ") f(t) = p/f(t)e_ptdt = {

on the other hand, see formula (2.3.78).

(), if t <w,

(L—e ") f(t) = {f(t) —flt—w), ift>w.

When ¢ > w, we have f(t) — f(t — w) = 0, and replacing ¢ with ¢t + w > w, we have
ft+w)— f(t) =0 for all t > 0, where f(t) is continuous. Hence, the function f is periodic

and its period is equal to w.

2.4 Bases of the Operator Analysis
2.4.1 Sequences and Series of Operators

Definition 2.4.43 A sequence of operators a, € M is called convergent to the operator
a= g € M, if there exist representatives (F,,, G,,) such that

1) an = g

2) The sequences (Fy,(t))nen and (Gn(t))nen converge to the limits F(t) and G(t), re-

spectively, uniformly on any finite interval [0, T):

lim F,(t) =F(t) and lim G,(t) = G(t).

n—oo n—o0

The operator a = g is called the limit of the sequence of operators a, and this limit is

denoted

lim a, = a. (2.4.1)

Let us prove that the definition of the limit does not depend on the choice of representa-
tives (Fy,(t), Gn(t)). Indeed, let

F,

F,
eaan (2.4.2)

Ay —

lim F,(t) = F(t); lim G,(t) = G(t).

n—00 n— oo

and the convergence be uniform on every finite segment [0, 7. It follows from (2.4.2) that
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therefore,
t

t
/ Fo(t — )G (w)du = / Bt — w) G (w)du. (2.4.3)
0 0

As n — o0, the uniform convergence on the segment 0 < u < t of the sequences

fa(u) = Fu(t —u)Gp(u) and  fr(u) = Fy(t — u)Gp(u)

implies

o— .

Pt — u)G(u)du / Flt — u)G(u)du.
0

Since the functions F) ﬁ, G and G belong to the set M, then

d t
F(t —u)G(u)du = o / F(t —u)G(u)du,
0 0

4
dt

—

Qlm

and hence a = ; this completes the proof. Therefore, any convergent sequence has a

Qi

unique limit.

Remark 2.4.98 If a sequence of functions f,(t) € L converges uniformly on every interval
0 <t <T toa function f(t), then such a sequence is convergent in the sense of the above

definition of convergence.

Indeed, we have
t
F,(t
ap = t( , where F,(t) = /fn(u)du;

0
t

~—

F(t
a= #, where F(t) = /f(u)du.
0
Obviously, lim F,(t) = F(t), the convergence is uniform and the sequence of the operators
n—oo

an converges to the operator a, lim a, = a.
n—oo

Remark 2.4.99 The ordinary convergence in classical calculus is a very special case of the

operator convergence. Simple examples show that.

Example 2.4.49 The sequence of functions fn(t) = cosnt, n € N, is divergent in classical
calculus, and in the operational sense it converges to zero.

Indeed, the sequence

sin nt
a, = —2— = cosnt
t
converges to zero, because lim sant = 0 and the convergence is uniform on every interval

n—oo

0<t<T.
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Example 2.4.50 The sequence of functions nsinnt, n € N, is convergent.

Indeed, we have

1—cosnt t— Snnt

nsinnt = = L = q,,
t txt
. sin nt
lim (t— =t
n—oo n
and the convergence is uniform. Hence,
I _ oy ot — t 1
Jim an = lim nsinnt = -— = - =p.
Example 2.4.51 The sequence ne™, n € N, converges to the operator —p.
Indeed, we have
1
n, n- - n 1
’nent = p = i i = = T .
p—n $-n l—-nt -—t

All transformations given here, obviously, are made in the field M. For instance, on mul-
1
L by the function F(t) =t,

tiplying the nominator and the denominator of the fraction f_n
t
we obtain )

'ﬂz * 1 n

T—n)xt 1-nt

Obviously, the sequence G, (t) = % — t converges uniformly as n — oo to the function
1

1_
n

G(t) = —t. Therefore, the sequence of the operators a,, = . 1s convergent; obviously,

1
lim a, = lim ne™ = = —p.

n—oo n—0o0

t

Thus the sequence ne™ converges to the operator —p.

Basic Properties of the Limit of a Sequence of Operators
1. If a sequence of operators a,, n = 1,2,3,..., converges to a limit, then any of its

subsequences converges to the same limit.

Proof. Indeed, let lim a, = a. This means that

n—oo
lm Fy(0) = F().  lim Gu(t)=G(0). a,= C% o— g
Ifa,, ,k=1,2,3,...,is asubsequence of a,, then the appropriate subsequences of functions
F,.(t) and G,, (t) converge to the functions F(¢) and G(t), respectively. The convergence
is uniform on every interval [0, T']. Hence, klirréo ap, = Q. I
2. If sequences of operators a, and b,, n=1,2,3,..., have limits,

lim a, =a and lim b, =0,

n—oo n—oo

then the sequences (an + bp)nen and (a, * by )nen are convergent and

lim (a, + b,) =a+0, (2.4.4)

n—oo
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lim (a, xb,) = ax*b. (2.4.5)
Proof. Let a, = g—”, b, = é" ,a= g and b= % By the assumption we have

lim F,(t) = F(t), lim G,(t) = G(t),

lim F,(t) = F(t), lim G, (t) = G(t)

and the convergence is uniform on every interval 0 < ¢ < T. We obtain

F, ﬁn F, G, +F*Gn

ap + by = = + =
Gn G G x G

n

Let us introduce the notation

o\
i~
|
§
5
+
Sk
i~
\
&
Q
s
&
QU
£

obviously,
H(t)

an+bn:R Ok

The uniform convergence of the sequences (F,(t))nen, (Gn(t))nen, (Fn(t))nen and

(G (t))nen implies the uniform convergence of the sequences (Hy, (t))nen, (Rn(t))nen and

I

=
—

~
3

n—o0

lim H,( :/ (t — wG(u) + Pt — u)G(w)]du
0

n—oo

lim R,(t) = / G(t — u)G(u) = R(t).
0

Hence, the following relation holds:

_ Ht) %H(t) FxG+F+G F F
im (an, + by) R iR(t) e G-I— =a+

n—oo

Similarly, for the product of operators a,, x b,, we have

FoA B B F(t — u)E,(u) du

Gn*én B

Y

ay * b, =

G (t — )Gy (u) du

OH&F O%(_‘_
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therefore,

. ’I’LHOOO 0
lim (a, xb,) = - =
lim [ Gt —uw)Gp(u)du [ G(t —u)G(u)du
o 0
t ~
%OIF(t—u)F(u)du PAF
T, ~ - GxG =axb
4 OfG(t — u)G(u)d

3. If there exist the limits

lim a, =a, lim b, =0+#0, b, #0,

li Qnp a
1m — | = .

Proof. Indeed, if the sequence of operators b,, = =" converges to the operator b =

. 1 _ Ga(t)
bn T F,(t)

then there exists the limit

l

Q=

and

b # 0 (hence, F (t) # 0), then, obviously, the sequence of operators is convergent,

and

lim —G(t) = }

B
n—oob,  F(t) b

Sl
—

Now the second property (see (2.4.2)) implies that lim

an
oo bn

4. If ¢ is an arbitrary operator and

lim a, =a, then lim ca, =ca.

n—oo n—oo

This property follows from (2.4.5).
Along with sequences of operators operator series are also considered in operational cal-

culus.

Definition 2.4.44 Let (a,)nen be a sequence of operators, a, € M, n € N. An operator

series is the sequence (Sp)nen of partial sums
S, =a+as+--+a,. (2.4.6)

An operator series is called convergent if there exists (in the operational sense) the limit of
its partial sums (2.4.3).
The limit

lim S, = lim (a1 +as+---+a,) =95 (2.4.7)

n—oo n—oo
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is called the sum of the series and we write

Zan:a1+a2+...+an+...zs. (248)

n=0

In section 2.3.6., Example 2, we considered the function 7(t; \) = e"P*. Recall that

- 0, if 0<t<A,
1, if t> A\
Let us consider an operator series
o0
Z ape P (2.4.9)
k=0

where «ay, is an arbitrary sequence of numbers and Ay are real positive numbers, which forms
a monotone increasing sequence tending to infinity, i.e.,
0=X <A <--- <A <... and klim A = 00.
— 00
Series (2.4.9) is in the operational sense always convergent.

Let us prove that the sequence of partial sums
age NP + e M 4+ e P = S, (p)

is a convergent sequence. We have

t t
k=0

where ,
0 if t<A
tA) = AN)du =< ’
Mt ) /77(“ Jdu {t—A, i >,

0

and

Fu(t) = o (t; Ar)-
k=0

The sequence of the functions F,,(t) € 9 converges as n — oo uniformly on any interval
0 <t < T. Indeed, let us choose ng sufficiently large, such that A,, > 7. Then the
conditions n > ng and ny(t; Ap) = 0 for 0 <t < T < Ay, imply that F,(t) = F,,(t) for all
n>ngand 0 <t <T.

o0
Now we calculate the sum of the series . aze P . Let t be fixed. Taking into account
k=0
that e P =0 fort < XA and e P* =1 for t > \ we easily find

iakeﬂ')"“ = Z g, (2.4.10)
k=0

A<t
where the sum in the right-hand side is taken over all indices k£ such that Ay < ¢t. For

instance, if 0 < t < Ay, then > ax = ag. The function defined by series (2.4.10) belongs
A<t
to the class of step functions.
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Definition 2.4.45 A function f is said to be a step function on the interval [000) if the
interval [0, 0o) can be divided into a finite or denumerable number of nonoverlapping inter-

vals, in each of which the function f has a constant value.

Let us consider the operator e P* — e P# where 0 < A\ < u < co. Obviously,

0, if 0<t<\
eTPA — TP =01, if A\<t< (2.4.11)
0, if u<t.

The graph of this step function is shown in Figure 8.

Figure 8

Now let o(t) be an arbitrary step function. In order to define ¢(t) we have to fix its

values in all intervals

My Aer1), E=0,1,2,...; XA=0<A1 <A< <A, <..., lim A\, =o00.
Let us put ¢(t) = Bk for Ay <t < Agg1; K =0,1,2,.... Using (2.4.8), it is easy to write

the operational image of the function ¢(t):

P(t) =D Br(e™ P — e7Mnp), (2.4.12)
k=0

Hence, the set of all step functions coincides with the set of operator series of the form
(2.4.12).

In applications series are often used where the numbers A\, form an arithmetic progression
A =kh, k=0,1,2,.... In this case the function ¢(¢) has the form

QD(t) = Zﬁk(e—khz) _ e—(k-‘rl)hp) — (1 _ e—hp) Zﬁke—khp;
k=0 k=0
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thus,

p(t) = (1—e ") i Bre™ M. (2.4.13)
k=0

As an example we consider the function (Figure 9)

oo

_ 1
OED D
k=0
o)
§ b ; :
. —
e L L
b
: 3 .
h 2h 3h 4h 5h
Figure 9
We have
> _ o—hp)p—hp —hp
_ _—hp —khp __ (1—e")e _ ¢ .
(1 € )kz_oke = (l—e_hp)2 = l_e_hp7
therefore,
e~hp

2.4.2 Operator Functions

One can consider in the field 9t operators depending on a parameter. Such operators are
called operator functions. In this subsection the operators depending on one real parameter
will be considered. If an operator a = g depends on the parameter A\, a < A < 3, then we
shall write a = a(X). An operator function a(\) is defined by its representative (F,G). The
functions F' and G depend on the parameter )\, i.e., in the general case F = F(t; \) and

G = G(t; \), the function G(¢; \) does not vanish at any value of the parameter \.

Example 2.4.52 a()\) = F(ﬁ)\), if 0 <\ < oo.

0, fort < X,

Example 2.4.53 e(\) =n(t; \) =
P e(A) = n(t:A) {1, fort> X, where 0< A< oco.
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=
&

Example 2.4.54 a(\) = -5 = 15 = (£ -X)xt - ﬁ = e, where X\ is an arbitrary

complex number.

If a is an arbitrary operator from the field 9%, then we always may indicate such a function
Q(t) belonging to the original ring M, that the product a * @ also belongs to this ring. If
now a = a(A) depends on the parameter A, then in the general case the function Q(t) also

depends on .

Definition 2.4.46 An operator function a(\), o < A < 3, belonging to M(M) (see 2.3.2.)
or M(S) (see 2.3.5.), is called reducible on the interval (o, B) if there exists a function
Q) e M (or Q(t) € S), Q(t) £ 0 and Q(t) does not depend on the parameter X such that
for all \,a < XA < 3, the product

Q(t) *a(A) = p(t; A) (2.4.14)

belongs to the ring M (or S).

The sum and the product of functions reducible on a given interval («, 3) are also reducible
functions. Let us prove this statement for the ring M. The proof for the ring S is analogous.
If a1 (A) and a2(A) are functions reducible on an interval, then in M there exists functions
Q1(t) and Q2(t) such that
Ql(t) * a1(>\) = @1(t; )\) ceM
and a < A < 3
Q2(t) x az(\) = @a(t; \) € M,
therefore,

Q1 * Q2 x[ar(N) +as(N)] = (Q2x 1) + (Q1xp2) € M

for all @ < A < 8. Hence, the sum a;(\) + a2()) is a reducible operator function.

Similarly, it follows from

Q1 * Q2(a1(A) xaz(N) = (Qa x 1) *x (Q1 *p2) € M

that the product of two reducible functions is a reducible function.
However, if a(\) is a reducible function, then the function ﬁ may be irreducible. Indeed,

let us consider the operator function

0 for t < A\,
1 for t> A

e(A) =n(t;A) = {

Obviously, e(\) in the interval 0 < A < oo is a reducible function, namely,

t
0 fort < A
*e(A) =m(t;A) /e() {t—)\ for X <t
0
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Hence, in this case Q(t) = t; obviously, e(\) = M

The inverse function —4~ = —t— is not reducible for 0 < XA < oo. Indeed, if it is
e(N) n1 (6X)

reducible, then there exists a function Q(t) € M, Q(t) # 0 such that

1

or

or

d

Qt) = P

/n(t —w A)p(u; A)du, 0< A< oo.
0
Let an arbitrary ¢ = tg be fixed and suppose that A > tg; then

to
Q(to) = %/ﬁ(to —u; A)p(u; A) du = 0.
0
Thus, Q(t) = 0 for all t > 0. Hence, there exists no nonzero function Q(t) € M, satisfying
the condition Q(t)T&) € M; therefore, the function %)\) is irreducible in the interval (0, c0).
The basic operations and notions of calculus may be easily extended to reducible operator

functions. This can be done by a single general rule.

Definition 2.4.47 A reducible operator function a()) is called continuous in the region
a < A < [ if there exists such a function Q(t) € M, that o(t;\) = Q(t) x a(N) is a

continuous function in two variables t and X\ in the region 0 <t < oo, a < A < f3.

Using the notion of the limit of a sequence of operators we can introduce the notion of

the limit for an operator function.

Definition 2.4.48 An operator function a()\) has a limit at the point A\ = X\ if for any
sequence (An)nen convergent to Ao there exists a im a(A,) and this limit does not depend
n—oo

on the choice of the sequence (\p)nen. In this case we write

)\hﬂrr}\l() a(\) =b.

Corollary 2.4.34 If an operator function a(X) is continuous in the interval a < A < (3,
then for any Ao, a < Ao < 3, there exists

)\li)n/{o a(X) = a(Ao).

This corollary follows immediately from the definition of a reducible continuous operator

function.
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2.4.3 The Derivative of an Operator Function

Definition 2.4.49 A reducible operator function a(\) is called continuously differentiable
in an interval (c, B), if the function @(t; \) is differentiable with respect to the parameter A

and g—f € M is a continuous function of the variables t and A in the regiont > 0, a < XA < f3.

The operator Cl;) g—f is called the continuous derivative of the function a(\) and is denoted

a’'(N\) or dii(/\)‘ ; thus,

do() _10p 10
CodN QON QO

(@ * a(N). (2.4.15)

Let us prove that the definition of the derivative does not depend on the choice of the
function Q(t). Indeed, if ¢1(t;A) = Q1(t) x a(\), then, obviously, the following relation
holds:

Q*p1 = Q1 %,

or . ,
G [t wertunan =5 [ Q- wetwnd
7 w)er(u; A)du = — 1 w)(u; N)du.
0 0
Since % and g—f are continuous with respect to the variables ¢ and A\, we have
&pl u; \)
s A)d ———du
0 &p(u A)
— (t— A)d t—u)——=du.
aa/Q1 welus dt/Ql Y
Hence, the relations
0 1 8 1 8
QL= Qi R .4

(9)\ Q1 * N Q O

hold. Thus, the definition of the derivative does not depend on the choice of the function
Q.
The derivative of a reducible operator function has the properties of the ordinary deriv-

ative.

2.4.4 Properties of the Continuous Derivative of an Operator Function

1. If operator functions a(A) and b(\) have in an interval (o, 3) continuous derivatives,

then their sum and product also have continuous derivatives in this interval and
[a(A) +b(N)] = d'(\) + b (N, (2.4.16)

[a(\) % b(N)]) = a’(X) xb(A) + a(\) b/ (N). (2.4.17)
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Proof. By this assumption, there exist functions Q1 (t) € M and Q2(t) € M such that

Qu(t)*xa(A) = p1(t;A) € M, Qa(t) xb(A) = pa(t; A) € M,

6902

and there exist the derivatives % T and . On multiplying these relations by @2 and Q1,

respectively, and denoting Q = Q1 (t) * Qg( ), we have
Qxa(A) = Q2(t) xp1(;A) = P1(t; \) € M,
Q+b(N\) = Q1(t) x pa(t; N) = 2(t; A) € M.

By the assumption there exist the derivatives % and aw belonging to M and con-

tinuous with respect to the variables ¢, \; 0 < t < oo, < )\ < (. Therefore the func-
tions 1 (¢; A) and 9 (t; A) also have the derivatives % and ‘%’2 continuous in the region
0<t<oo,a<A<fand

3%/11

Sy = Q2(1) * 81/}2

and 202 _ 0 (1)« 222

o\’

3801
oA

Hence, the following relation holds:

Q% (a(N) +0(N) = 1t N) +ha(BN) = 9(t;N) € M

and
p_ 100 11001 Oa] 1 3901 0902
o)+ = 555 = 5 [+ | = g T+
_ L9 L% iy
=0, 0 0 0n =a'(\)+ b0 (N).

In order to prove (2.4.16) we take the product

Q*Q [a(A) % b(N)] = Pr(t; A) + 1ha(t; A).

On denoting Q * Q = Q? we obtain

0
t
ii?/mume@@@ﬁ%u

Q2 dt o\
0

1 [0y 0o

2[3)\ * g +1hy % EIN

1 dp1 0
_QQ[Ql *Q2*<,02+Q1*<,01*Q2* (“)(i\g
1 0py 1 1 1 Opo
—@*W*a P20 0, o

— (N %b(N) + a(A) x ().
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0

2. If a reducible operator function a(X) is constant in an interval (e, 3), i.e., the same
operator a is associated with every value of A from this interval, then a’'(\) = 0. Conversely
if a/(A) =0 for all « < XA < (3, then the operator function a(X\) is constant in the interval
a<A<p.

Proof. If a(\) is constant in the interval (o, 3), then we have g—f\’ = 0. Hence, a/(A) = 0.

Conversely, if a/(\) = 0, then g—f = 0 for a < A < f3; therefore, ¢ does not depend on .
Then the relation a(\) = é * ¢ implies that a(\) is constant in the interval («, ). I
3. Ifcis an arbitrary operator that does not depend on A and an operator function a(\)
has a continuous derivative in an interval (o, 3), then [cx a(N)]) = c*xa’'(N).
This property follows from Properties 1 and 2.

4. If operator functions a(\) and ﬁ have continuous derivatives, then

Y e
(a()\)> - a?()]
where a?(\) = a(\) x a(N).

Proof. Differentiating by A the relation 1 = o a()), by virtue of Property 1, we have

- (G(IA))/CL(A) + ﬁ wd' (),
(aé))/ - a&)a;(i()»'
0

5. If operator functions a(X), b(\) and ﬁ have in an interval (o, ) continuous

or

derivatives, then

a(A\)\  d(N)bN) — a(AY(N)
< >_ b(\) % b(\) : (2.4.18)

Proof. Properties 1 and 4 imply

aN)\ 1 1Y d(N) aWY(N)  d(WBA) — a(\Y(N)
(i) =i+ (3 |

VRGOV b%(N)
I

6. If an operator function f(\) has a continuous derivative f'(\) in an interval a <
A < B and p(N) is a continuously differentiable number function defined for p < A < v,
whose values belong to the interval («, 8), then the composite function F(A) = (f o ¢)(N)

has a continuous derivative and the following formula holds

F'(A) = (f o @) (N¢' (V).
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Proof. There exists a function Q(t) € M such that g(\;t) = Q(¢) x f(A) has the derivative
%. Obviously,

gle(N);t] = Q) x (f 0 ©)(A) = Q(t) * F(X),
and therefore,

_ 1 9gle(A);t] _ 109 ,

F=0"ax  ~qas*

(A) = (foe) (V¢ (N).

Continuous derivatives of higher order are usually defined as:

F'N) =W, Fm0) =[]

We also assume that the right-hand sides have a meaning.

2.4.5 The Integral of an Operator Function

A definite integral for continuous reducible operator functions may be introduced in the

same way as the derivative was introduced.

B
Definition 2.4.50 There exists always in the ring M a function Q(t) such that [Q %

B
a(A)d\ = ¢(t) € M; by the definition the integral [ a()\)dA is the operator %, ie.,

B
This definition is correct. The integral [ a())dA does not depend on the choice of the

function Q(t). Indeed, if P(t) is another operator such that

B8 B8
/P(t) a(A) d) = /w(t; N dX = (),

then

Indeed, on denoting
Qra(X) =¢(t;A) and  Pxa(A) =1(tA),

we have
Q) xY(t: A) = P(t) x p(t; A),

or

d / QUt — w)p(us Ny du = 2 / Pt — w)p(u; Ndu:
0
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t
/Qt—u (u; \)d =0/Pt—u : \)du.

On integrating by A from « to 3, we find

therefore,

/d)\/Qt—u P(u; A)du :/d)\/P(t—u)go(u;)\)du,

after the change of the order of integration

t I¢; t B
O/Q(t ) dua/w(u; N d\ = / Plt— u)dua/go(u; N,

or
t t

Q(t —w(u)du = | P(t—u)p(u)du;
0/ 0/

therefore, Q x 1) = P x .

In this way we have proven the relation

B8 B
/ QUt) % (t: X) dX = Q(t) * / Bt N)

The integral of an operator function has all properties of the ordinary integral:

1) f (V) d\ =0,

B B
2) Jexa(N)d\ = c* [a(X)dX

(where ¢ is an arbitrary operator that does not depend on the parameter \);

3 [a(\d\ = — [a(A)dx
B
4) fa(A)dA + }a()\)d)\ = }a(A)dA,
« B «@

5) f[a(A) b\ = f“am X+ fb(A)dA

[0

If operator functions have continuous derivatives, then

B 8
6) Ja'(N) *b(N)dA = a(B)  b(B) — a(a) * b(a) — [ a(X) b (A)dA.

233

(2.4.19)

If the values of a number function ¢(A) defined in the interval u < A < v belong to the

interval (a, ), p(p) = a, o(v) = B and ¢(A) has continuous derivative ¢’(\), then

w(v)
(fo)N) @' (Ndr= [ f(A)dA

(p)

7)

T —x
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Remark 2.4.100 Similarly, other notions from the theory of definite integrals may be

extended to the integrals from operator functions. In particular, the improper integral
oo A,
J F(X) dX may be defined as the limit when n — oo of the sequence of operators [ f(X)dA,

0 0
and this definition does not depend on the choice of the sequence of numbers A, — oo.

Consider the function e(X) = n(t; X). Let us find the derivative '(X). We have

0 fort <\
2 ) =m(t: \) = 2 7
*e(A) = na(t; A) {(tz)\) fort>X;
hence,
Omat: ) fort < ),
= (BN =
3 n(t; A) (t—=X) fort> A\

t
Here m1(t; A) = [ n(u; N)du; therefore,
0

SmBA)  Im(BA)

!/
= >\ = =
W 2 6ot
or, taking into account that + = p and 7’1(t A) = n(t; ) = e(N\), we obtain
€' (\) = —pe(N). (2.4.20)

On the other hand, it was proven, see formula (2.3.14) that
e(N) xe(p) =e(A+ p). (2.4.21)

Up to now the operator function e(\) was defined only for A > 0. Let us define e(\) also
for A <0 on setting

Let us prove that in this case (2.4.21) holds for all real A and p.
Indeed, for A <0 and p < 0 we have

1 1 1 1
e(Ne(p) = * = = =e(A+p).
S T Ry B e s it s R
If A\ >0 and p < 0, then we have to distinguish two cases. In the first one A+ pu > 0, then,

see formula (2.3.14),
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Hence, the relation (2.4.21) holds for all real A and p. The function ﬁ s not reducible,

therefore (2.4.20) has no meaning for A < 0. However, we can formally define a derivative

/ ’
of ﬁ, A > 0, on setting (ﬁ) = —%. In this case (2.4.20) implies

1Y ope(y) 1
(e(A)> T ey xen)  Pedy (2.4.22)

The properties of e(X) for A < 0 formulated above show that is convenient to denote
e(\) =e P (2.4.23)
for all real A\, —o0o < A < 0.
It was proven (see 2.3.6, (2.3.78)) that
0 if t <A
e () = s
fE=X) if t> A
In the general case e P f(t) for X < 0 is an operator. Instead of e P f(t) for A < 0
it is more convenient to consider eP*f(t) for X > 0. The expression P> f(t) is reducible
to a function if and only if f(t) is equal to zero in the interval (0,\). More precisely, it
t
must be [ f(u)du = 0 for all 0 < t < X. Indeed, if eP*f(t) = p(t) is a function, then
0

f(t) = e P o(t) and therefore, f(t) =0 (see formula 2.3.78) for 0 <t < A.
Conversely, if f(t) =0 for 0 <t < A\, then

TPt +N) = {O for0=ts< /\’} = f(t) (2.4.24)
F(t) fort> A
for all t > 0. Hence, eP f(t) = f(t + \) is a function; thus,
ePAf(t) = f(t+N) (2.4.25)

under the condition that
t

/f(u)du:() forall 0<t<A
0

Let f(\) € L. The expression a(\) = e PAf()\) is, obviously, an operator function. Let
A
us compute the integral [ e=*P f(X\)d\. Since
0

0 fort <,
txa(d) = {(t—)\)f()\) fort > A,

then the function t*a(\) = o(t; \) belongs to the ring M for all A > 0. Using the definition

of the integral of an operator function, we obtain

i Pft(t*A)f(/\)d/\ for 0<t<A
*/go(t;A)dA: 0
0 J(t=2F0)

| =

A
/e**Pf(A)d/\ =
0 D A)dX  for t> A,
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or
A t
[emioan= [san for 0<i<a
0 0
Hence, the following relation holds:
A
P/e_pkf()\)d)\ =f(t) for 0<t<A.
0

Let us now

Al <A< A3 < <A, <A1 <...,

A
lim A, =oc0 and ay, :p/eﬂpf(x) d\
0

Let us prove that the sequence a,, converges as n — oo. Indeed, let (0,T) be an arbitrary

fized interval and ng be such that A,, > T. In this case for all n > ng we have
t
——t*an /f Yd\ for 0<t<T.
0

This implies the convergence and the relation
lim a, = f(t).

It is clear that the limit does not depend on the choice of the sequence A; < A < --- <

A, < .... Hence, there exists the improper integral

o0

p / e PAF(N)dN = f(t). (2.4.26)

0

2.5 Operators Reducible to Functions
2.5.1 Regular Operators

An operator a belonging to the field M(.S) is called regular if the function a(p) associated
with a in the field 9(S) is analytic in a neighborhood of the point at infinity. The regular
operators form a large and important class of operators for applications. Obviously, the
sum of two regular operators is also a regular operator, and the product of two regular
operators is a regular operator, too. Any regular operator is reducible to a function. This

follows from the following theorem.
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Theorem 2.5.89 Let a(p) be a regular operator. Hence, in a neighborhood of the point at

o0
infinity |p| > R we have the expansion a(p) = > %; then the following relation holds

k=0
oo oo k

_ ag ait

a(p) = Z FT 2 T T a(t),
o P k=0

and the radius of convergence is equal to infinity.

ag
pk

(2.5.1)

oo
Proof. The function > %t may be represented by a Laplace integral, see section 1.4.2,
k=1

formula (1.4.13),

= a SN apthl
k _/ (Z K ) iy
ko —_ 1\ )
1 P 0 b1 (k—1)
therefore
i ar ad a;dfkil
k—1 —_ 1\
=1 P k=1 (k—1)

hence,

Theorem 2.5.90 If for a sequence of regular operators (Fn(p)> N the series
ne

> Fu(p) = F(p)

converges uniformly in the region |p| > R, then F(p) is a regular operator and

where

Series (2.5.3) converges uniformly on every segment 0 <t < A.

(2.5.2)

(2.5.3)

Proof. Every function F),(p) is analytic in the region |[p| > R. The uniform convergence

implies that the function F(p) is also analytic in the region |p| > R. If Ck, is a circle with

the center at the point p = 0, then it is known that the following formula holds:

th 1 ePt
L .
k! 2mi pk+1

Cr,
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Replacing ,:, in (2.5.1) with 5= [ pi%dp and supposing the radius R; of the circle Cg,
CRl

to be larger than R, we find

5 | “Derdp=a) (25.4)
Cr,

Applying this formula to F,,(p) we have

1 ‘Z_’ﬂ(p) pt
— —eP'd 2.5.5
211 p e ap ( )
Cr,

F,(t) =

and by virtue of the uniform convergence of series (2.5.2) we have

F, ptd
or B
F,
E F.(t)=— ﬂemdp = F(t).
2772 p
n=0 Cry

It remains now to prove the uniform convergence of series (2.5.3) in the segment 0 < ¢ < A.

Let € > 0. Then there exists N such that

’ Z F( ‘ < ee” ™4 in the region |p| > Ry > R.

Therefore, (2.5.4) and the last inequality imply (setting p = R1e™, 0 < ¢ < 2m)

—R1A.| pt
e |ePt] 1

dp < 2nRi€e = €.
_27r/ R, (p_27rR1ﬂ-1€ €

Cr,
Thus,

) <e forall 0<t<A.

The uniform convergence is proven. I

Example 2.5.55 The operator v is, obviously, reqular. We have the expansion

—2
P

The series converges for |p| > 0; therefore,

v\y
Il M8
>/
3
~
3
Ok‘
—~
[\
;
=

Similarly, we have

e = J,(2V=AL) = J,(i2VAL) = I,(2V\L).
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In the same way one can easily obtain

e 3 = (%) % 12V, (2.5.6)

1
v

%e% - (%)%L,@\/E) (2.5.7)

Example 2.5.56 The operator \/ﬁ is, obviously, regular, and for |p| > A > 0 we have
P

S SRR S SR Y o A VO AL o G A YO
\/p2+)\2\/1_~_;§(1+p2> kz_:o(k><p2> ];)(k‘)@k)!’
" P& AE 1 (kDO
2 L A2 k;k'-1-2-3~-~k(/~c+1)---(2k—1)2k
= (=1DF1-3-5- - (2k — 1)(At)%F
_kZ:O 2k k1.3 (2k — 1) - 2kE!
= (—D)F(5E)2F
= kZ:O (k')Q = Jo()‘t);
Thus
P _ ().

We have obtained the operator transform of the Bessel function of order zero.

2.5.2 The Realization of Some Operators

In operational calculus, one deals, as a rule, with operators represented by the form a(p).
Two problems arise here:

1) some criteria must be formulated, which allow us to decide if a given operator a(p) is
reducible to a function;

2) if an operator is reducible to a function, then we need to find this function.

This problem often may be solved only approximately, i.e., one can calculate only indi-
vidual values of the function.

An operator a(p) is reducible to a function p(t) € S if and only if a(p) and p(¢) satisfy

the relation

a(p) = p/w(t)e"’tdt =pLlel(p), pe€ Hy. (2.5.8)

0
Hence, an operator a(p) is reducible to a function ¢(t) if the function @ of a complex
variable is representable by an absolutely convergent Laplace integral. In section 1.4.4 some
sufficient conditions for an analytical function in the half-plane H., to be representable by

the Laplace integral were given. If it is shown that the operator a(p) is reducible to a
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function, then in order to find this function we have to use the inversion theorem for the

Laplace integral (see Theorem 1.4.13 and formula 2.5.8) and we obtain

w(t):i/ @eptdp. (2.5.9)

271 P
Q0]

In order to obtain a convenient expression for the function ¢(t) we often must deform
the path of integration in formulae (2.5.9). Sometimes, applying Jordan’s lemma and the
Cauchy theorem on the residues, one can obtain an explicit series expansion of ¢(t); see
1.4.5.

Theorem 2.5.91 Let

1) a(p) be a regular function in any finite part of the plane of the complex variable p
except the set of points p1, P2, "< ,Pn, -+ (|Ip1] < |p2| < -+ < |pn| < --+) which are the
poles of the function @ such that Re(p,) < v, for all n;

2) the following limit exists

YHiw
1 a 1 a
lim —— / @e”tdp= —./@emdp, Y > Yo
w—o0 271 P 211 P
yoiw ™

3) there exist a sequences of simple contours C,, relying on the line Re(p) = v at the
points v + ifn, v — i0n. (These contours lie in the half-plane Re(p) < v and do not go
through the poles p,,.) Each contour C,, contains the origin and n first poles p1, P2, -+ , Pn
(see Figure 10).

4) for allt >0

lim /L(p) ePldp =0
n—o0 p

n

then the value of the integral is equal to the convergent series

1
i ptd
211 / P Z rn(t

(v)

where 1, (t) is the residue of the function @e”t at the point p = p,(n = 1,2,---) and

ro(t) is the residue at zero.
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|k,

v-iB,

Figure 10

NOTE. If the function an’) satisfies the conditions of Jordan’s lemma, then it is natural
to choose as C,, arcs of circles.

If there exist sequences of positive numbers 3,, and ¢§,, and a number ) > 0 such that

1) lim 8, =00, lim §, =0;

alo £ i8,) &G, + ir)
Y- — -6, <oc< <
2) O'iiﬁn <5n7 ‘ _ﬁn+@'7~ <Q’ ﬂn—‘f_% ‘T| —ﬂru

then one can take as the contours C,, the contour shown in Figure 11.

-Ba+j B:\ T+ ilin

BB, Vi,

Figure 11

Example 2.5.57 Let us consider the operator \/ﬁe_)‘\/f’, A > 0. The function f(p) =
ge”‘\/f’ is, obviously, bounded on the half-plane H , v, > 0 and

oo
1 —Ao+ir
—c Tldr < oo,
/ ‘ Vo +ar
—00
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therefore (see section 1.4.5, Theorem 1.4.15) the function f(p) is representable by a Laplace
integral. Hence, the operator \/]56_)‘\/5 18 reducible to a function. The value of this function

is equal to the integral
1 e~ APttp

2mi NG
Q0]

In order to calculate this integral we use the formula /tp — 2%/2 = w to change the variable

dp, ~v>0.

of integration. We have

2
1 e~ AVPttp 1 (VTp—2-)2 22 e ar 2
— | —dp= eVIPTIE) TW g(ip) = —— /e“’ dw;
211 D P mivt / (Vip) mivt
() (v) L

in this case the line Re(p) =~y transforms into the hyperbola L; thus,

_aZ
3 e~ it
vpe V=,
where C = {e“’2dw is constant. In order to find C, let us set A =0. Then \/p = ﬁ{, and
from 2.3.2, (2.3.24) and the remarks on this formula in 2.3.3, we have
. t=2 1
N T R
hence, we have \/% = #\/E or C = i\/7; thus,
Ve VP = %e*% (2.5.10)

2.5.3 Efros Transforms

The following theorem is useful for solving the question about the reducibility of a given

operator a(p) to a function and computation of this function.

Theorem 2.5.92 If an operator a(p) can be represented by the form

alp) = pH[h;p)}, (2.5.11)

where the operator h(p) is reducible to a function h(p) € S and H(z) is an analytic function
in the disk |z| < p and H(0) = 0, then a(p) is reducible to the function a(t) belonging to S.

=

P)

Proof. Indeed, the formulated assumptions imply that the function is reducible by
an absolutely convergent Laplace integral. This implies the representability of the function

H [@] by an absolutely convergent Laplace integral, i.e.,
}—l o0
a(p) :pH[g))} =p [ a(t)e Pdt,
0
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and this integral is absolutely convergent for Re(p) > ~; hence, the operator a(p) is reducible

to a function.

Consider the function G(z) = Ciz — E’ where ( is a complex parameter. Obviously, the
function G(z) is analytical in the region 2| <[] = p; therefore, the operator —%7> — % is
reducible to a function. Let us introduce the notation ’

p P ph(p)
P ) K(50). (2.5.12)
(I ¢ T h()
Multiplying both sides of this relation by 5 H(¢) and integrating along the circle [(| = p,
we have
1 pH(¢ 1
— —=d( = — K(t;¢)H(¢)dC.
271 / ¢ — h(P) 2m / C 211, / (5 QY H(Q)dc
I<l=p P I¢l=p I¢l=p

But H(0) = 0; therefore, from the Cauchy integral formula we have
h(p /
M2 K(t ) H(C)d¢ = a(t). 2.5.13
PH|= = =55 QH(Q)d¢ = aft) ( )
I¢l=p

I

This formula may be applied to compute the function a(t). The simplest example is the

case of h(p) = 1; then the operator pH(%) is regular. For h(p) = 1 we have

K(t;:¢) = L = P :iexp <£>

-1 G-z ¢ ¢
and
N t d¢
o () i Qo
=p

On setting % = z, we have

¢[=1

This equation coincides with (2.5.4), section 2.5.1.

Consider now another method of computing the function by its operator transform.

— 2@a»)

pq(p) ’ and

Theorem 2.5.93 If an operator a(p) may be represented by the form a(p)
a) ®(p pf (1) exp(—pt)dt and [ |D(t)] exp(—vot)dt < co, where v, > 0;
0

b) q(p ) is analytzc in the half-plane H., , v, > 0, satisfying in this half-plane the condition
Re(q(p)) = Yo,
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then the operator a(p) is reducible to a function belonging to S':

a(p) = /L(t;é)‘ﬁ(ﬁ)d& (2.5.14)
0
where
. :leféq(p)
L(t;€) ) : (2.5.15)

Proof. The conditions a) and b) imply the absolute and uniform convergence in the half-

plane I_{% of the integral

1 oo
——=®(q(p)) = [ e 1V R(E)de. (2.5.16)
q(p) O/
Indeed,
| [eemaea < [emapols < [l <o (251)
0 0 0

therefore, the integral (2.5.16) represents in the half-plane H,, an analytic function. The

inequality

‘@(Q(P)) ’ < 76—&0@(&)'%

®(q(p))

implies the uniform boundedness of the function )

in the half-plane f[%; therefore,

there exists the integral

1 Memdp = a(t),

2mi | p2q(p)
()
and
pg— 20a@) _
po/a(t)e dt o) (p). (2.5.18)

Hence, the operator a(p) is reducible to the function a(t). In order to compute a(t) we note

that for any &, 0 < £ < oo, the operator %6*5‘1(”) is reducible to the function

~y+ioco

I e—¢a(p)+pt
(8= 5~ / — dp (2.5.19)

y—100

—_

because the function eﬁ;;p) , 0 <& < o0, satisfies all the conditions of Theorem 1.4.13, section
1.4.4, and hence it may be represented by an absolutely convergent Laplace integral. In

particular, integral (2.5.19) is absolutely convergent, and taking into account (2.5.15) and
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(2.5.17) we find

00 A
¢
[rwoeis= oo [ Sap [
0 ™ 0
" o0
= o [ Siv [ P
™ 0
_ L [e"(q(p) dp
") a2
(60
Comparing this relation with (2.5.18), we obtain the formula
) _ [
= [ L(t;£)®(&)d
S O/ (1 ) (€)de,
which implies
B(ap) = palp) [ L(1: )R (25.20)

0
On multiplying both sides by the operator b(p), we obtain

oo

B(p)(a(p)) = PH(P)a(p) / L(t:€)®(€)de.

0
After denoting pb(p)q(p)L(t; &) = ¥(t; €) we obtain

oo

B(p)®(a(p)) = / Wt £)B(€)de.

0
Hence, the integral, generally speaking, is convergent in the operational sense (see section
2.4). Formula (2.5.20) is called the Efros transform. I

Example 2.5.58 Let q(p) = %. Obuiously, Re(%) > 0, if Re(p) > 0. Hence, v, = 0. In

accordance with (2.5.6), section 2.5.1, we have

L(t;€) = fe p_\fJﬁf

hence,
3(5) - / <I>(§>J1(2ﬁf>\/§df
0

Applying the operator pl_”n to both sides of this relation and taking into account that
PLEE) = ket = (1) 2VIE), we find

oo

pe(y) = [ronevio(p) e

0
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Example 2.5.59 Let q(p) = \/p. From (2.5.10), section 2.5.2, we have

\/]36_5‘/5 = —1 e 7
Tt
hence,
1 1 2
LS (6 = —— e
e e
D/P VTt

and therefore,

d(/p) 1 71 5
o _MO/\/H B(e)de,
_ 7 1 &2
B(/p) = | ——e FTD(€)de. (2.5.21)
e

Example 2.5.60 Let q(p) = ﬁ. The simplest way to compute the operator @(ﬁ) is the

following: we compute <i>( ) from the first example, then, using the second example, we

1
P

compute CTD(\/%) = @(ﬁ). So we obtain

@(;ﬁ) = J% Ze_idfo/oo@(u)Jl@ §u)\/§du.

Example 2.5.61 Let q(p) =p+ 110. We have

1 —&p 1
L(t;¢) = ];e—f<p+%> = Lp e b = S T2V,

or, see formula (2.3.78),

o fort <&,
L(t:€) = {;%(2 E(t—8) fort>¢;

hence, we obtain

Op+1) 1 -

i h / To(2/E— )0(E)de,

D(p+ ) B t —

i) —/Jo(2 §(t = €)P()de. (2.5.22)
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2.6 Application of Operational Calculus
2.6.1 Ordinary Differential Equations

Problem 2.6.1. Consider a linear ordinary differential equation of nth order with con-

stant coefficients
2™ () + ap ™V + - a1’ (B) + aoz(t) = f(1), 0<t< oo (2.6.1)
with the initial conditions
2(0) =zo, 2'(0)==21, ..., zV0)=xz,_;. (2.6.2)
Applying the formula
2 ¥ (t) = pFa(t) — p*x(0) — p* 12/ (0) — -+ — p2*1(0), (2.6.3)

we can rewrite (2.6.1) in the form

where

n—1
b, = Tsls_j (kZO,L ,n — 1),
s=k
therefore, we obtain
n—1
1 1 bk I Tp—1
z(t) = —f(t) — — — +rot+t—+---+ . 2.6.4
“ L(p) “ L(p) kz;; p* p prt (264)

This formula gives us the solution of equation (2.6.1). We see immediately that the right-
hand side of (2.6.4) is an n times differentiable function, satisfying the initial conditions.

The first part of solution (2.6.4), namely,
(2.6.5)

is a solution of the nonhomogeneous equation (2.6.1) with zero initial conditions, and the

second part
() L B
fL'Q [ — —_ "I"O J— “e .
L(p) {= p* p prt

is the solution of the associated homogeneous equation with arbitrary initial conditions

(2.6.6)
(2.6.2). In the case when A1, Ag, ..., A, are simple roots of L(p), we have

Lp)= (=) —=A2) ... (0= ) = [T(0 =N,

p=1
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and the function z(p) = ﬁ may be decomposed into partial fractions:

(2.6.7)

2 :7:

1 n
L =

1P /\u

v

Multiplying (2.6.7) by (p — A.), we obtain

n

pi)\,ui ; Cu
7cﬂ+(p7>\ﬂ)z p_)\ya

v=1
where the prime sign by the sum means that in the sum the term with p = v is omitted.

After passing to the limit as p — A, we obtain

B P—Au lim 1 1
v L) pons TOEEOW T,
o

Therefore, the decomposition of Z(p) into partial fractions has the form

therefore, by formula (2.3.52) and (2.3.4), we have

t t

n1(0) = 2000 = 5 [ 2t = 7)1 =

0 =ty 0
In the case where L(p) has multiple roots
A =A== XAy Arg1, Arg2y ooy Any
we have
Lip) =@ =)= A0 = Arg2) . (= An) = (p = M) L (p),
where

Ly(p) = (p = Ars1) (@ = Arg2) - (D= An),
and the function z(p) may be represented by the following sum of partial fractions

_ 1 c11 c12 Clr Cri1 Cn
z = = =+ + -+ —+ + -4 _
®) Lp) p—M  (p—A\)? (P—A)" pP—Arp P—An

or

(2.6.9)

_ 1 Cly
W=y =X ooyt
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Multiplying (2.6.9) by (p — A1)", we obtain

(=) _ 1 S
= =c1r + c(p—M)"V+(p— M) . 2.6.10
L) "L ot 2o 1) ;3 N, (2610
Passing to the limit as p — A1, we find
1
C1p = S()\l) = 7 ()\1) . (2611)

Similarly, differentiating (2.6.10) (r — p) times (u =1,2,...,r — 1) and passing to the limit

as p — Ay, we obtain

55“")()\1)

= — =1,2,....,r—1 2.6.12
Cip (T*,LL)' (M ) 4y T )a ( )
where
1
SRR}

It follows from (2.6.11) and (2.6.12) that

(r—v)
sr (M) (v=1,2,...,r). (2.6.13)

‘v = (r—w)!
In the same way the coefficients ¢, may be found. After multiplying (2.6.9) by p — A,
(w=r+1,r+2,...,n), we have

n

p7>‘,u a Cly ; Cu
—r=p-M\)) i teu (A ;
i) ’); TESATRRAN ”)V:ZTH P—A

where the prime sign by the sum denotes again that the term with p = v is omitted in the

sum. On setting p = A, we find

o P— Ay lim 1 1
TN Llp)  pon L=LOW T (N,
P—Au
hence,
1 1
cy = v=r+1r+2,...,n. (2.6.14)

L)~ 0w = M)
According to formulas (2.3.48) and (2.3.51) we have

n AT
AT ClyT e
/ 2 St / 2 ) oo (2.6.15)
0 v=r

Finally, using formula (2.3.52) we find

ni(0) = 20)(0) = 5 [+t~ 1) 1(yar
0

= S [ e (2.6.16)
0
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In particular, if A\; is a simple root of L(p), i.e., r = 1, then ¢1; = L'(/\ 3 and (2.6.16) implies
(2.6.8).

Now we are going to consider the homogeneous differential equation associated with
(2.6.1) with initial conditions (2.6.2). Setting in formula (2.6.2)

To=1=2p=-=Tp2=0, Tp1=1,
from (2.6.6) we find
p —
To(t) = —— = ¥(p). 2.6.17

In order to find the function ¥(p) = ¥(t), according to the formulas (2.3.48), (2.6.7),
(2.3.51), and (2.6.9) we have

n 6>‘”t
U(t) = E 2.6.18
( ) — LI(>\V) ( )
or
v—1 n At
it c1t e
§ S y§r+1 o0 (2.6.19)

Obviously, the function ®(t) satisfies the conditions
U(0)=0'(0)=0"(0) =---=0""2(0) =0, ¥"D(0)=1. (2.6.20)

Representing the expression (2.6.6) in the form

1 = n—k n—k—1 n—k—2
xo(t) = m kZ:Oa:k(p + aip + asp + - 4 an—g-1p), (ap=0), (2.6.21)

and using (2.6.3), (2.6.20), we find the solution of the homogeneous equation, satisfying

arbitrary initial conditions

= ap[TTFIE) 4 a T (@) a1 T(1)]. (2.6.22)

Problem 2.6.2. Let us introduce into consideration a system of linear differential equa-

tions of the first order with constant coefficients (a;x), solved with respect to the first

derivatives:
d.’tl
Tt +a2T2 + -+ A1pTn,
(s + ot
—= = a1T1 + axT st ag,T
at 2171 2272 2nTn, (2.6.23)
dx,
W = anp1T1 + An2T2 + + Anndn,

0<t<oo.
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It is known that any system of differential equations solvable with respect to the highest
derivatives of unknown functions may be reduced to a system of the form (2.6.23). We shall

derive a solution of the system (2.6.23), satisfying the initial conditions
Til_g =2V, @alimg =23, ey Tnlieg = T (2.6.24)
The system of equations (2.6.23) may be rewritten in the form

ok _

o= D aksrs, k=1,2,...,n. (2.6.25)
s=1

Using formulae (2.6.3), we reduce the system (2.6.25) to a system of algebraic equations
pTi(p) = Zaksxs(p) +p2d, k=1,2,...,n. (2.6.26)
s=1

The extended form of the system (2.6.26) is

(@11 —p)Z1(p) + a12Z2(p) +... +  a1nZn(p) = —pa?l,
a2171(p)  +(ag2 —p)T2(p) +... + a2.Tn(p) = —px}, (2.6.27)

. +... o+ . = ...,

amZ1(p)  +  ana®a(p) +... +(@wn —p)Tulp) = —pa),.

Let
a1 —p G12 Q1n
A(p)=| ™ @27 P (2.6.28)
an1 An2 Apn — P

be the determinant of the system (2.6.27), Ags(p) the minor of the entry in the kth row
and sth column of this determinant, i.e., the determinant obtained after omitting the kth
row and the sth column in the determinant A(p) and multiplied by (—1)*+s.

The solution of the system (2.6.27) may be expressed in the form

A
Z.(p) = —p Y _ x} ks (P) s=1,2,...,n. (2.6.29)

In order to find z4(¢t) we have to find the functions

AIcs (p)
Alp)

The functions ;s are easy to determine after breaking down 1,(p) into partial fractions.

Vrs(t) = trs(p) = —p (2.6.30)

In order to break down ty.(p) into partial fractions we need to know the roots of the
characteristic equation
A(p) =0. (2.6.31)

After determining the functions 1 (t) and finding x4 (t) we have

zo(t) =Y aftns(t), s=12,....n. (2.6.32)
k=1
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The formulated method may be applied to the integration of a nonhomogeneous system of
linear differential equations of the first order with constant coefficients of the form

d
m’“ Zak5x5+fk() k=1,2,...,n. (2.6.33)

We seek the solution of system (2.6.33), satisfying the initial conditions (2.6.24). The

operator transform has the form

px(p) = prg + Z arsTs(p) + fi(p)- (2.6.34)

s=1

Similar to the previous case, we find the solution of the linear system (2.6.34):

. = 2k M Ak8<p)
= p%( vt » ) NOR (2.6.35)

or

= —p Z z A’“ )3 R, (2.6.36)

Taking into account (2.6.32) we have

n

r(t) = [xk'L/)ks / Fr(T) s (t — T)dT] (2.6.37)

k=1

Similarly, one can consider a more general system of linear ordinary differential equations

of the form

" d? d
Z (aukq;k +bop—r Tk +Cuk$k) =f@), v=1,2,..,n, (2.6.38)
2\ " g dt

with the initial conditions
2k(0) = ag, 2(0)=0k, k=12,...,n. (2.6.39)

The operator transform of the system (2.6.38) with conditions (2.6.39) is the system of
algebraic equations with respect to unknown functions Z(p):

n

Z(aukPQ + bykp + ch))'i‘k(p) = fu(p) + Z(aukPQ + bukp)ak + afuk:pﬁ/w
= = (2.6.40)

v=12,...,n,

After finding from this system the functions Zy(p) and passing to the originals, one obtains

the desired solution.

Example 2.6.62 Find the solution of the system of two linear ordinary differential equa-

tions d
T
E =ay + f(t)a
(2.6.41)
& _ —ax + g(t)
dt g
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with initial conditions
z(0) =0, y(0)=0. (2.6.42)
The operator transform of the system (2.6.41) with conditions (2.6.42) has the form
pi(p) — ay(p) = f(p)
az(p) + py(p) = g(p )
Let us find the solution of these equations:

pf(p) + ag(p) 5p) = —af(p) +pg(p)

Z(p) = ,
(®) p® +a? p* +a?
Using the operational formulae
ap . P
———— =sinat, ——— = cosat,
p2 + a2 p2 + CL2

we obtain the desired solution
t

x(t) = /[f(T) cosa(t —7) + g(7) sina(t — 7)]dr,

0

/ )sina(t — 1) + g(7) cos a(t — 7)]dr.
0

Example 2.6.63 Find the solution of the system of three linear ordinary differential equa-

tions
B o rty+a
dt - y )
d
dit/ =x—y+z, (2.6.43)
az _ r+y+z
dt - y 9
with initial conditions
z(0) =0, y(0)=0 =2(0)=0. (2.6.44)

The operator transform of the system (2.6.43) with conditions (2.6.44) has the form

(p+ 1Dz(p) — y(p) — 2(p) = p,

5 (p) 1 p 1 p 1 p
P s 1 T 2pr2 T 6p_2
_ 1 p 1 p 1 p
y(p) = 3 -5 - ;
3p+1 2p+2 6p—2
1 p 1 p
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Using the formula (2.3.49), we obtain the desired solution:

1 1 1
.Z‘(t) — geft 4 56727: 4 662t7
1 1 1
y(t) —_ geft 567% + 6621&7
1 1
D= —Zeta Zp2t
z(t) 3¢ + 3¢

Problem 2.6.3. In some cases operational calculus may be applied in order to solve linear

ordinary differential equations with variable coefficients
() + ar (eI (1) + ag ()22 () + -+ an(D)2(t) = f(D). (2.6.45)

We consider only the case when all functions a;(t) are polynomials. In order to obtain the
operator transform of the equation in this case, it suffices, obviously, to know how to write

the operator transform of the function t*z(™ (). As it is known,

te(t) = _pdip {x;p)] . (2.6.46)

Applying this formula to the function tz(t) we obtain

d* [z(p)]
t2a(t) = (-1)°p— | —= 2.6.47
o) = (g | T (2:6.47)
In a similar way one can easily obtain the formulae
d® [2(p)]
ta(t) = (-1)°p— | == 2.6.48
o) = (s |2, (26.43)
tha(t) = ( )’“pdi 2()] (2.6.49)
| | .6.
After expanding the operator (z’% in the last formula, we have
k . v k (k_y)!—(l/) . Vk' 1 =(v)
tha(t) = (-1) <y> o () =) _(-1) = (p). (2.6.50)

v=0

In order to obtain the operator transform of the function t*z(") (t) we need to substitute in
(2.6.50) instead of Z(p) the operator transform of the function (") (t) = p"Z(p) — p"x(0) —
§(0) = = e (0):

k
, (—1)k! [p2(p) — p"=(0) — p" '’ (0) — - - - — px "= (0)]*)
() = - — . (2.6.51)

v=0 . P
For zero initial conditions

z(0) = 2/(0) = - -- = 2" "D(0) = 0. (2.6.52)
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The formula (2.6.51) takes the form

th(r)<t) z”: (_l)yk' [prj(p)]u'

= T P
=0 v P

As an example, we consider Hermite’s equation
2'(t) —ta'(t) +nz(t) =0  (neN,).

We shall seek the solution for the following initial conditions:
2(0)=1, a'(0)=0, if n =2k is an even integer;
z(0)=0, 2'(0)=1, if n=2k+1isan odd integer.
On putting £k =1 and » = 1 in (2.6.51), we obtain
dz(p)
dp

Hence, the operator transform for Hermite’s equation has the form

ta'(t) = —p

p? {m(m —2(0) - ;az’m)} #0520
dflfop) _ <p + >53(p) + pz(0) + z'(0);

therefore, we have the solution:

2

p2 P p2
Z(p)=cp e T +p e T /[p:v(o) +2'(0)]p"e = dp.

Consider the first case, when n = 2k is an even integer, 2(0) = 1, ’(0) = 0:

2

#(p) = ep~2* 2 o 7ﬁ/ 2kl B2
p)=cp e T +p e T [pTTezdp.

Let us denote
2
I, = /p%“e%dp.

After integrating by parts, we have

ok 22 ok B2\ op 22 2%—1 22
In=[p ezdp= | p*dleZ | =p ez 2kp ez dp,

ie.,
2% 22
I =prez — Qk[k_l.
Thus,
er EDE k 2k—2s
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2
The function f(p) = f(o + 1) = ¢p~2*e¢~"= is not bounded for a fixed o and 7 — oc.
Indeed,

2 2_ 24207 2_52 .
gke_%: gke_(o r2+2 ): gk T 2<1 +ZO’T;
D D p
therefore,
C _ﬁ C 252
—e 7| = ——¢ — 00 as T — 00.
2k 2k
P |

It follows from here, that for ¢ # 0 the function f(p) is not representable by a Laplace

integral; therefore, ¢ = 0 and the solution is

k k tQS
t) = —1)%2%s! —.
(0= D12 e
One can show that z(t) up to a constant factor is the Hermite polynomial.

The second case, when 2(0) = 0, 2/(0) = 1 and n = 2k + 1 is an odd integer, may be

solved analogously. From (2.6.54) we have
-2 »2 »2
T(p)=cp e T +p e T /p”erp,

2
where n = 2k 4+ 1. Previously we investigated the integral f p2**le’r dp and found that it

is equal to I; therefore, ¢ = 0 and the solution has the form

s=0
Problem 2.6.4. Consider a differential equation with delayed argument and constant

coefficients

n—1
M (t) =Y ara®™(t — hy) +g(t), 0<t<oo, hy>0. (2.6.55)
k=0

For the sake of simplicity we shall assume the initial conditions to be equal to zero. Hence,

we have to find the solution of equation (2.6.55) under the condition that
z(0) =2'(0) = --- =2z V(0) = 0. (2.6.56)
In addition, we suppose that
) =2't)=---=2""V(t)=0 for t<O0.
Taking into account that
x(k)(t — hy) = pFe P a(t),

we find the operator transform of equation (2.6.57):

n—1
pla(t) = appte M Pa(t) + g(t);
k=0
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therefore,
n—1 -1
z(t) = (p” - Z akpke_h’“p> g(t).
k=0

Let us introduce the notation
1 n—1
w(p) = — Z agp®e P,
P

Then we obtain 0

g(t 1

z(t) = ————.
0 p* 1—w(p)

In order to show that (2.6.57) is the solution of equation (2.6.55), satisfying initial conditions

(2.6.57)

(2.6.57), it is sufficient to show that the operator ﬁ(p) is reducible to a function. Obviously,
there exists a constant @ such that for all p in the half-plane H,_,0o > 0 the following
inequalities hold:

mm<j<L

Let us represent the operator i(p) in the form

1—

1 w(p))?
= l+wp)+ ] 2.6.58
@) RS SR (2:6.5%)
Since the operator [1 + w(p)], obviously, is reducible to a function, it is sufficient to show

2
that the operator 1[01(5 zL) is reducible to a function, or, the equivalent, that the function of

the complex variable p = o + iT

2
Cl) i (2.6.59)
pll —w(p)]
may be represented by the Laplace integral. Indeed, in the half-plane H,, , o, > 0 the
function %’ which is analytical in this half-plane, satisfies the inequality
Q\2
‘W@P‘< G _ @
p(L=w®)| " Ipl(1-F) [pPO-F)

therefore, in the half-plane R(p) > o¢ the function (2.6.59) is uniform with respect to arg p

tending to zero as |p| — oo, and the integral

7‘M‘d7’ (p=o0+ir),

is convergent.

Then from section 1.4.4, Theorem 1.4.13 it follows that the function ]D([;‘L(i% is represent-

1

able by an absolutely convergent Laplace integral. Thus, the operator ;— ] is reducible

1
to a function, and the solution, in fact, is given by the formula

o)
x(t)—pn O[ ],

m=
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where
1 n—1
— p Z appte P,
k=0
The function z(t) is n times differentiable and

2(0) =2'(0)=--- =z V(0) = 0.

2.6.2 Partial Differential Equations

Consider a partial differential equation whose coefficients a,,, (z) are numerical functions

of the variable x:

Do () B ulw, f) = f(z,1). (2.6.60)
p=0v=0

oxHotY
On applying the formula

I tu(x,t) OMu(x,t)  Ou(x,0) 9" u(x,0) o u(a, 0)
Y R R P TG

we reduce equation (2.6.60) to the form

i 8“u($,t) % LA v 3N+ku(x’0)
D aulep) == = fa+ 3D > p
=0 p=0v=1k=0

where
a, = a,(z,p) E apu (

On denoting the right-hand side of this equatlon by ®(x,p) and considering u(z,t) as an

operator function depending on the parameter z, u(z,t) = u(x,p) = @(x), we have
A T™N(2) + 1TV () 4 -+ ag(z) = D(x, p). (2.6.61)

Here the coefficients aj are also operator functions depending on x. Thus, the problem of
integrating equation (2.6.60) is reduced to integrating a linear operator differential equation.
Equation (2.6.61), which is the operator transform equation (2.6.60), is called the operator
or transformed equation.

When solving equation (2.6.61), the isomorphism of fields 9t(S) and M (S) must be used.
In the field 9(S) the transformed equation (2.6.61) becomes an ordinary linear differential
equation of the nth order, whose coefficients and right-hand side depend on the parameter
(complex number) p. Such equations have been fully investigated. Let @(x,p) be a solution
of the equation. If it turns out that w(z, p) belongs to the field 90(S) for the given values
of z,a < x < (3, this will imply that (2.6.60) has the solution @(z,p) in the field 9, where
p is regarded as the operator p = %

The application of operational calculus to the solution of partial differential equations is

performed as follows:

© 2006 by Taylor & Francis Group, LLC



Application of Operational Calculus 259

1) Replacement of the original equation by the transformed equation. Similarly, the
boundary conditions of the problem are replaced by transformed boundary conditions, which
will be the boundary conditions for the solution @(z, p) of the transformed equation (2.6.61).

2) Finding the solution u(z,p) of the transformed equation with the given transformed
boundary conditions.

3) Investigation of the solution obtained for the purpose of proving that the solution
@(z,p) belongs to the field 9(S). In the case when @(z,p) belongs to 9M(S), auxiliary
investigations have to be made to establish whether the solution u(x,t) = u(z,p) is a
generalized solution or whether it can be reduced to a function having partial derivatives
with respect to the variables  and ¢ up to and including the derivative %. This
latter case will imply that u(z,t) satisfies the initial partial differential equation in the
ordinary classical sense.

4) Realization of the operator @(z,p), i.e. determination of the function u(z,t) = a(x,p).

The investigation of point 3) can often be considerably simplified if point 4) is carried
out.

5) Proof of the fact that the solution u(z,t) satisfies the initial and boundary conditions
of the problem.

Let us take as an example the equations
p(@)ur = po(T)use + p1(z)ug + p2()u; (2.6.62)

p(x)u = po(x)Uze + p1()uy + p2(x)y; (2.6.63)
in the domain 0 < = < [, t > 0. Here, p(x), po(z), p1(x), p2(x) are given continuous
functions in the interval 0 < z <[ and p(x) > 0. The solution u(x,t) must have continuous
partial derivatives up to and including the second order in the domain (0 < 2 < I, t > 0)

and must satisfy the initial conditions

tliIEOu(x,t) =p(z), 0<z<l (2.6.64)
for equation (2.6.62) and
tLHEO u(z,t) = p(x), tLHEO ug(z,t) =¥(x), 0<z<lI (2.6.65)

for equation (2.6.63), as well as the boundary conditions
tlil}rlou(x,t) = f(z), aux(l,t)+bu(l,t) = cu(l,t) (2.6.66)

for t > 0, where p(z), ¥(x) are given piecewise continuous functions; f(t) € S and is
continuous for ¢ > 0; and a, b, ¢ are given constants.
We shall seek the solution of the equations in the form u(z,t) = @(z, p). The transformed
equations for (2.6.62) and (2.6.63) will be
d*u du

po(@) s + pu(@) o + [p2(2) — po(@)]u = —p(z)pe(2); (2.6.67)
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pol@ )3 LR )jz +[pa(@) = p*p(a))a = —pp(a)pp(x) — pp(z)p¥(z).  (2.6.68)

We obtain from the boundary conditions of the problem the boundary conditions for the

solution

{(+0p) f(p), where (z: F), (2.6.69)

tz (1, p) + bplu(l, p) — o (1)] = cu(l, p).

Theorem 2.6.94 Let u(x,p) be a solution of equation (2.6.67) or (2.6.68) with conditions
(2.6.69). Furthermore, let
1) the operators u(x,p), Uy (x,p) and Uz, (x,p) reduce to functions for 0 < x <1

2) there exist a number og such that, as t — oo,

a(z,p) = 0(e”"),  Gs(w;p) =0(e™"), Tus(x;p) = 0(e”"),

uniformly with respect to x in any segment € < x <I;

3) there exist an integer k > 0 such that |p~*u(z,p)| < Q= const in the field M(S) for
all0 <z <e<l, Re(p) > 01 > 0p;

4) there exist the limit tlir}rlo a(z,p) = g(t), t > 0, where g(t) is a continuous function for
t > 0 and is bounded as t — 0.
Then u(z,t) = u(x,p) is the solution of equation (2.6.62) or (2.6.63), satisfying the given

boundary and initial conditions.

Proof. First, we prove that the conditions of the theorem imply the existence of the deriv-

atives u,(z,t) and uy.(x,t) for 0 < x < I. Indeed, let 4, (x,p) = v(x,t), then we have

u(x,p) zp/u(x,t)efptdt; (2.6.70)
0

Uy (x,p) :p/v(z,t)efptdt, (2.6.71)
0

and according to condition 2) the integrals for Re(p) > oo are absolutely and uniformly
convergent with respect to ¢ < x < [. Therefore, the second integral may be integrated by

the variable x from € to (:
Yy

a(a;p) — (e, p) = p7 ( [ t)dy) e, Re(p) > o,
0

€

w(z,p) = p]o {u(s,t) + /xv(y,t)dy] e Ptdt,  Re(p) > oo.
0 €

Comparing the latter integral with (2.6.70), we conclude that

x

u(z,t) = ule,t) + /v(y,t)dy.

€
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It follows from here that the solution u(x,t) is differentiable with respect to x and the

following equation holds:
Ug(z,t) = v(x,t) = Uz (x;t), 0<az<I. (2.6.72)

If we introduce the notation .. (x;p) = w(x;t), taking into account condition 2) of
the theorem, equation (2.6.71) and equation (2.6.72), in which wu(z,t) must be replaced by
ug(x,t) and v(z,t) by w(z,t), then we obtain

U (T, 1) = w(T,t) = U (z,p), 0< <L (2.6.73)

Thus, the existence of the derivatives u,(x,t) and u,.(z,t) is proved.
Now, (2.6.72) and (2.6.73) imply

o)tz (€, 1) + pr(w)us (2, 1) + pa(2)u(z,t) = po(2)tax (2, p) + p1(2) U (2, p) + p2(x)u(z, p),
or, taking into account the transformed equation (2.6.68), we have

po (@) e (2, 1) + p1(2)us (2, t) + pa(x)u(z,t)

= pla)p? (e, p) ~ o) = S0 (z) (2.6.74)

p
= p(a)p’[u(z,t) — p(z) — t¥(2)).

It follows from (2.6.73), (2.6.72) and the second condition of the theorem that the sum
(@)t (2, ) + 1 (21 (2, ) + pa(@)ule, )
belongs for 0 < x <[ to the set S, therefore, the function
p(2)p*[u(z,t) — p(a) — t¥(2)]

also belongs to the set S; however, p(z) > 0 for 0 < & < [, and hence, for 0 < x < the

operator
plu(z,t) — p(x) — t¥(z)]

is reducible to a function belonging to S. Let us introduce the notation
P[u(z,t) — p(z) — t¥(2)] = q(z,t) € S;
then we obtain
. ¢
e ) = pla) ~ 0W(a) = a(w.t) = [ (¢ - Ol ).
0
Hence, the function u(z,t) for 0 < 2 < is twice differentiable with respect to the variable

t and
u(z,0) = ©(0);  wue(z,0)=T(0), 0<z<lL
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It follows from (2.6.74) that in the domain ¢ > 0, 0 < z < [, we have

po (@) s (2, 1) + p1(2)u(2,t) + pa(z)u(z,t) = p(r)us.

Thus, it has been proved that
u(z,t) = a(z, p) (2.6.75)

is the solution of equation (2.6.68), satisfying the initial conditions (2.6.65). The condition
atiy (I, p) + bplu(l, p) — ()] = cu(l, p)
and (2.6.72) and (2.6.75) for x = [ imply that
aug(1,t) + bu(l,t) = cu(l,t),

i.e., the boundary conditions hold for z = [.
It remains now to consider the behavior of the solution as x — 0. Let us introduce the
notation

limo u(zx,t) = g(t).

T—+
According to the fourth condition of the theorem, this limit exists and is a continuous
function for ¢ > 0 and g¢(¢) is bounded as ¢ — 0. Hence, it remains only to prove that
g(t) = f(t), t > 0. However, this immediately follows from the condition %(+0,p) = f(p),
see (2.6.69) and condition (2.6.62) of the theorem. Indeed, condition (2.6.62) implies the

continuity of the operator function @(z,p) in the domain 0 < z < [. Therefore, we have

lim a(r,p) = 0(0,p) = f(p) = £(1), ie. g(t) = F(0)

Remark 2.6.101 Instead of using the notion of an operator function one can in the proof
of the latter fact explicity prove, starting from conditions 3) and 4) of Theorem 2.6.94, the
relation f(t) = g(t). Indeed, for sufficiently large n we have

o+i00 t

1 u(z,p)

e / P e dp— '/ u(x, §)dE, (2.6.76)
T—100 0

and the integral in the left-hand side converges absolutely and uniformly with respect to

x — 0. Therefore, we can pass in (2.6.76) to the limit as x — 0, then we have

1 o+i00 ]‘_'( ) t
2 IP) pt gy
omi | i WS )! / §)dt;
0

o —100

or
t

/ (t— &)1 f(e)de = / (t— )" g(e)de:
0

0
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therefore, f(t) = g(t) for all t > 0.

Let us consider some problems of mathematical physics.

Problem 2.6.5. Find the distribution of the temperature in a semiinfinite line 0 < x <
oo, if its left end has the constant temperature equal to zero, and the initial temperature
of the line is equal to one.

We need to find the solution of the heat equation

0 0?

ai: - 871; (x>0, t>0) (2.6.77)
under the conditions

u=0 for z=0,1t>0; (2.6.78)

u=1 for >0, t=0. (2.6.79)

The operator transform of equation (2.6.77) has the form

*u
P2 — PP (x >0) (2.6.80)

under the condition
a(z,p) =0 for z=0. (2.6.81)

The general solution of equation (2.6.80) is
w(z,p) =1+ Ae®VP 4+ Be "VP, (2.6.82)

where “the constants” A and B in the general case depend on p and are defined by the
boundary conditions. The condition of boundedness of the solution as z — oo implies that
A =0. From (2.6.81) we find 0 = 1 + B. Thus, we have

a(z,p) =1—e *VP,

In this case by the inversion theorem of the Laplace transform (see section 1.4.4, Theo-

rem 1.4.12) we have

o+iT

1 1 —TVP

u(z,t) = lim — = ePtdp, o > 0. (2.6.83)
T—00 271 p P

o—1iT

As it is known (see formula 1.4.8) the inversion of ]l) gives the function f(t) =1 for ¢t > 0.

Now we begin the inversion of the function %e*‘”\/ﬁ , i.e., the computation of the integral

1 o+iT .y
-
J = —ePldp, o >0.
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The function %e‘x\/ﬁ is analytical on the whole plane of the complex variable p except the
origin, therefore, %e‘w\/ﬁ is univalent and analytical in the plane with the cut along the
negative part of the real axis. According to the Cauchy theorem, the integration along the
line (o — iT,0 4+ i7) may be replaced by the integration along any curve with the ends at
the points o 4+ ¢7, which does not intersect the cut.

In particular, it is convenient to use the contour shown in Figure 12; we have

o+iT

/:/+/+/+/+/. (2.6.84)

o—iT AC CD DE EF FB

-

—

A

| A
S

A

Figure 12

Let us show that the integrals [ and [ approach zero as 7 — co. We have

e~TVP

o= , (=7 <argp <m);

hence, —§ < arg,/p < 7, and therefore, Re(,/p) > 0 and for z > 0

e~ TVP
p

1

~ ol

According to Jordan’s lemma (see section 1.4.5., Lemma 1.4.1) for ¢ > 0 and R — oo the

—a\/P+pt

integral of the function € along the arcs AC' and F'B approaches zero.
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Now we begin the computation of the integrals along the lines CD and EF. On these

lines p2 is equal to i|p|z and —i|p|2, respectively. On setting p = |p|, we have

R R1/2
/+/ = —Zi/p_lsin (xp%)e_tpdp: —44 / % _tgdf, (2.6.85)
CD EF r r1/2

hence, there exists the limit

oo

. 1 smx§72
1 —e VPPt ) dp = —4 B de. 6.
g 0 [ G e R o

CD EF 0

R — o0
Finally, we have

s ip i . s
e—x\/Ptpt e—xﬁe 2 fee “’Eeupid(p ip io
_ _ _ —z+\/ee 2 +ee'?
/ = / 7}) dp = v = [e idep.
DE DE

—T —T

Hence,

lin%) / = hn%/ —ovEe F ree Wzdap = 2. (2.6.87)
r— £—

Thus, combining (2.6.84) through (2.6.87), we find

o411 00
1 1 1 2 i
lim — / —exp| —apz +tpldp=1—-= / sin x¢ e*tfzdg,
r—o00 271 D T 3
o—iT 0

According to (2.6.83), the final solution of our problem has the form

=mo

/ SINTE ve2 e (2.6.88)
0

Let us reduce this solution to another form. On differentiating (2.6.88) with respect to

r, we obtain
2
% = ;/e*’552 cos x€d€. (2.6.89)
0

The computation of this integral may be made with the help of the theory of residues. Let

us introduce into consideration the function

2

flz)=e",

whose integral along the real axis may be computed with the help of Poisson’s integral,

known from calculus:

/e*“Qdu = ? (2.6.90)
0
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On the line 7 = h we have

_ 182 2
e~ tlo+ih)? _ th

e—taz (

cos2tanho — isin2tanh o).

The real part of this expression at h = 3; differs from the integrand by a constant factor.

In accordance with this, we use the contour of integration, shown in Figure 13.

- ix/2t

Figure 13

/+/+/+/=Q (2.6.91)

By Cauchy’s theorem, we have

I II III IV
here,
R
R ) Vi
_ %2_7/%2.
= e d = € d )
[ = [ eiem G e
I -R 0
R
/: —eafTf /e_tgze_ixgdf.
II “R

On the segments II and IV, where x = +R, we have

2 22 z2 2
—tz |: e—t(R —77) < e%e—tR .

b

le

therefore, assuming ¢ > 0, we find | — 0 as R — oo. Performing in (2.6.91) the limit as
I,V

R — oo, and using (2.6.90), we obtain

and comparing the real parts, we find
oo
—e? 1 T _ 22
e cos x&d§ = S\ Fe ™ t>0. (2.6.92)
0
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Thus, according to (2.6.92), formula (2.6.89) takes the form

% — (mt) Fe . (2.6.93)

Taking into account that u(0,t) = 0, and integrating equation (2.6.93), we obtain

T

u(z,t) = (ﬂ't)_% /e_%dy.

0

On changing the variable by the formula £ = %, we reduce this equation to the form

Vi 2V
2 &2 2 2 x
= — _a:f: —_ —e 2 = — _5 = _
u(z,t) =1—e *VP \/;b/ ez d¢ ﬁo/e 3 erf(Q\/i). (2.6.94)

It is obvious from here that «(0,¢) =0, u(x,0) =1
Note that equation (2.6.94) may be obtained easily with the help of operational calculus
in the following way. By formula (2.5.10) we have

1 22
7>\\/5 = ——¢ 4t ,
\V/pe ﬁte
However,
T 1
“EVPIE = —e VP,
e e ;
/ VP
A
hence,

7 7 t 7 2 2 T 2
7,\\/17):/[ 75\/17d _ / % \/>/ —u” g :7\/ —ut g
e e £ = e U e U

t s
A A vE

- f<;ﬂ> —1 _f<2j/g>

Problem 2.6.6. On an infinite cylinder of the radius a the constant temperature ug = 1
is maintained. Determine the temperature at any point of the external space at an instant
t, if at the initial instant the temperature in the space was equal to zero.

The problem is reducible to the solution of the differential equation

2
% - k(?r"; 4 ig:f) (2.6.96)
under the initial condition
u=0 for t=0 and a<r<oo (2.6.97)
and the boundary conditions
u=1 for r=a, t>0 and Tll)rglo u(r,t) =0, t>0. (2.6.98)
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The transformed equation has the form

d?>a  1du p_
—+-———=u=0.
dr?2  rdr k
The solution must satisfy the conditions
=1 for r=a, and lim u(r,p)=0.

T—00

The equation has two linearly independent solutions Ko(vr) and Io(vr), where
v=/L. (2.6.99)

Hence, the general solution is ¢ Ko(vr) + calp(vr). Taking into account the boundary

conditions of the problem, we find the desired solution:

_ ~ Ko(vr)
U(T’,p) - K()(l/a/),
we have chosen the branch of root (2.6.99) for which lir+n Ko(vr) =0, ie., /p>0,if pis

Ko(vr)
Ko(va)

in (2.6.99), satisfies the conditions of Theorem 2.6.94 (see 2.6.2), then the solution of the

problem is the function

a real positive number and arg p = 0. Thus, if the operator , where v is the same, as

1 Ko(vr) et
t) = — —d, R,. 2.6.100
'U;(T, ) i K()(Va) » P, vV ERy ( )

(v)

Ko(vr)
Ko(va)

part of the real axis. For large values of v the asymptotic representation, see [E.1], vol. 2,
section 7.13.1, formula (7), holds:

K
()(1/7‘) ~ \/Eeu(ra)7
Koy(va) T

where v is the same as in (2.6.99). The integral (2.6.100) converges uniformly in the domain

The function

is analytical in the complex plane with a cut along the negative

r—a>¢e>0and 0 <t <T,; hence, the function u(r,t) is continuous in this domain. Let
us transform expression (2.6.100) to the form convenient for computation. For this purpose

we consider the integral
1 Ko(vr) ot dp

— 2.6.101
2mi ) Ko(va) p’ ( )
L

where L is the contour shown in Figure 12.
Taking into account that the integrand satisfies the conditions of Jordan’s lemma, we deduce
from (2.6.101) as R — oo

(r,t) = 1 [ Ko(r) e
= o Ko(va) p
r

)

where I is the contour, shown in Figure 14.
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/
S

Figure 14

Contracting the contour I' to the edges of the cut and taking into account the singularity

at the point p = 0, we find

>H>—*

7Jo — Jo(rv)Yy(av) e P P)
+ Y (av) D b k’
0

In these transformations we used the equations
Ko(ze'?) = —mi[Jo(z) — iYo(2)],

Ko(ze %) = mi[Jo(2) 4+ iYo(2)],
(see [E.1], vol. 2, section 7.2.1, formulas 16, 17, 5, and 6). The function u(r,t) may be,

obviously, represented by the form

o0

(rit)=1+ % /e—tka2 Jo(ra)Yo(aa) — Jo(aa)Yo(ra) do

—_—. 2.6.102
Rlaa) +¥2(@)  a (2:6.102)
0

It follows immediately from the expression obtained for u(r, t) the continuity of u(r,t) when

approaching any point (a,t), ¢ > 0. Indeed, for ¢ > 0 we have

lim u(r, t) = 1.

r—a
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Chapter 3

(GGeneralized Functions

3.1 Introduction

Distributions are a generalization of locally integrable functions on the real line, or more
generally, a generalization of functions that are defined on an arbitrary open set in the
Euclidean space.

Distributions were introduced as a result of difficulties with solving some problems of
mathematical physics, quantum mechanics, electrotechnics and so forth. In these domains
there are many theoretical and practical problems where the notion of function is not
sufficient in this or that sense.

In 1926 the English physicist Paul Dirac introduced a new element of mathematical
formalism into quantum mechanics, [Dir]. He named it the Delta function and denoted it
by d(t). Dirac assumed that the delta function is defined on the real line and fulfills the

following conditions:

f
5(t) = {0 ort 70, (3.1.1)
400 fort =0,
and
“+oo
/ o(t)dt = 1. (3.1.2)

In the theory of real functions the two conditions (3.1.1) and (3.1.2) are contradictory.
No real function exists to fulfill both conditions at the same time. On the other hand,
both conditions give incorrect but highly convincing evidence of a physical intuition: §(t)
represents an infinitely large growth of electric tension in the infinitely short time where
a unit of electricity loads. Nevertheless, the existence of mathematical models for which
the search for mathematical description would lead naturally to Dirac’s deltas should not
provide an excuse to use the imprecise mathematical notion that hides under §(¢), treat
it as a function and at the same time assume that it fulfills conditions (3.1.1) and (3.1.2).
Despite all formal objections many important results were achieved with the help of Dirac’s
delta.

In the 1930s it became obvious that Dirac’s delta has a fixed place in theoretical physics.

As a result scientists sought a new mathematical theory that would help define Dirac’s
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delta as it was previously used in the precise definition of real numbers, and so forth.
The mathematical theory known as the theory of distributions, which enabled introducing
Dirac’s delta without any logical objections, was developed in the 1940s. This theory allowed

the generalization of the notion of function as it was once done for real numbers.

There are many ways to define distributions (as generalizations of functions), i.e., I.
Halperin [Ha|, H. Konig [K&.1], J. Korevar [Ko.1], J. Mikusiniski and R. Sikorski [MiS.1],
W. Stowikowski [Sto], S. Soboleff [So], L. Schwartz [S.1], and G. Temple [Te.1], [Te.2]. The
two most important in theory and practice are the functional approach of S. Soboleff (1936)
and L. Schwartz (1945), where distributions are defined as linear continuous functionals in
certain linear spaces; and the sequential approach of J. Mikusiriski (1948), where distribu-

tions are defined as classes of equivalent sequences.

The functional theory is more general but more complicated. It uses difficult notions of
functional analysis and the theory of linear spaces. L. Schwartz developed and presented

his theory together with applications in a two volume manual [S.2].

The sequential approach is easier because it is based on fundamental notions of mathe-
matical analysis. It has a geometrical and physical interpretation that relies on an intuitive
understanding of Dirac’s delta, which is common in physics. The sequential approach is
easier to understand and easier to apply. A formal definition of distribution was given by
J. Mikusiniski in [Mi.2]. Based on that definition J. Mikusiniski together with R. Sikorski
developed the sequential theory of distributions and published it in [MiS.1] and [MiS.2].

The theory was developed and together with P. Antosik a monograph “Theory of Distri-
bution, The Sequential Approach,” [AMS], was published.

The starting point for the definition of distributions in the sequential approach are se-
quences of continuous or smooth functions (i.e., of class C*) in a certain fixed interval
(a,b), (—o0 < a < b < 400). The definition given by J. Mikusiriski is analogous to the
definition of real numbers in Cantor’s theory. The aim of introducing real numbers was the
performance of certain mathematical operations within this set. Similarly, the introduc-
tion of distributions enabled differentiation that cannot always be performed in the set of

functions.

3.2 Generalized Functions — Functional Approach
3.2.1 Introduction

In the following we will assume that the functions to be considered can have complex

values. Let f and ¢ be functions of class C*°(R) and the function ¢ vanishes outside a finite
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interval. Integrating by parts we get

o0 +oo
[ f@¢ @i =- [ r@gds (3.2.1)

Note that the left-hand side of (3.2.1) makes sense also for much weaker assumptions con-
cerning the function f. Namely, it is sufficient to assume that f is integrable on every
bounded interval. Therefore, we can use (3.2.1) to define a generalized derivative Df.
Namely, we assume that a generalized derivative is a function g € L!°¢(R) such that for an

arbitrary function ¢ fulfilling the above conditions we have:

+oo +o0
/fmwwmz—/ﬁmw@m. (3.2.2)

If we want to apply the same reasoning to define the generalized second derivative D?f for
a function f € L{¢ we would have to strengthen the regularity conditions and assume that
¢ belongs to C2(R). Therefore, it is better to assume at once that ¢ has derivatives of all
orders, i.e., p € C*.

We define the support of a continuous function ¢ as a closure of a set {x : p(z) # 0} and
denote it by suppp. By C5° we denote a set of all continuous functions on R as well as all
their derivatives of any order with compact support.

Let [a,b] = suppp. The regularity conditions imply that the z axis is a tangent of an
“infinite order” to the graph of the function ¢ at the points x = a and & = b. The fact that
such a function exists is not so obvious. We will, however, show that it is easy to construct

such a function. Let, for example,

1
T fort >0
{e ort=" (3.2.3)

0 for t <O0.

The function & is of the class C*°(R) and its support is a half line [a, c0). Taking a constant

a > 0 we define a function )

x
Pa(z) = h(l - ﬁ) (3.2.4)
ie.,
a2
@2
pala) =Y forlrl<a (3.2.5)
0 for |z| > a.

It follows from the equation (3.2.4) that ¢,, being a superposition of two infinitely many
times differentiable functions, has derivatives of all orders. On the other hand, (3.2.5)
implies that suppy = [—a, a).

Let f be a locally integrable function on R. The function g € L{°¢(R) is called a gener-
alized derivative of f if (3.2.2) holds true for every function ¢ € C2°(R). In this chapter we
denote the generalized derivative by g = Df.
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Example 3.2.64 Let f(x) = x - 14 (x), where 1 (x) is the Heaviside function:

1 forx >0,
1i(z) =
0 for x <0.
Integrating by parts gives
—+oo oo oo
[ 1@ @de = [ap@is = - [ elaa
—0o0 0 0

which means that Df = 1, (x). Because Df is a locally integrable function we will try to

find its generalized derivative, i.e., D>f. Integrating, we have

+o00

/ 1y (2)¢/ (2)dz = —(0). (3.2.6)
It is, therefore, sufficient to represent the right-hand side of (3.2.6) in the form of the integral
appearing on the right-hand side of (3.2.2). It is easy to show that such a representation is

not possible. Namely, we may assume that such a function exists. In particular, we may
take g € L'°(R) and let

“+o0
/ g(@)p(x)de = p(0) for any ¢ € Cl(R). (3.2.7)
In particular, we take ¢ = p, and let a — 0. Then the right-hand side of (3.2.7) is constant

and equal to e~ but the left-hand side tends to 0, which follows from the estimation
| [s@reatorts| < et [ lgtae

The example given above shows that not every locally integrable function has a generalized
derivative that also belongs to LY°(R). In other words, repeating the operation of gene-
ralized differentiation, i.e., obtaining generalized derivatives of higher orders is in general
not possible. This is a serious drawback of the definition introduced above. What makes the
formaula (3.2.1) incorrect is the assumption made about its result, namely the assumption that
a generalized derivative is a function. In the next chapter we will show that it is possible to
find a more general class of objects for which generalized derivatives can be obtained without

restrictions.

3.2.2 Distributions of One Variable

Let us understand the equality (3.2.1), section 3.2.1 in a different way. The class Co°(R)

is a linear space over the field of complex numbers and the integral on the right-hand side
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of (3.2.8) defines a linear functional Ay, namely,

+oo

M) = [ gla)eta)da. (3.23)

Using the previously introduced notation we can write (3.2.1), section 3.2.1 in a different

way':
Ap(p') = =Ag(9), ¢ € CE(R).

Let us return to Example 3.2.64, section 3.2.1. Differentiating twice the function f in the

generalized sense we obtain a linear functional on
C(R) 3 ¢ — ¢(0).

This idea comes from contemporary mathematicians L. Soboleff [So] and L. Schwartz [S.1],
who are regarded as the creators of the theory of distributions. The theory of distributions

proved to be very useful in the theory of linear partial differential equations.
The Space D(R)

As we have mentioned before the space C3°(R) is a linear space.

We will denote by D(R) the set of all infinitely differentiable functions with compact
supports contained in R. Such functions will be called smooth. In order to define a class
of convergent sequences on that space it is sufficient to introduce the notion of a sequence
convergent to zero, i.e., to a function equal to zero identically. A sequence (¢, ),en Will be
called convergent to a function ¢ if and only if the difference (¢, — ¢),en is convergent to

Zero.

Definition 3.2.51 We say that a sequence (¢, )ven, v € D(R), converges to zero if
(i) there exists a bounded interval [a,b] C R such that suppp, C [a,b] for each v € N;
and
(4)

(i) the sequence (¢’ ) en converges to zero uniformly on [a,b] for each j € N.

The sequence () en converges to ¢ in D(R) if the sequence (¢, — @) en converges to zero
in D(R).
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Definition and Examples of Distributions

Definition 3.2.52 A functional A : D(R) — C fulfilling the conditions
(iii) A(crpr + cap2) = a1 A(p1) + c2A(p2),where ¢; € C,p; € D(R), j =1,2;
(iv) every sequence (¢, )ven C D(R) that converges to zero A(p,) — 0

18 called a distribution.

The condition (iii) means that functional A is linear while the condition (iv) means
that the functional is continuous with respect to the convergence introduced in the space
D(R). The set of all distributions on the real line, i.e., the set of all linear and continuous
functionals on D(R) will be denoted by D' (R).

The symbol < A, > or A(p) will denote the value of a functional A € D(R) on the
function ¢ € D(R).

Theorem 3.2.95 A linear form A defined on D(R) is continuous iff for every bounded

closed interval I C R there exist a constant C > 0 and an integer m € N such that

M) < Cll@llm,1, (3.2.9)

where

[llm.1 = max sup ()| and suppe C I.
s|lsm IEI

Proof. That it is sufficient is evident; we now prove it is necessary. Assume that A € D'(R)
and (3.2.9) does not hold for some compact (bounded, closed) interval I C R. Therefore,

for each v € N there exists a function
¢, € D(R) such that suppp, C I and |A(,)| > vevllwr-
Obviously, one can choose ¢, such that A(¢,) =1 for each v € N. From this we obtain
L= Apw) > vlewllv.r,

consequently, ||¢y,||,,r < L. Hence,

1
H(pV-HJ«HM;I < ”()OV-‘FN”V-FHJ S ——= v

From this it follows that ||@,4 ||, r — 0 as v — oo for fixed p. Therefore, (¢,),en converges

to zero as ¥ — oo in D(R). This contradicts the continuity of A. Thus, the proof is complete.

I
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We give some examples of distributions.

Example 3.2.65 Let f € L. We take

“+o0
Ag(p) = / f(@)p(x)dz. (3.2.10)

It is easy to see that

(M) <M flleanyllellor, if suppp C 1.

Therefore, Ay belongs to D'.

Property 3.2.1 The mapping f — Ay is an injection from C,(R) into D'(R).

Proof. The mapping is linear so it is sufficient to show that the condition
<Ap,p>=0, ¢eDR) (3.2.11)

implies that the function f vanishes identically. Suppose, on the contrary, that it does not
vanish. Therefore, for a certain z, € R, we have f(x,) # 0. Let f(z,) > 0. Because
f is continuous, there exists a number n > 0 such that f(z) > 0 for |z — zo| < 7. Let
o(x) = py(x — z,). Then we have

<Ap,p>= / f(z)pn(x —x,)dx > 0,

|z—zo|<n

which contradicts (3.2.11). This completes the proof. I
The Property 3.2.1 can be generalized to the case when f is an arbitrary locally integrable
function. Namely, we have:

Property 3.2.2 The mapping f — A; is an injection from L!°¢(R) into D'(R).

This is an immediate consequence of the following.

Lemma 3.2.37 (du Bois Reymond) If f is in L'*°(R) and

+oo
/ f(@)p(x)de =0 for ¢ € D(R)

then f(z) =0 a.e. in R.

For a proof see [V1.1], p. 18.

Distributions that can be represented by the form (3.2.10) are called regular distributions.
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In the following we will identify the distribution A with the function f. In that sense, all
continuous functions, and more generally all locally integrable functions, can be regarded
as special cases of distributions. Therefore, in addition to the term “distribution,” one finds

the term “generalized functions,” which has, however, a slightly broader meaning.

Example 3.2.66 The distribution
< 0,0 >=p(0), ¢eDR) (3.2.12)

s called the Dirac delta distribution. We have already shown in Example 3.2.64, sec-
tion 3.2.1, that it is not a regqular distribution. Therefore, it cannot be identified with any
locally integrable function. Nevertheless, in the physical and technical literature it is called

a “delta function.” The equality (3.2.12) can be written in the “integral” form:

This representation is, however, purely formal.

Example 3.2.67 The function % is not locally integrable, because its integral over every
interval of the form [0,a] is divergent. Nevertheless, we can assign to it a distribution
defined by the identity

M) = (o) ity [ £
|z|>e

dz, (3.2.13)

where ¢ € D and suppyp C [—a,a].

Let us take a new function

p(2)—(0)
)P for x #0,
vie) = {@’(0) for x =0.

Clearly, v is continuous and ¢(z) = ¢(0) + xp(x) for x € R. Of course, ¥(x) = ¢’ (O,
z), 0<O, <1 forax+#£0. This implies that

()] < max ]Iw’(w)\ < llellj-aa)

z€[—a,a

/@dx: / @dm: / Y(x)da.
|z|>e

e<|z|<a e<|z|<a

for x € R. Note that

By the Lebesgue dominated convergence theorem we have

A(p) = lim / @dmz / Y(x)de.

e—0
|z|>e lz|<a
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Hence, we obtain the following inequality:

[A(P)] < 2allell,[-a.a),

if suppp C [—a,a]. Thus, we have shown that A is a distribution. The distribution (—1) 18
called the Cauchy finite part of the integral [ %
R

3.2.3 Distributional Convergence

Let A, A, be in D'(R), o € R.

Definition 3.2.53 We say that A, distributionally converges to A as o« — «, if

lim A.(p) = A(p) for each ¢ € D(R).

a—a,
In particular, if n € N then we take

lim Ap, = lim A, =A if  lim An(p) =A(p) for ecach ¢ € D(R).

n—00 +—0 n— o0
Example 3.2.68 The following sequences

1
(7 ﬁ677”2/2) (Picard),
2V 27 neN

( 2 L) e (Stieltjes),

and

(% ﬁ) en (Cauchy)

distributionally converge to & (see also section 3.5.3).

Example 3.2.69 For each ¢ in D the Sochozki formulas

) o(z) . 1
R
and ()
. x _ 1
eli%l+ ;0_ p dx = ind(p) + 6(@), (3.2.15)
R
where
1
U(g@) = lirr(lJ / Mdaz (see Example 3.2.67, section 3.2.2),
. €E— X
o]
hold.

We shall show the equality (3.2.14). Let ¢ be in D and suppp C [—a,a]. We know that

p may be written as follows:

o) = p(0) + z¢p(x), where 1 is a continuous function.
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Moreover,
a

0 (p) = /1/J(x)dx (see Example 3.2.67, section 3.2.2).

Hence, we have
a

plx) [ p(0) ()
/x+iedx_/x+iedx+/x+ied$'
R

—a —a

Note that

a

[ 20, /fﬂ i 1]6 _— 1] !
/eride—go(O) x2+62d$ 7rz<p(0)7r x2+62dm— 7rz<p(0)7r t2+1dt'

—a —a —a —a

Finally, we have

We see that . .
lim/%(x)dx: /w(x)dx;

e—0 T + s

—a

thus, the formula (3.2.14) is proved. The proof of formula (3.2.15) is similar.

Example 3.2.70 Let f, f, € L'°(R) for n € N and the sequence (f)nen converges to f
as n — oo in the sense of LI°¢(R). It is easy to see that for each ¢ € D(R) the sequence

(/fn(x)ap(x)> y  converges to /f(x)cp(x)d:r as n — oo.
ne

R R
This means that the sequence (fp)nen distributionally converges to f.

3.2.4 Algebraic Operations on Distributions

As we have mentioned before, all continuous functions, hence, also all differentiable func-
tions can be regarded as distributions. This indicates that one could generalize onto the
class D'(R) all operations that can be done on functions having certain properties. In this
chapter we provide definitions of operations on distributions and examine the properties of

those operations.

Definition 3.2.54 Two distributions S and T are regarded to be equal if they are identical

as functionals on D(R), i.e., if

< S,p>=<T,p >, forall functions ¢ € D(R).
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Addition and Multiplication by a Constant

The operations of addition of two distributions and multiplication by a constant can be
defined in a manner similar to the case of any space of linear functionals on an arbitrary

space over the field of complex numbers.

Definition 3.2.55 Let S and T be in D'(R).
The expression S + T defined in the following way

(S+T)(p)=5(p) +T(p), »e€DR)

is called the sum of the distribution S and T.
The expression \S is defined in the following way

(AS)(p) = AS(¢), ¢ € D(R)

and is called the product of arbitrary distribution S by an arbitrary complex number \.

Obviously, S + T is also a continuous linear form on D(R). Moreover, if Sy and T, are
regular distributions corresponding to the functions f and g, then Sy 4 T} is also a regular

distribution and it corresponds to the function f + g.
Multiplication of Distribution by a Smooth Function

There is no a natural way to define the product of two arbitrary distributions. Neverthe-
less, it is possible to define the product of any distribution A by an infinitely differentiable
function w. Note that the product of an infinitely differentiable function w and function ¢
from D(R) belongs to D(R). Moreover, if the sequence (¢, ) en, ¢ € D(R) converges to

zero in D(R) then the sequence (wy, ), en also converges to zero in D(R).

Definition 3.2.56 Let A be a distribution, w € C*(R). The mapping ¢ — A(wyp) is said
to be the product of the distribution A and the function w, i.e., the product wA can be defined

as a functional:

<wh p>=< AN wp >, ¢eDR). (3.2.16)
For the regular distribution Ay corresponding to the locally integrable function f, multi-
plication by w corresponds to multiplication of f and w in the usual sense.
Differentiation of Distributions

Let ¢ be in D(R) and f € C™(R). Integrating by parts and recalling that ¢ is in D(R)

we arrive at

+oo +00
[ r@eis=— [ rae @

© 2006 by Taylor & Francis Group, LLC



282 Generalized Functions

By induction we have

+oo +o0
/ F (@)p(x)de = (-1)™ / f(x)e'™ (z)d. (3.2.17)
Of course, the mapping
+oo
o= (1" [ fa)e™ @)do

is a linear continuous form on D(R). From (3.2.17) it follows that the mapping above is
the regular distribution corresponding to the function f(™), where f(™ denotes the m-th

derivatives of f. We shall use the equality (3.2.17) to define the derivative of a distribution.

Definition 3.2.57 Let A € D'(R) and let ¢ be in D(R). The linear form defined by
P — (=) A(P™)

will be called the m-derivative of A. This form will be denoted by D™A. In other words, the

derivative D™A of distribution A can be defined as the functional

< DMAp>=(—1)" < A, o™ > e DR). (3.2.18)

From now on, for simplicity of notation, we write f instead of Ay if Ay is the regular
distribution corresponding to the function f. Note that if f is in C"™(R) then D™ f = f(™).
In particular, for a regular distribution f € C'(R) the identity

<flio>=—<f,¢ > for ¢eDR) (3.2.19)

becomes a rule of intergrating by parts (3.2.1), section 3.2.1, in which f’ denotes the deriv-
ative in the classical sense. As a result, the operation of differentiating in the distributional
sense and classical sense coincide in the class C*(R). It is noteworthy that the theorem is

not valid for weaker assumptions; see Example 3.2.71.

Example 3.2.71 Let us consider a function f:

~ Jg(=) forz <0
flw) = {h(a:) for x >0,

where functions g, h € C*(R).
The function f is continuous in every point except for zero. Its derivative in the classical

daf

sense, =, is a function defined and continuous for x # 0 and has right and left finite

limits at zero. Thus, it is a locally integrable function and may be considered as a reqular
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distribution. Now, we calculate the distributional derivative of f. We can write the right-
hand side of (3.2.19) in the integral form:

0 (o)
<flio>=-— / g(z)¢' (x)dx — /h(av)go'(:n)alx7 (3.2.20)
—00 0
hence, after differentiating the right-hand side of (3.2.20) by parts, we get
0 (o%S)
, dg dh

< flyo>= %ga(a:)d:z: + %cp(x)dz + [R(0) — g(0)]¢(0). (3.2.21)

—o00 0

We can write the right-hand side of (3.2.21) in the functional form

< flio>= <%7<P> + [h(0) — g(0)] <6, >,

mn which of
== .2.22
I (3:2.22)
where
o = li — 1 3.2.23
o0 = lm f(z)— lm f(z) (3.2.23)

is the jump of the function f in the origin. From (3.2.23) we see that the derivatives %

and f' are equal, if [ is continuous at 0.
Remark 3.2.102 For the generalization of Example 3.2.71 see Theorem 3.7.161, section 3.7.2.

The differentiation of distributions is a linear continuous operation in D’(R). Namely, we

have:

Theorem 3.2.96 If A and A,, (n € N) are in D'(R) and sequence (Ap)nen tends to A as
n — oo in D'(R) then

sequence (D™Ap)nen tends to DA as n— oo.

Proof. The theorem is an immediate consequence of the definition of the derivative of

distributions. [

Theorem 3.2.97 If w,wi,ws € C®(R) and S,T € D'(R), then the following equalities

hold:
(w1 +w2)S = w1 S + wa S,

wS+T)=wS+wT,
D(wS) =uw'S+wDS (Leibniz’s formula)
D(S+T) = DS+ DT
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Proof. We shall show Leibniz’s formula. The remaining follows from definition. For any

function ¢ € D(R) we have
< D(wS),p>=— < S,wy’ >.
According to the formula of differentiating the product of smooth functions we can write
we' = (we)' —w'e,

hence,

< D(WS)MO >=-—< 5, (wcp)/ >+ < va/@ >,

and finally we obtain
< D(wS),p >=<wDS, 0 >+ < 'S, p>,
which proves our assertion. I

Example 3.2.72 We shall show that

Dln|-|= i
()
Let ¢ € D. Note that
400 0 +o0
Dln|-|(¢) = — / In|z|¢'(z)dz = — / In (—z)¢'(z)dx — / Inz ¢'(z)dz.
We have
+oo +oo
/ Inzy'(z)dz = liI(IJl+ / Inz¢' (z)dz,
0 ‘ €
- / In(—2)¢'(x)dz = —p(—€)lne + / a2 )d
and
+0o o0
— / Inz¢'(z)dz = ¢(e)lne + / <p(xx)dx
It is easy to verify that
Jim [o(e) — p(—¢)llne = 0.
Hence,
T (=)
_ 1 "(2)dx = i LAY d
/ n|z|¢' (x)dx Jim / el
oo o]
and finally we obtain
Dln|-| = 1
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which completes the proof.

Linear Transformations of an Independent Variable

Let f be a continuous function defined on the real axis. Then the function composed of
flax +b), where a # 0, may be considered a regular distribution.

We make a substitution in the integral
y=azr+b, a#0, for ¢eDR), (3.2.24)

and we get
o 1 —b
[ star v vpie = [ e (57 a

i.e., in the functional form

1
< fod,p>= al < frpod >, (3.2.25)

where d is a transformation defined by the formula (3.2.24).
According to (3.2.25) we define a linear substitution in an arbitrary distribution A €

D’'(R). We use the notation for functions

< Maz +b).pla) >= (a0 (10)

We have to remember that the notation A(az + b) or A(y) should be treated as purely
formal.

Translation is a special and important case of linear substitution:
y=x+b. (3.2.26)
We use the notation for functions:
(rpp) () == o(z +b).
According to (3.2.25) we define a translation of a distribution by putting
<rpA, o >i=< Ar_ppo > . (3.2.27)
The second example of a linear substitution is a reflection from the origin:
y=—x. (3.2.28)

The reflection for a function is defined by

and for a distribution A € D’'(R) by

<AV, p>i=< A Y >. (3.2.29)

© 2006 by Taylor & Francis Group, LLC



286 Generalized Functions

Example 3.2.73 We will show the result of applying the distribution r_yd on a function
¢ € D(R). According to (3.2.27) we have

<r_pd, p >= @(b). (3.2.30)

In the technical and physical texts the translated distribution r_pd is frequently denoted by
d(z —b) and the equality (3.2.30) is written in the form

+oo
[ 8= vtz = o0

The symbol of an integral is purely formal here because § is not a regular distribution and

it cannot be written in the integral form.

The Antiderivative of a Distribution

By an antiderivative of a continuous (—oo,+00) function f we mean a differentiable
function ¢ fulfilling the condition ¢'(xz) = f(z) for x € R. Tt is well known that every
continuous function has an antiderivative, and two arbitrary antiderivatives of the same

function differ by a constant. Thus, the theorem can be generalized to distribution.

Definition 3.2.58 By an antiderivative of a distribution A € D'(R) we mean a distribution
S € D'(R) such that
DS =A.

Theorem 3.2.98 FEvery distribution A € D'(R) has infinitely many antiderivatives that
differ by a constant.

Proof. Let H={p € DR): ¢=1v¢', € DR)}. It is easy to verify that

+oo
peH iff / o(x)dz = 0;
moreover () = [ ¢(t)dt. From the definition it follows that the antiderivative S is a
— 00

functional defined on the set by the formula
<Sp>=—<MANy> peH. (3.2.31)

This functional has to be generalized to the whole class D(R).
Let us consider a function ¢° € D(R) such that

+oo

[ etaa=1.

— 00
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+oo -1
we can, for example, take ©° = @, [ J @a(x)dx} , where ¢, is a function given by (3.2.5),
—00

section 3.2.1. An arbitrary function ¢ can be uniquely represented by the form
@ = Xp® + ¢! (3.2.32)

+oo
where ¢! € H and A = [ ¢(z)dz. By the above, according to (3.2.31) and (3.2.32) we

take
<S,o>=A<8,¢°>— < APt >, (3.2.33)

where ¢! (z) = f ©1(t)dt, and the number < S, ° > is arbitrary. An easy computation
shows that the ;Cf)oove—deﬁned functional is a distribution, and DS = A. If S| and Sy are
the antiderivatives of the same distribution then D(S; — S2) = 0. To complete the proof
it is enough to show that every distribution S € D’(R) that fulfills the condition DS = 0
is a regular distribution equal to a constant function. The above property results from the

decomposition (3.2.32) which gives

“+oo
< S,p>= /ccp(as)dz,
— 00
where ¢ =< S, p° > is an integration constant. I

3.3 Generalized Functions — Sequential Approach
3.3.1 The Identification Principle

The identification principle relies on the identification of objects that have a common
property. It is often applied in mathematics to construct new concepts. In this chapter the

identification principle will be defined and then explained by means of examples.

Definition 3.3.59 We say that the relation p C X x X is a equivalence relation in the set

X, if p satisfies the condition of reflexivity, symmetry and transitivity, i.e., if

(1) (zpx) forallz e X (reflexivity),
(ii) [(zpy) = (ypx)] forallz,y € X  (symmetry),
(iii) [(zpy) A (ypz) = (xp2)] for all z,y,z € X (transitivity).

We denote the relation of equivalence by ~.
Let ~ be an arbitrary equivalence relation in X # (). For each element x € X, let us

denote by [z] the class of all elements y € X satisfying the relation « ~ y. By definition it
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follows that
[l ={ye X 1z ~y}, (3.3.1)
(yelz]) & (z~ y)}, for all z,y € X. (3.3.2)

The class [y] thus obtained will be called an equivalence class in X.

Theorem 3.3.99 If ~ is an arbitrary equivalence relation in the set X # (), then for each

x,x1,T2 € X the following conditions are satisfied:

x € [z], (3.3.3)
if x1 ~ x9, then [x1] = [x3], i.e., the classes [x1] (3.3.4)
and [z2] have the same elements,

if the relation x4 ~ o does not hold, then the classes (3.3.5)

[x1] and [x2] have no common element.

Proof.  Property (3.3.3) follows from (i). To prove (3.3.4) suppose that x1 ~ z3. If z € [21],
then = ~ x1. Hence, by (iii), z ~ x2, i.e., & € [x2]. Thus, [z1] C [x2]. On the other hand,
it follows from (ii) that x9 ~ 1. Therefore, if x € [z3], i.e.,  ~ x, then also z ~ x1, by
(iii), i.e., = belongs to [x1]. Thus, [z2] C [z1]. Hence, by previously proven inclusion, we
get [21] = [z2].

To prove (3.3.5) suppose that the relation z; ~ xo does not hold and that there exists
an element x belonging to [z1] and [zs]. Then z ~ x1 and © ~ x4, and z1 ~ 22, by (ii) and

(iii), contrary to the hypothesis. I

Theorem 3.3.100 The set X # () with an equivalence relation ~ in it, can be decomposed
into equivalence classes without common elements so that two elements x,y € X are in the

same equivalence class if and only if x ~ y, i.e., they are equivalent.

Example 3.3.74 Let X will be a set of directed segments on the plane. We say that two
directed segments x and y are equivalent if they are parallel, have the same length, and the
same direction. It is easy to check that the relation defined above is an equivalence relation.
By identifying equivalent objects we can obtain the notion of a free vector. By means of
the equivalence relation we obtain a decomposition of the set of all directed segments into
disjoint classes such that segments in the same class are equivalent. Thus, each free vector

18 a class of equivalent segments.

Example 3.3.75 Let X be the set of all fundamental sequences of rational numbers. By
a fundamental sequence we mean a sequence (an)nen Satisfying the Cauchy condition: for

every € > 0 there exists a number n,(€) such that

lan, — am| <, n,m > ney(e), m,n € N.
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We say that two fundamental sequences (a,) and (b,) are equivalent if the sequence

(an — bp)nen converges to 0, i.e.,

lim (@, —b,) = 0.

n—oo

In this case we write (an)nen ~ (bn)nen. Thus,

(an)nen ~ (bp)neny <= lim (a, —b,) = 0.

n—oo

It is easy to verify that the relation of equivalence defined above is an equivalence relation,
i.e., it has the properties (i), (i), and (i) of Definition 3.3.59.

Identifying equivalent fundamental sequences we obtain the notion of real numbers. Thus,
in the Cantor theory, a real number is a class of equivalent fundamental sequences of rational

numbers.

3.3.2 Fundamental Sequences

We recall:

Definition 3.3.60 We say that a sequence (fn)nen of functions is convergent to a function
[ uniformly in the interval I, open or closed, if the function f is defined on I and, for any
giwen number € > 0, there is an index n, such that for every n > n, the function f, is

defined on the interval I and for every x € I the inequality
|fn(x)*f(m)| <€ N >N,

18 true.

The symbol
fa(@) = f(2), z€l; falz) = z€l,

will denote the uniform convergence in the interval I.
We write
fn(x) =& gn(x)’ rel

if both sequences (f,) and (g,) converge uniformly on I to the same limit.

Definition 3.3.61 We say that a sequence of functions (fn)nen is convergent to function f

almost uniformly in the open interval (a;b) if it converges uniformly to f on every interval

I inside (a;b).

The symbol

a.u.c.

falz) = fz), @€ (a;b)
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will denote almost uniform convergence in the interval (a;b).
It is easy to see that every uniformly convergent sequence is also convergent almost
uniformly. The limit of an almost uniformly convergent sequence of continuous functions is

itself a continuous function.

Lemma 3.3.38 The sequence of functions (fn(x)) is uniformly convergent to the func-
neN
tion f(x) in the interval (a;b) if

lim ( sup h,(z)) =0, where hy(z)=|f(x)— fulx)l.

=00 g<x<h

The proof of Lemma 3.3.38 is based on Weierstrass’s theorem.

Example 3.3.76 Show that the sequence

F,(z) = g + %arctg (nx) (1+n2%2?), neN,

— —1In
™
is uniformly convergent in the interval (—oo; 4+00).
Let us discuss the pointwise convergence of the sequence (Fn(sc))

nEN'
Applying U’Hospital’s rule (with respect to n) we obtain:

. In(1+n%2?) . nx? . 2
lim ————— = lim ————— = lim
n—oo 21 n—oo (1 + n2x?)  n—oo 2mna?
= lim — =0, x€eR.
n—oo 27N

On the other hand,

x, for x >0,
0, for x <0.

Hence, we obtain
x, for x >0,
0, for x <0.

n—oo

lim F,(z) = F(z) = {

In order to investigate the uniform convergence we apply Lemma 3.3.38.
We note that

1
22% |Fy(z) — F(x)| = iléﬁ g + %arctg (nx) — F(z) — ﬂln (1+ n2m2)‘

1

< sup Ty Eaurctg (nz) — F(m)‘ +sup|—In(1+ n2x2)‘.
z€R 2 s r€R ™

We have

a) sup
z€R

5 + Zarctg (nx) — F(:c)’ =

sup |Zarctg (nr) — §| = sup |Zarctg (%)’ < sup || < %,
z€RT z€RT zERT

sup ‘%arctg (nxz) +%| < sup ’%arctg (;—;)‘ <1

zER~ zeR~
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b)

1
—sup |ln(1+ n2m2)37
T zeR

IN

1
L ma 22’
2 (147

IN

1 1
—supln (2n?z?)* — 0, if n— oo,
T zeR

because

lim Vn?2- Va2=1, zcR.

n—oo

From (a), (b) and Lemma 3.3.38 it follows that

F.(z) = F(z).

We recall: We say that a function defined in R is smooth if it is continuous in R as well

as its derivatives of any order and is denoted by C*(R) = C*°.

Definition 3.3.62 We say that a sequence (fn)nen of smooth functions, defined in the
interval (a,b), (—oo < a < b < +00), is fundamental in (a,b) if for every interval I inside

(a,b) there exists a number k € N, and a sequence of smooth functions (Fp,)nen such that

(Ey) FW(2) = fo(x), zel

n

and

(Es) F.(x)=, zel,

i.e., the sequence F,,(x) is uniformly convergent in I.

Obviously constant functions are smooth. On this basis, identifying numbers with con-
stant functions we can assume that every number is a smooth function on R and a convergent
sequence of numbers is fundamental.

By Definition 3.3.60 it follows:

Theorem 3.3.101 Fach almost uniformly convergent sequence of smooth functions in (a,b)

is fundamental, in (a,b).

Theorem 3.3.102 If (fn)nen @s a fundamental sequence of smmoth functions, then the
sequence (f,gm))neN, m € N, is fundamental, too.

k+m) )

Proof. In fact, if the sequence (F},)nen satisfies conditions (E;) and (Es) then (FT(L neN

= ™ and condition (E2) holds. This proves that the sequence ( f,gm))neN is fundamental.

0
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Theorem 3.3.103 If the sequence (F,)nen of smooth functions satisfies conditions (FE1)
and (E2) and if m > k, m € N, then the sequence of smooth functions

Falz) = / Fo(t)dt™ " (2, € 1)

Zo

also satisfies conditions (E1) and (Es), with k replaced by k + m. Moreover, if F,, = F,
then J?‘n = ]?, where

x

Flz) = / F(t)dem,

and the integral is defined in the following way:

z T ty ta
/f(t) dt” :/dtk/dtk_l---/f(tl)dtl.

Theorem 3.3.104 If a sequence (fn)nen of smooth functions is bounded and f, = f in

the intervals (a,x,) and (x,,b), then
/fn(t)dt a'%a / f()dt in the interval a < x <b,

i.e., the sequence (fn)nen s fundamental in (a,b).
Proof. The sequence (fy,)nen is bounded; thus, there is a number M > 0, such that

|fn(x)| < M, for neN.

From almost uniform convergence of the sequence (fy,)nen it follows that for any € > 0 and

an interval @ < z < b (a<a<z, < b < b), there exists an index n, such that

|fo(@) = f(@)] < 20—a) for n > n,
in the intervals @ <x <z, — 457 and xo+ﬁ§x§5.
Hence,
‘/fn(t)dt - /f(t)dt’ <e for n>mn,,
in the interval a < z < b. I

Theorem 3.3.105 A sequence (W, (2))nen of polynomials of degree less than m is funda-

mental iff it converges almost uniformly.

To prove Theorem 3.3.105 the following two lemmas will be helpful.
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Lemma 3.3.39 If a sequence of polynomials (W, ())nen of degree less than k, where
Wo(x) = ano + ap1z+ -+ + an(k_l)zkfl, (3.3.6)
converges at k points, then the limits

a; = lim an; (j=0,1,---,k—1) (3.3.7)

n—oo

exist. Conversely, if the limits (3.3.7) exist, then W, (x) a%C.W(x), where W(x) = a, +
k—1

a1r+ -+ ag—1x
Proof. a) Suppose that the sequence of polynomials (W,,(z))nen (3.3.6), is convergent at

k different points: x1,x2, -+ ,xx. We get the system of equations

Wn(l'l) = Qpo + Qp1x1 + -+ an(k—l)xlf_l

(3.3.8)

Wo(@k) = o + Gnizp + - + @y oh !

We shall show that the sequence of coefficients (anj)nen (j =0,1,---,k— 1) is conver-

gent. Let us assume that the coefficients are given. The determinant for the system (3.3.8)

is equal
1 z1 . zlf_l
......... k
A=det | ------- :H(xl_xm)#o
: I>m
. m,l=1
1 xp ... :E’,i_l

By Cramer’s rule, the system has only one solution of the form

~ W) Ay + -+ Wa(ar) Ay

An,j = A j:O717"'7k_17

where Ajj, are minors of A(i = 1,..., k) and are independent of n. Hence, the sequence of

polynomials (W,,(z))nen is convergent at k points which means that

lim Wn($1) =g, -, lim Wn(xk) = Jk-

n—0oo

Hence,

. .1 1
lim Apj = lim f[Wn(.’L‘l)Alj + -4 Wn(a?k)Ak]] = f[glAlj + -4 gkAkj] = aj.

n—oo n—oo A A

This means that the sequences of coefficients (an;)nen, (j =0,--- ,k — 1) are convergent
lim an; =a;, j=0,1,---,k—1.

n—oo

b) Let us assume that the limits (3.3.7) exist and let W(z) = a, + a17 + - - - + ap_12* L.
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The uniform convergence of the sequence (W, (x)),en in each interval < —b,b > results

from the estimation

k—1

Wa(@) = W (2)| < lano = ao| + lant — arlla] + - + lang-1) — an-1lle] < lan; — a;07.
=0

Hence, it is easy to see that W, (z) = W(z). I

Lemma 3.3.40 Let a sequence (fn)nen of continuous functions be given. If f,(x) = f(z),

for x € I then the function f is continuous on I.

Examples of Fundamental Sequences

1. Consider the sequence of smooth functions on R defined by

1

R =2 n € N.

The graphs of f1, fo, and f3 are sketched in Figure 15. We shall show that the sequence

a.u.c.

is fundamental. In fact, this sequence is bounded by the number 1 and m%m = in the

interval (0, 00). By Theorem 3.3.104 this sequence is fundamental.

2. Consider the sequence of the Picard functions on R defined by

The graphs of f1, fo and f3 are sketched in Figure 16. We shall show that the sequence is

fundamental. In fact, the sequence (G,,)nen, where
Gn(x) = / fu(t)dt
—o0

is bounded by the number 1 and

G au.c. | () in the interval —oco < 2 <0
T
" 1 in the interval 0 < x < oo.

In view of Theorem 3.3.104, the sequence (Gp)nen is fundamental. In view of Theo-

rem 3.3.102, the sequence (f,,)nen is also fundamental.
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3

(]
-

v

Figure 15. The graphs of functions: f,(z) = ——2=z;n =1,2,3

1+e

3. Consider the sequences of functions defined by:

1 1
n = - t 50
fn(x) —arc g (nz) + 5

n=12--;

1
gn(z) = ;#—H’ n=1,2,---(see Figure 17); ( |
3.3.9
2 niz .
hn(x):—;m, n=1,2,---(see Figure 18);
2n3 3n22% -1
n = T 75 5, 1\3» = ]-7 23
on(®) m (n?z? +1)3 "
A
: -
Figure 16. The graphs of the Picard functions: f,(z) = /5= - e’”“’z/z;n =12,3
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Sequences (3.3.9) are fundamental, since in the interval (—oo, +00), we have
fn:Frr(Ll)a gn:F(2)
hy, = Fflg), vy = FY

where

X

F,(z) 5

T 1
—arct — —In (1 + n%z? eN
+ —arc g (nx) 5 n(l+n°z%), n )

and

a.u.c.

F, = in the interval (—o00,00) (see Example 3.3.76).

4. The sequence of functions

fa(x) =cosnz, n €N,

is fundamental because if F,(z) = Lsinnz,n € N and k = 1, then (E;) and (E2) are

n

satisfied.

Figure 17. The graphs of the Cauchy functions: g, (z) = %#2“, n=123
5. The sequence of functions

fu(x) =ncosnz, neN,

is fundamental since if F,,(z) = —Lcosnz, n € N and k = 2, then (E;) and (E») are
satisfied.

6. The interlaced sequence of sequences 4 and 5

cosx, cosx, cos2x, 2cos2x, cos3x, 3cos 3z, - - -
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is fundamental because if (F),)nen is the sequence
1 1 1 1
—CcoST, —COST, 1 cos 2z, 3 cos 2z, ~3 cos 3z, —3 cos3zx, - -

and k = 2, then the conditions (E;) and (Es) are satisfied.

A

a—
) - 1
|
0.5 n=1
1
n=2
-1.5
n=3
Figure 18. The graphs of the functions: h,(z) = f%%, n=123

3.3.3 Definition of Distributions

Definition 3.3.63 We say that two sequences (frn)nen and (gn)nen fundamental in (a,b)

are equivalent in (a,b) and we write

(fn)nEN ~ (gn)nEN (3.3.10)

if the interlaced sequence
flagl7f2a927"' (3311)

is fundamental in (a,b).
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Theorem 3.3.106 Two sequences (fn)nen and (gn)nen are equivalent in (a,b) if for each
interval I inside (a,b) there exist sequences (Fy)nen and (Gp)nen of smooth functions and

an integer k € N, such that
(£1) Fr(zk)(x) = fulz) and G%k)(m) =gn(z), wel
(Fy) Fu(zx) == Gp(z), zel.

Proof. Suppose that sequences (f,,)nen and (gn)nen are equivalent. This means that the
interlaced sequence (3.3.11) f1, g1, f2,92,--- is fundamental. Then there exist an integer
k € N, and smooth functions F,, and G,, such that FT(Lk) = f, and G%k) = gn, and the
sequence

Fy,G1,Fy,Go, (3.3.12)

converges almost uniformly in (a;b). Consequently the conditions (F}) and (F5) are satisfied.
Conversely, suppose that conditions (Fy) and (F») are satisfied. Then the sequence
(3.3.12) converges almost uniformly, i.e., the sequence (3.3.11) satisfies conditions (F;) and
(E2) with order kj , ks, respectively. Then by the Theorem 3.3.103, sequences of smooth
functions J?‘n and 571, such that
E,L(x) = /F,L(lf)dt"”’€1 (z,€1I), neN,

Zo

/Gn(t)dtm”” (zo€I), mneN,

Zo

Gn(x)

satisfy the condition (F}) with order m. Moreover
Fn(z) 2= Go(z), zel
Thus, the sequence
F1,G1,F2,Ga,- -
is almost uniformly convergent in (a,b); therefore the sequence (3.3.11) f1, g1, f2, g2, - ..
satisfies conditions (E;) and (Es), i.e., is fundamental. Sequences (Fy)nen and (Gn)nen

and the order k depend, in general, on the choice of the interval I. I

Corollary 3.3.35 The integer k, appearing in the condition (Fy) of equivalent sequences,

can, if necessary, be replaced by any greater integer.
Proposition 3.3.63 The relation (3.3.10) is an equivalence relation.

Proof. In fact. It is easy to observe that the relation (3.3.10) satisfies conditions (i) and

(ii), i.e., it is reflexive and symmetric.
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We shall show that the condition (iii) is also satisfied. If (f,)nen ~ (gn)nen and (gpn)nen ~
(hn)nen in (a,b), then for each bounded open interval I inside (a, b) there exists an integer
k > 0 and sequences (F,)nen and (G, )nen satisfying conditions (F;) and (F3) and there
exists an integer m > 0 and sequences (Eln)neN and (H,)nen satisfying conditions

~(m)

Gn = 9ns Hy(Lm) = hn,
CN¥n(x) == Hy(z), z€l

By Theorem 3.3.106 we may assume that k = m. Then, writing

.g[n:Gn_én_FHna we get

~ (k)
F® = f  and H, =hn,

Fu(z) 3= Hy(x), zel.

which implies that (f,)nen ~ (hn)nen in (a,d). I
Since the relation (3.3.10) ~ is a relation of equivalence, the set of all sequences funda-
mental in (a,b) can be decomposed into disjoint classes (equivalence classes of the relation
~) such that two fundamental sequences are in the same class if they are equivalent.
These equivalence classes are called distributions in the sense of Mikusiriski (defined
on the interval (a,b)). An analogous definition can be formulated for distributions in an
arbitrary open set in R"™.
All fundamental sequences that are equivalent define the same distribution. The distrib-
ution defined by fundamental sequence (f,(x))neny Will be denoted by the symbol [f,].
Two fundamental sequences (fy,)nen and (g )nen define the same distribution if they are

equivalent. The equality

[fn] = [gn] holds iff (fn)nEN ~ (gn)nEN-

Thus
£ = 1fa) = {(gadnen : (Fanen ~ (gn)nen }-
Distributions will be denoted by f,g, etc. in the same way as functions. The set of all
distributions is denoted by D’.
The sequences from the examples 2 (Figure 16) and 3 (Figure 17) are equivalent. There-
fore, they define the same distribution. This distribution is called the delta distribution
or the Dirac delta distribution and is denoted by §:

Vo] = mgie] -

We will discuss the § Dirac distribution in section 3.4.

The sequences from examples 4 and 5 are equivalent. They define the same distribution:

[cosnx] = [n cosnz] = [0] = 0.
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Obviously, an arbitrary smooth function ¢ can be identified with a class of equivalence of

the sequence ¢, 0,0, --.

Remark 3.3.103 Smooth, continuous, and locally integrable functions are easily identified

with respective distributions.

Definition 3.3.64 If a fundamental sequence (f,)nen which defines the distribution f =
[fn] is such a sequence that there exists an integer k € N, and a sequence of smooth functions
(Fp)nen such that

FP(2) = folw), Fulz) =

for all bounded intervals I included in (a,b), then we say that the distribution
[= [fn]

is of a finite order in (a,b).

In the opposite case we say that the distribution is of an infinite order.

Examples of Distributions of Finite Order in R
(1°) % + Zarctg (nx) — ﬁln(l +n2z?)|;

(20) %arctg (TLLU) + %},

() St

) [ e

m (n2z22+1)2

o [2n® 3n222-1
(5%) | m} :
Example of a Distribution of an Infinite Order
The series
@)+ 68—+ (@ —-2)+--,
where derivatives are defined in the distributional sense, represents a distribution of infinite

order.

3.3.4 Operations with Distributions

Multiplication by a Number. The operation Af(z) of multiplication of a function f(z)
by a number A has the following property:

(i) If (fn(2))nen is a fundamental sequence, so is ()\fn(ac))REN
This property enables us to extend the operation to arbitrary distribution f(x) = [f.(z)].
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Definition 3.3.65 By the product Af of a distribution f = [f,] with a number A we mean
the distribution [Afy].

It is easy to see that

(ii) The product Af(z) does not depend on the choice of the fundamental sequence

(fn(m))nEN
Addition. The operation f + ¢ of addition of two functions f and g has the following

property:
1. if (fn)nen and (gn)nen are fundamental sequences, so is the sequence (f,, + gn)nen-

Proof. 1. Suppose that there exist integers k, k1 > 0 and sequences (F),)nen and (G )nen

of smooth functions such that
F’rg,k) :fn a‘nd Fn j)
Ggfl) =g, and G, =3.

By Theorem 3.3.106 we can assume that k = ky. Since
(Fn +Gn)(k) =fot+gn and F,+G, =,

the sequence (f,, + gn)nen is fundamental. I

Property 1 enables us to extend addition to arbitrary distributions.

Definition 3.3.66 By the sum f + g of the distributions f = [f,] and g = [gn] we mean
the distribution [f, + gn].

To verify the consistency of this definition we must prove that:
2. the distribution [f, + g»] does not depend on the choice of sequences (f,)nen and

(gn)nen representing the distributions f and g.

Proof. 2. We must show that if

~

(fu)nen ~ (fo)nen and  (gn)nen ~ (Tn)nex

then
(fn + gn)nEN ~ (fn + gn)neN-

By definition of equivalence of fundamental sequences it follows that

flaf17f27f27"' and 917917927927~-~

are fundamental. By the property 1 the sequence

fi+tg, f1+91,fa+ g2, fo+92,...
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is fundamental. Thus, by (3.3.10), we have

(fn + gn)nEN ~ (fn + gn)neNa

which implies the assertion. I
Subtraction. The operation f — g of difference of two functions f and g has the property
1) if (fn)nen and (gn)nen are fundamental sequences, so is the sequence (fr, — gn)nen-

Property 1) enables us to extend subtraction to arbitrary distributions.

Definition 3.3.67 By the difference f — g of the distribution f = [fn] and g = [gn] we

mean the distribution [fn, — gn).

The consistency of this definition can be checked by a procedure similar to that already
used for the sum.

It is easy to see from the definitions of the operation introduced above that the following
properties are true:

Properties of Algebraic Operations on Distributions

L f+g=9+F;

2. (f+9)+h=f+(g+h);

3. the difference g = h — f is the only solution of the equation f + g = h;
4. Mf+g9)=A+Xg, NeR;

5. A+ p)f =Af+uf, A pueR;

6. AMuf) = (Aw)f, A peR;

7. 1f = f.

Denoting by 0 the zero distribution, i.e., the distribution that is defined by the class [f,],

where f,, are functions identically equal to zero, we have
O+f=f and Of=Ff.

In the last formula the symbol 0 has two different meanings: on the left-hand side it denotes
the zero distribution, on the right-hand side it denotes the number zero. This ambiguity in

practice does not lead to any confusion.
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3.3.5 Regular Operations

An advantage of the sequential approach in the theory of distributions is the ease of

extending to distributions many operations that are defined for smooth functions.

Definition 3.3.68 We say that an operation A, which to every system (¢1,...,9k) of
smooth functions in R assigns a smooth function in R (or a number), is reqular if for arbi-
trary fundamental sequences (©1n)neNs - - -5 (Pkn)nen of smooth functions in R the sequence

(A(%mno,sokn)) . is fundamental.
ne

Every regular operation A defined on smooth functions can be extended automatically

to distributions in the following way.

Definition 3.3.69 If f1,..., fr are arbitrary distributions in R and (©14)nen; - - - (Pkn)nen
the corresponding fundamental sequences, i.e., f1 = [@in], - -+, f&x = [Ckn], then the operation
A on f1, ,fr is defined by the formula

A(frys fu) = [A(@ln,---,s%n)]

Remark 3.3.104 This extension is always unique, i.e., it does not depend on the choice of
the fundamental sequences (Y1n)nen, - - (Pkn)nen representing the distributions fi,--- | f.

In other words, if

(Soln)nGN ~ ((Pln)nGNa v 7(90kn)n€N ~ (@kn)neN

then

(A(%’lnw“ 730kn)) ~ (A(<771m~-~ ,%Nﬁkn))

neN nen’

Indeed, by hypothesis, the sequences

P11, P11, P12, P12, - - -
P21, P21, P22, P22, . ..

are fundamental. By the definition of regular operation the sequence

A(p11, 921, - - .),A(&u,‘}zl, ), Alpiz, p22, .- ), -

is also fundamental, which proves the assertion.

Remark 3.3.105 Multiplication by a number, addition and difference are reqular operators,

as we have seen in the previous section.
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The Following Operations Are Regular:
(1) addition of smooth functions;
(2) difference of smooth functions;
(3) mulitplication of a smooth function by a fixed number A: Ay;
(4) translation of the argument of a smooth function ¢(x + h);
(5) derivation of a smooth function of a fixed order m: p(™);
(6) multiplication of a smooth function by a fixed smooth function w: wyp;
(7) substitution a fixed smooth function w # 0;
(8) product of smooth functions with separated variables: ¢1(z)p2(y);

(9) convolution of a smooth function with a fixed function w from the space D (of smooth

functions whose supports are bounded)

(f *w)(z) = / o — Dw(t)dt,

R

(10) inner product of a smooth function with a fixed function from the space D

(p,w) = /tp(x)w(x)dx.

R
Remark 3.3.106 The support of a distribution is the smallest closed set outside which the
distribution vanishes.
It is easy to check that:

Theorem 3.3.107 Substitution of reqular operations is reqular, too.

All formulae involving regular operations, which hold true for smooth functions, are
extended automatically to distributions.
Translation. The translation p(z) — ¢(x + h) is a regular operation.

Moreover, if (apn(x)> is a fundamental sequence in the open interval (c,d), then
neN

(apn(x + h)) . is a fundamental sequence in the translated inteval (¢, dp,), where
ne
(chydp)={z:z+h € (c,d)}.
Thus, if f(z) = [¢n(x)] is a distribution defined in (¢, d), then

fl@+h) =[pn(z+h)] isa distribution defined in  (cp, dy).
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Derivation. One of the most important benefits of extending the notion of a function to
the notion of a distribution is the fact that every distribution has all derivatives which are
again distributions.

The derivation (™ of an arbitrary order m is a regular operation. In fact, if (¢n)nen is

a fundamental sequence, then so is sequence (@%m))neN (see 3.3.2, Theorem 3.3.102). Thus,

we can define the derivative of order m of distribution f in the following way:

Definition 3.3.70 We define the derivative of order m,m € N, of any distribution
[ = len] by setting
£ =),

It is easy to see that the following theorem is true:
Theorem 3.3.108 Fach distribution has derivatives of all orders.

The following formulas occurring in the ordinary differential calculus follow immediately

for distributions from the definition:

1=

(f+9)™ = ) + g™
AN =2fM X eR
(f(M))(k) — f(mHﬂ).

3.3.13
3.3.14

( )
( )
(3.3.15)
(3.3.16)
Multiplication of a Distribution by a Smooth Function. The multiplication ¢w,
considered as an operation on two functions ¢ and w, is not regular. Namely, if the sequences
(¢n)nen and (wy)nen are fundamental, their product (¢, )neny and (wp)nen need not be
fundamental.

However, multiplication may also be thought of as an operation on a single function, the

other factor being kept fixed.

Definition 3.3.71 We define the product of an arbitrary distribution f = [p,] by a smooth

function w by means of the formula
wf = [wen].

To verify the consistency of this definition we must prove that the multiplication wy by

a smooth function w is a regular operation, i.e., we must prove the theorem:

Theorem 3.3.109 If a sequence (on)nen @S fundamental, w € C, then the sequence

(Wpn)nen s fundamental, too.
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Proof. Since (n)nen is fundamental for every interval I inside (a;b) there exist a number
k and smooth functions G,, such that

GP() = (pn), zel and

G,= =zel.

We shall show that for every order m and for every smooth function w, the sequence
(WG™) nen (3.3.17)

is fundamental. The proof follows by induction.
The case m = 0 follows from Theorem 3.3.101 in section 3.3.2. If the sequence is funda-

mental for some m, then the sequence is also fundamental for m + 1, since
wGslmJ,-l) — (nglm))/ _ leglm)

and the right-hand side in the difference of two sequences that are fundamental by Theo-
rem 3.3.101 (see section 3.3.2) and the induction hypothesis. Since the interval I is arbitrary,
the sequence (3.3.17) is fundamental in (a, b). I

The following usual properties of multiplication follow directly from the definition:

wi(waf) = (wiw2)f, wi,we €C>®,  feD;
(wi+wo)f =wif+waf, wi,wrel>®, feD
w(f+g9) =wf+uwg, w € C™>, f,geD,

where D’ is the space of distributions.

Remark 3.3.107 We note that if f is a function, then the product defined above is the
ordinary product of functions. Moreover, if w is a constant function and f is an arbitrary

distribution, this product coincides with the product in Definition 3.3.65; see section 3.5.4.

It is easy to prove the formula
(wf) =w'frwf, wecC>® [feD. (3.3.18)

This formula may be considered a particular case (when k& = 1) of the formula

A B
wf® =3 (-1) (I;) (w@f)(k Uwees, fev, (3.3.19)

j=o
which can be proved by induction in the same way as for functions. The following Leibniz-

Schwarz formulas hold true:

(whH® = 3" (If)dﬂ')f(’“—ﬁ, wec®, feD, (3.3.20)
0<j<k N
. W\ (k—7)
WwWf= 3" (1) <k> (wf(”) " wec®, fep. (3.3.21)
0<j<k J
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Substitution. Let ¥ be a fixed smooth function defined in the interval (a,b) such that
Y'(z) # 0 for z € (a,b) and suppose that the values of the function ¢ belong to the open
interval (¢, d). Composition (p o 9)(z) defined by means of

(po)(z) = p(P(x))

is a regular operation on ¢(y) (v being fixed). We shall show the following theorem:

Theorem 3.3.110 If (¢, (y))nen s fundamental in open interval (c,d), the values of smooth

function ¢ belong to (¢,d) and ' (x) # 0 for x € (a,b), then ((pn(d)(:zr))) N is fundamental
ne

in (a,b).

Proof. Observe that if the sequence (apn(w(;v))) N is fundamental then the sequence
ne

((p;(w(x))) . is fundamental, too. This follows from the equality
ne

1
P! ()
see Theorem 3.3.102 (section 3.3.2) and Theorem 3.3.109.

Let I be an open interval inside (a,b). The function ¢ maps I into an interval I’ C (¢, d).

(@) = = (enl@)) (3:3.22)

Let (Fp,)nen be a sequence of smooth functions such that

Fn(y)j ye[”
EP(y) = only), yel.

The sequence (Fn (w(m))) of smooth functions converges uniformly for € I. Since the
neN

interval [ is arbitrary, the sequence

(Fu(v(@))

neN

is fundamental in (a,b). Consequently, the sequences

(Fr@w@)) o (R @)

neN’ neN

are also fundamental. The last of these sequences coincides with the sequence (gpn (w(x))) .
ne

This completes the proof of this theorem.
Calculation with substitution of distributions can be carried out in the same way as those

with substitution of functions. In particular, we have the formula
! ! / !/ /
(@) =1 (v@)e'@), vee= v £0,fe, (3.3.23)

since

(F@eD) = [pa@)] = [(entw@n) ] = [eh@@w'@)] = £ (¢) @),
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where (¢n,)nen is a fundamental sequence of f.
We have thus proved that the substitution of a given smooth function ¢, satisfying con-
dition ¢'(x) # 0, is a regular operation. Following the general method we define the

substitution.

Definition 3.3.72 We define the substitution of a fized function ¢ € C> (¢'(x) # 0 for z €
(a,b), with values in (¢,d)), into an arbitrary distribution f(y) = [en(y)] in (c,d) by the
formula

f(¢(x)) = [pn(d(2))].

Theorem 3.3.111 For every distribution f and every integer k > 0 we have the equality

)

(f(a:b—f—ﬁ)) oF fF) (x4 6), a#0.

Proof. Let (vn)nen be a fundamental sequence of the distribution f. Then

(k

(lex+8)" = [oataz + 8] = [a*ol (ar + )
= o’ f®) (az + ).

From this theorem we have the following corollary:

Corollary 3.3.36 If a distribution f(x) is the k-th derivative of a continuous function
F(z), then the distribution f(ax + () is the k-th derivative of the function

%F(am 1 B).

Convolution with a Fixed Smooth Function. The convolution f * w of a distribution

f with a fixed smooth function w of bounded support is meant here as a regular operation

A(f) = frw,

(the proof will be given later), which for the smooth function ¢ is defined in the known

manner
+oo

A@)(x) = (p#w)(z) = / o — Dy(t)dt:

—00

see also section 1.3.3, formula (1.3.27).

Definition 3.3.73 We define the convolution of any distribution f = [¢,] with the smooth
function w of bounded support by setting

frw=[on*w].
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To verify the consistency of this definition we must prove that the convolution w * f by

a function w € D is a regular operation. To obtain this we need three preparatory lemmas.

Lemma 3.3.41 If fis a continuous function (or local integrable) in R and w € D, i.e., is
a smooth function of bounded support in R, then the convolution w* f is a smooth function

and the equality holds:
(f*w)™ = fxw™  forall meN. (3.3.24)

Proof. To prove that f*w is a smooth function it suffices to show that for any fixed m € N
the convolution (f *w)(™ is a smooth function.
Let k = f xw. For any fixed x the product f(¢)w(xz — t) is an integrable function, since

f(z) is integrable on the set where w(z — t) # 0. Thus, convolution

k(z) = (f *w)(x)
exists everywhere. Then

[k (@) — k™) ()] < / F@O)llw'™ (@ =) = ™) (2, — t)]dt.
R

Since the function w has a bounded support there exists integer r > 0 such that w(t) =0
for [t| > r. If x, is fixed and |z — x,| < 1 then the difference w(z —t) — w(z, — t) vanishes

for ¢ satisfying inequality |t — x,| > r — 1. Hence,

1) () — K0 (z,)] < M/ W™ (2 —t) — W™ (z, — t)|dt
R
=M [ 0™ (t+ (& — x5)) — W™ (t)|dt
/

for |x — x| < 1.

By Lebesgue’s theorem the last integral tends to 0, if £ — x,, and this shows the conti-
nuity of considered convolution. The equality (3.3.24) can be obtained by simple transfor-
mations. I

From Lemma 3.3.41 it follows:

Lemma 3.3.42 If f is a smooth function and w € D then

(f*w)(m) =M sw=fxw™ foral meN.

Lemma 3.3.43 If (on)nen s a fundamental sequence and w € D, then the sequence of

convolutions (pn * W)neN is fundamental, too.
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Proof. Since w is a function with bounded support there exists an integer o € Ry such
that

w(x)=0 for |z|>a.

Let I be any bounded open interval in R and I’ be a bounded open interval too such that
IcI,, where I' , denotes the set of all points z € I’ whose distance from the boundary
of I’ is greater than «. Since (¢, )nen is a fundamental sequence there are integer k € N,

continuous functions F,,, (n € N) and F such that
F®W =g, and F,=F, zecl.
Note that
[(Fp *w)(z) — (F *w)( |</|F ||wx7t|dt<e/|w |<e/|w )|dt.
This means that
F,xw=Fx*w on I.
By Lemma 3.3.42 we have
(Fpsxw)® =F® x0w=0p,xw on I

This means that (p, * w),en is fundamental. This proves the lemma. I

Corollary 3.3.37 If a sequence (pn)nen s fundamental and w € D, then the sequence of

convolutions (@n * W)nen converges almost uniformly.

Remark 3.3.108 [t follows from Lemma 3.3.43 and Theorem 3.3.101, section 3.3.2, that

convolution with a smooth function with bounded support is a reqular operation.

Since the convolution with function w € D is a regular operation all formulae that hold

true for smooth functions can be extended to distributions. Thus, we have:

Proposition 3.3.64 If w € D and f1, f2, f3 are any distributions then the following for-

mulae are true:
frw=wxf;
M) xw=f*(Aw)=Af*w), AeER;
(it fo)xw=fixw+ fr*w;
[r(witwe)=frw + frws, wi,wy€D.
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3.4 Delta Sequences

In section 3.3.3 we mentioned that an arbitrary smooth function ¢ can be identified with
a distribution that is an equivalence class of a constant sequence ¢, ¢, ¢, ..... In order to
identify an arbitrary continuous function and more generally a locally integrable function
with a distribution we have to approximate these functions by smooth functions, e.g., by

delta sequences. We will present one definition of a delta sequence.

3.4.1 Definition and Properties

Definition 3.4.74 By a delta sequence in R we mean any sequence of smooth functions
(5n(x)) , x € R, with the following properties:
neN

(Ay) There is a sequence of positive numbers o, — 0 such that
on(z) =0 for |z|>a,, nel;
(A2) [ On(z)dz =1, forn € N;
R

(A3) For every k € N, there is a positive integer My, such that

aﬁ/|67(lk)(x)|dx < Mj, for ne€N.
R

Various definitions of delta sequences can be found in the literature (see [AMS], [MiS.2]).

Example 3.4.77 As an example of a delta sequence we can take
6n(r) = a;, 'Q(, tx)  for m €N,

where Q € D (i.e., Q is any smooth function of bounded support) and such that
/Q(x)d:v =1,
R

where (ay)nen @8 an arbitrary sequence, different from 0 and tending to 0.

The delta sequences (§ sequences) have the following properties:

Property 3.4.3 The convolution of two delta sequences is a delta sequence.

Proof. Let (01n)nen and (d2, )nen be two delta sequences. We have to prove that (dy, )nen =

(01n)nen * (02, )nen is another delta sequence. In fact, d,, are smooth functions. Moreover,
if
O01n(x) =0 for |z|> a1, and do,(z)=0 for |z|> ag,, neEN,

then d,(x)=0 for |z|> a1n+ag,, neN.
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This implies that d,, satisfies condition A;. Since

R/ oo(x)dz = R/ da R/ Sun(a — 1) (£)dt = R/ 5o (1)t R/ Sinlz —t)dz =11 =1,

so that condition A, is satisfied. Because

/|5<k) |d:c—/d:c/|5(k) (2 — 1) dan ()| dt = /\62n Idt/|6 (v — t)|dz,

ok, / 1609 (@) d < My Mo,

thus

Similarly, we obtain

a5, / 10 (2)|dz < MyoMoay.
R

Since

(Oéln + a?n)k < 2k(a]1€n + agn)’

by the last two inequalities, we get

(Oéln —+ Oégn)k / |5£€L(I’)‘dl’ S Mk, Where Mk = 2k(M1kM20 + MloMQk),
R

which proves condition Ag. I

Property 3.4.4 Every delta sequence is fundamental.

Proof.  Let (,)nen be an arbitrary delta sequence. Let us consider a sequence (Y, )nen

such that ,
= / dt/csn(tl)dtl.

It is easy to see that ~,,n € N, are smooth functions and 7, = on R and 753) = §, for
n € N. This means that the sequence (d,,)nen is fundamental. I

It is easy to see that if (01, )nen and (d2,)nen are two delta sequences, then the interlaced
sequence

611362176127522551375237 e

is also a delta sequence. Thus, we have the following property:

Property 3.4.5 Every two delta sequences are equivalent.

Since all delta sequences are equivalent, they represent the same distribution, which is

called Dirac’s delta distribution:
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By Theorem 3.3.109, we have
Property 3.4.6 The product of a smooth function with a delta sequence (6, )nen is fun-

damental.
Property 3.4.7 If w is a smooth function, (d,),cn is a delta sequence, then the fundamental

sequence (w(m)én(m)) . is equivalent to a sequence (w(O)én(x)) .
ne ne

Proof. For an arbitrary positive integer €, there exists an index n, such that for n > n,
lw(z) —w(0)] <e for —a, <z<ay,.

Hence

‘/(mn—wmg%amqgg/wamux:emm
— 0o — 00
which proves that the integral converges uniformly to 0. Hence

(w@)dn(@) = w(0)3u(@) _ ~ Onen.
ie.,
(w(@)bu())

~ (w(O)én(x)) (3.4.1)

I

Sequences appearing on the left and right sides of the equality (3.4.1) are fundamental for

nEN.

the products w(x)d(z) and w(0)d(x), respectively. This means that the considered products

represent the same distribution. Thus,

w(@)d(x) = w(0)d(x), weC™] (3.4.2)

Similarly, we obtain

|w(@)d(x — 20) = w(wo)d(x —3,), weC™.] (3.4.3)

In particular, if w(z) = 2", n € N, we obtain

’m”é(x) =0 for neN ‘ (3.4.4)

By induction we can prove that

xn5(n_k)($) =0 for k=1,---,n; neN, (3.4.5)

where §(©) = 4.
Property 3.4.8 If f is a continuous function in (a,b) and (J,)nen is a delta sequence, then

the sequence of smooth functions

(f * 5n)n€N
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converges to f, almost uniformly in (a,b).

Proof. Let I be any bounded interval inside (a,b). For every positive number e there is an

index n, such that for n > n, the inequality
|[f(x—t)— f(x)]<e holdsfor ze€l and t€ (—ay,a,),

where (o)nen is a sequence of positive numbers such that a,, — 0 and d,(t) = 0 for

[t| > o, n € N. Hence,

\(f*5n)(ﬂf)*f(fv)|§/If(fv*t)*f(x)ll%(t)ldt: / |f(z —t) — f(@)[|6n(t)]dt

<e / 16, (8)|dt < €M,

—Qn

forn > n, and z € I.
This proves that f % d,, converges to f almost uniformly in (a,b). I
The generalization of the Property 3.4.8 is the following:
Property 3.4.9 If (f,)nen is a sequence of continuous functions convergent to f, almost
uniformly in (a,b) and (0,)nen is a delta sequence, then the sequence of smooth functions

(fn * 0n)nen converges to f, almost uniformly in (a,b).

Proof. Note that
fn*an:f*fsn“‘(fn_f)*én-

By Property 3.4.8 we have

a.u.c.

f*6, = f in (a,b).

It suffices to show that
(fa=f) %0, = 0 in (a,b).

In fact, given any bounded interval I inside (a,b) and any positive number ¢, we have, for

sufficiently large n,
|(fn*f)*5n|§‘fn*f‘*|5n|§€*|6n|§€Mo in [.

This proves the property. I
Property 3.4.10 If f is a smooth function and (,)nen is a delta sequence, then

(f%6,)® =2 f®  for keN,.
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Proof. Tt is easy to see that
(f % 00) ™ = f®) x5,

By Property 3.4.8 it follows immediately that
FE s T ),

which completes the proof. I
Property 3.4.11 If f and f,, (n € N) are smooth functions and

a.u.c.
fT(lk) = f® forevery keN,,

then
(fo+ 80) 8= 0,

Proof. It suffices to see that
(fx 00) ™ = £ %6,

and to use Property 3.4.8. I
Property 3.4.12 If f is a locally integrable function in R, then (f * d,)nen converges in

norm to f, i.e.,

15 466 @iz =0, 1 oc.

Proof. To prove this property, we first observe that

[t = ni@ldo < [1 [ (fe =1~ 1))l
R R R

< [ (81 [ 1@~ 1) = 5ol da)at
R R

We now apply a well-known Lebesgue theorem to get

/\f(x*t)ff(w)ldxao, as 10,
R

Hence, for any positive number € there is an index n, such that for n > n,

[1#@=0 - f@lde<e, for < an,
R

where (o, )nen is a sequence of positive number such that a,, — 0 and 6,(¢) = 0 for |t| > a,.

We conclude that

[ x8.)(@) = s@de < [ 18,01 de e =2y
R R
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which proves our property. I
Property 3.4.13 If f is a locally integrable function in (a, b), then the sequence (f *d, )nen

converges locally in norm to f, i.e., given any interval I inside (a,b), we have

/Kﬂwwﬁﬂ—ﬂ@Wxaa
I

Property 3.4.14 If a sequence of function (f,)nen integrable in R converges in norm to

f, then the sequence (fy, * d,)nen also converges to f with respect to the norm in L.

Proof. Note that

/I((fn—f) (@)ldz <

dw/lfn )bz — t)]dt
R

B %\

1 (t) — |dt/|6 (- )|de

IN

MO/ (t)|dt — 0, as n— 0.
R

From this it follows that ((fn — f)* 5n) converges to 0 with respect to the norm in L.
neN
Hence, by Property 3.4.12 and equality f,, — 6, = f*0, + (fr. — f) % 0p, we get the assertion.

I

Property 3.4.15 If (f,,)nen is a sequence of locally integrable functions that converges in

(a,b), to f locally in L; norm, then the sequence (f,, * d,,)nen converges locally in norm to

f in (a,b).

Proof. In order to prove this property note that

Next, it suffices to show, using Property 3.4.13, that the sequence

(=1 +60)

neN

converges locally in norm to 0. I
Remark 3.4.109 [t is known that, if f and g are integrable functions in R, then the

convolution f * g is an integrable function in R. In particular, if f is an integrable in R,

then f &y, for alln € N, are integrable, too.
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Property 3.4.16 If f and g are locally integrable functions in R such that the convolution
of their moduli exists a.e. and represents a locally integrable function in R, then for every

delta sequence (d,)nen the sequence

((F02) (g% 00)

neN

converges locally in norm to f *g.

3.4.2 Distributions as a Generalization of Continuous Functions

Every continuous function can be treated as a distribution. In order to obtain the iden-

tification rule for continuous functions we will prove the following two lemmas.

Lemma 3.4.44 If a sequence of smooth functions (on)nen 18 such that for every k € N
0n =0 and o = in (a,b),

then
o™ =0 in (ab).

Proof. This lemma is true for ¥ = 0. We now argue by induction. Suppose that the

assertion holds for an order k, and that
7 7
o) = o) = [t it = [ s ar
0 0

in the interval a + |n| < < a—|n|. By the induction hypothesis, the last integral vanishes.

Because the number 7 is arbitrary, we obtain f(x) = 0. I

Lemma 3.4.45 Almost uniformly convergent sequences of smooth functions are equivalent

if they converge to the same continuous function.

Proof. Let the sequences (¢, )nen and (¢, )nen converge almost uniformly to a function
f. Then they satisfy condition (F;) and (F3) with k=0 (see 3.3.2, Theorem 3.3.101). Thus,

(@n)nGN ~ (qpn)nGN'

Conversely, if (¢n)nen ~ (¥n)nen, then for every open and bounded interval I there exist
smooth functions ®,, and ¥,, and order k such that conditions (E7) and (E9) are satisfied.
Hence, ®,,(x) — ¥, (z) =20, € I. By Lemma 3.4.44

on(z) —p(x) =0, xel.

This means that the limits of sequences (¢ )nen and (¥, )nen are the same. I
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Now we are able to establish the correspondence between continuous functions and certain
distributions.

It follows from Property 3.4.8, section 3.4.1, that for every continuous function there
exists a sequence of smooth functions (¢, )nen which converges almost uniformly to f(z).
By Theorem 3.3.101, section 3.3.2, this sequence is fundamental. Thus to every continuous
function f(x) there corresponds a distribution [p,]. By Lemma 3.4.45 the correspondence
is one to one.

In the sequel we will identify a continuous function f with a distribution [p,], i.e.,
a.u.c.

f=lenl,as on = f.
In particular, by Property 3.4.8, section 3.4.1, we can have the equality

f = [f * 671.]7 (346)

for every continuous function and for every delta sequence.

In that way we have proved what can be stated as the following theorem:

Theorem 3.4.112 FEvery continuous function f can be identified with the distribution

[f * 0n], where (6n)nen is a delta sequence.

Of course, smooth functions ¢ are distributions. For them we have the simpler identity

¢ = [¢].

In particular, the zero distribution, i.e., the distribution identified with the function that
vanishes everywhere, is denoted by 0.
The identification presented above shows that distributions are a generalization of contin-

uous functions. This justifies using the same symbols for functions and distributions.

Theorem 3.4.113 The convolution f*w of a distribution f with a smooth function w € D

s a smooth function.

Proof. Let f = [pn]. The sequence (¢p)nen is fundamental. By Lemma 3.3.43, sec-
tion 3.3.5, the sequence (¢, * w)nen is fundamental, too, and converges almost uniformly

to a continuous function g. Moreover, for any order k € N

(@n*w)(k):goglk)*w:gan*w(k), for keN,

(k)

nen converges almost uniformly.

and, by Lemma 3.3.42, section 3.3.5, the sequence (p,, * w)
By a classical theorem this sequence of convolutions converges to ¢*). Thus, ¢ is a smooth
function. On the other hand,

frw=lpnxw] =g,
by the definition of convolution and the identification of continuous function with distribu-

tion. Therefore, f *xw € C*>. I
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Corollary 3.4.38 For every smooth function the identity

’gp:(p*(S, peC™ (3.4.7)

15 true.

Proof. 1In fact, replacing f by ¢ in (3.4.6), we get

o =[pxdn] = px[0n] =px*0.

Corollary 3.4.39 The distribution § considered in R is not equal to the zero distribution,
but 0(x) =0 for x # 0.

Proof. Since 0 = ¢ % 0 for any smooth function ¢, it follows by (3.4.7) that distribution ¢
is not equal to the zero distribution when considered in the whole space. Since every delta

sequence (0, )nen converges almost uniformly to 0 for  # 0, thus §(z) = 0 for « # 0. I

Theorem 3.4.114 Fvery distribution in (a,b) is, in every interval I inside (a,b), a deriv-

ative of some order of a continuous function.

Proof. Let f = [pn]. By properties (F7) and (F») there exist an order k € N, smooth

functions ®,, and continuous function F' such that

@flk):gon and &, = F xz¢€l.

f(z) = [@P ()] = [@n(@)]® = FP(2) in I

Theorem 3.4.115 If (0,)nen is a delta sequence and fis any distribution, then
f=1f %] (3.4.8)

Proof. 1In fact, by Theorem 3.4.114, for every interval I inside (a,b), when f is defined,
there exist an order k and a continuous function F' such that F*) = f in I. By (3.4.6)

F=[F=x},) in I
Hence, differentiating k& times, we obtain
fla) = F® (@) = [(F *8,)(@)]® = [(F® «6,)(@)] = [(f * 6a)(2)], for z el

Hence, by Lemma 3.4.44, formula (3.4.8) holds true in (a, b). I
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3.4.3 Distributions as a Generalization of Locally Integrable Functions

In the previous section we have shown that distributions are a generalization of continuous
functions. We will prove that distributions embrace a wider class of functions, namely locally
integrable functions.

We recall:

Definition 3.4.75 We say that a function f defined in (a,b) is locally integrable in (a,b),
f € Lk, if the integral

[t

T

exists for every open interval I inside (a,b).

Note that if f is a continuous function in an interval I, then in [
x
I
( / F@dt) = @), el (3.4.9)

If the function f is not continuous but it is locally integrable, then

j F(t)dt

is a continuous function. In this case equality (3.4.9) holds almost everywhere, where the

derivative on the left-hand side is defined in the usual way as the limit of the expression

x+h

f@ =5 [ s

as h — 0,h > 0. The left-hand side of (3.4.9) can be interpreted as a distribution that is a

distributional derivative of order 1 of the continuous function
/f(t)dt (3.4.10)

One can easily see that this distribution does not depend on the choice of z, in I. This

remark suggests the following identification:

Definition 3.4.76 We say that a distribution g is equal to a locally integrable function in
the interval (a,b) if for every bounded, open interval I included in (a,b) this distribution is

a distributional derivative of the function (3.4.10), i.e.,

g(x)z(jf(t)dt)l, z, €I, xze€l
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Such a derivative, if it exists, is uniquely defined by a locally integrable function f. We

will prove that the distribution always exists. Namely, the following theorem holds true:

Theorem 3.4.116 Fwvery locally integrable function f can be identified with the distribution

[f * 0n], where (6n)nen is a delta sequence.

Proof. Let I be any given bounded interval inside (a,b) and let
F(z)= /f(t)dt, x, € I

By Property 3.4.8 of delta sequences, we have
a.u.c.
Fx), = F in I.
Hence, by the identification at continuous functions with distributions, we obtain
[(F*0,)(z)] = F(z) for xze€l,

and hence,

[F' %6, =F',

ie.
[f*dn]=f in I.

In that way we have proved that every locally integrable function f can be identifed with
the distribution [f * d,]. I

If f is a continuous function then by Property 3.4.8 the sequence is convergent almost
uniformly to f. Therefore, the identification of integrable functions with distributions is
consistent with the identification in section 3.4.2.

In applications we often come across the so-called Heaviside function:

0 for z < 0,
1 for x > 0.

Its integral

G(w):/1+<x)dt:{o for z < 0,

T forx >0

is continuous. The Heaviside function 1 (x) is the distributional derivative of G(x); it is
also its ordinary derivative except at the point z = 0. Since G is the limit of the integrals

x

/gn(x)dt, n €N,

— 00
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where
1

gn(x) = T

are the functions from example 1° of section 3.3.2, we obtain
[gn} = G/ = 1+a

i.e., the fundamental sequence (g, (z))nen represents the Heaviside function.

Similarly, the sequence

() = / fo®)dt, neN,

from Example 2, section 3.3.2, where (f,)nen is a sequence of Picard functions, represents
the Heaviside function. Hence, for the Picard functions f, from Example 2, section 3.3.2,
we have § = [f,] = [G'] = (14)’, thus

§=(14) (3.4.11)

i.e., the Dirac distribution §(z) is the distributional derivative of the Heaviside function.

The Dirac distribution §(z) in the interval —oco < & < oo is an example of a distribution
that is not a locally integrable function. Indeed, if the Dirac delta distribution was a locally
integrable function then from the identity it would follow that 1, is continuous, which is
not true.

We note that it can happen that both derivatives ordinary and distributional of a locally
integrable function exist but are different. For example, the ordinary derivative of the
Heaviside function is equal to 0 everywhere except for the point x where it does not exist.

The distributional derivative of this function is a Dirac delta distribution.

Remark 3.4.110 In the theory of distributions the ordinary derivative plays a marginal
role. Therefore, if not otherwise stated, a derivative of a function in the sequel will be

understood as a distributional derivative.

3.4.4 Remarks about Distributional Derivatives

In section 3.3.5 we introduced the notion of the derivative of order m of a distribution.
Let us recall that definition.

The derivative of order m of a distribution f given as f = [p,] is a distribution [¢(™)]
denoted by f(™ or [p,](™), i.e.,

£ =[5,

It is easy to see that the following theorem is true:
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Theorem 3.4.117 If a distribution is a function with a continuous mth derivative, then
its mth derivative in the distributional sense coincides with its derivative in the ordinary

SEnse.

The notion of the derivative of a distribution is a generalization of the notion of derivative

in the domain of continuous differentiable functions.

Theorem 3.4.118 The equality f™) (z) = 0 holds iff the distribution f is a polynomial of

degree less than m.

Proof. The sufficiency is obvious. To prove the necessity, suppose that
fm =o. (3.4.12)

Let f = [¢n], where (o5 )nen is a fundamental sequence. By the definition of distributional

derivative, we have

£ = [plm)], (3.4.13)

By (3.4.12) and (3.4.13) it follows that (go%m)(x))neN ~ (0)pen. There exists, an integer
k < m and sequences (F},)nen, (Gn)nen such that

F® —om  po= P (3.4.14)

n

ok =0, G,=P (3.4.15)

By (3.4.15) it follows that the functions G,, are polynomials of degree less than k. Hence,
by Lemma 3.3.39, section 3.3.2, it follows that P is a polynomial of degree less than &, too.

By (3.4.14) it follows that (¢, — F,(Lk_m))neN is a fundamental sequence of polynomial
of degree less than m. By Theorem 3.3.102, section 3.3.2, this sequence converges almost

uniformly to some polynomial p. Thus,
[‘pn _ FT(Lk—m)] =p

and consequently

f=len] = [FF™] +p. (3.4.16)

Since P = [F,,], where P is a polynomial of degree < k, the distribution

is a polynomial of degree less than m. Hence, by (3.4.16), f is a polynomial of degree less

than m. I

© 2006 by Taylor & Francis Group, LLC



324 Generalized Functions

From Theorem 3.4.117 it follows
Corollary 3.4.40 The equality f' = 0 holds if the distribution [ is a constant function.
Replacing f by f — g, in Corollary 3.4.40, we get:

Corollary 3.4.41 The equality f' = g’ holds if the distributions f and g differ from each

other by a constant function.

Theorem 3.4.119 If a deriwative f("™) of a distribution f is a continuous function, then

f is a continuous function and f™ is its ordinary derivative.

Proof. Let

z t1 tm—1
g(I) :/dtl/dtg / f(tm)dtnL-

By Theorem 3.4.118 it follows that p = f — g is a polynomial of degree less than m. Thus,
f is the function of the form g + p and by Theorem 3.4.117, f(™) is its ordinary derivative.
I

The fact that we can include locally integrable functions to the set of distributions allows

us to state Theorem 3.4.119 in a stronger form:

Theorem 3.4.120 If a derivative f™, m € N, of a distribution is a locally integrable

function, then f is a continuous function and f(™ is its ordinary mth deriwative.

In particular, from Theorem 3.3.108, section 3.3.5, it follows that every continuous func-
tion has a distributional derivative. This derivative in general is not a continuous function
but a distribution. For example, a nowhere differentiable Weierstrass function is differen-

tiable in the distributional sense but its derivative is not a function.

Theorem 3.4.121 If f(x) =0 for x # x,, then the distribution f is of the form
(@) = apd(xz — x0) + 18" (x — x) + - - - + ad® (2 — ,). (3.4.17)

Proof. By Theorem 3.4.114, section 3.4.2, it follows that there exist an order k and a
continuous function f such that F*) = f. From Theorem 3.4.118, by assertion it follows
that F is a polynomial of degree < k in each of the interval —co < & < z, and z¢ < x < 00,

ie.,

Fla) = F(zo) +ai(z —x,) + - +ap_1(x —2,)F 1, for —oco <z < 1,
F(x,) + Bi(x —x0) + -+ Bp_1(x — x,)k~1, for z, <2 < o00.
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The function F' can be written in the form
F(l‘) = F(ﬂ:o) + ¢1($) + -+ ¢k_1($),

where
b, = ay(x — o), for —oo <z <,
a Bu(x —xo)*, for z, <z < oo.

It is easy to check that

%‘L)(ﬂ?) = U!(O‘;t + (Bu — O‘u) Li(x — )
¢Lk) (l‘) = /L'(ﬂu - a/L)5(k7M71)(x - 1‘0), m= 1. (k - 1)5
which proves the theorem. f

If f(x) =0 for x # 0, then the representation of the distribution f in the form (3.4.17)

is unique. This follows from:

Theorem 3.4.122 If g is a function and
9(z) + aod(x — 20) + -+ apd® (z — 2,) =0
on the whole real line, then g(x) =0 and ap, = -+ = ag = 0.

The proof follows by induction.

3.4.5 Functions with Poles

Let us consider a function f(x) = 2. This function is not locally integrable because it is
not integrable in any neighborhood of zero. Excluding an arbitrary neighborhood of zero
we obtain an integrable function. This means that the function is a distribution in intervals
(—00,0) U (0,00). It cannot be identified with a distribution on the real line (since it is not
integrable in any neighborhood of x = 0).

However, there exists a distribution f defined in R such that
1
flx) = - for x #0. (3.4.18)
For instance,
1
(In|z]) = - for z#0, (3.4.19)
x

where the derivative is understood in the distributional sense. If we add an arbitrary linear
combination of §(z) and its derivatives to the left-hand side of (3.4.19), then the equality
(3.4.19) will be true.
The equality
(In|z|) = é for z#0
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can be considered the identification of the function 1 with the distribution (In |z|)’.
Such an identification can be extended to a wider class of functions which have poles at
some points and are locally integrable elsewhere. We shall consider functions f in some

interval (a,b) which, in a neighborhood of any point x, are of the form

k

f@) = folw)+ ) ﬁ (3.4.20)

v=1

where f, is an integrable function. The decomposition into the integrable function f, and
the remaining singular part is unique. The singular part can vanish.

The point x,, for which at least one of the coefficients ¢, differs from zero, is called a pole
of f.

In every finite closed subinterval with end point « and § included in (a, b), there is at

most a finite number of poles. The function f can be written in the form

m k
f@) =A@+ >3 W (3.4.21)

where f7 is an integrable function and x4, ..., z,, are points of the interval («, 3).

If o, B are not poles, we define the integral from « to 8 by the formula:

/ t)dt = /f1 dt+Zcﬂln|x m#|‘ +ZZ y—l_yccfa:) o

o p=1v=2

which is obtained from (3.4.21) by formal integration.
By these methods we have included in the space of distributions all rational functions,
all rational expressions of sine and cosine. In particular, we have the formulas
1 (—1)k-1 (k)
_ Inlz — ) ,
(z — z,)F ((k —yr ke =l
tg(z) = (~In|cos(z)])’, ctg(z) = (In|sin(z)|)’,

where the derivatives are understood in the distributional sense.
Similarly, we have included in the calculus of distributions, for example, the elliptic

functions and the Euler function, etc.

3.4.6 Applications

Problem 3.4.1 Prove that for every smooth function w we have

’w(x)(;’(x) =w(0)§' (z) — W'(0)d(x), weC™. (3.4.22)
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Proof. By (3.3.18), section 3.3.5, we have
w(@)5 (z) = (w(x)é(x))/ _ S (2)8().
Hence, by (3.4.2), section 3.4.1, we get

w(z)d' (z) = w(0)d' (z) — w'(0)d(x).

By means of induction one solves:

Problem 3.4.2 Prove that for every smooth function w and n € N the formula

n

w(@)s™ (z) = 3 (~1)" <Z>w<k>(0)5<nk>(:ﬁ), we ™.

is true.

Problem 3.4.3 Prove that

|20 (x) = —8(x),

¥ () =0 for k=2,3,..

Proof. By equality (3.4.22),

(i) for w(z)==, we have formula (3.4.24)

(ii) for w(z)=2F we get formula (3.4.25).
Problem 3.4.4 Find all derivatives of the function

327

(3.4.23)

(3.4.24)

(3.4.25)

(3.4.26)

f(z) = |z|.
Proof. Let ¢ be any function of class D and let 1, be Heaviside’s function. We shall show
that - -
[lato@s = [ @ 100) - Dotalds, .
Indeed, integrating by part, and making simple calculations, we obtain
0o 0 oo
[ 1stoteras - / o1/ () = / 6/ (a)da - / 26/ (a)da
/¢ Ydx — xp(x /gi) dx
0 0o 0
=— / qS(x)dx—i—/qS(x)dm = 2/¢($)dx— / o(z)dx
—0o0 0 0 —o00
+oo +oo +oo
2 [ L@ - [ 6wz = [ (2 140) - Do)z
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Thus,
+oo “+o0
/ 2]/ () = / (2-14(2) - Dé(x)dr, € D.

Hence, we obtain the distributional derivatives of function |z|:
o =21, (@)~ 1,

ie.,

Since (14)'(z) = §(x), thus
] = 25(a)

and generally

|z|®) =26 =2 (2) for k=2,3,---.

(3.4.27)

(3.4.28)

We have shown that the function f(x) = |z| is, in a distributional sense, infinitely many

times differentiable at any point z. It is obvious that this function has no derivative at

x = 0 in the usual sense.
Problem 3.4.5 Prove that

6™ (z) = (—~1)"n!é(x), neN;

"6 (2) = (=1)" (n+1)!6'(z), neN.

Proof. We will prove the above formulas by induction.
1. For n =1 the formula (3.4.29) takes the form

z0W (z) = (=1)d(z).

which is the formula (3.4.22), in Problem 3.4.1, for w(z) = z.
Let us assume that the formula (3.4.29) holds true for a certain k € N

o) (z) = (~1)F K 6(x).
We will prove that the formula holds true for k£ + 1, i.e.,
LD () = (1) (B + 1)1 6(x).
Indeed, multiplying equality (3.4.32) by k 4+ 1 we get

2 (k+1)0W (z) = (=1)* k! (k + 1)d(z).
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By the formula (3.4.23), in Problem 3.4.2, for n = k + 1, w(x) = z, it follows
z0*H) (1) = —(k + 1) 6W) ().
Hence, and from (3.4.32), we get
PR () = (=R (k4 1)1 6(2),

which was to be shown.
2° For n = 1 the formula (3.4.30) takes the form

6@ (z) = (=1)2!6" (x).

Moreover, for n =2, w(x) =z, we get the formula (3.4.23), in Problem 3.4.2.
Let us assume that the formula (3.4.30) holds true for a certain k > 1,k € N, i.e.,

#7160 () = (=1)F LRI (2). (3.4.34)
We will prove that the formula holds true for k£ + 1, i.e.,
26D (1) = (=1)F(k + )16 ().
Indeed, multiplying equality (3.4.34) by k + 1, we obtain
2k + 1) () = (=1 kI(k + 1)0 (2). (3.4.35)
By formula (3.4.23), Problem 3.4.2, forn =k +1, w(x)=x, we get
(k+1)6W (z) = —z 6"V ();

thus,
2P () = (=1)F (k +1)16"(2),

what was to be shown. I

Problem 3.4.6 Prove that the following formula is valid:

(4 k)

a6 () = (~1) 5

oM (x), k,neN,. (3.4.36)

Applying mathematical induction we obtain formula (3.4.36).

Problem 3.4.7 Prove that for any smooth function w the following formula is valid:

w(x)6™ (z — x,) = i(fl)i (W)w@) (20)6 D (z — z,), weC™, (3.4.37)

2
=0

meN, z,z, € R.
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Remark 3.4.111 From the formula (3.4.37) it is easy to obtain other formulas, e.g.,
(3.4.29), (3.4.30) and (3.4.36). In the case when w(x) = sinxz, we have

sing - 6™ (z) = — <T> §m=b 4 <7;1) 5= (z) — .+

(1 (2p”j 1)5<m—2p+1><x> ; (2) sin 27 5(z).

Problem 3.4.8 Prove that for the ¢ distribution the following formulas are valid:

5oz + B) = IU1|6<x + %) a0, (3.4.38)
5 (az + ) = ‘aﬁlm §(m) (ac + %) a 0. (3.4.39)

Proof. By (3.4.11), section 3.4.3, and (3.3.23), section 3.3.5, it follows

(14 (ot

, pEeC® ¢ #0.
¢'(z)

3(p(z) =1 (p(x)) =

If ¢ > 0, then the function 14 (p(x)) is equal to 1 everywhere,
if » < 0, then function 14 (p(x)) is equal to 0 everywhere.

'’ _ 0 for ¢’
- =0, © >0,
o(p) = { s

%:7 for ¢’ < 0,

Hence,

If there exists only one point z, such that ¢(x,) = 0 (since ¢’ # 0 everywhere), then

1y (o(z)) = 1i(z — ), for ¢’ > 0,
7 ) -1i(z— ), for¢ <O.

Hence,
o) = T = forelan) = 0.0 >0
B 1 (z—2o S(x—x,
B +ga('(aco) b= (W'(wo))’ for p(z,) = 0,9 <0
Finally, if ¢ € C*™, ¢’ # 0, then
0, for ¢ #0,
5 =
(p(x)) { \«P'i(l%” 5z —x,), @(x,)=0.

I
In the case if p(z) = ax + §, a # 0, we obtain formula (3.4.38). Differentiating (3.4.38)
further we get formula (3.4.39).

Problem 3.4.9 Calculate f’ and f) of the following function:

f@) = 21e(2) — (2 — ) 1p(w — 1) + Lo (@ — 1).
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Solution. Applying formula (3.3.18), section 3.3.5, we obtain
@) =1 () +z6(x) —14(xz—1)— (z — Ddé(z — 1) + 6(z — 1).
Since w(z)d(z) = w(0)d(z) (see formula 3.4.2, section 3.4.1) thus,
F(@) = 1e(2) = 1 (2 — 1) + 8z — 1),

and next
fPx) =6(z) = d(x — 1)+ 8'(x — 1).

Problem 3.4.10 Calculate the second derivative of the function

g9(x) = 14 (z) exp(z),
where 1, is a Heaviside function.

Solution. By formulas (3.3.18), section 3.3.5, (3.4.2), section 3.4.1, and by the du Bois-
Reymond Lemma (see [V1.1], p. 26), in turn we get
g'(x) = 6(x) exp(z) + 14 (z) exp(x),
¢'(2) = 6(z) exp(0) + 1 (2) exp(x).

Thus,
g (@) = 3(x) + L+ (z) exp(a).

Analogously, we have
g (z) = 0" (z) + 6(x) exp(z) + 14 (2) exp(x).

Since
0(z) exp(x) = d(z) exp(0).

thus,
99 (@) = §'(2) + 3(x) + Ly (2) exp(a).

Problem 3.4.11 Calculate derivatives of the following distributions:

1. f(z) = dexp(—2x)

2. g(x) = é(x) sin(x).
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Answer. 1. f'=4¢";2. ¢ =0.
Problem 3.4.12 Prove that

d
(% + )\) 14 (z)exp(—Az) = §(x).
Proof. By formulas (3.3.18), section 3.3.5 and (3.4.2), section 3.4.1, we obtain in turn

(% + )\) 14 (z) exp(—Ax)
= (L () exp(=A2))' + AL (z) exp(—Aa)
= §(z) exp(—Ax) — A\l (x) exp(—Azx) + A4 (z) exp(—Az)

= §(z) exp(0) = 0(x).

3.5 Convergent Sequences
3.5.1 Sequences of Distributions

Definition 3.5.77 We say that a sequence of distributions (fn(x)) y converges in (a,b)
ne

to a distribution f if the distribution f is defined in (a,b) and for every open bounded inter-

val I inside (a, b), there exist an order k € N,, a sequence of continuous functions (F,)nen

and a continuous function F such that in I
FR(z) = fo(x) for n>n,

(3.5.1)
F®(z)=f(z) and F,=F in I

The notation

fo-f in (a,b) or  lim fo(2)2f(z) in (a,b)

n—oo

will be used to denote the convergence of a sequence of distributions (f,;)nen in (a,b) to a
distribution f.

Definition 3.5.78 We say that a sequence of distributions (fn(x)) converges in (a,b)
neN
if for every open bounded interval I inside (a, b), there exist an order k € N,, a sequence

of continuous functions (Fy)nen such that in I

EX(z) = fu(x) for n>n, and F,= in I

The notation fni> in (a,b) will be used to denote the convergence of a sequence of
distributions (f,,)nen in (a,b).
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Lemma 3.5.46 The order k € N,, which occurs in (3.5.1), can be replaced, if necessary,

by any order 1 > k.

Proof. Tt suffices to observe that if conditions (3.5.1) hold, then also

~(m) ~(m) ~ ~

Fn :fn; F :f7 Fn(.’ﬂ):;F(.’E), era

and . .
Fo(z) = / Fo(t)ydt™ ", F(z) = / Ftydt™ %, x, €1,
where

ti—1

xT xT t1
/F(t)dtl :/dtl/dtQ--- / F(t;_1)dt;.

To

Lemma 3.5.47 If a sequence of continuous functions (fn)nen converges almost uniformly
to f in (a,b) and if fy(lk)(x) =0 in (a,b) forn € N, then f*)(z) =0 in (a,b).

Proof. Let (§,)nen be a delta sequence. By Property 3.4.9, section 3.4.1, sequence
(@n)nGN = (fn * 5n)n€N
converges almost uniformly to f in (a,b), such that

[ = [fo*dn].

Hence,
FE =[x 02]W = [ 5 60] = (0% 6,] = 0

Theorem 3.5.123 The limit of a sequence of distributions, if it exists, is unique.

Proof. Let I be an arbitrary open interval inside (a, b). If (f,)nen is such that
fof i (ab) and fu-g in (a,b)

then there exist orders k, m € N, sequences of continuous functions (Fy,)nen, (Gn)nen and

continuous functions f, G such that
F,(z) =2 F(z), Gn(z)=2G(z), ze€l

where
FP (@) = fu(z), GVV(x) = fu(x), z€l and

n

F®O(@) = f@), G™(x)=gla), ael.
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We may assume that k = m, for otherwise we could replace both orders by a greater order.
Since

(Fn(ac) - Gn(x))(k) =0 and Fy(z) — Gu(z) = F(z) — G(z), z€l,

according to Lemma 3.5.47, we have

(F(@ - G(a;)) ®_,

which implies that f(x) = g(z) in I. Since I is arbitrary, it follows that the limit is unique.
[

Directly from the definition of the limit the following theorems follow:

Theorem 3.5.124 If a sequence of continuous functions converges almost uniformly, then

it also converges distributionally to the same limat.

Theorem 3.5.125 If a sequence (fn)nen of locally integrable functions converges almost
everywhere to a function f and it is bounded by a locally integrable function, then it also

converges distributionally.

In the proof of the theorem the following property should be used:

If a sequence (fn)nen converges almost everywhere to f and it is bounded, then
/fn(t)dt = '/f(t)dt.

Theorem 3.5.126 If a sequence converges distributionally, then its every subsequence con-
verges distributionally to the same limit, i.e., if fy LN f, then fr. 4, f, for every sequence

(rn)nen of positive integers such that r, — oo.

Theorem 3.5.127 If f, 4, f and g, —d>f, then the interlaced sequence
flaglaf27925"' )

also converges to f.

It follows from the definition of distributional convergence and Lemma 3.5.46 that the
arithmetic operations on limits of the sequences of distributions can be done in the same

way as for limits of functions:

Theorem 3.5.128 If (fn)neN, (gn)nen are sequences of distributions such that

d d d d
fo—f gn—9, then fot+gn—Ff+g9 fo—9gn—f—9g
Mfa—5Af i A=A (AAER).
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Theorem 3.5.129 If f, 4, f, then fy(Lm) 4, ) for every order m € N,.

Proof. Tt suffices to observe that, if condition (3.5.1) is true, then also the condition
Fr(szrk) _ fr(Lm)a F(m+k) — Jc(m,)7 F,=F

is fulfilled. I

Remark 3.5.112 Theorem 3.5.129 s very important in distributional calculus. It allows

us to differentiate convergent sequences without any restrictions.

Theorem 3.5.130 If a sequence of distributions is convergent in (a,b), then it converges

to a distribution in (a,b).

Proof.  Suppose that (fy)nen is convergent in (a,b). Let (0,)neny be any § sequence and
on(z) = 0 for |z|] > o, > 0,n € N. We shall prove that the sequence (¢n)nen, where
©n = fn * dp, is fundamental in (a,bd) and that the sequence (., )nen converges to [¢p].

In fact, let I be an arbitrary bounded open interval inside (a, b), and let I’ be an bounded

/
—ap?

open interval inside (a, b) too, such that I C I where I” , ~denotes the set of all points

z € I’ whose distance from the boundary of I’ is greater than c,,.

There exist an order k € N, and continuous functions F;,, n € N, F'| such that
F® =f and F,=F in I.
By Property 3.4.9 of delta sequence, we have
F,x6, = F in I. (3.5.2)

Since
®
(Fn*én) :Ffl)*én:f"*én:(pn,

the sequence ¢, is fundamental in (a,b). It therefore represents a distribution f in (a,b).

By (3.5.2), we can write
Fox6,-%F and [F,*6,]=F in I.
Differentiating k-times, we get
©On L F®  and [on] = F*®) in 1.

Consequently,
d

on——f in I, where f=F®, (3.5.3)
Since F,, — F,, *9, = 0 in [, thus differentiating k-time, we obtain

fo—on-50 in I
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Hence, and with (3.5.3), we get f, 4, f in I. Since [ is arbitrary, it follows that f,, 4, f

in (a,b). I

Theorem 3.5.131 If a sequence of distributions (f,)nen is convergent to f in every open

bounded interval inside (a,b), then f, -4, f in (a,b).

Proof.  For any bounded open interval I inside (a, b) there exists an bounded open interval
I’ inside (a,b) such that I C I’. Since f, i>f in I, there exist an order k¥ € N, and

continuous functions F, F},,n € N, such that
F® —=f. F® =f and F,=F in I.

Thus, f, i>f in (a,b). I

Example 3.5.78 The sequence (f)nen, where

fulz) = - sin(n?z)

converges to 0 for n — oo both in a usual and distributional sense. It follows from The-
orem 3.5.129 that we have distributional convergence of the sequence of distributions to 0,
i.e.,

ncos(n’x) N

However, the sequence is not convergent in the usual sense at any point.

Example 3.5.79 We will show that the following sequences are distributionally convergent.

Namely, we have

ul) = Zaxcteg (na) + 5~ 1 (2):

1 n d
90 = 2oy 0@
2 3
h(2) = == —— o L),

7 (n2z2 +1)2
where 14 (x) is Heaviside’s function and § is the Dirac delta distribution.

In fact, we have the equality
fo=F", gn=F®, h,=Fp,

where
T

F,(x) 5

1
+ Eaurctg (nx) — —In (1 + n?z?)
m 2mn

and
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where

F(I)_{O for x <0,

T forx >0
(see Example 3.3.76, section 3.5.2). From Theorem 3.5.124 we have the following distribu-

tional convergence

Fo(z) -5 F(z), z€R

Hence, by Theorem 3.5.129, we obtain the desired distributional convergence:
d
fula) = Fi(z) — F'(z) = 14 (z);
d
gn() = F? () == F®) () = 1/, (x) = §(x);
ho(z) = F®) (2) -5 FO (z) = §'(2).

Example 3.5.80 The sequence of Picard functions (fn)nen, where

converges to Dirac’s delta distribution.

In fact, the conditions

a.u.c.

fon=F% F,(z) = F(z) in R,
are fulfilled, where

0 for x <0,
T for x > 0.

F,(z) = / fn(t)dt?, F(x) {

By Theorem 3.5.124, it follows that F, 4 F. Hence, by Theorem 3.5.129, we have

(@) = FP(2) -5 FO(2) = 1, (z) = 6(a).

Remark 3.5.113 In classical mathematical analysis one considers many sequences of func-

tions which are convergent distributionally to the Dirac delta distribution, i.e.,

(a) the sequence of Picard functions (see Figure 16, section 3.5.2)

n 71/(172 N
— P - 2 .
fulz) = o e , neN;

(b) the sequence of Dirichlet functions (see Figure 19)

fo) = et
O forx =0, neN;

T?

(c) the sequence of Stieltjes functions (see Figure 20)
2 n

o on —nx’ TLEN;
Tent +e

fn(z) =
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(d) the sequence of functions (see Figure 21)

2 n
7 (x2n2 +1)2’

fn(x) =

n eN;

(e) the sequence of Cauchy functions (see Figure 17, section 3.8.2)

1 n
Ta2n2+1’

n € N.

fu(x) =

For the proof see the examples in section 3.3.2.

A
1]

/..

Figure 19. The graphs of Dirichlet’s functions, n =1,2,3

Figure 20. The graphs of Stieltjes functions, n =1,2,3
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Figure 21. The graphs of functions f,(z) = %m, n=1,23

3.5.2 Convergence and Regular Operations

The distributional limit commutes with all regular operators. The following formulas

hold true
Hm Af,(z) S lim fo(z), X€ER;
n—oo n—oo

T (fu(@) + go(@)) £ lim fu(@) + lim g, (2);

lim £ (2) £ lim f,(2))"™, m e N,
n—oo

Tim w(@) fo (@) Sw(@) lim fu(z), e D;
lim (fn(z) *w(x)) 4 lim fulz) xw(z), weD.

In the case of composite functions (f, o o)(xz) = f,(o(x)) the limit

lim f,(o(x))

n—oo

has two interpretations; as a limit of a sequence

(falo@))

neN
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and as a substitution of a function y = o(z) in a distribution lim f,(y). The fact that
passage to the limit commutes with substitution implies that boicl}?i);terpretations give the
same result.

It is easy to check the commutativity of the convolution with a function of the class D
and multiplying by a constant, addition, substraction, differentation. The commutativity
of taking a limit with multiplication by a smooth function follows from Theorem 3.5.132
in this section. The commutativity of taking a limit with substitution follows from Theo-
rem 3.5.133.

Theorem 3.5.132 Let (f,)nen be a sequence of distributions, (wn)nen a sequence of func-
tions in D and w function in D. If fni>f, w,(im) = w™ for each m € N,, then

d
wWnfn—wf.

Proof. Tt follows from the convergence of the sequence of distributions ( f,,)nen in (a, b) that
for every bounded open interval I inside (a, b) there exist continuous functions F, F,(n € N),

and the order k € N, for which
F® =g F® =f F(z)=F(x) in I
Therefore,
wpFp =2 wF  in I
Hence, by Theorem 3.5.124, section 3.5.1, we have
d .
wnF, — wF in 1.
Similarly,
w®p, L u®EF i 1 (3.5.4)
One can check by induction that for smooth functions the following formula holds true:
m k m —m
o = 3 (= (Euimigyem, (3:5.5)
0<m<k

For a fixed w both sides are iterations of regular operations. Therefore, the formula (3.5.5)

remains valid if ¢ is replaced by a distribution or a continuous function. In particular,

ol = > (—1)<’”><k><w£’">Fn>(’f‘m>-

m
0<m<k

Hence,

wnF,(Lk)LwF(k) in I,

thus,

wnfo - wf in I

© 2006 by Taylor & Francis Group, LLC



Convergent Sequences 341
Since [ is arbitrary, it follows that

wnfniw)f in (a,b).

Theorem 3.5.133 Let (f)nen be a sequence of distributions, (oy)nen @ sequence of func-
tions of the class D and o a function in D. If f, i>f, J»Slm) = glm for each m € N,
on #0 (ne€N,) and o’ # 0, then

(fn 0 0u)(@) ~5(f 0 0) ().

The proof of this theorem will be omitted.

3.5.3 Distributionally Convergent Sequences of Smooth Functions

Theorem 3.5.134 The sequence of constant functions is distributionally convergent iff it

18 convergent in an ordinary sense.

Proof. a) Let (cn)nen be a sequence of constant functions convergent in an ordinary sense.
This sequence is also uniformly convergent and hence by Theorem 3.5.124 (see section 3.5.1)
distributionally convergent.

b) Let us assume now that the sequence (¢, )nen of constant functions is distributionally

convergent. Let us denote its distributional limit by ¢. The sequence (¢, )nen is bounded.

In fact, if it was not bounded there would exist a sequence (¢, )nen, such that (Cl )
™/ neN

would be convergent to 0 in a ordinary sense, and hence convergent to 0 in a distributional

sense. By Theorem 3.5.124 (see section 3.5.1) and the assumption ¢,, — ¢ and hence,

1
l=—-¢, —0-c=0, as n— oo,
Cr

which produces a contradiction.
Suppose that (c¢,) does not converge in the ordinary sense. Then there exist two subse-

quences which converge to different limits. That contradicts Theorem 3.5.124, section 3.5.1.

I

Lemma 3.5.48 A sequence of smooth functions (¢n)nen 8 fundamental in (a,b) if for
every bounded open interval I inside (a,b) there exist continuous functions F,,,n € N, and

an order k € N such that in I

F® =g, F. ()= in I (3.5.6)

Proof. a) Let (¢n)nen be a fundamental sequence. By the definition it follows that for

every bounded open interval I inside (a,b), there exist a sequence of smooth functions
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(®,)nen and an order k € N, such that in T
@g“) =y, and ¢, 3.

Since smooth functions are continuous, the condition (3.5.6) is satisfied.

b) Let us assume now that the condition (3.5.6) holds for every bounded open interval
I inside (a,b). Let I’ be an arbitrary bounded open interval inside (a,b) such that I C I'.
Let (0,)nen be a delta sequence. We define a sequence (<I>m>n N of smooth functions in

the following way

O, () = (Fn(x) - / cpn(t)dtk) % 6,(x) + / on(t)dt*,

where z, € I.

We note that @2’? = ¢, in [ for sufficiently large r, say r > p,. By Property 3.4.8,

section 3.4.1, for the delta sequence, we have
$,.=2F, in I as r — oo.

Let us denote by F the limit of the sequence (F,)nen. By (3.5.6) we have F,, = F.

Therefore, there exists a sequence (7, )nen, 'n > Pn,n € N, such that

&, =®,. = F in I

Of course,
<I>§lk) =, in I.
Hence, the function ®,,,n € N, have the desired properties. I

Theorem 3.5.135 The sequence of smooth functions (on)nen is distributionally conver-

gent to the distribution f if it is fundamental for f, i.e., f = [on].

Proof. (a) Let (¢n)nen be a fundamental sequence for f, i.e., f = [¢n]. By the definition
of fundamental sequences it follows that for every bounded open interval I inside (a, b) there

exist smooth functions ®,,, n € N, a continuous function F' and an order k € N, such that
o, =F oM =0 in I (3.5.7)
By Theorem 3.3.101, section 3.3.2, the sequence (®,,),cn is fundamental, thus
[®,] = F.
Differentiating this equation k-times

F® = [@9] = [pu)
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we get the desired properties: F(*) = fin I. This and condition (3.5.7) means that ¢,, 4, f
in (a,b).

(b) Let us assume now that the sequence of smooth functions (¢, )nen is distributionally
convergent to f. By the definition of the distributional convergence we conclude that
for each bounded open interval I inside (a,b) there exist a sequence of smooth functions

(Fn)nen, a continuous function F' and an order k € N, such that
FW =g, F® =f and F,=F in I

By Lemma 3.5.46, section 3.5.1, the sequence (¢p)nen is fundamental. In (a) we have
proved that every fundamental sequence converges to the distribution that it represents.
This implies that f = [p,]. I

Remark 3.5.114 An analogy to Theorem 3.5.135 is true in the Cantor theory of real num-
bers.
It is well known that a sequence of rational numbers is convergent to a real number « if

it is fundamental for a.

Example 3.5.81 By Theorem 3.5.135, Examples 3.5.79 and 3.5.80 (section 3.5.1), we may

write:
(a) 14(z) = Harctg (nz) + %] :

(b) 8(x) = [ 2 s | = [VEe T |

(©) 8'(2) = [ - 2 et

TLS ’YL2£E2—
(@ 6D(@) = [2° k).

Example 3.5.82 For each x # 0, we have

1
no_ 4y,

lim — ————
n—oo T n?x? + 1

It is easy to check that in each interval I such that x = 0 € I the convergence is almost

uniform. By the definition of equivalent sequence we get

1 n
(; WH)WSN ~ (Onen
in the interval —oo < x < 0 and interval 0 < x < +oco. By definition of equal distributions
in the interval and by Example 3.5.81 (b), we have §(x) = 0 in the interval —oo < z < 0
and in the interval 0 < x < 400.
We can see now that the distribution § cannot be identified with any function in the whole
interval. It is, however, equal to a constant function in the interval —oo < x < 0 and in

the interval 0 < x < +o0.

© 2006 by Taylor & Francis Group, LLC



344 Generalized Functions

3.5.4 Convolution of Distribution with a Smooth Function of Bounded
Support

According to section 3.3.5, Remark 3.3.108, convolution of a distribution f with a given
function w € D is a regular operation. If (f,,)nen is a fundamental sequence of distribution

f then (f, * w)nen is a fundamental sequence for the convolution f * w. Hence, we have

f>«<cug lim (f, *w),

where f = [f,], f*w = [fn+*w]. By Theorem 3.5.135, section 3.5.3 and Theorem 3.4.115,

section 3.4.2, we get the following:

Theorem 3.5.136 If [ is any distribution in (a,b) and (6,)nen is a delta sequence, then

(f * 6n)nen converges distributionally to f in (a,b), i.e.,

lim (f*én)if in (a,b).

n—oo

Theorem 3.5.137 If a sequence of distributions (fp)nen converges to f in (a,b) and

(0n)nen s a delta sequence, then (fy, * 0p)nen also converges to f in (a,b):
lim (f, * 0,) Lf in (a,b),

i-e., (fn * On)nen 1s a fundamental sequence for f.

Proof. Let (0,)nen be a delta sequence. By definition it follows that there exists a sequence

of positive numbers (ay)nen, converging to 0, such that

on(z) =0 for |z|>an,neN.

Let I be a bounded open interval inside (a,b) and I’ = (a, ) be a bounded interval inside

(a,b), such that I C I’ , where I’ , = (a+apn,3—ay,). Since sequence (fy,)nen converges
distributionally to f, thus there exist an order k € N,, a sequence of continuous functions

(Fy)nen and a continuous function F' such that
F,=F, F®=y.  F®—=yf in I
Hence, by Property 3.4.9, section 3.4.1, we get
(Fo%8)nen = F in I,
by Lemma 3.3.42, section 3.3.5, we obtain
(Fy, * 5n)(k) = fo*0, in I

Hence, the sequence (f, * 05 )nen converges distributionally to f in I. Since I is arbitrary,

we have
fax0n -5 f in (a,b),

and the theorem is proved. I
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Theorem 3.5.138 Let f, € D', ¢, €D, neN. If lim fngf in (a,b), pp(z) =0
for |z| > a, > 0,n € N and for every m € N,

o™ =™ as n— oo,
then for every m € N,

.u.c.

(fr % )™ a:; (f+o)™ in (a,b), as n— oo.

Proof. Let I be an arbitrary given bounded open interval inside (a,b), and let I’ = (o, B)

be a bounded interval inside (a,b) such that

Icr

—y?

where I, = (a+ a0 — ), o, >0.

By distributional convergence (fy,)nen to f it follows that there exist an order k € N, and

continuous functions F, F,,, (n € N), such that
F,=F, F® =y  F®=f in I.
For any given m € N,, we have
(fnxon)™ = Fux o™ (f )™ = Fa ™ i 1.

Moreover, we have in I,

|Fo % @) — F e o0 0] < By — F ol
Bl = o™ < e [ 16494, [ 151,
where ¢, — 0 and 7, — 0, as n — co. Hence
(fnxen)™ = (fr)™ i I
Since I is arbitrary, we have
(o)™ S (F10)™ i (a,b),

and the theorem is proved. I
Definition 3.5.79 The sequence

(fn)nGN = (f * 5n)neN (358)

where f is a distribution in (a,b) and (0n)nen a delta sequence, is called a regular sequence

for f.

Remark 3.5.115 Since expressions f,, of (3.5.8) are smooth functions, it is a fundamental
sequence for f, by Theorem 3.5.137. The class of regular sequences is, therefore, a special

subclass of fundamental sequences.
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3.5.5 Applications

Problem 3.5.13 Prove that the sequence of Stieltjes functions (see Figure 20, section 3.5.1):
2 n

f(x) = ; en +e—n$’

n €N,

converges distributionally to Dirac’s delta distribution 6(z).

Proof. Indeed, the following conditions are true:
a.u.c.
fn=F% F, = F in R,

where
T

[ 2
Fn(x):/fn(t)dt2: / ;arctgemdt,

— 00

0 f 0
F(x): orx <U,
T for x > 0.

Hence, by Theorem 3.5.123, section 3.5.1, and Theorem 3.5.132, section 3.5.2, we get
fo=F?P L F® 1 (2) =3,

I

Problem 3.5.14 Prove that the sequence of Cauchy functions (see Figure 17, section 3.3.2)

1 e,

L A e &

€n >0, neN

converges distributionally to §(x), where (e, )ncn is a sequence of positive numbers converg-

ing to 0.

Proof. Indeed, the sequence of functions

1 1
F,(x)=— arctgﬁ + -, neN,
T €, 2
has the following properties:

F'r(nl)(x) = fn(x)a Fn(ﬂ?) i’ 1+(JE) in R.

Hence, by Theorem 3.5.128, section 3.5.1, we obtain f, = F\" -4 U (x) =6(x) in R. I

Problem 3.5.15 Prove that the sequence of functions (see Figure 18, section 3.3.2)

2
AR

fn(x) =

neN, ¢, >0,

converges distributionally to a derivative of Dirac’s delta distribution ¢§’(x), where (€, )nen

is a sequence of positive numbers converging to 0.
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Proof. Indeed, the following equation is true:

2 €nl _(1 €n )’
m(x2 +e2)2  \ma24e2/’

thus, by Problem 3.5.14 and Theorem 3.5.128, section 3.5.1, we have

: 2 enx d o
(=2 wrap) @

Problem 3.5.16 Prove that the sequence of functions (see Figure 21, section 3.5.1)

2 € N 0
T @t ap nely, € >0

fn(x) =

converges distributionally to Dirac’s delta distribution, where (€, )nen is a sequence of pos-

itive numbers converging to 0.

Proof. Indeed, the sequence of functions

Fu(z) = g<

x x
n —|—arctg—)7 n €N,
m

22+ €2 én
has the following properties:
d
Fi(z) = fu(x), Fa(z) —14(2).

Hence, by Theorem 3.5.129, section 3.5.1, we get

ful@) 51 (2) = 6().

I

Problem 3.5.17 Prove that the sequence of Dirichlet functions (see Figure 19, sec-

tion 3.5.1) converges distributionally to Dirac’s delta distribution, i.e.,

sin(nx) a
—

lim

n—oo T

o(x).

3.6 Local Properties
3.6.1 Inner Product of Two Functions

First we recall the definition of the inner product of two functions.
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Definition 3.6.80 We define the inner product of two functions f,g: R — R by means of

the formula

(f.9) = / f(2)g(x)dz, (3.6.1)
R

provided that the integral exists.

As in the case of convolution, the following convention is adopted: the (ordinary) product
fg takes the value 0 at a point, whenever one of its factors is 0 at the point, no matter
whether the other factor is finite, infinite or even undetermined. This convention implies
that, e.g., the inner product (f,g) exists, when f is defined in an open interval (a,b), g is
defined in R, the support of ¢ is inside (a,b) and the product fg is locally integrable in
(a,b).

Since the integral is taken in the sense of Lebesgue, the existence of the inner product
(f,g) implies the existence of the inner product (|f],|g|). Conversely, if the inner product
(If1,1g]) exists and, moreover, the product fg is measurable, then the inner product (f, g)
exists.

It is easy to check that the following equalities hold:

(f,9) = (9, 1), (3.6.2)
(Afo9) = (f,A9) = A(f,9), A€ER, (3.6.3)
(f+g.h) = (f,9)+(g,h), (3.6.4)
(frg+h)={(f9)+(f.h), (3.6.5)
(fg,h) = (f.gh). (3.6.6)

Using the notation f_(z) = f(—=x), we can write
(f.9) = [ 10~ tg(o)ir (3.6.7)

R

Hence, the inner product (f, g) exists whenever the convolution f_ * g exists at 0. We also

have
(f.9) = (f-*9)(0). (3.6.8)

From the above, (3.6.2) and the commutativity both of inner product and the convolution

we have
(f,9) = (f * 9-)(0). (3.6.9)
In order to state Theorem 3.6.139 we recall the definition of the convolution of three
functions.

Definition 3.6.81 By the convolution fxgxh of three functions we mean the double integral

/f(x —t)g(t — w)h(u)dtdu, (3.6.10)

R2
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provided that the integral exists.

The convolution exists at a point € R, whenever the product f(z — t)g(t — u)h(u)
is (Lebesgue) integrable over R?. As before, we understand that if one of the factors
flx—=1),g(t —u), or h(u) is 0 for z,t and u, then the product is always taken to be 0, even
if the remaining factors are not defined.

Since the integral (3.6.10) is meant in the sense of Lebesgue, the existence of f x g x h
implies the existence of |f| * |g| * |h|. The converse implication also holds, provided the
product f(x — t)g(t — u)h(u) is measurable. If we know that all the functions f,g,h are

measurable, then f % g * h exists, if | f| * || * || exist.

Theorem 3.6.139 If the convolution of three functions f, g, h is associativity at the origin,
i.e., at 0, then

(f—,g*xh)=(f*g,h_). (3.6.11)

Proof. By (3.6.8) the left-hand side of (3.6.11) is equal to (f * (g * h))(0). By (3.6.9) the
right-hand side of (3.6.11) is equal to [(f*g)*h)](0). Hence, the equality of two sides follows
by the associativity. I

Corollary 3.6.42 If the convolution of functions f, g, h exists at 0, i.e., (fxg+h)(0) exists,
then equality (3.6.11) holds.

Definition 3.6.82 By the inner product of three functions f, g, h, we mean the value of the

convolution f * g* h at the origin, i.e., at 0,
(f,9,h) = (f * g = h)(0).
By the definition of inner product and properties of convolution it follows:

Theorem 3.6.140 The inner product (f,g,h) exists, if the integral
/f(t)g(u)h(ft — u)dtdu
R2

exists in the sense of Lebesque.

Theorem 3.6.141 If the inner product (f, g, h) exists, then

(fvgvh) = (f*gvh—) :(f—vg*h) = (f*hvg—)'
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Inner Product with a Function of Class D.
Let ¢ € D. The inner product

(0.0 = [ pla)(e)ds

is defined for every smooth function ¢ € R.

Lemma 3.6.49 If ¢ € D, ¢ € C*, then the inner product (¢,v) is a regular operation,

i-e., if (¢)nen s a fundamental sequence, then the sequence (vn, 1), n € N, is fundamental.

Proof.  Let suppyp C I C R. Let the sequence (¢)nen be a fundamental sequence. Thus,
there exist a smooth function F', a sequence of smooth functions (F,),en, and an order

k € N, such that
FW = f. F,= in I

Integrating by part, we get
(eut) = [ 0= (<) [ F® — (-1 [ Fo®),
1 T T

i.e., the sequence of numbers (¢,,1),n € N, converges, thus by the convention in sec-
tion 3.2.3, this sequence is fundamental too. I

Using Lemma 3.6.49, we can formulate the following:

Definition 3.6.83 We defined the inner product of a distribution f in R with a function
¥ € D in the following way:

(f,¥) = [(@nﬂﬁ)] = lim (pn, 1),

n—oo

where (pn)nen s a fundamental sequence of a distribution f.

3.6.2 Distributions of Finite Order

In section 3.3.3 we introduced a definition of the distribution of finite order. This notion

can be defined in a different way:

Definition 3.6.84 A distribution f in R is said to be of a finite order, if there exist a

continuous function F in R and an order k € N, such that F®) = f in R.

Theorem 3.6.142 If G is a locally integrable function in R and k € N, then the distrib-
ution f = G*) is of finite order.
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Proof. To prove this theorem it suffices to see that the function
Pla) = / G(t)dt
0
is continuous and the equality F'(*+1) = f holds. I

Theorem 3.6.143 The set of all distributions of finite order in R is a linear space.

Proof. 1t is clear that if f is of finite order, so is Af for every number A. Therefore, it
suffices to show that if f and g are of finite order, then their sum f+ g is also of finite order.

Let f = F®), g = G®, where F and G are continuous functions and k,l € N,. Let
p € Ny, and p > max(k,l), and let

x x

Fz) = / F)der, G(x) = / Glt)dr,

0 0

where the integral is defined in the following way:

x x tr
/F(t)dtk = /dtk/dtk,l---/F(tl)dtl.
0 0 0

o

Then

(p) ~
f+g= (F—|— G) , where F+ @G s a continuous function.

Theorem 3.6.144 If a distribution f vanishes outside a bounded open interval I, it is of

finite order.

Proof. By Theorem 3.4.114, section 3.4.2, it follows that there exist a continuous function
F in R and an order k € N, such that F(¥) = f in the neighborhood Iz, a € R, where I,

denotes the set of all points x € R whose distance from the set I is less than «. Let ¢ be a

1 for x € I,
p(z) =
0 for x & I5,.

smooth function such that

Since
k (k—m)
f= F(k)(p _ Z (_1)m( ) F(p(m) )
2 () (o)
thus, by Theorem 3.6.143, the assertion follows. I
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3.6.3 The Value of a Distribution at a Point

Definition 3.6.85 We say that a distribution f takes the value ¢ at a point x, if for every
reqular sequence (fn)nen = (f * On)nen, we have

lim f,(z,) =:c. (3.6.12)

n— o0

It is easy to check that if a distribution f is a continuous function at a point z,, then the
above definition coincides with the value of a function in the ordinary sense.
If the value of the distribution at a point x, exists, i.e., if the limit (3.6.12) exists, the

point z, is said to be regular. Otherwise it is said to be singular.

Theorem 3.6.145 ([AMS], [Lo.1]) If a distribution f has a value at x,, then

lirr%J flax+x,) =:c. (3.6.13)

Remark 3.6.116 The limit (3.6.13) is a distributional limit of a sequence of distributions
flaz + z,) that depend on a continuous parameter (o). It can be proved that if the limit
exists then it is also a distribution and that distribution is identical to a certain constant
function. S. Lojasiewicz defines (see [Lo.1]) the value of a distribution f at a point x, as a
value of the above-mentioned constant function (at an arbitrary point).

It follows from Theorem 3.6.145 that if the limit (3.6.12) exists, then also the limit (3.6.13)
exists, i.e., L-value (the value of a distribution in sense of Lojasiewicz) exists. We cite below
Lojasiewicz’s theorem on the existence of a value of a distribution at a point. In particular,
it follows from that theorem the existence of a limit (E-value) implies the existence of a limit
(3.6.12). This means that the definitions (3.6.12) and (3.6.13) are equivalent.

Theorem 3.6.146 (see [Lo.1, Lo.2]) A distribution f has a value ¢ at a point x, (L-value)

iff there exist a continuous function F and an order k € N, such that F¥) = f and

. F(x) c
lim ———— = —.
e (x—x,)F k!

Theorem 3.6.147 If a distribution ' has a value at a point x,, then a distribution f has

a value at a point x,, too.

Proof. In fact, by Theorem 3.6.146, there exist an order k € N,, a continuous function F'

such that F*) = f and the limit
F(z)

lim -

z—zo (T — Xp)
If £ =0, then f’ is a continuous function and so is f; therefore, the theorem is true.

If £ > 0, then
F
lim (z)

a—zo (T — Tp)

-1 =0
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It follows, by Theorem 3.6.146, that the distribution F*~1 has a value at a point z,. Since
the distributions F(*~1) and f differs only by a constant number, thus the distribution f

also has a value at a point. I

Theorem 3.6.148 If a distribution f is a locally integrable function continuous at x,, then

a.u.c.

flax+2,) = flz,) as a—0.

Consequently, the point x, is regular and the value of f at x, in the distributional sense is

equal to f(x,).

Theorem 3.6.149 If a locally integrable function F has an ordinary derivative F’' at a

point x,, then this derivative is the value of the distribution F’ at that point, i.e., F'(x,).

Proof. By assumption there exists a limit

lim Flax +x,) — F(x,)
a—0 ox

= F/(xo)v

where all the symbols are interpreted in the classical sense. Consequently,

F 0 — F o) Buc.
(0@ + 2o) (o) = xF'(z,), =€ (—o00;+x), as a— 0.

axr

Differentiating this formula distributionally, we obtain

m F'(az + 20) £ F'(2,),

o—

which proves the theorem. I

Remark 3.6.117 The converse theorem to Theorem 3.6.149 is not true. It is possible for
the ordinary derivative not to exist at some point although the distributional derivative has
a value at this point.

For instance, the function

F(z) =

SxQSin%fxcos%, forxz #0
0, forz =0

does not have an ordinary derivative at the point 0. However, the distributional derivative
F'(x) has the value 0 at that point 0.

In fact, we have
1 a.wu.c.
(az)®sin— = 0 as a—0.
ox

Hence, by successive differentiation,
The following theorem is a particular case of Theorem 3.6.149.
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Theorem 3.6.150 If fis a locally integrable function and the function

F(z) = / F(t)dt
0

has an ordinary derivative at x,, then this derivative is the value of the function f at the

point x,.

Remark 3.6.118 The value of a distribution f at a point x, will be denoted by f(x,) as
in the case of functions. This notation does not give rise to any misunderstanding. In
fact, if the distribution f is a continuous function, both meanings of f(x,) coincide by
Theorem 3.6.148. If f is only locally integrable then, by Theorem 3.6.150, the values of
the distribution f exist almost everywhere. Both meanings of f(x,) coincide then almost
everywhere but, in general, not everywhere. When the two wvalues differ, we adopt the

convention of denoting by f(x,) the value in the distributional sense.

Example 3.6.83 By Theorem 3.6.148 each point x, # 0 is a regular point of the Heaviside
function 14 (x), and the value at z, in the distributional sense is the same as the value in

the usual sense. The point x, = 0 is singular since the limit of

1. (azx) = % (1462 - %) + % (3.6.14)

does not exist as o — 0.

Remark 3.6.119 It can be proved that if the value of a distribution f is 0 everywhere, then
f is the null function (see [Lo.2]). Thus, a distribution is uniquely determined by its values

provided they exist everywhere.

Theorem 3.6.151 If a distribution f has a value f(x,) at a point x,, and w € C*, then

the distribution wf also has a value f(x,)w(x,) at a point z,.

Theorem 3.6.152 Let o € C* and ¢'(x) # 0 for every x € R. If a distribution f has a
value at the point ¢(x,), then the distribution (f o p)(x) = f(p(x)) also has this value at

T,.

Example 3.6.84 The Dirac delta distribution § has the value 0 at each point x, # 0 and
has no value at the point x, = 0. In fact, differentiating (3.6.14) we obtain

|ald(ax) = 6(z).

The existence of the limit lin%) §(ax) would imply that §(x) is the function identically equal

to 0, which is not true.
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3.6.4 The Value of a Distribution at Infinity

Definition 3.6.86 The value of the distributional limit
ma flz+08), (3.6.15)

if it exists, is said to be the value of the distribution f at co and is denoted by f(c0).

The value f(—o0) of the function f at —oo is defined similarly. Obviously, the symbols
f(00), f(—o0) have a meaning iff the corresponding limits exist.

If the limit (1) exists, then it is a constant function (see [AMS], p. 44).

Theorem 3.6.153 If a distribution f is a continuous function and has the ordinary limit

¢ at 0o, (or at — c0), then
a.u.c.
fl@+p) = ¢ as B—o0, (oras [— —o0).

Consequently, f(co) =c¢ (or f(—o0)=rc).

3.6.5 Support of a Distribution

The notion of a support of a locally integrable function is introduced, for example, by
J. Mikusinski in [Mi.6], p. 196. In this section we introduce the notion of support of a
distribution. L. Schwartz [S.2] defined the support of a distribution as the smallest closed
set outside of which the distribution vanishes. We will explain here the notion of a support
of a distribution introduced by J. Mikusinski.

Following S. Lojasiewicz, the value of a distribution at a point can be used to sharpen
the concept of the support of a distribution. Let f be a distribution in (a;b). By Ly we
denote he set of all points in (a;b) at which the value of a distribution f does not exist or

is different from zero. The support of a distribution f is the closure of the set Ly, i.e.,
suppf = cl Ly.

It can be proved that the closure of Ly is the support in Schwartz’s sense of f.

3.7 Irregular Operations
3.7.1 Definition

An advantage of the sequential approach to the theory of distributions is the ease of

extending to distributions many operations, which are defined for smooth functions, i.e.,
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regular operations (see section 3.3). An example of a regular operation is differentiation (of
a given order k € N,): A(f) = f®), which can be performed for an arbitrary distribution
f. Tt is well known (see section 3.6) that every distribution is locally (i.e., on an arbitrary
bounded open interval in R) a distributional derivative of a finite order of a continuous
function.

It should be noted that in practice operations there are both regular and not regular
ones. For instance, the two-argument operations of product A(p,v) = ¢ - ¢ and the
convolution A(p, ) = ¢ * ¢ are not regular operations and they cannot be defined for
arbitrary distributions.

J. Mikusiniski pointed out a general method of defining irreqular operations on distribu-
tions by using delta sequences (see [Mi.4], [Mi.3], and [AMS], pp. 256-257).

Let us assume that an operation A is feasible for arbitrary smooth functions 1, @2, -« , Vg
and let f1, fa, -, fr be arbitrary distributions in R.
Definition 3.7.87 If f1, -, fx are arbitrary distributions in R, we say that A(f1,- -, fr)

exists if for an arbitrary delta sequence (0, )nen the sequence

(G 0u e fix 80)

neN

s fundamental; then the operation A on f1,--- , fi is defined by the formula

A(fla"' 7fk) = [A(f1*§n7 7fk*5'n)]

Remark 3.7.120 If A(f1, -, fx) exists then the distribution does not depend on the

choice of a delta sequence (0p)neN.

If A is a reqular operation then, of course, A exists and coincides with the earlier defined
result of the regular operation. If A is irregular, it need not exist for all distributions, but
the definition embraces not only earlier known cases, but also new ones. For instance, for

the operation of the product A(f1, f2) = f1- f2, the definition can be expressed in the form

fuefo = T (fi 5 00)(f2 % 6a) (3.7.1)

and it exists in this sense for a wide class of distributions but not in the classical sense of
L. Schwartz [S.2].

Among other irregular operations an especially important role is played by the convolution
of distributions (see section 3.7.3).

Historical Remarks

The operations of integration, convolution and a product of distributions can be per-
formed only for certain classes of distributions. The operation of convolution of two dis-

tributions can be done if, e.g., their supports are compatible (see [AMS], p. 124). These
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difficulties were the impetus for the further search of new definitions of that operation.
This problem is especially visible in Fourier transform theory. In the classical mathematical
analysis the Fourier transformation transforms the convolution of integrable or square inte-
grable functions into the product of their transforms. The question arises: what similarities
can be found for distributions? An answer to that question can be found in the book by L.
Schwartz [S.2] and the papers by Y. Hiraty and H. Ogaty, [HiO], Shiraishi and M. Itano,
[ShI]. Those results, however, have not embraced all possibilities or they were too general.
R. Shiraishi in [Sh] stated a hypothesis whether a convolution of tempered distributions
is a tempered distribution. A negative answer to that problem was given by A. Kaminski
[Ka.1], and then independently by P. Dierolf and J. Voigt in [DV]. But R. Shiraishi’s ques-
tion motivated A. Kaminski to modify the notion of compatibile supports (the so-called
polynomial compatible) that guarantees that a convolution of tempered distributions is a
tempered distribution [Ka.4]. For a definition of tempered distribution see, for example,
[AMS], p. 165.

3.7.2 The Integral of Distributions

One of the most important operations on distributions is integration. Various definitions
of the definite integral of a distribution can be found in the literature (see [Mi.4], [Si.3],
[MiS.1], [Sk.2], [KSk]).

The indefinite integral or an antiderivative of a distribution f in R is a distribution h

such that

The existence of an indefinite integral follows from the fact that every distribution is locally
a derivative of a certain order of a continuous function (see Theorem 3.4.114, section 3.4.2).

The integral of a distribution is uniquely given up to a constant, i.e., the following theorem
holds:

Theorem 3.7.154 For every distribution f there exists a family of antiderivatives. Any

two antiderivatives of f differ by a constant function.

Let f be any distribution in R, and h its indefinite integral.
If there are values h(a) and h(b) of distribution h at the points x = a and z = b, then

the number ,
/f(x) dx = h(b) — h(a); (3.7.2)

we call it the definite integral of f in the interval (a,b).
In the statement one can have a = —oo or b = 400 and then the formula (3.7.2) defines

an integral of a distribution in an unbounded interval.
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One can show that the integral given by (3.7.2) has properties similar to those of the
integral of a function. Moreover, if a distribution f can be identified with a locally integrable

function then the distributional integral reduces to the integral of a function.
Remark 3.7.121 From now on we will consider integrals in the distributional sense.

Theorem 3.7.155 Let f, g be distributions and ¢, ¢ are smooth functions (¢' #0), A, a,b,c €
R. The following formulas hold for integrals:

/bf(x)dx: —/af(x)dx; (3.7.3)
a b
/b)\f(x)dx = )\/bf(gc)d:lc7 A €eR; (3.7.4)

/bf(x)dm:jf(x)dx+/bf(x)dx; (3.7.5)

b

/b[f(x) + g(x))dx = /f(x)dx—i— /bg(x)dx; (3.7.6)

(/f@wyzfux (3.7.7)

b
x”—/d@mmm; (3.7.8)

¢(b) b
/f@ﬂx:/fw@DW@M% (3.7.9)
¢(a) a

provided the integrals on the right exist; in the case of the equality (3.7.8) we additionally
assume the existence of the value of the distribution p(z)f(x) at the points t = a and x = b.

Moreover, for an arbitrary k € N, if the distributions ) f, (0 < 1 < k) are integrable in
R, and ¢ € D, then

[e@ i @s =17 [ o) (o) (3.7.10)
R R

Remark 3.7.122 If the function f is locally integrable on R, then the integral [ f(z)dx
R

understood in the distributional sense coincides with the usual integral on R if the integral

exists.
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We will take the notation
b
/f(x +t)dt = h(z +b) — h(z +a), where h'(z)= f(x).
a

We will prove the following theorem:

Theorem 3.7.156 If f, € D' , ne N and f, —d>f, then
b b
/fn(aH-t) dti>/f(a:+t)dt. (3.7.11)

Proof. It follows from the definition of distributional convergence of a sequence ( f,,)nen to
the distribution f (see Definition 3.5.77, section 3.5.1), that for any bounded open interval
I, there exist an order k € N,, a sequence of continuous functions (F,)nen, & continuous

function F', such that
F®W—yf F®=f F =F in I

Consequently,

F.(x+b)—F,(z+a) = Flx+b) — F(z + a).

Hence, by Theorem 3.5.129, section 3.5.1, after differentiating (k—1)-times we obtain desired

convergence. [l

Theorem 3.7.157 If ¢ is an arbitrary element of D and (6n)nen an arbitrary delta se-

quence, then

lim [ 8, (a)p(x)da 2 (0); (3.7.12)
R
/6(:E)<p(:lc)dx = ¢(0), p € D; (3.7.13)
R
/6(x — o) p(x)dr = p(z,), peD. (3.7.14)
R

Proof. Let ¢ € D. For an arbitrary delta sequence (6,,),en we have:

(6 0) — (0] < / 16, (2)] |9(2) — 9(0)[dx — 0,

—Qn

for n — oo, where (o, )nen is a sequence of positive numbers convergent to zero and such
that 6, (z) =0 for |z| > ay,,n € N.
The proof of the equality (3.7.14) can be obtained in a similar way. I
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Theorem 3.7.158 If for every function ¢ € D the equality

/ F(@)p(x) dz = 9(0),

holds, then f =19.

Proof. Let f, = f xdn,n € N, be a regular sequence for the distribution f. Then, by

Definition 3.6.83, section 3.6.1, and the assumption for every function ¢ € D we have

(far @)~ 0(0).

Similarly, by Definition 3.6.83, section 3.6.1 and the equality (3.7.13), we get

(60, 9) 5 (0).

We note that also for every function ¢ € D the interlaced sequence

(flv‘p)v (51790)a (f2790), (52,80), ce

is distributionally convergent to ¢(0) for each ¢ € D. Hence, the sequence

f17615f27527"'

is fundamental, which implies f = 4. I
Remark 3.7.123 The distribution 6 is not a locally integrable function, which follows from:

Lemma 3.7.50 There is no locally integrable function f such that

[ 1@e@)ds = p0). pe.
R

For a proof see [Szm], p. 40, and Example 3.2.64, section 3.2.1; and Example 3.2.66,

section 3.2.2.
Theorem 3.7.159 If f, € D', n e N and f, i>f, then for every function ¢ € D

/fnso—d>/ftp, ie (fr ) =5 (f, ).
R R

The proof of the above theorem follows from Lemma 3.6.49, section 3.6.1.

The opposite theorem to Theorem 3.7.159 is also true. Namely, we have:

Theorem 3.7.160 If for every fized function ¢ € D the sequence of numbers (fn, @) is
convergent to (f, ), then f, —d>f.
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Using the above theorems and the definition of equality of distributions (section 3.3.3)
one can easily show that the equality of two distributions f and g in R can be defined in

an equivalent manner:
(f=9g) it [(f,¢)=1(g,¢) forevery function ¢ € D]. (3.7.15)

By the du Bois Reymond lemma (see section 3.2.2, Lemma 3.2.37), in case f and g are
locally integrable in R the definition (3.7.16) coincides with the definition of equality of

locally integrable functions.

Example 3.7.85 For a translated by point x, Heaviside function

1 for x > x,,
Lo —zo) = 0 forz <z

we have

1 (z —z0) = 6(z — z0).

This equation can be obtained in the same way as (3.4.11), section 3.4.5.

According to the notation (3.7.2), we can write:

b
/J(x —zo)dr =1 for a<xz,<b (3.7.16)
b
/5(:U—xo)dx:0 for a<b<uz, or x,<a<b; (3.7.17)
+oo
/ d(z — zo)dr = 1. (3.7.18)

Example 3.7.86 For every function w € C* the equalities are true:

b
/w(m)é(m —To)dr = w(x,), for a <z, <b; (3.7.19)
+oo
/ w(x)d(z — xo)dr = w(x,), w€EC™. (3.7.20)

By equality (3.4.3), section 3.4.1 and (3.7.16), we obtain in turn
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In particular, if a = —o00, b = +00, we get equality (3.7.20).
From (3.7.19) and (3.7.20) for z, =0, we obtain

b
/w(x)é(x)dx =w(0), if a<0<b (3.7.21)
+o0
/ w(x)d(z)dr =w(0), weClC™. (3.7.22)

Example 3.7.87 Let us consider a function ¢ given in the example, section 3.2.1, i.e., the

function

2
exp (:cgia)?’ |x| < a,
xTr) =
o) {0, |z] > a.

Then, according to the equality (3.7.22) we have

—+oo

a2
/ exp mé(m)dw =e.
Remark 3.7.124 The relations (3.7.19) and (3.7.22) describe one of the basic properties of
Dirac’s delta distribution 6(x). In the functional approach to theory of distributions those

properties are regarded as definitions.

Example 3.7.88 For every function w € C*° and k € N, the equality
+oo
/ w(z)d® (z — zp)dr = (—1)F0®(z,), wel™® (3.7.23)
“o0
18 true.
In fact, by Property 3.4.5, section 3.4.1 and (3.7.10), (3.7.19), we obtain in turn:

+o0 +oo
/w(a:)cS(k)(x—mo)dx:(—l)k /w(k)(x)(S(x—xo)da:
oo ,iooo
= ( 1)k/w(k)(xo)5(x zo)dr = (—1)*w® (z,)

Example 3.7.89 Let us consider the sequence of functions (see Figure 22):

0, x<f%,

n(l + nx), —leSO,
O

n(l — nz), 0<z<,

0, x>%, n € N.

The sequence (fn)nen is distributionally convergent to the distribution §(x).
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Cnv

Figure 22. The graphs of functions f,(z), n =1,2,3

In order to prove it we note that

—+oo
/ fo(x)dx =1 for every m €N,

and

lim [ f.(t)dt = {0’ ifz <0,

n—00 1, if x > 0.
21

Example 3.7.90 Let us consider the functions (see Fig. 23)

ha() = {21 ifx €[-a,al, a>0,
0, if v & [—a, a).

We shall show that

: d
alir&_ ho(z) =0d(z).
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Figure 23. The graphs of functions h,(z), a =1, %,

W=

In fact, for an arbitrary function ¢ € D, by Lagrange’s theorem, we have

a

+o0
(@) 9(@) = [ halawolaldo = 5o [ o@)ds = o),

—a

where —a < £ < a. Hence, for a — 0%, we obtain in turn

lim (ha(x), p(z)) = lim @(§) = ¢(0) = (6(z), p(z)).

a—0t a—0t

Thus, by Theorem 3.7.159, we get the required convergence.

Differentiation of a Piecewise Continuous Function

For piecewise continuous functions the following theorem holds true:

Theorem 3.7.161 Let the function f have discontinuities of the first kind at points xy,
k=1,2,---,n, with a jump equal to o, = f(xr+0)— f(xr—0) and let f have the derivative
% continuous everywhere without points xj,. Then the distributional derivative [’ is given

by the formula

f(z) = df;(;) +) ond(x — ).
k=1
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f
fix,+0) ¢ ?/—_\
5, |
f(xu-ﬂ) g _’j

Figure 24. The graph of function with a jump o, at the point z,

Proof. Tt is sufficient to consider the case when the function f has only one discontinuity

of the first kind at a point z, with a jump equal to
o= f(xo+0)— f(z, —0), (see Figure 24).

It follows from (3.7.10) that for every function ¢ € D there holds

oo +00
[ r@e@iz=— [ fa)e@

By straightforward calculations we get

/f m_/f m+/f

2| - / Mg&(m)dm

—0o0 K dx
oo +ood
+ o) - [ o

To

+o0
= fea=0)p(e0) — [ L owrae - sz, + 0)pla)

J -
= —pteo) (a0 = Sz -0) ~ [ Ly
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+00
= —0op(x,) — / %w(ﬂv)d%

— 00

/ 5z — wo)oup(x)de - / V) )

_ / () 4 60— 20) ) o),

— 00

where the equality
+oo
/ 0(x — xo)oop(x) de = p(x,)0,

follows from (3.7.20). Hence, for every function f € D we have

/ f(z / (dj;(x) + a8 — 0) ) pla)d.

— 00

y (3.7.15), we obtain

d
f(z) = J;(;) + 0,0(x — z0). (3.7.24)
[
Conclusion 3.7.1 If the functions f, f(!), & ... (=1 have discontinuities of the first
kind at a point x, with jumps equal to 0'(() ), Ugl), U((Jz), e ,aﬁ"’l), then
d
7 =T 400 50— a,):
d2
FO @)= T 4 050 a) 40 (w20
d3
) = fi(gx) + 006Dz —z,) + oV 6V (z — 2,) + 0P8z — x,);
dx (3.7.25)

FO () = CIE@) @500y b g oD 65 — 1)

dzm
n—1
dar -
= %{—F oD §*=1= (g — g,).
=0

Proof. We will prove the above formulas by induction. For n = 1 the formula (3.7.25)
takes the form (3.7.24).
Let us assume that formula (3.7.25) holds true for a certain k € N:

k k—1
f®(z) = ddf(kx) + Z oDsk=1=D (g —g,). (3.7.26)
x
1=0
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We will prove that the formula holds true for k£ + 1. Indeed, differentiating the formula
(3.7.26), we get

FOHD () = (f(k)(m))/ _ (dkf(x) n kz_:la(()z)(;(k—z—l)(x _ l’o))/
=0

dak
dkﬂf(f) k = 1) s(k—1
:W—'—US} )5(33—m0)+;0£)5( )(x—a:o)
dkﬂf(z) : 1) s(k—1
:W—F;O’g)d( )(CC—.TO),
what was to be shown. I

It follows from Conclusion 3.7.1 that the n-th distributional derivative is equal to a sum
of the n-th usual derivative and a sum of products of jumps of functions f, f(), f) ...,
£(=1) and relevant derivatives of § — Dirac’s distribution, translated to the point z = z,. In
particular, if f is a smooth function, then the distributional derivative is equal to derivative

in the classical sense, i.e.,

Example 3.7.91 Let us consider a characteristic function of the interval [—a, a]

W) = {1, for |z| < a,

0, for x| >a > 0.

From formula (3.7.24) it follows that

h(z) = % +o10(z+a)+o20(x—a)=0+0d(z+a)—d(z—a).

Hence
B (z) = 6(x +a) — 6(x — a).

Distributions with a One-Point Support

According to the definition of the support of the distribution (see section 3.6.3), a point
T, € R is a support of the distribution f in R if and only if the distribution f is a zero
distribution in the set R\ {z,}, i.e., in the space R without the point z,, but f is not a
zero distribution in the whole space R.

We have the following theorem for distributions with one-point support.

Theorem 3.7.162 If the support of a distribution f in R is the origin, then f is a linear
combination of the Dirac delta distribution and its derivatives. In other words, there exist

a number k € N, and real numbers ., (0 < m < k) such that

fz) = Z O‘m(s(m)(x)-

0<m<k
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In order to prove this theorem it is enough to consider Theorem 3.4.121, section 3.4.4,
for z, = 0.

Applications

Problem 3.7.13 Prove that a sequence of Dirichlet functions is distributionally conver-
gent to Dirac’s delta distribution d(x), i.e., prove that the following takes place:

. sinnz g
1 =6(z). 3.7.27
Jim —— = 5(z) (3.7.27)

Proof. Using the properties of the Fourier series (see [F]) we can write:

+o0
lim smxnx@(x) dx =mwp(0), ¢eD. (3.7.28)
By (3.7.21) we have
“+oo
[ ewsta)ds = o(0)

Hence, and from (3.7.28) we have the convergence of the sequence of functions

(sin mc)
T neN
to Dirac’s delta distribution, as n — oo. This implies the equality (3.7.27). I
Problem 3.7.14 Prove the equality
+oo
1 W d
— [ “Tdw=4d(x). (3.7.29)
27

Proof. Let us consider the sequence
n
folz) = /ei“""”dw, n € N.
—n

From
n

: einT _ ginz sinnx
e dw = - =2
1T T

—n
and (3.7.27) we obtain

n
SINNT dq

lim [ ¢“"dw = lim 2 =2md(x);
n— oo n—oo x
thus we get the required equality (3.7.29). I
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3.7.3 Convolution of Distributions

Among other irregular operations an especially important role is played by the convolution

of distributions. The sequential theory of convolution was developed in [AMS].
1. Convolution of Two Smooth Functions

J. Mikusinski has shown that if ¢ and v are smooth functions in R, then the convolution
@ * 1) is not necessarily a smooth function, even if it exists at every point x € R. We give

as an example, see [AMS], p. 130, the following:

Example 3.7.92 Let w be a smooth function in R, such that

and let

It is easy to see that this series converges almost uniformly. Thus,

o'(z) =9 (z) = io 2‘"‘w(2”(m—n)>.

If x #£ 0 the infinite integrals
+o0 +oo
/ oz — (t)dt and / oz — D) (t)dt

reduce to integrals over a bounded interval. Thus, the convolution
h=@x1p and h' =¢ x

exist for every x # 0. We have

—+oo

+oo
h(0) = Z 27"y where p= /w(—t)w(t)dt.

n=—oo
— 00

From this follows that the convolution ¢ * 1 is also defined at x = 0, and is thus defined

everywhere in R. On the other hand, we have

“+o0 —+o0 +oo
h'(0) = Z 2~ Inlginly = Z q, where q= /w(ft)w'(t)dt.

The series Z:fﬁoo q 1s divergent if ¢ # 0. Whether or not h' = ¢’ x 1) is defined at x = 0
depends on q, and we can choose w in such a way that ¢ # 0. Then h'(0) = £oo and h'(x)
does not tend to any finite limit as x — 0. Thus, although the convolution ¢ x 1 of the

smooth functions ¢ and v exists at x = 0, it is not a smooth function.
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Definition 3.7.88 We say that the convolution ¢ x 1 of the smooth functions p, ¥ € R
exists smoothly if for any order m,k € N, the convolutions p*) x (™) ezist in R and are

continuous, and the convolutions |p®)| % [1p™)| are locally integrable functions.

If the convolution of smooth functions exists smoothly then it has the following properties:

Property 3.7.17 If the convolution of two smooth functions ¢ and v exists smoothly,

then it is itself a smooth function. Moreover,

(¢ * w)(k) =" wp = pxp®  foreach ke N,.

Property 3.7.18 If the convolution of two smooth functions ¢ and 9 exists smoothly

and if X is a real number, then the convolutions

(M) x1, and @ x* (M)

exist smoothly and the equalities

(Ap) x 9 = x (M)
holds everywhere.

Property 3.7.19 If ¢, 1) and x are smooth functions and the convolutions ¢ * 1 and ¢ * x

exist smoothly, then the convolution ¢ * (¢ % x) also exists smoothly and

ex(W+x)=@*P+o*rx
holds everywhere.

Property 3.7.20 If f, g are locally integrable functions such that the convolution |f] * |g]|
is a locally integrable function and h, u are smooth functions of bounded supports, then the

convolution
(f*h)*(g*u)
exists smoothly.

2. Convolution of Two Distributions

Now we will introduce the operation of convolution of two distributions and will give
its basic properties. We have already mentioned different possibilities of introducing the
definition of convolution. Below we cite a definition of convolution in Mikusirniski’s sense,
[AMS].

Let f and g be distributions in R and let (f,)neny = (f*9n)nen and (gn)neny = (9% 0n)nen

be their regular sequences with the same delta sequence.
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Definition 3.7.89 We say that the convolution of f and g exists if for every delta sequence
(0n)nen the corresponding convolutions f, * g, (n € N) exist smoothly and represent a
fundamental sequence. The distribution determined by the fundamental sequence is, by

definition, the convolution of f and g, i.e.,
Frg:2 lm [(f *6,) % (g% 6,)]. (3.7.30)
Remark 3.7.125 Definition 3.7.89 does not depend on the choice of delta sequence (0,)nen-

Proof. Let (015 )nen and (02, )nen are two different delta sequences. If the convolution fxg

exists, then both sequences

((f * 01p) % (g % 61n))n6N and ((f * 025 ) * (g * 52n))n€N (3.7.31)

are fundamental. We have to show that they represent the same distribution.

Let d,, be the n-th element of the interlaced sequence

011, 021, 612, 022,013, 023, - - * ;

then the sequence (0, )nen is also a delta sequence. This implies that the sequence

((f %80 (g6,))

neN

is fundamental. Since sequences (3.7.31) are fundamental, they thus represent the same
distribution. I

Remark 3.7.126 The convolution (3.7.30) is not a reqular operation, since in this defi-
nition we have restricted ourselves to those particular fundamental sequences (fp)nen and

(gn)nen which are of the form
fo=1[f*0n, gn=g%d,, neN.
Remark 3.7.127 The convolution f * g does not exist for any pairs of distributions f,g.

Remark 3.7.128 Definition 3.7.89 is compatible with the definition of the convolution of

two locally integrable functions in R.

Proof. If f and g are locally integrable functions in R, such that convolution of | f|x|g| exists
almost everywhere and represents a locally integrable function, then (by Theorem 1, p. 286
in [Sk.4]) convolution f,, * g, exists smoothly. Moreover, by Property 3.4.13, section 3.4, the
sequence (fp*gn)nen converges locally in mean, and thus distributionally to f*g. Therefore,

convolution f * g is compatible with Definition 3.7.89 of the convolution of distributions. I
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Remark 3.7.129 The definition of convolution (3.7.30) is compatible with the definition
of convolution, if the distribution g is a smooth function of bounded support (see Re-
mark 3.3.108, section 3.3.5)

f*gi lim (f,*xg) g€D.
n—oo

Proof. Tt is easy to check that the convolutions f, * g, exist smoothly. It thus suffices to

check that

4

fn*gn—fn*gLO, ie.  lim (f, * (g9, —g))=0.

n—oo
In fact, by Property 3.4.10, section 3.4.1, we have

a.u.c.

(gn—9)® =0 for every ke N,.
Since f, 4, f, by Theorem 3.5.137, section 3.5.4, this implies that
Fux(gn—g) == fx0=0,
which completes the proof. I

3. Properties of Convolution of Distributions

Property 3.7.21 If the convolution f x g of the distributions f, g exists, then the convolu-

tions (Af) * g and f * (Ag) also exist for every real number A and we have

A)xg=fx(Ag) =A(f*g), AeR. (3.7.32)

Property 3.7.22 If the convolutions f * g and f * h of the distributions f, g, h exist, then

the convolution f (g 4+ h) also exists and we have

fr(g+h)=fxg+fxh. (3.7.33)

Property 3.7.23 If the convolution f * g of the distributions f, g exists, then g * f exists

and we have
frg=g=]. (3.7.34)

Property 3.7.24 If the convolution f g of the distributions f, g exists, then the convolu-

tions f*) x g and f x g(¥) also exist for every k € N, and we have

(fxg)® =" wg=fxg®, keN, (3.7.35)
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Property 3.7.25 If the convolution f * g of the distributions f,g exists, then f*) % g(*)

also exists for any k,l € N, and we have

fF s g® = (fx ) EleN,. (3.7.36)

Proof.  (of Properties 3.7.21 through 3.7.25) Let (0,)nen, be a delta sequence and let
o= %6, Gn=9g%0n, hy="hx*xd,.
If the convolution f * g exists, then the convolutions f,, * g, exist smoothly and we have
(Afn) % gn = fn * (Agn) = A(fn * gn),
Jn % gn = Gn * [,
(fux gn) ™ = [ 5 g0 = fux g,
and all the convolutions involved exist smoothly. This proves equality (3.7.32), (3.7.34),

(3.7.35), and (3.7.36). Moreover, if f * h exists, then

fWL*(gn+hvz) :fn*97L+fn*hn

and all the convolutions exist smoothly. This proves (3.7.33).
By (3.7.35), we have

(f # g) T = [(f % g) P07 = (f) 5 g) () = f(B) s gL,

this proves (3.7.36). I
For convolution of two distributions, when at least one of them is of bounded support,

we have:

Property 3.7.26 If f,g are distributions in R and at least one of them is of bounded

support, then the convolution f * g exists in R.

Property 3.7.27 If two of the distributions f, g, h are of bounded support, then all the
convolutions involved in

(fxg)xh=fx(g*h) (3.7.37)
exist and the equality holds.

Property 3.7.28 If one of the distributions f, g, h has a bounded support and the convolu-
tion of the remaining two exists, then all the convolutions involved in the equality (3.7.37)

exist and the equality holds.

Property 3.7.29 If f, g, h are distributions such that the convolution f * g exists and each

of distributions h,u is of bounded support, then

(frh)x(gxu) = (f*g)*(hxu) (3.7.38)
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and all the convolutions appearing in the equality exist.

Corollary 3.7.43 The Dirac delta distribution is a unit for the convolution, i.e.,

Sxf=fx8=f for feD,

(see Problem 3.7.13).

The operation of convolution is connected to the scalar product and to the value of
distribution at a point. From Theorem 3.6.139, formula (3.6.8), (3.6.9), section 3.6.1, we

have

Theorem 3.7.163 Let f and g be distributions and g_(x) = g(—x). If there exist convo-
lution f* g and its value (f * g)(0) at a point 0, then there exists scalar product (f,g—) and
the equality holds

(f*9)(0) = (f,9-) (3.7.39)

Theorem 3.7.164 If a convolution of distributions f, g, h is associative, i.e., convolutions

(f*g)xh, f=*(g*h) exist and their values ((f * g) * h) (0), (f * (g * h))(O) at a point 0,
then

(f=g*h)=(f*g,h).
Problem 3.7.15 Prove the following formulas:
(a) fxo=f,
(b) fxd"=F,
(c) é(z —a)xd(z - B) =d(z —a—B),

(d) (Lyxp)(x)= [ @(t)dt, ¢€D.
Proof. (a) By Property 3.7.26, section 3.7.3, there exists convolution f ¢, i.e.,

f*dg lim ((f*(sn)*(sn)a

n—oo

where (0, )nen is a delta sequence. By Property 3.7.27, section 3.7.3, and Property 3.4.3,

section 3.4.1, we have

(f % 6n) % 6p = f 5 (On % 6n) = f % O,

where (0, )nen is a delta sequaence, too. The sequence (f * d,,)nen is a regular sequence of

a distribution f, thus

lim (f *8,) < f.

n—oo
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Hence

fxé=f, feD.

(b) By Property 3.7.26, section 3.7.3, there exists a convolution f x¢', i.e.,
f o S T ((f#60) 6,).
Similarly, we have in (a)
(f%8,) %0 = f % (8 %6,) = f#0n = [ %0n.
Since the sequence (f’ * 6, )nen is regular for a distribution f/, thus we obtain

fré'=f, feD.

Problem 3.7.16 Let

Prove that for £ = «, 3, we have

(fa * fo)(@) = 1i(2) fatp(2)-

Remark. Put 7 = zu.

3.7.4 Multiplication of Distributions

The product of distributions is an irregular operation. It has caused problems to the
creators of the theory of distributions from the very beginning. At first one could only
multiply distributions by smooth functions. L. Schwartz’s example (see Problem 3.7.20,
section 3.7.5) shows that even then problems with associativity of this operation arise. The
task of generalizing the product of distributions has been undertaken by many mathemati-
cians (see [BoL], [BoP], [Br], [BrD]). H. Konig ([K6.1], [K6.2], [K6.3]) has shown that one
cannot define a general product of distributions without losing its “good” properties.

In the sequential approach of the theory of generalized functions one has J. Mikusinski’s
1962 definition of the product (see [Mi.5]):

frg: S tm (f 5 61)(g % an) (3.7.40)

if the limit exists for arbitrary delta sequences (01, )nen, (0n)nen. R. Shiraishi and M. Itano
have shown in [ShI] that the definition (3.7.40) is equivalent to the definition given by Y.
Hirata and H. Ogata in [HiO] also with the use of delta sequences. Their definition is not as

general as (3.7.42) because the product 1 §(z) does not exist in the sense (3.7.40) (see [It],
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[Ka.3]). The product of distributions was also of interest to many other mathematicians,
i.e., A. Kamiiiski ([Ka.1l], [Ka.2], [Ka.3]), P. Antosik and J. Ligeza [AL].

We start below with the definition of a product of distributions given by Mikusiniski in
1966 (see [Mi.8], [AMS], p. 242):

Definition 3.7.90 We say that the product of distributions f and g exists in (a, b) if for

every delta sequence (0, )nen the sequence

((f * 0 ) (g * 5n)) (3.7.41)

neN

is distributionally convergent in (a, b).

Then we write

fg: gnlirrgo(f*§n)(g*5n). (3.7.42)

The definition (3.7.42) is very general and enables us to consider very interesting and
important products of distributions that do not exist in the sense of Schwartz. For example,
the significant in physics product % - 0(x) exists and equals, according to expectations of
physicists, —5 - §(x) (see [Mi.8], [AMS], p. 249). The generalizations of this formula can be
found in [Fs.2] and [Is].

Theorem 3.7.165 If g is a smooth function in (a,b) then the limit (3.7.42) exists for
every distribution f defined in (a,b) and is equal to the product f - g, where the product is

understood as a reqular operation.
Proof. 1t follows from the property of delta sequences, Property 3.4.10, section 3.4.1, that
a.u.c.
(g% 0,)% = ¢g®) forall keN,.

Since
Fx6,-5f i (a,b),

by the Theorem 3.5.132, section 3.5.2, follows that the sequence (3.7.41) is convergent to
the product f - g. I

Corollary 3.7.44 It follows from the Theorem 1 that we can use the symbol f - g also in

the case when g is not a smooth function.

Properties of the Product The following equalities hold:
fr9=9-F; (3.7.43)

(@f)-g=f-(ag)=a(f-9), ack (3.7.44)
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(ftg) h=f hxtg-I (3.7.45)
k
(f-9W=>" (?) fO-g* =k eN,, (3.7.46)
=0

provided the products on the right exist.

Theorem 3.7.166 If a distribution f takes the value f(0) at the point x =0, then
f(x)é(z) = f(0)6(x), feD. (3.7.47)
Proof. Let ¢ € D and (0) # 0. Since, by Definition 3.6.83, section 3.6.1 and equality

(3.7.14),

(6nr0) ~5 0(0), as n—oo de, lim [ Su(z)p(x)dz<p(0),

we have

Yo = (On,p) 0 for n > n,.

It is easily checked that the sequence

1
ap = —0,p, neN,

n
is a delta sequence for n > n,. Using the notation
an(x) = an(—2x),
we can write for n > n,,

((f * 0n)0n, w) = Tn (f * O, an)

= Yn[(f * 0n) * @] (0) = yu[f * (6n * @n)](0),
by (3.6.6), (3.6.10), section 3.6.1, Property 3.7.27, section 3.7.3. Hence, by Theorem 3.5.132,

section 3.5.2, we obtain
(7 % 6)0n, ) - £(0)£(0),

since the sequence (J,, * @, )nen is a delta sequence, too.
If ©(0) = 0, we can write @ = 1 + @2, where 1, o € D and ¢1(0) # 0 and ¢5(0) # 0.
Applying the preceding result to 1 and @9 we have

((f #6200, 1)~ 21(0)£(0),
(7 %6060, £2) 5 22(0)£(0).

Hence,

(7 % 0)dn, @) = ((F %803, 1) + ((f % 8)dn, 2)

L 01(0)£(0) + 92(0) £(0) = ©(0) £(0).
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Thus,
((f * Oy, ) Oy <p) i>f(0)cp(0), for every ¢ € D. (3.7.48)

According to (3.6.6), section 3.6.1 and Theorem 3.7.157, section 3.7.2, we have

(£(0)d, @) = f(0)(8, ) = £(0) ¢(0). (3.7.49)
By Definition 3.7.90 it follows that

Hm (f #6,)0n = f(2)8(2). (3.7.50)

n—oo

Comparing (3.7.49) and (3.7.50) we get

((f*én)én, go) L (F(0)5, ), for peD. (3.7.51)

By (3.7.51) we have

((f * 0 )Ons gp) 4, (f(x)&(x), <p), for ¢ eD. (3.7.52)

According to (3.7.52), (3.7.53), and Theorem 3.5.123, section 3.5.1, we obtain

which proves our assertion. I
On the Associativity of the Product

The product of three functions is always associative, i.e., (f-g)-h = f-(g-h). Therefore,
it may seem odd that an analogous property does not hold for distributions. The example
below given by L. Schwartz in [S.2] (see Problem 3.7.20) shows the difficulties that arise
when multiplying distributions. However, it should be noted that associativity does hold
whenever at least two of the factors are smooth functions. Explicity, if f is any distribution

and ¢, ¥ are smooth functions, then

(fo)p = fpd).

This equality follows from the remark that the products with ¢, with ¢ and with @i are

regular operations. Namely, we have:

Theorem 3.7.167 (L. Schwartz) If p,v are smooth functions and f is a distribution,
then

(o) f = @ f).

One can state certain criteria for the existence of the product of distributions and its
associativity. In order to do that we give the definition of the order of a distribution with
respect to a continuous function. Let &+ = max(k, 0), k= = min(k, 0) for k € Z, where Z

is the set of integers.
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Definition 3.7.91 We say that a distribution f is of the order k € Z in (a, b) with respect

to a continuous function if there exists such a function F that

F(H):f in (a,b) and

FY  for 0<j<—k~ isa continuous function in (a, b).

The order of the distribution defined above is not unique.

Theorem 3.7.168 (Mi.5) If f and g are distributions in (a,b) of orders k, m € Z, re-
spectively, with respect to a continuous function and k+m < 0 then the product f - g exists

in (a, b) and it is of the order max(m,k).

Theorem 3.7.169 If f,g and h are distributions in (a,b) of orders k,1,m € Z with respect

to a continuous function and
E+1<0, k+m<0, m+1<0

then
(f-9)-h=Ff-(g-h).

The Schwartz theorem (Theorem 3.7.167) can be obtained as a conclusion from Theo-
rem 3.7.169. Using the notation of an order of the distribution with respect to a measure,
P. Antosik generalized Theorem 3.7.168 and Theorem 3.7.169 (see [A]).

3.7.5 Applications

Nonexistence of §2

By the square of the delta distribution, 62, we mean the product 6 - 6.

Problem 3.7.17 Prove that the product 6 - § does not exist, i.e., that the symbol §2 is

meaningless.

Proof. According to the definition of the product (Definition 3.7.90, section 3.7.4), we can
write

562 lim (5%6,)(5%6,), ie, &-6< lim 62,

n—oo
where (0, )nen is an arbitrary delta sequence. Note that there exists a smooth function ¢

of bounded support such that
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The sequence

is a delta sequence, and furthermore,

1 1
2=_p? ={z:—— <z<—2¢.
(Bn(@)2=n2 for ze€l, { - 4n}

62,0) /(5 daz>/62 dx—/n dm—2 0.

In

Hence,

This means that the sequence (§2),en does not converge, i.e., that the square §2 does not
exist. 0
The Product z - %

The distribution 1 is defined as the distributional derivative of In |z|:

= (Infz])" (%)

Problem 3.7.18 Prove that the product x - % exists and

1
zo— =1 (3.7.53)

Proof. Note that the function z - In|z| is a primitive function, in the ordinary sense, of
1+ 1In|z|. (3.7.54)

This function is a locally integrable function; thus it is equal to the distributional derivative
of z - In|x|, ie.,

(x-In|z|) =1+In|z| (3.7.55)

Since z is a smooth function the product z - In |z| can be regarded as a regular operation.
Differentiating, we get
(x-In|z|) = z(In|z]) +In|z|.

Hence, by (x) we obtain
1
(z-In|z|) == - E+ln|x|. (3.7.56)

According to (3.7.56) and (3.7.55), we obtain the required equation, i.e.,

1
z-—=1
x
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The Product 1, -§

Problem 3.7.19 Prove that the product 1 - exists and

1

Proof. Let (§,)nen be any delta sequence and let H,, = 14 xd,,n € N. At that time

and
1.2 lim (14 % 6,)2.

Note that

(H?) =2H,H! =2H,56,.
From here

1 1
lim H,6, < lim f(HZ)’iid.

The product 1, - § exists and the equality (3.7.57) holds. I

Problem 3.7.20
1 1
Prove that (E -x)é # ;(x - 9).

Proof.  According to Problem 3.7.18 and (3.4.3), section 3.4.1, it suffices to see that the
equalities hold:

3.8 Hilbert Transform and Multiplication Forms
3.8.1 Definition of the Hilbert Transform

Let us define the Hilbert transform of the function ¢ € D.
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Definition 3.8.92 By the Hilbert transform H of ¢ € D we mean the limit

dt
H(z): 2 Jim o — )7
An,

(3.8.1)

where A, = {zx €R: |z| > 1}

Lemma 3.8.51 For every function ¢ € D there exists the limit (3.8.1); moreover, the
equality
H(z) = ¢(x) * — (3.8.2)

holds.

Proof. Let ¢ € D. Let us consider the integral

[o-0F.

Ap
where 4, = {z e R: |z|> 1}
Integrating by parts, we obtain
dt 1 1 )
o(r — t)? =lnn|p(x — E) —p(x+ 5)} + [ ¢'(z —t)n|t|dt. (3.8.3)
A, An

Note that, by Lagrange’s theorem, we have the equality

1 1. 2, 1
=)= ple = —) = ¢/(€), where |6 < .
pla+=)—plz— =)= =¢/(€), where [6|<

Hence, by (3.8.3), we get

H(x) = lim [ ¢z — t)% = ¢'(z) xIn|x|. (3.8.4)
ATI,

We now show that H is a square integrable function. In fact, there is a number z, such
that
p(x) =0 for |z|> z,.

This implies that for || > z, we can write

M
‘/ x—t— </‘<,0 ’dt /‘ ’dt_ , with M:/|<p|.
x—t |x| —
An R

Thus,

o] < =

=zl =z

|z| > . (3.8.5)

Since H € C*°, therefore, H € L*(R).
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We recall that the distribution % is defined as the distributional derivative of In || (see

section 3.7.5), hus the formula (4) can be rewritten as
! 1
H(@) = p(@) + (Info]) = o(2) —, (3.8.6)

which completes the proof. I

Remark 3.8.130 By the formula (3.8.6) we can alternatively define the Hilbert transform

of the function ¢ € D as the convolution:
1
H=px*x—.
x

This definition suggests a generalization of the Hilbert transform onto any distribution f

for which the convolution

1
H=/f*-
x
exists. For instance, the Hilbert transform of Dirac’s delta distribution exists and the equal-
ity
1 1
H=0x—- = —
r  x
holds.

3.8.2 Applications and Examples

2
Example 3.8.93 Nonexistence of (i) :

2 2
By (1) we mean the product (+) =1.1,
x x x

T

Lemma 3.8.52 The product % . % does not exist in the distributional sense.

Proof. 1If % L existed, then, by the definition of product of distributions (see section 3.7.4),

x

for any delta sequence (d,,)nen the sequence

((++2) ),

would distributionally converge and

= lim (5,1*%)2. (3.8.7)

1 1
T T n—oo
Taking a special delta sequence we show that this limit does not exist. Let ¢y € D and

Y(x) > 0 for x € R. Thus, there is a number z, such that

Y(x) =0 for |x]|> x,.
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This implies that for every z satisfying |z| > z, there is an index n, such that

M,t ()t
P(xr — / ———dt = / dt > for n >n,.
\A/ ( |x—t| |xo|+|x|

Hence,
t)dt

‘ 7‘ - |xo|—|—|x|

Let ¢ be a nonnegative function of class D such that

1
5n(x)*;‘ > T for |z| > —
Hence,
1
3
1\2 1 dx n(n — 2)
671 - ) Z a - I .
(( *x) Lp) 2/(1*|x|)2 4(n+2) >
L n
This shows that the product (3.8.7) does not exist. I

Remark 3.8.131 [t should be noted that by definition

5= (-3 = (o)

The symbol ;12 represents a distribution and should not be confused, in the theory of distri-

2
bution, with the square (%) .
Example 3.8.94 The formulas of Gonzalez-Dominguez and Scarfiello

The formulas of Gonzalez-Dominguez and Scarfiello are of the form

(90 * % w) =0 €D, (3.8.8)

(‘P*%mgﬁ) :%(/tpf, v eD. (3.8.9)

We will prove the formula (3.8.10). It is easy to see that for ¢ £ 0, we have the identity

Jj<p(a:t— ) (z— t)f(af 1) _ oz —1). (3.8.10)
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Let p€ Dand A, ={z €R: |z| > L1} Then, by (3.8.10) it follows that

JECLET PRy LT RTEY P

n n n

Hence, by (3.8.1), (3.8.6) in section 3.8.1, as n — oo, we have

x<<p * %) — (z) * % = /go. (3.8.11)

Note that from the properties of the inner product the following equality can be derived:

(o5 5)-9) = (o 3o00).

T e )

By (3.8.11) for the inner product with any function 7 € D in particular for ¢ € D, we have

(a:(gp* %) — (zp) * %, <p> = (/4,0, <p), peD. (3.8.13)

By the property of the inner product and (3.8.12) the left side of (3.8.13) is of the form

(o 2o5) - (0. 0) =3 L00)
(w*%,:w)) =%(/<ﬂ7 80) :%(/¢)2, peD.

and the formula (3.8.9) of Gonzalez—Dominguez and Scarfiello is proved.

(3.8.12)

Thus,

Example 3.8.95 The product % -0

The product 1 -§(x) appears in physics and its result —36’(z), in the distributional sense
of J. Mikusinski, fulfills the expectations of physicists.
According to the definition (3.7.42), section 3.7.4, the product %6, is given by the formula

1 o(x) < lim <5n * %)5,1

€T n— oo

We shall show that the limit exists and is equal to —36'(x), i.e.,

1.1,
—0= 30 (3.8.14)
Let f, = <5n*%) 6n, n € Nand
1/ ,
F,(z)= 3 (x —t)*fa(t)dt, neN;

then
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We show that F;, = in (—o0,+00).
Since
falx)=0 for z<-a, neN, (3.8.15)

thus, F,,(z) =0 for < —a,,. Since f,(z) =0 for x > oy, n € N, thus

Fl(x) = /I(x—t)fn(t)dt:x /m fa(t)dt — 7ootfn(t)dt

= (6, éan) — (8 é w8, ) = %(/%)2 = —%,
by (3.8.8), (3.8.9). Hence,

Fo(2) = Fp(om) — g + %" for > a, neN. (3.8.16)

where
L(x) = zln|z| — x, for « # 0,
0, for x = 0.

Hence,

Fa@l <5 [ @a?( [ 5@ d) 6,0

— —«

Qn

= 2L(2an )02 / |5§3>(u)|du/ 16, ()| dt

= 2L(20m) Mo M, = €,
where for M;(i = 0,2); see section 3.4.1, Definition 3.4.74.

Since the function L is continuous and L(0) = 0, it follows that for |z| < a,
|Fn(2)] <€, — 0, as n— oo. (3.8.17)

By (3.8.15), (3.8.16), (3.8.17) it follows that the sequence (F},)nen converges uniformly in
(—00,400) to the function F given by

Fa) 0, for x < 0,
T) =
-5, forxz>0.

Hence,
1
lim fu(e) £ F® (@) = ~50'(2),

which proves (3.8.14).
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Example 3.8.96 Some Other Formulas with Dirac’s Delta Distribution

As an interesting application we have the following formulas:

1 1

— % — = —71%4,
Tz
(e 11y lp 11
T T i w2 x2’
52_i(l>2__ii
w2 \z/)  w2a2

The proofs for existence of the left-hand sides of the above equalities and proofs of the above
equalities can be obtained with application of the properties of the Fourier transform. We

omit the proofs and refer interested readers to the book [AMS].
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