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Preface

The aim of this book is to provide an introduction to operational calculus and related

topics: integral transforms of functions and generalized functions. This book is a cross be-

tween a textbook for students of mathematics, physics and engineering and a monograph on

this subject. It is well known that integral transforms, operational calculus and generalized

functions are the backbone of many branches of pure and applied mathematics. Although

centuries old, these subjects are still under intensive development because they are useful in

various problems of mathematics and other disciplines. This stimulates continuous interest

in research in this field.

Chapter 1 deals with integral transforms (of functions), historically the first method to

justify Oliver Heaviside’s (algebraic) operational calculus in the first quarter of the twentieth

century. Methods connected with the use of integral transforms have gained wide acceptance

in mathematical analysis. They have been sucessfully applied to the solution of differential

and integral equations, the study of special functions, the evaluation of integrals and the

summation of series.

The sections deal with conditions for the existence of the integral transforms in consider-

ation, inversion formulas, operational rules, as for example, differentiation rule, integration

rules and especially the definition of a convolution f ∗ g of two functions f and g, such that

for the transform T it holds that

T[f ∗ g] = T[f ] · T[g].

Sometimes applications are given. Because of the special nature of this book some extensive

proofs are only sketched. The reader interested in more detail is referred for example to the

textbooks of R.V. Churchill [CH.2], I.W. Sneddon [Sn.2], and A.H. Zemanian [Ze.1]. Short

versions of many integral transforms can be found in A.I. Zayed’s handbook Function and

Generalized Function Transformations [Za]. For tables of integral transforms we refer to

[EMOT], [O.1]-[O.3], [OB], [OH], and [PBM], vol. IV, V.

In this book we deal only with integral transforms for R1 - functions. The reader interested

in the multidimensional case is referred to [BGPV].

In Chapter 2 (algebraic) operational calculus is considered. This complete return to

the original operator point of view of Heaviside’s operational calculus was done by Jan

Mikusiński; see [Mi.7]. He provided a strict operator basis without any references to the

theory of the Laplace transform. His theory of convolution quotients provides a clear and

simple basis for an operational calculus. In contrast to the definition of the multiplication
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xii

of functions f and g, continuous on [0,∞) given by J. Mikusiński,

(1) (f ∗ g)(t) =
∫ t

0

f(x) g(t− x) dx,

in Chapter 2 functions with a continuous derivative on [0,∞) are considered and the mul-

tiplication is defined by means of

(2) (f ∗ g)(t) =
d

dt

∫ t

0

f(x) g(t− x) dx.

Both definitions have advantages and disadvantages. Some formulas are simpler in the one

case, otherwise in the case of definition (2). In the case of definition (2) the ∗-product of

two functions constant on [0,∞),

f(x) = a, g(x) = b, x ∈ [0,∞)

equals a function h with h(x) = ab, x ∈ [0,∞), such that the ∗-product of two numbers

equals their usual product. In the case of definition (1) this product equals abt. In both

cases the field of operators generated by the original space of functions is the same; the

field of Mikusiński operators. For our version of the starting point we refer to L. Berg,

[Be.1] and [DP]. After an introduction a proof of Titchmarsh’s theorem is given. Then the

operator calculus is derived and the basis of the analysis of operators is developed. Finally,

applications to the solution of ordinary and partial differential equations are given.

Chapter 3 consists of the theory of generalized functions. Various investigations have been

put forward in the middle of the last century. The mathematical problems encountered are

twofold: first, to find an analytical interpretation for the operations performed and to justify

these operations in terms of the interpretation and, second, to provide an adequate theory

of Dirac’s, δ-function, which is frequently used in physics. This “function” is often defined

by means of

δ(x) = 0, x 6= 0,
∫ +∞

−∞
δ(x)ϕ(x) dx = ϕ(0),

for an arbitrary continuous function ϕ. It was introduced by the English physicist Paul

Dirac in his quantum mechanics in 1927; see [Dir]. It was soon pointed out that from the

purely mathematical point of view this definition is meaningless. It was of course clear to

Dirac himself that the δ-function is not a function in the classical meaning and, what is

important, that it operates as an operator (more precisely as a functional), that related to

each continuous function ϕ its value at the point zero, ϕ(0); see Laurent Schwartz [S.2].

Similar to the case of operational calculus of Chapter 2, J. Mikusiński together with R.

Sikorski developed an elementary approach to generalized functions, a so-called sequential

approach; see [MiS.1] and [AMS]. They did not use results of functional analysis, but only

basic results of algebra and analysis. In Chapter 3 we follow this same line.
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Preface xiii

Because this book is not a monograph, the reference list at the end of the book is not

complete.

We assume that the reader is familiar with the elements of the theory of algebra and

analysis. We also assume a knowledge of the standard theorems on the interchange of limit

processes. Some knowledge of Lebesgue integration, such Fubini’s theorem, is necessary

because integrals are understood as Lebesgue integrals. Finally, the reader should be famil-

iar with the basic subject matter of a one-semester course in the theory of functions of a

complex variable, including the theory of residues. Formulas for special functions are taken

from textbooks on special functions, such as [E.1], [PBM] vols. I-III, [NU], and [Le].

The advantage of this book is that both the analytical and algebraic aspects of opera-

tional calculus are considered equally valuable. We hope that the most important topics

of this book may be of interest to mathematicians and physicists interested in application-

relevant questions; scientists and engineers working outside of the field of mathematics

who apply mathematical methods in other disciplines, such as electrical engineering; and

undergraduate- and graduate-level students researching a wide range of applications in di-

verse areas of science and technology.

The idea for this book began in December 1994 during A.P. Prudnikov’s visit to the

Mathematical Institute of the Friedrich Schiller University in Jena, Germany. The work

was envisioned as the culmination of a lengthy collaboration. Unfortunately, Dr. Prudnikov

passed away on January 10, 1999. After some consideration, we decided to finish our joint

work in his memory. This was somewhat difficult because Dr. Prudnikov’s work is very

extensive and is only available in Russian. We were forced to be selective. We hope that

our efforts accurately reflect and respect the memory of our colleague.

Hans-Juergen Glaeske and Krystyna A. Skórnik
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Chapter 1

Integral Transforms

1.1 Introduction to Operational Calculus

In the nineteenth century mathematicians developed a “symbolic calculus,” a system of

rules for calculation with the operator of differentiation D := d
dt .

The papers of Oliver Heaviside (1850–1925) were instrumental in promoting operational

calculus methods. Heaviside applied his calculus in the solution of differential equations,

especially in the theory of electricity. He had a brilliant feel for operator calculus, but

because he did not consider the conditions for the validity of his calculations his results

were sometimes wrong. Heaviside published his results in some papers about operators

in mathematical physics in 1892–1894 and also in his books Electrical Papers (1892) and

Electromagnetic Theory (1899); see [H.1]–[H.3].

Heaviside used the operator D and calculated with D in an algebraic manner, defining

D0 := I, Dk :=
dk

dtk
, k ∈ N,

where I is the identity. This method seems to be clear because of the following rules of

calculus

D(cf)(t) = cDf(t) (1.1.1)

D(f + g)(t) =Df(t) +Dg(t), (1.1.2)

Dk(Dlf)(t) =Dk+lf(t), k, l ∈ No. (1.1.3)

If one replaces derivatives in differential equations by means of the operator D, then there

certain functions of D appear. Because of (1.1.1) through (1.1.3) it is easy to understand

the meaning of Pn(D), where Pn is a polynomial of degree n ∈ No. Because of

f(t+ h) =
∞∑
n=0

hn

n!
f (n)(t) =

∞∑
n=0

(hD)n

n!
f(t) =: ehDf(t)

one can interpret the operator ehD as the translation operator:

ehDf(t) = f(t+ h).
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2 Integral Transforms

According to the rules of algebra one has to define D−1 := 1
D as

D−1f(t) =

t∫
0

f(τ)dτ.

Example 1.1.1 Look for a solution of

y′(t) + y(t) = t2. (1.1.4)

The solution of this first-order linear differential equation is well known as

y(t) = c e−t + (t2 − 2t+ 2), (1.1.5)

with some arbitrary constant c. By means of the operator D, equation (1.1.4) can be

rewritten as

(1 +D)y = t2

and therefore,

y(t) =
1

1 +D
t2. (1.1.6)

There are various interpretations of 1
1+D . Quite formally one has, for example,

1
1 +D

= 1−D +D2 ∓ · · · ,

and applying the right-hand side to (1.1.6) one has

y(t) = t2 − 2t+ 2;

this is the solution (1.1.5) of (1.1.4) with y(0) = 2. On the other hand one can write

1
1 +D

=
1

D
(

1 + 1
D

) =
1
D
− 1
D2

± · · · .

Interpreting
1
Dk

f =
1
D

( 1
Dk−1

f
)
, k ∈ N

as k-time integration of f from 0 to t we obtain from (1.1.6)

y(t) =
t3

3
− t4

3 · 4
+

t5

3 · 4 · 5
∓ · · ·

=−2
[ t0

0!
− t1

1!
+
t2

2!
− t3

3!
± · · ·

]
+ t2 − 2t+ 2

=−2e−t + t2 − 2t+ 2,

and this is the solution (1.1.5) of (1.1.4) with y(0) = 0. So depending on the interpretation

of the expression 1
1+D , one obtains different solutions of (1.1.4). In this manner one can
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Introduction to Operational Calculus 3

develop an elementary legitimate calculus for the solution of linear ordinary differential

equations with constant coefficients. Let us look for a solution of

Ln[y](t) := y(n)(t) + a1y
(n−1)(t) + · · ·+ any(t) = h(t)

ak ∈ R, k = 0, 1, · · · , n, (1.1.7)

with the initial value conditions

y(0) = y′(0) = · · · = y(n−1)(0) = 0. (1.1.8)

Setting Ln(D) = Dn + a1D
n−1 + · · ·+ an one has

Ln(D)y(t) = h(t)

or

y(t) =
1

Ln(D)
h(t).

For the interpretation of 1
Ln(D) we start with L1(D) = D. Then we have the equation

Dy = h

and

y(t) =
1
D
h(t) =

t∫
0

h(τ)dτ. (1.1.9)

In the case of L1(D) = D − λ we have (D − λ)y = h or

eλtD
(
e−λty

)
= (D − λ)y = h.

Therefore,

D
(
e−λty(t)

)
= e−λth(t),

and according to (1.1.9),

y(t) = eλt
t∫

0

e−λτh(τ)dτ =:
1

D − λ
h(t) (1.1.10)

Similarly one can perform the case of a polynomial Ln(λ) with a degree n > 1 and n zeros

λj , j = 1, 2, · · · , n, where λi 6= λj if i 6= j. Then

Ln(λ) = (λ− λ1)(λ− λ2) · · · (λ− λn),

and
1

Ln(λ)
=

A1

λ− λ1
+

A2

λ− λ2
+ · · ·+ An

λ− λn

with

Ak =
1

L′n(λk)
, k = 1, 2, · · · , n.
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4 Integral Transforms

From (1.1.7) we obtain, applying (1.1.10)

y(t) =
n∑
k=1

Ak
D − λk

h(t) =
n∑
k=1

Ake
λkt

t∫
0

e−λkτh(τ)dτ. (1.1.11)

One can easily verify that (1.1.11) is the solution of (1.1.7) with vanishing initial values

(1.1.8).

This method can also be extended to polynomials Ln with multiple zeros.

Problems arose applying this method to partial differential equations. Then one has to

“translate” for example functions of the type Dn−1/2, n ∈ N or e−x
√
D. Heaviside gave

a translation rule for such functions in the so-called “Expansion Theorem.” The solutions

often took the form of asymptotic series, often better suited for applications than conver-

gent series. Sometimes incorrect results appeared because conditions for the validity were

missing. In Heaviside’s opinion:

“It is better to learn the nature of and the application of the expansion theorem by actual

experience and practice.”

There were various attempts to justify Heaviside’s quite formal operational methods. At

the beginning of the twentieth century mathematicians such as Wagner (1916), Bromwich

(1916), Carson (1922), and Doetsch used a combination of algebraic and analytic methods.

They used two different spaces: A space of originals f and a space of images F , connected

with the so-called Laplace transform (see section 1.4)

F (p) = L[f ](p) =

∞∫
0

e−ptf(t)dt, p ∈ C, (1.1.12)

provided that the integral exists. Integrating by part one has

L[f ′](p) = pF (p)− f(0). (1.1.13)

This formula can be extended to higher derivatives. So Heaviside’s “mystique” multiplica-

tion with the operator D is replaced by the multiplication of the image F with the complex

variable p. From (1.1.13) we see that nonvannishing initial values also can be taken into

consideration. In the space of images the methods of the theory of functions of a complex

variable can be used. Of course one needs a formula for the transform of the images into

the space of originals. This is explained in section 1.4. The disadvantage of this method

is that it is a mixture of analysis and algebra. Because of the convergence of the integral

(1.1.12) quite unnatural restrictions appear. So, for example, L[et
2
] does not exist, and

Dirac’s δ also cannot be included in this theory. Nevertheless, the Laplace transform was

used and is still used today in many applications in electrotechnics, physics, and engineer-

ing. In the following, similar to the Laplace transform, many other integral transforms are
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Integral Transforms – Introductory Remarks 5

investigated and constructed for the solution of linear differential equations with respect to

special differential operators of first or second order.

A radical return to the algebraic methods was given by J. Mikusiński. His theory is free

of the convergence–restrictions of integral transforms, and Dirac’s δ appears as a special

operator of the field of Mikusiński operators. This is explained in Chapter 2.

Chapter 3 introduces spaces of generalized functions. Their elements have derivatives of

arbitrary order and infinite series can be differentiated term-wise. Moreover, they include

subspaces of “ordinary” functions. They are linear spaces in which a multiplication of its

elements, called convolution “∗” is defined, such that, for example,

(Dnδ) ∗ f = Dnf

is valid. So one again has an operational calculus for the solution of linear differential

equations with constant coefficients.

1.2 Integral Transforms – Introductory Remarks

In Chapter 1 we deal with (one-dimensional) linear integral transforms. These are map-

pings of the form

F (x) = T[f ](x) =

b∫
a

f(t)K(x, t)dt. (1.2.1)

Here K is some given kernel, f : R → C is the original function and F is the image of f

under the transform T. Sometimes x belongs to an interval on the real line, sometimes it

belongs to a domain in the complex plane C. In these cases the transform T is called a

continuous transform; see sections 1.3 through 1.9. If the domain of definition of the images

F is a subset of the set of integers Z the transform T is sometimes called discrete, sometimes

finite; see section 1.10. We prefer the latter. Sometimes the variable of the images appears

in the kernel as an index of a special function. Yakubovich [Ya] called these transforms

index transforms. Index transforms can be continuous transforms (see sections 1.8.3 and

1.9) or finite transforms (see section 1.10).

In the following chapters we deal with transforms of interest for applications in mathemat-

ical physics, engineering, and mathematics. The kernels K(x, t) “fall down from heaven,”

since otherwise the sections would become too voluminous. The kernels can be determined

by means of the differential operators in which one is interested. For example, to find a

kernel for the operator D with Df = f ′ on R+ one has

F [Df ](x) =

∞∫
0

f ′(t)K(x, t)dt = [f(t)K(x, t)]∞0 −
∞∫
0

f(t)
∂

∂t
K(x, t)dt.
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6 Integral Transforms

To obtain a kernel K such that the operation of differentiation is transformed into multi-

plication with the variables of images one can choose

∂

∂t
K(x, t) = −xK(x, t)

and

lim
t→0+

K(x, t) = 1, lim
t→+∞

K(x, t) = 0.

A special solution is

K(x, t) = e−xt, x, t ∈ R+,

and so we derived the kernel of the Laplace transform (1.1.12), with the differentiation rule

(1.1.13). This transform is considered in detail in section 1.4.

Another problem is as follows: Let u(x, y) be a solution of the Laplace equation on the

upper half plane

42u(x, y) = uxx(x, y) + uyy(x, y) = 0, x ∈ R, y ∈ R+ (1.2.2)

with the boundary conditions

u(x, 0) = eiξx, ξ, x ∈ R, (1.2.3)

lim
|x|,y→+∞

u(x, y) = 0. (1.2.4)

One can easily verify that

u(x, y) = eiξx−|ξ|y

is a solution of the problem. To solve the problem under a more general condition than

(1.2.3)

u(x, 0) = f(x) (1.2.5)

one can choose the superposition principle since 42 is a linear differential operator. This

leads to the attempt to set

u(x, y) =

∞∫
−∞

F (ξ)eiξx−|ξ|ydξ (1.2.6)

for some function F . Condition (1.2.5) yields

f(x) =

∞∫
−∞

F (ξ)eiξxdξ, x ∈ R. (1.2.7)

This is an integral equation for the function F and the solution leads to an integral transform

F = T[f ]. (1.2.8)
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The formulas (1.2.8) and (1.2.7) are a pair consisting of an integral transform and its

inversion. In this special example we have the Fourier transform, investigated in section

1.3.

Readers interested in the derivation of the kernel of an integral transform are referred to

Sneddon [Sn.2], Churchill [Ch.2], and especially to [AKV].

The sections that follow start with the definition of a transform, conditions of the exis-

tence, inversion formulas and operational rules for the application of the transforms, such

as differentiation rules considered in the examples above. A convolution theorem plays an

important part. Here a relation f, g → f ∗ g has to be defined such that

T[f ∗ g] = T[f ] · T[g].

All these operational rules are derived under relatively simple conditions, since in applica-

tions one has to use the rules in the sense of Heaviside; see section 1.1. One applies the

rule, not taking note of the conditions of their validity (pure formally), and afterward one

has to verify the result and state the conditions under which the formally derived solution

solves this problem. Here often the conditions are much less restrictive than the set of

conditions for the validity of the operational rules that have been used for the calculation

of the solution.

Remark 1.2.1 For every transformation there is a special definition of the convolution.

Because there are few unique signs “∗” sometimes the same sign is used for different trans-

forms and therefore for different convolutions. In this case this sign is valid for the transform

discussed in the section under consideration. If in such a section the convolution of another

transform is used, then we will make additional remarks.

Notations. In the following, N is the set of natural numbers N = {1, 2, 3, · · · },
No = N ∪ {0}, Z is the set of integers, Q the field of rational numbers, R the field of

real numbers, R+ the set of positive real numbers, R̄+ = R+ ∪ {0}, and C is the set of

complex numbers. All other notations are defined, when they first appear; see also the

“List of Symbols” at the beginning of this volume.
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8 Integral Transforms

1.3 The Fourier Transform

1.3.1 Definition and Basic Properties

Definition 1.3.1 The Fourier transform (FT ) of a function f : R → C is the function f∧

defined by

f∧(τ) = F [f ](τ) =

∞∫
−∞

f(t)e−iτtdt, τ ∈ R, (1.3.1)

provided that the integral exists.

Remark 1.3.2 Instead of the kernel e−iτt sometimes eiτt, e−2πiτt, (2π)−1/2e±iτt are cho-

sen and in certain instances these kernels are more convenient.

Remark 1.3.3 The convergence of the integral (1.3.1) can be considered in a different

manner: As pointwise convergence, as uniformely convergence, in the sense of the principal

value of Cauchy, in the sense of Lp–spaces or others.

We consider the Fourier transform in the space

L1(R) = L1 = {f : f measurable on R, ‖f‖1 =

∞∫
−∞

|f(t)|dt <∞}.

The space L1 is obviously suited as the space of originals for the Fourier transform. The

Fourier transforms of L1–functions are proved to belong to the space

C(R) = C = {f : f continuous on R, ‖f‖ = sup
t∈R

|f(t)| <∞}.

Theorem 1.3.1 Let f ∈ L1, then f∧ = F [f ] ∈ C. The FT is a continuous linear transfor-

mation, i.e.,

F [αf + βg] = αf∧ + βg∧, α, β ∈ C, f, g ∈ L1 (1.3.2)

and if a sequence (fn)n∈N is convergent with the limit f in L1 then the sequence (f∧n )n∈N

of their Fourier transforms is convergent with the limit f∧ in C.

Proof. We have

|f∧(τ)| ≤
∞∫

−∞

|f(t)|dt = ‖f‖1
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The Fourier Transform 9

and, therefore, there exists ‖f∧‖ = supτ∈R |f∧(τ)|. If h ∈ R and T > 0 then

|f∧(τ + h)− f∧(τ)| ≤
∞∫

−∞

|e−iht − 1| |f(t)|dt

≤
T∫

−T

|e−iht − 1| |f(t)|dt+ 2

 −T∫
−∞

|f(t)|dt+

∞∫
T

|f(t)|dt

 < ε,

since |e−iht− 1| becomes arbitrarily small if |h| is sufficient small and the last two integrals

become arbitrary small if T is sufficiently large. As such we have f∧ ∈ C. The FT is

obviously linear. From

‖f∧ − f∧n ‖ = sup
τ∈R

|(f − fn)∧(τ)| ≤ ‖f − fn‖1

we obtain the continuity of the FT .

Example 1.3.2 If f ∈ L1 then f∧ ∈ C, but the image f∧ must not belong to L1. Let

f(t) =

{
1, |t| ≤ 1
0, |t| > 1.

Then f ∈ L1, but

f∧(τ) =

1∫
−1

e−iτtdt = 2τ−1 sin τ

does not belong to L1. But there holds

Theorem 1.3.2 Let f ∈ L1. Then f∧(τ) = F [f ](τ) tends to zero as τ tends to ±∞.

Proof.

Step 1. Let f be the characteristic function of an interval [a, b], −∞ < a < b <∞, i.e.,

f(t) = χ[a,b](t) =

{
1, t ∈ [a, b]
0, t ∈ R \ [a, b].

Then we have

f∧(τ) =

b∫
a

e−iτtdt = i
e−ibτ − e−iaτ

τ

and f∧(τ) tends to zero as τ → ±∞.

Step 2. Let f be a “simple function,” i.e.,

f(t) =
n∑
j=1

αjχ[aj ,bj ], αj ∈ C, j = 1, 2, . . . , n,
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10 Integral Transforms

where the intervals [aj , bj ] are disjointed. Then

f∧(τ) =
n∑
j=1

i

τ
αj(e−ibjτ − e−iajτ )

and f∧(τ) tends also to zero as τ → ±∞.

Step 3. The set of simple functions are dense in L1. Therefore, for every ε > 0 there

exists a simple function fo such that

‖f − f0‖1 < ε/2,

and there exists a number T > 0 such that

|f∧o (τ)| < ε/2, |τ | > T

according to step 2.

Therefore,

|f∧(τ)|= |(f − fo)∧(τ) + f∧o (τ)| ≤ |(f − fo)∧(τ)|+ |f∧o (τ)|

≤ ‖f − fo‖1 + |f∧o (τ)| < ε

2
+
ε

2
= ε

if |τ | > T .

Remark 1.3.4 Not every function g, continuous on R, uniformly bounded with g(τ) → 0

as τ → ±∞ is an image of an L1–function f under the FT . One can prove that the function

g which is defined by means of

g(τ) =

{
1/ log τ, τ > e

τ/e, 0 ≤ τ ≤ e

and g(−τ) = −g(τ), is not a FT of a function f ∈ L1 (see [Ob.], pp. 22–24).

Remark 1.3.5 Let Co be the Banach space

Co(R) = Co = {f : f ∈ C : lim
τ→±∞

f(τ) = 0}.

Then because of Remark 1.3.4 we have:

Theorem 1.3.3 The FT is a continuous linear mapping of L1 into Co.

Finally we obtain by straightforward calculation:

Proposition 1.3.1 If f is even (respectively odd), then f∧ is even (respectively odd) and

we have

f∧(−τ) = f∧(τ) = 2

∞∫
0

f(t) cos τtdt (1.3.3)
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and

f∧(−τ) = −f∧(τ) = −2i

∞∫
0

f(t) sin τtdt. (1.3.4)

The integrals in (1.3.3) respectively (1.3.4) are called the Fourier–cosine respectively

Fourier–sine transform:

Fc[f ](τ) =

∞∫
0

f(t) cos τtdt, τ > 0 (1.3.5)

Fs[f ](τ) =

∞∫
0

f(t) sin τtdt, τ > 0. (1.3.6)

1.3.2 Examples

Example 1.3.3 Let 1+ be Heaviside’s step function:

1+(t) =

{
1 if t > 0
0 if t < 0.

(1.3.7)

Then we obtain

F [1+(T − |t|)](τ) = 2
sinTτ
τ

, T > 0. (1.3.8)

Example 1.3.4 Let α > 0. Then we have

∞∫
−∞

e−[α|t|+iτt]dt =

∞∫
0

[e−(α−iτ)t + e−(α+iτ)t]dt =
1

α− iτ
+

1
α+ iτ

=
2α

τ2 + α2
,

i.e.,

F [e−α|t|](τ) =
2α

τ2 + α2
, α > 0. (1.3.9)

Example 1.3.5 Using the Fresnel integral

∞∫
−∞

eix
2
dx =

√
πeπi/4 (1.3.10)

(see [PBM], vol. I, 2.3.15, 2) we obtain

∞∫
−∞

eit
2−iτtdt = lim

a,b→∞

b∫
−a

ei(t−
τ
2 )2− i

4 τ
2
dt = e−

i
4 τ

2

∞∫
−∞

eix
2
dx =

√
πe−

i
4 (τ2−π),

i.e.,

F [eit
2
](τ) =

√
πe−

i
4 (τ2−π). (1.3.11)
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12 Integral Transforms

Remark 1.3.6 The original exp(it2) does not belong to L1. So one should not wonder that

the right-hand side of (1.3.11) tends not to zero as τ tends to ±∞.

Example 1.3.6 Let α > 0. Then we have

F [e−α
2t2 ]τ = α−1

∞∫
−∞

e−(x2+ iτ
α x)dx = α−1e−τ

2/4α2

∞∫
−∞

e−(x+ iτ
2α )

2

dx

= α−1e−τ
2/4α2

iτ/2α+∞∫
−∞+iτ/2α

e−z
2
dz.

By means of the theory of residues one can easily prove that the integral on the right-hand

side is equal to
∞∫

−∞

e−x
2
dx =

√
π.

Therefore we have

F [e−α
2t2 ](τ) =

√
π

α
e−τ

2/4α2
, α > 0. (1.3.12)

Example 1.3.7 Now we are going to prove that

F [|t|p−1](τ) = 2 cosπp/2 Γ(p)|τ |−p, 0 < p < 1. (1.3.13)

For the proof of formula (1.3.13) we consider the function

f : z → zp−1e−αz, 0 < p < 1, α > 0, 0 ≤ arg(z) ≤ π/2.

Figure 1
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Figure 1

If L is the closed contour of Figure 1 by means of the theorem of residues we have

∮
L

f(z) z = 0 =
∫
L1

f(z)dz +

R∫
ε

f(x)dx+
∫
L2

f(z) dz − i

R∫
ε

f(iy)dy.

The integrals on L1 respectively L2 tend to zero as ε→ +0 respectively R→ +∞. Therefore,

we have

eπip/2
∞∫
0

yp−1e−iαydy =

∞∫
0

xp−1e−αxdx = α−pΓ(p)

by means of the integral representation of the Gamma function. Furthermore, we obtain

e−πip/2
0∫

−∞

|y|p−1e−iαydy = e−πip/2
∞∫
0

yp−1eiαy dy = α−pΓ(p)

because this is the conjugate complex value of the upper integral and the result is real-valued.

Adding the last two formulas and substituting y → t, α→ τ leads to the result (1.3.13).

Analogously taking the difference of the last two formulas we obtain by means of 1.3.1,

Proposition 1.3.1:

F [|t|p−1sgn t](τ) = −2i sinπp/2 Γ(p)|τ |−psgn τ, 0 < p < 1. (1.3.14)

For many examples of Fourier transforms we refer to the tables [O.1], [EMOT], vol. I.

1.3.3 Operational Properties

For the application of the FT we need certain operational properties. By straightforward

calculation we obtain:

Proposition 1.3.2 Let f ∈ L1, a, b ∈ R, b 6= 0. Then

F [f(t− a)](τ) = e−iaτf∧(τ) (1.3.15)

F [eiatf(t)](τ) = f∧(τ − a) (1.3.16)

F [f(bt)](τ) = |b|−1f∧(τ/b). (1.3.17)

For the application on differential equations the FT of derivatives is of interest. Let as

usual

Ck = {f : f k − times continuous differentiable on R}, k ∈ N.

Then the following holds:
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14 Integral Transforms

Proposition 1.3.3 Let f ∈ L1 ∩ C1, f ′ ∈ L1. Then we have

F [f ′](τ) = iτf∧(τ). (1.3.18)

Proof. From f ∈ C1 we know

f(t) = f(0) +

t∫
0

f ′(x) dx.

Since f ′ ∈ L1 there exists the limit of the right-hand side as t tends to ±∞. Therefore, f(t)

tends to zero as t tends to ±∞. So we obtain

F [f ′](τ) =

∞∫
−∞

f ′(t)e−iτtdt = f(t) e−itτ |∞t=−∞ +iτf∧(τ).

From the consideration above we conclude that the first expression on the right-hand side

is zero.

By complete induction we obtain

Corollary 1.3.1 Let f ∈ Ck, Djf ∈ L1, j = 0, 1, . . . , k, k ∈ N. Then

F [Dkf ](τ) = (iτ)kf∧(τ) (1.3.19)

and

f∧(τ) = o(|τ |−k), τ → ±∞. (1.3.20)

Remark 1.3.7 Analogous to formula (1.3.18) one can derive differentation rules for the

Fourier cosine and Fourier sine transform, defined by 1.3.1., (1.3.18), and (1.3.19),

Fc[f ′](τ) = τFs[f ]− f(0)

Fs[f ′](τ) = −τFc[f ](τ).

For the proof see [Ch.2], 140, (2), and (1).

The differentiation rule is the basis for operational calculus with respect to the operator

−iD (respectively D = d/dt). It can be used for the solution of linear differential equations

with respect to this operator; see 1.3.5, Example 1.3.5. A differentiation rule in the space

of images is the following:

Proposition 1.3.4 Let f, tf ∈ L1. Then there exists Df∧ and

Df∧(τ) = F [−itf(t)](τ). (1.3.21)

Proof. From f, tf ∈ L1 we see that the FT of f and of tf converge absolutely and uniform-

ly with respect to τ and therefore one can interchange differentiation and integration of the

FT of f .
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Corollary 1.3.2 Let tjf ∈ L1, j = 0, 1, . . . , k, k ∈ N. Then there exist Dkf∧ and

Dkf∧(τ) = F [(−it)kf(t)](τ). (1.3.22)

Remark 1.3.8 Analogously one can derive formulas for the Fourier cosine and the Fourier

sine transform; see [Ch. 2], 140, (1.3.19), and (1.3.18), namely,

DFc[f ](τ) = Fs[−tf(t)](τ), D = d/dτ,

DFs[f ](τ) = Fc[tf(t)](τ).

Conversely, one can easily prove rules for the FT of integrals in the domain of originals

and of images.

Proposition 1.3.5 Let f ∈ L1 ∩ C,
t∫
o

f(x)dx ∈ L1. Then we have

F

 t∫
0

f(x)dx

 (τ) = (iτ)−1f∧(τ). (1.3.23)

Proof. Let ϕ : t →
t∫
o

f(x) dx. Then ϕ fulfills the requirements of Proposition 1.3.3 and

therefore from (1.3.18) we get

F [ϕ′](τ) = f∧(τ) = iτϕ∧(τ).

By means of Fubini’s theorem we obtain a rule for the integration in the domain of images.

Proposition 1.3.6 Let f ∈ L1. Then we have

t∫
0

f∧(x) dx = i

∞∫
−∞

e−ity − 1
y

f(y)dy (1.3.24)

or

f∧(t) = iD

∞∫
−∞

e−ity − 1
y

f(y)dy. (1.3.25)

Finally we would like to derive some product formulas. From f, g ∈ L1 we get f(t)g(τ) ∈
L1(R× R). Using

|f(t)g(τ)e−itτ | = |f(t)g(τ)|

and Fubini’s theorem we have:
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16 Integral Transforms

Proposition 1.3.7 If f, g ∈ L1, then f∧g, fg∧ ∈ L1 and

∞∫
−∞

f∧(τ)g(τ)dτ =

∞∫
−∞

f(τ)g∧(τ)dτ. (1.3.26)

Now we are going to define a “product” of two originals such that its FT yields the

product of the Fourier transforms of the two originals.

Definition 1.3.2 Let f, g : R → C. Then as the (Fourier) convolution f ∗ g of f and g we

define

(f ∗ g)(t) =

∞∫
−∞

f(x)g(t− x)dx, (1.3.27)

provided that the integral exists (in some sense).

Theorem 1.3.4 (Convolution Theorem) Let f, g ∈ L1. Then f ∗ g ∈ L1. The convolu-

tion is commutative, associative, and

‖f ∗ g‖1 ≤ ‖f‖1‖g‖1. (1.3.28)

For the FT it holds that

(f ∗ g)∧ = f∧ · g∧. (1.3.29)

Proof. For every x ∈ R we have ‖g‖1 =
∞∫
−∞

|g(t− x)|dt. Therefore,

‖f‖1‖g‖1 =

∞∫
−∞

|f(x)|
∞∫

−∞

|g(t− x)|dtdx =

∞∫
−∞

∞∫
−∞

|f(x)g(t− x)|dtdx

=

∞∫
−∞

∞∫
−∞

|f(x)g(t− x)|dxdt ≥
∞∫

−∞

|(f ∗ g)(t)|dt = ‖f ∗ g‖1

by means of Fubini’s theorem and this yields the first part of Theorem 1.3.4. Furthermore,

again by means of Fubini’s theorem,

(f ∗ g)∧(τ) =

∞∫
−∞

 ∞∫
−∞

f(x)g(t− x)dx

 e−iτtdt =

∞∫
−∞

f(x)

∞∫
−∞

g(t− x)e−iτtdtdx

=

∞∫
−∞

f(x)

∞∫
−∞

g(y)e−i(x+y)τdydx =

∞∫
−∞

f(x)e−iτxdx

∞∫
−∞

g(y)e−iτydy

= f∧(τ) · g∧(τ).

The commutativity and the associativity of the convolution can be proved by straightfor-

ward calculation. Another proof can be performed by use of the FT , but then Theorem 1.3.7

is necessary.
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1.3.4 The Inversion Formula

An inversion formula can easily be proved for piecewise smooth L1-functions.

Theorem 1.3.5 Let f ∈ L1, piecewise smooth in each interval [a, b] ⊂ R. Then we have

for every t0 ∈ R

(2π)−1

∞∫
−∞

eit0τf∧(τ) dτ =

{
f(t0), if f continuous at t0

(Af)(t0), if f discontinuous at t0,

where

(Af)(t0) =
1
2

[f(t0 + 0)− f(t0 − 0)] (1.3.30)

is the arithmetical mean value of the right-sided and of the left-sided limit of f at t0 and the

integral has to be understood in the sense of Cauchy’s principal value (PV ) in the second

case.

Proof. We follow the lines of a proof of J. Koekock, [Koe]. We choose t0 = 0. If t0 6= 0 we

choose instead of f the function

f0(t) = f(t+ t0).

Using Proposition 1.3.2, we have f∧o (τ) = eitoτf∧(τ) and therefore

(2π)−1

∞∫
−∞

f∧(τ)eitoτdτ = (2π)−1

∞∫
−∞

f∧o (τ)dτ = (2π)−1

∞∫
−∞

f∧o (τ)eioτdτ.

Case 1: f continuous at t = 0, f(0) = 0.

By the mean value theorem we have as well in a right-sided neighborhood as in a left-sided

neighborhood of the origin

f(t) = tf ′(ϑt), 0 < ϑ < 1.

Therefore, the function g(t) = f(t)/t belongs to L1. Setting

Ibaf
∧(t) = (2π)−1

b∫
−a

f∧(τ)eitτdτ, a, b > 0,

we obtain by means of Fubini’s theorem

2πIbaf
∧(0) =

b∫
−a

f∧(τ)dτ =

b∫
−a

∞∫
−∞

f(t)e−iτtdt dτ =

∞∫
−∞

f(t)

b∫
−a

e−iτtdτdt

= i

∞∫
−∞

g(t)
(
e−ibt − eiat

)
dt = i[g∧(b)− g∧(−a)].
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18 Integral Transforms

Since g ∈ L1 the right-hand side tends to zero as a, b tend to infinity and this is the statement

of the theorem in the case of t0 = 0, f(0) = 0, f continuous at the origin.

Case 2: f(0−) = p, f(0+) = q (p = q is allowed!).

We consider the function h defined by

h(t) =

{
pet, −∞ < t < 0
qe−t, 0 < t <∞.

The function ϕ with ϕ = f − h fulfills the assumptions of case 1 and therefore we have

lim
a,b→∞

Ibaf
∧(0) = lim

a,b→∞
Ibah

∧(0). (∗)

But

h∧(τ) = q

∞∫
0

e−t(1+iτ)dt+ p

0∫
−∞

et(1−iτ)dt =
1

1 + τ2
[p+ q + i(p− q)τ ].

It follows that

Ibah
∧(0) = (2π)−1

b∫
−a

h∧(τ)dτ =
p+ q

2π
(arctg (a) + (arctg (b)) +

q − p

2π
log
(

1 + b2

1 + a2

)1
2

.

If q = p we obtain

lim
a,b→∞

Ibah
∧(0) = p.

If q 6= p we have to choose b = a (principal value) and get

lim
a→∞

Iaa h
∧(0) =

p+ q

2
.

This completes the proof of Theorem 1.3.5 because of (∗).

Corollary 1.3.3 Let f ∈ L1 ∩ C, piecewise smooth in each interval [a, b] ⊂ R. Then it

holds that

f(t) = (2π)−1

∞∫
−∞

f∧(τ)eitτdτ = F−1 [f∧](t). (1.3.31)

Remark 1.3.9 The integral in (1.3.31) is called the inverse FT of f∧.

Remark 1.3.10 If (1.3.31) is fulfilled then we have

F−1[f∧](t) = (2π)−1F [f∧](−t) (1.3.32)

F [f(−t)](τ) = (2π)F−1[f ](τ) (1.3.33)

F [f ](τ) = 2πF−1[f ](−τ). (1.3.34)
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Because of the last property the tables of Fourier transforms contain only the Fourier trans-

forms f∧ of originals f and not conversely the originals of given Fourier transforms f∧.

So from section 1.3.2, Example 1.3.3, we obtain

F
[

sin at
at

]
(τ) =

π

a
1+(a− |τ |), a > 0. (1.3.35)

Remark 1.3.11 One can prove that the inversion formula (1.3.31) holds if f ∈ L1 ∩ C,

f∧ ∈ L1 and it holds a.e. if f, f∧ ∈ L1. Of course under these conditions the proof is not

so simple. In [SW] it is proved that from f ∈ L1, f continuous at zero and f∧ ≥ 0 it follows

that f∧ ∈ L1 and, therefore, (1.3.31) holds a.e.

Remark 1.3.12 Combining the convolution theorem, Theorem 1.3.4, with the inversion

formula (1.3.31) and Remark 1.3.11, we obtain

f ∗ g = F−1 [f∧g∧]

provided that f, g, f∧ ∈ L1.

Remark 1.3.13 If f, g ∈ L1 such that f∧, g∧ ∈ L1 we have

(f∧ ∗ g∧)∧ = 2πF−1[f∧ ∗ g∧] = (f∧)∧(g∧)∧ = (2πF−1[f∧])(2πF−1[g∧])

and applying the FT on both sides we get

f∧ ∗ g∧ = 2π(fg)∧.

Remark 1.3.14 Analogously one can derive inversion formulas for the Fourier–cosine and

for the Fourier–sine transforms (1.3.33) and (1.3.34):

f(x) = F−1
c [Fc[f ]](t) =

2
π

∞∫
0

Fc[f ](τ) cos tτdτ =
2
π
Fc[Fc[f ]](t)

and

f(x) = F−1
s [Fs[f ]](t) =

2
π

∞∫
0

Fs[f ](τ) sin tτdτ =
2
π
Fs[Fs[f ]](t),

see [Ch. 2] 139, (3) and 138, (3).

Another inversion formula for L1-functions is given in the following

Theorem 1.3.6 Let f ∈ L1. Then a.e. on R it holds that

f(t) =
1

2π
D

∞∫
−∞

f∧(τ)
eitτ − 1
iτ

dτ, D = d/dt, (1.3.36)
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the integral has to be understood in the sense of the Cauchy principal value.

Proof. For every t ∈ R the function τ → (iτ)−1(eiτ − 1) belongs to C0. Since the Fourier

integral (1.3.30) is uniformly convergent by means of Fubini’s theorem we have

1
2π

T∫
−T

f∧(τ)
eitτ − 1
iτ

dτ =
1

2π

∞∫
−∞

f(x)

T∫
−T

eitτ − 1
iτ

c−iτxdτdx

=

∞∫
−∞

f(x)KT (t, x)dτdx.

(1.3.37)

The kernel KT (t, x) is continuous and bounded on R2 for every T > 0, since

KT (t, x) =
1

2π

T∫
0

(
eiτ(t−x) − e−iτx

iτ
− e−iτ(t−x) − eiτx

iτ

)
dτ =

1
π

T∫
0

sin(t− x)τ + sin τx
τ

dτ

and

lim
T→+∞

KT (t, x) =


1, t > x > 0
0, 0 < t < x and x < t < 0
−1, t < x < 0.

(1.3.38)

Therefore, we have

|f(x)KT (t, x)| ≤M |f(x)|, T > 0, (t, x) ∈ R2.

By means of the Lebesgue theorem of dominated convergence the limit T → +∞ may be

performed under the x-integral:

lim
T→+∞

∞∫
−∞

f(x)KT (t, x)dx =

∞∫
−∞

f(x) lim
T→+∞

KT (t, x)dx =

t∫
0

f(x)dx, (1.3.39)

where formula (1.3.38) was used. From f ∈ L1 we know that the right-hand side of formula

(1.3.39) has a.e. a derivative and this derivative is f(t). This is formula (1.3.36).

From (1.3.39) we conclude a uniqueness property.

Theorem 1.3.7 Let f ∈ L1. Then from f∧ = 0 it follows that f = 0 a.e.

Corollary 1.3.4 Let f, g ∈ L1. Then from f∧ = g∧ it follows that f = g a.e.

Remark 1.3.15 If f ∈ L1 ∩ C then the supplement “a.e.” in Theorem 1.3.7 and in Corol-

lary 1.3.4 can be omitted.
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1.3.5 Applications

Now we consider some applications of the FT to the theory of special functions, integral

equations, and partial differential equations. The method is the following: The problems

are formulated in some space of originals. Then the problems are transformed by means of

the integral transformation under consideration, here the FT , into the space of images. The

transformed problem is solved if it is easier to handle than in the original space. Finally

the solution is transformed into the original space by means of the inversion formula, tables

or other rules of operational calculus of the FT . In every case the rules of the operational

calculus are used quite formally. It is not proved if the conditions of the validity of the rules

are fulfilled. At the end one has to consider if the result is really a solution of the original

problem and under which conditions it is a solution. These conditions are often proved to

be less strong than the conditions for the validity of the rules of operational calculus.

Example 1.3.8 Let hn be the Hermite functions

hn(t) = e−t
2/2Hn(t), n ∈ N0 (1.3.40)

where Hn are the Hermite polynomials

Hn(t) = (−1)net
2
Dne−t

2
, n ∈ N0. (1.3.41)

One can easily prove that

Dhn(t) = −thn(t) + 2nhn−1(t) (1.3.42)

and

hn+1(t) = 2thn(t)− 2nhn−1(t). (1.3.43)

By means of complete induction one can easily prove

Hn(iD)e−t
2/2 = (−i)nhn(t).

Using the differentiation rule of the FT in the space of images, see 1.3.3, Corollary 1.3.2

in the form

F [tnf(t)](τ) = (iD)nf∧(τ)

we obtain with f(t) = e−t
2/2

F [hn](τ) = Hn(iD)F [e−t
2/2](τ),

and by use of 1.3.2, Example 1.3.6, and (1.3.11) we have

F [hn](τ) =
√

2πHn(iD)e−τ
2/2 =

√
2π(−i)nhn(τ),
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i.e.,

F [hn](τ) =
√

2π(−i)nhn(τ). (1.3.44)

Result. The Hermite functions hn are the eigenfunctions of the operator F of the FT

with respect to the eigenvalues λn =
√

2π (−i)n.

Example 1.3.9 By means of a simple example we would like to illustrate the evaluation of

definite integrals using FT -technique. Let us consider the integral

I(α, β) =

∞∫
−∞

dt

(t2 + α2)(t2 + β2)
, α, β > 0.

By means of formula (1.3.9) and f(t) = e−α|t|, g(t) = e−β|t| we obtain f∧(τ) = 2α
τ2+α2 ,

g∧(τ) = 2β
τ2+β2 and the convolution theorem in the form 1.3.4, Remark 1.3.12, specialized

for the case t = 0, i.e.,

∞∫
−∞

f∧(τ)g∧(τ)dτ = 2π

∞∫
−∞

f(x)g(−x)dx

leads to

I(a, b) = (2αβ)−1π

∞∫
−∞

e−(α+β)|x|dx = (αβ)−1π

∞∫
0

e−(α+β)xdx =
π

αβ(α+ β)
.

Example 1.3.10 Now we consider linear differential equations with constant coefficients:

Px(t) = h(t), (1.3.45)

where

P = P (D) = anD
n + an−1D

n−1 + · · ·+ a1D + a0,

with aj ∈ C, j = 0, 1, . . . , n and D = d/dt. Applying the FT to (1.3.45) by means of the

differentiation rule (1.3.18) we have

P (iτ)x∧(τ) = h∧(τ).

The image x∧(τ) of the solution x(t) we are looking for is

x∧(τ) =
h∧(τ)
P (iτ)

= Q(τ)h∧(τ),

where Q(τ) = 1/P (ıτ). If there exists q = F−1[Q] then we obtain a solution of (1.3.45) in

the form

x(t) = (q ∗ h)(t).
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If, for example,

P (D) = −D2 + a2, a > 0,

then

Q(τ) =
1

τ2 + a2

and by means of formula (1.3.8) we have

q(t) =
1
2a
e−a|t|,

such that a solution of (1.3.45) in this special case is given by

u(t) =
1
2a

∞∫
−∞

h(x)e−a|t−x|dx,

provided that h ∈ C is bounded.

Example 1.3.11 We are going to solve Volterra integral equations of the first kind and of

convolutional type
∞∫

−∞

k(t− x)u(x)dx = f(t) x ∈ R, (1.3.46)

where k and f are given functions. Quite formally by means of the convolution theorem,

Theorem 1.3.4, we obtain

k∧u∧ = f∧

or

u∧ = Rf∧, R = 1/k∧. (1.3.47)

If R is the FT of a function r, R = r∧, resp. r = F−1[1/k∧] we get the solution u of

(1.3.46) by means of the convolution theorem:

u = r ∗ f. (1.3.48)

Often r does not exist, because, for example, if k ∈ L1 then k∧(τ) tends to zero as τ → ±∞
and therefore 1/k∧(τ) is not bounded. But if it happens that there exists some n ∈ N such

that there exists

m = F−1

[
(iτ)−n

k∧(τ)

]
or

m∧(τ) =
(iτ)−n

k∧(τ)

then from (1.3.47) it follows that

u∧(τ) = [(iτ)nf∧(τ)]m∧(τ).
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From the differentiation rule 1.3.3, Corollary 1.3.1 we have

u = (Dnf) ∗m. (1.3.49)

Let us consider for example k(t) = |t|−1/2, i.e.,

∞∫
−∞

|t− x|−1/2u(x)dx = f(t). (1.3.50)

From 1.3.2, Example 1.3.7 we have

k∧(τ) =
√

2π|τ |−1/2.

Therefore F−1[1/k∧] does not exist. But by means of (1.3.14) and (1.3.34) we get

m(t) = F−1

[
1

iτk∧(τ)

]
(t) = − i√

2π
F−1

[
|τ |−1/2sgnτ

]
(t) =

−1
2π
|t|−1/2sgnt

and by means of (1.3.49) we obtain

u(t) =
1

2π

t∫
−∞

f ′(x)√
t− x

dx− 1
2π

∞∫
t

f ′(x)√
x− t

dx. (1.3.51)

One easily can prove that (1.3.51) is a solution of equation (1.3.50) provided that f ∈ L1∩C1,

f ′ ∈ L1.

Example 1.3.12 Now we are going to solve the Cauchy problem for the wave equation on

the real line, i.e., we are looking for the solution u(x, t) of the wave equation

a2uxx(x, t)− utt(x, t) = 0, x, t ∈ R, x > 0

with the initial value conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x),

with given functions u0, u1. By means of the FT with respect to x

u∧(ξ, t) = F [u(·, t)](ξ)

we have with 1.3.3, Corollary 1.3.1

u∧tt(ξ, t) + (aξ)2 u∧(ξ, t) = 0.

The solution of this ordinary differential equation is well known:

u∧(ξ, t) = A(ξ) cos aξt+B(ξ) sin aξt.
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The transformation of the initial value conditions leads to

u∧(ξ, 0) = u∧0 (ξ) = A(ξ)

u∧t (ξ, 0) = u∧1 (ξ) = aξB(ξ).

In all three steps we assume that the Fourier transform and the limit processes (differentia-

tion with respect to t, t→ 0) can be interchanged. So we obtain for the FT of the solution

under consideration

u∧(ξ, t) = u∧0 (ξ) cos aξt+
u∧1 (ξ)
aξ

sin aξt.

Expressing the trigonometrical functions by the exponential function and using the inversion

formula (1.3.31) we have

u(x, t) =
1
2

{ 1
2π

∞∫
−∞

u∧0 (ξ)
[
eiξ(x+at) + eiξ(x−at)

]
dξ
}

+
1
2a

{ 1
2π

∞∫
−∞

u∧1 (ξ)
iξ

[
eiξ(x+at) − eiξ(x−at)

]
dξ
}
.

From the inversion formula (1.3.31), and the integration rule, Proposition 1.3.5, we have

u(x, t) =
1
2
[
u0(x+ at) + u0(x− at)

]
+ (2a)−1

x+at∫
x−at

u1(ξ)dξ. (1.3.52)

This is the well-known d’Alembert solution of the Cauchy problem.

If u0 ∈ C2, u1 ∈ C1 the formula (1.3.52) is the classical solution of the Cauchy problem.

The existence of the FT and all other conditions for the operational rules used above are

not necessary in the final form (1.3.52) of the solution!

Example 1.3.13 Now we are going to solve the Dirichlet problem of the Laplace equation

for the upper half-plane, i.e., the solution of

uxx(x, y) + uyy(x, y) = 0, x, y ∈ R, y > 0

under the conditions

u(x, 0) = uo(x), x ∈ R

u(x, y) → 0 if x2 + y2 → +∞, y > 0.

Denoting the FT with respect to x by

u∧(ξ, y) = F [u(·, y)](ξ)

again with 1.3.3, Corollary 1.3.1 our problem is transformed into the ordinary differential

equation

u∧yy(ξ, y)− ξ2u(ξ, y) = 0
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and the conditions

u∧(ξ, 0) = u0(ξ)

u∧(ξ, y) → 0 if y → +∞.

The solution of the ordinary differential equation is

u∧(ξ, y) = A(ξ)e|ξ|y +B(ξ)e−|ξ|y.

Because of the behavior as y → +∞ we conclude that A(ξ) = 0. From the boundary

condition on y = 0 we have B(ξ) = u∧0 (ξ). Therefore,

u∧(ξ, y) = u∧o (ξ)e−|ξ|y.

By means of the convolution theorem, section 1.3.3, Theorem 1.3.4 we have

u(x, y) = uo(x) ∗ F−1[e−y|ξ|](x).

Making use of 1.3.2, Example 1.3.4 this yields

u(x, y) = uo(x) ∗ 1
π

y

x2 + y2
,

i.e.,

u(x, y) =
y

π

∞∫
−∞

u0(t)
(x− t)2 + y2

dt. (1.3.53)

One can verify that (1.3.53) is the classical solution of the Dirichlet problem, provided that

u0 ∈ L1 ∩ C is bounded.

Example 1.3.14 Now we consider the Cauchy problem for the heat conduction on the real

line. We look for the solution of the heat equation:

ut(x, t)− a2uxx(x, t) = 0, x, t ∈ R, t > 0

with the initial condition

u(x, 0) = uo(x), x ∈ R.

As usual we consider the FT with respect to x. By means of the differentiation rule 1.3.3,

Corollary 1.3.1 we obtain

u∧t (ξ, t) + (aξ)2u∧(ξ, t) = 0

and

u∧(ξ, 0) = u∧o (ξ).

The solution of this initial value problem is

u∧(ξ, t) = u∧o (ξ)e−(aξ)2t,
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and the convolution theorem, section 1.3.3, Theorem 1.3.4, leads to

u(x, t) = (u0 ∗ F−1[e−(aξ)2t])(x).

By means of 1.3.2, Example 1.3.6 we obtain

u(x, t) = (4πa2t)−1/2

∞∫
−∞

uo(y)e−(x−y)2/4a2tdy. (1.3.54)

It can be proved that (1.3.54) is the classical solution of the Cauchy problem if uo ∈ L1 ∩ C
or if u0 is continuous and bounded on R.

1.4 The Laplace Transform

1.4.1 Definition and Basic Properties

The application of the FT is restricted to a relatively poor class of functions. Polynomials,

exponential functions, for example, cannot be transformed. One possibility is to extend the

domain of originals to distributions (see Chapter 3).

Another possibility is to change the kernel of the transformation in such a manner that

the integral converges for a larger class of functions. For example, one can consider the

integral
∞∫

−∞

(f(t)e−σt)e−iτtdt, σ ∈ R. (1.4.1)

This leads to the two-sided or bilateral Laplace transform (see section 1.4.7). In applications

there often appear functions f(t), which vanish for t < 0. Then we obtain the one-sided or

unilateral Laplace transform. Putting p = σ + iτ ∈ C we obtain the following definition.

Definition 1.4.3 The (one-sided) Laplace transform (LT ) of a function f : R+ → C is the

function F defined by

F (p) = L[f ](p) =

∞∫
0

f(t)e−ptdt, (1.4.2)

provided that the integral exists.

Definition 1.4.4 As the space of originals of the LT we consider the space Ea of functions

f : R → C, f ∈ Lloc1 (R), and that there exists a number a ∈ R such that f ∈ L1(R+; e−at)

and f(t) vanishes if t < 0, equipped with the norm

‖f‖Ea
=

∞∫
0

e−at|f(t)|dt. (1.4.3)
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Remark 1.4.16 Originals are sometimes written by means of the Heaviside function as

1+(t)f(t). We usually omit the factor 1+(t) and we assume that originals f have the

property f(t) = 0 for t < 0. So in concrete cases we give only the formula for f(t) if t ≥ 0.

Remark 1.4.17 Functions f ∈ Lloc1 (R+) with the property

|f(t)| ≤Meat, t ≥ T > 0

(functions of exponential growth) belong to Ea+ε, ε > 0, arbitrary.

Remark 1.4.18 Sometimes instead of the LT (1.4.2) the Laplace–Carson transform

LC[f ](p) = pF (p)

is considered (see, for example, [DP]). In this notation some formulas become more simple.

Remark 1.4.19 The advantage of the LT is that the images are functions of a complex

variable and so the method of the theory of functions can be used in the space of images.

The Laplace transforms appear to be analytic functions in some half-plane.

Theorem 1.4.8 Let f ∈ Ea. Then the Laplace integral (1.4.2) is absolutely and uniformly

convergent on H̄a = {p : p ∈ C, Re(p) ≥ a}. The LT F is bounded on H̄a and it is an

analytic function on Ha = {p : p ∈ C, Re(p) > a} and it holds that

DkF (p) = (−1)kL[tkf(t)](p), k ∈ N. (1.4.4)

Furthermore, it is a linear transformation, i.e.,

L[αf + βg] = αF + βG, α, β ∈ C, f, g ∈ Ea.

Proof. Let σ = Re(p) ≥ a. Then for every v ∈ R+ we have

v∫
0

|e−ptf(t)|dt ≤
∞∫
0

e−at|f(t)|dt <∞,

because of Definition 1.4.4. Therefore, the Laplace integral (1.4.2) is absolutely and uniform-

ly convergent on H̄a. From

|F (p)| ≤
∞∫
0

e−σt|f(t)|dt ≤
∞∫
0

e−at|f(t)|dt <∞

we see that F (p) is bounded on H̄a. Since

v∫
0

e−ptf(t) dt
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is an entire function the Laplace transform

F (p) = lim
v→+∞

v∫
0

e−ptf(t)dt

is analytical on the interior of the domain of convergence, i.e., on Ha.

Now let ε ∈ R+, arbitrarily, and p ∈ Ha+ε. Because of

|tf(t)e−pt| ≤ e−at|f(t)|te−εt ≤ ε−1e−at|f(t)|

one can differentiate (1.4.2) under the integral sign and we obtain

DF (p) =

∞∫
0

f(t)
d

dp
e−ptdt = −L[tf(t)](p).

By induction we have formula (1.4.4). The linearity of the LT is obviously true.

If f ∈ Ea then e−atf(t) ∈ L1 and together with Theorem 1.4.8 we have the following

connection between the FT and the LT .

Corollary 1.4.5 Let f ∈ Ea, then for σ ≥ a we have

L[f ](p) = F [e−σtf(t)](τ). (1.4.5)

By means of this connection and section 1.3.4, Corollary 1.3.4 we obtain immediately

Theorem 1.4.9 Let f ∈ Ea, g ∈ Eb and c = max(a, b). If

F (p) = G(p), p ∈ Hc,

then f(t) = g(t) a.e.

The number a in Definition 1.4.4 is not uniquely determined. Therefore, one can define

σac = inf{σ :

∞∫
0

e−σt|f(t)|dt <∞}. (1.4.6)

σac is called the abscissa of absolute convergence.

Proposition 1.4.8 L[f ](p) is (absolutely) convergent on Hσac
, it is not (absolutely) con-

vergent on R \ H̄σac
.

Proof. Let σ > σac. Then there exists a number σ′ ∈ (σac, σ) such that

∞∫
0

e−σ
′t|f(t)|dt <∞.
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From Theorem 1.4.8 we conclude that L[f ](p) is absolutely convergent on Hσac
.

It σ < σac and σ′′ ∈ (σ, σac) and L[f ](p) absolutely convergent then from Theorem 1.4.8

we have that L[f ](p′′) is also absolutely convergent and this is a contradiction to the defi-

nition (1.4.6) of σac.

Remark 1.4.20 The domain of absolute convergence of a Laplace integral (1.4.2) is Hσac

or H̄σac
.

Example 1.4.15 Let f(t) = 1
1+t2 . Then σac = 0 and the half-plane of absolute convergence

is H̄0.

Example 1.4.16 Let f(t) = 1. Then σac = 0 but the half-plane of absolute convergence is

H0 since
∞∫
0

|e−itτ |dt is divergent.

Remark 1.4.21 The Laplace transform F (p) of a function f is defined only in a half-plane.

By analytical continuation one can sometimes obtain a larger domain of definition for the

image F . Relations in the image domain proved for some half-plane are then also true in

this larger domain.

Remark 1.4.22 Instead of the investigation of the absolute convergence of the Laplace

integral (1.4.2) one can consider its ordinary convergence. Similar to the case of the absolute

convergence one can prove: If the Laplace integral (1.4.2) is convergent for p = p1, then it

converges in the half-plane Hσ1 , One defines an abscissa of convergence σc by means of

σc = inf{σ :

∞∫
0

e−σtf(t)dt finite}. (1.4.7)

The domain of convergence is the half-plane Hσc . Obviously σc ≤ σac and the case σc < σac

is possible (see, for example, [Doe. 3], p. 29. Analogous to the asymptotic behavior of the

FT f∧(τ) of L1-functions as τ tends to ±∞ (see 1.3.1, Theorem 1.3.2) one can prove:

Theorem 1.4.10 Let f ∈ Ea. Then F (p) = L[f ](p) tends to zero as p tends to ∞ in the

half-plane H̄a.

Proof. Let 0 < u < v. Then

F (p) =
( u∫
o

+

v∫
u

+

∞∫
v

)
e−ptf(t)dt.

Let ε ∈ R+ arbitrarily. Then the absolute value of the first integral becomes less than ε/3

as u is sufficiently small (σ ∈ R̄+). The absolute value of the third integral becomes less
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than ε/3 as v is sufficiently large (since the LT is absolutely and uniformly convergent on

H̄a). Now let σ ≥ σ0 > max(a, 0). Then for the second integral we have∣∣∣∣∣∣
v∫
u

e−ptf(t)dt

∣∣∣∣∣∣ ≤ e−σ0u

v∫
u

|f(t)|dt < ε/3

and therefore |F (p)| < ε in the half-plane H̄σ0 .

Remark 1.4.23 The functions sin p and pα, α ∈ R̄+, for example, cannot be Laplace trans-

forms of originals of some space Ea. The function e−p also cannot be a Laplace transform

of a function of Ea, although it tends to zero as σ tends to ±∞, since it does not tend to

zero as τ tends to ±∞, σ ≥ a, fixed.

From Theorem 1.4.10 we obtain immediately:

Corollary 1.4.6 Let f ∈ Ea and F (p) = L[f ](p) analytical at p = ∞. Then F (∞) = 0.

1.4.2 Examples

In the following examples let λ, ν be complex parameters.

Example 1.4.17 From
∞∫
0

e−(p−λ)tdt =
1

p− λ

we obtain

L[eλt](p) =
1

p− λ
, σ > Re(λ) = σac. (1.4.8)

Example 1.4.18 By means of the linearity of the LT we obtain by means of

cosλt =
1
2
(
eiλt + e−iλt

)
, sinλt =

1
2i
(
eiλt − e−iλt

)
and formula (1.4.8) by straightforward calculation

L[cosλt](p) =
p

p2 + λ2
, σ > |Im(λ)| = σac (1.4.9)

and

L[sinλt](p) =
λ

p2 + λ2
, σ > |Im(λ)| = σac. (1.4.10)

Example 1.4.19 Now we are going to calculate the LT of the function f(t) = tλ,

Re(λ) > −1. For p > σ and substituting st = x we obtain

∞∫
o

e−pttλdt = p−λ−1

∞∫
o

e−xxλdx = Γ(λ+ 1)p−λ−1,
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where the Gamma function is defined by

Γ(z) =

∞∫
o

e−ttz−1dt, Re(z) > 0. (1.4.11)

By means of analytical continuation we have

L[tλ](p) =
Γ(λ+ 1)
pλ+ 1

σ > 0 = σac, Re(λ) > −1. (1.4.12)

Especially for λ = n ∈ N0 we have

L[tn](p) =
n!
pn+1

, σ > 0 = σac. (1.4.13)

Example 1.4.20 Using formula (1.3.12) we obtain, substituting t = u2,

L
[

1
π
√
t

cosx
√
t

]
(p) =

2
π

∞∫
o

e−pu
2

cosxudu =
1
π

∞∫
−∞

e−pu
2
e−ixudu

=
1
π
F [e−pu

2
](x) =

1
√
πp
e−x

2/4p, p ∈ R+.

By means of analytical continuation with respect to p we get

L
[

1
π
√
t

cosx
√
t

]
(p) =

1
√
πp
e−x

2/4p, p ∈ H0. (1.4.14)

Example 1.4.21 Now we are going to evaluate the LT of the image (1.4.14). Preparing

the calculation we prove first that
∞∫
0

v−2e(
α
v−v)

2
dv =

√
π

2
, α ∈ R+. (1.4.15)

The proof runs as follows. Substituting α/u = v we obtain
∞∫
0

e−( α
u−u)2du = α

∞∫
0

v−2e−(v−α
v )2dv.

We then obtain

2

∞∫
o

e−( α
u−u)2du =

∞∫
o

(1 +
α

v2
)e−( α

v−v)
2
dv =

∞∫
−∞

e−w
2
dw =

√
π,

where we substituted α
v − v = w. This is formula (1.4.15). Now let x, p > 0. Substituting

x/2
√
t = u we have

L
[

1√
πt
e−x

2/4t

]
(p) = e−x

√
p

∞∫
0

e−(
√
pt−x/2

√
t)2 dt√

πt

=
x√
π
e−x

√
p

∞∫
0

u−2e−(
x
√

p

2u −u)2du = e−x
√
p/
√
p,
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where formula (1.4.15) with α =
√
px/2 was used. If x < 0 then we have to set |x| instead

of x. So we have proved

L
[

1√
πt
e−x

2/4t

]
(p) =

1
√
p
e−|x|

√
p, x ∈ R, p ∈ H0, (1.4.16)

where analytical continuation with respect to p was performed. For a list of Laplace trans-

forms and inverse Laplace numbers we refer to the tables [PBM], vol. IV, V, [EMOT], vol.

I. and [OB].

1.4.3 Operational Properties

In the following we assume that the originals belong to Ea such that their Laplace trans-

form converges absolutely in the half-plane H̄a. So we obtain the following three rules by

straightforward calculation.

Proposition 1.4.9 (Shifting Rule) Let t0 ≥ 0. Then we have

L[ f(t− t0)](p) = e−t0pF (p), σ ≥ a. (1.4.17)

Proposition 1.4.10 (Similarity Rule) Let c > 0. Then it holds that

L[f(ct)](p) =
1
c
F
(p
c

)
σ ≥ ca. (1.4.18)

Proposition 1.4.11 (Damping Rule) Let µ ∈ C. Then we have

L[e−µtf(t)](p) = F (p+ µ), σ ≥ a−Re(µ). (1.4.19)

Example 1.4.22 From 1.4.2, Example 1.4.19 and using the Damping Rule (1.4.19) we

obtain immediately

L[eµttλ](p) =
Γ(λ+ 1)

(p− µ)λ+1
, Re(λ) > −1, σ > Re(µ). (1.4.20)

Proposition 1.4.12 (Multiplication Rule) Let n ∈ N0. Then we have

L[(−t)nf(t)](p) = DnF (p), σ > a. (1.4.21)

For the proof we remark that this rule is only part of 1.4.1, Theorem 1.4.8.

Proposition 1.4.13 (Division Rule) Let f(t)/t ∈ Ea. Then it holds that

L[t−1f(t)](p) =

∞∫
p

F (u)du σ > a. (1.4.22)
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Proof. Putting L[t−1f(t)](p) = φ(p) from Proposition 1.4.12 we obtain

L[f ] = −Dφ = F

and therefore

φ(p) =

p0∫
p

F (u)du+ φ(p0).

Let p0 →∞. Then from Theorem 1.4.10 we know that φ(p0) → 0. Therefore, we arrive at

formula (1.4.22).

Example 1.4.23 If the integrals in (1.4.22) converge if p = 0, then we obtain
∞∫
o

f(t)
t
dt =

∞∫
o

F (p)dp.

So, for example,
∞∫
o

sin t
t
dt =

∞∫
o

L[sin t](p)dp =

∞∫
o

dp

1 + p2
= (arctg p) |∞o =

π

2
,

i.e.,
∞∫
o

sin t
t
dt =

π

2
. (1.4.23)

Example 1.4.24 From
∞∫
o

u−1/2e−x
√
udu = − 2

x

∞∫
p

∂

∂u

(
e−x

√
u
)
du =

2
x
e−x

√
p, x > 0

and formula 1.4.2, (1.4.16) we have

L
[

1√
π
t−3/2e−x

2/4t

]
(p) =

2
x
e−x

√
p, x ∈ R+, p ∈ H0. (1.4.24)

Now we are going to prove two product formulas. By means of the definition of the Laplace

transform and of Fubini’s theorem the proof is straightforward.

Proposition 1.4.14 Let g ∈ E0 and F = L[f ] be defined and bounded on H0. It then holds

that
∞∫
o

f(t)G(t)dt =

∞∫
o

F (t)g(t)dt.

Now we are going to formulate the convolution theorem for the LT . Since functions of

Ea vanish on the negative real axis the convolution (1.3.27) has the form

(f ∗ g)(t) =

t∫
0

f(x)g(t− x)dx. (1.4.25)
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Theorem 1.4.11 (Convolution Theorem) Let f ∈ Ea, g ∈ Eb. Then f ∗ g ∈ Ec,

c = max (a, b). Furthermore, we have

‖f ∗ g‖Ec ≤ ‖f‖Ea‖g‖Eb
(1.4.26)

and the convolution is commutative and associative and it holds that

L[f ∗ g](p) = F (p)G(p), p ∈ H̄c. (1.4.27)

Proof. Making use of Fubini’s theorem and of the substitution y = t− x we have

‖f‖Ea
‖g‖Eb

=

∞∫
o

e−ax|f(x)|dx
∞∫
o

e−by|g(y)|dy ≥
∞∫
o

|f(x)|
∞∫
o

e−c(x+y)|g(y)|dydx

=

∞∫
0

|f(x)|
∞∫
0

e−ct|g(t− x)|dtdx =

∞∫
o

e−ct
t∫
o

|f(x)g(t− x)|dxdt

≥
∞∫
0

e−ct|(f ∗ g)(t)|dt = ‖f ∗ g‖Ec

where the double integral was considered as a two-dimensional integral on the second octant

{0 ≤ x <∞, x ≤ t <∞} = {0 ≤ x ≤ t, 0 ≤ t <∞} of the (x, t)-plane. Therefore, (1.4.26)

holds.

For the LT we obtain again by virtue of Fubini’s theorem

L[f ∗ g](p) =

∞∫
0

f(x)

∞∫
0

e−ptg(t− x)dtdx =

∞∫
0

e−pxf(x)G(p) = F (p)G(p).

Here in the first integral (0,∞) was used as the interval of integration because g(t − x)

vanishes if x > t and then the shifting rule (1.4.17) was applied. So formula (1.4.27) is

proved. Taking the LT of f ∗g resp. (f ∗g)∗h we conclude by means of 1.4.1, Theorem 1.4.9

that the convolution is commutative and also associative.

Next we consider two applications.

Example 1.4.25 Let

In(t) =

t∫
0

dxn

xn∫
0

dxn−1 . . .

x3∫
0

dx2

x2∫
0

f(x1)dx1. (1.4.28)

Then this can be written as

In(t) = f ∗
n times︷ ︸︸ ︷

1 ∗ 1 ∗ · · · ∗ 1 .

The convolution theorem leads to

L[In](p) = F (p)(L[1](p))n = F (p)p−n = F (p)L
[

tn−1

(n− 1)!

]
(p)

= L
[
f(t) ∗ tn−1

(n− 1)!

]
(p).
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Therefore, we obtain

In(t) =
1

(n− 1)!

t∫
0

f(x)(t− x)n−1dx. (1.4.29)

Example 1.4.26 Let B(u, v) be Euler’s first integral or Beta function, defined by

B(u, v) =

1∫
0

xu−1(1− x)v−1dx, Re(u), Re(v) > 0

= (tu−1 ∗ tv−1)t=1.

(1.4.30)

By means of 1.4.2, formula (1.4.12) we obtain

L[(xu−1 ∗ xv−1)(t)](p) =
Γ(u)Γ(v)
pu+v

,

where Γ is Euler’s Gamma function; see equation (1.4.12). Again making use of formula

(1.4.12) (in the opposite direction) we have

(xu−1 ∗ xv−1)(t) =
Γ(u)Γ(v)
Γ(u+ v)

tu+v−1,

and for t = 1 we have

B(u, v) =
Γ(u)Γ(v)
Γ(u+ v)

. (1.4.31)

Now we will derive rules for the LT of the primitive and of the derivative of a function.

Proposition 1.4.15 (Integration Rule) Let f ∈ Ea and ϕ(t)=
∫ t
0
f(x)dx. Then ϕ∈ Ec,

where c = a if a ∈ R+ and c = ε ∈ R+, arbitrarily if a ≤ 0 and it holds that

L

 t∫
0

f(x)dx

 (p) = p−1F (p), σ > max(0, a). (1.4.32)

Proof. From ϕ = 1 ∗ f and applying the convolution theorem we obtain formula (1.4.32).

Since 1 ∈ Eε for arbitrary ε ∈ R+ from Remark 1.4.16 we obtain the rest.

Proposition 1.4.16 (Differentiation Rule) Let f ∈ Ea and let there exist Df ∈ Ea on

[0,∞). Then it holds that

L[Df ](p) = pF (p)− f(+0), σ > max(0, a). (1.4.33)

Proof. Because of f(t)− f(0+) =
t∫
0

f ′(u)du and Proposition 1.4.15 we get

L[f(t)− f(+0)](p) =
1
p
L[f ′](p) = F (p)− p−1f(0+),

and this is formula (1.4.33).
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Corollary 1.4.7 If there exists f (k) ∈ Ea on [0,∞), k = 0, 1, . . . , n, then it holds for

σ > max(0, a), that

L[Dnf ](p) = pnF (p)− pn−1f(0+)− pn−2f ′(+0) · · · − f (n−1)(+0). (1.4.34)

Remark 1.4.24 One can prove that if f(t) is n-time differentiable on R+ and L[f (n)](p)

converges in a real point p = σ0 > 0, then L[f ] also converges in the point σo, the

limits f (k)(0+), k = 0, 1, . . . , n − 1 exist and (1.4.34) holds for σ > σ0 and L[fk](p),

k = 0, 1, . . . , n− 1 converge absolutely on Hσ0 (see [Doe.3], Th. 9.3).

1.4.4 The Complex Inversion Formula

The connection between the FT and the LT , see 1.4.1 Corollary 1.4.5, allows us very

easily to derive an inversion formula for the LT . If f ∈ Ea is a original of the LT which

is piecewice smooth in every interval [a, b] ⊂ [0,∞), then e−σtf(t) ∈ L1 for every σ ≥ a

and one can use formula (1.4.5) and the inversion theorem, Theorem 1.3.5, of the FT . We

obtain

e−σtf(t) =
1

2π

∞∫
−∞

F (σ + iτ)eitτdτ

if f is continuous in the point t. Otherwise we obtain e−σtAf (t), where the integral has

to be chosen as the Cauchy PV . Substituting p = σ + iτ leads to the complex inversion

formula

f(t) =
1

2πi

∫
(c)

F (p)etpdp = L−1[F ](t), c > a (1.4.35)

in points of continuity, where the path (c) of integration is the vertical line from c− i∞ to

c+ i∞. L−1 is called the inverse LT . So we have:

Theorem 1.4.12 Let f ∈ Ea be smooth on every interval (a, b) ⊂ R+. Then in points t

of continuity the complex inversion formula (1.4.35) holds. In points of discontinuity the

integral in (1.4.35) represents the arithmetical mean of the left-sided and right-sided limit

of f in the point t, and the integral in this case has to be taken as Cauchy’s PV .

Now we are going to derive the inversion formula (1.4.35) under conditions on the image

F . Not every function F analytical on a half-plane Ha is an image of a function f ∈ Ea

(see 1.4.1, Remark 1.4.23). But we have

Theorem 1.4.13 Let F (p) be analytic on a half-plane H̄a and let F (p) → 0, |p| → ∞,

p ∈ Ha, uniformly with respect to arg(p). Furthermore, let∫
(c)

|F (p)|dp <∞ (1.4.36)
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for every c ≥ a. Then F is the Laplace transform of a function f ∈ Ea+ε, ε > 0, arbitrarily,

and f is continuous on R̄+.

Proof.

Figure 2

Step 1. We have

∣∣∣ c+iγ∫
c−iβ

eptF (p) dp
∣∣∣ = ect

∣∣∣ γ∫
−β

eitτF (c+ iτ) dτ
∣∣∣ = ect

γ∫
−β

|F (c+ iτ)| dτ.

As β, γ → +∞ the latter integral is convergent and therefore the integral in formula (1.4.35)

is absolutely convergent and defines a function f . Since the integral in (1.4.35) because of

(1.4.36) is uniformly convergent with respect to t, if one separates the factor ect, the function

f is continuous. The value f(t) does not depend on the number c ≥ a. For the proof from

Figure 2 we obtain

0 =
∮

R

eptf(t) dt =

c′−iβ∫
c−iβ

· · ·+
c′+iγ∫
c′−iβ

· · ·+
c+iγ∫

c′+iγ

· · ·+
c−iβ∫
c+iγ

. . . .

As β, γ → +∞ the integrals on the horizontal segments vanish according to our assumptions

and therefore ∫
(c)

eptF (p)dp =
∫

(c′)

eptF (p)dp. (1.4.37)

If t < 0 then the integral on the right-hand side of formula (1.4.37) tends to zero as

c′ → +∞ and therefore we conclude that f(t) = 0, t < 0.
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Step 2. From step 1 we have for each c ≥ a

|f(t)| ≤ (2π)−1ect
∞∫

−∞

|F (c+ iτ)| dτ = Mect,

i.e., for every ε ∈ R+ we have

∞∫
0

e−(a+ε)t|f(t)|dt ≤M

∞∫
0

e−(a+ε−c)tdt

and this is convergent, since we can choose c ∈ [a, a + ε). Therefore, f ∈ Ea+ε for every

ε ∈ R+.

Step 3. Finally we have to prove that for every po ∈ Ha it holds that

L[f ](p0) = F (p0). (1.4.38)

By use of the absolute and uniform convergence of the integral (1.4.36) and Fubini’s theorem

we have for a < c < Re(p0)

∞∫
0

e−p0tf(t)dt = (2πi)−1

∞∫
o

e−p0t
∫
(c)

eptF (p)dpdt

= (2πi)−1

∫
(c)

F (p)

∞∫
o

e(p−p0)tdtdp

= (2πi)−1

∫
(c)

F (p)(po − p)−1dp.

(1.4.39)

Choosing the numbers β, γ, c′ such that p0 is lying inside the rectangle R of Figure 1 by

means of Cauchy’s integral formula we obtain

F (p0) = (2πi)−1

∮
R+

F (p)
p− p0

dp.

As β, γ and c′ tend to +∞ the integrals on the vertical segments and also the integral on

the vertical segment through c′ tend to zero and, therefore,

F (p0) = (2πi)−1

c−i∞∫
c+i∞

F (p)
p− p0

dp = (2πi)−1

∫
(c)

F (p)
p0 − p

dp.

Together with formula (1.4.39) we obtain (1.4.38).

Remark 1.4.25 The condition on the absolute convergence of
∫
(c)

F (p) dp is, for example,

fulfilled, if

|F (p)| ≤ C|p|−2, p ∈ H̄a.
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1.4.5 Inversion Methods

A general method for the calculation of the original f from a given image F is the

application of the theory of residues on the complex inversion formula 1.4.4, (1.4.35). We

first prove the following.

Lemma 1.4.1 (Jordan’s Lemma) Let

Cn = {p : p ∈ C, |p− p0| = Rn, R1 < R2 < . . . , lim
n→∞

Rn = ∞,

Re(t(p− p0)) ≤ 0, 0 6= t ∈ R}

be half-circles (see Figure 3). Let F be continuous on Cn, n ∈ N and F (p) tend to zero

uniformly on Cn as n tends to infinity. Then we have

lim
n→∞

∫
Cn

etpF (p) dp = 0, t 6= 0. (1.4.40)

Proof. From our assumptions we know that for every ε ∈ R+ there exists a number

n0 = n0(ε) such that

|F (p)| < ε , z ∈ Cn, n > n0.

Step 1. t < 0.

Here we have

p = p0 +Rne
iϕ, −π/2 ≤ ϕ ≤ π/2.

Therefore, we get

∣∣∣ ∫
Cn

F (p)eptdp
∣∣∣ < εRne

σ0t

π/2∫
−π/2

etRn cosϕdϕ = 2εRneσ0t

π/2∫
o

etRn cosϕdϕ.

Set ψ = π
2 − ϕ. Then sinψ ≥ 2

πψ, 0 ≤ ψ ≤ π/2. It follows because of t < 0

π/2∫
o

et Rn cosϕdϕ =

π/2∫
o

et Rn sinψ dψ ≤
π/2∫
o

e
2t
π Rnψdψ

and therefore

∣∣∣ ∫
Cn

F (p)eptdp
∣∣∣ ≤ 2εRneσ0t

π/2∫
o

e
2t
π Rnψ dψ =

επ

t
eσ0t(eRnt − 1) <

επ

(−t)

as n > n0.
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Figure 3

Step 2. t > 0. The proof runs analogously. Here we are setting ψ = ϕ−π/2 and we have

π∫
π/2

et Rn cosϕdϕ =

π/2∫
0

e(−t)Rn sinψdψ.

We proceed as in step 1 with (−t) instead of t.

Figure 4
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By means of Jordan’s lemma we are going to prove the following.

Theorem 1.4.14 Let F (p) = L[f ](p) be a meromorphic function, analytical on the half-

plane Hσ0 . Let Cn = {p : |p| = Rn}, R1 < R2 < · · · < Rn → +∞ as n → +∞ a sequence

of circles and let F (p) tend to zero uniformly with respect to arg(p) as p → ∞, p ∈ Cn.

Furthermore, let
∫
(c)

F (p) dp be absolute convergent for every c > σ0. Then it holds that

f(t) =
∑
p∈C

Res(F (p)ept) (1.4.41)

where the summands have to be arranged according to ascending absolute values of the

singularities.

Proof. Let Γn = C′n ∪ Vn (see Figure 4). Then by means of the theorem of residues we

have
1

2πi

∮
Γn

eptF (p)dp =
∑

|p|<Rn

Res[eptF (p)] =
1

2πi
(
∫

Vn

+
∫
C′n

)eptF (p)dp.

The second integral vanishes (see Jordan’s lemma) as n → ∞. By means of the complex

inversion formula (1.4.35) we obtain

f(t) =
1

2πi

∫
(c)

eptF (p)dp = lim
n→∞

1
2πi

∫
Vn

eptF (p)dp = lim
n→∞

∑
|p|<Rn

Res[eptF (p)]

and this is formula (1.4.41).

Example 1.4.27 Let F (p) = P (p)/Q(p) be a rational function, where deg(P ) < deg(Q).

Then the assumptions of Theorem 1.4.14 are fulfilled. Let pk be a pole of F (p) with the

multiplicity nk. By the well-known formulas of the theory of residues we obtain

f(t) =
∑
k

1
(nk − 1)!

lim
p→pk

dnk−1

dpnk−1
[F (p)ept(p− pk)nk ]. (1.4.42)

In particular, if nk = 1 for every k we have

L−1

[
P (p)
Q(p)

]
(t) =

∑
k

P (pk)
Q′(pk)

epkt. (1.4.43)

In practice one does not use the general formulas (1.4.42) and (1.4.43), but one performs

the partial-fraction expansion of F (p) and with help of formula 1.4.3, (1.4.20) one can

evaluate the original f(t). For example, if

F (p) =
2p− 1
p2 − p

=
1
p

+
1

p− 1
,

then from (1.4.43) or directly from 1.4.3, (1.4.20) we obtain

f(t) = 1 + et, t ≥ 0.
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Another method is the inversion by means of the development in series. If F (p) is ana-

lytical at ∞ and F (∞) = 0 then the Laurent expansion with the center ∞ can be inverted

term by term, using 1.4.2, formula (1.4.13).

Theorem 1.4.15 Let F (p) be analytical at ∞ and F (∞) = 0,

F (p) =
∞∑
k=0

ckp
−k−1, |p| > R. (1.4.44)

Then F (p) = L[f ](p) and

f(t) = 1+(t)
∞∑
k=0

ck
k!
tk (1.4.45)

and the series is convergent for every t ∈ C.

Proof. Let p→ p−1 and φ(p) = F (p−1). Then

φ(p) =
∞∑
k=0

ckp
k+1

is analytical on |p| ≤ ρ < R−1. By means of the Cauchy inequality for the Taylor coefficients

we have

|ck| ≤Mρk+1.

Setting sn(t) =
n∑
k=1

ck
tk

k! we get

|sn(t)| ≤
n∑
k=1

|ck|
|t|k

k!
≤Mρ

∞∑
k=0

(ρ|t|)k

k!
= Mρes|t|.

From the Weierstrass convergence theorem we conclude that the series

lim
n→∞

sn(t) = lim
n→∞

n∑
k=0

ck
tk

k!
= f(t)

is uniformly convergent on C and it defines an entire function f of exponential order, i.e.,

|f(t)| ≤ Ceρ|t|.

Multiplication of the series of f(t) with e−pt and integration on R+ leads to

L[f ](p) =
∞∑
k=0

ckp
−k−1 = F (p).

Remark 1.4.26 One can prove that conversely if f is an entire function of exponential

type then there exists F (p) = L[f ](p), F (p) is analytical at ∞, F (∞) = 0 and the formulas

(1.4.44), (1.4.45) are valid (see [Doe. 3], Th. 30).
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Example 1.4.28 Let

F (p) =
1√
p2 + 1

=
∞∑
n=0

(
− 1

2

n

)
p−2n−1, |p| > 1.

Since (
− 1

2

n

)
= (−1)n/

√
πn!Γ(n+ 1/2)

we obtain from Theorem 1.4.15 and formula (1.4.13)

f(t) = L−1[F ](t) =
∞∑
n=0

Γ(n+ 1/2)(−1)n√
πn!

t2n

(2n)!
.

By means of Legendre’s formula for the Gamma function we have

√
π(2n)! = 22nn! Γ(n+ 1/2)

and this leads to

f(t) =
∞∑
n=0

(−1)n

(n!)2

(
t

2

)2n

= J0(t), (1.4.46)

where J0 is the Bessel function of the first kind and zero order.

1.4.6 Asymptotic Behavior

Sometimes in applications of the LT we obtain the image F (p) of an original f(t) and we

are not interested in the explicit form of the function f(t) but only in their behavior as t→ 0

resp. t→ +∞. Very simple results in this direction are the following two propositions.

Proposition 1.4.17 (Final-Value Theorem) Let F = L[f ] be analytical on H̄0 except

possibly a simple pole at the origin and let there exists f ′ on R+, f ′ ∈ E0, then we have

lim
t→+∞

f(t) = lim
p→0

pF (p). (1.4.47)

Proof. From the differentiation rule 1.4.3, Proposition 1.4.16 we obtain

lim
p→0

∞∫
0

f ′(t)e−ptdt = lim
p→0

pF (p)− f(+0) = lim
T→+∞

f(t) |∞+0= lim
t→∞

f(t)− f(+0).

This is the desired result.

Analogous we have the following.

Proposition 1.4.18 (Initial-Value Theorem) Let F = L[f ] be analytical on H̄0 except

possibly a simple pole at the origin and let there exist f ′ on R+, f ′ ∈ E0, then it holds that

lim
t→+0

f(t) = lim
p→∞

pF (p). (1.4.48)

© 2006 by Taylor & Francis Group, LLC



The Laplace Transform 45

Proof. Obviously, it holds for p ∈ H0

pF (p) =

∞∫
0

f(t)p e−ptdt = −f(t)e−pt |∞+0 +L[f ′](p) = f(+0) + L[f ′](p).

From f ′ ∈ E0 and Theorem 1.4.10 we know that L[f ′](p) tends to zero as p tends to infinity

and this yields formula (1.4.48).

Example 1.4.29 Let f(t) = sin t. From formula (1.4.9) we have F (p) = (p2 + 1)−1 and

therefore

lim
p→∞

pF (p) = 0.

But lim
t→∞

sin t does not exist and therefore formula (1.4.48) is not fulfilled because the poles

of F (p) are at p = ±i.

Now we are going to prepare a more general theorem for the behavior of a original f(t)

as t tends to +∞. It appears that the singularities with the greatest real part of the image

F (p) are of importance for this behavior of f(t).

Lemma 1.4.2 Let
∫
(c)

|F (p)| dp < ∞ for a vertical line (c) and f(t) = L−1 [F ](t); see

formula (1.4.35). Then it holds that

f(t) = O(ect), t ∈ R.

Proof. Obviously, it holds that

|f(t)| ≤ (2π)−1ect
∫
(c)

|F (p)|dp

and this is the assertion.

Lemma 1.4.3 Let f ∈ Ea and F = L[f ]. Then it holds that a.e. the inversion formula

f(t) = (2πi)−1 d

dt

∫
(c)

eptF (p)p−1dp, c > a. (1.4.49)

Proof. Setting ϕ(t) =
t∫
o

f(τ)dτ , then from the integration rule 1.4.3, Proposition 1.4.15

we know that ϕ ∈ Ec, where c = a if a ∈ R+ and c ∈ R+, arbitrarily, if a ≤ 0 and it holds

that

ϕ(t) = (2πi)−1

∫
(c)

eptp−1F (p)dp. (1.4.50)
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Furthermore, there exist the derivative ϕ′ a.e. and ϕ′ = f . From (1.4.50) we find

ϕ′(t) = f(t) = (2πi)−1 d

dt

∫
(c)

eptp−1F (p)dp, a.e.,

i.e., formula (1.4.49).

Lemma 1.4.4 Let Fν = L[fν ], fν ∈ Ea, ν = 0, 1, 2 and φ(p) = F0(p) − F1(p) − F2(p)

analytical and bounded on a half-plane H̄c, c > a, and moreover∫
(c)

|φ(p)|dp <∞ (1.4.51)

and

f2(t) = O(ect), t→ +∞. (1.4.52)

Then it holds that

f0(t) = f1(1) +O(ect), t→ +∞. (1.4.53)

Proof. From Lemma 1.4.3 we deduce

ϕ(t) = f0(t)− f1(t)− f2(t) = (2πi)−1 d

dt

∫
(c)

eptp−1φ(p)dp.

Because of condition (1.4.51) we can differentiate under the integral and Lemma 1.4.2 leads

to

f(t) = O(ect) , t→ +∞.

Taking into account that f2 has the same behavior, we have (1.4.53).

Lemma 1.4.4 is the base of the proof of the following.

Theorem 1.4.16 Let

F (p) = O(|p|−2), p→∞, p ∈ H̄a, (1.4.54)

analytical on H̄a with the exception of a finite number of poles in the points

pν = σ0 + iτν , ν = 1, 2, . . . , n, σ0 > a.

If

F (p) ∼ Aν(p− pν)−k−1, p→ pν , k ∈ N0,

then it holds that

f(t) =
tk

k!
eσ0t

(
n∑
ν=1

Aνe
iτνt +O(t−1)

)
, t→ +∞. (1.4.55)
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Remark 1.4.27 We would like to remark that the pν are the poles with the greatest real

part of F (p) (they all have the same real part Re(pν) = σ0, ν = 1, 2, . . . , n) and these poles

have the same order k + 1.

Proof. We choose

F1(p) =
n∑
ν=1

k+1∑
κ=1

aκ,ν
(p− pν)κ

, ak+1,ν = Aν ,

i.e., the sum of the singular parts of the Laurent expansion at the poles pν , ν = 1, 2, . . . , n

and F2 = 0. Then the conditions of Lemma 1.4.4 are fulfilled and we have

f(t) = f1(t) +O(ect), c ≥ σ0,

i.e.,

f(t) =
k+1∑
κ=1

n∑
ν=1

(
aκ,ν

tκ−1

(κ− 1)!
esνt

)
+O(ect) =

tkeσ0t

k!

( n∑
ν=1

Aνe
iτνt +O(t−1)

)
,

since O(ect) = O(eσot) = eσotO(1).

Example 1.4.30 Let F (p) = e−2α/(p+1)

p2+1 , α > 0. It has poles of the order 1 at p = ±i, i.e.,

we have σ0 = k = 0. From

F (p) =
1
2i
e−2α/(p+1)

(
1

p− i
− 1
p+ i

)
=

1
2i

(
eα(i−1)

p− i
− e−2α(1+i)

p+ i

)
+O(1)

we have A1 = 1
2i e

−α(1−i), A2 = A1. Theorem 1.4.16, formula (1.4.55) yields

f(t) = e−α sin(t+ α) +O(t−1) t→ +∞.

Analogously one can prove a theorem for branching points instead of poles. For this and

many other results in this direction we refer to [Doe.1], [Doe.3], [Me], and [Be.3].

1.4.7 Remarks on the Bilateral Laplace Transform

As stated in the introduction to section 1.4.1 we give the following definition.

Definition 1.4.5 The bilateral (or two-sided) Laplace transform (BLT ) of a function

f : R → C is the function F defined by

F (II)(p) = L(II)[f ](p) =

∞∫
−∞

f(t)e−ptdt, (1.4.56)

provided that the integral exists.
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As suitable space of originals we choose:

Definition 1.4.6 Eba, −∞ < a < b < ∞, is the linear space of functions f : R → C,

f ∈ Lloc1 (R), belonging to L1(R; e−at) as well as to L1(R; e−bt).

Similar to the one-sided case (section 1.4.1) one can prove:

Theorem 1.4.17 Let f ∈ Eba. Then the bilateral Laplace integral (1.4.56) is absolutely and

uniformly convergent on H̄b
a = {p : p ∈ C, a ≤ Re(p) ≤ b}. The BLT is analytical on

Hb
a = {p : p ∈ C, a < Re(p) < b} and it holds that

DkF (II)(p) = L(II)[(−t)kf(t)](p), k ∈ N. (1.4.57)

Furthermore, it is a linear transformation, i.e.,

L(II)[αf + βg] = αF + βG, α, β ∈ C, f, g ∈ Eba.

Since e−σtf(t) ∈ L1, a ≤ σ ≤ b, provided that f ∈ Eba we have analogously to 1.4.1,

Corollary 1.4.5:

Corollary 1.4.8 Let f ∈ Eba. Then for p = σ + iτ it holds that

F (II)(p) = F [e−σtf(t)](τ), p ∈ H̄b
a. (1.4.58)

The complex inversion formula and Theorem 1.4.12, Theorem 1.4.13 are valid for the

BLT , too. One has only to substitute R+ → R, F → F (II), Ea → Eba, c ∈ R : a < c < b,

Ha → Hb
a.

The operational properties of section 1.4.3 hold analogously. One has only to change the

assumptions and the conditions of the validity of the formulas in an easily understandable

manner. In the case of the convolution theorem one must of course choose the Fourier

convolution 1.3.3, (1.3.27). The differentiation rule becomes simpler:

Proposition 1.4.19 (Differentiation Rule) Let f ∈ Cn, n ∈ N and let f and its deriv-

atives up to the order n belong to Eba. Then there exist L(II)[Dnf ] and

L(II)[Dnf ](p) = pnF (II)(p), p ∈ Hb
a. (1.4.59)

Because of the relation (1.4.58) the determination of the original f of a given F = L(II)[f ]

can be made by the use of Fourier transform tables (see [O.1] and [EMOT], vol. I).
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1.4.8 Applications

Similar to section 1.3.5 we would like to give some examples for the application of the

Laplace transformation. We will consider integral equations and differential equations.

Example 1.4.31 Let us consider the Volterra integral equation (IGL),

t∫
0

f(x)k(t− x)dx = g(t), g(0) = 0, (1.4.60)

where g and k are known functions and f is the function we would like to determine.

Applying the LT on equation (1.4.60) leads quite formally to

F (p)K(p) = G(p)

or

F (p) = G(p) · 1
K(p)

.

The application of the convolution theorem leads to

f(t) = g(t)L−1[1/K(p)](t).

Very often L−1[1/K] does not exist. If there exist L−1[1/pK(p)](t) and L(p) = 1/pK(p) we

have

F (p) = pG(p)L(p).

Setting l := L−1[L] by means of the convolution theorem and with the help of the differen-

tiation rule we obtain

f(x) =
d

dx

x∫
0

g(t)l(x− t)dt. (1.4.61)

Let, for example,

k(x) = x−α, 0 < α < 1.

Then from formula (1.4.12) we have

K(p) = Γ(1− α)pα−1

and, therefore,

L(p) = 1/pK(p) =
p−α

Γ(1− α)

and again by formula (1.4.12)

l(x) =
xα−1

Γ(1− α)Γ(α)
=

sin(πα)
π

xα−1.
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Hence we have in this case as the solution (1.4.61) of (1.4.60)

f(x) = π−1 sin(πα)
d

dx

x∫
0

g(t)
(x− t)1−α

dt. (1.4.62)

By simple substitutions one can transform this to integrals with other limit points. For

example, let us consider the IGL∫ b

t

f(x)
(x− t)α

dx = g(t), 0 < t < b, 0 < α < 1, g(b) = 0.

Substituting t→ b− t and then x := b− u we have from (1.4.62)

f(b− u) = π−1 sin(πα)
d

du

u∫
0

g(b− t)
(u− t)1−α

dt.

Substituting conversely u := b − x, and then b − t = z and replacing at the end z → t we

have

f(x) = −π−1 sin(πα)
d

dx

b∫
x

g(t)
(t− x)1−α

dt.

This result can be generalized in substituting x→ ϕ(x), where ϕ(x) is monotonic increasing

and there exist ϕ′ and ϕ′(x) 6= 0. Then the IGL is

b∫
t

f(x)
(ϕ(x)− ϕ(t))α

dx = g(t), a < t < b, 0 < α < 1, g(b) = 0.

Substituting

τ := ϕ(t), ξ := ϕ(x), ϕ(b) = β, f(x)/ϕ′(x) =: h(x), g(t) = go(τ)

we have
β∫
τ

h(ξ)
(ξ − τ)α

dξ = go(τ).

Using the last result we have the solution

h(x) = −π−1 sin(πα)
d

dx

b∫
x

g(t)ϕ′(t)
(ϕ(t)− ϕ(x))1−α

dt.

Let, for example,

ϕ = cosh, x = τ, b = ∞, t = ξ, α = 1/2.

Then, obviously,

h(τ) = −π−1 d

dτ

∞∫
τ

g(ξ) sinh ξ(
cosh ξ − cosh τ)

)1/2
dξ (1.4.63)
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and therefore

g(ξ) =

∞∫
ξ

h(τ)(
cosh τ − cosh ξ

)1/2
dτ. (1.4.64)

For further examples of the solution of linear integral equations we refer to [Sn. 2], [Me],

[Doe. 3], [Be. 2], and [De. 6].

Example 1.4.32 Let us consider a general initial value problem (IVP) for a linear ordinary

differential equation of order n, which has the form

L[x](t) = Dnx(t) + a1D
n−1x(t) + · · ·+ anx(t) = f(t) (1.4.65)

with the initial value conditions at t = 0+

x(0+) = x0, x′(0+) = x1, . . . , x
(n−1)(0+) = xn−1, (1.4.66)

where aj ∈ C, j = 1, 2, . . . , n, xk ∈ C, k = 0, 1, . . . , n− 1.

By means of the differentiation rule 1.4.3, Proposition 1.4.16 we obtain the equation in

the domain of images

L(p)X(p) = F (p) + P (p), (1.4.67)

or

X(p) =
F (p)
L(p)

+
P (p)
L(p)

. (1.4.68)

Here L(p) is the characteristic polynomial of L[x], i.e.,

L(p) = pn + a1p
n−1 + · · ·+ an

and P (p) is a polynomial of degree n− 1, which contains the initial values x0, x1, . . . , xn−1

in the coefficients. The original is

x(t) = L−1

[
F (p)
L(p)

]
(t) + L−1

[
P (p)
L(p)

]
(t) = xs(t) + xh(t). (1.4.69)

Obviously, xs is a special solution of the inhomogeneous equation with initial values zero and

xh is the general solution of the homogeneous equation with arbitrary initial values. The

determination of xh is possible, since P (p)/L(p) is a rational function and the degree of

L(p) is greater than the degree of P (p). So one obtains according to formula 1.4.3, (1.4.20)

a linear combination of terms of the form tkeλt. The inversion of F (p)/L(p) is possible, if

we assume that f ∈ Ea. So such functions as f(t) = et
2

are not enclosed. To close this gap

we consider the IV P

L[x̃](p) = 1+(t), t > 0, (1.4.70)

with

x̃(0+) = x̃′(0+) = · · · = x̃(n−1)(0+) = 0.
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The LT leads to

L(p)X̃(p) = p−1. (1.4.71)

For the solution of the inhomogeneous equation with right-hand side f and vanishing initial

values at zero we have

L(p)X(p) = F (p)

and together with (1.4.71) we obtain

X(p) = (pX̃(p))F (p).

By inversion we get

x(t) =

t∫
0

f(τ)x̃′(t− τ)dτ = (f ∗ x̃′)(t). (1.4.72)

This formula is the well-known Duhamel formula. It allows the calculation of the solution

of equation (1.4.65) with vanishing initial values also if L[f ] does not exist. Let us consider

the equation

x′′(t) + x(t) = et
2
, x(+0) = x′(+0) = 0, t > 0. (1.4.73)

Following Duhamel’s method we consider first

x̃′′(t) + x̃ = 1, x̃(+0) = x̃(0+) = 0, t > 0.

The differentiation rule 1.4.3, Proposition 1.4.16 yields

(p2 + 1)X̃(p) = p−1,

or

X̃(p) =
1

p(p2 + 1)
=

1
p
− p

p2 + 1
.

The application of L−1 using 1.4.2, (1.4.8), (1.4.9) yields

x̃(t) = 1− cos t.

For the solution of (1.4.73) following Duhamel’s formula (1.4.72) we obtain

x(t) =

t∫
0

eτ
2

sin(t− τ)dτ.

Sometimes these methods also can be used for linear ordinary differential equations of the

form (1.4.60), where the coefficients aj are polynomials of a degree less than or equal to m ∈
N. Using the multiplication and the differentiation rules in 1.4.3, Proposition 1.4.12, and

Proposition 1.4.16, we obtain in the image domain an ordinary linear differential equation

of order m with polynomial coefficients of a degree less than or equal to n ∈ N0. If m < n

© 2006 by Taylor & Francis Group, LLC



The Laplace Transform 53

then this differential equation can perhaps be solved more easily than the original. As an

example we consider the Laguerre differential equation:

tx′′(t) + (1− t)x′(t) + nx(t) = 0, n ∈ N0, x(0) = 1.

The application of the LT yields

−[L[x′′](p)]′ + L[x′](p)− [L[x′](p)]′ + nx(p) = 0,

or

−[p2X(p)− px0 − χ1]′ + pX(p)− x0 + (pX(p)− x0)′ + nX(p) = 0,

i.e.,

p(1− p)X ′(p) + (n+ 1− p)X(p) = 0.

The separation of the variables yields

dX

X
=
p− n− 1
p(1− p)

dp =
(

n

p− 1
− n+ 1

p

)
dp

and it follows that

X(p) = Cp−1(1− p−1)n = C
n∑
k=0

(
n

k

)
(−1)k

pk+1
. (1.4.74)

The application of L−1, using formula (1.4.13) and x(0) = 1 (i.e., C = 1) yields

x(t) =
n∑
k=0

(
n

k

)
(−1)k

k!
tk = Ln(t). (1.4.75)

These are the well-known Laguerre polynomials. Another representation can be derived in

the following manner. By means of the damping rule, Proposition 1.4.11, and formula

(1.4.74) with C = 1 we get

L[e−tx(t)](p) =
pn

(p+ 1)n+1
. (1.4.76)

From formula (1.4.20) we know

L
[
e−t

tn

n!

]
(p) =

1
(p+ 1)n+1

.

By means of the differentiation rule, Proposition 1.4.16 we obtain from the last equations

(the initial values x0, x1, . . . , xn−1 are equal to zero)

L
[
Dne−t

tn

n!

]
(p) =

pn

(p+ 1)n+1
,

and together with equation (1.4.76) and Theorem 1.4.9 we have the Rodrigues formula for

the Laguerre polynomials

Ln(t) =
et

n!
Dn(e−ttn) , n ∈ N0. (1.4.77)
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Remark 1.4.28 One obtains at most n−m solutions of equation (1.4.60) with polynomial

coefficients of a degree less than or equal to m.

Remark 1.4.29 The transfer to systems of ordinary linear differential equations with con-

stant coefficients can be done in an easily understandable manner.

Remark 1.4.30 For further examples we refer to [Da], [De.6], [Doe.3], [Fö], [Me], and

other books on Laplace transforms.

Example 1.4.33 Now we are going to derive the solution of a linear partial differential

equation with initial and boundary conditions. The LT transfers a linear ordinary differen-

tial equation of the form (1.4.60) to an algebraical equation (1.4.67). A partial differential

equation for R2 → C functions leads after application of the LT with respect to one vari-

able to an ordinary differential equation. As an example we investigate the heat conduction

equation in a semiinfinite linear medium.

uxx(x, t)− ut(x, t) = 0, 0 < x, t <∞ (1.4.78)

u(x, 0) = 0, 0 < x <∞ (1.4.79)

u(0, t) = u0(t), 0 < t <∞. (1.4.80)

As usual, we apply the LT (with respect to the variable t) quite formally. Let U(x, p) =

L[u(x, ·)](p) by means of the differentiation rule Proposition 1.4.16, because of

U (x, 0) = 0 we get
d2U(x, p)
dx2

+ pU(x, p) = 0 (1.4.81)

and

U(0, p) = U0(p). (1.4.82)

The solution of the ordinary linear differential equation (1.4.81) for the function U under

the initial condition (1.4.82) is possible by means of the classical methods. One has

U(x, p) = Ae−
√
px +Be

√
px,

where
√
p is that branch of the square-root function, which is positive when p is positive.

Since every LT of our spaces of originals tends to zero as p tends to +∞ we obtain B = 0.

The initial condition (1.4.82) yields = U0(p) such that the solution of (1.4.78)–(1.4.79) in

the domain of images yields

U(x, p) = U0(p)e−x
√
p. (1.4.83)

By means of the convolution theorem and formula 1.4.3, (1.4.24) we obtain

u(x, t) =
x

2
√
π

t∫
0

uo(τ)
e−x

2/4(t−τ)

(t− τ)3/2
dτ = (u0 ∗ ψ(x, ·))(t), (1.4.84)
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with

ψ(x, t) =
x

2
√
π
t−3/2e−x

2/4t. (1.4.85)

One can prove that (1.4.84) is the solution of the problem (1.4.78) through (1.4.81) provided

that

u0 ∈ C(R+).

For further examples of solutions of partial differential equations by means of the LT we

refer to [Da], [De. 6], [Doe. 3], [Me], [Ob], and [Sn. 2].

1.5 The Mellin Transform

1.5.1 Definition and Basic Properties

The Mellin transform (MT ) is closely connected with the FT as well as with the two-sided

LT . It is defined as follows:

Definition 1.5.7 The MT of a function f : R+ → C is the function f∗ defined by

f∗(s) = M[f ](s) =

∞∫
0

xs−1f(x)dx, (1.5.1)

where s = σ + ıτ ∈ C, provided that the integral exists.

As space of originals we choose:

Definition 1.5.8 The space P ba , −∞ < a < b <∞, is the linear space of R+ → C functions

such that xs−1f(x) ∈ L1(R+) for every s ∈ H̄b
a.

Remark 1.5.31 Functions f ∈ Lloc1 (R+) with the estimate

|f(x)| ≤ C

{
x−a, x ∈ (0, 1]
x−b, x ∈ (1,∞)

belong to P b−εa+ε for every ε ∈ (0, (b− a)/2).

Theorem 1.5.18 Let f ∈ P ba . Then the Mellin integral (1.5.1) converges absolutely and

uniformly on H̄b
a. The MT f∗ is an analytic function on Hb

a. If k ∈ N then we have

Dkf∗(p) = M[log x)kf(x)](p). (1.5.2)
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Furthermore, it is a linear transformation, i.e.,

M[αf + βg] = αf∗ + βg∗, α, β ∈ C, f, g ∈ P ba .

Proof. The integral (1.5.1) converges (absolutely) if f ∈ P ba . This follows directly from the

definition of the space. From

|xs−1| ≤

{
xa−1, x ∈ (0, 1]
xb−1, x ∈ (1,∞)

and ∣∣∣ ∞∫
0

xs−1f(x)dx
∣∣∣ ≤ 1∫

0

xa−1|f(x)|dx+

∞∫
1

xb−1|f(x)|dx

it follows that the integral (1.5.1) is uniformly convergent on H̄b
a. Since the integral is an

analytic function (with respect to s) and from∣∣∣ d
ds
xs−1f(x)

∣∣∣ = |(log x)xs−1f(x)| ≤

{
cxa−ε−1|f(x)|, x ∈ (0, 1]
cxb+δ−1|f(x)|, x ∈ (1,∞),

where ε, δ ∈ R+, arbitrarily, we deduce that the integral (1.5.1) after differentiation with

respect to s under the integral sign is also uniformly convergent on H̄b−δ
a+ε and therefore we

have (1.5.2) with k = 1. The general case follows by induction. The linearity is obviously

true.

A connection between the Fourier and the Mellin transforms can be derived as follows.

Substituting x = e−t, t ∈ (−∞,∞) in the integral (1.5.1) we have

f∗(σ + iτ) =

∞∫
−∞

e−stf(e−t)dt = F [e−σtf(e−t)](τ), (1.5.3)

i.e., the following:

Theorem 1.5.19 Let f ∈ P ba . Then e−σtf(e−t) ∈ L1(R), a ≤ σ ≤ b, and it holds that

f∗(s) = F [e−σtf(e−t)](τ). (1.5.4)

By virtue of Theorem 1.3.1, and Theorem 1.3.2 we have two corollaries:

Corollary 1.5.9 If f ∈ P ba , then f∗(s) is bounded for each fixed σ, a ≤ σ ≤ b.

Corollary 1.5.10 If f ∈ P ba , then for each fixed σ, a ≤ σ ≤ b it holds that

lim
τ→±∞

f∗(σ + iτ) = 0.

Analogously from (1.5.4) one can obtain a connection between the MT and the bilateral

LT .

© 2006 by Taylor & Francis Group, LLC



The Mellin Transform 57

By means of Definition 1.4.6 we have:

Theorem 1.5.20 If f ∈ P ba , then f(e−t) ∈ Eba and it holds that

f∗(s) = L(II)[f(e−t)](s). (1.5.5)

Finally, we would like to derive a connection between the MT and the (one-sided) LT .

Theorem 1.5.21 If f ∈ P 1
0 , then it holds that

M[L[f ]](s) = Γ(s)M[f ](1− s), s ∈ H1
0 . (1.5.6)

Proof. Using formula (1.4.11), and the definition of the MT we obtain (using Fubini’s

theorem)

Γ(s)M[f ](1− s) =

∞∫
0

τ s−1e−τdτ

∞∫
0

t−sf(t)dt

=

∞∫
0

f(t)

∞∫
0

xs−1e−xtdxdt =

∞∫
0

xs−1

∞∫
0

e−xtf(t)dtdx

= M[L[f ]](s),

i.e., (1.5.6).

By means of Theorem 1.5.19 and section 1.3.4, Corollary 1.3.4 we obtain

Theorem 1.5.22 Let f ∈ P ba , g ∈ P dc and α = max(a, c) < β = min(b, d). If

f∗(s) = g∗(s), s ∈ Hβ
α ,

then f(x) = g(x) a.e. on R+.

Next we give some examples of Mellin transforms of elementary functions.

Example 1.5.34 From formula (1.4.12) we have in another formulation

M[e−αx](s) = α−sΓ(s), Re(α), σ ∈ R+. (1.5.7)

Putting α = iβ, β > 0 we have for 0 < σ < 1 from (1.5.7), in the sense of ordinary

convergence

M[e−iβx](s) =

∞∫
0

xs−1(cosβx− i sinβx)dx = e−πis/2β−sΓ(s)

= β−sΓ(s)
(

cos(πs/2)− i sin(πs/2)
)
.
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Comparing the real respectively imaginary part we get by means of analytical continuation

with respect to s

M[cosβx](s) = β−sΓ(s) cosπs/2, β ∈ R+, 0 < σ < 1, (1.5.8)

and

M[sinβx](s) = β−sΓ(s) sinπs/2, β ∈ R+, −1 < σ < 1. (1.5.9)

Putting α = e−iϕ, ϕ ∈ (−π/2, π/2) from (1.5.7) we obtain

M[e−ex
−iϕx](s) = Γ(s)eiϕs = Γ(s)[cosϕs+ i sinϕs].

Comparing the real and the imaginary part we have

M[e−x cosϕ cos(x sinϕ)](s) = Γ(s) cosϕs, σ > 0

M[e−x sinϕ cos(x sinϕ)](s) = Γ(s) sinϕs, σ > −1, |ϕ| < π/2. (1.5.10)

Example 1.5.35 Substituting u = s, v = ρ− s, and x = (t+ 1)−1 in the definition of the

Beta function, see equation (1.4.30), we obtain

B(s, ρ− s) =

∞∫
0

(1 + t)−ρts−1dt, 0 < σ < Re(ρ),

or equivalently

M[(1 + x)−ρ](s) = B(s, ρ− s), 0 < σ < Re(ρ). (1.5.11)

For further examples of Mellin transforms and inverse Mellin transforms we refer to [EMOT],

vol. I, [O.3], and [M].

1.5.2 Operational Properties

Analogously to the investigation in sections 1.3.3 and 1.4.3 we obtain rules of operational

calculus for the MT . By straightforward calculation we obtain the following elementary

rules.

Proposition 1.5.20 Let f ∈ P ba and s0, α ∈ R, α 6= 0, β ∈ R+. Then it holds that

M[xs0f(x)](s) = f∗(s+ s0), s ∈ H̄b−s0
a−s0 , (1.5.12)

M[f(xα)](s) = |α|−1f∗(s/α), s/α ∈ H̄b
a, (1.5.13)

and

M[f(βx](s) = β−sf∗(s), s ∈ H̄b
a. (1.5.14)
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Example 1.5.36 From formulas (1.5.8), (1.5.9), and Proposition 1.5.20, formula (1.5.12)

we have for α ∈ R, β ∈ R+

M[xα cosβx](s) = β−s−αΓ(s+ α) cos
π(s+ α)

2
, −α < σ < 1− α (1.5.15)

M[xα sinβx](s) = β−s−αΓ(s+ α) sin
π(s+ α)

2
, −1− α < σ < 1− α. (1.5.16)

Example 1.5.37 From formula (1.5.10) with ρ = 1 and rule (1.5.12) we obtain

M
[
x1/2

1 + x

]
(s) = B

(
s+

1
2
,

1
2
− s
)

=
π

sinπ(s+ 1
2 )
,

i.e.,

M
[
x1/2

1 + x

]
(s) =

π

cosπs
, −1

2
< σ <

1
2
. (1.5.17)

Here the reflection law of the Gamma function

Γ(z)Γ(1− z) =
π

sinπz
(1.5.18)

was used. By means of rule (1.5.13) from (1.5.17) we obtain, putting α→ 1/α,

M
[

x1/2α

1 + x1/α

]
(s) =

πα

cosαs
, α ∈ R+, −1/2α < σ < 1/2α. (1.5.19)

Now we are going to derive differentiation rules in the domain of images as well as in the

space of originals. In the domain of images we have only to formulate 1.5.1, Theorem 1.5.18

in a new manner. Since the absolute value of log x for x ∈ R+ together with its powers is

less than xε resp. x−ε, ε ∈ R+, arbitrary small, as x is sufficient large resp. small we have:

Proposition 1.5.21 Let f ∈ P ba , k ∈ N. Then (log x)kf(x) ∈ P b−εa+ε , ε ∈ R+ arbitrary

small and it holds that

M[(log x)kf(x)](s) = Dkf∗(s), s ∈ Hb
a. (1.5.20)

By means of integration by parts one easily can prove:

Proposition 1.5.22 Let f ∈ P ba and there exists Df ∈ Lloc1 (R+). Let there exist numbers

a′, b′ ∈ R, with a+ 1 ≤ a′ ≤ b′ ≤ b+ 1 such that

lim
x→+0

xa
′−1f(x) = lim

x→+∞
xb

′−1f(x) = 0.

Then there exists

M[Df ](s) = −(s− 1)f∗(s− 1), s ∈ Hb′

a′ . (1.5.21)

By induction and using

(s− 1)(s− 2) . . . (s− n) =
Γ(s)

Γ(s− n)
, n ∈ N

we obtain
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Corollary 1.5.11 If f (k), k = 0, 1, . . . , n − 1, satisfy the conditions of Proposition 1.4.11

then

M[Dnf ](s) = (−1)n
Γ(s)

Γ(s− n)
f∗(s− n). (1.5.22)

Now we are going to derive some further differentiation rules (without an explicit formu-

lation of the conditions for their validity). From (1.5.22) and (1.5.12) we obtain

M[xnDnf(x)](s) = (−1)n
Γ(s+ n)

Γ(s)
f∗(s). (1.5.23)

By means of (1.5.21) and (1.5.12) and further by induction it follows that

M[(−xD)nf(x)](s) = snf∗(s) (1.5.24)

and

M[(−Dx)nf(x)](s) = (s− 1)nf∗(s). (1.5.25)

Replacing f(x) with
x∫
0

f(t) dt from formula (1.5.21) we obtain

M
[ x∫

0

f(t)dt
]
(s) = −s−1f∗(s+ 1). (1.5.26)

Applying formula (1.5.21) to
∞∫
x

f(t) dt we obtain by straightforward calculation

M
[ ∞∫
x

f(t)dt
]
(s) = s−1f∗(s+ 1). (1.5.27)

Analogously by straightforward calculation we obtain

M
[ ∞∫

0

f(x, u)g(u)du
]
(s) =

∞∫
0

xs−1

∞∫
0

f(xu)g(u)dudx

=

∞∫
0

g(u)

∞∫
0

xs−1fxu)dxdu =

∞∫
0

u−sg(u)du

∞∫
0

ts−1f(t)dt,

and therefore we have

M
[ ∞∫

0

f(xu)g(u)du
]
(s) = f∗(s)g∗(1− s). (1.5.28)

Example 1.5.38 From formulas (1.5.7) and (1.5.21) by means of (1.5.28) we obtain

M
[ ∞∫

0

e−(x cosϕ+1)u cos(xu sinϕ)du
]
(s) = Γ (1− s) Γ(s) cosϕs

= M
[
L[cos(x sinϕ)u](1 + x cosϕ)

]
(s) = M

[
1 + x cosϕ

1 + 2x cosϕ+ x2

]
(s),
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where the LT (1.4.10) with λ = x sinϕ was used. By means of the reflection law of the

Gamma function (1.5.18) we obtain

M
[
π−1 1 + x cosϕ

1 + 2x cosϕ+ x2

]
(s) =

cosϕs
sinπs

, |ϕ| < π/2. (1.5.29)

Replacing ϕ→ νϕ and then using (1.5.13) with α = ν we have

M
[
π−1ν

1 + xν cos νϕ
1 + 2xν cos νϕ+ x2ν

]
(s) =

cosϕs
sinπs/ν

,

ν > 0, −π/2ν < ϕ < π/2ν, 0 < σ < νπ.

(1.5.30)

Analogously we have

M
[
π−1ν

xν sin νϕ
1 + 2xν cos νϕ+ x2ν

]
(s) =

sinϕs
sinπs/ν

,

ν > 0, −π/2ν < ϕ < π/2ν, 0 < σ < νπ.

(1.5.31)

Finally we define the Mellin convolution:

Definition 1.5.9 Let f, g : R+ → C. The function f ∨ g defined by means of

(f ∨ g)(x) =

∞∫
0

f(t)g(x/t)t−1dt (1.5.32)

is called the Mellin convolution of f and g, provided that the integral exists.

Now we have:

Theorem 1.5.23 (Convolution Theorem) Let f, g ∈ P ba . Then f ∨ g ∈ P ba and the

Mellin convolution is commutative and associative. Furthermore, it holds that

M[f ∨ g] = f∗g∗. (1.5.33)

Proof.

|(f ∨ g)∗(s)| ≤
∞∫
0

xσ−1|(f ∨ g)(x)|dx =

∞∫
0

xσ−1|
∞∫
0

f(t)(x/t)t−1dt|dx

≤
∞∫
0

∞∫
0

xσ−1|g(x/t)|t−1dt =

∞∫
0

tσ−1|f(t)|dt
∞∫
0

uσ−1|g(u)|dt.

Since the integrals on the right-hand side exist if σ ∈ [a, b], we conclude the existence of the

left-hand side, i.e., f ∨ g ∈ P ba .

For the proof of formula (1.5.33) we have

M[f ∨ g](s) =

∞∫
0

∞∫
0

f(t)g(x/t)(x/t)s−1ts−2dtdx

=

∞∫
0

ts−1f(t)dt

∞∫
0

g(u)us−1 du = f∗(s)g∗(s),
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and this is the result (1.5.33). The commutativity and the associativity can be obtained

by straightforward calculation or by taking the MT on both sides of the equations and

making use of the commutativity resp. associativity of the ordinary product in the domain

of images and of the uniqueness theorem; see Theorem 1.5.22.

Example 1.5.39 The convolution theorem is very useful for the computation of integrals.

For details we refer to [M]. As an example we consider the integral representation of the

MacDonald function K0.

K0(2
√
x) =

1
2

∞∫
−∞

e−2
√
xchξdξ. (1.5.34)

Substituting eξ = u and afterward u
√
x = t we obtain

2K0(2
√
x) =

∞∫
0

e−(u+u−1)
√
xu−1du =

∞∫
0

e−t−x/tt−1dt. (1.5.35)

From the convolution theorem with f(x) = g(x) = e−x and 1.5.1, (1.5.7) with α = 1 we

obtain

M[

∞∫
0

e−t−x/tt−1dt](s) = [Γ(s)]2.

Together with formula (1.5.35) we have

2M[K0(2
√
x)](s) = [Γ(s)]2. (1.5.36)

1.5.3 The Complex Inversion Formula

From the connection (1.5.4) between the MT and the FT we obtain by straightforward

calculation

eσtf(et) = F−1[f∗(σ − i·)](t).

Substituting et = x by virtue of formula (1.3.31), and Remark 1.3.11 we have after the

substitution τ → −τ in formula (1.3.31)

f(x) = (2π)−1

∞∫
−∞

x−(σ+iτ)f∗(σ + iτ)dτ.

With s = σ + iτ and using Theorem 1.3.5 and Remark 1.3.11 we obtain:

Theorem 1.5.24 Let f ∈ P ba , f∗ = M[f ], a ≤ c ≤ b and f∗(c + iτ) ∈ L1(R) with respect

to τ . Then at all points of continuity of f the complex inversion formula holds:

f |x) = (2πi)−1

∫
(c)

x−sf∗(s)ds = M−1[f∗](s). (1.5.37)
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In this theorem we put conditions on the original f as well as on the image f∗. There exist

sufficient conditions for f such that f(c+i·) belongs to  L1(R). So from 1.3.4, Corollary 1.3.3

we have:

Corollary 1.5.12 Let f ∈ C(R+) ∩ P ba . Furthermore let there exist Df and D(xσf(x)) ∈
L1(R+), a ≤ σ ≤ b. Then the inversion formula (1.5.37) is valid for every x ∈ R+.

Analogous to the inversion theorem for the LT respectively the bilateral LT (see The-

orem 1.4.13 and section 1.4.7) one can formulate an inversion theorem for the MT using

Theorem 1.5.20.

Theorem 1.5.25 Let f∗(s), s = σ+iτ be analytic in the infinite strip Hb
a and let f∗(σ+iτ)

tend to zero as τ → ±∞ uniformly with respect to σ, σ ∈ [a + ε, b − ε], ε ∈ R+, arbitrary

small. Furthermore, let
∞∫

−∞

|f∗(σ + iτ)|dτ <∞.

Then the function f defined on R+ by means of formula (1.5.37) with c ∈ (a, b) belongs to

P b−εa+ε and f∗ = M[f ].

For a direct proof we refer to [Sn.2], section 4.3.

1.5.4 Applications

Example 1.5.40 We first apply the MT to the summation of (convergent) series. As usual

quite formally we have by means of 1.5.2, (1.5.14) and 1.5.3, (1.5.37)

f(nx) = M−1[n−sf∗(s)](x) = (2πi)−1

∫
(c)

x−sn−sf∗(s)ds,

where c ∈ (a, b) if f∗(s) is analytical in Hb
a. Denoting Riemann’s Zeta function by

ζ(s) =
∞∑
n=1

n−s σ > 1 (1.5.38)

we have

∞∑
n=1

f(nx) = (2πi)−1

∫
(c)

x−sζ(s)f∗(s)ds = M−1[ζ(s)f∗(s)](x). (1.5.39)

Let us consider the sum

S(β) =
∞∑
n=1

n−2 cosβn, 0 ≤ β < 2π.
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From formula (1.5.8) and with the help of formula (1.5.12) we have for 2 < σ < 3

M[x−2 cosβx](s) = −β2−s cos(πs/2)Γ(s− 2)

and therefore from (1.5.39) with x = 1 and 2 < c < 3

S(β) = −(2πi)−1

∫
(c)

β2−sΓ(s− 2) cos(πs/2)ζ(s)ds.

By means of the theorem of residues by left-shifting of the path (c) of integration, S(β)

appears to be the sum of the residues of −β2−sΓ(s − 2) cos (πs/2)ζ(s) at their three (!)

simple poles at s = 2, s = 1 and s = 0. An easy calculation leads to

S(β) =
π2

6
− πβ

2
+
β2

4
.

Example 1.5.41 The FT and the LT are very well suited for operational calculus with

respect to the operator D and they can be applied to the solution of linear differential equa-

tions with respect to this operator. Such equations are transformed into algebraic equations.

Because of rule (1.5.22) such ordinary differential equations are transformed by the MT

into linear difference equations and their solution is not easier than the solution of the orig-

inal differential equations. But from the rules (1.5.23) through (1.5.25) we see that linear

ordinary differential equations with respect to the operator xnDn respectively xD and Dx

and its powers are transformed in the domain of images into algebraical equations. We use

Euler’s differential equation (we confine ourselves to the order 2)

x2D2y(x) + pDy(x) + qy(x) = f(x),

where p, q ∈ C can be written in the form

P [xD]y(x) = ((xD)2 + (p− 1)xD + q)y(x) = f(x), (1.5.40)

i.e., it is a linear differential equation with constant coefficients with respect to the operator

xD. Application of the MT using rule (1.5.24) yields

P (−s)y∗(s) = f∗(s). (1.5.41)

If P (−s) = s2 + (1− p)s+ q has no zeros in a strip Hb
a we have

y(x) = M−1
[ f∗(s)
P ∗(−s)

]
(x). (1.5.42)

Let, for example,

x2D2y(x) + 4xDy(x) + 2y(x) = e−x. (1.5.43)

The MT leads to, see formula (1.5.7),

(s2 − 3s+ 2)y∗(s) = Γ(s).
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From that we obtain

y∗(s) =
Γ(s)

(s− 1)(s− 2)
= Γ(s− 2).

By means of formulas (1.5.7), and (1.5.12) we have a particular solution of equation (1.5.43),

namely

y(x) = x−2e−x. (1.5.44)

Example 1.5.42 Now we would like to find the potential u(r, ϕ) in an infinite wedge, i.e.,

we will solve the potential equation in polar coordinates (r, ϕ)

r2urr(r, ϕ) + rur(r, ϕ) + uϕϕ(r, ϕ) = 0 (1.5.45)

in the infinite wedge 0 < r <∞, −α < ϕ < α, α ∈ (0, π/2), with the boundary conditions{
u(r, α) = u+(r), 0 ≤ r <∞
u(r,−α) = u−(r) , 0 ≤ r <∞

(1.5.46)

u(r, ϕ) → 0 as r →∞, ϕ ∈ (−α, α). (1.5.47)

Applying, as usual quite formally, the MT with respect to the variable r we have from 1.5.2,

(1.5.23) the ordinary differential equation

∂2u∗(s, ϕ)
∂ϕ2

+ s2u∗(s, ϕ) = 0 (1.5.48)

with the boundary conditions {
u∗(s, α) = u∗+(s)
u∗(s,−α) = u∗−(s).

(1.5.49)

The solution of (1.5.48) is

u∗(s, ϕ) = A(s) cosϕs+B(s) sinϕs.

With the help of the boundary conditions (1.5.49) we get

A(s) =
u∗+(s) + u∗−(s)

2 cosαs
, B(s) =

u∗+(s)− u∗−(s)
2 sinαs

,

i.e.,

u∗(s, ϕ) = u∗+(s)
sin(α+ ϕ)s

sin 2αs
+ u∗−(s)

sin(α− ϕ)s
sin 2αs

. (1.5.50)

Putting

h∗(s, ϕ) =
sinϕs
sin 2αs

we have

u∗(s, ϕ) = u∗+(s)h∗(s, α+ ϕ) + u∗−(s)h∗(s, α− ϕ)

with ν = π/2α, ν ∈ (−1, 1). By means of formula (1.5.31), namely,

h(r, ϕ) =
ν

π

rν sin νϕ
1 + 2rν cos νϕ+ r2ν

, (1.5.51)
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and with the help of the convolution theorem of the MT we obtain the formal solution of

our problem after a simple calculation:

u(r, ϕ) = u+ ∨ h(·, α+ ϕ) + u− ∨ h(·, α− ϕ)

=
νrν cos νρ

π

[ ∞∫
0

ρn−1u+(ϕ)
ρ2ν − 2(rρ)ν sin νϕ+ r2ν

dρ

+

∞∫
0

ρn−1u−(ρ)
ρ2ν + 2(rρ)ν sin νϕ+ r2ν

dρ

]
, −1 < ν < 1.

(1.5.52)

For further applications of the MT we refer to [Sn.2], [Tra.2] and [De.6].

Example 1.5.43 Now we consider Fourier-type integral transforms. Let

F (y) =

∞∫
0

f(x)k(xy)dx (1.5.53)

exist and let there exist an inversion formula of the type

f(x) =

∞∫
0

F (y)h(xy)dy (1.5.54)

with some kernel h. Then we have from (1.5.53) (provided that all calculations in the

following can be justified)

M[F ](s) =

∞∫
0

ys−1F (y)dy =

∞∫
0

f(x)
( ∞∫

0

ys−1k(xy)dy
)
dx.

Substituting y → u by xy = u we have

M[F ](s) =

∞∫
0

x−sf(x)dx

∞∫
0

us−1k(u)du,

that is,

M[F ](s) = M[f ](1− s) · M[k](s). (1.5.55)

Analogously from (1.5.54) we obtain

M[f ](s) = M[F ](1− s) · M[h](s). (1.5.56)

From (1.5.55) and (1.5.56) we have:

Proposition 1.5.23 Let k and h be the kernels of a Fourier-type transform (1.5.53) and

its inverse (1.5.54), respectively, then it holds that

M[k](1− s) · M[h](s) = 1. (1.5.57)
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The kernel h of the inversion formula (1.5.54) can therefore be calculated by means of

h(x) = M−1[M[h]](x) = M−1
[ 1
M[k](1− s)

]
(x). (1.5.58)

These calculations can (under appropriate conditions) be done in inverse direction, that is,

if two kernels h, k fulfill the equation (1.5.57) then the transform (1.5.53) has the inversion

formula (1.5.54).

1.6 The Stieltjes Transform

1.6.1 Definition and Basic Properties

Definition 1.6.10 The Stieltjes transform of a function f : R+ → C is defined by means

of

S[f ](z) =

∞∫
0

f(t)
t+ z

dt, (1.6.1)

provided that the integral exists.

For the existence we have the following three theorems.

Theorem 1.6.26 If the integral in (1.6.1) converges for a point z = z0 ∈ C \ (−∞, 0] then

it converges for every such point z ∈ C \ (−∞, 0].

Proof. Set

f0(t) =

t∫
0

f(u)
u+ z0

du, t ∈ [0,∞). (1.6.2)

Then for any z ∈ C \ (−∞, 0] and for any R ∈ R+ we have

R∫
0

f(t)
t+ z

dt =

R∫
0

t+ z0
t+ z

f ′0(t)dt = f0(R)
R+ z0
R+ z

+ (z0 − z)

R∫
0

f0(t)
(t+ z)2

dt.

Since f0(R) tends to S[f ](z0) as R tends to +∞ the last integral converges absolutely as

R→ +∞. Therefore, (1.6.1) converges and we have:

Corollary 1.6.13 Under the conditions of Theorem 1.6.26 it holds that

S[f ](z) = S[f ](z0) + (z0 − z)

∞∫
0

f0(t)
(t+ z)2

dt, (1.6.3)

the integral being absolutely convergent.
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Theorem 1.6.27 If the integral in (1.6.1) converges in some point z0 ∈ C \ (−∞, 0] it

converges uniformly in any compact subset K of C not containing points of the negative real

axis (−∞, 0].

Proof. Let

M = max
z∈K

|z|.

Then we have for any R > M (with the notations of the latter proof) and (1.6.3)

∞∫
R

f(t)
t+ z

dt = S[f ](z)−
R∫

0

f(t)
t+ z

dt = S[f ](z0)− f0(R)
R+ z0
R+ z

+ (z0 − z)

∞∫
R

f0(t)
(t+ z)2

dt,

and therefore

∣∣∣ ∞∫
R

f(t)
t+ z

dt
∣∣∣ ≤ |S[f ](z0)− f0(R)|+ |f0(R)| |z − z0|

|z +R|
+ |z0 − z|

∞∫
R

|f0(t)|
(|t+ z|)2

dt

≤ |S[f ](z0)− f0(R)|+ |f0(R)|M + |z0|
R−M

+ (M + |z0|)
∞∫
R

|f0(t)|
(t−M)2

dt.

The right-hand side is independent of z and it tends to zero as R tends to +∞. This

completes the proof.

From Theorem 1.6.27 we have:

Theorem 1.6.28 If the integral in (1.6.1) converges then the Stieltjes transform S[f ](z)

represents an analytic function in the complex plane cut along (−∞, 0] and

DkS[f ](z) = (−1)kk!

∞∫
0

f(t)
(t+ z)k+1

dt, k ∈ N0.

Sufficient conditions for the existence of the Stieltjes transform (1.6.1) are given in the

following:

Theorem 1.6.29 Let f ∈ Lloc
1 (R+) and for some positive δ

f(t) = 0(t−δ), t→ +∞.

Then the Stieltjes transform S[f ](z) exists on C \ (−∞, 0].

Remark 1.6.32 Stieltjes considered more generally the transform

α→
∞∫
0

dα(t)
t+ z

dt, (1.6.4)
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where α must be of bounded variation in [0, R] for every positive R. The theorems 1.6.26

through 1.6.28 are valid also in this case and in Theorem 1.6.29 one has to replace the

condition on the behavior at +∞ by

α(t) = 0(t1−δ), t→ +∞.

For details and proofs we refer to [Wi.1] and [Wi.2].

Remark 1.6.33 Still more general sometimes one considers the transforms

S%[f ](z) =

∞∫
0

f(t)
(t+ z)%

dt, (1.6.5)

resp.

α→
∞∫
0

dα(t)
(t+ z)%

, (1.6.6)

where % ∈ R+. The theorems 1.6.26 through 1.6.28 are again valid in those cases. In

Theorem 1.6.29 one has to replace the condition on the behavior at +∞ by

f(t) = 0(t%−1−δ), t→ +∞,

resp.

α(t) = 0(t%−δ), t→ +∞.

For details see again [Wi.1] and [Wi.2].

Now we are going to derive the connection between the Stieltjes and the Laplace trans-

forms.

Proposition 1.6.24 Under the conditions of Theorem 1.6.29, but with δ > 1, it holds that

S[f ](z) = L[L[f ](x)](z), Re(z) > 0. (1.6.7)

Proof. From

1
t+ z

=

∞∫
0

e−(t+z)xdx

it follows that

S[f ](z) =

∞∫
0

f(t)

∞∫
0

e−(t+z)xdxdt =

∞∫
0

e−zx
∞∫
0

f(t)e−xtdtdx,

and the interchanging of the integration is permissible under our conditions.

By means of the connection (1.6.7) and of the uniqueness theorem for the Laplace trans-

form (see Theorem 1.4.9) we obtain
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Theorem 1.6.30 If the Stieltjes transform of f and g are absolutely convergent and S[f ] =

S[g], then f = g.

For examples of Stieltjes transforms we refer to the tables EMOT, vol. 2, Chapter XIV

or the tables of Laplace transforms [PBM], vol. IV, [EMOT], vol. 1, or [OB] together with

Proposition 1, and to the textbooks [De.6] and [Sn.2].

1.6.2 Operational Properties

The operational properties of the Stieltjes transform are valid if all the expressions appear-

ing in the formulas exist, but we add sufficient conditions for the validity of the formulas.

By straightforward calculation we have

Proposition 1.6.25 Let f fulfill the conditions of 1.6.1, Theorem 1.6.29 and let f(t) = 0

if t < 0. Then for a, b ∈ R+ we have the translation rule

S[f(t− a)](z) = S[f ](z + a), z ∈ C \ (−∞,−a] (1.6.8)

and the similarity rule

S[f(bt)](z) = S[f ](bz), z ∈ C \ (−∞, 0]. (1.6.9)

From the identity
t

t+ z
= 1− z

t+ z

we obtain the multiplication rule.

Proposition 1.6.26 Let f ∈ L1(R+). Then it holds that

S[tf(t)](z) =

∞∫
0

f(t)dt− zS[f ](z). (1.6.10)

Integrating by parts we deduce the differentiation rule (using Theorem 1.6.28).

Proposition 1.6.27 Let there exist f ′ a.e. and let f, f ′ fulfill the conditions of 1.6.1,

Theorem 1.6.29. Then we have

S[f ′](z) = − d

dz
S[f ](z)− z−1f(0). (1.6.11)
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More generally, we have:

Corollary 1.6.14

S[Dnf ](z) = (−1)nDnS[f ](z)−
[

(n− 1)!
zn

f(0) + · · ·+ f (n−2)(0)
z2

+
f (n−1)(0)

z

]
. (1.6.12)

For the iteration of two Stieltjes transforms we have quite formally

S
[
S[f ]

]
(z) =

∞∫
0

(x+ z)−1

( ∞∫
0

f(t)
t+ x

dt

)
dx =

∞∫
0

f(t)
( ∞∫

0

dx

(x+ z)(x+ t)

)
dt

=

∞∫
0

log(t/z)f(t)
t− z

dt.

Therefore we have under the assumptions that S[f ] and S[S[f ]] exist the connection

S
[
S[f ]

]
(z) =

∞∫
0

log(t/z)
t− z

f(t)dt. (1.6.13)

The operational properties can also be formulated for the Stieltjes transform of index % ∈
R+; see formula (1.6.5). Without proof we give only the results:

S%[f(t− a)](z) = S%[f ](z + a), a ∈ R+, (1.6.14)

S%[f(bt)](z) = b%−1S%[f ](bz), b ∈ R+, (1.6.15)

S%[tf(t)](z) = S%−1[f ](z)− zS%[f ](z), (1.6.16)

S%[f ′](z) = %S%+1[f ](z)− z−1f(0), (1.6.17)

Sµ[S%f ](z) = B(1, µ+ %− 1)z−µ
∞∫
0

t1−% 2F1

(
µ; 1;µ+ %; 1− t

z

)
dt, (1.6.18)

where B is the Beta function, see equation (1.4.31), and 2F1 is Gauss’ hypergeometric

function. In this case one also can easily prove an integration rule.

Setting

g(t) =
1

Γ(µ)

t∫
0

f(u)(t− u)µ−1du, µ > 0,

one can derive

S%[g](z) =
Γ(%− µ)

Γ(%)
S%−µ[f ](z), % > µ. (1.6.19)

In this case µ = 1 this leads to

S%
[ t∫

0

f(u)du
]
(z) = (%− 1)−1S%−1[f ](z), % > 1. (1.6.20)

For details we refer to [Za], Chapter VIII.

Following [SV] we prepare the proof of a convolution theorem for the Stieltjes transform.
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Definition 1.6.11 As convolution h = f ⊗ g of two functions f and g : R+ → C we define

h(t) = (f ⊗ g)(t) = f(t)

∞∫
0

g(u)
u− t

du+ g(t)

∞∫
0

f(u)
u− t

du, (1.6.21)

provided that the integrals exist.

Remark 1.6.34 Setting

f∼(t) =

∞∫
0

f(u)
u− t

du, g∼(t) =

∞∫
0

g(u)
u− t

du (1.6.22)

one has f∼ = H[1+(t)f(t)], g∼ = H[1+(t)g(t)], where 1+(t) is the Heaviside function and

H is the Hilbert transform, investigated in section 1.7, which follows. From this section we

know that f∼, g∼ exist if f, g ∈ L1(R+), provided that the integrals are understood in the

sense of Cauchy’s principal value (PV ).

So we can prove:

Theorem 1.6.31 (Convolution Theorem) Let f, g ∈ L1(R+) and let the Stieltjes trans-

forms of fg∼ and f∼g be absolutely convergent. Then there exists the Stieltjes transform

of the convolution f ⊗ g and it holds that

S[f ⊗ g] = S[f ] · S[g]. (1.6.23)

Proof. Under our assumptions we have

S[f ⊗ g](z) =

∞∫
0

f(t)
t+ z

( ∞∫
0

g(u)
u− t

, du
)
dt+

∞∫
0

g(t)
t+ z

( ∞∫
0

f(u)
u− t

du
)
dt.

Interchanging the order of integration we obtain

S[f ⊗ g](z) =

∞∫
0

f(t)
( ∞∫

0

g(u)
(t+ z)(u− t)

du
)
dt+

∞∫
0

f(t)
( ∞∫

0

g(u)
(u+ z)(t− u)

du
)
dt

=

∞∫
0

f(t)
( ∞∫

0

g(u)
u− t

[ 1
t+ z

− 1
u+ z

]
du
)
dt =

( ∞∫
0

f(t)
t+ z

dt
)( ∞∫

0

g(u)
u+ z

du
)

= S[f ](z) · S[g](z).

Remark 1.6.35 In [SV] H.M. Silvastrava and Vu Kim Tuan have proved that for

f ∈ Lp, g ∈ Lq, p, q > 1 and p−1 + q−1 =: r−1 < 1 it holds that h ∈ Lr and (1.6.23) is

valid.
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1.6.3 Asymptotics

We first would like to investigate the behavior of the originals at +∞.

Theorem 1.6.32 Let f ≥ 0 (or f ≤ 0) on R+ and let the Stieltjes transform 1.6.1, (1.6.1)

exist. Then it holds that

f(t) = o(1), t→ +∞. (1.6.24)

Proof. Let f ≥ 0 and set

f0(t) =

t∫
0

f(u)du, t ∈ R+,

and

ϕ(t) =

t∫
1

f(u)
u+ 1

du, t ∈ [1,∞).

Then we have integrating by parts

f0(t)− f0(1) =

t∫
1

f(u)du =

t∫
1

(u+ 1)dϕ(u) = (t+ 1)ϕ(t)−
t∫

1

ϕ(u)du.

Therefore,

f0(t)
t

=
f0(1)
t

+
(
1 +

1
t

)
ϕ(t)− 1

t

t∫
1

ϕ(u)du

and it follows by the mean value theorem for the integral

f0(t)
t

∼ ϕ(∞)− ϕ(∞) = 0,

so

f0(t) = o(t), t→ +∞. (1.6.25)

By differentiation, which is permissible since f0 is nondecreasing, we obtain (1.6.24). In the

case of f ≤ 0 we consider g = −f .

Now we are going to derive the asymptotics of the images at +∞.

Theorem 1.6.33 If the Stieltjes transform (1.6.1) exists, then

DnS[f ](x) = o(x−n), x→ +∞, n ∈ N0. (1.6.26)

Proof.

1. n ≥ 1: Setting F (x) = S[f ](x), x ∈ R+ we have from 1.6.1, Theorem 1.6.28 integrating

by parts

DnF (x) = (−1)nn!

∞∫
0

f(t)
(t+ x)n+1

dx = (−1)n(n+ 1)!

∞∫
0

f0(t)
(t+ x)n+2

dt, (1.6.27)
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where the notations of Theorem 1.6.32 and the result (1.6.26) have been used. Again using

Theorem 1.6.32 for arbitrary ε ∈ R+ we determine a positive number R so that

|f0(t)| < εt, t ∈ [R,∞).

From (1.6.27) we obtain for x > R

|xnDnF (x)| ≤ xn(n+ 1)!

R∫
0

|f0(t)|
(t+ x)n+2

dt+ xnε(n+ 1)!

∞∫
R

t

(t+ x)n+2
dt

≤ (n+ 1)!
x2

R∫
0

|f0(t)|dt+ ε
(n+ 1)!

n
,

where in the latter integral the nominator was written as (t + x) − x. As x tends to +∞
we obtain (1.6.26) in the case of n ≥ 1.

2. n = 0: Using 1.6.1, Corollary 1.6.13 with z0 = 1 we have

F (x) = F (1) + (1− x)

∞∫
0

f1(1)
(t+ x)2

dt,

where

f1(t) =

t∫
0

f(u)
u+ 1

du.

For the proof of (1.6.26) in the case of n = 0 it is sufficient to show:

lim
x→+∞

x

∞∫
0

f1(t)
(t+ x)2

dt = F (1) = f1(∞).

From

∆ := x

∞∫
0

f1(t)
(t+ x)2

dt− f1(∞) = x

∞∫
0

f1(t)− f1(∞)
(t+ x)2

dt

and since for arbitrary ε ∈ R+ there exists a number R ∈ R+ with

|f1(t)− f1(∞)| < ε/2, t ∈ [R,∞)

we have

|∆| < x

R∫
0

|f1(t)− f1(∞)|
(t+ x)2

dt+ ε/2 < ε

if x is sufficiently large.

Finally, we consider the behavior of S[f ](z) at z = 0.
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Theorem 1.6.34 Under the conditions of Theorem 1.6.32, the Stieltjes transform F (z) =

S[f ](z) has a singularity at z = 0.

Proof. We consider again only the case that f is nonnegative. Let us assume that z = 0

is no singularity of F (z). Then the radius of convergence of the series

F (z) =
∞∑
n=0

f (n)(1)
(z − 1)n

n!

is greater than one, i.e., the series

F (−ε) =
∞∑
n=0

(−1)nf (n)(1)
(ε+ 1)n

n!

is convergent for some ε ∈ R+ which is taken such that f(ε) > 0. Then by means of

Theorem 1.6.29 and Theorem 1.6.26 we get

F (−ε) =
∞∑
n=0

∞∫
0

(ε+ 1)n

(t+ 1)n+1
f(t)dt =

∞∑
n=0

(n+ 1)

∞∫
0

(ε+ 1)n

(t+ 1)n+2
f(t)dt.

Therefore, the series
∞∑
n=0

(n+ 1)

∞∫
ε

(ε+ 1)n

(t+ 1)n+2
f(t)dt (1.6.28)

is also convergent. Since the expression under the integral is nonnegative and since the

series
∞∑
n=0

(n+ 1)
(ε+ 1)n

(t+ 1)n+2
=

1
(t− ε)2

converges for t > ε one may interchange integration and summation in (1.6.28) and we have

the convergent integral
∞∫
ε

f(t)
(t− ε)2

dt.

But this integral is divergent because of

lim
t→ε+

f(t)/(t− ε) = +∞.

Therefore the assumption that z = 0 is no singularity of F (s) is wrong.

1.6.4 Inversion and Application

Now we are going to derive a complex inversion formula for the Stieltjes transform.

Following Widder [Wi.1], Chapter VIII, §7 we need two preliminary results.
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Lemma 1.6.5 Let f ∈ L1(0, R) and let f(0+) exist. Then

lim
y→+0

y

π

R∫
0

f(t)
t2 + y2

dt =
f(0+)

2
(1.6.29)

for every R ∈ R+.

Proof. We can assume that f(0+) = 0 since

lim
R→+∞

y

R∫
0

dt

t2 + y2
= lim
R→+∞

arctg
R

y
=
π

2
.

For arbitrary ε ∈ R+ we determine a positive δ < R so that |f(t)| < ε for t ∈ [0, δ]. Then

∣∣∣∣y
R∫

0

f(t)
t2 + y2

dt

∣∣∣∣ ≤ εy

δ∫
0

dt

t2 + y2
+ y

R∫
δ

|f(t)|
t2

dt

and it follows that

lim
y→0+

y

∣∣∣∣
R∫

0

f(t)
t2 + y2

dt

∣∣∣∣ ≤ π

2
ε

and this is (1.6.29) in the case of f(0+) = 0.

Lemma 1.6.6 Let f ∈ L1(0, R) and x ∈ (0, R). If f(x+) and f(x−) exist, then

lim
y→0+

y

π

R∫
0

f(t)
(t− x)2 + y2

dt =
1
2

(
f(x+) + f(x−)

)
. (1.6.30)

Proof. The result follows from Lemma 1.6.5 by writing the integral in (1.6.30) as the sum

of two integrals corresponding to the intervals (0, x) and (x,R).

Now we are able to prove:

Theorem 1.6.35 Let f ∈ Lloc
1 (R+) such that the Stieltjes transform F (z) = S[f ](z) con-

verges, then

lim
y→0+

F (−x− iy)− F (−x+ iy)
2πi

=
1
2

(
f(x+) + f(x−)

)
(1.6.31)

for any x ∈ R+ at which f(x+) and f(x−) exist.

Proof. By straightforward calculation we have for R > x

F (−x− iy)− F (−x+ iy)
2πi

=
y

π

∞∫
0

f(t)
(t− x)2 + y2

dt =
y

π

 R∫
0

+

∞∫
R

 f(t)
(t− x)2 + y2

dt = I1+I2.

© 2006 by Taylor & Francis Group, LLC



The Stieltjes Transform 77

From Lemma 1.6.6 we know that

lim
y→0+

I1 =
f(x+) + f(x−)

2

and we have only to show that

lim
y→0+

I2 = 0.

Set

f0(t) =

t∫
0

f(u)du, 0 ≤ t <∞.

Then integration by parts leads to

I2 =
−yf0(R)

π[(R− x)2 + y2]
+

2y
π

∞∫
R

f0(t)(t− x)
[(t− x)2 + y2]2

dt.

The first term on the right-hand side tends to zero as y → 0+. Denoting the second term

by I3 and using

|f0(t)| < Mt, 0 ≤ f <∞,

see formula (1.6.25), we have

|I3| <
2yM
π

∞∫
R

t

(t− x)3
dt.

The integral converges and, therefore, I3 tends to zero as y → 0+ and, hence,

lim
y→0+

I2 = 0,

and the proof is completed.

Remark 1.6.36 The formula (1.6.31) gives the inversion only for the original f at points

of the positive real axis.

Remark 1.6.37 Formula (1.6.31) may be written symbolically as

f(x) = (2πi)−1
(
F (xe−πi)− F (xeπi)

)
(1.6.32)

in an easily understandable manner.

As an application we consider the Stieltjes integral equation

f(x) = λ

∞∫
0

u(t)
t+ x

dt, λ, x ∈ R+, (1.6.33)
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where f is a given function and u is the solution of the integral equation we are looking for.

Quite formally applying formula (1.6.32) we have

u(x) = (2πiλ)−1
(
f(xe−πi)− f(xeπi)

)
. (1.6.34)

One can prove, for example, that a necessary and sufficient condition for (1.6.33) to have a

solution (1.6.34) of L2(R+) is that f(z) should be analytic on C \ (−∞, 0] and that
∞∫
0

|f(reiϕ)|2dr

should be bounded for ϕ ∈ (−π, π) (see [T.2], 11.8). For further applications refer to [De.6],

section 7.10; [Wi.1], Chapter VIII, sections 25–27; and [Za], 8.10.

1.7 The Hilbert Transform

1.7.1 Definition and Basic Properties

Definition 1.7.12 The Hilbert transform of a function f : R → C is the function f∼

defined by

f∼(x) = H[f ](x) =
1
π

∞∫
−∞

f(t)
t− x

dt, (1.7.1)

provided that the integral exists.

As space of originals we choose the space L1(R) = L1. One can prove:

Theorem 1.7.36 Let f ∈ L1. Then the Hilbert transform f∼ exists a.e., provided that the

integral in (1) is understood in the sense of Cauchy’s principal value (PV), i.e.,

f∼(x) =
1
π

(PV )

∞∫
−∞

f(t)
t− x

dt =
1
π

lim
δ→+0

( x−δ∫
−∞

+

∞∫
x+δ

)
f(t)
t− x

dt. (1.7.2)

The proof is too lengthy to be presented here. We refer to the functional analytic proof

in [BuN], section 8, and a proof by means of the continuation into the complex domain

x → z = x + iy, y > 0 and by use of theorems on the existence of the limit of analytic

functions defined in the upper half-plane as y tends to +0; see [T.2], section 5.10.

Remark 1.7.38 From (1.7.2) we derive the following form:

f∼(x) =
1
π

lim
δ→+0

∞∫
δ

f(x+ t)− f(x− t)
t

dt =
1
π

(PV )

∞∫
−∞

f(x+ t)
t

dt. (1.7.3)
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Remark 1.7.39 Similar as in the case of the FT, see 1.3.1, Example 1.3.2, the Hilbert

transform f∼ of a L1-function f is (in general) not a L1-function. Let f be the L1-function

defined by

f(t) = (1 + t2)−1, t ∈ R.

Then by fractional decomposition we have

f∼(x) =
1
π

(1 + x2)−1(PV )

∞∫
−∞

[
−x
t2 + 1

− t

t2 + 1
+

1
t− x

]
dt.

Considering the integral as (PV) not only with respect to x but also with respect to ±∞
the last two integrals vanish and we obtain

f∼(x) = − x

1 + x2
,

such that f∼ /∈ L1.

Remark 1.7.40 If f ∈ Lp(R) = Lp, p > 1, then we have a stronger result. The Hilbert

transform also exists a.e. and f∼ ∈ Lp. In the case of p = 2 it holds moreover that

‖f∼‖2 = ‖f‖2.

For the proofs we refer to [BuN], section 8, or [T.2], section 5.10.

Now we derive the connection between the Hilbert transform on the one hand and the

FT and the Stieltjes transform on the other hand.

Proposition 1.7.28 Let f, f∼ ∈ L1. Then it holds that

F [H[f ]](x) = isgn(x)F [f ](x). (1.7.4)

Proof. We have

(f∼)∧(x) = frac1π

∞∫
−∞

e−ixt
( ∞∫
−∞

f(u)
u− t

du

)
dt =

1
π

∞∫
−∞

f(u)
( ∞∫
−∞

e−ixt

u− t
dt

)
du

=
1
π

∞∫
−∞

f(u)e−ixu
( ∞∫
−∞

eixv

v
dv

)
du.

(1.7.5)

Now we have

π−1

∞∫
−∞

v−1eixvdv = 2F−1[v−1](x) =
2i
π
sgn(x)

∞∫
0

sin y
y

dy = isgn(x),

because of (1.4.23). Replacing x by −x we get

F [(πt)−1](x) = −isgn(x). (1.7.6)
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Together with (1.7.5) we obtain the result (1.7.4).

By quite formal calculation we obtain the connection between the Hilbert transform and

the Stieltjes transform; see formula (1.6.1). We have for x > 0

H[f ](x) =
1
π

∞∫
−∞

f(t)
t− x

dt =
1
π

[ ∞∫
0

f(t)
t− x

dt−
∞∫
0

f(−t)
t+ x

dt

]

=
1

2π

[ ∞∫
0

f(t)
t+ xeπi

dt+

∞∫
0

f(t)
t+ xe−πi

dt

]
− 1
π

∞∫
0

f(−t)
t+ x

dt.

Similarly we obtain a result in the case of x < 0. So we have

Proposition 1.7.29 Let f ∈ L1. Then it holds for x > 0 that

H[f ](x) =
1

2π
[
S[f ](xeπi) + S[f ](xe−πi)

]
− 1
π
S[f(−t)](x), (1.7.7)

and for x < 0,

H[f ](x) =
1

2π
S[f ](−x)− 1

2π
[
S[f(−t)](|x|eπi) + S[f(−t)](|x|)e−πi)

]
, (1.7.8)

where the integral has to be taken as (PV).

For examples of Hilbert transforms we refer to the tables [EMOT], vol. 2, Chapter

XV or to the tables of Stieltjes transforms [EMOT], vol. 2, Chapter XIV, together with

Proposition 1.7.29.

Now we derive an inversion formula, but only quite formally. The Hilbert transform

(1.7.1) can be written as the Fourier convolution 1.3.3, (1.3.11) of the functions f and g,

where

g(t) =
1
πt
.

Using (1.7.6) and the convolution theorem (1.3.29) of the FT we have

(f∼)∧(x) = isgn(x)f∧(x),

or equivalently,

f∧(x) = −isgn(x)(f∼)∧(x).

Again using the convolution theorem of the FT (see 1.3.4, Remark 1.3.12) we have

f(x) = − 1
π

∞∫
−∞

f∼(x)
t− x

dt. (1.7.9)
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The result is:

Theorem 1.7.37 Let f , f∼ ∈ L1. Then it holds a.e., the inversion formula (1.7.9) or

equivalently

f = −(f∼)∼. (1.7.10)

Remark 1.7.41 The inversion formula (1.7.9), (1.7.10) is also valid a.e. if f ∈ Lp, p > 1.

For the proofs of this result and of Theorem 1.7.37 we refer to [BuN], Proposition 8.2.10 or

[T.2], Th. 101.

1.7.2 Operational Properties

By straightforward calculation we obtain the following elementary results of operational

calculus of the Hilbert transform.

Proposition 1.7.30 Let a ∈ R, 0 6= b ∈ R and f ∈ L1. Then it holds that

H[f(t+ a)](x) = f∼(x+ a), (1.7.11)

H[f(bt)](x) = sgn(b)f∼(bx), (1.7.12)

and

H[tf(t)](x) = xf∼(x) +
1
π

∞∫
−∞

f(t)dt. (1.7.13)

Integrating by parts we obtain a differentiation rule.

Proposition 1.7.31 Let there exist f ′ a.e. and let f, f ′ ∈ L1. Then it holds that

H[f ′](x) =
d

dx
f∼(x). (1.7.14)

A convolution theorem for the Hilbert transform was published by Tricomi; see [Tri],

section 4.2. Following [GlV] we have

Theorem 1.7.38 Let f, g, fg ∈ L1 such that their Hilbert transforms f∼, g∼, (fg)∼ belong

also to L1. Setting

(f ⊗ g)(x) = π−1

∞∫
−∞

[
f(x)g(t) + g(x)f(t)− f(t)g(t)

] dt

t− x
(1.7.15)

(convolution of the Hilbert transform), then (f ⊗ g)∼ ∈ L1 and it holds that

(f ⊗ g)∼ = f∼g∼. (1.7.16)
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Proof. Under our conditions obviously (f ⊗ g)∼ ∈ L1. Applying the Hilbert transform

on equation (1.7.15) and using the inversion formula 1.7.1, (1.7.10) in the last summand of

(1.7.15) we have

h̃ = (f ⊗ g)∼ = (fg∼)∼ + (f∼g)∼ + fg.

Using the connection (1.7.4) between the FT and the Hilbert transform, the definition

(1.3.27) of the convolution of the FT and 1.3.4, Remark 1.3.13, namely,

f∧ ∗ g∧ = 2π(fg)∧,

which holds under our conditions, we have

2πF [h∼](x) = 2πF [(fg∼)∼ + (f∼g)∼ + fg](x)

= −2πisgn(x)F [fg∼ + f∼g](x) + 2πF [fg](x)

= −isgn(x)[(f∧ ∗ (g∼)∧)(x) + ((f∼)∧ ∗ g∧)(x)] + (f∧ ∗ g∧)(x)

= −sgn(x)[(f∧ ∗ sgn(x)g∧)(x) + (sgn(x)f∧ ∗ g∧)(x)] + (f∧ ∗ g∧)(x)

= [(isgn(x))f∧ ∗ (isgn(x))g∧](x)

= [(f∼)∧ ∗ (g∼)∧](x).

Consequently,

h∼ = f∼g∼,

and this is formula (1.7.16).

Remark 1.7.42 One can also prove:

Let f ∈ Lp, g ∈ Lq, 1 < p, q < ∞, p−1 + q−1 < 1. Then f ⊗ g ∈ Lr, r−1 = p−1 + q−1

and formula (1.7.16) is valid.

A connection between the Hilbert transform and the Fourier convolution is given in:

Theorem 1.7.39 If f, g ∈ L1 and f∼, g∼ ∈ L1 then

H[f ∗ g] = f∼ ∗ g = f ∗ g∼ (1.7.17)

and

f ∗ g = −(f∼ ∗ g∼). (1.7.18)

Proof. Following [Za] section 14.5.4 we have

H[f ∗ g](x) =
1
π

∞∫
−∞

(t− x)−1

( ∞∫
−∞

f(y)g(t− y)dy
)
dt =

1
π

∞∫
−∞

f(y)
( ∞∫
−∞

g(z)
z − (x− y)

dz

)
dy

=

∞∫
−∞

f(y)g∼(x− y) dy = (f ∗ g∼)(x).

The second half of (1.7.17) is proved analogously. Formula (1.7.18) follows from (1.7.17)

by replacing g with g∼ and using formula (1.7.10).
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1.7.3 Applications

Example 1.7.44 We would like to explain a method for the calculation of Cauchy integrals.

Let f, f∼ ∈ L1 and set g = f∼ in 1.7.2, (1.7.15). By means of the inversion formula 1.7.1,

(1.7.10) this leads to

f ⊗ f∼ = −f2 + (f∼)2 − (ff∼)∼. (1.7.19)

But from the convolution theorem (1.7.16) we obtain in the special case g = f∼

(f ⊗ f∼)∼ = −ff∼.

Therefore,

(f ⊗ f∼)∼ = (ff∼)∼.

Together with (1.7.19) this can be written in the form

(
f∼(x)

)2 − (f(x)
)2 =

2
π

∞∫
−∞

f(t)f∼(t)
t− x

dt. (1.7.20)

Formula (1.7.20) can be applied to evaluate Cauchy integrals in the following manner: If

the Hilbert transform f∼ of f is known, then the Hilbert transform of ff∼ is [(f∼)2−f2]/2.

For example, let

f(t) =
π

2
exp(−|t|)I0(t),

where I0 is the modified Bessel function of the first kind and order zero. Then from [EMOT],

vol. II, section XV, 15.3, (48) we have

f∼(x) = − sinh(x)K0(|x|),

where K0 is the modified Bessel function of the second kind or the MacDonald function of

order zero. Therefore,
∞∫

−∞

exp(−|t|) sinh(t)K0(|t|)I0(t)
x− t

dt = sinh2(x)K2
0 (|x|)−

(
π

2

)2

e−2|x|I2
0 (x). (1.7.21)

Example 1.7.45 Let us look for the solution f of the nonlinear singular integral equation

2
π
f(x)

∞∫
−∞

f(t)
t− x

dt− 1
π

∞∫
−∞

f2(t)
t− x

dt = g(x) (1.7.22)

on the real line, where g is a given function. As usual quite formally it can be rewritten in

the equivalent form

f ⊗ f = g.

Applying the Hilbert transform to this equation by means of the convolution theorem

(1.7.16) we get

(f∼)2 = g∼.
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Therefore,

f∼ = ±
√
g∼,

where
√
g∼ denotes that branch of the square root for which Re(

√
g∼) is nonnegative. Let

g ∈ Lp, p > 2. Then g∼ ∈ Lp and f∼ ∈ Lp/2. Furthermore, let Ω be any measurable subset

of R. Then one can prove that the function fΩ with the Hilbert transform

f∼Ω (x) =

{√
g∼(x) if x ∈ Ω

−
√
g∼(x) elsewhere

consists of all solutions of the integral equation (1.7.22); see also [GlV].

1.8 Bessel Transforms

There exist many integral transforms with Bessel functions as Jν , Yν , H
(1)
ν , H(2)

ν , Kν ,

and others in the kernel.

We restrict ourselves to three different types of examples. In section 1.8.1 we deal with the

so-called Hankel transform, an integral transform with the Bessel functions of the first kind

and order ν, Jν , in the kernel, ν being fixed. It is closely connected to the n–dimensional

Fourier transform of circular symmetric functions. We point out that the Hankel transform

is a generalization of the Fourier transform.

In section 1.8.2 we investigate the Meijer- or K-transform, a transform with the modified

Bessel functions or MacDonald functions Kν in the kernel, ν being again fixed. While

the Hankel transforms depend on a real variable, in case of the K-transform the “image

variable” is a complex number. It was first considered by C.S. Meijer in 1940. It is proved

to be a generalization of the Laplace transform.

Another type of transform is investigated in section 1.8.3. Again there are MacDonald

functions in the kernel, but they are of the type Kit and t is the variable of the trans-

forms. Such transforms are called index transforms; see Yakubovich [Ya]. The Kontorovich–

Lebedev transform was first investigated by M.J. Kontorovich and N.N. Lebedev in 1938–

1939 and by Lebedev in 1946.

All the transforms considered in section 1.8 can be used for the solution of boundary

value problems in cylindrical coordinates; see, for example, [Sn.2], [Za], and [Ze.2].
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1.8.1 The Hankel Transform

Definition 1.8.13 The Hankel transform (HT) of order ν of a function f : R+ → C is

defined by means of

Hν [f ](y) = f∧ν (y) =

∞∫
0

√
xy Jν(xy) f(x)dx, y ∈ R+, ν > −1/2, (1.8.1)

provided that the integral exists.

Here Jν is the Bessel function of the first kind and order ν, defined by means of

Jν(z) =
∞∑
k=0

(−1)k(z/2)2k+ν

k!Γ(k + ν + 1)
, arg(z) < π, (1.8.2)

see [E.1], vol. 2, 7.2.1, (2).

From (1.8.2) we conclude that

Jν(x) ∼ (x/2)ν , x→ 0+, (1.8.3)

and from [W.2], 7.21, (1) we have

Jν(x) ∼ (2/πx)1/2 cos(x− yν/2− π/4), x→ +∞. (1.8.4)

From (1.8.3) and (1.8.4) we see that
√
xJν(x) is bounded on R+ if ν > −1/2,

|
√
xJν(x)| ≤ Cν , x ∈ R+, ν > −1/2. (1.8.5)

Therefore, we choose as space of originals of the HT the space L1(R+) of measurable

functions on R+ with the norm

‖f‖1 =

∞∫
0

|f(x)|dx.

Then we have:

Theorem 1.8.40 Let f ∈ L1(R+) and ν > −1/2. Then Hν [f ] exists. It is a linear

transform and

|Hν [f ]| ≤ Cν‖f‖1. (1.8.6)

Remark 1.8.43 From [W.2], 3.4, (3), or directly from (1.8.2) we have

J1/2(z) = (2/πz)1/2 sin z

and hence, by means of formula (1.3.6) we have

H1/2[f ](y) = (2/π)1/2
∞∫
0

f(x) sin(xy)dx = (2/π)1/2Fs[f ](y). (1.8.7)

Therefore, the HT is a generalization of the Fourier sine transform.
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Remark 1.8.44 There are also other definitions of the HT , for example,

Fν(y) =

∞∫
0

xJνf(xy)dx; (1.8.8)

see [Sn.2], (1.1.4).

Remark 1.8.45 The HT is closely connected with the n-dimensional Fourier transform of

radially symmetric functions. Let y = (y1, y2, · · · , yn) and (y2
1 + y2

2 + · · ·+ y2
n)1/2 =: ρ and

let f(y) = F (ρ). Then the n-dimensional Fourier transform

Fn[f ](x) =
∫

Rn

e−i(x,y)f(y)dy1 · · · dyn,

x = (x1, x2, . . . , xn), (x,y) = (x1y1 +x2y2 + . . . xnyn), depends also only on r = (x2
1 +x2

2 +

. . .+ x2
n)1/2,Fn[f ](x) =: F∧(r) and

F∧(r) = (2π)(1−n)/2Hn
2−1[ρ(n−1)/2F (ρ)].

For details see, for example, [BGPV], 1.1.3.

Remark 1.8.46 For tables of Hankel transforms we refer to [EMOT], vol. 2, Chapter

VIII.

For a (quite formal) derivation of an inversion formula for the HT (1.8.1) we write the

Mellin transform of the kernel of (1.8.1),

M[
√
xJν(x)](s) =

2s−1/2Γ
(

3
2 + ν

2 + 1
4

)
Γ
(
ν
2 −

s
2 + 3

4

) ;

see [EMOT], vol. 1, section 6.8, formula (1) and section 1.5.2, Proposition 1.5.20, formula

(1.5.12). Obviously,

M[
√
xJν(x)](1− s) =

1
M[

√
xJν(x)](s)

,

and hence the HT is a Fourier type transform in the sense of 1.5.4, Example 1.5.43. So we

have the inversion formula

f(x) =

∞∫
0

√
xyJν(xy)f∧ν (y) dy =: H−1

ν [f∧ν ](x). (1.8.9)

More exactly we have:

Theorem 1.8.41 (Inversion Theorem) Let f ∈ L1(R+) and of bounded variation in a

neighborhood of a point x of continuity of f . Then for ν ≥ −1/2 the inversion formula

(1.8.9) holds.

For a rigorous proof we refer to [Sn.2], section 5–3 or [W.2], 14.12.
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Remark 1.8.47 It holds that Hν = H−1
ν .

Now we prove a Parseval equation for the HT .

Theorem 1.8.42 Let f, g∧ ∈ L1(R+), ν ≥ −1/2 and f∧ = Hν [f ], g = H−1
ν [g∧]. Then

∞∫
0

f(x)g(x)dx =

∞∫
0

f∧(y)g∧(y)dy (1.8.10)

Proof. By means of Fubini’s theorem we have

∞∫
0

f(x)g(x)dx =

∞∫
0

f(x)
( ∞∫

0

g∧(y)
√
xyJν(xy)dy

)
dx =

∞∫
0

g∧(y)
( ∞∫

0

f(x)
√
xyJν(xy)dx

)
dy

=

∞∫
0

f∧(y) g∧(y)dy.

Now we are going to derive some operational rules of the HT . In the following we assume

that the transforms under consideration exist.

Proposition 1.8.32 Let f∧ν = Hν [f ]. Then it holds that

Hν [f(ax)](y) = a−1f∧ν (y/a), a ∈ R+, (1.8.11)

Hν [xnf(x)](y) = y1/2−ν
(1
y

d

dy

)n
[yν+n−1/2f∧ν+n(y)], n ∈ No, (1.8.12)

Hν [2νx−1f(x)](y) = y[f∧ν−1(y) + f∧ν+1(y)], (1.8.13)

and

Hν [2νf ′](y) = (ν − 1/2)yf∧ν+1(y)− (ν + 1/2)yf∧ν−1(y). (1.8.14)

Proof. The rule (1.8.11) is proved by substitution.

For the proof of (1.8.12) we use(
z−1 d

dz

)n(
zν+nJν+n(z)

)
= zνJν(z), n ∈ No; (1.8.15)

see [E.1], vol. 2, 7.2.8, (52). Starting with n = 1 and setting z = xy we obtain

d

dy

[
yν+1/2f∧ν+n(y)

]
= yν+1/2

∞∫
0

xf(x)
√
xyJν(xy)dx,

and this is (1.8.12) in the case of n = 1. The general case n ≥ 1 is proved inductively

making use of (1.8.15).
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For the proof of formula (1.8.13) we refer to

2νJν(z) = z
(
Jν−1(z) + Jν+1(z)

)
; (1.8.16)

see [E.2], vol. 2, 7.2.8, (56) and perform the HT on both side of (1.8.16).

Formula (1.8.14) is proved integrating by parts on the left-hand side and using

2J ′ν = Jν−1 − Jν+1, (1.8.17)

and

J ′ν(z) = Jν−1(z)− x

z
Jν(z); (1.8.18)

see [E.1], vol. 2, 7.2.8, (57), and (54). We omit the straightforward calculation.

Preparing the proof of a differentiation rule we need some preparation (following [Ze.2],

section 5–4).

Lemma 1.8.7 Let Mν , Nν be differential operators defined by means of

(Mνf)(x) = x−ν−1/2Dxx
ν+1/2f(x), Dx =

d

dx
(1.8.19)

and

(Nνf)(x) = xν+1/2Dxx
−ν−1/2f(x), (1.8.20)

where ν ≥ −1/2. Furthermore, let

f(x) = o(x−ν−1/2), x→ 0+

in the case of (1.8.19) and

f(x) = o(x−ν−1/2), x→ 0+

in the case of (1.8.20) and

f(x) = o(1), x→ +∞.

Then it holds that

Hν [Mνf ](y) = yf∧ν+1(y), (1.8.21)

and

Hν+1[Nνf ](y) = −yf∧ν . (1.8.22)

Proof. For the proof of (1.8.21) we use [E.1], vol. 2, 7.2.8, (51)

Dz

[
z−νJν(z)

]
= −z−νJν+1(z). (1.8.23)

It follows that

Dx

[
x−νJν(xy)

]
= −yx−νJν+1(xy).
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Integrating Hν [Mνf ](y) by parts we have

Hν [Mνf ](y) = (xy)1/2Jν(xy)f(x)
∣∣∣∞
0
−

∞∫
0

(xy)1/2xνDx[x−νJν(xy)]f(x)dx = −yf∧ν+1(y),

because the first term vanishes under our assumptions.

Formula (1.8.22) can be proved in the same manner using

Dz[zν+1Jν+1(z)] = zν+1Jν(z); (1.8.24)

see [E.1], vol. 2, 8.2.8, (50).

Combining the two differential operators of Lemma 1.8.7 we obtain a differentiation rule

for a second-order differential operator. We consider the differential operator Sν defined by

means of

(Sνf)(x) = x−ν−1/2Dx[x2ν+1Dxx
−ν−1/2f(x)]. (1.8.25)

Obviously, from (1.8.19), (1.8.20) we have

Sν = MνNν , (1.8.26)

and in another form,

(Sνf)(x) = f
′′
(x)− (ν2 − 1/4)x−2f(x). (1.8.27)

Combining (1.8.21) and (1.8.2) we obtain:

Proposition 1.8.33 (Differentiation Rule) Let f ∈ L1(R+) ∩ C2(R+) and

f(x) = o(x−ν−3/2), (Nνf)(x) ∈ o(x−ν−1/2), x→ 0+

f(x), (Nνf)(x) = o(1), x→ +∞.

Then

Hν [Sνf ](y) = −y2f∧ν (y). (1.8.28)

Proof. From (1.8.26) and (1.8.21), (1.8.22) we obtain

Hν [Sν ](y) = yHν+1[Nνf ](y) = −y2 f∧ν (y).

Now we are going to derive a convolution for the HT . Following [Za], 21.6 we choose a

slightly modified form of the HT (1.8.1).

Let

J̃ν(x) = 2νΓ(ν + 1)x−νJν(x) (1.8.29)

and

dρν =
x2ν+1

2νΓ(ν + 1)
dx. (1.8.30)
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We define the modified Hankel transform H̃ν by

H̃ν [f ](t) = f̃ν(t) =

∞∫
0

f(x)J̃ν(tx)dρν(x). (1.8.31)

We obtain the connection with the HT Hν :

Hν [xν+1/2f(x)](t) = tν+1/2H̃ν [f ](t). (1.8.32)

From the inversion formula (1.8.9) of the Hankel transform we obtain an inversion formula

for the modified version (1.8.31),

f(x) =

∞∫
0

f̃ν(t)J̃ν(xt)dρν(t), (1.8.33)

which is valid, provided that f∧ν ∈ L1(R+). It is derived from the integral in (1.8.33)

by straightforward calculation using (1.8.32), (1.8.29), and (1.8.30) and taking note that

H−1
a = Ha.

Definition 1.8.14 The convolution f ∗ g of two functions f, g associated with the Hankel

transform H̃ν is defined by means of

(f ∗ g)(x) =

∞∫
0

∞∫
0

f(y)g(z)Dν(x, y, z)dρν(y)dρν(z), (1.8.34)

provided that the integral exists.

The kernel Dν is defined as

Dν(x, y, z) =
23ν−1Γ2(ν + 1)A2ν−1(x, y, z)√

πΓ(ν + 1/2)(xyz)2ν
, (1.8.35)

where A(x, y, z) is the area of the triangle whose sides are x, y, z if there is a triangle with

these sides and zero otherwise. The expression for the nonzero part of A is given by

4A(x, y, z) = [2(x2y2 + y2z2 + z2x2)− x4 − y4 − z4]1/2. (1.8.36)

From [Hi] we have the product formula
∞∫
0

J̃ν(tx)Dν(x, y, z)dρν(x) = J̃ν(ty)J̃ν(tz). (1.8.37)

For the kernel Dν we have because of (1.8.37) and J̃ν(0) = 1, see (1.8.29) and (1.8.2):

Lemma 1.8.8 The kernel Dν of the product formula (1.8.37) is nonnegative, symmetrical

with respect to its variables and it holds that
∞∫
0

Dν(x, y, z)dρν(x) = 1. (1.8.38)
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Remark 1.8.48 Because of the symmetry of Dν(x, y, z) with respect to its variables the

integration in (1.8.38) can be done with respect to the variable y or z.

Let L1,ρν
(R+) be the space of measurable functions on R+ with respect to the measure

dρν and let

‖f‖1,ρν
=

∞∫
0

|f(x)|dρν(x)

be the norm in L1,ρν (R+). Then we have:

Theorem 1.8.43 (Convolution Theorem) Let f, g ∈ L1,ρν (R+). Then (f∗g) ∈ L1,ρν (R+)

and

‖f ∗ g‖1,ρν
≤ ‖f‖1,ρν

· |g|1,ρν
. (1.8.39)

Furthermore it holds that

H̃ν [f ∗ g] = f̃ν · g̃ν . (1.8.40)

Proof. For the proof of (1.8.39) we have by means of (1.8.38)

‖f ∗ g‖1,ρν =

∞∫
0

|(f ∗ g)(x)| dρν(x)

=

∞∫
0

( ∞∫
0

( ∞∫
0

|f(y) g(z)|Dν(x, y, z) dρν(y)
)
dρν(z)

)
dρν(x)

=

∞∫
0

|f(y)|dρν(y)

∞∫
0

|g(z)| dρν(z) = ‖f‖1,ρν
· ‖g‖1,ρν

.

For the proof of (1.8.40) we obtain using (1.8.37):

H̃ν [f ∗ g](t) =

∞∫
0

(f ∗ g)(x) J̃ν(tx) dρν(x)

=

∞∫
0

J̃ν(tx)
( ∞∫

0

∞∫
0

f(y) g(z)Dν(x, y, z) dρν(y) dρν(z)
)
dρν(x)

=

∞∫
0

∞∫
0

f(y)g(z)
( ∞∫

0

J̃ν(tx)Dν(x, y, z) dρν(x)
)
dρν(y) dρν(z)

=

∞∫
0

f(y)J̃ν(ty) dρν(y)

∞∫
0

g(z) J̃ν(tz) dρν(z) = f̃ν(t) · g̃ν(t).

Remark 1.8.49 To complete the above we followed [Za].
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Remark 1.8.50 In [Hi] a more general version is proved. Let 1 ≤ r, s ≤ ∞ and p−1 =

r−1 + s−1 − 1. If F ∈ Lr,ρν
(R+), g ∈ Ls,ρν

(R+) then h = f ∗ g exists on R+ and

‖h‖p,ρν
≤ ‖f‖r,ρν

· ‖g‖s,ρν
.

Moreover, if p = ∞ then h ∈ C(R+). Furthermore, (1.8.40) holds.

Finally we consider an application of the HT . We look for a solution of an axially

symmetric Dirichlet problem for a half-space. We look for a solution of Laplace’s equation

in cylindrical coordinates (r, ϕ, z) independent of the polar angle ϕ:

∂2v(r, ϕ)
∂r2

+
1
r

∂v

∂r
+
∂2v

∂z2
= 0, r, z ∈ R+ (1.8.41)

with the boundary condition

v(r, 0) = f(r) (1.8.42)

and with the asymptotic behavior

v(r, z) → 0 as
√
r2 + z2 → +∞. (1.8.43)

Substituting

u(r, z) =
√
rv(r, z), g(r) =

√
rf(r)

we have from (1.8.41)
∂2u

∂r2
+

1
4r2

u+
∂2u

∂z2
= 0, (1.8.44)

with

u(r, 0) = g(r), (1.8.45)

and

u(r, z) = o(
√
r),

√
r2 + z2 → +∞. (1.8.46)

Applying the HT of order ν = 0 to (1.8.44) we obtain

−g2u∧o (ρ, z) +
∂2u∧o (ρ, z)

∂z2
= 0.

The solution of this ordinary differential equation with the growth (1.8.46) is

u∧o (ρ, z) = A(ρ)eρz.

Because of (1.8.45) we have A(ρ) = g∧o (ρ) and therefore

u∧o (ρ, z) = g∧o (ρ)e−ρz.

Making use of the inversion formula (1.8.9) of HT we obtain the solution of the problem

(1.8.41) through (1.8.43):

v(r, z) = r−1/2

∞∫
0

g∧o (ρ)
√
rρe−ρzJo(rρ)dρ. (1.8.47)
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1.8.2 The Meijer (K-) Transform

Definition 1.8.15 The Meijer- or K-transform (KT) of a function f : R+ → C is defined

as

Kν [f ](s) = fν(s) =

∞∫
0

f(t)
√
stKν(st)dt, Re(ν) ≥ 0, (1.8.48)

provided that the integral exists.

Here Kν is the modified Bessel function of the third kind and order ν or MacDonald

function, defined by means of

Kν(z) =

∞∫
0

e−z coshu cosh(νu)du, Re(z) > 0; (1.8.49)

see [E.1], vol. 2, 7.12, (21).

Remark 1.8.51 The condition Re(ν) ≥ 0 is no less of generality since from (1.8.49) it

follows that Kν = K−ν .

Remark 1.8.52 From [E.1], 7.2.6, (43) we have

K1/2(z) = (π/2z)1/2e−z.

Therefore, it follows that

K1/2[f ](s) = (π/2)1/2L[f ](s), (1.8.50)

and therefore the KT is a generalization of the Laplace transform (LT ). It will be pointed

out that the KT has operational properties similar to the LT .

Remark 1.8.53 For tables of K-transforms we refer to [EMOT], vol. 2, Chapter X.

The kernel Kν has the following asymptotic behavior: From [E.1], vol. 2, 7.2.2, (12), and

(13) we deduce that

Kν(z) = 2ν−1Γ(ν)[1 + 0(1)], z → 0, | arg(z)| < π/2, Re(ν) > 0, (1.8.51)

and from 7.2.4, (38) we have

Ko(z) = − log(z/2)[1 + 0(1)], z → 0, | arg(z)| < π/2. (1.8.52)

From the same source, section 7.4.1, (1) we know

Kν(z) = (π/2z)1/2e−z[1 + 0(1)], z → 0, | arg(z)| < π/2, Re(ν) ≥ 0. (1.8.53)

From these estimates we obtain
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Theorem 1.8.44 Let f ∈ Lloc1 (R+) and f(t) = 0(tα) as t → 0+ where α > ν − 3/2 if

ν ∈ R+ and α > −1 if ν = 0. Furthermore let f(t) = 0(eat) as t → +∞. Then its KT of

order ν exists a.e. for Re(s) > a.

Now we are going to prove an inversion theorem for the KT .

Theorem 1.8.45 (Inversion Theorem) Let −1/2 < Re(ν) < 1/2 and F (s) analytic on

the half-plane Ha, a ≤ 0 and sν−1/2F (s) → 0, |s| → +∞, uniformly with respect to arg(s).

For any number c, c > a set

f(t) =
1
πi

∫
(c)

F (z)
√
ztIν(zt)dz. (1.8.54)

Then f does not depend on the choice of c and

F (s) = Kν [f ](s), s ∈ Hc. (1.8.55)

Here Iν is the modified Bessel function of the first kind and order ν; see [E.1], vol. 2, 7.2.2.

Proof. From Cauchy’s integral theorem we have

F (s) =
1

2πi

∫
I

(z/s)ν−1/2

z − s
F (z)dz,

where I is the contour of Figure 5. Because of

2z
z2 − s2

=
1

z − s
+

1
z + s

we have

F (s) =
s−ν+1/2

πi

∫
I

zν+1/2

z2 − s2
F (z)dz,

for the integral with the denominator z+s vanishes because z = −s is outside of the contour

I. Writing

F (s) =
s−ν+1/2

πi

[ ∫
H

· · ·+
c−iR∫
c+iR

· · ·
]

and tending R → +∞ we see that
∫
H

vanishes as R → +∞ under our assumptions and so

we obtain

F (s) =
s−ν+1/2

πi

∫
(c)

zν+1/2

s2 − z2
F (z)dz.

© 2006 by Taylor & Francis Group, LLC



Bessel Transforms 95

Figure 5

Now from [PBM], vol. 2, 2.16.28, 1. we have

Kν [t1/2Iν(zt)](s) = zνs−ν+1/2/(s2 − z2)

and, therefore,

F (s) =
1
πi

∫
(c)

√
zF (z)

( ∞∫
0

√
tsKν(st)t1/2Iν(zt)dt

)
dz

=
1
πi

∫
(c)

√
zsF (z)

( ∞∫
0

tKν(st)Iν(zt)dt
)
dz.

Interchanging the order of integration we obtain

F (s) =

∞∫
0

√
stKν(st)

( 1
πi

∫
(c)

√
ztF (z)Iν(zt)dz

)
dt

and this is (1.8.54), (1.8.55).
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Remark 1.8.54 Formula (1.8.54) is the inversion formula for the KT (1.8.48):

f(t) =
1
πi

∫
(c)

√
stIν(st)fν(s)ds =: K−1

ν [fν ](t). (1.8.56)

Now we are going to derive some operational rule for the KT . In the following we assume

that the transforms under consideration exist.

Proposition 1.8.34 Let fν = Kν [f ]. Then it holds that

Kν [f(at)](s) = a−1fν(s/a), a ∈ R+, (1.8.57)

Kν [tf(t)](s) = −s−ν−1/2 d

ds
[sν+1/2fν+1(s)], (1.8.58)

and

Kν [2νt−1f(t)](s) = s[fν+1(s)− fν−1(s)]. (1.8.59)

Proof. Formula (1.8.57) is proved by straightforward calculation substituting at→ t.

The basis for the proof of (1.8.58) is

d

dz

(
zνKν(z)

)
= −zν Kν−1(z);

see [E.1], vol. 2, 7.11, (25). Setting z → st, ν → ν + 1, multiplying both sides by
√
stf(t)

and integrating over R+ one easily has (1.8.58).

Formula (1.8.59) is proved by means of

Kν+1(z)−Kν−1(z) = 2νz−1Kν(z);

see [E.1], vol. 2, 7.11, (25). With z = st, multiplying by
√
stf(t) and integrating on R+ we

have immediately (1.8.59).

The derivation of a differentiation rule is similar to the process for the Hankel transform.

Again as in 1.8.1, Lemma 1.8.7 we consider diferential operators Mν , Nν (see formulas 1.8.19

and 1.8.20), and we obtain the formulas

Kν [Mνf ](s) = sfν+1(s) (1.8.60)

Kν+1[Nνf ](s) = sfν(s). (1.8.61)

This is proved analogously to the proof of Lemma 1.8.7, using the formulas

Dz[z−νKν(zx)] = −z−νKν+1(z) (1.8.62)

and

Dz[zν+1Kν+1(z)] = −zν+1Kν(z); (1.8.63)
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see [E.1], vol. 2, (22), (21). The only difference between (1.8.23), (1.8.24) of 1.8.1, with

Jν → Kν and (1.8.62), (1.8.63) is that the second formula has also the sign “−” on the

right-hand side. Therefore, in (1.8.61) we have the sign “+” instead of “−” in 1.8.1, (1.8.22).

So we can use the same differential operator as in the case of the Hankel transform and

we obtain:

Proposition 1.8.35 (Differentiation Rule) Let Sν be the differential operator 1.8.1,

(1.8.25). Furthermore, let

f(t), Nνf(t) = o(tν−1/2), t→ 0+

f(t), Nνf(t) = O(eat), t→ +∞, a < 1.

Then it holds that

Kν [Sνf ](s) = s2fν(s). (1.8.64)

Now we define a convolution for the KT and similar to the case of the Hankel transform

we will use a slightly different form of the KT (1.8.48), following Krätzel [K].

Instead of Kν according to (1.8.48) we consider the transform K̃ν with

K̃ν [f ](s) = ϕν(s) = 2

∞∫
0

(st)ν/2Kν(2
√
st)f(t)dt, Re(ν) ≥ 0. (1.8.65)

The connection with the transform Kν can be calculated as follows:

K̃ν [f ](s) = 22−νsν−1/2Kν [tν−1/2f(t2)](s). (1.8.66)

The transform K̃ν can be factorized by means of Laplace transforms. From [W.2], 6.22,

(15) we have

Kν(z) = z−ν−1zν
∞∫
0

τ−ν−1 exp(−τ − z2/4τ)dτ, Re(z2) > 0. (1.8.67)

Putting Kν according to (1.8.67) into (1.8.65) we have the factorization formula

Kν [f ](s) = L
[
τ−ν−1L[tνf(t)](1/τ)

]
(s). (1.8.68)

Analogously substituting ν → −ν in (1.8.67) and using K−ν = Kν we have

K̃ν [f ](s) = sνL
[
τν−1L[f ](1/τ)

]
(s). (1.8.69)

Now we are going to derive a convolution for KT K̃ν .

Definition 1.8.16 As convolution f∗g of two functions f, g with respect to the K-transform

K̃ν we define f ∗ g by

(f ∗ g)(t) =

1
Γ(n− ν)

Dn

t∫
0

(t− σ)n−1−ν
( ∞∫

0

ξν
( 1∫

0

(1− η)ν f(ξη)g[(η − ξ)(1− η)] dη
)
dξ
)
dσ,

(1.8.70)
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where D = d/dt and

Re(ν) < n ≤ Re(ν) + 1, n ∈ N. (1.8.71)

Using the factorization formula (1.8.68) and then the differentiation rule and the convo-

lution theorem of the Laplace transform we obtain quite formally

K̃ν [f ∗ g] =sν
∞∫
0

e−sττν−1
( ∞∫

0

e−t/τ (f ∗ g)(t)dt
)
dτ

=
sν

Γ(n− ν)

∞∫
0

e−ξττν−1
( ∞∫

0

e−t/τDn
( t∫

0

(t− σ)n−1−ν ·

·
( τ∫

0

ξν
( 1∫

0

(1− η)νf(ξη)g[(σ − ξ)(1− η)]dη
)
dξ
)
dσ
)
dt
)
dτ.

By means of the differentiation rule of the Laplace transform (1.4.34) applied on the inner

Laplace transform we obtain

K̃ν [f ∗ g](s) =
sν

Γ(n− ν)

∞∫
0

e−sττν−n−1
( ∞∫

0

e−t/τ
( t∫

0

(t− σ)n−1−ν ·

·
( σ∫

0

ξν
( 1∫

0

(1− η)νf(η)g[(σ − ξ)(1− η)]dη
)
dξ
)
dσ
)
dt
)
dτ

Now applying the convolution theorem of the Laplace transform, Theorem 1.4.11, again on

the inner Laplace integral by means of (1.4.12) we obtain

K̃ν [f ∗g](s) = sν
∞∫
0

e−sττ−1
( ∞∫

0

e−t/τ
( t∫

0

ξν ·
( 1∫

0

(1−η)νf(ξη)g[(t−ξ)(1−η)]dη
)
dξ
)
dt
)
dτ.

Substituting ξ → tξ, η → t−1η we have

K̃ν [f ∗g](s) = sν
∞∫
0

e−sττ−1
( 1∫

0

ξν
( ∞∫

0

e−t/τ ·
( t∫

0

(t−η)νf(ξη)g[(1−ξ)(t−η)]dη
)
dt
)
dξ
)
dτ.

From the similarity rule of the Laplace transform (see formula 1.4.18) we obtain

L[f(ξt)](1/τ) = ξ−1L[f ](1/ξτ),

and analogously

L
[
tνg((1− ξ)t)

]
(1/τ) = (1− ξ)−ν−1L[tνg(t)]

(
1/(1− ξ)τ

)
.

Again applying the convolution theorem of the Laplace transform we have

K̃ν [f ∗ g](s) = sν
∞∫
0

e−sττ−1
( 1∫

0

ξν−1[f ](1/ξτ)(1− ξ)−ν−1 · L[uνg(u)]
(

1/(1− ξ)τ
)
dξ
)
dτ.
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Substituting u = τξ we have

K̃ν [f ∗ g](s) = sνL
[
tν−1L[f ](1/t)

]
(s) L

[
t−ν−1L[uνg(u)](1/t)

]
(s)

and by means of the factorization formulas (1.8.69), (1.8.68) we have

K̃ν [f ∗ g] = K̃ν [f ] · K̃ν [g]. (1.8.72)

Because of the connection between the Laplace and the K̃ν transform the calculations above

can be justified if K̃ν [f ] and K̃ν [g] are absolutely convergent in the point s. Because of the

definition of the convolution (1.8.70) f, g must be n-time differentiable. Therefore, we

proved:

Theorem 1.8.46 (Convolution Theorem) Let f, g be n-time differentiable on R+, n ∈
No and according to (1.8.71), and let K̃ν [f ] and K̃ν [g] be absolutely convergent in the point

s. Then Kν [f ∗ g](s) is absolutely convergent and (1.8.72) holds.

Remark 1.8.55 For details we refer to Krätzel [K].

Remark 1.8.56 As usual, one can prove that the convolution is commutative.

Now we are going to consider an application of the KT . As usual, the KT can be used

for the solution of boundary value problems with respect to the differential operator Sν ; see

(1.8.25). We refer to [Za], 23.8, [Ze.2], 6.8, 6.9, and [K]. Here, we give an application for

special functions (see [K]) and we will derive an addition theorem for the Bessel functions

of the first kind with respect to the order. By means of the factorization formula (1.8.69)

for the transform K̃ν we have with ν = 0

K̃o[tρ/2Js(2
√
t)](s) = L

[
τ−1L[tρ/2Jρ(2

√
t)](1/τ)

]
(s).

From [PBM], vol. 4, 3.12.3, 8, we know

L[tρ/2Js(2
√
t)](τ−1) = τρ+1e−τ .

Therefore,

Ko
[
t(µ+ν+1)/2Jµ+ν+1(2

√
t)
]
(s) =

Γ(µ+ ν + 2)
(s+ 1)µ+ν+2

.

Otherwise

Ko
[
tµ/2Jµ(2

√
t) ∗ tν/2Jν(2

√
t)
]
(s) =

Γ(µ+ 1)Γ(ν + 1)
(s+ 1)µ+ν+2

=
Γ(µ+ 1)Γ(ν + 1)

Γ(µ+ ν + 1)
Ko
[
t(µ+ν+1)/2Jµ+ν+1(2

√
t)
]
(s)

= B(µ+ 1, ν + 1)Ko[
[
t(µ+ν+1)/2Jµ+ν+1(2

√
t)
]
(s),

where B is the Beta function; see equation (1.4.21). Applying the inverse Ko transform on

both sides of this equation we have:
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Proposition 1.8.36 Let µ, ν > −1. Then the Bessel functions Jν fulfill the addition theo-

rem

tµ/2Jµ(2
√
t) ∗ tν/2Jν(2

√
t) = B(µ+ 1, ν + 1)t(µ+ν+1)/2Jµ+ν+1(2

√
t). (1.8.73)

1.8.3 The Kontorovich–Lebedev Transform

Definition 1.8.17 The Kontorovich–Lebedev Transform (KLT) of a function f : R+ → C
is defined by means of

KL[f ](t) =

∞∫
0

f(x)Kit(x)
dx

x
, t ∈ R+, (1.8.74)

provided that the integral exists.

Here Kit is the modified Bessel function of the second kind or MacDonald function,

defined by, see equation (1.8.48)

Kit(x) =

∞∫
0

e−x coshu cos(t)udu, x ∈ R+. (1.8.75)

From (1.8.75) we have |Kit(x)| ≤ Ko(x) and hence,

|KL[f ](t)| ≤
∞∫
0

|f(x)|Ko(x)
dx

x
.

If the integral above converges then the integral in (1.8.74) converges absolutely and uni-

formly and it defines a continuous function.

From

Ko(x) ∼ − log x/2, x→ 0+, (1.8.76)

see formula (1.8.52), and

Ko(x) ∼
( π

2x

)1/2

e−x, x→ +∞, (1.8.77)

(see formula 1.8.53) we deduce sufficient conditions for the existence of the KLT .

Theorem 1.8.47 Let f(x)/x ∈ Lloc1 (R+) and f(x) = 0(eαx), x → +∞, 0 ≤ α ≤ 1. Then

the integral (1.8.74) converges absolutely and uniformly and therefore KL[f ] ∈ C(R).

In the following we consider the space L−1,1(R+) = L−1,1 of measurable functions on R+

such that

‖f‖−1,1 =

∞∫
0

|f(x)|dx
x2

(1.8.78)

is finite. Then we have:
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Theorem 1.8.48 Let f ∈ L−1,1. Then KL[f ] exists and

|KL[f ](t)| ≤ Co‖f‖−1,1.

Moreover, KL[f ] ∈ C∞(R+).

Proof. From (1.8.76) and (1.8.77) we have xKo(x) ≤ Co, x ∈ R+, with some constant Co.

Therefore

|KL[f ](t)| ≤
∞∫
0

|f(x)|xKo(x)
dx

x2
≤ Co‖f‖−1,1.

Differentiating (1.8.74) under the sign of integral we obtain KL[f ] ∈ C∞(R+).

Remark 1.8.57 For the definition of the KLT in various spaces of measurable functions

on R+ see [YaL] and [Ya].

Remark 1.8.58 Sometimes instead of Definition 1.8.17 the KLT is defined by means of

the integral
∞∫
0

f(x)Kit(x)dx;

see, for example, [Ya] and [Za], sometimes as

∞∫
0

f(x)Kit(x)
dx√
x
.

Remark 1.8.59 Another version is the transform with respect to the index

KLind[f ](x) =

∞∫
0

f(t)Kit(x)dt;

see [Za], section 24.

Now we are going to derive an inversion formula for the KLT , but we do it in an opera-

tional manner, following [Sn.2], section 6.2, or [Za], section 24.4.

Using the Fourier cosine transform (see formula 1.3.5) the integral representation (1.8.75)

can be written as

Kit(x) = Fc
[
e−x coshu

]
(t).

By means of the inversion formula of the Fourier-cosine transform (see 1.3.4, Remark 1.3.14)

we obtain

Fc
[
KL[f ]

]
(u) =

π

2

∞∫
0

e−x coshuf(x)
dx

x
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and this can be written as

L[x−1f(x)](coshu) =
2
π
Fc
[
KL[f ]

]
(u).

Putting p = coshu we have

L[x−1 f(x)](p) =
2
π

∞∫
0

KL[f ](t) cos(t cosh−1 p)dt, (1.8.79)

where cosh−1 is the inverse of the function cosh. Making use of the division rule for the

Laplace transform, Proposition 1.4.13, namely,

L[t−1f(t)](p) =

∞∫
p

L[f ](u)du,

by differentiation with respect to p we have

L[f ](p) = − d

dp
L[t−1 f(t)](p). (1.8.80)

Applying this result to (1.8.79) we get

L[f ](p) =
2
π

∞∫
0

tKL[f ](t)
sin(t cosh−1 p)√

p2 − 1
dt. (1.8.81)

From [PBM], vol. IV, section 3.16.1, 1. we know that

L−1
[ sin(t cosh−1 p)√

p2 − 1

]
(x) = π−1 sinh(πt)Kit(x),

where i cos−1 x = cosh−1 x has to be used and cos−1 is the inverse function of cos.

Therefore, from (1.8.81) it follows (performing the inverse Laplace transform on both

sides of the equation) that

f(x) =
2
π2

∞∫
0

t sinh(πt)Kit(x)KL[f ](t)dt =: KL−1
[
KL[f ]

]
(x). (1.8.82)

With a more rigorous proof (see [Sn.2], 6-2) we have:

Theorem 1.8.49 (Inversion Theorem) Let x−1f(x) ∈ C(R+) and xf(x), x d
dx

(
x−1f(x)

)
∈

L1(R+). Then with KL[f ] =: F we have

f(x) =
2
π2

∞∫
0

t sinh(πt)Kit(x)F (t)dt =: KL−1[F ](x).

© 2006 by Taylor & Francis Group, LLC



Bessel Transforms 103

Applying the inversion formula leads to a Parseval relation for the KLT . Assuming that

the integrals in the following exist we have

2
π2

∞∫
0

t sinh(πt)KL[f ](t)KL[g](t)dt =
2
π2

∞∫
0

t sinh(πt)KL[f ](t)
( ∞∫

0

g(x)Kit(x)
dx

x

)
dt

=
2
π2

∞∫
0

g(x)
( ∞∫

0

t sinh(πt)Kit(x)KL[f ](t)dt
)dx
x

=

∞∫
0

f(x)g(x)
dx

x
.

Among applications we look for a differentiation rule of the KLT . Let

Ax := x2D2 + xD − x2, D =
d

dx
. (1.8.83)

From [E.1], vol. 2, 7.2.2, (11) we have

AxKit(x) = −t2Kit(x). (1.8.84)

Applying the KLT on Axf and integrating by parts we require that the terms outside of

the integral signs vanish at 0+ and at +∞. After straightforward calculations this leads to:

Proposition 1.8.37 (Differentiation Rule) Let f be such that the KLT of f and Axf

exist and furthermore

lim
x→0+(∞)

Kit(x)f(x) = lim
x→0+(+∞)

xKit(x)f ′(x) = lim
x→0+(+∞)

x
(
DKit(x)

)
f(x) = 0.

Then it holds that

KL[Axf ](t) = −t2KL[f ](t). (1.8.85)

Now we derive a convolution theorem for the KLT. First we determine a linearization

formula for the product of two MacDonald functions. From [W.2], 13.71, (1) we have

Kν(x)Kν(y) =
1
2

∞∫
0

exp
[
− 1

2
(u+

x2 + y2

u
)
]
Kν

(xy
u

)du
u
. (1.8.86)

Substituting ν = it, xy/u = z after a straightforward calculation we have the kernel form

of the product formula.

Lemma 1.8.9 For x, y ∈ R+, t ∈ R it holds that

Kit(x)Kit(y) =

∞∫
0

K(x, y, z)Kit(z)
dz

z
= KL[K(x, y, ·)](t), (1.8.87)
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with the kernel

K(x, y, z) =
1
2

exp
[
− 1

2

(xz
y

+
xy

z
+
yz

x

)]
. (1.8.88)

By means of the product formula one defines a generalized translation operator (GT0)Tx.

Definition 1.8.18 As GTO for the KLT one defines

(Txf)(y) =

∞∫
0

K(x, y, z)f(z)
dz

z
, x, y ∈ R+ (1.8.89)

provided that it exists.

Proposition 1.8.38 Let f ∈ L−1,1. Then the GTO Tx, x ∈ R+ exists, it is a positive

linear operator of L−1,−1 into itself and it holds that

(i) ‖Txf‖−1,1 ≤ x−1‖f‖−1,−1,

(ii) (Txf)(y) = (Tyf)(x),

(iii) (TxKit)(y) = Kit(x) ·Kit(y),

and

(iv) KL[Txf ](t) = Kit(x) · KL[f ](t).

Proof. Tx is obviously a linear operator and it is positive, since the kernel K from (1.8.88)

is positive. From (1.8.89) we have because of exp
[
− y x

2+z2

2xz

]
≤ e−y ≤ 1

‖Tx‖−1,1 =

∞∫
0

∣∣∣ ∞∫
0

K(x, y, z)f(z)
dz

z

∣∣∣dy
y2
≤ 1

2

∞∫
0

|f(z)|
( ∞∫

0

e−
xz
2y
dy

y2

)dz
z
.

Putting u := xz
2y , du = − xz

2y2 dy, i.e., dy
y2 = − 2

xzdu we have because of
∞∫
0

e−udu = 1 the

estimate

‖Tx‖−1,1 ≤ x−1

∞∫
0

|f(z)|dz
z2

= x−1‖f‖−1,1

and this is (i).

Formula (ii) follows from the symmetry of K(x, y, z) in its variables and (iii) is nothing

other than the product formula (1.8.87).

Formula (iv) follows by straightforward calculation:

KL[Txf ](t) =

∞∫
0

Kit(y)
( ∞∫

0

K(x, y, z)f(z)
dz

z

)dy
y

=

∞∫
0

f(z)
( ∞∫

0

Kit(y)K(x, y, z)
dy

y

)dz
z

=

∞∫
0

f(z)Kit(x)Kit(z)
dz

z
= Kit(x) · KL[f ](t),
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where again the symmetry of K(x, y, z) and the product formula (1.8.87) were used.

Definition 1.8.19 The convolution f ∗ g of the KLT is defined by means of

(f ∗ g)(x) =

∞∫
0

f(x)(Txg)(y)
dy

y
, (1.8.90)

provided that it exists.

Then one can prove:

Theorem 1.8.50 Let f, g ∈ L−1,1. Then f ∗ g exists and it holds that

(i) ‖f ∗ g‖−1,1 ≤ ‖f‖−1,1 · ‖g‖−1,1

and

(ii) KL[f ∗ g] = KL[f ] · KL[g].

Proof. By means of Proposition 1.8.38, (i) we obtain

‖f ∗ g‖−1,1 ≤
∞∫
0

( ∞∫
0

|f(y)||Txg(y)|dy
y

)dx
x2

=

∞∫
0

|f(y)|
( ∞∫

0

|Tyg(x)|dx
x2

)dy
y

≤ ‖g‖−1,1

∞∫
0

|f(y)|dy
y2

= ‖f‖−1,1 · ‖g‖−1,1,

and this is (i).

The formula (ii) can be derived by straightforward calculation using Proposition 1.8.38,

(ii) and (iv).

Corollary 1.8.15 The convolution of the KLT is commutative,

f ∗ g = g ∗ f.

This can easily be proved taking the KLT of both sides of this equation and interchanging

the factors in the product of the images.

Remark 1.8.60 For an extensive investigation of the convolution of the KLT in various

spaces of measurable functions on R+ we refer to [YaL] and [Ya].
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1.8.4 Application

We consider a boundary value problem for the Laplace equation in cylindrical coordinates.

In cylindrical coordinates {(r, θ, z) : 0 < r < ∞, 0 ≤ θ < 2π, 0 ≤ z < ∞} the

Laplace equation can be written

∂2u

∂r2
+

1
r

∂u

∂r
− 1
r2
∂2u

∂θ2
+
∂2u

∂z2
= 0 (1.8.91)

We look for a solution of (1.8.91) in the wedge

Sαo = {(r, ϕ) : 0 < r <∞, 0 ≤ ϕ ≤ α, α ≤ π

2
}

with the boundary conditions

u(r, 0) = 0, u(r, α) = f(r), (1.8.92)

which additionally has the form u(r, θ, z) = eiσzu(r, θ), σ > 0. Putting ρ = σr from

(1.8.91) it follows that v(ρ, θ) = u(ρ/σ, θ)

Aρv(ρ, θ) +
∂2v(ρ, θ)
∂θ2

= 0,

where Aρ is taken from (1.8.83). Performing the KLT on the equation by means of Propo-

sition 1.8.37 we obtain setting KL[v(·, θ)](t) = V (t, θ)

∂2V

∂θ2
− t2V = 0.

The solution of this (ordinary) differential equation is

V (t, θ) = A(t) cosh(tθ) +B(t) sinh(tθ).

Applying the KLT to the boundary values (1.8.92) we have

V (t, 0) = 0, V (t, α) = F (t) = KL[{](t),

and, therefore,

V (t, θ) =
F (t)

sinh(αt)
sinh(θt).

By means of the inversion formula (1.8.82) we obtain

v(ρ, θ) =
2
π2

∞∫
0

t sinh(πt)
sinh(αt)

Kit(ρ)F (t) sinh(θt)dt.

Therefore

u(r, θ) =
2
π2

∞∫
0

t sinh(πt)
sinh(αt)

Kit(σr)F (t) sinh(θt)dt. (1.8.93)

This is the solution of the boundary value problem (1.8.91), (1.8.92) provided that f has a

sufficient “good” behavior.

© 2006 by Taylor & Francis Group, LLC



The Mehler–Fock Transform 107

1.9 The Mehler–Fock Transform

The Mehler–Fock transform (MFT ) was first considered by Mehler, see [Meh], and later

on by Fock, see [Fo]. It was extensively investigated by Lebedev, see [Le] and the original

papers cited there. It has applications for the solution of integral equations and of bound-

ary value problems, especially of axial symmetrical problems and of problems in torodial

coordinates in the theory of elasticity, see [Sn.2], [Le], and [U].

Definition 1.9.20 The Mehler–Fock transform of a function f : (1;∞) → C is defined as

MF [f ](t) = Fo(t) =

∞∫
1

f(x)Pit−1/2(x)dx, (1.9.1)

provided that the integral exists.

Here Pν are the Legendre functions of order ν, connected with Gauss’ hypergeometric

function 2F1 by

Pν(x) =2 F1(−ν, ν + 1; 1;
1− x

2
); (1.9.2)

see [Le], (7.3.4). Sometimes the Legendre functions Pν with index ν = it − 1/2 are called

cone functions; see [Er.1], vol. 1, section 3.14.

Putting x = cosh ξ, ξ ∈ R+ from [Le], (7.4.1), we have the integral representation

Pit−1/2(cosh ξ) =
√

2
π

ξ∫
0

cos(tτ)
(cosh ξ − cosh τ)1/2

dτ, (1.9.3)

and from [Le], (7.4.7) we obtain

Pit−1/2(cosh ξ) =
√

2
π

coth(πt)

∞∫
ξ

sin(tτ)
(cosh τ − cosh ξ)1/2

dτ. (1.9.4)

From (1.9.2) we have

Pit−1/2(1) = 1. (1.9.5)

By means of connection formulas for Gauss’ hypergeometric functions (see [E.1], vol. 1,

section 3.2, formulas 9 and 23) we obtain for x > 1

Pit−1/2(x) =
Γ(it)√

πΓ(it+ 1/2)
(2x)it−1/2

2 F1

(3
4
− it

2
, 1− it

2
; 1− it;x−2

)
+

Γ(−it)√
πΓ(1/2− it)

(2x)−it−1/2
2 F1

( it
2

+
3
4
,
it

2
+

1
4

; 1 + it;x−2
)
.

(1.9.6)

Formula (1.9.6) leads to

Pit−1/2(x) = 0(x−1/2), x→ +∞. (1.9.7)
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From here we deduce sufficient conditions for the existence of the MFT .

Theorem 1.9.51 Let f ∈ Lloc1 (1,∞) and f(x) = 0(xα), x→ +∞ for some α < −1/2, then

the MFT Fo of f exists.

From (1.9.5) and (1.9.7) we conclude that Fo exists too if f(x)/
√
x ∈ L1(1,∞). This

is certainly fulfilled if f ∈ L1(1,∞), the space of measurable functions on (1,∞) with the

norm

‖f‖1 =

∞∫
1

|f(x)|dx <∞.

In the following we deal with functions belonging to this space. Then we have:

Theorem 1.9.52 Let f ∈ L1(1,∞). Then MF [f ] exists and with some constant C

|MF [f ]| ≤ C‖f‖1.

Proof. From (1.9.5) though (1.9.7) we know that |Pit−1/2(x)| is bounded by some constant

C on [1,∞) and therefore

|MF [f ](t)| ≤ C

∞∫
1

|f(x)|dx = C‖f‖1.

Remark 1.9.61 For the investigation of the MFT in several spaces of measurable func-

tions on (1,∞) we refer to [Ya], section 3.

Remark 1.9.62 Sometimes instead of the cone functions (of order zero) Pit−1/2 the cone

functions of order n, n ∈ No are used as the kernel in (1.9.1). They are defined by

P−nν (x) =
(x2 − 1)n/2

2n n! 2
F1

(
n− ν, n+ ν + 1;n+ 1;

1− x

2

)
,

with ν = it− 1/2, P oν = Pν .

The MFT is closely connected with the KLT ; see section 1.8.3, (1.8.74). From [PBM],

vol. III, section 2.17.7, formula 1, we know that

Kν+1/2(ap) =
(πp

2a

)1/2
∞∫
a

e−py Pν(y/a)dy, a, p ∈ R+.

With a = 1, p = x, ν = it− 1/2 we obtain

Kit(x) = (πx/2)1/2
∞∫
1

e−xyPit−1/2((y)dy. (1.9.8)
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From 1.8.3, (1.8.74) we deduce

KL[f ](t) =

∞∫
0

f(x)Kit(x)
dx

x
= (π/2)1/2

∞∫
0

x−1/2f(x)
( ∞∫

1

e−xyPit−1/2(y)dy
)
dx

= (π/2)1/2
∞∫
1

Pit−1/2(y)
( ∞∫

0

e−xyx−1/2f(x)dx
)
dy

= (π/2)1/2
∞∫
1

Pit−1/2(y)L[x−1/2f(x)](y)dy.

Therefore, we have the relation

KL[f ](t) =
√
π

2
MF

[
L
[f(x)√

x

]]
(t), (1.9.9)

where L is the Laplace transform.

In the same manner one can derive the formula

MF [f ](t) =
√

2 cosh(πt)
π
√
π

KL[
√
uL[(x− 1)+f(x)](u)](t). (1.9.10)

Here the integral representation

Pit−1/2(x) =
√

2 cosh(πt)
π
√
π

∞∫
0

Kit(u)e−xu
du√
u
, x > 1,

(see [PBM], vol. 2, section 2.16.6, formula 3) is used. As usual we use the notation

h(x)+ =

{
h(x), h(x) > 0,
0, h(x) ≤ 0.

Now we are going to derive an inversion formula for the MFT . We do so in a quite

formal, operational manner, following [Sn.2], section 7.5 or [Za], section 25.5.

Substituting in (1.9.1) x := cosh ξ, f(x) = g(ξ) we have

Fo(t) =

∞∫
0

Pit−1/2(cosh ξ)g(ξ) sinh ξdξ.

By means of formula (1.9.3) we obtain

Fo(t) =

∞∫
0

g(ξ)
(√2
π

ξ∫
0

cos(tτ)
(coshξ − cosh τ)1/2

dτ
)

sinh ξdξ

=
√

2
π

∞∫
0

cos(tτ)
( ∞∫
τ

g(ξ) sinh ξ
(cosh ξ − cosh τ)1/2

dξ
)
dτ

=
√

2
π
Fc
[ ∞∫
τ

g(ξ) sinh ξ
(coshξ − cosh τ)1/2

dξ
]
(t),
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where Fc is the Fourier cosine transform; see formula (1.3.5).

By means of the well-known formulas for the Fourier cosine and the Fourier sine trans-

forms (see 1.3.3, Remark 1.3.7) namely

Fs[h′](t) = −tFc[h](t)

we have

tFo(t) = −
√

2
π
Fs
[ d
dτ

∞∫
τ

g(ξ) sinh ξ
(cosh ξ − cosh τ)1/2

dξ
]
(t).

Using the inversion formula for the Fourier sine transform (see 1.3.4, Remark 1.3.14) we

obtain

Fs[tFo(t)](τ) = − 1√
2
d

dτ

∞∫
τ

g(ξ) sinh ξ
(cosh ξ − cosh τ)1/2

dξ.

This is an integral equation for the function g. By means of 1.4.8, formulas (1.4.64), (1.4.63)

with h =
√

2
π tFo(t) we have the solution

g(ξ) =
√

2
π

∞∫
ξ

Fs[tFo(t)](τ)
dτ

(cosh τ − cosh ξ)1/2

=
√

2
π

∞∫
ξ

1
(cosh τ − cosh ξ)1/2

( ∞∫
0

tFo(t) sin(tτ)dt
)
dτ

=
√

2
π

∞∫
0

tFo(t)
( ∞∫
ξ

sin(tτ)
(cosh τ − cosh ξ)1/2

dτ
)
dt.

Substituting the inner integral by means of formula (1.9.4) we have

g(ξ) =

∞∫
0

t tanh(πt)Pit−1/2(cosh ξ)Fo(t)dt.

Resubstituting x := cosh ξ, g(ξ) = f(x) we have

f(x) =

∞∫
0

t tanh(πt)Pit−1/2(x)Fo(t)dt =: MF−1[Fo](x). (1.9.11)

Conditions for the validity of (1.9.16) can be given as follows. Because of

Pit−1/2(coshα) ≈
√

2
(πt sinhα)1/2

sin(αt+ π/4)

as t → +∞, δ ≤ α ≤ a < ∞; see [Le], formula (7.11.8), and Problem 14 of Chapter 7.

Therefore,

Pit−1/2(x) = 0(t−1/2), t→ +∞
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and consequently the integral (1.9.11) exists if t1/2Fo(t) ∈ L1(R+). Taking into consider-

ation the asymptotic behavior of Pit−1/2(x) as x tends to +∞, see formula (1.9.7), we have

the following result:

Theorem 1.9.53 (Inversion Theorem) Let f ∈ Lloc1 (1,∞) such that f(x)/
√
x ∈ L1(1,∞).

Furthermore, let
√
tMF [f ](t) ∈ L1(R+). Then (a.e.) we have the connection (1.9.1),

(1.9.11) between the MFT of an original f and f itself.

Remark 1.9.63 For further conditions for the validity of the inversion formula (1.9.10)

we refer to [Le], section 8.9, [Sn.2], section 7.5, and [Ya], section 3.1.

Remark 1.9.64 The pair of formulas (1.9.1), (1.9.11) is often called the Mehler–Fock the-

orem.

By means of the Mehler–Fock theorem one can easily derive a Parseval-type relation for

the MFT . If Fo, Go, are the Mehler–Fock transforms of f and g, respectively, then we

obtain from (1.9.1) and (1.9.10)

∞∫
0

t tanh(πt)Fo(t)
( ∞∫

1

g(x)Pit−1/2(x)dx
)
dt =

∞∫
1

g(x)
( ∞∫

0

t tanh(πt)Fo(t)Pit−1/2(x)
)
dx

=

∞∫
1

f(x) g(x)dx.

Therefore, we have:

Theorem 1.9.54 Let Fo = MF [f ] and Go = MF [g] and furthermore f and g fulfill the

conditions of Theorem 1.9.53. Then

∞∫
0

t tanh(πt)Fo(t)Go(t)dt =

∞∫
1

f(x)g(x)dx. (1.9.12)

In view of applications we look for a differentiation rule of the MFT .

Let

B = D(x2 − 1)D + 1/4, D = d/dx. (1.9.13)

From [E.1], vol. 1, 3.2, (1) we have

B(Pit−1/2(x)) = −t2Pit−1/2(x). (1.9.14)

Applying the MFT on Bf and integrating by parts we have to look for conditions on f

such that the terms outside the integral signs vanish at 1+ and +∞. After straightforward

calculation we obtain:
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Proposition 1.9.39 (Differentiation Rule) Let f be such that the MFT of f and of

Bf exist and let furthermore

lim
x→1+,+∞

(x2 − 1)f ′(x)Pit−1/2(x) = lim
x→1+,+∞

(x2 − 1)
(
DPit−1/2(x)

)
f(x) = 0.

Then it holds that

MF [Bf ](t) = −t2MF [f ](t). (1.9.15)

The investigation of the convolution structure of the MFT starts as usual with a lin-

earization formula for the product of two cone functions, see [Vi], Chapter VI, 4., formula

(2), which after some substitutions can be written as

Pit−1/2(x)Pit−1/2(y) = π−1

π∫
0

Pit−1/2(z(x, y, θ)) dθ, (1.9.16)

with

z(x, y, θ) = xy + [(x2 − 1)(y2 − 1)]1/2 cos θ. (1.9.17)

Substituting θ by z we obtain the kernel form of (1.9.16). We have

dz = −[(x2 − 1)(y2 − 1)]1/2 sin θdθ

or
dθ = −[(x2 − 1)(y2 − 1)]−1/2(1− cos2 θ)−1/2dθ

= −[(x2 − 1)(y2 − 1)]−1/2
[
1− (z − xy)2

(x2 − 1)(y2 − 1)

]−1/2

dz

= −(2xyz + 1− x2 − y2 − z2)−1/2dz.

Here

z ∈
(
xy − [(x2 − 1)(y2 − 1)]1/2, xy + [(x2 − 1)(y2 − 1)]1/2

)
=: Ix,y. (1.9.18)

Since the left-hand point of this interval is greater than one, we have:

Lemma 1.9.10 For x, y > 1, t ∈ R it holds that

Pit−1/2(x)Pit−1/2(y) =

∞∫
1

K(x, y, z)Pit−1/2(z)dz = MF [K(x, y, ·)](t) (1.9.19)

with the kernel

K(x, y, z) =

{
π−1(2xyz + 1− x2 − y2 − z2)−1/2, z ∈ Ix,y,
0 , otherwise.

(1.9.20)
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Lemma 1.9.11 The kernel K(x, y, z) is positive and symmetrical with respect to x, y, z.

Furthermore, it holds that
∞∫
1

K(x, y, z)dz = 1. (1.9.21)

Proof. The positivity and the symmetry follow directly from (1.9.20). Putting t = − i
2 in

(1.9.19), because of Po = 1, see (1.9.2), we obtain (1.9.21).

By means of the product formulas one defines a generalized translation operator (GTO)

Tx.

Definition 1.9.21 As GTO for the MFT one defines the operator Tx by means of

(Txf)(y) =

∞∫
1

K(x, y, z)f(z)dz, (1.9.22)

provided that it exists.

Proposition 1.9.40 Let f ∈ L1(1,∞). Then the GTO Tx, x > 1 exists, it is a positive

linear operator from L1(1,∞) into itself and it holds that

(i) ‖Txf‖1 ≤ ‖f‖1,

(ii) (Txf)(y) = (Tyf)(x),

(iii) (TxPit−1/2)(y) = Pit−1/2(x) · Pit−1/2(y)

and

(iv) MF [Txf ](t) = Pit−1/2(x) · MF [f ](t).

Proof. Obviously, Tx is a linear operator and it is positive since K is positive. For the

proof of estimate (i) we have by means of (1.9.21)

‖Txf(·)‖1 =

∞∫
1

∣∣∣∣∣∣
∞∫
1

K(x, y, z)f(z)dz

∣∣∣∣∣∣ dy ≤
∞∫
1

|f(z)|
( ∞∫

1

K(x, y, z)dy
)
dz = ‖f‖1.

The results (ii)–(iv) follow in the same manner as derived in the case of the KLT in section

1.8.3.

Definition 1.9.22 The convolution f ∗ g of the MFT is defined by means of

(f ∗ g)(x) =

∞∫
1

f(y)(Txg)(y)dy, (1.9.23)

provided that it exists.

Then one can prove:
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Theorem 1.9.55 (Convolution Theorem) Let f, g ∈ L1(1,∞). Then f ∗ g ∈ L1(1,∞)

and it holds that

(i) ‖f ∗ g‖1 ≤ ‖f |1 · ‖g‖1

and

(ii) MF [f ∗ g] = MF [f ] · MF [g].

Proof. By means of (1.9.23) and Proposition 1.9.40, (ii) and (i) we obtain

‖f ∗ g‖1 =

∞∫
1

|(f ∗ g)(x)|dx =

∞∫
1

∣∣∣ ∞∫
1

f(y)Txg(y)dy
∣∣∣dx

≤
∞∫
1

|f(y)|
( ∞∫

1

|Tyg(x)|dx
)
dy =

∞∫
1

|f(y)|‖Tyg‖1dy

≤ ‖g‖1

∞∫
1

|f(y)|dy = ‖f‖1 · ‖g‖1.

Property (ii) can easily be derived by straightforward calculation using Proposition 1.9.40,

(ii) and (iv).

As usual one has:

Corollary 1.9.16 The convolution is commutative, i.e.,

f ∗ g = g ∗ f.

For application of the MFT we refer to [Sn.2], sections 7.8 through 7.12. There boundary

value problems for partial differential equations and dual integral equations are solved. We

restrict ourselves to a simple application of the Parseval relation; see Theorem 1.9.54 formula

(1.9.12). Taking

f(x) = e−ax, g(x) = e−bx, a, b ∈ R+

from equation (1.9.8) we obtain

Fo(t) =

√
2
πa

Kit(a), Go(t) =

√
2
πb

Kit(b).

Now
∞∫
1

f(x) g(x) dx =

∞∫
1

e−(a+b)xdx =
e−(a+b)

a+ b
.

So from (1.9.12) we obtain

∞∫
0

t tanh(πt)Kit(a)Kit(b)dt =
π
√
ab

2(a+ b)
e−(a+b).
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1.10 Finite Integral Transforms

1.10.1 Introduction

In the preceding section we investigated integral transforms where the images (transforms)

were functions defined on some interval of the real axis or on some domain of the complex

plane. They are sometimes called continuous integral transforms.

Now we deal with integral transforms, where the images are functions defined on an

(infinite) subset of the set Z of integers. They are sometimes called finite integral transforms

(see Sneddon [Sn.2], Chapter 8, Churchill [Ch.2]) sometimes discrete integral transforms (see

Zayed [Za], Definition 4.2). So the concept of finite or discrete integral transforms is not

uniform.

The kernels of the transforms investigated in the following subsections are polynomials

of a complete orthogonal system in some Hilbert space of square-integrable functions (with

some weight) on some interval of the real line. The transforms are the (standardized) Fourier

coefficients with respect to this orthogonal system and quite formally one has an inversion

formula, namely the Fourier series with respect to the orthogonal system in consideration.

We will not develop the L2-theory. The originals of our transforms are L1-functions on

some interval with some weight.

Such integral transforms were investigated first by Scott; see [Sc], (Jacobi transform,

1953); Churchill, see [Ch.1], Churchill and Dolph [ChD], (Legendre transform, 1954); Conte,

see [Co], (Gegenbauer transform, 1955); McCully, see [MC], (Laguerre transform of order

zero, 1960); Debnath, see [De.1], [De.5], [De.7], (Laguerre transform of arbitrary order,

1960, 1961, 1969); [De.3], [De.4], (Hermite transform, 1964, 1968); and others.

We consider the case of a finite interval, as usual standardized as (−1, 1), and this leads

to the Jacobi transform and its special cases, the Chebyshev transform, Legendre transform

and Gegenbauer transform, the case of a semi-infinite interval, standardized as (0,∞) with

the Laguerre polynomials and the case of the interval (−∞,+∞), which leads to the Hermite

polynomials.

The reader interested in some other discrete integral transforms is referred to Churchill

[Ch.2], Firth [Fi], Jerry [Je], Sneddon [Sn.2], Zayed [Za], and others.

Many examples of transforms of concrete functions are given by Debnath, [De.6].

The subsections are organized as follows:

• Foundation (Definition, Spaces of originals, Inversion formula,...)

• Operational Rules (Differentiation, Integration, Convolution theorem)

• Applications (Solution of boundary value problems).
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The properties of the kernels – the classical orthogonal polynomials — are assumed to be

known to the reader and they can be found in textbooks of special functions and orthogonal

polynomials. We refer mostly to Erdeyi, [E.1], vol. 2.

Designation: The transform T[f ] of a function f is written in simplified form as f∧,

also if the transform depends additionally on parameters

α, β, (α;β), · · · : T[f ] = (fα)∧ = f∧.

So f∧ means another transform in each subsection. The designation (fα)∧, – is only used

if in some formula transforms with different parameters appear.

1.10.2 The Chebyshev Transform

Definition 1.10.23 The Chebyshev transform (CT) of a function f : [−1; 1] → C is defined

by means of

T[f ](n) = f∧(n) =
1
π

1∫
−1

f(x)Tn(x)(1− x2)−1/2dx, n ∈ No, (1.10.1)

provided that the integral exists. Here Tn are the Chebyshev polynomials (of the first kind),

defined by

Tn(x) = cos(n arccosx), n ∈ No. (1.10.2)

Remark 1.10.65 For the properties of the Chebyshev polynomials we refer to [R] or tables

of special functions, for example [E.1], vol. II, 10.11.

As space of originals we choose the space L0
1(−1; 1), written in abbreviated form as L0

1,

of measurable functions on (−1; 1) such that

‖f‖1,0 =
1
π

1∫
−1

|f(x)|(1− x2)−1/2dx (1.10.3)

is finite. It is well known that it is a Banach space with the norm (1.10.3).

Remark 1.10.66 The considerations in the following also can be extended for originals in

the space L0
p of measurable functions on (−1; 1), 1 ≤ p <∞ with the norm

‖f‖p,0 =
[ 1
π

1∫
−1

|f(x)|p(1− x2)−1/2dx
]1/p

(1.10.4)

or in the space C[−1; 1] of continuous functions on [−1; 1] with the norm ‖f‖ = sup |f(x)|, x ∈
[−1, 1], see [BuS].
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Theorem 1.10.56 Let f ∈ L0
1 and k, n ∈ No. Then the Chebyshev transform T is a linear

transform and moreover it holds that

(i) |T[f ](n)| ≤ ‖f‖1,0, n ∈ No,

(ii) lim
n→∞

T[f ](n) = 0,

(iii) T[f ](n) = 0, n ∈ No if and only if f(x) = 0 (a.e),

(iv) T[Tk](n) =


1, n = k = 0
1
2
, n = k 6= 0

0, n 6= k

 , n, k ∈ No.

Proof. The linearity follows from (1.10.1), as does the estimate (i), taking into account

that |Tn(x)| ≤ 1 (see 1.10.2).

Putting x = cos θ, θ ∈ [0;π] the CT takes the form

T[f ](n) =
1
π

π∫
0

(f ◦ cos)(θ) cosnθdθ (1.10.5)

and this are up to a constant factor the Fourier coefficients of the function ϕ = f ◦ cos,

which belongs to L1(0;π) if f ∈ L0
1.

The properties (ii) and (iii) then follow from well-known results of Fourier series theory.

Formula (iv) is nothing other than the orthogonality relation of the Chebyshev polyno-

mials (see [E.1], vol. II, 10–11, (7)).

The result (iii) can be formulated as a uniqueness theorem for the CT.

Theorem 1.10.57 (Uniqueness Theorem) Let f, g ∈ L0
1 and T[f ](n) = T[g](n) for

every n ∈ No. Then f = g (a.e.).

An inversion formula for the CT can be easily derived by means of Lebesgue’s dominated

convergence theorem.

Theorem 1.10.58 If f ∈ L0
1 can be expanded into a series of the form

f(x) = ao + 2
∞∑
k=1

akTk(x) (a.e.), (1.10.6)

the series being dominatedly convergent, i.e., for each m ∈ No it holds that∣∣∣ m∑
k=0

akTk(x)
∣∣∣ ≤ g(x) (a.e.),

where g ∈ L0
1, then ak = T[f ](k).

So, under the conditions of Theorem 1.10.58 we have:

© 2006 by Taylor & Francis Group, LLC



118 Integral Transforms

Corollary 1.10.17 (Inversion Formula)

f(x) = f∧(0) + 2
∞∑
k=1

f∧(k)Tk(x) =: T−1[f∧](x). (1.10.7)

Now we are going to formulate some rules of operational calculus.

Proposition 1.10.41 Let f ∈ L0
1 and k,m, n ∈ No. Then it holds that

T[Tmf ](n) =
1
2

[
f∧(m+ n) + f∧(|m− n|)

]
, (1.10.8)

T[xf(x)](n) =
1
2

[
f∧(n+ 1) + f∧(n− 1)

]
, (1.10.9)

and, more generally,

T[xkf(k)](n) = 2−k
k∑
l=0

(
k

l

)
f∧(n+ 2l − k). (1.10.10)

Proof. Formula (1.10.8) follows directly from

TmTn =
1
2

[
Tm+n + T|m−n|

]
, (1.10.11)

which itself follows from (1.10.2) by means of the addition theorem of the cosine function (see

also [E.1], vol. II, 10.11, (34)). The result (1.10.9) follows from the three-term recurrence

for Chebyshev polynomials

Tn+1(x) = 2xTn(x)− Tn−1(x), (1.10.12)

see [E.1], vol. II, 10.11, (16). Finally, formula (1.10.10) can easily be proved by mathemat-

ical induction.

The Chebyshev polynomials are eigenfunctions of the differential operator T defined by

means of

(Ty)(x) = −(1− x2)1/2D(1− x2)1/2D, D =
d

dx
(1.10.13)

with respect to the eigenvalues n2, i.e.,

TTn = n2Tn, n ∈ No. (1.10.14)

Therefore, we obtain:

Proposition 1.10.42 (Differentiation Rule) Let f ∈ Lo1 be two times differentiable

(a.e.) on (−1; 1) and

lim
x→±1

(1− x2)1/2 f(x) = lim
x→±1

(1− x2)1/2 f ′(x) = 0.

Then it holds that

T[Tf ](n) = n2f∧(n). (1.10.15)
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Proof. We have by means of integration by parts

T[Tf ](n) = − 1
π

1∫
−1

D[(1− x2)1/2f ′(x)]Tn(x)dx =
1
π

1∫
−1

f ′(x)(1− x2)1/2T ′n(x)dx

= − 1
π

1∫
−1

f(x)[(1− x2)1/2T ′n(x)]′dx =
1
π

1∫
−1

f(x)(TTn)(x)(1− x2)−1/2 dx

= n2f∧(n).

Corollary 1.10.18

T[T kf ](n) = n2kT[f ](n). (1.10.16)

Now let

Tf = g.

Then

(1− x2)1/2f ′(x) = −
x∫

−1

(1− v2)−1/2g(v)dv

or

f(x) = −
x∫

−1

(1− u2)−1/2

u∫
−1

(1− v2)−1/2g(v)dvdu =: (T−1g)(x). (1.10.17)

Because of T[Tf ](n) = n2f∧(n) = g∧(n) we have to assume that g∧(0) = 0.

Performing the Chebyshev transform on (1.10.17) we have

f∧(n) = T[T−1g](n) = n−2g∧(n),

or:

Proposition 1.10.43 (Integration Rule) Let g ∈ L0
1 and g∧(0) = 0. Then it holds that

T[T−1g](n) = n−2g∧(n), n ∈ N, (1.10.18)

where T−1 is defined by means of (1.10.17).

Now we are going to derive a convolution theorem for the Chebyshev transform. First

of all we note a linearization formula for the product of two Chebyshev polynomials which

easily can be proved by (1.10.2) and by means of the addition theorem of the cosine function.

Lemma 1.10.12 It holds that

Tn(x)Tn(y) =
1
2

[
Tn

(
xy +

√
(1− x2)(1− y2)

)
+ Tn

(
xy −

√
(1− x2)(1− y2)

)]
. (1.10.19)
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Definition 1.10.24 As the generalized translation operator (GTO) we denote the operator

τox , x ∈ [−1; 1], defined by

(τoxf)(y) =
1
2

[
f
(
xy +

√
(1− x2)(1− y2)

)
+ f

(
xy −

√
(1− x2)(1− y2)

)]
, (1.10.20)

y ∈ [−1; 1].

Then we have:

Proposition 1.10.44 Let f ∈ L0
1, x ∈ [−1; 1]. Then we have

(i) τox is a bounded linear operator of L0
1 into itself and ‖τoxf‖1,0 ≤ ‖f‖1,0,

(ii) (τoxf)(y) = (τoy f)(x),

(iii) T[τoxf ](n) = Tn(x)f∧(n),

(iv) (τoxTn)(y) = Tn(x)Tn(y).

Proof. Substituting x = cos θ, 0 ≤ θ ≤ π, we obtain

‖τoxf‖1,0 =
1

2π

1∫
−1

∣∣∣f(y cos θ + (1− y2)1/2 sin θ
)

+ f
(
y cos θ − (1− y2)1/2 sin θ

)∣∣∣(1− y2)−1/2 dy.

Putting y = cosϕ, 0 ≤ ϕ ≤ π, after a short calculation leads to

‖τoxf‖1,0 =
1

2π

π∫
0

∣∣∣f( cos(ϕ− θ)
)

+ f
(

cos(ϕ+ θ)
)∣∣∣dϕ

=
1

4π

π∫
−π

∣∣∣f( cos(ϕ− θ)
)

+ f
(

cos(ϕ+ θ)
)∣∣∣dϕ

≤ 1
2π

π∫
−π

∣∣∣f( cos(ϕ− θ)
)∣∣∣dϕ =

1
2π

π∫
−π

|f(cosϕ)|dϕ

=
1
π

π∫
0

|f(cosϕ)| dϕ =
1
π

1∫
−1

|f(y)|(1− y2)−1/2dy = ‖f‖1,0,

and this is (i). The symmetry (ii) follows from the definition (1.10.20). With the same

substitutions as in part (i) we obtain easily (iii), and (iv) is another formulation of the

product formula (1.10.19).

Definition 1.10.25 As the convolution f ∗ g of f and g we denote

(f ∗ g)(x) =
1
π

1∫
−1

f(y)(τoxg)(y)(1− y2)−1/2dy, (1.10.21)
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provided that it exists.

Theorem 1.10.59 (Convolution Theorem) Let f, g ∈ L0
1. Then f ∗ g exists (a.e.), it

belongs to L0
1 and

(i) ‖f ∗ g‖1,0 ≤ ‖f‖1,0 · ‖g‖1,0,

(ii) T[f ∗ g] = f∧g∧,

(iii) f ∗ g = g ∗ f .

Proof. First we are going to prove (i). Obviously, by Proposition 1.10.44, (ii) it holds that

‖f ∗ g‖1,0 =
1
π2

1∫
−1

∣∣∣ 1∫
−1

f(y)(τox g)(y)(1− y2)−1/2(1− x2)−1/2dy
∣∣∣dx

≤ 1
π

1∫
−1

|f(y)|(1− y2)−1/2

1∫
−1

|(τoy g)(x)|(1− x2)−1/2dxdy

= ‖f‖1,0 · ‖τoy g‖1,0 ≤ ‖f‖1,0 · ‖g‖1,0,

where for the latter Proposition 1.10.44 was used, and this is (i). Furthermore, by means

of Proposition 1.10.44, (iii) we have

T[f ∗ g](n) =
1
π2

1∫
−1

f(y)(1− y2)−1/2

1∫
−1

(τoy g)(x)Tn(x)(1− x2)−1/2dxdy

=
( 1
π

1∫
−1

f(y)Tn(y)(1− y2)−1/2dy
)
g∧(n) = f∧(n) · g∧(n).

The commutativity (iii) follows directly from (ii) by means of the uniqueness theorem,

Theorem 1.10.57.

Remark 1.10.67 The results can be generalized to originals of the spaces L0
p; see Re-

mark 1.10.66 and [BuS], Theorem 1.10.56. Here we have to consider functions f ∈ L0
p and

g ∈ L0
1. The convolution belongs to L0

p and (ii) takes the form

‖f ∗ g‖p,0 ≤ ‖f‖p,0 · ‖g‖1,0.

Remark 1.10.68 All the considerations of this section are valid also in the space C[−1; 1]

(with minor changes).

Now we are going to consider an application. We look for a solution of the initial value

problem
(1− x2)uxx(x, t)− xux(x, t) = (1− t2)utt(x, t)− tut(x, t),

u(x, 1) = uo(x), x, t ∈ [−1; 1].
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The partial differential equation can be written as

Txu(x, t) = Ttu(x, t),

where Tx resp. Tt is the operation T defined in (1.10.19) considered as a partial differential

operator with respect to x resp. t. The application of the Chebyshev transform with respect

to x and the use of the differentiation rule (1.10.15) lead to

n2T[u(·, t)](n) = TtT[u(·, t)](n).

This is the eigenvalue equation (1.10.14) and, therefore, we have

T[u(·, t)](n) = anTn(t), n ∈ No,

where an ∈ R are constants. By means of the boundary conditions we obtain

T[u(·, 1)](n) = T[uo](n).

From Proposition 1.10.44, (iv) and Theorem 1.10.57 we conclude

an = T[uo](n)

and Proposition 1.10.44, (iii) leads to

T[u(·, t)](n) = T[uo](n)Tn(t) = T[τot uo](n)

and by inversion we have

u(x, t) = (τot uo)(x) =
1
2

[
uo

(
xt+

√
(1− x2)(1− t2)

)
+ uo

(
xt−

√
(1− x2)(1− t2)

)]
,

which is the solution of the initial value problem, if uo is sufficiently smooth.

1.10.3 The Legendre Transform

Definition 1.10.26 The Legendre transform (LeT ) of a function f : [−1; 1] → C is defined

by means of

P[f ](n) = f∧(n) =
1
2

1∫
−1

f(x)Pn(x)dx, n ∈ No, (1.10.22)

provided that the integral exists. Here Pn are the Legendre polynomials, defined by

Pn(x) =
(−1)n

2nn!
dn

dxn
(1− x2)n, n ∈ No. (1.10.23)

Remark 1.10.69 For the properties of the Legendre polynomials we refer to [E.1], vol. II,

10.10. We note especially that |Pn(x)| ≤ 1, −1 ≤ x ≤ 1 and Pn(1) = 1, n ∈ No.
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As space of originals we choose the space L1(−1; 1) = L1 of measurable functions on

(−1; 1) such that

‖f‖1 =
1
2

1∫
−1

|f(x)|dx (1.10.24)

is finite. It is a Banach space with the norm (1.10.24).

Remark 1.10.70 The considerations in the following also can be extended to originals in

the space Lp, 1 ≤ p <∞, of measurable functions on (−1; 1) with the norm

‖f‖p =
[1

2

1∫
−1

|f(x)|pdx
]1/p

(1.10.25)

or in the space C[−1; 1] of continuous functions on [−1; 1] with the sup-norm; see [StW].

Theorem 1.10.60 Let f ∈ L1 and k, n ∈ No. Then the Legendre transform P is a linear

transform and moreover it holds that

(i) |P[f ](n)| ≤ ‖f‖1,

(ii) P[Pk](n) = 1
2n+1 δnk,

(iii) P[f ](n) = 0, n ∈ No if and only if f(x) = 0 (a.e.).

Proof. From (1.10.22) we have the linearity of the transform and also the estimate (i),

since |Pn(x)| ≤ 1, x ∈ [−1; 1]; see [E.1], vol. II, 10.18, (1).

Property (ii) is nothing other than the orthogonality property of the Legendre polynomi-

als; see [E.1], vol. II, 10.10, (4).

For the proof of property (iii) we consider the mapping

dµf (x) =
1
2
f(x)dx.

It assigns a bounded measure µf on [−1; 1] to every f ∈ L1. Let g ∈ C[−1; 1]. It is

well known that every continuous linear functional on C[−1; 1] can be determined in unique

manner by a bounded measure, i.e.,

Ff (g) =

1∫
−1

g(x)dµf (x).

From our assumption we have P[f ](n) = Ff (Pn) = 0 for every n ∈ No. Since every

polynomial is a linear combination of the set of Legendre polynomials, we have Ff (p) = 0 for

every polynomial p. By means of the Weierstrass approximation theorem every continuous

function g on [−1; 1] can be approximated by means of polynomials. Therefore, we conclude

© 2006 by Taylor & Francis Group, LLC



124 Integral Transforms

Ff (g) = 0 for every g ∈ C[−1; 1] and so we have dµf (x) = 0, i.e., f(x) = 0 a.e., This

concludes the proof of one direction of the assertion (iii). The proof of the other one is

trivial.

The result (iii) can be formulated as a uniqueness theorem for the LeT.

Theorem 1.10.61 (Uniqueness Theorem) Let f, g ∈ L1 and P[f ](n) = P[g](n) for

every n ∈ No. Then f = g (a.e.).

For the derivation of an inversion formula we assume that f can be expanded into a series

f(x) =
∞∑
n=o

cnPn(x),

the series being uniformly convergent on [−1; 1]. Then, as usual in the theory of Fourier

series, by means of Theorem 1.10.60, (ii) we conclude

cn = (2n+ 1)f∧(n).

So we have quite formally an inversion formula for the LT:

f(x) =
∞∑
n=o

(2n+ 1)f∧(n)Pn(x) =: P−1[f∧](x). (1.10.26)

This formula is not valid for originals f ∈ L1 or f ∈ C[−1; 1] but for f ∈ Lp(−1; 1) with

p ∈ (4/3; 4); see [StW], section 2. Furthermore, we refer to conditions for the validity

of (1.10.26) given in [NU], Paragraph 8, Theorem 1 for series expansions with respect to

orthogonal polynomials. The proof is too lengthy to be given in this text. In particular, we

have:

Theorem 1.10.62 Let f ∈ C1[−1; 1]. Then the inversion formula (1.10.26) holds, the

series being uniformly convergent on [−1; 1].

Now we are going to formulate some rules of operational calculus.

Proposition 1.10.45 Let f ∈ L1 and n ∈ No. Then it holds that

P[xf(x)](n) =
1

2n+ 1

[
(n+ 1)f∧(n+ 1) + nf∧(n− 1)

]
, (1.10.27)

Proof. Formula (1.10.27) follows immediately from (1.10.22) by means of the three-term

recurrence for Legendre polynomials

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x); (1.10.28)

see [E.1], vol. II, 10.10, (9).

© 2006 by Taylor & Francis Group, LLC



Finite Integral Transforms 125

The Legendre polynomials are eigenfunctions of the differential operator P defined by

means of

(Py)(x) = −D(1− x2)D, D =
d

dx
(1.10.29)

with respect to the eigenvalues n(n+ 1), i.e.,

PPn = n(n+ 1)Pn, n ∈ No. (1.10.30)

Therefore, we have:

Proposition 1.10.46 (Differentiation Rule) Let f ∈ L1 be two times differentiable

(a.e.) on (−1; 1) and

lim
x→±1

(1− x2) f(x) = lim
x→±1

(1− x2) f ′(x) = 0.

Then it holds that

P[Pf ](n) = n(n+ 1)f∧(n). (1.10.31)

Proof. The proof is straightforward by means of (1.10.29) and integration by parts, similar

to the proof of 1.10.2, Proposition 1.10.42.

Corollary 1.10.19

P[P kf ](n) = [n(n+ 1)]kf∧(n), k ∈ No. (1.10.32)

Now let

Pf = g.

Then

(1− x2)f ′(x) = −
x∫

−1

g(v)dv

and

f(x) = −
x∫

−1

(1− u2)−1

u∫
−1

g(v)dvdu =: (P−1g)(x). (1.10.33)

Because of P[Pf ](n) = n(n+ 1)f∧(n) = g∧(n) we have to assume that g∧(0) = 0.

Performing the Legendre transform on (1.10.33) we have

f∧(n) = P[P−1g](n) =
1

n(n+ 1)
g∧(n),

i.e.,
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Proposition 1.10.47 (Integration Rule) Let g ∈ L1 and g∧(0) = 0. Then it holds that

P[P−1g](n) = [n(n+ 1)]−1g∧(n), n ∈ N, (1.10.34)

where P−1 is defined by means of (1.10.33).

Now we are going to derive a convolution theorem for the Legendre transform. First we

note a linearization formula for the product of two Legendre polynomials, which is a special

case of a formula for spherical harmonics, see, for example, [Vi], Chapter III, Paragraph 4,

formula (3).

Lemma 1.10.13 For the Legendre poynomials it holds that

Pn(x)Pn(y) =
1
π

π∫
0

Pn

(
xy +

√
(1− x2)(1− y2) cosϕ

)
dϕ. (1.10.35)

Substituting t = cosϕ we have:

Corollary 1.10.20

Pn(x)Pn(y) =
1
π

1∫
−1

Pn

(
xy + t

√
(1− x2)(1− y2)

)
(1− t2)−1/2dt. (1.10.36)

Substituting z = xy +
√

(1− x2)(1− y2)t in formula (1.10.36) we obtain by straightfor-

ward calculation:

Corollary 1.10.21 Let zj = xy + (−1)j
√

(1− x2)(1− y2), j = 1, 2, then the product

formula (1.10.36) can be written in the so-called kernel form

Pn(x)Pn(y) =
1
2

1∫
−1

K(x, y, z)Pn(z)dz = P[K(x, y, ·)](n), (1.10.37)

where

K(x, y, z) =

{
2
π [1− x2 − y2 − z2 + 2xyz]−1/2, z1 < z < z2,

0, otherwise.
(1.10.38)

Lemma 1.10.14 K(x, y, z) is positive, symmetrical in x, y, z and it holds that

1
2

1∫
−1

K(x, y, z)dz = 1. (1.10.39)

By means of the product formula we define a generalized translation operator (GTO) for

the Legendre transform.
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Definition 1.10.27 Let f ∈ L1 and x ∈ [−1; 1]. Then a GTO τx is defined by means of

(τxf)(y) =
1
2

1∫
−1

K(x, y, z)f(z)dz. (1.10.40)

We have:

Proposition 1.10.48 The GTO τx is a positive bounded linear operator of L1 into itself

satisfying

(i) ‖τxf‖1 ≤ ‖f‖1,

(ii) (τxf)(y) = (τyf)(x),

(iii) (τxPn)(y) = Pn(x) · Pn(y),

(iv) P[τxf ](n) = Pn(x)f∧(n),

(v) lim
x→1−

‖τxf − f‖1 = 0.

Proof. Since K is positive (see Lemma 1.10.14) τx is a positive (linear) operator. Now let

f ∈ L1. Then we have

‖τxf‖1 =
1
2

1∫
−1

|(τxf)(y)| dy =
1
2

∫ 1

−1

∣∣∣1
2

1∫
−1

f(z)K(x, y, z)dz
∣∣∣dy.

By means of the Hölder inequality, Fubini’s theorem and formula (1.10.39) we conclude

‖τxf‖1 ≤
1
2

1∫
−1

1
2

1∫
−1

|f(z)|K(x, y, z)dzdy ≤ 1
2

1∫
−1

|f(z)|1
2

1∫
−1

K(x, y, z)dydz

=
1
2

1∫
−1

|f(z)|dz = ‖f‖1.

The symmetry relation follows from the symmetry of the kernel K; see Lemma 1.10.14.

Formula (iii) is nothing other than the product formula (1.10.37).

For the proof of formula (iv) we use |Pn(x)| ≤ 1, x ∈ [−1; 1], formula (1.10.39) and

Fubini’s theorem:

(τxf)∧(n) =
1
4

1∫
−1

1∫
−1

f(z)K(x, y, z)dzPn(y)dy =
1
4

1∫
−1

f(z)

1∫
−1

Pn(y)K(x, y, z)dydz

=
Pn(x)

2

1∫
−1

f(z)P (z)dz = Pn(x) f∧(n),
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where K(x, y, z) = K(x, z, y) and the product formula (1.10.37) were used.

Preparing the proof of assertion (v) we consider the case f = Pn. From (iii) we have

|τxPn − Pn| = |Pn(x)− 1| |Pn|.

Since |Pn(x)| ≤ 1 if x ∈ [−1; 1] and Pn(1) = 1, n ∈ No, see Remark 1.10.69, we obtain

lim
x→1−

‖τxPn − Pn‖1 = 0.

Since every polynomial is a linear combination of Legendre polynomials the assertion is

valid for polynomials. Since the set of polynomials is dense in L1 there exists for every

ε > 0 and f ∈ L1 a polynomial p such that

‖f − p‖1 < ε.

Therefore, from Proposition 1.10.48, (i) we obtain

‖τxf − f‖1 ≤ ‖τxp− p‖1 + ‖τxf − τxp‖1 + ‖f − p‖1 < ε+ ‖τx(f − p)‖1 + ε < 3ε.

Now we define the convolution of the Legendre transform.

Definition 1.10.28 As the convolution of the Legendre transform we denote

(f ∗ g)(x) =
1
2

1∫
−1

f(y)(τxg)(y)dy, (1.10.41)

provided that it exists.

Theorem 1.10.63 (Convolution Theorem) Let f, g ∈ L1. Then there exists f∗g (a.e.),

f ∗ g ∈ L1 and it holds that

(i) ‖f ∗ g‖1 ≤ ‖f‖1 · ‖g‖1,

(ii) P[f ∗ g] = f∧ g∧,

(iii) f ∗ g = g ∗ f .

Proof. By means of Proposition 1.10.48, (ii) and (i) we have

‖f ∗ g‖1 =
1
2

1∫
−1

1
2

∣∣∣ 1∫
−1

f(y)(τxg)(y)dy
∣∣∣dx ≤ 1

2

1∫
−1

1
2

1∫
−1

|f(y)| |(τy g)(x)|dxdy

=
1
2

1∫
−1

|f(y)| ‖τyg‖1dy = ‖f‖1 · ‖g‖1

and, therefore, f ∗ g ∈ L1 and (i) is valid.
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The result (ii) follows by Fubini’s theorem, using Proposition 1.10.48 and |Pn| ≤ 1:

(f ∗ g)∧(n) =
1
2

1∫
−1

(f ∗ g)(x)Pn(x)dx =
1
4

1∫
−1

1∫
−1

f(y)(τy g)(x)Pn(x)dxdy

=
1
4

1∫
−1

f(y)

1∫
−1

τyg(x)Pn(x)dxdy =
1
2

1∫
−1

f(y)(τy g)∧(n)dy

=
1
2
g∧(n)

1∫
−1

f(y)Pn(y)dy = f∧(n) · g∧(n)

and this is (ii). The commutativity follows directly from (ii) and Theorem 1.10.61, applying

the Legendre transform to one side of equation (iii).

Remark 1.10.71 The results can be generalized to originals of the spaces Lp, 1 ≤ p <∞;

see Remark 1.10.70 and [StW], Lemma 3. For the convolution we have to consider functions

f ∈ Lp and g ∈ L1. The convolution belongs to Lp and in place of (i) we have

‖f ∗ g‖p ≤ ‖f‖p · ‖g‖1.

Remark 1.10.72 All the convolutions of this section are valid also for functions of the

space C[−1; 1].

Finally, we prove a Riemann–Lebesgue type result for Legendre transforms.

Theorem 1.10.64 Let f ∈ L1. Then

lim
n→∞

f∧(n) = 0. (1.10.42)

Proof. Let xn be the largest root of Pn. From Proposition 1.10.48, (iv) we obtain

(τxn
f)∧(n) = Pn(xn) f∧(n) = 0

and, therefore, from Theorem 1.10.60, (i) it follows that

|f∧(n)| = |(f − τxn
f)∧(n)| ≤ ‖f − τxn

f‖1. (1.10.43)

From Bruns’ inequality, see [Sz], formula (6.21.5), we know that

lim
n→∞

xn = 1

and using Proposition 1.10.48, (v), from (1.10.43) with n→∞ it follows (1.10.42).

Now we consider an application. We are looking for the solution of the Dirichlet problem

for the Laplace equation in the unit ball of the three-dimensional Euclidian space. Let
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K1 = {x, y, z : x2 + y2 + z2 < 1}, K̄1 = {x, y, z : x2 + y2 + z2 ≤ 1} and ∂K1 = K̄1 \K1 the

unit sphere. We look for a function u ∈ C2(K1) such that

∆3 u(x, y, z) = uxx + uyy + uzz = 0, x, y, z ∈ K1

with the boundary condition

lim
r→1−

u(x, y, z) = uo , r = (x2 + y2 + z2)1/2.

Introducing spherical coordinates

x = r cosϑ cosϕ,

y = r cosϑ sinϕ,

z = r sinϑ, where 0 ≤ r ≤ 1, 0 ≤ ϑ ≤ π, 0 ≤ ϕ < 2π,

and assuming that the solution is independent of ϕ, with the notation

u(x, y, z) = U(r, ϑ), uo = Uo(ϑ)

after straightforward calculation we have

∂2U

∂r2
+ 2r−1 ∂U

∂r
+

1
r2 sin2 ϑ

∂

∂ϑ
(sinϑUϑ) = 0.

Putting t = cosϑ , −1 ≤ t ≤ 1 and

U(r, ϑ) = V (r, t) , Uo(ϑ) = Vo(t)

after a short calculation we obtain

∂

∂r

(
r2
∂V

∂r

)
+
∂

∂t

[
(1− t2)

∂V

∂t

]
= 0

and the boundary condition is

lim
r→1−

V (r, t) = Vo(t).

By means of the Legendre transform with respect to t and using formulas (1.10.29) through

(1.10.31) we have quite formally

r2
∂2V ∧(r, n)

∂r2
+ 2r

∂V ∧(r, n)
∂r

− n(n+ 1)V ∧(r, n) = 0

and

lim
r→1−

V ∧(r, n) = V ∧o (n).

The differential equation is a Euler type and can be solved by means of V ∧ = rα, and so

we obtain

α1 = n or α2 = −(n+ 1).
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Because of the continuity of the solution at r = 0 we obtain

V ∧(r, n) = c(n) rn

and the boundary condition yields c(n) = V ∧o (n).

Applying P−1 according to (1.10.26) we have

V (r, t) =
∞∑
n=0

(2n+ 1)V ∧o (n)Pn(t)rn

or

U(r, ϑ) =
∞∑
n=0

(2n+ 1)V ∧o Pn(cosϑ)rn.

One can prove that this formal solution of the Dirichlet problem is the solution of our

problem, if uo is sufficiently smooth.

1.10.4 The Gegenbauer Transform

Definition 1.10.29 The Gegenbauer transform (GT ) of a function f : [−1; 1] → C is

defined by means of

Pλ[f ](n) = f∧(n) =

1∫
−1

f(x)Pλn (x)dµλ(x), λ ∈ R+, n ∈ No, (1.10.44)

provided that the integral exists. Here Pλn are the Gegenbauer polynomials, defined by

Pλn (x) =
(−1)n

2n(λ+ 1
2 )n

(1− x2)
1
2−λ

dn

dxn
(1− x2)n+λ−1/2, n ∈ No (1.10.45)

and

dµλ(x) =
Γ(λ+ 1)

√
πΓ(λ+ 1

2 )
(1− x2)λ−1/2dx. (1.10.46)

Remark 1.10.73 Sometimes the Gegenbauer polynomials are defined in another standard-

ization and notation:

Cλn =
(2λ)n
n!

Pλn , (1.10.47)

see, for example, [E.1], vol. 2, 10.9.

Moreover, sometimes these Cλn are denoted by Pλn and are called ultraspherical polynomials;

see, for example, [Sz], 4.7. Therefore, one has to look carefully at the definitions.

Remark 1.10.74 For the properties of the Gegenbauer polynomials we refer to [E.1], vol.

2, 10.1. In particular, we note that, in our standardization (1.10.45) we have

|Pλn (x)| ≤ 1, −1 ≤ x ≤ 1 and Pλn (1) = 1, n ∈ No.
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Remark 1.10.75 In the case of λ = 1
2 we obtain the Legendre polynomials and (1.10.44)

is the Legendre transform with dµ1/2(x) = 1
2dx, see formulas (1.10.22), (1.10.23).

Since the proofs of many properties of the GT follow the same line as the proofs for the

Legendre transform we will omit these proofs and make remarks only if there are differences.

As space of originals we choose the space Lλ1 (−1; 1) = Lλ1 of measurable functions on

(−1; 1) such that

‖f‖1,λ =

1∫
−1

|f(x)|dµλ(x) (1.10.48)

is finite. It is a Banach space with the norm (1.10.48). We remark that L0
1 is the space of

section 1.10.2 and L
1/2
1 = L1; see section 1.10.3.

Lemma 1.10.15 We have

‖1‖1,λ =

1∫
−1

dλµ(x) = 1. (1.10.49)

Proof. Using (1.10.46) and substituting x = 1− 2t we obtain

‖1‖1,λ =
Γ(λ+ 1)22λ

√
πΓ(λ+ 1

2 )

1∫
0

[t(1− t)]λ−1/2dt =
Γ(λ+ 1) 22λ

√
πΓ(λ+ 1

2 )
B
(
λ+

1
2
, λ+

1
2

)
,

where the Beta function is defined by equation (1.4.30). Using formula (1.4.31) and the

duplication formula of the Gamma function, see [E.1], vol. I, 1.2, (15),

Γ(2z) = 22z−1π−1/2 Γ(z) Γ
(
z +

1
2

)
we obtain (1.10.49).

Remark 1.10.76 The considerations in the following also can be extended to originals of

the space Lλp , 1 ≤ p <∞ of measurable functions on (−1; 1) with the norm

‖f‖p,λ =
[ 1∫
−1

|f(x)|pdµλ(x)
]1/p

(1.10.50)

or of the space C[−1; 1] of continuous functions on [−1; 1] with the sup-norm; see [VP].

Theorem 1.10.65 Let f ∈ Lλ1 and k, n ∈ No. Then the Gegenbauer transform Pλ is a

linear transform and moreover it holds that
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(i) |Pλ[f ](n)| ≤ ‖f‖1,λ,

(ii) Pλ[Pλk ](n) =

{
n!λ

(2λ)n(n+λ) =: hλn, k = n

0, k 6= n,

(iii) Pλ[f ](n) = 0, n ∈ No if and only if f(x) = 0 (a.e.).

Proof. For the proofs of (i) and (iii) look at the proofs of Theorem 1.10.60, (i), (iii) in

section 1.10.3 for the Legendre transform. The formula (ii) is the orthogonality relation of

the Gegenbauer polynomials; see, for example, [E.1], vol. II, 10.9, (7).

The result (iii) can be formulated as a uniqueness theorem for the GT.

Theorem 1.10.66 (Uniqueness Theorem) Let f, g ∈ Lλ1 and Pλ[f ](n) = Pλ[g](n) for

every n ∈ No. Then f = g (a.e.).

Analogous to the derivation of an inversion formula for the Legendre transform we obtain

quite formally an inversion formula for the GT:

f(x) =
∞∑
n=o

1
hλn
f∧(n)Pλn (x) =:

(
Pλ
)−1

[f∧](x). (1.10.51)

This formula is not valid for originals f ∈ Lλ1 or f ∈ C[−1; 1] but for f ∈ Lλp(−1; 1) with

p ∈ (2− (1 + λ)−1; 2 + λ−1); see [Po]. Similar to Theorem 1.10.62 we have

Theorem 1.10.67 Let f ∈ C1[−1; 1]. Then the inversion formula (1.10.51) holds, the

series being uniformly convergent on [−1; 1]. Here f∧ is taken from (1.10.44) and hλn is

defined in Theorem 1.10.62, (ii).

Now we derive some rules of operational calculus.

Proposition 1.10.49 Let f ∈ Lλ1 and n ∈ No. Then it holds that

Pλ[xf(x)](n) =
1

2(n+ λ)

[
(n+ 2λ)f∧(n+ 1) + nf∧(n− 1)

]
. (1.10.52)

Proof. Formula (1.10.52) follows directly from (1.10.44) by means of the tree-term-recurrence

for Gegenbauer polynomials

(n+ 2λ)Pλn+1(x) = 2(n+ λ)xPλn (x)− nPλn−1(x); (1.10.53)

see [E.1], vol. II, 10.9, (13).

The Gegenbauer polynomials are eigenfunctions of the differential operator Pλ defined

by means of

(Pλy)(x) = −(1− x2)
1
2−λD(1− x2)λ+ 1

2Dy(x) (1.10.54)
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with respect to the eigenvalues n(n+ 2λ), see [E.1], vol. II, 10.9, (14), i.e.,

PλPλn = n(n+ 2λ)Pλn , n ∈ No. (1.10.55)

Therefore, we have:

Proposition 1.10.50 (Differentiation Rule) Let f ∈ Lλ1 be two times differentiable

(a.e.) on (−1; 1) and

lim
x→±1

(1− x2)λ+ 1
2 f(x) = lim

x→±1
(1− x2)λ+ 1

2 f ′(x) = 0.

Then it holds that

Pλ[Pλf ](n) = n(n+ 2λ)f∧(n). (1.10.56)

Corollary 1.10.22

Pλ[(Pλ)kf ](n) = [n(n+ 2λ)]kf∧(n), k ∈ No. (1.10.57)

Now let

Pλf = g.

Set

wλ(x) = (1− x2)
1
2−λ. (1.10.58)

Then

(1− x2)λ+ 1
2Df = −

x∫
−1

g(v)
wλ(v)

dv

and

f(x) = −
x∫

−1

(1− u2)−λ−
1
2

u∫
−1

g(v)
wλ(v)

dvdu =: (Pλ)−1g(x). (1.10.59)

Because of Pλ[Pλf ](n) = n(n + 2λ)f∧(n) = g∧(n) then g∧(0) = 0. By means of the GT

from (1.10.59) we have

f∧(n) = Pλ[(Pλ)−1g](n) =
1

n(n+ 2λ)
g∧(n),

i.e.,

Proposition 1.10.51 (Integration Rule) Let g ∈ Lλ1 and g∧(0) = 0. Then it holds that

Pλ[(Pλ)−1g](n) = [n(n+ 2λ)]−1g∧(n), n ∈ N, (1.10.60)

where (Pλ)−1 is defined by (1.10.59).

Preparing the definition of the convolution for the GT we note a linearization formula for

Gegenbauer polynomials, see [Vi], Chapter IX, Paragraph 4, (2).
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Lemma 1.10.16 For the Gegenbauer poynomials it holds that

Pλn (x)Pλn (y) =
Γ(λ+ 1

2 )
√
πΓ(λ)

π∫
0

Pλn

(
xy +

√
(1− x2)(1− y2) cosϕ

)
(sinϕ)2λ−1 dϕ. (1.10.61)

Substituting t = cosϕ we have

Corollary 1.10.23

Pλn (x)Pλn (y) =
Γ(λ+ 1

2 )
√
πΓ(λ)

1∫
−1

Pλn

(
xy + t

√
(1− x2)(1− y2)

)
(1− t2)λ−

1
2 dt. (1.10.62)

Substituting z = xy + t
√

(1− x2)(1− y2) in formula (1.10.62) we obtain by straightfor-

ward calculation the kernel form of (1.10.61):

Corollary 1.10.24 Let zj = xy + (−1)j
√

(1− x2)(1− y2), j = 1, 2, then

Pλn (x)Pλn (y) =

1∫
−1

Kλ(x, y, z)Pλn (z)dµλ(z) = P[Kλ(x, y, ·)](n), (1.10.63)

where

Kλ(x, y, z) =

{
Γ2(λ+ 1

2 )

Γ(λ)Γ(λ+1)
[(1−x2)(1−y2)(1−z2)]1/2−λ

[1−x2−y2−z2+2xyz]1−λ , z1 < z < z2.

0, otherwise.
(1.10.64)

From (1.10.64) and (1.10.63) with n = 1 because of Pλ0 = 1 we obtain immediately:

Lemma 1.10.17 Kλ(x, y, z) is positive, symmetrical in x, y, z and it holds that

1∫
−1

Kλ(x, y, z)dµλ(z) = 1. (1.10.65)

In the same manner as in sections 1.10.2 and 1.10.3 we are able to define a generalized

translation operator (GTO) for the Gegenbauer transform.

Definition 1.10.30 Let f ∈ Lλ1 and x ∈ [−1; 1]. Then a GTO τλx for the GT is defined by

means of

(τλx f)(y) =

1∫
−1

Kλ(x, y, z)f(z)dµλ(z). (1.10.66)

We have

Proposition 1.10.52 The GTO τλx is a positive bounded linear operator of Lλ1 into itself

satisfying
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(i) ‖τλx f‖1,λ ≤ ‖f‖1,λ,

(ii) (τλx f)(y) = (τλy f)(x),

(iii) (τλxP
λ
n )(y) = Pλn (x) · Pλn (y),

(iv) Pλ[τλx f ](n) = Pλn (x)f∧(n),

(v) lim
x→1−

‖τλx f − f‖1,λ = 0.

The proof follows the same line as the proof of Proposition 1.10.48 in section 1.10.3.

Definition 1.10.31 As the convolution of the Gegenbauer transform (GT) we denote

(f ∗ g)(x) =

1∫
−1

f(y)(τλx g)(y)dµλ(y), (1.10.67)

provided that it exists.

Analogous to Theorem 1.10.63, section 1.10.3 one can prove:

Theorem 1.10.68 (Convolution Theorem) Let f, g ∈ Lλ1 . Then there exists f∗g (a.e.),

f ∗ g ∈ Lλ1 , and it holds that

(i) ‖f ∗ g‖1,λ ≤ ‖f‖1,λ · ‖g‖1,λ,

(ii) Pλ[f ∗ g] = f∧ g∧,

(iii) f ∗ g = g ∗ f .

Remark 1.10.77 The results can be generalized to originals of the spaces Lλp , 1 ≤ p <∞;

see Remark 1.10.76 and [VP]. For the convolution we have to consider functions f ∈ Lλp

and g ∈ Lλ1 . The convolution belongs to Lλp and in place of (i) we have

‖f ∗ g‖p,λ ≤ ‖f‖p,λ · ‖g‖1,λ.

Remark 1.10.78 All the considerations of this section also are valid for functions of the

space C[−1; 1].

Finally we have a Riemann–Lebesgue type result for Gegenbauer transforms.

Theorem 1.10.69 Let f ∈ Lλ1 . Then

lim
n→∞

f∧(n) = 0. (1.10.68)
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The proof is analogous to the proof of Theorem 1.10.64 in section 1.10.3 in the case of

the Legendre transform.

Proof. In the case of 0 ≤ λ ≤ 1
2 the proof follows the line of the proof of Theorem 1.10.64,

section 1.10.3. Only the Bruns’ inequality for the roots of the Gegenbauer polynomials is

here; [Sz], formula (6.21.7). In the general case (λ ∈ R+) we refer to [VP].

For an application we refer to [De.6], section 13.6.

1.10.5 The Jacobi Transform

Definition 1.10.32 The Jacobi transform (JT ) of a function f : [−1; 1] → C is defined by

means of

P(α,β)[f ](n) = f∧(n) =

1∫
−1

f(x)R(α,β)
n (x)dµ(α,β)(x), (1.10.69)

where α ≥ β ≥ −1/2, n ∈ No, provided that the integral exists. Here R(α,β)
n are the Jacobi

polynomials, standardized in such a manner that

R(α,β)
n (x) =

(−1)n

2n(α+ 1)n
[(1− x)α(1 + x)β ]−1 dn

dxn
[(1− x)α(1 + x)β(1− x2)n], (1.10.70)

and

dµ(α,β)(x) =
Γ(a+ 1)

2aΓ(α+ 1)Γ(β + 1)
(1− x)α(1 + x)βdx, (1.10.71)

where

a = α+ β + 1. (1.10.72)

Remark 1.10.79 Sometimes the Jacobi polynomials are defined in another standardization

and notation:

P (α,β)
n (x) =

(α+ 1)n
n!

R(α,β)
n (x); (1.10.73)

see, for example, [E.1], vol. 2, 10.8. Here one also can find all important properties of these

polynomials.

Remark 1.10.80 In our standardization we have

|R(α,β)
n (x)| ≤ 1, −1 ≤ x ≤ 1 and R(α,β)

n (1) = 1, n ∈ No;

see [Sz], (7.32.2).

Remark 1.10.81 If α = β = λ − 1
2 one gets the Gegenbauer polynomials Pλn , see 1.10.4,

(1.10.45) in particular for α = β = 0, one gets the Legendre polynomials, see formula

(1.10.2) and for α = β = − 1
2 the Chebyshev polynomials, see formula (1.10.2).
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As the space of originals we choose the space L(α,β)
1 (−1; 1) = L

(α,β)
1 of measurable func-

tions on (−1; 1) such that

‖f‖1,(α,β) =

1∫
−1

|f(x)|dµ(α,β)(x) (1.10.74)

is finite. It is a Banach space with the norm (1.10.74).

Lemma 1.10.18 We have

‖1‖1,(α,β) =

1∫
−1

d(α,β)
µ (x) = 1. (1.10.75)

Proof. The proof follows the same line as the proof of Lemma 1 in section 1.10.4. Sub-

stituting x = 1 − 2t and using the definition of Euler’s Beta function and the duplication

formula of the Gamma function the result (1.10.75) is derived.

Remark 1.10.82 The considerations in the following also can be extended to originals of

the space L(α,β)
p , 1 ≤ p <∞ of measurable functions on (−1; 1) with the norm

‖f‖p,(α,β) =
[ 1∫
−1

|f(x)|pdµ(α,β)(x)
]1/p

(1.10.76)

or of the space C[−1; 1] of continuous functions on [−1; 1] with the sup-norm.

Theorem 1.10.70 Let f ∈ L
(α,β)
1 and k, n ∈ No. Then the Jacobi transform P(α,β) is a

linear transform and moreover it holds that

(i) |P(α,β)[f ](n)| ≤ ‖f‖1,(α,β),

(ii) P(α,β)[R(α,β)
k ](n) =

{
n!Γ(a+1)Γ(α+1)Γ(n+β+1)

Γ(β+1)Γ(n+a)Γ(n+α+1)(2n+a) =: h(α,β)
n , k = n

0, k 6= n,

(iii) P(α,β)[f ](n) = 0, n ∈ No if and only if f(x) = 0 (a.e.).

Proof. The property (i) follows directly from the definition (1.10.69) and |R(α,β)
n | ≤ 1; see

Remark 1.10.80. Property (ii) is the orthogonality relation of the Jacobi polynomials; see

[E.1], vol. 2, 10.8,(4), taking note of the standardization (1.10.73). The proof of (iii) follows

the same line as the proof of 1.10.3, Theorem 1.10.60, (iii).

The result (iii) can again be formulated as a uniqueness theorem for the JT.

Theorem 1.10.71 (Uniqueness Theorem) Let f, g ∈ L(α,β)
1 and P(α,β)[f ](n) = P(α,β)[g](n)

for every n ∈ No. Then f = g (a.e.).
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For the derivation of an inversion formula we assume that f can be extended into a series

f(x) =
∞∑
n=o

cnR
(α,β)
n (x),

the series being uniformly convergent on [−1; 1]. Then as usual in Fourier series theory by

means of Theorem 1.10.70, (ii) we have

cn =
1

h
(α,β)
n

f∧(n).

So quite formally we have an inversion formula for the JT:

f(x) =
∞∑
n=o

1

h
(α,β)
n

f∧(n)R(α,β)
n (x) =:

(
P(α,β)

)−1

[f∧](x). (1.10.77)

Again, as in section 1.10.3, from [NU], § 8, Theorem 1 one has:

Theorem 1.10.72 Let f ∈ C1[−1; 1]. Then the inversion formula (1.10.77) holds, the

series being uniformly convergent on [−1; 1]. Here f∧ is taken from (1.10.69) and h(α,β)
n is

defined in Theorem 1.10.70, (ii).

Now we are going to formulate some rules of operational calculus.

Proposition 1.10.53 Let f ∈ L(α,β)
1 and n ∈ No. Then it holds that

P(α,β)[f(−x)](n) = (−1)n
P

(β,α)
n (1)

P
(α,β)
n (1)

P(β,α)[f ](n), (1.10.78)

P(α,β)[f ](n+ 1) = P(α,β)[f ](n)− 2n+ a+ 1
a+ 1

P(α+1,β)[f ](n), (1.10.79)

P(α,β)[f ](n+ 1) =
2n+ a+ 1

(a+ 1)(n+ α+ 1)
P(α,β+1)[f ](n)− n+ β + 1

n+ α+ 1
P(α,β)[f ](n), (1.10.80)

P(α,β)[f ](n) =
n+ α+ 1
a+ 1

P(α+1,β)[f ](n) +
β + 1
a+ 1

P(α,β+1)[f ](n), (1.10.81)

P(α,β)[xf(x)](n) =
2(n+ a)(n+ α+ 1)
(2n+ a)(2n+ a+ 1)

P(α,β)[f ](n+ 1)

+
β2 − α2

(2n+ a− 1)(2n+ a+ 1)
P(α,β)[f ](n)

+
2n(n+ β)

(2n+ a)(2n+ a− 1)
P(α,β)[f ](n),

(1.10.82)

where the value a is taken from (1.10.72).

Proof. The proof is straightforward using appropriate formulas for the Jacobi polynomials;

see [E.1], vol. 2, 10.8, (13), (32), (23), (11), the proof of (1.10.78), (1.10.79), (1.10.80), and
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(1.10.82), respectively. Formula (1.10.81) follows from (1.10.79) and (1.10.80) by subtrac-

tion.

The Jacobi polynomials are eigenfunctions of the differential operator P (α,β) defined by

means of(
P (α,β)y

)
(x) = −(1− x)−α(1 + x)−βD

[
(1− x)α+1(1 + x)β+1D

]
y(x) (1.10.83)

with respect to the eigenvalues n(n+ a); see [E.1], vol. 2, 10.8, (14), i.e.,

P (α,β)P (α,β)
n = n(n+ a)P (α,β)

n , n ∈ No. (1.10.84)

Therefore, we have:

Proposition 1.10.54 (Differentiation Rule) Let f ∈ L(α,β)
1 be two times differentiable

(a.e.) on (−1; 1) and

lim
x→±1

(1− x)α+1(1 + x)β+1f(x) = lim
x→±1

(1− x)α+1(1 + x)β+1f ′(x) = 0.

Then it holds that

P(α,β)[P (α,β)f ](n) = n(n+ a)f∧(n). (1.10.85)

Corollary 1.10.25

P(α,β)[(P (α,β))kf ](n) = [n(n+ a)]kf∧(n), k ∈ No. (1.10.86)

Now let

P (α,β)f = g,

and let

w(x) = (1− x)α(1 + x)β . (1.10.87)

Then we obtain

(1− x2)w(x)Df(x) = −
x∫

−1

w(v) g(v)dv

and

f(x) = −
x∫

−1

[(1− u2)w(u)]−1

u∫
−1

w(v)g(v)dvdu =: (P (α,β))−1g(x). (1.10.88)

Because of

P(α,β)[P (α,β)f ](n) = n(n+ a)f∧(n) = g∧(n)

we require that g∧(0) = 0 is valid. Applying the Jacobi transform to both sides of equation

(1.10.88) we have:
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Proposition 1.10.55 (Integration Rule) Let g ∈ L
(α,β)
1 and g∧(0) = 0. Then it holds

that

P(α,β)[(P (α,β))−1g](n) = [n(n+ a)]−1g∧(n), n ∈ N, (1.10.89)

where (P (α,β))−1 is defined by (1.10.88).

Now we are going to define a convolution for the Jacobi transform. First, we note a

product formula for Jacobi polynomials; see [Koo].

Lemma 1.10.19 Let α > β > −1/2 and x, y ∈ [−1; 1]. Then for the Jacobi poynomials it

holds that

R(α,β)
n (x)R(α,β)

n (y) =

1∫
0

π∫
0

R(α,β)
n

[1
2

(1 + x)(1 + y) +
1
2

(1− x)(1− y)r2

+ (1− x2)1/2(1− y2)1/2r cos θ − 1]dm(α,β)(r, θ),

(1.10.90)

where

dm(α,β)(r, θ) =
2Γ(α+ 1)√

πΓ(α− β)Γ(β + 1/2)
(1− r2)α−β−1r2β+1(sin θ)2βdrdθ. (1.10.91)

Substituting (r, θ) with (z, ϕ) by means of

1/2r cos θ + [(1 + x)(1 + y)]1/2 = (2z)1/2 cosϕ

[(1− x)(1− y)]1/2r sin θ = (2z)1/2 sinϕ

we obtain formula (1.10.90) in the so-called kernel form, first proved by Gasper; see [Ga.1],

[Ga.2].

Lemma 1.10.20 Let α ≥ β ≥ −1/2, α > −1/2, x ∈ (−1; 1). Then

R(α,β)
n (x)R(α,β)

n (y) =

1∫
−1

K(α,β)(x, y, z)R(α,β)
n (z) dµ(α,β)(z). (1.10.92)

The kernel K(α,β) is well defined. It is positive, symmetrical with respect to x, y, z and it

holds that
1∫

−1

K(α,β)(x, y, z)dµ(α,β)(z) = 1. (1.10.93)

Remark 1.10.83 For details on the kernel K(α,β) we refer to [Ga.1], [Ga.2].

Remark 1.10.84 Here and in the following we assume α ≥ β ≥ 1/2, α > −1/2.

In the same manner as in sections 1.10.2, 1.10.3, and 1.10.4 we are able to define a

generalized translation operator (GTO) for the Jacobi transform.
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Definition 1.10.33 Let f ∈ L(α,β)
1 . Then a GTO τ

(α,β)
x =: τx is defined by means of

(τxf)(y) =

1∫
−1

K(α,β)(x, y, z)f(z)dµ(α,β)(z). (1.10.94)

Then we have

Proposition 1.10.56 The GTO τx is a positive bounded linear operator of L(α,β)
1 into itself

satisfying

(i) ‖τxf‖1,(α,β) ≤ ‖f‖1,(α,β),

(ii) (τxf)(y) = (τyf)(x),

(iii) τxR
(α,β)
n (y) = R

(α,β)
n (x) ·R(α,β)

n (y),

(iv) P(α,β)[τxf ](n) = R
(α,β)
n (x)f∧(n),

(v) lim
x→1−

‖τxf − f‖1,(α,β) = 0.

Proof. The proof is analogous to the proof of Proposition 1.10.48 in section 1.10.3 in the

case of the Legendre transform because the properties of the Legendre polynomials and of

the kernel are the same in the case of the Jacobi polynomials. Therefore, we omit the proof.

Definition 1.10.34 As the convolution of the Jacobi transform we denote f ∗ g defined by

(f ∗ g)(x) =

1∫
−1

f(y)(τxg)(y)dµ(α,β)(y), (1.10.95)

provided that it exists.

Analogous to Theorem 1.10.62, section 1.10.3 one can prove:

Theorem 1.10.73 (Convolution Theorem) Let f, g ∈ L
(α,β)
1 . Then there exists f ∗ g

(a.e.), f ∗ g ∈ L(α,β)
1 and it holds that

(i) ‖f ∗ g‖1,(α,β) ≤ ‖f‖1,(α,β) · ‖g‖1,(α,β),

(ii) P(α,β)[f ∗ g] = f∧ g∧,

(iii) f ∗ g = g ∗ f .
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Remark 1.10.85 Because of the equivalence of (1.10.90) and (1.10.92), (1.10.93) for

α > β > −1/2 we have

(τxf)(y) =

1∫
0

π∫
0

f
[1

2
(1 + x)(1 + y) +

1
2

(1− x)(1− y)r2

+ (1− x2)1/2(1− y2)1/2r cos θ − 1
]
dm(α,β)(r, θ)drdθ,

(1.10.96)

where dm(α,β)(r, θ) is taken from (1.10.91). Because the expression for the kernel K(α,β)

in formula (1.10.92) is very complicated and for the proof of Proposition 1.10.56 and The-

orem 1.10.73 one needs only properties of the kernel proved in [Ga.1], [Ga.2] we have with

(1.10.96) an explicit expression for τx and therefore also for the convolution f∗g in (1.10.95).

Remark 1.10.86 The results can be generalized; see [Ga.2]. Let f ∈ L(α,β)
p , g ∈ L(α,β)

q and

r−1 = p−1 + q−1 − 1. Then f ∗ g ∈ L(α,β)
r and

‖f ∗ g‖r,(α,β) ≤ ‖f‖p,(α,β) · ‖g‖q,(α,β).

In particular, if f ∈ L(α,β)
p and g ∈ L(α,β)

1 , then f ∗ g ∈ L(α,β)
p .

Remark 1.10.87 All the considerations of this section are also valid in the space C[−1; 1]

of continuous functions on [−1; 1] with the sup-norm.

Finally we explain an application. Let us look for a solution of

(1− x2)
∂2u(x, t)
∂x2

− [α+ (α+ 2)x]
∂u(x, t)
∂x

=
∂2u(x, t)
∂t2

where α > −1, x, t ∈ R+ and with the initial conditions

u(x, 0) = uo(x),
∂u(x, t)
∂t

∣∣∣
t=0

= u1(x).

Applying the Jacobi transform P(α,0) with respect to x to the differential equation, by

means of (1.10.83), (1.10.85) we get

P(α,0)
[∂2u(x, t)

∂t2

]
(n) = −n(n+ α+ 1)P(α,0)[u(·, t)](n)

or
∂2

∂t2
P(α,0)[u(·, t)](n) + n(n+ α+ 1)P(α,0)[u(·, t)](n) = 0.

The solution of this ordinary differential equation (with respect to t) is

P(α,0)[u(·, t)](n) = c1 cos
(√

n(n+ α+ 1)t
)

+ c2 sin
(√

n(n+ α+ 1)t
)
. (1.10.97)

From the (transformed) initial value condition we obtain

c1 = P(α,0)[uo](n), c2 =
P(α,0)[u1](n)√
n(n+ α+ 1)

. (1.10.98)
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Applying the inversion formula (1.10.77) to equation (1.10.97) we have

u(x, t) =
∞∑
n=0

1

h
(α,β)
n

[
c1(n) cos

√
n(n+ α+ 1)t+ c2(n) sin

√
n(n+ α+ 1)t

]
R(α,0)
n (x),

where c1, c2 must be taken from (1.10.98).

This is the solution of the initial value problem above provided that uo, u1 are sufficiently

smooth.

1.10.6 The Laguerre Transform

Definition 1.10.35 The Laguerre transform (LaT ) of a function f : [0;∞] → C is defined

by means of

Laα[f ](n) = f∧(n) =

∞∫
0

f(x)Rαn(x)dwα(x), (1.10.99)

where α > −1, n ∈ No, provided that the integral exists. Here Rαn are the Laguerre

polynomials of order α and degree n, standardized in such a manner that

Rαn(x) =
Lαn(x)
Lαn(0)

, (1.10.100)

where

Lαn(x) =
exx−α

n!
Dn(e−xxn+α), D =

d

dx
(1.10.101)

are the Laguerre polynomials in the usual designation and

Lαn(0) =
(α+ 1)n

n!
. (1.10.102)

Furthermore,

dwα(x) =
e−xxα

2α+1Γ(α+ 1)
dx. (1.10.103)

Remark 1.10.88 From [E.1], vol. 2, 10.18, formula (14) we have with (1.10.100), (1.10.102)

|Rαn(x)| ≤ ex/2, α ≥ 0 (1.10.104)

and

Rαn(0) = 1, α > −1.

Remark 1.10.89 We follow Görlich and Markett throughout this section; see [GöM].

As the space of originals we choose the space L1,wα(R+) = L1,wα of measurable functions

on R+ such that

‖f‖1,wα =
∫ ∞

0

|f(x)|ex/2dwα(x) (1.10.105)

is finite. It is a Banach space with the norm (1.10.105).
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Lemma 1.10.21 We have

‖1‖1,wα = 1.

Proof. Substituting t = x
2 in (1.10.105) and using the integral formula for the Gamma

function, see formula (1.4.11), we obtain the result:

Remark 1.10.90 The considerations in the following also can be extended to originals of

the space Lp,wα , 1 ≤ p <∞ of measurable functions on R+ with the norm

‖f‖p =
(p/2)α+1

Γ(α+ 1)

[ ∞∫
0

|f(x)e−x/2|pxαdx
]1/p

;

see [GöM].

Theorem 1.10.74 Let F ∈ L1,wα and k, n ∈ No. Then the LaT is linear and moreover it

holds that

(i) |Laα[f ](n)| ≤ ‖f‖1,wα , α ≥ 0,

(ii) Laα[Rαk ](n) = n!
2α+1(α+1)n

δkn =: hn,αδkn.

Proof. The property (i) follows from (1.10.99), (1.10.105) and

|Rαn(x)| ≤ ex/2, α ≥ 0;

see Remark 1.10.90.

Property (ii) is the orthogonality relation of the Laguerre polynomials (see [E.1], vol. 2,

10.12, II) taking note of (1.10.100), (1.10.102), and (1.10.103).

Now we formulate (without proof) an expansion theorem for series in Laguerre polyno-

mials, particularly a general theorem for the classical orthogonal polynomials; see [NU], §8,

Theorem 1.

Theorem 1.10.75 Let f ∈ C1[0;∞) and let furthermore the integrals

∞∫
0

[f(x)]2dwα(x) and

∞∫
0

[f ′(x)]2 x dwα(x)

be convergent. Then we have the inversion formula

f(x) =
∞∑
n=0

cnR
α
n(x) =: (Laα)−1[f∧](x)

with

cn = f∧(n)/hn,α,
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the series converging uniformly on every interval [x1, x2] ⊂ R+.

Directly we obtain:

Corollary 1.10.26 It holds that Laα[f ](n) = 0 for every n ∈ No if and only if f(x) = 0

(a.e.).

The result can be formulated as a uniqueness theorem for the LaT :

Theorem 1.10.76 (Uniqueness Theorem) Let f, g fulfill the conditions of Theorem 1.10.75

and let

Laα[f ](n) = Laα[g](n) for every n ∈ No.

Then f(x) = g(x) (a.e.), i.e., f = g.

Now we are going to formulate some rules of operational calculus. The Laguerre polyno-

mials are eigenfunctions of the differential operator Lα defined by means of

(Lαy)(x) = −exx−αD(e−xxα+1)D, D = d/dx (1.10.106)

with respect to the eigenvalues n, i.e.,

LαRαn = nRαn, n ∈ N. (1.10.107)

From (1.10.107) we obtain:

Proposition 1.10.57 (Differentiation Rule) Let f, f ′ ∈ L1,wα and f be two times dif-

ferentiable (a.e.) on R+. Then it holds that

Laα[Lαf ](n) = nf∧(n), n ∈ N. (1.10.108)

Proof. By means of integration by parts we have from (1.10.99) and (1.10.103)

Laα[Lαf ](n) = − 1
2α+1Γ(α+ 1)

∞∫
0

[D(e−xxα+1)Df(x)]Rαn(x)dx

=
1

2α+1Γ(α+ 1)

−e−xxα+1f ′(x)Rαn(x)
∣∣∣∞
0

+

∞∫
0

f ′(x)e−xxα+1DRαn(x)dx


=

1
2α+1Γ(α+ 1)

e−xxα+1f(x)DRαn(x)
∣∣∣∞
0
−
∞∫
0

f(x)D
(
e−xxα+1DRαn(x)

)
dx


=

α∫
0

f(x)LαRαn(x)dwα(x) = nLaα[f ](n).
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Corollary 1.10.27

Laα[(Lα)kf ](x) = nkf∧(n), k, n ∈ N. (1.10.109)

Now let Lαf = g. Then

e−xxα+1f ′(x) = −
x∫

0

g(v)e−vvαdv,

and

f(x) = −
x∫

0

euu−α−1

u∫
0

g(v)e−vvαdv =: (Lα)−1g(x). (1.10.110)

Now we apply the LaT (1.10.99) to both sides of (1.10.110). Because of (1.10.108) we have

g∧(n) = n f∧(n) and so we require that g∧(0) = 0. This yields:

Proposition 1.10.58 (Integration Rule) Let g ∈ L1,wα and g∧(0) = 0. Then it holds

that

Laα[(Lα)−1g](n) = n−1g∧(n), n ∈ N, (1.10.111)

where (Lα)−1 is defined by means of (1.10.110).

Preparing the definition of a convolution for the LaT we note a product formula for

Laguerre polynomials given by Watson; see [W.1].

Lemma 1.10.22 Let α > −1/2 and x, y ∈ R+, n ∈ No. Then it holds that

Rαn(x)Rαn(y) =
2αΓ(α+ 1)√

2π

π∫
0

Rαn(x+ y + 2
√
xy cos θ)e−

√
xy cos θ

·
Jα−1/2(

√
xy sin θ)

(
√
xy sin θ)α−1/2

sin2α θdθ.

(1.10.112)

This formula can be extended to the case α = −1/2. We follow a proof of Boersma,

published by Markett; see [Ma.1], Lemma 3.

Lemma 1.10.23 For every x, y ∈ R+, n ∈ No it holds that

R−1/2
n (x)R−1/2

n (y) =
1
2

{
e−
√
xyR−1/2

n

(
[
√
x+

√
y]2
)

+ e
√
xyR−1/2

n

(
[
√
x−√y]2

)
−√xy

π∫
0

R−1/2
n (x+ y + 2

√
xy cos θ)e−

√
xy cos θJ1(

√
xy sin θ) d θ

}
.

(1.10.113)
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Proof. We write the power series of Jα−1/2 in the form

Jα−1/2(
√
xy sin θ) =

( 1
2

√
xy sin θ)α−1/2

Γ(α+ 1/2)

+
∞∑
k=1

(−1)k

k! Γ(k + α+ 1/2)

(1
2
√
xy sin θ

)2k+α−1/2

, α > −1/2.
(1.10.114)

The series tends to −J1(
√
xy sin θ) as α → − 1

2 . Inserting this limit into (1.10.112) we

obtain the integral term of (1.10.113).

Substituting the first term of the right-hand side of equation (1.10.114) into (1.10.112)

we have the term

I :=
Γ(α+ 1)√
π Γ(α+ 1/2)

π∫
0

Rαn(x+ y + 2
√
xy cos θ)e−

√
xy cos θ sin2α θdθ.

The integral has nonintegrable singularities at θ = 0 and at θ = π when α = −1/2. To

remove these singularities I is rewritten as

I = e−
√
xyRαn([

√
x+

√
y]2)

Γ(α+ 1)√
πΓ(α+ 1/2)

π/2∫
0

sin2α θ d θ

+ e
√
xyRαn([

√
x−√y]2)

Γ(α+ 1)√
πΓ(α+ 1/2)

π∫
π/2

sin2α θdθ

+
Γ(α+ 1)√
πΓ(α+ 1/2)

π/2∫
0

{
e−
√
xy cos θRαn(x+ y + 2

√
xy cos θ)

− e−
√
xyRαn([

√
x+

√
y]2)

}
sin2α θdθ

+
Γ(α+ 1)√
πΓ(α+ 1/2)

π∫
π/2

{
e−
√
xy cos θRαn(x+ y + 2

√
xy cos θ)

− e
√
xyRαn([

√
x−√y]2)

}
sin2α θdθ.

The third and the fourth terms tend to zero as α→ −1/2 since the integrals are convergent

for α = −1/2 and 1/Γ(α + 1/2) tends to zero. Furthermore, by means of [PBM], vol. I,

section 2.5.3, formula 1., namely,
π∫

0

(sin θ)2αdθ = B(α+ 1/2, 1/2) =
Γ(α+ 1/2)Γ(1/2)

Γ(α+ 1)
, α > −1/2, (1.10.115)

we have

Γ(α+ 1)√
πΓ(α+ 1/2)

π/2∫
0

sin2α θdθ =
Γ(α+ 1)√
π Γ(α+ 1/2)

π∫
π/2

sin2α θdθ

=
Γ(α+ 1)

Γ(1/2) Γ(α+ 1/2)
Γ(α+ 1/2)Γ(1/2)

2 Γ(α+ 1)
−→ 1

2

© 2006 by Taylor & Francis Group, LLC



Finite Integral Transforms 149

as α→ −1
2 . Thus, the sum of the first two terms in I tends to

1
2

{
e−
√
xyR−1/2

n ([
√
x+

√
y]2) + e

√
xyR−1/2

n ([
√
x−√y]2)

}
as α→ −1/2 and so we arrive at (1.10.113).

Substituting z = z(θ) = x+ y + 2
√
xy cos θ, 0 ≤ θ ≤ π in (1.10.112) we have

√
xy sin θ =

1
2

[2(xy + yz + zx)− x2 − y2 − z2]1/2 =: ρ(x, y, z), (1.10.116)

and after a short calculation

Rαn(x)Rαn(y) =
2α−1Γ(α+ 1)√

2π(xy)α

(
√
x+
√
y)2∫

(
√
x−√y)2

Rαn(z) exp
(
− z − x− y

2

)
Jα−1/2(ρ)ρα−1/2dz.

From formula (1.10.103) we have d z = 2α+1Γ(α+ 1) ez z−αdwα(z) and setting

Kα(x, y, z) =


22α[Γ(α+1)]2√

2π(xyz)α
exp

(
x+y+z

2

)
Jα−1/2(ρ)α−1/2, for

z ∈ ([
√
x−√y]2, [

√
x+

√
y]2)

0, elsewhere

(1.10.117)

we obtain the product formula (1.10.112) in the kernel form.

Lemma 1.10.24 Let α > −1/2, x, y ∈ R+, n ∈ No. Then it holds that

Rαn(x)Rαn(y) =

∞∫
0

Kα(x, y, z)Rαn(z)dwα(z) = Laα[Kα(x, y, ·)](n). (1.10.118)

Remark 1.10.91 Analogous to (1.10.118), the formula (1.10.113) can also be written in

kernel form. From (1.10.118), (1.10.117), and (1.10.113) we obtain the following after a

straightforward calculation

R−1/2
n (x)R−1/2

n (y) =
1
2

{
e−
√
xyR−1/2

n ([
√
x+

√
y]2) + e

√
xyR−1/2

n ([
√
x−√y]2)

}
− 1

4

(
√
x+
√
y)2∫

(
√
x−√y)2

√
xyzR−1/2

n (z) exp
(
− z − x− y

2

)
J1(ρ)ρ−1dz.

(1.10.119)

Lemma 1.10.25 The kernel Kα(x, y, z) is symmetrical in x, y, z and it holds that

(i)
∞∫
0

Kα(x, y, z)dwα(z) = 1

and

(ii) ‖Kα(x, y, ·)‖1,wα ≤ e(x+y)/2.
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Proof. Formula (i) follows directly from (1.10.117) with n = 0 and Rα0 = 1; see (1.10.100).

For the proof of (ii) we quote that for α ≥ 0

|Jα−1/2(t)| ≤ 1
Γ(α+ 1/2)

( t
2

)α−1/2

, t ∈ R+; (1.10.120)

see [W.2], 3.31, (1).

Then substituting inversely z by θ we have

e−(x+y)/2

∞∫
0

|Kα(x, y, z)|ez/2dwα(z) =
2α−1Γ(α+ 1)√

2π (xy)α

(
√
x+
√
y)2∫

(
√
x−√y)2

∣∣∣Jα−1/2(ρ)ρα−1/2
∣∣∣dz

≤ 1
2

Γ(α+ 1)
Γ( 1

2 )Γ(α+ 1
2 )

1
(xy)α

(
√
x+
√
y)2∫

(
√
x−√y)2

ρ2α−1dz =
Γ(α+ 1)

Γ( 1
2 )Γ(α+ 1

2 )

∞∫
0

(sin θ)2αd θ = 1,

using (1.10.115).

Remark 1.10.92 Because of the alternating property of the Bessel function the kernel is

not positive as in the case of the polynomials Pn, Pλn and P (α,β)
n .

As usual in the preceding section now we are able to define a generalized translation

operator (GTO) for the LaT .

Definition 1.10.36 Let f ∈ L1,wα . Then a GTO Tαx for the LaT is defined by means of

(Tαx f)(y) =

∞∫
0

Kα(x, y, z)f(z)dwα(z). (1.10.121)

Proposition 1.10.59 Let α ≥ 0 and f ∈ L1,wα . Then one has

(i) ‖Tαx f‖1,wα ≤ ex/2‖f‖1,wα ,

(ii) (Tαx f)(y) = (Tαy f)(x),

(iii) Tαx R
α
n(y) = Rαn(x) ·Rαn(y),

(iv) Laα[Tαx f ](n) = Rαn(x)f∧(n).

Proof. Let x ∈ R+. Then we have

‖Tαx f‖1,wα ≤
∞∫
0

( ∞∫
0

|f(z)||Kα(x, y, z)|dwαα(z)
)
ey/2dwα(y)

≤
∞∫
0

( ∞∫
0

|Kα(x, y, z)|ey/2dwα(y)
)
|f(z)|dwα(z).
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Because of the symmetry of K and Lemma 1.10.25, (ii) applied to the inner integral we

obtain

‖Tαx f‖1,wα ≤ ex/2
∞∫
0

|f(z)|ez/2dwα(z) = ex/2‖f‖1,wα .

The result (ii) follows from the symmetry of the kernel Kα and (iii) is the product formula

(1.10.117). Finally, we have

Laα[Tαx f ](n) =

∞∫
0

( ∞∫
0

Kα(x, y, z)f(z)dwα(z)
)
Rαn(y)dwα(y)

=

∞∫
0

( ∞∫
0

Kα(x, y, z)Rαn(y)dwα(y)
)
f(z)dwα(z)

= Rαn(x)f∧(n),

again using the symmetry of K and (iii).

Definition 1.10.37 As the convolution of the LaT we call f ∗ g defined by

(f ∗ g)(x) =

∞∫
0

f(y)(Tαx g)(y)dwα(y), (1.10.122)

provided that it exists.

Theorem 1.10.77 (Convolution Theorem) Let α ≥ 0 and f, g ∈ L1,wα . Then there

exists f ∗ g (a.e.), f ∗ g ∈ L1,wα and it holds that

(i) ‖f ∗ g‖1,wα ≤ ‖f‖1,wα‖g‖1,wα ,

(ii) Laα[f ∗ g] = f∧g∧,

(iiii) f ∗ g = g ∗ f .

Proof. The estimate (i) follows from

‖f ∗ g‖1,wα = ‖
∞∫
0

f(y)(Tαx g)(y)dwα(y)‖1,wα ≤
∞∫
0

|f(y)|‖Tαy g‖1,wαdwα(y)

≤ ‖g‖1,wα

∞∫
0

|f(y)|ey/2dwα(y) = ‖f‖1,wα‖g‖1,wα ,

using the generalized Minkowski inequality

∞∫
0

|
∞∫
0

f(x, y)dy|dx ≤
∞∫
0

( ∞∫
0

|f(x, y)|dx
)
dy
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and Proposition 1.10.59, (ii) and (i).

Now

(f ∗ g)∧(n) =

∞∫
0

( ∞∫
0

f(y)(Tαx g)(y)dwα(y)
)
Rαn(x)dwα(x)

=

∞∫
0

f(y)

∞∫
0

(Tαy g)(x)Rαn(x)dwα(x)dwα(y)

= g∧(n)

∞∫
0

f(y)Rαn(y)dwα(y) = f∧(n)g∧(n),

where the properties of Proposition 1.10.59, (ii), (iii) of the GTO were used.

Remark 1.10.93 The results of Proposition 1.10.59 and Theorem 1.10.77 can also be gen-

eralized to spaces Lp,wα ; see Remark 1.10.90. For details we refer to [GöM]. It holds that

if f ∈ Lp,wα , g ∈ Lq,wα , r−1 = p−1 + q−1 − 1, then f ∗ g ∈ Lr,wα and

‖f ∗ g‖r,wα ≤ ‖f‖p,wα‖g‖q,wα .

In particular,

if p ∈ Lp,wα and g ∈ L1,wα , then f ∗ g ∈ Lp,wα .

Now we consider an application. Following Debnath [De.7] we investigate the problem of

oscillations u(x, t) of a very long and heavy chain with variable tension. The mathematical

model of this problem is given by the differential equation

x
∂2u(x, t)
∂x2

+ (α− x+ 1)
∂u(x, t)
∂x

=
∂2u(x, t)
∂t2

, t, x ∈ R+, (1.10.123)

with the initial value conditions{
u(x, 0) = u0(x), x ≥ 0
∂u(x,t)
∂t

∣∣∣
t=0

= u1(x), x ≥ 0.
(1.10.124)

The left-hand side of (1.10.123) can be written as Lαu(x, t), when the differentiation is

taken with respect to the variable x. Therefore,

(Lαu)(x, t) + utt(x, t) = 0. (1.10.125)

Applying the LaT with respect to x, by means of the differentiation rule (1.10.108) we have

u∧tt(n, t) + nu∧(n, t) = 0,

where u∧ is the LaT Laα[u(·, t)](n). The solution of this (ordinary) differential equation

with respect to t is

u∧(n, t) = A(n) cos(
√
nt) +B(n)sin

√
nt. (1.10.126)
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Applying the LaT on the initial value conditions (1.10.124) we have

u∧(n, 0) = u∧0 (n), n ∈ No

u∧t (n, 0) = u∧1 (n), n ∈ N.

Therefore, from (1.10.126) we conclude

u∧(n, t) =

{
u∧0 (0), n = 0
u∧0 (n) cos

√
nt+ u∧1 (n)√

n
sin
√
nt, n ∈ N.

Applying (quite formally) the inversion formula, Theorem 1.10.75, we get

u(x, t) =
1

2α+1
u∧0 (0) +

∞∑
n=1

1
hn,α

[
u∧0 (n) cos

√
nt+

u∧1 (n)√
n

sin
√
nt
]
Rαn(x), (1.10.127)

with hn,α from Theorem 1.10.74, (ii). The series expansion (1.10.127) is the solution of the

initial value problem (1.10.123), (1.10.124) provided that u0 , u1 are sufficiently smooth.

1.10.7 The Hermite Transform

Definition 1.10.38 The Hermite transform (HeT ) of a function f : R → C is defined by

means of

He[f ](n) = f∧(n) =
1√
2π

∞∫
−∞

f(x)H̃n(x)e−x
2
dx, n ∈ No (1.10.128)

provided that the integral exists. Here H̃n are the Hermite polynomials of degree n standard-

ized in such a manner that

H̃n(x) =

{
H2k(x)
H2k(0) , if n = 2k, k ∈ No,
H2k+1(x)

(DH2k+1)(0)
, if n = 2k + 1,

(1.10.129)

where

Hn(x) = (−1)nex
2
Dn(e−x

2
), D = d/dx (1.10.130)

are the Hermite polynomials in the usual designation and{
H2k(0) = (−1)k(2k)!/k!
(DH2k+1)(0) = 2(2k + 1)H2k(0) = (−1)k 2(2k+1)!

k! .
(1.10.131)

For formulas for Hermite polynomials we refer to [E.1], vol. 2, 10.13.

Because of the connection between Laguerre and Hermite polynomials we have

H̃n(x) =

{
R
−1/2
k (x2), if n = 2k,

xR
1/2
k (x2), if n = 2k + 1,

(1.10.132)

where Rαn are the Laguerre polynomials; see section 1.10.6, (1.10.100), (1.10.101).
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Remark 1.10.94 From [E.1], vol. 2, 10.18, (19) we have

e−x
2/2|Hn(x)| < 2

√
2nn!.

Therefore, in our standardization (1.10.129), (1.10.131) we obtain

e−x
2/2|H̃n(x)| ≤

 2k+1 k!√
(2k)!

, if n = 2k,

2k+1/2 k!√
(2k+1)!

, if n = 2k + 1

 =: Cn. (1.10.133)

As the space of originals we choose the space L1,exp(R) =: L1,exp of measurable functions

on R such that

‖f‖1,exp =
1√
2π

∞∫
−∞

|f(x)|e−x
2/2dx (1.10.134)

is finite. It is a Banach space with the norm (1.10.134). From

∞∫
−∞

e−x
2
dx =

√
π

we have

Lemma 1.10.26 It holds that

‖1‖1,exp = 1. (1.10.135)

Remark 1.10.95 The investigations in the following also can be extended to the space

Lp,exp, 1 ≤ p <∞ of measurable functions on R with the norm

‖f‖p,exp =
1√
2π

∞∫
−∞

∣∣∣f(x)e−x
2/2
∣∣∣pdx; (1.10.136)

see Markett [Ma.2]. This paper is the basis for many explanations in this section.

Theorem 1.10.78 Let f ∈ L1,exp and k, n ∈ No. Then the HeT is a linear transform and

moreover it holds that

(i) |He[f ](n)| ≤ Cn‖f‖1,exp,

(ii) He[H̃k](n) = h̃nδkn,

with Cn from (1.10.133) and

h̃n =


22k−1/2(k!)2

(2k)! , if n = 2k, k ∈ No,
22k−3/2(k!)2

(2k+1)! , if n = 2k + 1.
(1.10.137)
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Proof. Part (i) follows directly from (1.10.128), (1.10.133), and (1.10.135). The formula

(ii) is nothing other than the orthogonality relation of Hermite polynomials; see [E.1], vol.

2, 10.13, (4), taking note of (1.10.129) and (1.10.131).

Now we formulate (without proof) an expansion theorem for Hermite polynomials; see

[NU], §8, Theorem 1.

Theorem 1.10.79 Let f ∈ C1(R) and furthermore let the integrals

∞∫
−∞

[f(x)]2e−x
2
dx and

∞∫
−∞

[f ′(x)]2xe−x
2
dx

be convergent. Then we have the inversion formula

f(x) =
∞∑
n=0

cnH̃n(x) =: (He)−1[f∧](x),

with

cn = f∧(n)/h̃n,

the series being uniformly convergent on every interval [x1, x2] ⊂ R.

Directly, we conclude:

Corollary 1.10.28 He[f ](n) = 0 for every n ∈ No if and only if f(x) = 0 (a.e.).

This result can be formulated as the uniqueness theorem for the HeT .

Theorem 1.10.80 Let f, g fulfill the conditions of Theorem 1.10.79 and let He[f ](n) =

He[g](n) for every n ∈ No. Then f(x) = g(x) (a.e.), i.e., f = g.

Now we are going to formulate some rules of operational calculus. The Hermite polyno-

mials are eigenfunctions of the differential operator H defined by means of

(Hy)(x) = −ex
2
D(e−x

2
)Dy, D =

d

dx
(1.10.138)

with respect to the eigenvalues 2n, i.e.,

HH̃n = 2nH̃n, n ∈ N. (1.10.139)

Therefore, we obtain:

Proposition 1.10.60 (Differentiation Rule) Let f, f ′ ∈ L1,exp and f be two times dif-

ferentiable (a.e.) on R. Then it holds that

He[Hf ](n) = 2nf∧(n), n ∈ N. (1.10.140)
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Proof. By means of integration by parts we have with (1.10.138), (1.10.139)

√
2πHe[Hf ](n) = −

∞∫
−∞

[D(e−x
2
)Df(x)]H̃n(x)dx

= −e−x
2
(Df(x))H̃n(x)

∣∣∣∞
−∞

+

∞∫
−∞

f ′(x)e−x
2
DH̃n(x)dx

= f(x)e−x
2
DH̃n(x)

∣∣∣∞
−∞

−
∞∫

−∞

f(x)D(e−x
2
DH̃n(x))dx

=

∞∫
−∞

f(x)(HH̃n(x))e−x
2
dx = 2nHe[f ](n).

Corollary 1.10.29

He[Hkf ](n) = (2n)kf∧(n), k, n ∈ N. (1.10.141)

Now let Hf = g. Then

e−x
2
f ′(x) = −

∞∫
−∞

g(v)e−v
2
dv,

and

f(x) = −
x∫

−∞

eu
2

u∫
−∞

g(v)e−v
2
dv =: (H−1g)(x). (1.10.142)

Now we apply the HeT on both sides of equation (1.10.142). Because of (1.10.140) we have

g∧(n) = 2nf∧(n) and, therefore, we require g∧(0) = 0. Then the following holds:

Proposition 1.10.61 (Integration Rule) Let g ∈ L1,exp and g∧(0) = 0. Then it holds

that

He[H−1g](n) = (2n)−1g∧(n), n ∈ N, (1.10.143)

where H−1 is defined by means of (1.10.142).

Preparing the definition of a convolution for the HeT we note a product formula for

Hermite polynomials given by Markett; see [Ma.2].

Lemma 1.10.27 Let x, y ∈ R, n ∈ No. Then

H̃n(x)H̃n(y)

=
1
4

{[
H̃n(−x− y) + H̃n(x+ y)

]
e−xy +

[
H̃n(y − x) + H̃n(x− y)

]
exy
}

+He[K(x, y, ·)](n).

(1.10.144)
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Here

K(x, y, z) =

{√
π
8

[
Jo(4)− xyz

4 J1(4)
]
sgn(xyz)e(x

2+y2+z2)/2, z ∈ S(x, y)

0, elsewhere,
(1.10.145)

with

S(x, y) =
(
− |x| − |y|,−||x| − |y| |

)
∪
(
||x| − |y||, |x|+ |y|

)
(1.10.146)

4(x, y, z) =
1
2

[
2(x2y2 + y2z2 + z2x2)− x4 − y4 − z4

]1/2
= ρ(x2, y2, z2), (1.10.147)

where ρ is defined in 1.10.6, (1.10.116).

Proof. Following [M.2] we use for convenience the functions

Lαn(x) = e−x
2/2Rαn(x2), x ≥ 0 (1.10.148)

and

Hn(x) = e−x
2/2H̃n(x), x ∈ R. (1.10.149)

From (1.10.132) we obtain

Hn(x) =


L
−1/2
k (|x|), n = 2k,

k ∈ No,
xL

1/2
k (|x|), n = 2k + 1.

(1.10.150)

Case 1: n = 2k. From (1.10.150), (1.10.148), and 1.10.6, (1.10.119) we obtain (substitut-

ing z −→ z2)

H2k(x)H2k(y) = L
−1/2
k (|x|)L−1/2

k (|y|) =
1
2

[
L
−1/2
k (|x|+ |y|) + L

−1/2
k (|x− y|)

]
− 1

2

∫ |x|+|y|

||x|−|y||
L
−1/2
k (z)|xy|zJ1(4)4−1dz.

Substituting z −→ −z we have

H2k(x)H2k(y) =
1
2

[
L
−1/2
k (|x− y|) + L

−1/2
k (|x|+ |y|)

]
− 1

2

∫ −(|x|−|y|)

−(|x|+|y|)
L
−1/2
k (|z|)|xyz| J1(4)4−1d z.

Taking the arithmetical mean of these two formulas we get (again using formula 1.10.150)

H2k(x)H2k(y) =
1
2

[
H2k(x−y)+H2k(x+y)

]
− 1

8

∫
S(x,y)

H2k(z)|xyz|J1(4)4−1dz. (1.10.151)

Case 2: n = 2k + 1. Now from (1.10.150), (1.10.118), and (1.10.117) we obtain (again

substituting z −→ z2)

H2k+1(x)H2k+1(y) = xyL
1/2
k (|x|)L1/2

k (|y|) =
1
2

∫ |x|+|y|

||x|−|y||
L

1/2
k (z)sgn(xyz)Jo(4)dz.
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Substituting z −→ −z we have

H2k+1(x)H2k+1(y) =
1
2

−||x|−|y||∫
−|x|−|y|

L
1/2
k (z)sgn(xyz)Jo(4)dz.

Again we take the arithmetical mean of these two equations and we obtain

H2k+1(x)H2k+1(y) =
1
4

∫
S(x,y)

H2k+1(z) sgn(xyz)Jo(4)dz. (1.10.152)

Since H2k (respectively H2k+1) are even (respectively odd) functions we have

∞∫
−∞

H2k+1(z)|z|d z =
∫ ∞

−∞
H2k(z)sgn(z)dz = 0.

Therefore we have a unified form for (1.10.151) and (1.10.152):

Hn(x)Hn(y) =
1
4

[
Hn(−x− y) +Hn(x+ y) +Hn(x− y) +Hn(y − x)

]
+

1
4

∞∫
−∞

Hn(z)
[
sgn(xyz)Jo(4)− |xyz|J1(4)4−1

]
dz.

(1.10.153)

Because of |xyz| = sgn(xyz)xyz we obtain, returning to the polynomials H̃n with the

help of (1.10.149) the product formula (1.10.144) with the kernel (1.10.145).

Lemma 1.10.28 The kernel K(x, y, z) is symmetrical in its variables. Furthermore, it

holds that

e−(y2+z2)/2‖K(·, y, z)‖1,exp ≤M |yz|1/2, yz 6= 0, (1.10.154)

where M is a constant, M ≥ 1.

Proof. The symmetry of the kernel K follows directly from (1.10.145). For the proof of

(1.10.154) we obtain from (1.10.145)

A : = e−(y2+z2)/2‖K(·, y, z)‖1,exp =
1
4

∫
S(y,z)

∣∣∣− xyz

4
J1(4) + Jo(4)

∣∣∣dx
≤ 1

4

[ ∫
S(y,z)

|xyz| |J1(4)|
4

dx+
∫

S(y,z)

|Jo(4)|dx
]
.

S(y, z) is (see formula 1.10.146) symmetrical with respect to the origin and the integrals

are even functions (with respect to x). Therefore,

A ≤ |yz|
z

|y|+|z|∫
||y|−|x||

x4−1|J1(4)|dx+
1
2

|y|+|z|∫
||y|−|z||

|Jo(4)|dx. (1.10.155)
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From Watson [W.2], 3.31 (1) and Szegö [Sz], Theorem 7.31.2 we have simultaneously for

x ∈ R+

|Jo(x)| ≤ 1 and |Jo(x)| ≤
√

2
πx

and

|J1(x)| ≤ x/2 and |J1(x)| ≤M

√
2
πx

with some constant M > 1. Preparing the estimate of A we note Markett’s lemma [Ma.2],

Lemma 3.1:

Lemma 1.10.29 Let b ≤ 0, a + b > −1 and let 4 be defined as in (1.10.147). For all

y, z ∈ R+ one has

I(a, b) :=

y+z∫
|y−z|

42ax2b+1dx = γ(yz)2a+1(y + z)2b,

with some positive constant γ, γ ≥
√
πΓ(a+1)

Γ(a+3/2) .

Using the estimates for Jo and J1 we see with the help of this lemma (after a short

calculation) that the first (respectively second) expression on the right-hand side of equation

(1.10.155) is less than const · min(|yz|2 , |yz|1/2) (respectively const · min(1, |yz|1/2)). A

careful discussion of the appeasing constants leads to (1.10.154).

Remark 1.10.96 The kernel K (see equation 1.10.145) is not nonnegative for all x, y ∈
R\{0}, z ∈ S(x, y); see [Ma.2], Corollary 2.4.

Now we are able to define a GTO for the HeT .

Definition 1.10.39 Let f ∈ L1,exp. Then a GTO Tx is defined by means of

(Txf)(y) =
1
4

{
[f(x+ y) + f(−x− y)]e−xy + [f(x− y) + f(y − x)]exy

}
+

1√
2π

∞∫
−∞

f(z)K(x, y, z)e−z
2
dz.

(1.10.156)
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Proposition 1.10.62 Let f,
√
|x| f ∈ L1,exp. Then it holds that

(i) ‖Txf‖1,exp ≤Mex
2/2
{
‖f‖1,exp +

√
|x| · ‖√yf(y)‖1,exp

}
,

(ii) (Txf)(y) = (Tyf)(x),

(iii) (TxH̃n)(y) = H̃n(x)H̃n(y),

(iv) He[Txf ](n) = H̃n(x)f∧(n).

Proof. From (1.10.156) and Lemma 1.10.28, (1.10.154) we have

√
2π‖Txf‖1,exp ≤

1
4
ex

2/2
{ ∞∫
−∞

[
|f(x+ y)|+ |f(−x− y)|

]
e−(x+y)2/2dy

+

∞∫
−∞

[
|f(x− y)|+ |f(y − x)|

]
e−(x−y)2/2dy

}

+
1√
2π

∞∫
−∞

|f(z)|
( ∞∫
−∞

|K(x, y, z)|e−y
2/2d y

)
e−z

2
dz

≤ ex
2/2
{
‖f‖1,exp +M

√
|x| · ‖

√
zf(z)‖1,exp

}
and this is (i) (because of M > 1).

The result (ii) follows directly from the symmetry of K(x, y, z) with respect to the vari-

ables x, y, z by means of (1.10.156).

Formula (iii) is nothing other than the product formula (1.10.144). Relation (iv) is proved

straightforward, similar to the case of the LaT ; see 1.10.6, Proof of Proposition 1.10.59.

Definition 1.10.40 As convolution for the HeT we call f ∗ g defined by

(f ∗ g)(x) =
1√
2π

∞∫
−∞

f(y)(Txg)(y)e−y
2
dy, (1.10.157)

provided that it exists.

Theorem 1.10.81 (Convolution Theorem) Let
√
|x| f,

√
|x| g ∈ L1,exp. Then

f ∗ g ∈ L1,exp and it holds that

(i) He[f ∗ g] = f∧g∧,

(ii) f ∗ g = g ∗ f .
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Proof. From (1.10.157) it follows by means of Proposition 1.10.62, (i), (ii)

‖f ∗ g‖1,exp ≤
1√
2π

∞∫
−∞

( 1√
2π

∞∫
−∞

|f(y)||Txg(y)|e−y
2
dy
)
e−x

2/2dx

=
1√
2π

∞∫
−∞

|f(y)|e−y
2
( 1√

2π

∞∫
−∞

|Tyg(x)| e−x
2/2dx

)
dy

≤ M√
2π

∞∫
−∞

|f(y)|2e−y
2/2
(
‖g‖1,exp +

√
|y| · ‖

√
zg(z)‖1,exp

)
dy

= M
{
‖f‖1,exp · ‖g‖1,exp + ‖√yf(y)‖1,exp · ‖

√
zg(z)‖1,exp

}
and therefore f ∗ g ∈ L1,exp.

Formula (ii) follows by straightforward calculation analogous to the proof of 1.10.6, The-

orem 1.10.77, (ii). The commutativity (ii) is proved in calculating the HeT of f ∗ g and of

g∗f , taking into account that f∧g∧ = g∧f∧, and then performing the inverse transformation

(He)−1.

Now we consider an application. We are looking for the solution of the differential equa-

tion
∂2u(x, t)
∂x2

− 2x
∂u(x, t)
∂x

= xf(t), x ∈ R, t ∈ R+, (1.10.158)

under the condition

u(x, 0) = 0. (1.10.159)

Applying the HeT on both sides of equation (1.10.158) using the differential rule (see

Proposition 1.10.60) we obtain

−2nu∧(n, t) = f(t)(H̃1)∧(n) = h̃1δ1nf(t),

since x = H̃1(x). So we obtain

ũ∧(n, t) = − h̃1

2n
δ1nf(t).

By means of the inversion theorem, Theorem 1.10.79, we have

u(x, t) = −1
2
xf(t),

and this is the solution of (1.10.158) under the condition (1.10.159).
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Chapter 2

Operational Calculus

2.1 Introduction

In Chapter 1 we considered integral transforms, which can be used for the solution of

linear differential equations with respect to a certain differential operator. For example,

in section 1.4 we considered the Laplace transformation, which is fit for the solution of

linear differential equations with respect to the operator of differentiation D = d
dx . The

disadvantage of the use of integral transforms is that some integral has to be convergent.

So one should look for a pure algebraic version of operational rules with respect to the

operator D for the application to the solution of differential equations. This was first done

by D. Heaviside [H.1] through [H.3] in a quite formal manner. In the 1950s the problem was

solved by J. Mikusiński, see [Mi.7], who used elements of algebra to develop an operational

calculus for the operator D in an elementary but perfect manner; see also [DP] and [Be.1]

for similar representations of the same topic. Meanwhile, operational calculi for many other

differential operators were developed; see, for example, [Di]. In this book we deal only with

the classical one, i.e., operational calculus for the operator D.

The basis of the construction is the algebraic result that every commutative ring without

divisors of zero can be extended to a field. Its elements are fractions of elements of the ring.

So in a manner similar to how the field Q of rational numbers is constructed by means of the

ring Z of integers, a field of operators can be constructed by means of a ring of functions,

which is without divisors of zero with respect to a later defined multiplication.

We will now explain this in more detail. Let R be a commutative ring without a divisor

of zero, i.e., that from the equation

fg = 0

where f, g ∈ R and g 6= 0 it follows that f = 0. Two pairs (f, g) and (f1, g1) of elements

of R with g, g1 6= 0 are called equivalent if fg1 = f1g, and if this condition is fulfilled we

write (f, g) v (f1, g1). This relation is an equivalence relation and, therefore, it divides

the set R × R into disjointed classes of pairs of equivalent elements. A pair (f, g) is called

a representation of the class of all pairs equivalent to (f, g). This class is denoted by the

symbol fg . For this symbol we define the operators of addition and multiplication according
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to the rules of calculation with fractions in elementary arithmetics:

f

g
+
f̃

g̃
=
fg̃ + f̃g

gg̃
,

f

g
· f̃
g̃

=
ff̃

gg̃
.

These definitions are correct since gg̃ 6= 0 and one can easily prove that result on the

right-hand side does not depend on the representation of the classes f
g and f1

g1
. The set

of symbols f
g with the operations of addition and multiplication defined above is easily

proved to be not only a commutative ring, but also a field, K. Its elements (the “symbols”
f
g , f, g ∈ R, g 6= 0) are called operators. The field K is the quotient field of the ring R.

Sometimes operators are denoted only by one letter: a = f
g , b = f̃

g̃ .

We denote

e =
f

f
, 0 =

0
g
, f, g 6= 0

and they are called the unit respectively zero element of K. Obviously, they are the unit

and zero element of the field K:

0 +
f

g
=
f

g
, 0 · f

g
= 0, e · f

g
=
f

g
.

In the field K equations of the form ax = b, a, b ∈ K, a 6= 0 have a (unique) solution.

Defining the inverse operator a−1 of a = f
g by a−1 = g

f (which exists since a 6= 0), we have

x = a−1b, which easily can be verified.

Operators of the form f
e comprise a subfield of the field K since

f

e
+
g

e
=
f + g

e

f

e
· g
e

=
fg

e
.

One can easily prove that this subfield is isomorphic to the ring R, whose elements f can

also be denoted by (f, e). In this sense the field K is an extension of the ring R to a field

of quotients of elements of R and in K the usual calculations for fractions are valid. So we

have given a short version of the construction of the field of quotients of the elements of a

commutative ring without divisors of zero.

An example of this construction is the extension of the field Z of integers to the field Q of

rational numbers, i.e., to the set of quotients m
n , m, n ∈ Z, n 6= 0 with the usual calculation

for fractions. The zero element is the number 0, the element e is identical with the number

1. This was the model for the general construction. A second example is the extension of

the ring of polynomials on the real line to the field of rational functions, whose elements

are quotients of polynomials.

In operational calculus one considers rings of operators generated by a differential oper-

ator. Here we choose the operator D = d
dx . We start with a ring of functions defined on

the interval [0,∞) with the usual addition and multiplication of functions. We consider
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functions of the space L, which are measurable on every finite interval [0, a], a ∈ R+. The

zero element 0 is the function that is zero almost everywhere on [0,∞), the unit element

is the function that has the value 1 on [0,∞) with the exception of a set of points of mea-

sure zero. The set L considered as a commutative ring contains the product λf as a usual

product of a function f by a number λ or as the product of elements of the ring L. We will

later define the product in such a manner that these two products coincide. (For another

version see [Mi.7].) Then we have 1 · f = f , therefore e = 1. In the field of quotients of

the ring L (which will be constructed later on) the quotient of operators λ
µ , where λ and µ

are numbers, can then be identified with the usual quotient of numbers. The operator of

integration (denoted by 1
p ) of an element f ∈ L will be defined by means of

(1
p
f
)

(t) =

t∫
0

f(u)du. (2.1.1)

Later one can see that this somewhat strange notation makes sense. 1
p is an operator of L

into L. Therefore, one can consider powers of this operator. Obviously,

((1
p

)2

f
)

(t) =

t∫
0

u∫
0

f(v)dvdu =

t∫
0

(t− v)f(v)dv

and in general (1
p

)n
f =

1
pn
f

and from elementary calculus we know that

( 1
pn
f
)

(t) =
1

(n− 1)!

t∫
0

(t− v)n−1f(v)dv, n ∈ N,

and this can be written in the form

( 1
pn
f
)

(t) =
d

dt

t∫
0

(t− v)n

n!
f(v)dv, n ∈ N0. (2.1.2)

The product of 1
pn with f ∈ L is derivative of the convolution of the function tn

n! with the

function f (see formula 1.4.25) and therefore sometimes one describes the relation between

1
pn

and
tn

n!

by
1
pn

=
tn

n!
. (2.1.3)

This notation will be understood later, see section 2.3.1.
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Formula (2.1.3) can be considered as a particular case of formula (2.1.2), if f(t) = 1, 0 ≤
t < ∞. Let us consider formula (2.1.3) in more detail. Obviously, according to (2.1.3), we

have for m,n ∈ N0

λ
1
pn

=
λtn

n!
,

1
pm

+
1
pn

=
tm

m!
+
tn

n!
. (2.1.4)

On the one hand
1

pm+n
=

tm+n

(m+ n)!
(2.1.5)

and on the other hand from (2.1.3) and (2.1.2) we obtain for an arbitrary function f ∈
L, m, n ∈ N

1
pm

( 1
pn
f
)

(t) =
d

dt

t∫
0

(t− v)m

m!
d

dv

v∫
0

(v − u)n

n!
f(u)dudv

=
d

dt

t∫
0

(t− v)m

m!

v∫
0

(v − u)n−1

(n− 1)!
f(u)dudv

=
d

dt

t∫
0

f(u)

t∫
u

(t− v)m(v − u)n−1

m!(n− 1)!
dudv,

(2.1.6)

after interchanging the order of integration. Substituting v − u = ξ we get

1
pm

( 1
pn
f
)

(t) =
d

dt

t∫
0

f(u)

t−u∫
0

(t− u− ξ)mξn−1

m!(n− 1)!
dξ. (2.1.7)

Taking into account that

t∫
0

(t− ξ)mξn−1

m!(n− 1)!
dξ =

t∫
0

(t− ξ)n−1ξm

m!(n− 1)!
dξ =

tm+n

(m+ n)!

from (2.1.7) we obtain

1
pm

( 1
pn
f
)

(t) =
d

dt

t∫
0

(t− u)m+n

(m+ n)!
f(u)du.

Therefore, the product of operators 1
pm and 1

pn is adjoint the function

tm+n

(m+ n)!

and, therefore (see formula 2.1.5), we have

1
pm

1
pn

=
1

pm+n
. (2.1.8)

Formula (2.1.8) can be rewritten in the form

1
pm

1
pn

=
d

dt

t∫
0

(t− ξ)mξn

m!n!
dξ. (2.1.9)
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On the left is the product of operators, and on the right is some type of product of the

adjointed function, in fact, it is the definition of the convolution of these functions. We

denote this product by a bold star:

tm

m!
?
tn

n!
=

d

dt

t∫
0

(t− ξ)mξn

m!n!
dξ. (2.1.10)

Later we will generalize this notation to the arbitrary functions f, g ∈ L. So we can include

more general functions, than power functions tm

m! , and therefore also more general functions

of the operator 1
p . Formula (2.1.10) by means of (2.1.9), (2.1.8), and (2.1.5) can be written

as

tm ? tn =
m!n!

(m+ n)!
tm+n. (2.1.11)

Finally in the next chapter we will start to construct the field of operators by the set L

of functions. One also could choose some other ring, for example, the ring of continuous

functions on [0,∞), and one arrives at the same field of operators (see Mikusiński [Mi.7]).

2.2 Titchmarsh’s Theorem

First we recall the definition of the convolution of two functions f and g, defined on [0,∞)

(see section 1.4.3, formula 1.4.25) namely,

h(t) = (f ∗ g)(t) =

t∫
0

f(t− u)g(u)du. (2.2.1)

If f and g are continuous in the interval [0,∞), then the function

ϕ(u) = f(t− u)g(u)

is continuous on the segment 0 ≤ u ≤ t. Therefore, integral (2.2.1) exists. It is easy to

prove that the function h is also continuous on [0,∞).

In addition to Example 1.4.25 and Example 1.4.26 in section 1.4.3 we consider three more

examples.

Example 2.2.46 Let f(t) = eαt, g(t) = eβt. Then

h(t) =

t∫
0

eα(t−u)eβudu = eαt
t∫

0

e(β−α)udu,

and hence, we obtain
t∫

0

eα(t−u)eβudu =

{
eβt−eαt

β−α , if α 6= β

teαt, if α = β.
(2.2.2)

© 2006 by Taylor & Francis Group, LLC



168 Operational Calculus

The operation of convolution (2.2.1) may be applied not only to continuous functions. It

may be shown that the convolution of two locally integrable functions on R+ is also locally

integrable on R+ and
a∫

0

|h(t)|dt ≤
a∫

0

|f(t)|dt
a∫

0

|g(t)|dt,

for any a ∈ R+.

Example 2.2.47 Let f(t) = g(t) = t−3/4. Obviously, at the point t = 0 these functions

are discontinuous. From Example 1.4.26, section 1.4.3, it follows that their convolution has

the form
t∫

0

(t− u)−
3
4u−

3
4 du =

Γ2
(

1
4

)
Γ
(

1
2

) 1√
t

and it has also a discontinuity at the point t = 0.

Example 2.2.48 Let us define a family of functions η(t;λ) depending on the parameter λ

by the condition

η(t;λ) =

{
0, if 0 ≤ t < λ,

1, if λ ≤ t.

Obviously, the parameter λ varies in the bounds 0 ≤ λ <∞. In the case of λ = 0 we have

η(t; 0) = η(t) = 1 for all t ≥ 0. Let us find the convolution of the functions η(t;λ) and

η(t;µ). We have

h(t) =

t∫
0

η(t− u;λ)η(u;µ)du.

Since η(u;µ) = 0 for u < µ and η(u;µ) = 1 for u ≥ µ, we have h(t) = 0 for t < µ. For

t ≥ µ we have h(t) =
t∫
µ

(t− u;λ)du. On putting t− u = ξ, du = −dξ, we find for t > µ the

equality h(t) =
t−µ∫
0

η(ξ;λ)dξ.

Reasoning similarly, we deduce h(t) = 0 for t−µ < λ. For t−µ ≥ λ we have h(t) =
t−µ∫
λ

dξ.

Thus, the desired convolution has the form

h(t) =

t∫
0

η(t− u;λ)η(u;µ)du =

{
0, for t < λ+ µ,

t− λ− µ, for λ+ µ ≤ t,

or
t∫

0

η(t− u;λ)η(u;µ)du =

t∫
0

η(u;λ+ µ)du. (2.2.3)
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Properties of the Convolution

1. Commutativity:

f ∗ g = g ∗ f.

To prove this we change the variable of integration in the first integral, assuming t−u = ξ,

then du = −dξ. We obtain the relation

t∫
0

f(t− u)g(u)du = −
0∫
t

f(ξ)g(t− ξ)dξ =

t∫
0

g(t− ξ)f(ξ)dξ.

2. Associativity:

(f ∗ g) ∗ h = f ∗ (g ∗ h).

For the proof let us recall one more formula from the theory of multiple integrals. If

f(x, y) is an arbitrary function integrable in the triangular region T limited by the lines

y = a, x = b and y = x,

then the following relation holds:

b∫
a

dx

x∫
a

f(x, y)dy =

b∫
a

dy

b∫
y

f(x, y)dx, (2.2.4)

which is often called the Dirichlet formula for double integrals. To prove formula (2.2.4)

it is sufficient to note that both of the iterated integrals in (2.2.4) are equal to the double

integral ∫∫
T

f(x, y)dxdy,

calculated on the triangular region T . The reader can easily check this fact, applying the

formulae reducing the double integral to the iterated one.

Now we consider the integral

t−u∫
0

f(t− u− v)g(v)dv.

Making the change in the variable of integration by the formula v = w − u, dv = dw, we

have
t−u∫
0

f(t− u− v)g(v)dv =

t∫
u

f(t− w)g(w − u)dw;

hence,

t∫
0

[ t−u∫
0

f(t− u− v)g(v)dv
]
h(u)du =

t∫
0

h(u)du

t∫
u

f(t− w)g(w − u)dv.
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Applying Dirichlet’s formula (2.2.4), where a = 0, b = t, y = u, x = w, we find

t∫
0

[ t−u∫
0

f(t− u− v)g(v)dv
]
h(u)du =

t∫
0

f(t− w)dw

w∫
0

g(w − u)h(u)du,

as was to be proved.

3. Distributivity:

(f + g) ∗ h = f ∗ h+ g ∗ h.

4. Multiplication of the convolution by a number:

λ(f ∗ g) = (λf) ∗ g = f ∗ (λg).

5. If f, g ∈ L and their convolution f ∗ g vanishes on R+, then at least one of these

functions vanishes (a.e.) on R+, we can say: if the convolution of two functions is equal to

zero, then at least one of these functions is equal to zero. In the general case, without any

additional conditions on the functions, property 5 was first proved by Titchmarsh; therefore,

property 5 is often called Titchmarsh’s theorem. We first prove property 5 for a special

case, when the Laplace integrals for the functions f and g converge absolutely.

Let (f ∗ g)(t) = 0 for all t ∈ [0,∞). By the assumption there exists a number γ ∈ R such

that the Laplace integrals

F (z) =

∞∫
0

f(t)e−ztdt and G(z) =

∞∫
0

g(t)e−ztdt

converge absolutely in the region Hγ ; see 1.4.1, Theorem 1.4.8. By virtue of the convolution

theorem for the Laplace transform, section 1.4.3, Theorem 1.4.11, the product FG is the

Laplace transform of the function f ∗g, which vanishes on R+, whence F (z)G(z) = 0 in the

region Hγ . The functions F and G are analytic in the region Hγ ; hence, if G(z) does not

vanish identically, then there exists a point z0 ∈ Hγ and G(z0) 6= 0. Then in a sufficiently

small neighborhood of z0 the function G(z) is not equal to zero, whence in this neighborhood

F (z) vanishes everywhere, and because F (z) is an analytic function it follows that F (z) = 0

for all z, such that z ∈ Hγ . On applying Theorem 1.4.9 of section 1.4.1, we conclude that

f(t) = 0 at every point t of the interval (0,∞), where f(t) is continuous. In particular, if f

is a continuous function in [0,∞), then f(t) = 0 for all t ∈ [0,∞).

Now we are going to formulate and prove Titchmarsh’s theorem.

Theorem 2.2.82 If f, g ∈ C[0,∞) and their convolution

(f ∗ g)(t) = 0 , 0 ≤ t <∞, (2.2.5)

then at least one of these functions vanishes everywhere in the interval [0,∞).
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Remark 2.2.97 The condition of continuity of the functions f and g on [0,∞) is not

essential.

Indeed, let

f1(t) =

t∫
0

f(u)du, g1(t) =

t∫
0

g(u)du.

On integrating (2.2.5), we obtain

t∫
0

ξ∫
0

f(ξ − u)g(u) du dξ = C.

But the left-hand side for t = 0 is equal to zero; hence,

t∫
0

ξ∫
0

f(ξ − u)g(u) du dξ = 0.

From this, applying (2.2.4), we find

t∫
0

g(u)du

t∫
u

f(ξ − u)dξ = 0;

putting ξ − u = η, dξ = dη, we have

t∫
u

f(ξ − u)dξ =

t−u∫
0

f(η)dη = f1(t− u).

Hence, we have
t∫

0

f1(t− u)g(u)du = 0,

or
t∫

0

g(t− u)f1(u)du = 0.

Integrating the latter relation once more, we find

t∫
0

f1(t− u)g(u)du = 0, 0 ≤ t <∞. (2.2.6)

If the theorem holds for continuous functions, this immediately implies its validity for

locally integrable functions on R+. In order to prove Titchmarsh’s theorem we need a series

of lemmas.

If a sequence of functions fn(x) converges uniformly for a ≤ x ≤ b, then it is known that

lim
n→∞

b∫
a

fn(x)dx =

b∫
a

lim
n→∞

fn(x)dx.
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However, the uniform convergence on [a, b] is only a sufficient condition, supplying a possi-

bility of permutation of the operations of integration and passage to the limit. If fn(x) are

continuous functions and the limit f(x) = lim
n→∞

fn(x) is discontinuous, then the convergence

is necessary not uniformly and the question about the passage to the limit under the sign of

the integral requires further investigation.

Lemma 2.2.30 If

lim
n→∞

fn(x) = f(x), a ≤ x ≤ b

and

1) the function f(x) has a finite number of points of discontinuity;

2) there exists a number Q such that for all a ≤ x ≤ b and n = 1, 2, 3, . . .

|fn(x)| ≤ Q;

3) the sequence (fn(x))n inN converges to f(x) uniformly on the segment [a, b] except

arbitrary small neighborhoods of points of discontinuity of the limit function f(x), then the

following relation holds:

lim
n→∞

b∫
a

fn(x)dx =

b∫
a

f(x)dx. (2.2.7)

Proof. It is sufficient to prove the lemma for the special case, when [a, b] contains only

one point of discontinuity of f . The general case may be reduced to this one by partition

of the interval of integration into a finite number of intervals, each of which contains only

one point of discontinuity of f . Thus, let the function f(x) have a gap at x = t. Let

a < t < b. The cases when t = a, or t = b are considered similarly. Let ε > 0 be an

arbitrary sufficiently small number and δ = ε
8Q . Let us take as a neighborhood of the point

t the interval (t− δ, t+ δ). We have

b∫
a

fn(x)dx−
b∫
a

f(x)dx =

t−δ∫
a

fn(x)dx−
t−δ∫
a

f(x)dx+

b∫
t+δ

fn(x)dx

−
b∫

t+δ

f(x)dx+

t+δ∫
t−δ

fn(x)dx−
t+δ∫
t−δ

f(x)dx.

Under this assumption |f(x)| ≤ Q, therefore, we have the inequalities∣∣∣∣∣∣
t+δ∫
t−δ

f(x)dx

∣∣∣∣∣∣ ≤ 2δQ and

∣∣∣∣∣∣
t+δ∫
t−δ

fn(x)dx

∣∣∣∣∣∣ ≤ 2δQ.
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Under this assumption, the sequence (fn(x))n∈N converges to f(x) uniformly in the intervals

a ≤ x ≤ t− δ and t+ δ ≤ x ≤ b. The uniform convergence implies the relations

lim
n→∞

t−δ∫
a

fn(x)dx =

t−δ∫
a

f(x)dx;

lim
n→∞

b∫
t+δ

fn(x)dx =

b∫
t+δ

f(x)dx.

Therefore, there exists a number n0 such that∣∣∣∣∣∣
t−δ∫
a

fn(x)dx−
t−δ∫
a

f(x)dx

∣∣∣∣∣∣ < ε

4
,

∣∣∣∣∣∣
b∫

t+δ

fn(x)dx−
b∫

t+δ

f(x)dx

∣∣∣∣∣∣ < ε

4

for all n ≥ n0. Now for n ≥ n0 we have the inequality∣∣∣∣∣∣
b∫
a

fn(x)dx−
b∫
a

f(x)dx

∣∣∣∣∣∣ ≤ ε

4
+
ε

4
+ 2δQ+ 2δQ =

ε

2
+ 4δQ.

On putting δ = ε
8Q , we finally have∣∣∣∣∣∣

b∫
a

fn(x)dx−
b∫
a

f(x)dx

∣∣∣∣∣∣ ≤ ε for all n ≥ n0.

Lemma 2.2.31 If f ∈ C[0, T ), then there exists the limit

lim
n→∞

∞∑
k=0

(−1)k

k!

T∫
0

e−kn(t−u)f(u)du =

t∫
0

f(u)du (2.2.8)

for any t ∈ [0, T ).

Proof. Let 0 ≤ t < T and

Q = max
0≤t≤T

|f(t)|.

Let us consider the series
∞∑
k=0

(−1)k

k!
e−nk(t−u)f(u). (2.2.9)

Let us fix the numbers n > 0 and t. The general term of the series satisfies the inequality∣∣∣∣ (−1)k

k!
e−nk(t−u)f(u)

∣∣∣∣ ≤ QenkT

k!
.
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But the series
∞∑
k=0

enkT

k!

converges and its terms do not depend on the variable u; hence, series (2.2.9) converges

uniformly in the region 0 ≤ u ≤ T and

∞∑
k=0

(−1)k

k!

T∫
0

e−nk(t−u)f(u)du =

T∫
0

( ∞∑
k=0

(−1)k

k!
e−nk(t−u)

)
f(u)du.

We have the relation
∞∑
k=0

(−1)k

k!
e−nk(t−u) = e−e

−n(t−u)
;

hence
∞∑
k=0

(−1)k

k!

T∫
0

e−nk(t−u)f(u)du =

T∫
0

e−e
−n(t−u)

f(u)du.

Taking account of the relation

lim
n→∞

e−e
−n(t−u)

=


1 for u < t,

e−1 for u = t,

0 for u > t

for the sequence fn(u) = e−e
−n(t−u)

f(u) we have the relations

lim
n→∞

fn(u) = f(u), if 0 ≤ u < t,

and

lim
n→∞

fn(u) = 0, for u > t.

Let ϕn(u) = e−e
−n(t−u)

; then, obviously, we have

ϕ′n(u) = −ne−e
−n(t−u)

e−n(t−u) < 0.

Therefore, the function ϕn(u) decreases when the variable u increases. If δ > 0 is sufficiently

small, and 0 ≤ u ≤ t − δ, then 1 − ϕn(u) ≤ 1 − ϕn(t − δ). For t + δ ≤ u ≤ T we have

ϕn(u) ≤ ϕn(t+ δ). Therefore, the inequalities follow:

|f(u)− fn(u)| ≤ Q(1− ϕn(t− δ)) for 0 ≤ u ≤ t− δ,

|fn(u)| ≤ Qϕn(t+ δ) for t+ δ ≤ u ≤ T.

These inequalities imply the uniform convergence of the sequence (fn(u))n∈N on the seg-

ments [0, t − δ] and [t + δ, T ]. Hence, the third condition of Lemma 2.2.30 is also fulfilled.

Thus, we have the relation

lim
n→∞

∞∑
k=0

(−1)k

k!

T∫
0

e−nk(t−u)f(u) du =

T∫
0

lim
n→∞

e−e
−n(t−u)

f(u) du =

T∫
0

f(u) du.
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Lemma 2.2.32 If f ∈ C[0, T ) and there exists a number Q such that the inequality∣∣∣∣∣∣
T∫
o

entf(t)dt

∣∣∣∣∣∣ ≤ Q (2.2.10)

holds for all n ∈ No, then f(t) = 0 on the whole interval [0, T ].

Proof. Lemma 2.2.31 implies

lim
n→∞

∞∑
k=0

(−1)ke−nkt

k!

T∫
0

enkuf(u)du =

t∫
0

f(u)du. (2.2.11)

On the other hand, condition (2.2.10) implies∣∣∣∣∣∣
∞∑
k=1

(−1)ke−nkt

k!

T∫
0

enkuf(u)du

∣∣∣∣∣∣ ≤ Q
∞∑
k=1

e−nkt

k!
= Q(ee

−nt

− 1) → 0

for n→∞. From (2.2.11) we have for n→∞

T∫
0

f(u) du =

t∫
0

f(u)du, 0 ≤ t < T,

therefore,
t∫

0

f(u) du = 0 for all t ∈ [0, T ];

hence,

f(t) = 0 for t ∈ [0, T ].

Lemma 2.2.33 If f ∈ C[0, T ] and

T∫
0

tnf(t)dt = 0; n = 0, 1, 2, . . . ,

then f(t) = 0 on the whole interval [0, T ].

Proof. Let t = αx; we have

αn+1

T
α∫

0

xnf(αx) dx = 0.

Suppose that α > 0 is small enough in order for T
α > 1. Then the relation holds

T
α∫

1

xnf(αx)dx = −
1∫

0

xnf(αx)dx,
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therefore, ∣∣∣∣∣∣∣
T
α∫

1

xnf(αx)dx

∣∣∣∣∣∣∣ ≤
1∫

0

|f(αx)|dx = Q.

On putting x = eξ, dx = eξdξ, we find∣∣∣∣∣∣∣
ln T

α∫
0

enξf(αeξ)eξdξ

∣∣∣∣∣∣∣ ≤ Q, n = 0, 1, 2, . . . .

Applying Lemma 2.2.32, we conclude that f(αeξ) = 0 for all 0 ≤ ξ ≤ ln T
α , or f(t) = 0

for α ≤ t ≤ T . Since the function f(t) is continuous on [0, T ] and α > 0 is an arbitrary

sufficiently small number, we have f(t) = 0 for 0 ≤ t ≤ T .

Lemma 2.2.34 If h(t) = (f ∗ g)(t), then the relation holds

T∫
0

h(t)e−ztdt =

T∫
0

f(t)e−ztdt

T∫
0

g(t)e−ztdt− e−Tz
T∫

0

e−ztdt

T∫
t

f(t+ T − ξ)g(ξ)dξ.

Proof. We have

HT (z) =

T∫
0

h(t)e−ztdt =

T∫
0

dt

t∫
0

e−z(t−u)−zuf(t− u)g(u)du.

Let us make the change of variables in the double integral. On putting t − u = x, u = y,

then 0 < x + y < T , y > 0, c > 0. Hence, the new domain of integration is the triangle

ABO (Figure 6) and

Figure 6
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Figure 7

HT (z) =

T∫
0

e−zxf(x)dx

T−x∫
0

g(y)e−zydy = FT (z)GT (z)−
T∫

0

e−zxf(x)dx

T∫
T−x

g(y)e−zydy.

Here

FT (z) =

T∫
0

f(t)e−ztdt and GT (z) =

T∫
0

g(t)e−ztdt,

and the domain of integration is the triangle ABC (see Figure 6). On changing in the last

double integral the variables of integration by the formulae x + y = v, y = ξ, we find that

0 < v − ξ < T , v > T , ξ < T , and the new domain of integration is the triangle PQR

(Figure 7); therefore, the following formula holds:

HT (z) = FT (z)GT (z)−
2T∫
T

e−zvdv

T∫
v−T

f(v − ξ)g(ξ)dξ.

Finally, on putting v = t+ T , dv = dt, we have

HT (z) = FT (z)GT (z)−
T∫

0

e−z(t+T )dt

T∫
t

f(t+ T − ξ)g(ξ)dξ. (2.2.12)

Proof of Titchmarsh’s theorem for the case: f = g

Let f be a continuous function in the region 0 ≤ t <∞ and

h(t) = (f ∗ f)(t) = 0 for 0 ≤ t <∞. (2.2.13)
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Applying Lemma 2.2.34, we conclude that

( T∫
0

f(t)e−ztdt
)2

= e−Tz
T∫

0

e−ztdt

T∫
t

f(t+ T − ξ)f(ξ)dξ,

where T > 0 is an arbitrary fixed number. If we put z = n and denote ϕ(t) =
T∫
t

f(t+ T −

ξ)f(ξ)dξ, then

enT
( T∫

0

f(t)e−ntdt
)2

=

T∫
0

e−ntϕ(t)dt,

or ( T∫
0

f(t)en( T
2 −t)dt

)2

=

T∫
0

e−ntϕ(t)dt.

Hence, ∣∣∣∣∣∣
T∫

0

f(t)en( T
2 −t)dt

∣∣∣∣∣∣
2

≤
T∫

0

e−nt |ϕ(t)| dt ≤
T∫

0

|ϕ(t)|dt;

therefore, ∣∣∣∣∣∣
T∫

0

f(t)en( T
2 −t)dt

∣∣∣∣∣∣ ≤
√√√√√ T∫

0

|ϕ(t)|dt.

From this inequality we find∣∣∣∣∣∣∣
T/2∫
0

f(t)en( T
2 −t)dt

∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣
T∫

T/2

f(t)en( T
2 −t)dt

∣∣∣∣∣∣∣ ≤
√√√√√ T∫

0

|ϕ(t)|dt,

or taking into account that en( T
2 −t) ≤ 1, for t ≥ T

2 ,∣∣∣∣∣∣∣
T/2∫
0

f(t)en( T
2 −t)dt

∣∣∣∣∣∣∣ ≤
√√√√√ T∫

0

|ϕ(t)|dt+

T∫
T/2

|f(t)|dt = Q.

Finally, on putting T
2 − t = ξ, we find∣∣∣∣∣∣∣

T/2∫
0

f

(
T

2
− ξ

)
enξdξ

∣∣∣∣∣∣∣ ≤ Q, n = 0, 1, 2, . . . .

By virtue of Lemma 2.2.32 we deduce from here that

f

(
T

2
− ξ

)
= 0 for 0 ≤ ξ ≤ T

2
,

or

f(t) = 0 for 0 ≤ t ≤ T

2
;
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and since T > 0 is an arbitrary number, hence, f(t) = 0 for all t ≥ 0.

Proof of Titchmarsh’s theorem in the general case. Let f and g be continuous functions

for 0 ≤ t <∞ and

(f ∗ g)(t) = 0 for all 0 ≤ t <∞. (2.2.14)

Then we have
t∫

0

(t− u)f(t− u)g(u)du+

t∫
0

f(t− u)ug(u)du = t

t∫
0

f(t− u)g(u)du = 0.

On denoting f1(t) = tf(t) and g1(t) = tg(t), we rewrite the previous relation in the form

t∫
0

f1(t− u)g(u)du+

t∫
0

f(t− u)g1(u)du = 0,

i.e.,

f1 ∗ g + f ∗ g1 = 0,

which implies

(f ∗ g1) ∗ (f1 ∗ g + f ∗ g1) = 0,

or, using the properties of convolution, we obtain

f ∗ g1 ∗ f1 ∗ g + f ∗ g1 ∗ f ∗ g1 = (f ∗ g) ∗ (f1 ∗ g1) + (f ∗ g1) ∗ (f ∗ g1) = 0.

But f ∗ g = 0, therefore, (f ∗ g1) ∗ (f ∗ g1) = 0. By virtue of Titchmarsh’s theorem proven

for the case f = g, we have f ∗ g1 = 0, or

t∫
0

f(t− u)ug(u)du = 0 (2.2.15)

for all t ≥ 0. Thus, (2.2.14) implies (2.2.15).

Suppose that
t∫

0

f(t− u)ung(u)du = 0, t ≥ 0. (2.2.16)

In the same way that we obtained (2.2.15) from (2.2.14), we find from (2.2.16) that

t∫
0

f(t− u)un+1g(u)du = 0 for all t ≥ 0. (2.2.17)

Thus, (2.2.16) holds for all n ≥ 0. By Lemma 2.2.33 we deduce from here that

f(t− u)g(u) = 0 for all 0 ≤ u ≤ t <∞. (2.2.18)

If there exists a point u0 ∈ [0,∞) such that g(u0) 6= 0, then (2.2.18) implies

f(t− u0) = 0, u0 ≤ t <∞, i.e. f(t) = 0 for all t ≥ 0.
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2.3 Operators

2.3.1 Ring of Functions

Let us denote by M the set of all functions defined in the region 0 ≤ t <∞, differentiable

in this region and whose derivative belongs to the set Lloc1 (R+) = L. Then every function

F belonging to the set M may be represented in the form

F (t) = F (0) +

t∫
0

f(u)du, where f ∈ L.

Conversely, if F (t) has the form

t∫
0

f(u) du+ λ, where f ∈ L and λ is a number, then F ∈M.

Obviously, M is contained in the set L and is a linear set with respect to the ordinary

operations of addition of functions and multiplication of a function by a number.

Lemma 2.3.35 If F ∈ M and g ∈ L, then the convolution H of these functions, defined

by

H(t) =

t∫
0

F (t− u)g(u) du,

belongs to the set M .

Proof. The condition F ∈M implies that

F (t) =

t∫
0

f(u) du+ F (0), where f ∈ L.

Let

h(t) =

t∫
0

f(t− v)g(v) dv,

then
t∫

0

h(u)du =

t∫
0

du

u∫
0

f(u− v)g(v)dv.

On changing the order of integration in the double integral, we obtain

t∫
0

h(u)du =

t∫
0

g(v)dv

t∫
v

f(u− v)du,
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or, on putting u− v = ξ, du = dξ, we have

t∫
0

h(u) du =

t∫
0

g(v)dv

t−v∫
0

f(ξ)dξ.

But
t∫
0

f(ξ)dξ = F (t)− F (0); therefore, the following equality holds

t∫
0

h(u)du =

t∫
0

F (t− v)g(v)dv − F (0)

t∫
0

g(v)dv,

and hence,

H(t) =

t∫
0

F (t− v)g(v)dv = F (0)

t∫
0

g(v)dv +

t∫
0

h(u)du. (2.3.1)

Both functions on the right-hand side of the latter equation belong to M ; hence, H ∈M .

Corollary 2.3.30 If the functions F ∈M and G ∈M , then there exists the derivative

d

dt

t∫
0

F (t− u)G(u)du = H(t)

and H also belongs to M .

Proof. Indeed, replacing in (2.3.1) the function g(t) by G(t) we obtain

t∫
0

F (t− v)G(v)dv = F (0)

t∫
0

G(v)dv +

t∫
0

H1(u)du,

where

H1(u) =

u∫
0

f(u− v)G(v)dv =

u∫
0

G(u− v)f(v)dv.

Lemma 2.3.35 implies that H1 ∈M , therefore, for all t ≥ 0 there exists the derivative

H(t) =
d

dt

t∫
0

F (t− v)G(v)dv = F (0)G(t) +H1(t),

and obviously, H ∈M .

Let F ∈ M and g ∈ L. According to Lemma 2.3.35 the convolution of these functions

belongs to M ; hence, this convolution is differentiable. Let us introduce the notation

h(t) =
d

dt

t∫
0

F (t− u)g(u)du. (2.3.2)
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The function h belongs to the set L. This follows from the definition of M . Obviously,

(2.3.2) is a linear operator defined on the set L, whose range also belongs to L. This

operator is uniquely defined by the choice of the function F . For instance, if F (t) = t, then

we obtain

h(t) =
d

dt

t∫
0

(t− u)g(u)du =

t∫
0

g(u)du. (2.3.3)

Therefore, the function F (t) = t is associated with the integration operator.

Let G(t) ∈M . Consider two linear operators:

h(t) =
d

dt

t∫
0

F (t− u)g(u)du

and

q(t) =
d

dt

t∫
0

G(t− u)g(u)du. (2.3.4)

Let us find the product of these operators. In order to do this, we have to compute d
dt

t∫
0

G(t−

u)h(u)du, where h(u) is defined by (2.3.2). We have

t∫
0

G(t− u)h(u)du =

t∫
0

G(t− u)du
d

du

u∫
0

F (u− ξ)g(ξ)dξ

=

t∫
0

G(t− u) du
[
F (0)g(u) +

u∫
0

F ′(u− ξ)g(ξ)dξ
]

= F (0)

t∫
0

G(t− u)g(u) du+

t∫
0

G(t− u)du

u∫
0

F ′(u− ξ)g(ξ)dξ.

On changing the order of integration in the last integral we find

t∫
0

G(t− u)h(u)du = F (0)

t∫
0

G(t− u)g(u)du+

t∫
0

g(ξ)dξ

t∫
ξ

G(t− u)F ′(u− ξ)du.

In the second integral we change the variables of integration by means of u = t − η,

du = −dη:

t∫
0

G(t− u)h(u)du = F (0)

t∫
0

G(t− u)g(u)du+

t∫
0

g(ξ)dξ

t−ξ∫
0

F ′(t− ξ − η)G(η)dη

=

t∫
0

g(ξ)dξ
[
F (0)G(t− ξ) +

t−ξ∫
0

F ′(t− ξ − η)G(η)dη
]
.
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Let us introduce the notation

K(t) = F (0)G(t) +

t∫
0

F ′(t− η)G(η)dη =
d

dt

t∫
0

F (t− η)G(η)dη,

then we obtain
d

dt

t∫
0

G(t− u)h(u)du =
d

dt

t∫
0

K(t− ξ)g(ξ)dξ.

This implies that the product of operators (2.3.4) is associated with the function

K(t) =
d

dt

t∫
0

F (t− u)G(u)du.

Let us introduce in the set M an operation of multiplication. We shall call the function

K(t) = F (t) ? G(t) =
d

dt

t∫
0

F (t− u)G(u)du (2.3.5)

by the product of the functions F ∈ M and G ∈ M . It was proved (see Corollary 2.3.30)

that K also belongs to M . It is easy to check on the basis of properties of the convolution

(see 2.2) that the product (2.3.5) satisfies the following properties:

F ? G = G ? F (commutativity), (2.3.6)

F ? (G ? H) = (F ? G) ? H (associativity), (2.3.7)

F ? (G+H) = F ? G+ F ? H (distributivity), (2.3.8)

λF ? G = λ(F ? G). (2.3.9)

Therefore, the linear set M with the above-defined operation of multiplication (2.3.5) is a

commutative ring; this ring is called Mikusiński’s ring. It was noted that a linear operator

(2.3.2) is associated with every function F belonging to M . The ring M is a ring of linear

operators. The ring M also contains functions which are constant on [0,∞). We identify

such a function with its constant value, say λ. So we can consider the product λ?F , F ∈M .

In the ring M is also defined the product of a function F ∈M by a number λ: λF . In our

case those two products coincide, i.e., the product (2.3.5) has also the property that

for any function F ∈M the relation (2.3.10)

λ ? F = λF ,

holds, where λ is a number.

The proof follows from the equation

λ ? F (t) =
d

dt

t∫
0

λF (u)du = λF (t).
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Property (2.3.10) in the special case F (t) = µ for every t ∈ [0,∞) yields

λ ? µ = λµ,

i.e., the multiplication of numbers in the ring M satisfies the ordinary rules of the arithmetic.

Let us note once more that in the general case the product in this ring differs from the

ordinary product of functions. In section 1.4.3, Example 1.4.26 we computed the convolution

of the functions tα and tβ with the result

tα ∗ tβ =
Γ(α+ 1)Γ(β + 1)

Γ(α+ β + 2)
tα+β+1.

Differentiation leads to

tα ? tβ =
Γ(α+ 1)Γ(β + 1)

Γ(α+ β + 1)
tα+β . (2.3.11)

We took here into account the formula

Γ(α+ β + 2) = (α+ β + 1)Γ(α+ β + 1).

Let us compute the product Ln(t) ? Lm(t), where Ln(t) and Lm(t) are Laguerre polyno-

mials of degree n and m. The Laguerre polynomial of degree n has the form, see formula

(1.4.77),

Ln(t) =
n∑
k=0

(−1)k
(
n

k

)
tk

k!
.

Taking into account (2.3.11), we have

Ln(t) ? Lm(t) =
( n∑
k=0

(−1)k
(
n

k

)
tn

k!

)
?
( m∑
r=0

(−1)r
(
m

r

)
tr

r!

)
=

n∑
k=0

m∑
r=0

(−1)k+r
(
n

k

)(
m

r

)
tk

k!
?
tr

r!

=
n∑
k=0

m∑
r=0

(−1)k+r
(
n

k

)(
m

r

)
tk+r

(k + r)!
.

In the last line we make the change of indices of summation. On putting k + r = ν, we

obtain

Ln(t) ? Lm(t) =
m+n∑
ν=0

(−1)ν
tν

ν!

ν∑
k=0

(
n

k

)(
m

ν − k

)
.

In order to compute the sum Σνk=0

(
n
k

)(
m
ν−k
)

we compare the coefficients for the equal powers

of x in the identity
n∑
k=0

(
n

k

)
xk

m∑
r=0

(
m

r

)
xr =

m+n∑
ν=0

(
m+ n

ν

)
xν .

We easily find
ν∑
k=0

(
n

k

)(
m

ν − k

)
=
(
m+ n

ν

)
,
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and, therefore, finally, we obtain

Ln(t) ? Lm(t) = Ln+m(t). (2.3.12)

For a proof of (2.3.12) see also [KS.2].

2.3.2 The Field of Operators

In the previous section we introduced the ring M . Let us prove that M has no divisors

of zero.

Let F ∈M , G ∈M and let

F (t) ? G(t) =
d

dt

t∫
0

F (t− u)G(u)du = 0 (2.3.13)

on [0,∞). Then the convolution
t∫
0

F (t−u)G(u) du is equal to a constant for all t ≥ 0. Setting

t = 0 we conclude that this constant has to be zero. Applying Titchmarsh’s theorem (see

2.2.), we conclude that at least one of the functions F or G vanishes in the interval [0,∞).

Thus, M has no divisors of zero. From algebra it is well known that every commutative

ring without divisors of zero may be extended to a field of quotients (see, for example, [BL],

Chapter II, 2, Theorem 7). So M may be extended to the quotient field. This field we

denote by M (M). Below we often shall write simply M instead of M (M). The elements

of M we shall call operators.

Recall that elements of the field are sets. Every such set consists of mutually equivalent

pairs (F,G), G 6= 0. An element of the field is denoted by F
G . Two pairs (F, G) (F1, G1)

are called equivalent if F ? G1 = F1 ? G, F
G = F1

G1
if and only if F ? G1 = F1 ? G. The sum

and product of operators satisfy the usual rules of arithmetic, only the product is computed

by formula (2.3.12). Hence,

F

G
+
F1

G1
=
F ? G1 + F1 ? G

G ? G1
,

F

G
?
F1

G1
=
F ? F1

G ? G1
.

The set of all operators of the field, which may be represented by the form F
1 , forms a

subring of this field isomorphic to the given ring M . Therefore, we shall write F instead of
F
1 , i.e., F1 = F . If F = λ, where λ is a number, then λ

1 = λ. In particular, 1
1 = 1 and 0

1 = 0.

An expression F
G may be considered as an operation of division in the field M. The latter

is essentially different from the usual operation of division. Only in the case when F and G

are constants, F = λ, G = µ, will the relation λ
µ be equal to the usual fraction of constants,

i.e., only for constants does the operation of division coincide with the usual division.
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Consider all operators in M which may be represented by the form F
I , F (0) = 0, where I

is the function defined by I(t) = t, t ∈ [0,∞). Obviously, the collection of these elements is

a linear set. The function F is differentiable and F ′ = f . Let us associate with the operator
F
I the function F ′ = f . If two operators F

I , F (0) = 0, G
I , G(0) = 0, are different, then

the associated functions, f = F ′, g = G′, are different too. Indeed, if f coincides with g,

i.e.,
t∫
0

f(u) du =
t∫
0

g(u) du for all t ≥ 0, then F (t) = G(t) for all t ≥ 0. Then we obtain

F
I = G

I , and this contradicts the assumption F
I 6=

G
I . Thus, the correspondence between

the set of all operators of the form F
I , F (0) = 0, and the set of all functions f = F ′ (F

is an arbitrary function of the original ring) is one to one (bijective). This correspondence

maps a sum of operators F
I + G

I onto the sum of functions F ′ +G′. This follows from the

equations F
I + G

I = F+G
I and F ′ +G′ = (F +G)′.

The product of an operator F
I by a number λ is associated with the product of λ by the

function f = F ′. Indeed, λFI = λF
I and (λF )′ = λF ′. Thus, the linear set of all operators

of the form F
I , F (0) = 0 is isomorphic to the set of all functions f = F ′. Operators of the

field M reducible to the form F
I , F (0) = 0 are called functions and we shall write f instead

of F
I . Thus,

F

I
= F ′ = f, if F (0) = 0.

Not every operator is reducible to a function. For instance, the operator 1
I , obviously,

cannot be reduced to the form F
I , F (0) = 0. Hence, the operator 1

I is not reducible to a

function. It was said that a sum of functions is always a function. A simple example shows

that a product of functions will not always be a function, i.e., that the product of operators
F
I and G

I , F (0) = 0, G(0) = 0 is not always reducible to the form H(t)
t , H(0) = 0. Indeed,

let F (t) = G(t) =
√
t; then the following formula holds:

F (t)
t

?
G(t)
t

=
√
t ?
√
t

t ? t
.

By virtue of 2.3.1, (2.3.11) we have
√
t

t
?

√
t

t
=
√
t ?
√
t

t ? t
=

Γ2
(

3
2

)
t

Γ(2)t ? t
=

π

4t
,

because Γ
(

3
2

)
= Γ

(
1 + 1

2

)
= 1

2Γ( 1
2 ) =

√
π

2 and Γ(2) = 1. Consequently, in general a product

of functions is an operator.

Theorem 2.3.83 The product of functions F
I = f and G

I = g is a function if and only if

the convolution of the functions f and g belongs to the original ring M and vanishes at the

origin.

Proof. Let the product F
I ?

G
I be a function. In this case the formula holds

F

I
?
G

I
=
H

I
, where H ∈M and H(0) = 0.
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By the definition we have

F (t)
I(t)

?
G(t)
I(t)

=

d
dt

t∫
0

F (t− u)G(u)du

t ? t
=
F (0)G(t) +

t∫
0

F ′(t− u)G(u)du

t ? t

=

t∫
0

f(t− u)G(u) du

t ? t
=
H(t)
t

,

which implies
t∫
0

f(t− u)G(u)du

t
= H(t),

or
t∫

0

G(t− u)f(u)du = t ? H(t) =

t∫
0

H(u)du.

Differentiating and taking into account that G(0) = 0, we find

t∫
0

g(t− u)f(u)du = H(t),

and therefore
t∫
0

f(t− u)g(u)du ∈M .

Conversely, if the convolution
t∫
0

f(t− u)g(u)du = H(t) ∈M and H(0) = 0, then from

F (t)
t

?
G(t)
t

=

t∫
0

f(t− u)G(u)du

t ? t
=

d
dt

t∫
0

f(t− u)G(u)du

t
=
H(t)
t

we conclude that the product of the functions F (t)
t and G(t)

t is a function, too; obviously,

f ? g = d
dt

t∫
0

f(t− u)g(u)du.

Corollary 2.3.31 The product of a function F ∈ M with an arbitrary function g ∈ L is

again a function.

Indeed, the convolution
t∫
0

F (t − u)g(u)du (2.3.1, Lemma 2.3.35) belongs to the ring M

and at t = 0 is equal to zero.

In section 2.2. we introduced the function η(t;λ) = 0, if t < λ and η(t;λ) = 1 if t ≥ λ. It

was proved that the convolution of η(t;λ) and η(t;µ) is equal to

t∫
o

η(t− u;λ)η(u;µ) du =

t∫
0

η(u;λ+ µ)du.
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This implies that the convolution of this functions belongs to M . Hence, the product

η(t;λ) ? η(t;µ) is a function, and, obviously,

η(t;λ) ? η(t;µ) = η(t;λ+ µ). (2.3.14)

Thus, the field M contains all locally integrable functions on R+. Complex numbers also

lie in M, and the product of numbers in M coincides with the ordinary product of complex

numbers. Thus, an operator is a generalization of the notion of a function and a complex

number; the elements of the field M could be called generalized functions. However, taking

into account established operational calculus terminology, we consider as the best name for

an element of M the term “operator.” An operator is essentially different from a function.

In contrast to functions, one cannot speak about the value of an operator at a point.

On defining the ring of operators M we departed from the relation

h(t) =
d

dt

t∫
0

F (t− u)g(u) du,

where the operator F ∈ M acts on the function g ∈ L. The range of this operator lies in

L. And both of the functions F and g belong to the field M. Therefore, one can compute

the product of the operators F = F
1 and g = G

I . This product is equal to

F (t) ? g(t) =
F (t) ? G(t)

t
=

t∫
0

F (t− u)g(u)du

t
=

d

dt

t∫
0

F (t− u)g(u)du.

Thus, the operation of application of the operator F to the function g coincides with the

product of the operators F and G
I = g, where G(t) =

t∫
0

g(u)du.

The operator F
I may be considered as the product of the operator 1

I by the function F :
F
I = 1

I ?
F
1 .

The operator 1
I plays a fundamental role in the operational calculus. A special notation

is introduced for it:

p =
1
I
. (2.3.15)

In this case formula (2.3.12) takes the form

p ? F = F ′; F (0) = 0, (2.3.16)

hence, in the case F (0) = 0 the multiplication of the function F , belonging to M , by

the operator p = 1
I denotes the differentiation of the function F . The operator p may

be multiplied by any operator F
G , i.e., the product p ? F

G has a meaning for any operator
F
G ∈ M. In the general case the product p ? F

G is an operator. The operator p is called the

differentiation operator. If F is an arbitrary function belonging to M , then (2.3.16) implies

p ? (F − F (0)) = F ′,
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p ? F = F ′ + pF (0). (2.3.17)

If F ′ ∈M , then (2.3.17) implies

p ? (p ? F ) = p ? F ′ + p2F (0),

or

p2 ? F = F ′′ + pF ′(0) + p2F (0). (2.3.18)

In the general case, when F has an nth order derivative F (n) belonging to the set L,

successive application of (2.3.17) yields

pn ? F = F (n) + pF (n−1)(0) + p2F (n−2)(0) + · · ·+ pnF (0), (2.3.19)

where pn denotes the product p ? p · · · ? p of n operators. The inverse of the operator p is

obviously equal to 1
p = I. The function I belongs to the set M . It therefore follows from

(2.3.15) that

1
p
? f(t) =

d

dt

t∫
0

(t− u)f(u)du =

t∫
0

f(u)du, (2.3.20)

hence 1
p is the operator of integration. On applying the operator 1

p to both sides of the

relation
1
p

= t, (2.3.21)

we find from (2.3.20) that 1
p ?

1
p =

(
1
p

)2

= t2

2! and
(

1
p

)n
= 1

p

(
1
p

)n−1

= tn

n! .

Then taking into account (2.3.15), we have

(
1
p

)n
? f(t) =

d

dt

t∫
0

(t− u)n

n!
f(u)du;

but (
1
p

)n
=

1
p
?

1
p
? · · · ? 1

p
=

1
pn
,

therefore,
1
pn

=
tn

n!
(2.3.22)

and
1
pn

? f(t) =
d

dt

t∫
0

(t− u)n

n!
f(u)du. (2.3.23)

Formula (2.3.22) is proved for positive integer n; however, it can be extended to arbitrary

values n = ν, where ν ≥ 0. Let us denote the function tν

Γ(1+ν) , where ν ≥ 0, by 1
pν . It

follows from formula (2.3.23) that in such notation we have

1
pν

?
1
pµ

=
1

pµ+ν
,
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hence for all ν ≥ 0 the following formula holds:

1
pν

=
tν

Γ(1 + ν)
. (2.3.24)

Let us agree below, for the sake of simplicity of notations, to omit the asterisk in the

product of operators, if it will not cause ambiguities. Hence, we often shall write F
G

F1
G1

instead of F
G ? F1

G1
. Thus, formula (2.3.23) may be represented in the form

1
pn
f(t) =

d

dt

t∫
0

(t− u)n

n!
f(u)du; (2.3.25)

and formulae (2.3.17), (2.3.19) take the form

F ′ = pF − pF (0), (2.3.26)

F (n) = pnF − pnF (0)− pn−1F ′(0)− · · · − pF (n−1)(0). (2.3.27)

Often we shall denote operators of the field M by a single letter, for instance, FG = a, HR = b,

etc.

2.3.3 Finite Parts of Divergent Integrals

It was proved that the field M contains all locally integrable functions on R+. The

question arises if is it possible to prove in the same way that some nonintegrable functions

also belong to the field M. Let us consider nonintegrable functions with power or logarith-

mic singularities at t = 0. Let N0 denote the set of all functions satisfying the following

conditions:

1. In some neighborhood of t = 0, i.e., for 0 < t ≤ δ the function f(t) may be represented

in the form

f(t) =
n∑
i=0

m∑
k=0

βikt
αik logk t+ h(t), (2.3.28)

where αik and βik are arbitrary real or complex numbers, and the function h is

absolutely integrable on the interval (0, δ) and bounded for t→ +0.

2. The function f is absolutely integrable on the interval δ ≤ t < T .

Obviously, N0 is a linear set.

Let us find the indefinite integrals of the functions tα logk t, k = 0, 1, 2, . . . , which appear

in the right-hand side of (2.3.28). If α = −1, then obviously∫
t−1 logk t dt =

logk+1 t

k + 1
+ C.
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If α 6= −1, then integrating by parts we find that∫
tα logk tdt =

tα+1

α+ 1
logk t− k

α+ 1

∫
tα logk−1 tdt.

Repeatedly applying this formula, we obtain the relation∫
tα logk tdt =

tα+1

α+ 1
logk t− ktα+1

(α+ 1)2
logk−1 t+ · · ·+ (−1)k

k!
(α+ 1)k

∫
tαdt,

or ∫
tα logk tdt =

tα+1

α+ 1

(
logk t− k

α+ 1
logk−1 t

+
k(k − 1)
(α+ 1)2

logk−2 t− · · ·+ (−1)k
k!

(α+ 1)k

)
+ C.

Let us define the function Φk(t;α), k = 0, 1, 2, . . . , on putting

Φk(t;α) =
tα+1

α+ 1

(
logk t− k

α+ 1
logk−1 t+ · · ·+ k!

(α+ 1)k

)
if α 6= −1,

Φk(t;α) =
logk+1 t

k + 1
if α = −1.

In this case we can write for all α∫
tα logk t dt = Φk(t;α) + C.

Let f ∈ N0. Consider the integral

J(ε) =

t∫
ε

f(u)du,

where 0 < ε < δ < t. Taking into account (2.3.28) we have

J(ε) =

δ∫
ε

f(u)du+

t∫
δ

f(u)du =
n∑
i=0

m∑
k=0

βik

δ∫
ε

uαik logk udu+

δ∫
ε

h(u) du+

t∫
0

f(u)du

=
∑
i,k

βikΦk(δ;αik)−
∑
i,k

βikΦk(ε;αik) +

δ∫
ε

h(u) du+

t∫
δ

f(u)du,

or
t∫
ε

f(u) du+
∑
i,k

βikΦk(ε;αik) =
∑
i,k

βikΦk(δ;αik) +

δ∫
ε

h(u) du+

t∫
δ

f(u)du.

We see from the last relation that as ε→ +0 there exists the limit

lim
ε→+0

[∑
i,k

βikΦk(ε;αik) +

t∫
ε

f(u)du
]

=
∑
i,k

βikΦk(δ;αik) +

δ∫
0

h(u) du+

t∫
δ

f(u)du.

(2.3.29)
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This limit is called the finite part of the (in general divergent) integral
t∫
0

f(u)du and is

denoted by ∣∣∣∣
t∫

0

f(u)du.

Thus, if we introduce the notation

Φ(ε) =
∑
ik

βikΦk(ε;αik),

then we obtain for all t > 0

lim
ε→+0

[
Φ(ε) +

t∫
ε

f(u)du
]

=
∣∣∣∣
t∫

0

f(u)du. (2.3.30)

Let us give, for instance, the following finite parts of integrals:

1)
∣∣ t∫
0

uαdu = tα+1
α+1 , α 6= −1;

2)
∣∣ t∫
0

du
u = log t;

3) It follows from (2.3.29) and the definition of the finite part that

∣∣∣∣
t∫

0

uα logk udu = Φk(t;α). (2.3.31)

Properties of Finite Parts of Integrals

1. If the following relation holds:

lim
ε→+0

t∫
ε

f(u) du =

t∫
0

f(u)du,

then also the relation holds: ∣∣∣∣
t∫

0

f(u) du =

t∫
0

f(u)du.

Let us note that the condition of convergence as ε→ +0 of the integral
t∫
ε

f(u)du implies

the existence of the limit lim
ε→+0

Φ(ε); and from the structure of the function Φ(ε) we see that

this limit is equal to zero.

2. If α is a number, then it can be taken out of the symbol of the finite part of the integral,

i.e., ∣∣∣∣
t∫

0

αf(u) du = α

∣∣∣∣
t∫

0

f(u)du.
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3. If there exist the finite parts
∣∣ t∫
0

f(u)du and
∣∣ t∫
0

g(u)du, then there exists the finite part

∣∣∣∣
t∫

0

(f(u) + g(u)) du

and the following relation holds:

∣∣∣∣
t∫

0

f(u) du+
∣∣∣∣
t∫

0

g(u)du =
∣∣∣∣
t∫

0

(f(u) + g(u))du.

4. The definite integral
t∫
α

f(u)du is equal to the difference of the finite parts of the integrals

∣∣ t∫
0

f(u)du and
∣∣ α∫
0

f(u)du, i.e.,

t∫
α

f(u)du =
∣∣∣∣
t∫

0

f(u)du−
∣∣∣∣
α∫

0

f(u)du.

This property follows as ε→ +0 from the equation

t∫
α

f(u)du = Φ(ε) +

t∫
ε

f(u)du− Φ(ε)−
α∫
ε

f(u)du.

Corollary 2.3.32 For t > 0 we have

d

dt

∣∣∣∣
t∫

0

f(u) du = f(t).

Let the function f ∈ N0 be differentiable, and the derivative f ′ also belongs to the set

N0. In this case one can consider the finite part (see Property 4)

∣∣∣∣
t∫

0

f ′(u) du =
∣∣∣∣
δ∫

0

f ′(u) du+

t∫
δ

f ′(u) du.

However (see (2.3.28)), for 0 < u ≤ δ we have

f ′(u) =
∑
i,k

βik
d

du
(uαik logk u) + h′(u);

therefore, ∣∣∣∣
δ∫

0

f ′(u)du =
∑
i,k

βik

∣∣∣∣
δ∫

0

d

du
(uαik logk u)du+

δ∫
0

h′(u)du.
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For all values of α and nonnegative integers k we have (see Property 4)

∣∣∣∣
δ∫

0

d

du
(uα logk u)du =

∣∣∣∣
δ∫

0

αuα−1 logk udu+
∣∣∣∣
δ∫

0

kuα−1 logk−1 udu

= αΦk(δ;α− 1) + kΦk−1(δ;α− 1) = δα logk δ;

therefore, the following formula holds:

∣∣∣∣
δ∫

0

f ′(u) du = f(δ)− h(δ) +

δ∫
0

h′(u)du,

hence also ∣∣∣∣
t∫

0

f ′(u) du = f(δ)− h(+0) +

t∫
δ

f ′(u)du = f(t)− h(+0).

Thus, finally we have

f(t)−
∣∣∣∣
t∫

0

f ′(u)du = h(+0). (2.3.32)

It is convenient to introduce for this difference a special notation

h(+0) =t=0

∣∣f(t),

then ∣∣∣∣
t∫

0

f ′(u) du = f(t)−t=0

∣∣f(t). (2.3.33)

If α ∈ C∞[0,∞), then we can write the equation

α(t) =
n∑
k=0

α(k)(0)tk

k!
+

tn+1

(n+ 1)!
α(n+1)(Θt), 0 < Θ < 1,

where n may be taken arbitrarily large. Therefore, αf ∈ N0 if only f ∈ N0. Now let f be

a function such that f ′ ∈ N0. In this case the following formula holds:

∣∣∣∣
t∫

0

[α(u)f(u)]′du = α(t)f(t)−t=0

∣∣α(t)f(t).

On the other hand we have

∣∣∣∣
t∫

0

[α(u)f(u)]′du =
∣∣∣∣
t∫

0

α′(u)f(u)du+
∣∣∣∣
t∫

0

α(u)f ′(u)du.

We obtain from here the following property of integration by parts of the finite part of an

integral
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5. ∣∣∣∣
t∫

0

α(u)f ′(u)du = α(t)f(t)−t=0

∣∣α(t)f(t)−
∣∣∣∣
t∫

0

α′(u)f(u)du. (2.3.34)

Let us compute the finite part of the integral

1
(n− 1)!

t∫
0

(t− u)n−1uα logk udu.

Using the Properties 2 and 3 and the formula (2.3.31), we find the finite part of the integral:

∣∣∣∣ 1
(n− 1)!

t∫
0

(t− u)n−1uα logk udu

=
1

(n− 1)!

n−1∑
r=0

(−1)r
(
n− 1
r

)
tn−1−r

∣∣∣∣
t∫

0

ur+α logk udu

=
1

(n− 1)!

n−1∑
r=0

(−1)r
(
n− 1
r

)
tn−1−rΦk(t; r + α).

Taking into account the relation

Φk(t; r + α) =


tr+α+1

r+α+1

(
logk t− k

r+α+1 logk−1 t+ · · ·+ (−1)kk!
(r+α+1)k

)
for r + α+ 1 6= 0,

logk+1 t
k+1 for r + α+ 1 = 0,

we find

∣∣∣∣ 1
(n− 1)!

t∫
0

(t− u)n−1uα logk udu

=
n−1∑

r=0,r 6=r′
(−1)r

1
(n− 1)!

(
n− 1
r

)
tn+α

r + α+ 1

[
logk t− k

r + α+ 1
logk−1 t+ . . .

+
(−1)kk!

(r + α+ 1)k

]
+

1
(n− 1)!

(−1)r
′
(
n− 1
r′

)
tn+α logk+1 t

k + 1
, (r′ = −α− 1).

(2.3.35)

If r + α + 1 6= 0 for r = 0, 1, . . . , n − 1, then the sum in the right-hand side of the last

equation is taken over all r from 0 to n− 1, and the summand

(−1)r
′ 1
(n− 1)!

(
n− 1
r′

)
tn+α logk+1 t

k + 1

is absent.

From the relation (2.3.35) we obtain the following lemma.
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Lemma 2.3.36 The functions

ϕn(t) =
1

(n− 1)!

∣∣∣∣
t∫

0

(t− u)n−1uα logk u du, n = 1, 2, 3, . . .

belong to the ring M for all n > −α.

Indeed, if n+α > 0, then the function ϕn(t) is continuous for 0 ≤ t <∞ and its derivative

is integrable on any interval 0 < t < T . Besides, obviously, ϕ(0) = 0.

Corollary 2.3.33 If f ∈ N0, then for all sufficiently large n the functions

Fn(t) =
∣∣∣∣ 1
(n− 1)!

t∫
0

(t− u)n−1f(u)du (2.3.36)

belong to the set M and Fn(0) = 0.

The property 4 with α = ε and the change of f(u) by 1
(n−1)! (t− u)n−1f(u) imply

1
(n− 1)!

t∫
ε

(t− u)n−1f(u)du =
∣∣∣∣ 1
(n− 1)!

t∫
0

(t− u)n−1uαf(u)du

−
∣∣∣∣ 1
(n− 1)!

ε∫
0

(t− u)n−1uαf(u)du.

(2.3.37)

Obviously, the expression

Pn−1(t; ε) =
∣∣∣∣ 1
(n− 1)!

ε∫
0

(t− u)n−1f(u)du

is a polynomial in t of degree n − 1, whose coefficients depend on ε. In the conventional

notation the expression (2.3.36) may be written in the form

Fn(t) =
1

(n− 1)!

t∫
ε

(t− u)n−1f(u)du+ Pn−1(t; ε). (2.3.38)

On noting that

d

dt
Pn−1(t; ε) =

d

dt

n−1∑
r=0

(−1)r
(
n− 1
r

)
tn−l−r

(n− 1)!

∣∣∣∣
ε∫

0

urf(u)du

=
n−2∑
r=0

(−1)r
(
n− 2
r

)
tn−2−r

(n− 2)!

∣∣∣∣
ε∫

0

urf(u)du = Pn−2(t; ε),

© 2006 by Taylor & Francis Group, LLC



Operators 197

we obtain from (2.3.38) with n > 1

F ′n(t) =
1

(n− 2)!

t∫
0

(t− u)n−2f(u)du+ Pn−2(t; ε) = Fn−1(t).

For n = 1 it follows from (2.3.38) immediately

F ′1(t) = f(t) = F0(t). (2.3.39)

Thus, for all n ≥ 1 we have

F ′n(t) = Fn−1(t), (2.3.40)

and
dnFn(t)
dtn

= f(t). (2.3.41)

Now let n0 be such that Fn0 ∈ M . Then we have Fn ∈ M for all n ≥ n0; hence, the

operator pnFn belongs to the field M.

Let us prove that the operator pnFn does not depend on n. Let m > n ≥ n0 and

l = m− n. It follows from (2.3.40) that

F ′m = Fm−1, . . . , F
(l)
m = Fm−1 = Fn,

and Fn(0) = 0 for all n ≥ n0, therefore,

Fn = F (l)
m = plFm = pm−nFm

or

pnFn = pmFm for any m ≥ n ≥ n0.

Hence, the operator pnFn depends only on the choice of the function f . Thus, one can

put into correspondence to any function f ∈ N0 the operator

a = pn
∣∣∣∣ 1
(n− 1)!

t∫
0

(t− u)n−1f(u) du ∈ M.

This correspondence has the following properties (see Properties 2 and 3 of finite parts):

1. If the function f corresponds to the operator a, then the function λf , where λ is a

number, corresponds to the operator λa.

2. If the function f corresponds to the operator a and the function g ∈ N0 corresponds to

the operator b, then the sum of the functions f + g corresponds to the operator a+ b.

3. If f ∈ L, then the following formula holds:

pn
∣∣∣∣ 1
(n− 1)!

t∫
0

(t− u)n−1f(u)du = pn
t∫

0

(t− u)n−1

(n− 1)!
f(u)du = f(t);

in this case the operator a coincides with the function f .

© 2006 by Taylor & Francis Group, LLC



198 Operational Calculus

Let us denote the operator pnFn, see formula (2.3.36), where f ∈ N0, by f :

f(t) = pn
∣∣∣∣
t∫

0

1
(n− 1)!

(t− u)n−1f(u)du. (2.3.42)

This notation is justified by the Properties 1, 2, 3, and the equation (2.3.41).

Suppose that the function f has the derivative f ′ ∈ N0 on R+. Taking into account the

Property 5, we find

∣∣∣∣ 1
(n− 1)!

t∫
0

(t− u)n−1f ′(u)du

=
1

(n− 1)!

n−1∑
r=0

(−1)r
(
n− 1
r

)
tn−1−r

∣∣∣∣
t∫

0

urf ′(u)du

=
1

(n− 1)!

n−1∑
r=0

(−1)r
(
n− 1
r

)
tn−1−r

[
trf(t)−t=0

∣∣trf(t)−
∣∣∣∣r

t∫
0

ur−1f(u) du
]

= − 1
(n− 1)!

n−1∑
r=0

(−1)r
(
n− 1
r

)
tn−1−r

t=0

∣∣trf(t) +
∣∣∣∣
t∫

0

(t− u)n−2

(n− 2)!
f(u) du.

Let us introduce the notation

t=0

∣∣trf(t) = fr, r = 0, 1, 2, . . . ; (2.3.43)

then we have, see formula (2.3.36),

∣∣∣∣ 1
(n− 1)!

t∫
0

(t− u)n−1f ′(u) du = −
n−1∑
r=0

(−1)r
frt

n−1−r

r!(n− 1− r)!
+ Fn−1(t).

Taking into account that

tn−1−r =
(n− 1− r)!
pn−1−r ,

we obtain

pn
∣∣∣∣ 1
(n− 1)!

t∫
0

(t− u)n−1f ′(u) du = −
n−1∑
r=0

(−1)r
frp

r+1

r!
+ pnFn−1(t),

or, taking into account (2.3.42),

f ′ = pf −
n−1∑
r=0

(−1)rfrpr+1

r!
, n > n0.

It is convenient to represent the last equation in the form

f ′ = p

[
f −

∞∑
r=0

(−1)rfrpr

r!

]
. (2.3.44)
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In fact, the series in this equation has only a finite number of nonzero terms, because,

obviously (see formula 2.3.32) fr = 0 for all sufficiently large r (r ≥ n0).

If we suppose that f ′ ∈ L in (2.3.44), then fr = 0 for all r > 0 and f0 = f(0). Hence, the

expression (2.3.44) takes the form

f ′ = p[f − f(0)],

i.e., it coincides with 2.3.2, (2.3.26).

The results above may be formulated as follows:

Theorem 2.3.84 The set N0 is contained in the field M.

Let consider special cases. Suppose, that f(t) = tα, where α is not equal to a negative

integer. In this case (see formula 2.3.32) we have

fr =t=0

∣∣trf(t) =t=0

∣∣tr+αf(t) = 0

for all r ≥ 0; therefore, (2.3.44) implies

d

dt
tα = ptα. (2.3.45)

Hence, if α is not equal to a negative integer, then the product of the operator p by tα is

to be computed by the rule of differentiating of the power function. If α = −m, where m is

a positive integer, then fr = 0 for r 6= m and fm = 1 and from (2.3.44) we obtain

d

dt

(
1
tm

)
= p

[
1
tm

− (−1)mpm

m!

]
. (2.3.46)

Let find Fn(t) when f(t) = tα. If α is not a negative integer, then we have from (2.3.35)

Fn(t) =
tα+n

(n− 1)!

n−1∑
r=0

(−1)r
(
n− 1
r

)
1

α+ r + 1
.

The sum in the right-hand side may be represented in terms of the Euler Gamma function.

Indeed, if α is positive, then the following relation holds:

n−1∑
r=0

(−1)r
(
n− 1
r

)
1

α+ r + 1
=
n−1∑
r=0

(−1)r
(
n− 1
r

) 1∫
0

ξα+rdξ

=

1∫
0

ξα(1− ξ)n−1dξ =
Γ(1 + α)Γ(n)
Γ(α+ n+ 1)

.

By virtue of the principle of analytical continuation the latter equation holds for all α for

which the right- and left-hand sides have a meaning. Hence, we have

Fn(t) =
tn+αΓ(1 + α)
Γ(α+ n+ 1)

;
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therefore, the formula holds

tα = pnFn(t) = pn
tn+αΓ(1 + α)
Γ(α+ n+ 1)

.

However, for n+ α > 0 we have

tn+α

Γ(α+ n+ 1)
=

1
pn+α

;

therefore, finally we obtain

tα

Γ(1 + α)
=

1
pα
, α 6= −1,−2, . . . .

Thus, the formulae (2.3.23) and (2.3.24) in section 2.3.2 hold for all α, which are not equal

to negative integers.

If α is equal to a negative integer α = −m, then for m ≥ 1 we have (see (2.3.35) when

n = m:

Fm(t) =
1

(m− 1)!

[m−2∑
r=0

(−1)r
(
m− 1
r

)
1

r + 1−m
+ (−1)m−1 log t

]
.

If m = 1, then F1(t) = log t.

Now we compute the sum

−
m−2∑
r=0

(−1)r
(
m− 1
r

)
1

m− r − 1
= −

m−2∑
r=0

(−1)r
(
m− 1
r

) 1∫
0

ξm−r−2dξ

= −
1∫

0

[m−2∑
r=0

(−1)r
(
m− 1
r

)
ξm−1−r − (−1)m−1

]
dξ

ξ

= −
1∫

0

(ξ − 1)m−1 − (−1)m−1

ξ
dξ = (−1)m−1

1∫
0

1− (1− ξ)m−1

ξ
dξ.

We introduce the notation

In =

1∫
0

1− (1− ξ)n−1

ξ
dξ;

then we obtain

In+1 − In =

1∫
0

(1− ξ)n−1 − (1− ξ)n

ξ
dξ =

1∫
0

(1− ξ)n−1dξ =
1
n
.

Thus, In+1 − In = 1
n ; however, I1 = 0, whence the following equation holds:

In =

1∫
0

1− (1− ξ)n−1

ξ
dξ =

n−1∑
k=1

1
k

© 2006 by Taylor & Francis Group, LLC



Operators 201

and

−
m−2∑
r=0

(−1)r
(
m− 1
r

)
1

m− 1− r
= (−1)m−1

m−1∑
k=1

1
k
,

i.e., for α = −m, m = 1, 2, 3, . . . we have

F1(t) = log t, Fm(t) =
(−1)m−1

(m− 1)!

[
log t+

m−1∑
k=0

1
k

]
. (2.3.47)

Because of the lack of the space we note only that by the similar method it may be proven

that nonintegrable functions with power or logarithmic singularities at a finite number of

points of the region 0 < t <∞ also belong to the field M.

2.3.4 Rational Operators

One of the main goals of operational calculus is the study of the operators of the form

R(p); R(z) is a function of the variable z. In the simplest case, when R(z) = Σkαkzk is a

polynomial, the operator R(p) is equal to Σkαkpk. The operations with such polynomials

are executed in the same way, as in elementary algebra, for instance,

(p2 + 2p+ 1)(p− 1) = p3 + p2 − p− 1 = p2(p+ 1)− (p+ 1) = (p2 − 1)(p+ 1).

If two polynomials in the operator p are equal, i.e.,

P (p) =
n∑
k=0

αkp
k = Q(p) =

n∑
k=0

βkp
k,

then the corresponding coefficients αk and βk are also equal. Indeed, if

n∑
k=0

αkp
k =

n∑
k=0

βkp
k,

then by multiplying both sides of this equation by the operator 1
pn we obtain

n∑
k=0

αk
pn−k

=
n∑
k=o

βk
pn−k

,

or
n∑
k=0

αk
tn−k

(n− k)!
=

n∑
k=0

βk
tn−k

(n− k)!
, 0 ≤ t <∞.

By virtue of the known theorem for (ordinary) polynomials it follows from this relation that

αk = βk, k = 0, 1, 2, . . . , n.

Theorem 2.3.85 If a polynomial
n∑
k=0

αkp
k
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is reducible to a function, then α1 = α2 = · · · = αn = 0.

This theorem implies that if the degree of a polynomial Σnk=0αkz
k is greater than or equal

to one, then the corresponding operator Σnk=0αkp
k cannot be reduced to a function.

Proof. Σnk=0αkp
k = f(t), n ≥ 1. Multiplying this relation by the operator 1

pn , by virtue

of 2.3.2, (2.3.25) we have

n∑
k=0

αk
pn−k

=
1
pn
f(t) =

t∫
0

(t− u)n−1

(n− 1)!
f(u)du,

or
n∑
k=0

αkt
n−k

(n− k)!
=

t∫
0

(t− u)n−1

(n− 1)!
f(u)du.

Putting t = 0 in this relation, we find αn = 0. Hence,

n−1∑
k=0

αkp
k = f(t).

If n− 1 ≥ 1, then multiplying the last relation by 1
pn−1 , we find αn−1 = 0; if n− 2 ≥ 1,

then similarly we obtain αn−2 = 0 and so on, until we obtain α1 = 0.

Let Pn(p) =
n∑
k=0

αkp
k, and Qm(p) =

m∑
k=0

βkp
k. The collection of all operators of the form

n∑
k=0

αkp
k, 0 ≤ n < ∞, is a ring. This ring may be extended to the quotient field. The

elements of this field are rational fractions of the operator p, i.e., operators of the form
n∑
k=0

αkp
k

m∑
k=0

βkpk
=

Pn(p)
Qm(p)

= R(p).

The operators Pn(p) and Qm(p) belong to the field M. Hence, their ratio R(p) also belongs

to M. The operator R(p) is called a rational operator. A rational operator is associated with

every rational function R(z) = Pn(z)
Qm(z) . This correspondence gives an isomorphism between

the field of all rational functions and the field of rational operators. The field of rational

operators is contained in the field M, which is a subfield of M.

Let us consider several examples. Suppose that F (t) = eµt in formula (2.3.26). Then we

have peµt = µeµt + p, or peµt − µeµt = p, whence (p− µ)eµt = p. Therefore,

p

p− µ
= eµt . (2.3.48)

Multiplying this relation by the operator 1
p = t, we find

1
p− µ

= t ? eµt =

t∫
0

eµudu =
eµt − 1
µ

.
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Thus,
µ

p− µ
= eµt − 1. (2.3.49)

It follows from (2.3.48) and (2.3.49) that

p− λ

p− µ
=

p

p− µ
− λ

p− µ
= eµt − λ

µ
(eµt − 1),

p− λ

p− µ
=
(

1− λ

µ

)
eµt +

λ

µ
. (2.3.50)

Thus, (2.3.49) and (2.3.50) imply that any rational operators of the form 1
p−λ and p−λ

p−µ are

functions belonging to the ring M .

Multiplying (2.3.48) by (2.3.49), we find

p

(p− µ)2
= eµt ?

eµt − 1
µ

=
1
µ

(eµt ? eµt − eµt).

However,

eµt ? eµt =
d

dt

t∫
0

eµ(t−u)+µudu =
d

dt
(teµt) = eµt + µteµt.

Hence, we have
p

(p− µ)2
=

1
µ

(µteµt) = teµt.

Let us prove that following the formula holds:

p

(p− µ)n+1
=
tneµt

n!
. (2.3.51)

Indeed, if (2.3.51) holds for some n, then multiplying (2.3.51) by 1
p−µ we obtain

p

(p− µ)n+2
=
tneµt

n!
?
eµt − 1
µ

=
1
µn!

(tneµt ? eµt − tneµt).

However,

tneµt ? eµt =
d

dt

t∫
0

eµ(t−u)uneµu du =
d

dt

(
tn+1eµt

n+ 1

)
=
tn+1µeµt

n+ 1
+ tneµt;

therefore,
p

(p− µ)n+2
=

1
µn!

(
tn+1µeµt

n+ 1
+ tneµt − tneµt

)
=
tn+1eµt

(n+ 1)!
.

Thus, (2.3.51) holds for n+ 1 and for n = 0. Hence, it is proved for all positive integers n.

The question arises: for what rational functions R(z) is the associated operator R(p)

reducible to a function? The answer to this question is given in the following theorem.
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Theorem 2.3.86 A rational operator R(p) = P (p)
Q(p) is reducible to a function if and only if

the degree of the polynomial P (p) is less than or equal to the degree of the polynomial Q(p).

Proof. Suppose that the degree of P (p) is n, the degree of Q(p) is m and n ≤ m. Let us

factorize the polynomials into linear factors:

P (p) = αn(p− λ1)(p− λ2) . . . (p− λn);

Q(p) = βm(p− µ1)(p− µ2) . . . (p− µm).

Here, λ1, λ2, . . . , λn; µ1, µ2, . . . , µm are the roots, perhaps multiple, of the polynomials

P (p) and Q(p), respectively. Then for n ≤ m we obtain

R(p) =
P (p)
Q(p)

=
αn
βn

p− λ1

p− µ1

p− λ2

p− µ2
. . .

p− λn
p− µn

1
(p− µn+1) . . . (p− µm)

.

We see from this factorization that the operator R(p) is the product of a finite number of

operators of the form p−λ
p−µ and 1

p−µ . However (see function 2.3.49 and 2.3.50) the operators

of this form belong to the ring M , i.e., the operator R(p) also belongs to M . Thus, R(p)

is reducible to a function belonging to M . Hence, the condition n ≤ m is sufficient for the

operator R(p) to be reducible to a function.

Conversely: suppose that R(p) is a function. Let us prove that n ≤ m. If n < m then

R(p) may be represented in the form

R(p) = N(p) +R1(p),

where N(p) is a polynomial, whose degree is greater than zero, and R1(p) is a rational

operator, whose nominator has a degree less than or equal to the degree of the denominator.

According to the above reasoning, R1(p) is a function. Hence, the operator N(p) = R(p)−
R1(p) is reducible to a function. However, in this case Theorem 2.3.85 implies that the

degree of the polynomial N(p) is equal to zero, i.e., N(p) is a constant. This contradicts

the supposition that n > m. Hence, n ≤ m.

Thus, if n ≤ m then there exists a function ϕ(t) such that R(p) = ϕ(t), where ϕ ∈ M .

The value of R(p)f(t) for an arbitrary function f ∈ L may be computed by the formula

R(p)f(t) =
d

dt

t∫
0

ϕ(t− r)f(r)dr, ϕ(t) ∈M. (2.3.52)

If the roots µ1, µ2, . . . , µm of the denominator of Q(p) are simple and Q(0) 6= 0, then

P (p)
pQ(p)

=
1
p

P (0)
Q(0)

+
m∑
k=1

αk
p− µk

,

where

αk = lim
p→µk

(p− µk)P (p)
pQ(p)

= lim
p→µk

P (p)

pQ(p)−Q(µk)
p−µk

=
P (µk)

µkQ′(µk)
.
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Hence,

P (p)
Q(p)

=
P (0)
Q(0)

+
m∑
k=1

P (µk)
µkQ′(µk)

p

p− µk
=
P (0)
Q(0)

+
m∑
k=1

P (µk)
µkQ′(µk)

exp(µkt).

Thus, we have

ϕ(t) =
P (0)
Q(0)

+
m∑
k=1

P (µk)
µkQ′(µk)

exp(µkt). (2.3.53)

If Q(0) = 0, then it means that Q(p) = pQ1(p), where Q1(p) 6= 0. Using (2.3.53) one can

find P (p)
Q(p) = ϕ1(t), and then we obtain

ϕ(t) =
1
p
? ϕ1(t) =

t∫
0

ϕ1(u)du.

The case of multiple roots is more complicated. If, for instance, µ = µ1 is a root of

multiplicity r, then the partial fraction decomposition of P (p)
pQ(p) contains fractions of the

form Ar

(p−µ1)r . Hence, ϕ(t) contains terms of the form Art
r−1eµ1t. Thus, in the general case

the function ϕ(t) has the form

ϕ(t) =
∑
k,r

Akrt
r−1eλkt.

This case will be investigated in detail when solving the differential equations in section

2.6.1.

2.3.5 Laplace Transformable Operators

Let S denote the set of all functions f , for which the Laplace integral

L[f ](z) =

∞∫
0

f(t)e−ztdt (2.3.54)

is absolutely convergent, while S∗ denotes the set of all functions of the complex variable

z = x+ iy representable by the integral (2.3.54), where f ∈ S.

The set S∗ consists of functions analytical in half-planes Hγ (see 1.4.1). Obviously, S∗ is

a linear set. In addition, the convolution theorem (see 1.4.3, Theorem 1.4.11) implies that

if two functions belong to S∗, then their product also belongs to S∗, i.e., S∗ is a ring with

respect to the ordinary operations of addition and multiplication.

Definition 2.3.41 An operator a ∈ M is called Laplace transformable if there exists a

representative (F,G) such that a = F
G and the Laplace integrals of the functions F and G

are convergent, i.e., there exist the integrals
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L[F ](z) =

∞∫
0

F (t)e−ztdt;

L[G](z) =

∞∫
0

G(t)e−ztdt. (2.3.55)

It is known from the properties of Laplace integrals that if the Laplace integral of the

function F is convergent, then the Laplace integral of the function F1(t) =
t∫
0

F (u)du =

t ? F (t) is absolutely convergent. Besides, obviously, a = F
G = t?F (t)

t?G(t) . Therefore, if the

operator a = F
G is Laplace transformable, then without loss of generality we may always

assume the integrals (2.3.55) absolutely convergent. This has to be taken into account

below.

Theorem 2.3.87 The set of all Laplace transformable operators is a field.

This field will be denoted by M(S).

Proof. Let the operator a = F
G ∈ M be Laplace transformable and a 6= 0. In this case,

obviously, the operator 1
a = G

F is also Laplace transformable. Furthermore, if a1 = F1
G1

and a2 = F2
G2

are two Laplace transformable operators, then their sum a1 + a2 and product

a1 ? a2 are also Laplace transformable operators. Indeed, we have

a1 + a2 =
F1 ? G2 + F2 ? G1

G1 ? G2
,

or

a1 + a2 =

d
dt

t∫
0

F1(t− u)G2(u) du+ d
dt

t∫
0

F2(t− u)G1(u)du

d
dt

t∫
0

G1(t− u)G2(u) du

=

t∫
0

F1(t− u)G2(u) du+
t∫
0

F2(t− u)G1(u) du

t∫
0

G1(t− u)G2(u)du
.

The Laplace integrals of the functions F1, F2, G1, G2 are absolutely convergent. According

to the convolution theorem for the Laplace transform the Laplace integral of the convolution

of such functions is also absolutely convergent. Hence, Laplace integrals of the functions

H(t) =

t∫
0

F1(t− u)G2(u) du+

t∫
0

F2(t− u)G1(u)du,

R(t) =

t∫
0

G1(t− u)G2(u)du
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are absolutely convergent; therefore, the operator a1 + a2 is Laplace transformable.

Similarly, the relation

a1 ? a2 =

d
dt

t∫
0

F1(t− u)F2(u)du

d
dt

t∫
0

G1(t− u)G2(u)du
=

t∫
0

F1(t− u)F2(u)du

t∫
0

G1(t− u)G2(u)du

implies Laplace transformability of the operator a1 ? a2. Obviously, M(S) is a subfield of

M.

Almost all problems of application of operational calculus are connected with the field

M(S). Therefore, it is sufficient for the reader interested in operational calculus as a tool

for solving practical problems to restrict himself or herself to the investigation of the field

M.

Definition 2.3.42 Let a = F
G ∈ M(S). The function of the complex variable z = x+ iy

A(z) =
L[F ](z)
L[G](z)

, (2.3.56)

is called the Laplace transform of the operator a = F
G .

Let us prove that the definition of the function A(z) does not depend on the choice of

the representative (F,G). Indeed, if the formulae

a =
F

G
=
F1

G1
and A1(z) =

L[F1](z)
L[G1](z)

hold, then the condition

F ∗G1 = F1 ∗G, or

t∫
0

F (t− u)G1(u)du =

t∫
0

F1(t− u)G(u)du

implies, by means of the convolution theorem of the Laplace transform, the relation

L[F ](z)L[G1](z) = L[F1](z)L[G](z), or A1(z) = A(z).

Hence, the function A(z) is uniquely defined by the operator a ∈ M(S).

Thus, the function A(z), defined by (2.3.55), is associated with every operator a ∈ M(S).

This transformation of a into A(z) is often denoted by the symbol

a + A(z) . (2.3.57)

We denote by M̄(S) the image of M(S) under the transformation (2.3.57); the elements

of the set M̄(S) are the functions A(z) = L[F ](z)
L[G](z) , where L[F ](z) and L[G](z) are absolutely

convergent Laplace integrals.
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Theorem 2.3.88 The transformation (2.3.57) establishes a one-to-one correspondence be-

tween the fields M(S) and M̄(S) such that the sum of operators a1 + a2 corresponds to

the sum of functions A1(z) +A2(z) and the product of operators a1 ? a2 corresponds to the

ordinary product of functions A1(z)A2(z). Zero and unity of the field M(S) map onto zero

and unity of the field M̄(S).

Proof. Let a1 ∈ M(S), a2 ∈ M(S) and a1 + A1(z), a2 + A2(z). Let us prove that the

following formulae hold:

a1 + a2 + A1(z) +A2(z) and a1 ? a2 + A1(z)A2(z).

We have

a1 + a2 =
F1 ? G2 + F2 ? G1

G1 ? G2
=

t∫
0

F1(t− u)G2(u) du+
t∫
0

F2(t− u)G1(u)du

t∫
0

G1(t− u)G2(u)du
.

As a representative of the operator a1 + a2, we take the pair t∫
0

F1(t− u)G2(u) du+

t∫
0

F2(t− u)G1(u)du,

t∫
0

G1(t− u)G2(u)du

 ,

which will be denoted briefly (H,R). The convolution theorem of the Laplace transform

implies that

L[H] = L[F1]L[G2] + L[F2]L[G1],

L[R] = L[G1]L[G2].

Hence, the following relation holds:

a1 + a2 +
L[F1]
L[G1]

+
L[F2]
L[G2]

= A1(z) +A2(z).

Similarly, we have

a1 ? a2 =
F1 ? F2

G1 ? G2
=

t∫
0

F1(t− u)F2(u)du

t∫
0

G1(t− u)G2(u)du
;

therefore, we obtain

a1 ? a2 +
L[F1]L[F2]
L[G1]G2(z)

= A1(z)A2(z).

Obviously, the transformation (2.3.57) maps the zero element of M(S) onto the zero

element of the field M̄(S) and none of other operators of the field M(S) maps onto the zero

of the field M̄(S). Indeed, if some operator a + 0, then
∞∫
0

F (t)e−zt dt = 0 and by virtue
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of Theorem 1.4.9, section 1.4.1, we have F = 0, i.e., a = 0. Thus, the bijectivity of the

mapping (2.3.56) is proved.

Finally, if a is the unit operator a = 1, then

1 +

∞∫
0

e−zt dt

∞∫
0

e−ztdt

= 1,

i.e., the unit of the field M(S) maps onto the unit of the field M̄(S).

The proven theorem states an isomorphism of the fields M(S) and M̄(S). The structure

of the field M̄(S) is clear. Its elements are functions of a complex variable z. Every such

function is a ratio of functions representable by absolutely convergent Laplace integrals.

Now we are going to investigate the properties of this isomorphism.

Properties of the Field Isomorphism M(S) + M̄(S).

1. Under the isomorphism M(S) + M̄(S) the operator p = 1
I corresponds to the function

I(z) = z.

Proof. Indeed, the following formula holds:

p =
1
I

+

∞∫
0

e−zt dt

∞∫
0

te−zt dt

=
1
z
1
z2

= z;

thus,

p + z . (2.3.58)

2. If the operator a is reducible to a function belonging to S,

a =
F (t)
I

= f ∈ S, (F (0) = 0),

then the following formula holds:

f(t) + zL[f ](z) = A(z). (2.3.59)

Proof. Indeed, on assuming Re z > γ, we have (see Definition 2.3.42) the operational

correspondence

a =
F (t)
t

+

∞∫
0

F (t)e−ztdt

∞∫
0

te−ztdt

= z2

∞∫
0

F (t)d
(
e−zt

−z

)

= −zF (t)e−zt
∣∣∣t=∞
t=0

+ z

∞∫
0

F ′(t)e−ztdt = z

∞∫
0

f(t)e−ztdt.
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3. If the formula F
G + L[F ](z)

L[G](z) = A(z) holds, and α, β ∈ R+, then we have

F (αt)
G(βt)

+
βL[F ]

(
z
α

)
αL[G]

(
z
β

) . (2.3.60)

In particular, we have
F (αt)
G(αt)

+
L[F ]

(
z
α

)
L[G]

(
z
α

) = A
( z
α

)
. (2.3.61)

Proof. The proof is by straightforward calculation.

4. The formula F
G + L[F ](z)

L[G](z) implies the formula eαtF (t)
eβtG(t)

+ L[F ](z−α)
L[G](z−β) . Here, α and β

are arbitrary numbers and eαtF (t), eβtG(t) denote the ordinary product of functions. In

particular,

eαtf(t) +
z

z − α
f̄(p− α). (2.3.62)

Proof. We have the relations
∞∫
0

eαtF (t)e−ztdt = L[F ](z − α) and

∞∫
0

eβtG(t)e−ztdt = L[G](z − β),

which imply (2.3.58).

5. If F (t) = 0 for t < 0 and G(t) = 0 for t < 0, then for α ≥ 0 and β ≥ 0 the formula
F
G + L[F ](z)

L[G](z) = a(z) implies the formula

F (t− α)
G(t− β)

+
e−αzL[F ](z)
e−βzL[G](z)

= e−(α−β)zA(z). (2.3.63)

Proof. We have
∞∫
0

F (t− α)e−ztdt =

∞∫
α

F (t− α)e−ztdt, t− α = u,

then
∞∫
0

F (t− α)e−ztdt =

∞∫
0

F (u)e−z(α+u)du = e−zαL[F ](z),

and similarly
∞∫
0

G(t− β)e−ztdt = e−zβL[G](z).

For the operator F (t+α)
G(t+β) , α ≥ 0, β ≥ 0 we have

F (t+ α)
G(t+ β)

=
eαz[L[F ](z)−

α∫
0

F (t)e−ztdt]

eβz[L[G](z)−
β∫
0

G(t)e−ztdt]

. (2.3.64)
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Indeed,

∞∫
0

F (t+ α)e−ztdt =

∞∫
α

F (u)e−z(u−α)du = ezα
(
L[F ](z)−

α∫
0

F (u)e−ztdt
)

and analogously for the other integral.

6. The operational correspondence F
G + L[F ](z)

L[G](z) implies the formula

d

dz

(
L[F ](z)
L[G](z)

)
+
−tF (t)
G(t)

+
F (t)
G(t)

?
tG(t)
G(t)

. (2.3.65)

Notice that tF (t) and tG(t) denote the ordinary product of functions, therefore, the

operator tG(t)
G(t) is not reducible to t

1 .

Proof. We have

d

dz

(
L[F ](z)
L[G](z)

)
=

d
dzL[F ](z)
L[G](z)

− L[F ](z)
L[G](z)

d
dzL[G](z)
L[G](z)

;

however, d
dzL[F ](z) = −

∞∫
0

tF (t)e−ztdt (see 1.4.1, Theorem 1.4.8). Taking into account

this property, we see that (2.3.65) holds. In particular, if the operator F
G is reducible to a

function (see formula 2.3.59) belonging to S, we have

z
d

dz

(
f̄(z)
z

)
= −tf(t). (2.3.66)

7. Suppose that F has the derivative F ′ = f ∈ S. In this case

F ′(t) + zF̄ (z)− zF (0). (2.3.67)

Proof. It follows from (2.3.59) that

F ′(t) + z

∞∫
0

f(t)e−ztdt = z

∞∫
0

e−ztdF (t) = −zF (0) + z2

∞∫
0

F (t)e−ztdt = zF̄ (z)− zF (0).

In the same way one can prove the more general formula

F (n)(t) + znF̄ (z)− znF (0)− zn−1F ′(0)− · · · − zF (n−1)(0). (2.3.68)

The fields M̄(S) and M(S) are isomorphic. This isomorphism put into correspondence

to the operator p the function a(z) = z. Hence, an arbitrary polynomial of the operator p,

namely P (p) = Σk akpk, corresponds to an ordinary polynomial,

P (z) =
∑
k

akz
k, i.e.,

© 2006 by Taylor & Francis Group, LLC



212 Operational Calculus

P (p) =
∑
k

akp
k +

∑
k

akz
k = P (z). (2.3.69)

Any rational operator R(p) = P (p)
Q(p) corresponds to a rational fraction R(z) = P (z)

Q(z) , i.e.,

R(p) + R(z) . (2.3.70)

Comparing the formulae (2.3.68) and 2.3.2, (2.3.27) for the derivative F (n)(t), we obtain

the formula

F (n)(t) = pnF (t)− pnF (0)− · · · − pF (n−1)(0)

+ znF̄ (z)− znF (0)− zn−1F ′(0)− · · · − zF (n−1)(0).
(2.3.71)

Let a = F
G ∈ M(S). In this case a + A(z) (see (2.3.60)). It is natural to introduce for the

operator a the designation a = A(p). Thus, we put into correspondence to every function

A(z) of the complex variable z belonging to the field M̄(S) the operator A(p). It is just the

operator a of the field M, which under the mapping M + M̄(S) maps onto A(z). Thus, we

select in the field M the subfield M(S) of operators, which we can represent in the form of

functions of the operator p:

a = A(p) + A(z). (2.3.72)

The formal difference between the right- and left-hand sides of formulae (2.3.70), (2.3.71)

and (2.3.72) consists only of writing the letter z in the right-hand sides and the letter p

in the left-hand sides. In fact, the letter p denotes the operator 1
I , z denotes a complex

variable, A(p) is an operator, A(z) is a function of the complex variable z. However, in view

of the isomorphism of the fields M(S) and M̄(S) the difference between M(S) and M̄(S)

in most cases is not essential. Therefore, the operator p and the complex number z may be

denoted by the same letter. Below we shall write p instead of z. Sometimes the designation

of the operator 1
I and the complex number z by the same letter makes the presentation

more simple. Thus, the letter p denotes the operator 1
I in the field M, and p is the complex

number p = σ + iτ in the field M̄(S). Hence, all Laplace transformable operators, i.e., the

elements of M(S) may be represented by the form

a = A(p) =
L[F ](z)
L[G](z)

. (2.3.73)

In particular, every function f(t) of the set S, see formula (2.3.58), may be represented by

the form

f(t) = f̄(p) . (2.3.74)

The expression f̄(p) will be called the operational transform of the function f(t). Here

f̄(p) = p

∞∫
0

f(t)e−ptdt = pL[f ](p). (2.3.75)
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2.3.6 Examples

1. Now we are going to compute the operational transforms of functions. Let f(t) = tα.

Then we find f(p) = pL[f ](p) by means of formula (1.4.12):

tα = p−αΓ(1 + α), or
1
pα

=
tα

Γ(1 + α)
. (2.3.76)

2. Let a function e be given by

e(λ) = η(t;λ) =

{
0, if t < λ,

1, if t ≥ λ.

Obviously, we have

p

∞∫
0

η(t;λ)e−ptdt = p

∞∫
λ

e−ptdt = e−pλ;

hence,

η(t;λ) = e−pλ. (2.3.77)

This relation immediately implies that

η(t;λ) ? η(t;µ) = η(t;λ+ µ).

This relation was proved in another way in section 2.2; see formula (2.2.2).

Let us find the product e−pλf(t) = e−pλ ? f(t), λ ≥ 0. In order to find it we compute

the convolution of the functions e−pλ = η(t;λ) and f(t). We have

t∫
0

η(t− u;λ)f(u) du =

t∫
0

f(t− u) η(u;λ) du =


0, if t < λ,
t∫
λ

f(t− u)du, if t ≥ λ
.

We see from this that the convolution also belongs to the ring M . Hence, we have

e−pλf(t) =
d

dt

t∫
0

η(t− u;λ)f(u) du =

{
0, if t < λ,

f(t− λ), if t ≥ λ

and finally

e−pλf(t) =

{
0, if t < λ,

f(t− λ), if t ≥ λ.
(2.3.78)

3. Let f(t) = log t.

In order to compute f̄(p) we use relation (2.3.76), which implies
∞∫
0

tαe−ptdt =
Γ(α+ 1)
pα+1

;

therefore,
∞∫
0

log te−ptdt =
d

dα

[
Γ(1 + α)
pα+1

]
α=0

=
Γ′(1)
p

− log p
p

,
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or

p

∞∫
0

log te−ptdt = −C − log p,

where Γ′(1) = −C is the Euler constant; finally we have

log t = −C − log p . (2.3.79)

4. Let f(t) = log2 t.

Obviously,

∞∫
0

log2 te−ptdt =
d2

dα2

[
Γ(1 + α)
pα+1

]
α=0

=
Γ′′(1)
p

− 2Γ′(1) log p
p

+
log2 p

p
;

however, Γ′(1) = −C and Γ′′(1) = C2 + π2

6 ; therefore,

f̄(p) =
π2

6
+ (C + log p)2. (2.3.80)

If instead of α = 0 we put α = n, where n is an integer, then we easily obtain

tn

n!
[ψ(n+ 1)− log t] =

log p
pn

, (2.3.81)

tn

n!
[(ψ(n+ 1)− log t)2 − ψ′(n+ 1)] =

log2 p

pn
; (2.3.82)

here

ψ(z) =
Γ′(z)
Γ(z)

.

5. Prove that

tn ? log2 t = tn
[
(log t− ψ(n+ 1)− C)2 +

π2

6
− ψ′(n+ 1)

]
. (2.3.83)

We have

tn ? log2 t =
d

dt

t∫
0

(t− ξ)n log2 ξdξ.

Taking into account that

tn =
n!
pn
, log2 t =

π2

6
+ (C + log p)2,

we obtain

tn ? log2 t =
n!
pn

(
π2

6
+ (C + log p)2

)
=
n!π2

6pn
+
C2n!
pn

+
2n!C log p

pn
+
n! log2 p

pn
.

Replacing the operational transforms of the functions by their inverse transforms (see for-

mulas 2.3.82 and 2.3.81) we obtain (2.3.83).
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6. Prove the identity

Sn = −2
n∑
k=1

(−1)k
(
n

k

)
1
k2

=
n∑
k=1

1
k2

+
( n∑
k=1

1
k

)2

.

We have 1
k2 =

∞∫
0

te−ktdt; therefore,

Sn = 2

∞∫
0

[1− (1− e−t)n]dt,

on putting 1− e−t = ξ, we find

Sn = −2

1∫
0

(1− ξn) log(1− ξ)
dξ

1− ξ
= n

1∫
0

ξn−1 log2(1− ξ)dξ,

or

Sn = n

1∫
0

(1− ξ)n−1 log2 ξdξ.

If we denote

fn(t) = tn ? log2 t =
d

dt

t∫
0

(t− ξ)n log2 ξdξ,

then, obviously, fn(1) = Sn; therefore, see formula (2.3.83),

Sn = (ψ(n+ 1) + C)2 +
π2

6
− ψ′(n+ 1).

Taking into account the relations

ψ(n+ 1) = −C +
n∑
k=1

1
k
, ψ′(n+ 1) =

π2

6
−

n∑
k=1

1
k2
,

we finally obtain

Sn =
( n∑
k=1

1
k

)2

+
n∑
k=1

1
k2
.

7. Let

ϕσ(t) =

{
logσ 1

t

Γ(1+σ) , if 0 < t ≤ 1,

0, for t > 1.

Prove that for the operational transform of the function ϕσ(t) the following formula holds:

ϕ̄σ(p) = p
dϕ̄σ+1(p)

dp
. (2.3.84)

We have

ϕ̄σ(p)
p

=
1

Γ(1 + σ)

1∫
0

logσ
1
t
e−ptdt = − 1

Γ(2 + σ)

1∫
0

te−ptd

(
logσ+1 1

t

)

=
1

Γ(2 + σ)

1∫
0

logσ+1 1
t
e−ptdt− p

Γ(2 + σ)

1∫
0

te−pt logσ+1 1
t
dt ,
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or
ϕ̄σ(p)
p

=
ϕ̄σ+1(p)

p
+ p

d

dp

ϕ̄σ+1(p)
p

,

which implies formula (2.3.84).

8. Let

Sn(σ) = −
n∑
k=1

(−1)k
(
n

k

)
1
kσ
, σ ≥ 0, n = 1, 2, . . .

Prove that

Sn(σ + 1) =
n∑
k=1

Sk(σ)
k

. (2.3.85)

We have
1
kσ

=
1

Γ(σ)

∞∫
0

tσ−1e−ktdt;

therefore,

Sn(σ) =
1

Γ(σ)

∞∫
0

[t− (1− e−t)n]tσ−1dt.

On putting 1− e−t = ξ, we find dt = dξ
1−ξ and

Sn(σ) =
1

Γ(σ)

∞∫
0

(1− ξn) logσ−1

(
1

1− ξ

)
dξ

1− ξ
,

or

Sn(σ) =
n

Γ(1 + σ)

1∫
0

ξn−1 logσ
(

1
1− ξ

)
dξ;

therefore,

Sn(σ) =
n

Γ(1 + σ)

1∫
0

(1− ξ)n−1 logσ
1
ξ
dξ.

Let us consider the function

Φn(σ, t) =
d

dt

t∫
0

(t− ξ)nϕσ(ξ)dξ, (2.3.86)

where the function ϕσ(ξ) was defined in Example 7.

Obviously,

Sn(σ) = Φn(σ, 1). (2.3.87)

Furthermore, formula (2.3.86) implies

Φn(σ, t) =
n!
pn
ϕ̄σ(p); (2.3.88)

therefore,

−tΦn(σ + 1, t) = p
d

dp

[
n!
pn+1

ϕ̄σ+1(p)
]
,
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or

−tΦn(σ + 1, t) = − (n+ 1)!
pn+1

ϕ̄σ+1(p) +
n!ϕ̄′σ+1(p)

pn
.

Taking into account (2.3.84) and (2.3.78) we find

−tΦn(σ + 1, t) = −Φn+1(σ + 1, t) +
n!ϕσ(p)
pn+1

,

or

Φn+1(σ + 1, t)− tΦn(σ + 1, t) =
Φn+1(σ, t)
n+ 1

. (2.3.89)

It follows from (2.3.89) with t = 1 and (2.3.87) that

Sn+1(σ + 1)− Sn(σ + 1) =
Sn+1(σ)
n+ 1

,

or

Sk(σ + 1)− Sk−1(σ + 1) =
Sk(σ)
k

.

Taking into account that S1(σ) = 1, we find

n∑
k=2

[Sk(σ + 1)− Sk−1(σ + 1)] =
n∑
k=2

Sk(σ)
k

,

or

Sn(σ + 1)− 1 =
n∑
k=2

Sk(σ)
k

,

or

Sn(σ + 1) =
n∑
k=1

Sk(σ)
k

.

Note that Sk(0) = 1; therefore,

Sn(1) =
n∑
k=1

1
k

;

therefore,

Sn(2) =
n∑
k=1

k∑
r=1

1
r

=
1
2

( n∑
k=1

1
k

)2

+
1
2

n∑
k=1

1
k2

(compare with Example 6).

2.3.7 Periodic Functions

To conclude this section we find the operational transform of a periodic function f . Let

ω > 0 be the period of the function f , hence

f(t+ nω) = f(t), 0 < t < ω, n = 1, 2, 3, . . . .

Let us consider the integral
A∫

0

f(t)e−ptdt;
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suppose the integer n is chosen such that ωn ≤ A < (n+ 1)ω. In this case, we have

A∫
0

f(t)e−ptdt =

nω∫
0

f(t)e−ptdt+

A∫
nω

f(t)e−ptdt

=
n∑
k=1

kω∫
(k−1)ω

f(t)e−ptdt+

A∫
nω

f(t)e−ptdt

=
n∑
k=1

ω∫
0

f(t+ (k − 1)ω)e−p(t+(k−1)ω)dt+

A∫
nω

f(t)e−ptdt

=

ω∫
0

f(t)e−pt
( n∑
k=1

e(k−1)ωp

)
dt+

A∫
nω

f(t)e−ptdt

=
1− e−nωp

1− e−ωp

ω∫
0

f(t)e−ptdt+

A∫
nω

f(t)e−ptdt.

Let us put Re(p) ≥ ε > 0 and A→∞; hence, n→∞. Then we obtain

∣∣∣∣
A∫
ε

f(t)e−ptdt
∣∣∣∣ ≤

(n+1)ω∫
nω

|f(t)|e−Re ptdt ≤
(n+1)ω∫
nω

|f(t)|e−εtdt

=

ω∫
0

|f(t)|e−ε(t+nω)dt ≤ e−εnω
ω∫

0

|f(t)|dt.

This implies that for Re(p) ≥ ε > 0 we have

lim
A→∞

A∫
nω

f(t)e−ptdt = 0.

However, lim
A→∞

e−nωp = 0 when Re(p) ≥ ε > 0; therefore,

lim
A→∞

A∫
0

f(t)e−ptdt =

∞∫
0

f(t)e−ptdt =

ω∫
0

f(t)e−ptdt

1− e−ωp
.

Thus, any periodic function is Laplace transformable and its operational transform has

the form

f̄(p) =
p
ω∫
0

f(t)e−ptdt

1− e−ωp
= f(t).

Conversely, if the operational transform of the function f(t) has the form

f̄(p) =
p
ω∫
0

f(t)e−ptdt

1− e−ωp
,
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then f is a periodic function, whose period is equal to ω. Indeed, the last relation implies

(1− e−ωp)f(t) = p

ω∫
0

f(t)e−ptdt =

{
f(t), if t < ω,

0, if t > ω;

on the other hand, see formula (2.3.78).

(1− e−ωp)f(t) =

{
f(t), if t < ω,

f(t)− f(t− ω), if t > ω.

When t > ω, we have f(t) − f(t − ω) = 0, and replacing t with t + ω > ω, we have

f(t+ω)− f(t) = 0 for all t > 0, where f(t) is continuous. Hence, the function f is periodic

and its period is equal to ω.

2.4 Bases of the Operator Analysis

2.4.1 Sequences and Series of Operators

Definition 2.4.43 A sequence of operators an ∈ M is called convergent to the operator

a = F
G ∈ M, if there exist representatives (Fn, Gn) such that

1) an = Fn

Gn
;

2) The sequences (Fn(t))n∈N and (Gn(t))n∈N converge to the limits F (t) and G(t), re-

spectively, uniformly on any finite interval [0, T ]:

lim
n→∞

Fn(t) = F (t) and lim
n→∞

Gn(t) = G(t).

The operator a = F
G is called the limit of the sequence of operators an and this limit is

denoted

lim
n→∞

an = a. (2.4.1)

Let us prove that the definition of the limit does not depend on the choice of representa-

tives (Fn(t), Gn(t)). Indeed, let

an =
Fn
Gn

=
F̃n

G̃n
, (2.4.2)

lim
n→∞

F̃n(t) = F̃ (t); lim
n→∞

G̃n(t) = G̃(t).

and the convergence be uniform on every finite segment [0, T ]. It follows from (2.4.2) that

d

dt

t∫
0

Fn(t− u)G̃n(u)du =
d

dt

t∫
0

F̃n(t− u)Gn(u)du;
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therefore,
t∫

0

Fn(t− u)G̃n(u)du =

t∫
0

F̃n(t− u)Gn(u)du. (2.4.3)

As n→∞, the uniform convergence on the segment 0 ≤ u ≤ t of the sequences

fn(u) = Fn(t− u)G̃n(u) and f̃n(u) = F̃n(t− u)Gn(u)

implies
t∫

0

F (t− u)G̃(u)du =

t∫
0

F̃ (t− u)G(u)du.

Since the functions F, F̃ ,G and G̃ belong to the set M , then

d

dt

t∫
0

F (t− u)G̃(u)du =
d

dt

t∫
0

F̃ (t− u)G(u)du,

and hence a = F
G = eF

eG
; this completes the proof. Therefore, any convergent sequence has a

unique limit.

Remark 2.4.98 If a sequence of functions fn(t) ∈ L converges uniformly on every interval

0 ≤ t ≤ T to a function f(t), then such a sequence is convergent in the sense of the above

definition of convergence.

Indeed, we have

an =
Fn(t)
t

, where Fn(t) =

t∫
0

fn(u)du;

a =
F (t)
t
, where F (t) =

t∫
0

f(u)du.

Obviously, lim
n→∞

Fn(t) = F (t), the convergence is uniform and the sequence of the operators

an converges to the operator a, lim
n→∞

an = a.

Remark 2.4.99 The ordinary convergence in classical calculus is a very special case of the

operator convergence. Simple examples show that.

Example 2.4.49 The sequence of functions fn(t) = cosnt, n ∈ N, is divergent in classical

calculus, and in the operational sense it converges to zero.

Indeed, the sequence

an =
sinnt
n

t
= cosnt

converges to zero, because lim
n→∞

sinnt
n = 0 and the convergence is uniform on every interval

0 ≤ t ≤ T .
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Example 2.4.50 The sequence of functions n sinnt, n ∈ N, is convergent.

Indeed, we have

n sinnt =
1− cosnt

t
=
t− sinnt

n

t ? t
= an,

lim
n→∞

(
t− sinnt

n

)
= t

and the convergence is uniform. Hence,

lim
n→∞

an = lim
n→∞

n sinnt =
t

t ? t
=

1
t

= p.

Example 2.4.51 The sequence nent, n ∈ N, converges to the operator −p.

Indeed, we have

nent =
np

p− n
=

n · 1
t

1
t − n

=
n

1− nt
=

1
1
n − t

.

All transformations given here, obviously, are made in the field M. For instance, on mul-

tiplying the nominator and the denominator of the fraction n 1
t

1
t−n

by the function F (t) = t,

we obtain
n 1
t ? t(

1
t − n

)
? t

=
n

1− nt
.

Obviously, the sequence Gn(t) = 1
n − t converges uniformly as n → ∞ to the function

G(t) = −t. Therefore, the sequence of the operators an = 1
1
n−t

is convergent; obviously,

lim
n→∞

an = lim
n→∞

nent = −1
t

= −p.

Thus the sequence nent converges to the operator −p.

Basic Properties of the Limit of a Sequence of Operators

1. If a sequence of operators an, n = 1, 2, 3, . . . , converges to a limit, then any of its

subsequences converges to the same limit.

Proof. Indeed, let lim
n→∞

an = a. This means that

lim
n→∞

Fn(t) = F (t), lim
n→∞

Gn(t) = G(t), an =
Fn
Gn

, a =
F

G
.

If ank
, k = 1, 2, 3, . . . , is a subsequence of an, then the appropriate subsequences of functions

Fnk
(t) and Gnk

(t) converge to the functions F (t) and G(t), respectively. The convergence

is uniform on every interval [0, T ]. Hence, lim
k→∞

ank
= a.

2. If sequences of operators an and bn, n = 1, 2, 3, . . . , have limits,

lim
n→∞

an = a and lim
n→∞

bn = b,

then the sequences (an + bn)n∈N and (an ? bn)n∈N are convergent and

lim
n→∞

(an + bn) = a+ b, (2.4.4)
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lim
n→∞

(an ? bn) = a ? b. (2.4.5)

Proof. Let an = Fn

Gn
, bn = eFn

eGn
, a = F

G and b = eF
eG

. By the assumption we have

lim
n→∞

Fn(t) = F (t), lim
n→∞

Gn(t) = G(t),

lim
n→∞

F̃n(t) = F̃ (t), lim
n→∞

G̃n(t) = G̃(t)

and the convergence is uniform on every interval 0 ≤ t ≤ T . We obtain

an + bn =
Fn
Gn

+
F̃n

G̃n
=
Fn ? G̃n + F̃n ? Gn

Gn ? G̃n
.

Let us introduce the notation

Hn(t) =

t∫
0

[Fn(t− u)G̃n(u) + F̃n(t− u)Gn(u)] du,

Rn(t) =

t∫
0

Gn(t− u)G̃n(u) du;

obviously,

an + bn =
Hn(t)
Rn(t)

.

The uniform convergence of the sequences (Fn(t))n∈N, (Gn(t))n∈N, (F̃n(t))n∈N and

(G̃n(t))n∈N implies the uniform convergence of the sequences (Hn(t))n∈N, (Rn(t))n∈N and

lim
n→∞

Hn(t) =

t∫
0

[F (t− u)G̃(u) + F̃ (t− u)G(u)]du = H(t),

lim
n→∞

Rn(t) =

t∫
0

G(t− u)G̃(u) = R(t).

Hence, the following relation holds:

lim
n→∞

(an + bn) =
H(t)
R(t)

=
d
dtH(t)
d
dtR(t)

=
F ? G̃+ F̃ ? G

G ? G̃
=
F

G
+
F̃

G̃
= a+ b.

Similarly, for the product of operators an ? bn we have

an ? bn =
Fn ? F̃n

Gn ? G̃n
=

t∫
0

Fn(t− u)F̃n(u) du

t∫
0

Gn(t− u)G̃n(u) du
;
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therefore,

lim
n→∞

(an ? bn) =
lim
n→∞

t∫
0

Fn(t− u)F̃n(u)du

lim
n→∞

t∫
0

Gn(t− u)G̃n(u)du
=

t∫
0

F (t− u)F̃ (u)du

t∫
0

G(t− u)G̃(u)du

=

d
dt

t∫
0

F (t− u)F̃ (u)du

d
dt

t∫
0

G(t− u)G̃(u)du
=
F ? F̃

G ? G̃
= a ? b.

3. If there exist the limits

lim
n→∞

an = a, lim
n→∞

bn = b 6= 0, bn 6= 0,

then there exists the limit

lim
n→∞

(
an
bn

)
=
a

b
.

Proof. Indeed, if the sequence of operators bn = eFn

eGn
converges to the operator b = eF

eG
and

b 6= 0 (hence, F̃ (t) 6≡ 0), then, obviously, the sequence of operators 1
bn

=
eGn(t)
eFn(t)

is convergent

and

lim
n→∞

1
bn

=
G̃(t)

F̃ (t)
=

1
b
.

Now the second property (see (2.4.2)) implies that lim
n→∞

an

bn
= a

b .

4. If c is an arbitrary operator and

lim
n→∞

an = a, then lim
n→∞

c an = c a.

This property follows from (2.4.5).

Along with sequences of operators operator series are also considered in operational cal-

culus.

Definition 2.4.44 Let (an)n∈N be a sequence of operators, an ∈ M, n ∈ N. An operator

series is the sequence (Sn)n∈N of partial sums

Sn = a1 + a2 + · · ·+ an. (2.4.6)

An operator series is called convergent if there exists (in the operational sense) the limit of

its partial sums (2.4.3).

The limit

lim
n→∞

Sn = lim
n→∞

(a1 + a2 + · · ·+ an) = S (2.4.7)
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is called the sum of the series and we write
∞∑
n=0

an = a1 + a2 + · · ·+ an + · · · = S. (2.4.8)

In section 2.3.6., Example 2, we considered the function η(t;λ) = e−pλ. Recall that

e−pλ =

{
0, if 0 ≤ t < λ,

1, if t ≥ λ.

Let us consider an operator series
∞∑
k=0

ake
−pλk , (2.4.9)

where αk is an arbitrary sequence of numbers and λk are real positive numbers, which forms

a monotone increasing sequence tending to infinity, i.e.,

0 = λ0 < λ1 < · · · < λk < . . . and lim
k→∞

λk = ∞.

Series (2.4.9) is in the operational sense always convergent.

Let us prove that the sequence of partial sums

α0e
−λ0p + α1e

−λ1p + · · ·+ αne
−λnp = Sn(p)

is a convergent sequence. We have

Sn(p) =
n∑
k=0

αk
η1(t;λk)

t
=
Fn(t)
t

,

where

η1(t;λ) =

t∫
0

η(u;λ)du =

{
0, if t < λ,

t− λ, if t ≥ λ,

and

Fn(t) =
n∑
k=0

αkη1(t;λk).

The sequence of the functions Fn(t) ∈ M converges as n → ∞ uniformly on any interval

0 ≤ t ≤ T . Indeed, let us choose n0 sufficiently large, such that λn0 > T . Then the

conditions n ≥ n0 and η1(t;λn) = 0 for 0 ≤ t ≤ T < λn0 imply that Fn(t) = Fn0(t) for all

n ≥ n0 and 0 ≤ t ≤ T .

Now we calculate the sum of the series
∞∑
k=0

αke
−pλk . Let t be fixed. Taking into account

that e−pλ = 0 for t < λ and e−pλ = 1 for t ≥ λ we easily find
∞∑
k=0

αke
−pλk =

∑
λk≤t

αk, (2.4.10)

where the sum in the right-hand side is taken over all indices k such that λk ≤ t. For

instance, if 0 < t < λ1, then
∑
λk≤t

αk = α0. The function defined by series (2.4.10) belongs

to the class of step functions.
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Definition 2.4.45 A function f is said to be a step function on the interval [0∞) if the

interval [0, ∞) can be divided into a finite or denumerable number of nonoverlapping inter-

vals, in each of which the function f has a constant value.

Let us consider the operator e−pλ − e−pµ, where 0 ≤ λ < µ <∞. Obviously,

e−pλ − e−pµ =


0, if 0 ≤ t < λ;
1, if λ ≤ t < µ;
0, if µ ≤ t.

(2.4.11)

The graph of this step function is shown in Figure 8.

Figure 8

Now let ϕ(t) be an arbitrary step function. In order to define ϕ(t) we have to fix its

values in all intervals

(λk, λk+1), k = 0, 1, 2, . . . ; λ0 = 0 < λ1 < λ2 < · · · < λn < . . . , lim
n→∞

λn = ∞.

Let us put ϕ(t) = βk for λk < t < λk+1; k = 0, 1, 2, . . . . Using (2.4.8), it is easy to write

the operational image of the function ϕ(t):

ϕ(t) =
∞∑
k=0

βk(e−λkp − e−λk+1p). (2.4.12)

Hence, the set of all step functions coincides with the set of operator series of the form

(2.4.12).

In applications series are often used where the numbers λk form an arithmetic progression

λk = kh, k = 0, 1, 2, . . . . In this case the function ϕ(t) has the form

ϕ(t) =
∞∑
k=0

βk(e−khp − e−(k+1)hp) = (1− e−hp)
∞∑
k=0

βke
−khp;
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thus,

ϕ(t) = (1− e−hp)
∞∑
k=0

βke
−khp. (2.4.13)

As an example we consider the function (Figure 9)

ϕ(t) =
∞∑
k=0

e−khp =
1

1− e−hp
.

Figure 9

We have

(1− e−hp)
∞∑
k=0

ke−khp =
(1− e−hp)e−hp

(1− e−hp)2
=

e−hp

1− e−hp
;

therefore,
e−hp

1− e−hp
= k for hk ≤ t < h(k + 1).

2.4.2 Operator Functions

One can consider in the field M operators depending on a parameter. Such operators are

called operator functions. In this subsection the operators depending on one real parameter

will be considered. If an operator a = F
G depends on the parameter λ, α ≤ λ ≤ β, then we

shall write a = a(λ). An operator function a(λ) is defined by its representative (F,G). The

functions F and G depend on the parameter λ, i.e., in the general case F = F (t;λ) and

G = G(t;λ), the function G(t;λ) does not vanish at any value of the parameter λ.

Example 2.4.52 a(λ) = tλ

Γ(1+λ) , if 0 ≤ λ <∞.

Example 2.4.53 e(λ) = η(t;λ) =

{
0, for t < λ ,

1, for t ≥ λ, where 0 ≤ λ <∞.
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Example 2.4.54 a(λ) = p
p−λ =

1
t

1
t−λ

=
1
t ?t

( 1
t−λ)?t

= 1
1−λt = eλt, where λ is an arbitrary

complex number.

If a is an arbitrary operator from the field M, then we always may indicate such a function

Q(t) belonging to the original ring M , that the product a ? Q also belongs to this ring. If

now a = a(λ) depends on the parameter λ, then in the general case the function Q(t) also

depends on λ.

Definition 2.4.46 An operator function a(λ), α < λ < β, belonging to M(M) (see 2.3.2.)

or M(S) (see 2.3.5.), is called reducible on the interval (α, β) if there exists a function

Q(t) ∈M (or Q(t) ∈ S), Q(t) 6≡ 0 and Q(t) does not depend on the parameter λ such that

for all λ, α < λ < β, the product

Q(t) ? a(λ) = ϕ(t;λ) (2.4.14)

belongs to the ring M (or S).

The sum and the product of functions reducible on a given interval (α, β) are also reducible

functions. Let us prove this statement for the ring M . The proof for the ring S is analogous.

If a1(λ) and a2(λ) are functions reducible on an interval, then in M there exists functions

Q1(t) and Q2(t) such that

Q1(t) ? a1(λ) = ϕ1(t;λ) ∈M

and α < λ < β;

Q2(t) ? a2(λ) = ϕ2(t;λ) ∈M,

therefore,

Q1 ? Q2 ? [a1(λ) + a2(λ)] = (Q2 ? ϕ1) + (Q1 ? ϕ2) ∈M

for all α < λ < β. Hence, the sum a1(λ) + a2(λ) is a reducible operator function.

Similarly, it follows from

Q1 ? Q2(a1(λ) ? a2(λ)) = (Q2 ? ϕ1) ? (Q1 ? ϕ2) ∈M

that the product of two reducible functions is a reducible function.

However, if a(λ) is a reducible function, then the function 1
a(λ) may be irreducible. Indeed,

let us consider the operator function

e(λ) = η(t;λ) =

{
0 for t < λ,

1 for t ≥ λ.

Obviously, e(λ) in the interval 0 ≤ λ <∞ is a reducible function, namely,

t ? e(λ) = η1(t;λ) =

t∫
0

e(λ) dt =

{
0 for t < λ,

t− λ for λ ≤ t.
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Hence, in this case Q(t) = t; obviously, e(λ) = η1(t;λ)
t .

The inverse function 1
e(λ) = t

η1(t;λ) is not reducible for 0 ≤ λ < ∞. Indeed, if it is

reducible, then there exists a function Q(t) ∈M , Q(t) 6≡ 0 such that

Q(t) ?
1

e(λ)
= ϕ(t;λ) ∈M, 0 ≤ λ <∞,

or

Q(t) = e(λ) ? ϕ(t;λ) =

d
dt

t∫
0

η1(t− u;λ)ϕ(u;λ) du

t
,

or

Q(t) =
d

dt

t∫
0

η(t− u;λ)ϕ(u;λ) du, 0 ≤ λ <∞.

Let an arbitrary t = t0 be fixed and suppose that λ > t0; then

Q(t0) =
d

dt

t0∫
0

η(t0 − u;λ)ϕ(u;λ) du = 0.

Thus, Q(t) = 0 for all t ≥ 0. Hence, there exists no nonzero function Q(t) ∈M , satisfying

the condition Q(t) 1
e(λ) ∈M ; therefore, the function 1

e(λ) is irreducible in the interval (0,∞).

The basic operations and notions of calculus may be easily extended to reducible operator

functions. This can be done by a single general rule.

Definition 2.4.47 A reducible operator function a(λ) is called continuous in the region

α < λ < β if there exists such a function Q(t) ∈ M , that ϕ(t;λ) = Q(t) ? a(λ) is a

continuous function in two variables t and λ in the region 0 ≤ t <∞, α < λ < β.

Using the notion of the limit of a sequence of operators we can introduce the notion of

the limit for an operator function.

Definition 2.4.48 An operator function a(λ) has a limit at the point λ = λ0 if for any

sequence (λn)n∈N convergent to λ0 there exists a lim
n→∞

a(λn) and this limit does not depend

on the choice of the sequence (λn)n∈N. In this case we write

lim
λ→λ0

a(λ) = b.

Corollary 2.4.34 If an operator function a(λ) is continuous in the interval a < λ < β,

then for any λ0, α < λ0 < β, there exists

lim
λ→λ0

a(λ) = a(λ0).

This corollary follows immediately from the definition of a reducible continuous operator

function.
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2.4.3 The Derivative of an Operator Function

Definition 2.4.49 A reducible operator function a(λ) is called continuously differentiable

in an interval (α, β), if the function ϕ(t;λ) is differentiable with respect to the parameter λ

and ∂ϕ
∂λ ∈M is a continuous function of the variables t and λ in the region t ≥ 0, α < λ < β.

The operator 1
Q

∂ϕ
∂λ is called the continuous derivative of the function a(λ) and is denoted

a′(λ) or da(λ)
dλ ; thus,

a′(λ) =
da(λ)
dλ

=
1
Q

∂ϕ

∂λ
=

1
Q

∂

∂λ
(Q ? a(λ)). (2.4.15)

Let us prove that the definition of the derivative does not depend on the choice of the

function Q(t). Indeed, if ϕ1(t;λ) = Q1(t) ? a(λ), then, obviously, the following relation

holds:

Q ? ϕ1 = Q1 ? ϕ,

or
d

dt

t∫
0

Q(t− u)ϕ1(u;λ)du =
d

dt

t∫
0

Q1(t− u)ϕ(u;λ)du.

Since ∂ϕ1
∂λ and ∂ϕ

∂λ are continuous with respect to the variables t and λ, we have

∂

∂λ

∂

∂t

t∫
0

Q(t− u)ϕ1(u;λ)du =
d

dt

t∫
0

Q(t− u)
∂ϕ1(u;λ)

∂λ
du,

∂

∂λ

∂

∂t

t∫
0

Q1(t− u)ϕ(u;λ)du =
d

dt

t∫
0

Q1(t− u)
∂ϕ(u;λ)
∂λ

du.

Hence, the relations

Q ?
∂ϕ1

∂λ
= Q1 ?

∂ϕ

∂λ
,

1
Q1

?
∂ϕ

∂λ
=

1
Q
?
∂ϕ

∂λ

hold. Thus, the definition of the derivative does not depend on the choice of the function

Q.

The derivative of a reducible operator function has the properties of the ordinary deriv-

ative.

2.4.4 Properties of the Continuous Derivative of an Operator Function

1. If operator functions a(λ) and b(λ) have in an interval (α, β) continuous derivatives,

then their sum and product also have continuous derivatives in this interval and

[a(λ) + b(λ)]′ = a′(λ) + b′(λ), (2.4.16)

[a(λ) ? b(λ)]′ = a′(λ) ? b(λ) + a(λ) ? b′(λ). (2.4.17)
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Proof. By this assumption, there exist functions Q1(t) ∈M and Q2(t) ∈M such that

Q1(t) ? a(λ) = ϕ1(t;λ) ∈M, Q2(t) ? b(λ) = ϕ2(t;λ) ∈M,

and there exist the derivatives ∂ϕ1
∂λ and ∂ϕ2

∂λ . On multiplying these relations by Q2 and Q1,

respectively, and denoting Q = Q1(t) ? Q2(t), we have

Q ? a(λ) = Q2(t) ? ϕ1(t;λ) = ψ1(t;λ) ∈M,

Q ? b(λ) = Q1(t) ? ϕ2(t;λ) = ψ2(t;λ) ∈M.

By the assumption there exist the derivatives ∂ϕ1
∂λ and ∂ϕ2

∂λ belonging to M and con-

tinuous with respect to the variables t, λ; 0 ≤ t < ∞, α < λ < β. Therefore the func-

tions ψ1(t;λ) and ψ2(t;λ) also have the derivatives ∂ψ1
∂λ and ∂ψ2

∂λ continuous in the region

0 ≤ t <∞, α < λ < β and

∂ψ1

∂λ
= Q2(t) ?

∂ϕ1

∂λ
and

∂ψ2

∂λ
= Q1(t) ?

∂ϕ2

∂λ
.

Hence, the following relation holds:

Q ? (a(λ) + b(λ)) = ψ1(t;λ) + ψ2(t;λ) = ψ(t;λ) ∈M

and

[a(λ) + b(λ)]′ =
1
Q

∂ψ

∂λ
=

1
Q

[
∂ψ1

∂λ
+
∂ψ2

∂λ

]
=

1
Q

[
Q2 ?

∂ϕ1

∂λ
+Q1 ?

∂ϕ2

∂λ

]
=

1
Q1

∂ϕ1

∂λ
+

1
Q2

∂ϕ2

∂λ
= a′(λ) + b′(λ).

In order to prove (2.4.16) we take the product

Q ? Q ? [a(λ) ? b(λ)] = ψ1(t;λ) ? ψ2(t;λ).

On denoting Q ? Q = Q2 we obtain

[a(λ) ? b(λ)]′ =
1
Q2

∂

∂λ
[ψ1 ? ψ2] =

1
Q2

d

dt

∂

∂λ

t∫
0

ψ1(t− u;λ)ψ2(u;λ)du

=
1
Q2

d

dt

t∫
0

∂ψ1(t− u;λ)
∂λ

ψ2(u;λ)du

+
1
Q2

d

dt

t∫
0

ψ1(t− u;λ)
∂ψ2(u;λ)

∂λ
du

=
1
Q2

[
∂ψ1

∂λ
? ψ2 + ψ1 ?

∂ψ2

∂λ

]
=

1
Q2

[
Q1 ?

∂ϕ1

∂λ
? Q2 ? ϕ2 +Q1 ? ϕ1 ? Q2 ?

∂ϕ2

∂λ

]
=

1
Q1

?
∂ϕ1

∂λ
?

1
Q2

? ϕ2 +
1
Q1

? ϕ1 ?
1
Q2

?
∂ϕ2

∂λ

= a′(λ) ? b(λ) + a(λ) ? b′(λ).
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2. If a reducible operator function a(λ) is constant in an interval (α, β), i.e., the same

operator a is associated with every value of λ from this interval, then a′(λ) = 0. Conversely

if a′(λ) = 0 for all α < λ < β, then the operator function a(λ) is constant in the interval

α < λ < β.

Proof. If a(λ) is constant in the interval (α, β), then we have ∂ϕ
∂λ = 0. Hence, a′(λ) = 0.

Conversely, if a′(λ) = 0, then ∂ϕ
∂λ = 0 for α < λ < β; therefore, ϕ does not depend on λ.

Then the relation a(λ) = 1
Q ? ϕ implies that a(λ) is constant in the interval (α, β).

3. If c is an arbitrary operator that does not depend on λ and an operator function a(λ)

has a continuous derivative in an interval (α, β), then [c ? a(λ)]′ = c ? a′(λ).

This property follows from Properties 1 and 2.

4. If operator functions a(λ) and 1
a(λ) have continuous derivatives, then(
1

a(λ)

)′
= − a

′(λ)
a2(λ)

,

where a2(λ) = a(λ) ? a(λ).

Proof. Differentiating by λ the relation 1 = 1
a(λ) ? a(λ), by virtue of Property 1, we have

0 =
(

1
a(λ)

)′
a(λ) +

1
a(λ)

? a′(λ),

or (
1

a(λ)

)′
=

−a′(λ)
a(λ) ? a(λ)

.

5. If operator functions a(λ), b(λ) and 1
b(λ) have in an interval (α, β) continuous

derivatives, then (
a(λ)
b(λ)

)′
=
a′(λ)b(λ)− a(λ)b′(λ)

b(λ) ? b(λ)
. (2.4.18)

Proof. Properties 1 and 4 imply(
a(λ)
b(λ)

)′
= a′(λ)

1
b(λ)

+ a(λ)
(

1
b(λ)

)′
=
a′(λ)
b(λ)

− a(λ)b′(λ)
b2(λ)

=
a′(λ)b(λ)− a(λ)b′(λ)

b2(λ)
.

6. If an operator function f(λ) has a continuous derivative f ′(λ) in an interval α <

λ < β and ϕ(λ) is a continuously differentiable number function defined for µ < λ < ν,

whose values belong to the interval (α, β), then the composite function F (λ) = (f ◦ ϕ)(λ)

has a continuous derivative and the following formula holds

F ′(λ) = (f ◦ ϕ)′(λ)ϕ′(λ).
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Proof. There exists a function Q(t) ∈M such that g(λ; t) = Q(t) ? f(λ) has the derivative
∂g
∂λ . Obviously,

g[ϕ(λ); t] = Q(t) ? (f ◦ ϕ)(λ) = Q(t) ? F (λ),

and therefore,

F ′(λ) =
1
Q

∂g[ϕ(λ); t]
∂λ

=
1
Q

∂g

∂ϕ
ϕ′(λ) = (f ◦ ϕ)′(λ)ϕ′(λ).

Continuous derivatives of higher order are usually defined as:

f ′′(λ) = [f ′(λ)]′, f (n)(λ) = [f (n−1)(λ)]′.

We also assume that the right-hand sides have a meaning.

2.4.5 The Integral of an Operator Function

A definite integral for continuous reducible operator functions may be introduced in the

same way as the derivative was introduced.

Definition 2.4.50 There exists always in the ring M a function Q(t) such that
β∫
α

Q ?

a(λ) dλ = ϕ(t) ∈ M ; by the definition the integral
β∫
α

a(λ) dλ is the operator ϕ(t)
Q(t) , i.e.,

β∫
α

a(λ) dλ = ϕ(t)
Q(t) .

This definition is correct. The integral
β∫
α

a(λ) dλ does not depend on the choice of the

function Q(t). Indeed, if P (t) is another operator such that

β∫
α

P (t) ? a(λ) dλ =

β∫
α

ψ(t;λ) dλ = ψ(t),

then
ψ(t)
P (t)

=
ϕ(t)
Q(t)

.

Indeed, on denoting

Q ? a(λ) = ϕ(t;λ) and P ? a(λ) = ψ(t;λ),

we have

Q(t) ? ψ(t;λ) = P (t) ? ϕ(t;λ),

or
d

dt

t∫
0

Q(t− u)ψ(u;λ) du =
d

dt

t∫
0

P (t− u)ϕ(u;λ)du;
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therefore,
t∫

0

Q(t− u)ψ(u;λ)du =

t∫
0

P (t− u)ϕ(u;λ)du.

On integrating by λ from α to β, we find

β∫
α

dλ

t∫
0

Q(t− u)ψ(u;λ)du =

β∫
α

dλ

t∫
0

P (t− u)ϕ(u;λ)du,

after the change of the order of integration

t∫
0

Q(t− u) du

β∫
α

ψ(u;λ) dλ =

t∫
0

P (t− u)du

β∫
α

ϕ(u;λ)dλ,

or
t∫

0

Q(t− u)ψ(u)du =

t∫
0

P (t− u)ϕ(u)du;

therefore, Q ? ψ = P ? ϕ.

In this way we have proven the relation

β∫
α

Q(t) ? ψ(t;λ) dλ = Q(t) ?

β∫
α

ψ(t;λ) dλ. (2.4.19)

The integral of an operator function has all properties of the ordinary integral:

1)
α∫
α

a(λ) dλ = 0,

2)
β∫
α

c ? a(λ) dλ = c ?
β∫
α

a(λ) dλ

(where c is an arbitrary operator that does not depend on the parameter λ);

3)
β∫
α

a(λ)dλ = −
α∫
β

a(λ)dλ,

4)
β∫
α

a(λ)dλ+
γ∫
β

a(λ)dλ =
γ∫
α

a(λ)dλ,

5)
β∫
α

[a(λ) + b(λ)]dλ =
β∫
α

a(λ) dλ+
β∫
α

b(λ)dλ.

If operator functions have continuous derivatives, then

6)
β∫
α

a′(λ) ? b(λ)dλ = a(β) ? b(β)− a(α) ? b(α)−
β∫
α

a(λ) ? b′(λ)dλ.

If the values of a number function ϕ(λ) defined in the interval µ < λ < ν belong to the

interval (α, β), ϕ(µ) = α, ϕ(ν) = β and ϕ(λ) has continuous derivative ϕ′(λ), then

7)
ν∫
µ

(f ◦ ϕ)(λ)ϕ′(λ)dλ =
ϕ(ν)∫
ϕ(µ)

f(λ)dλ.
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Remark 2.4.100 Similarly, other notions from the theory of definite integrals may be

extended to the integrals from operator functions. In particular, the improper integral
∞∫
0

f(λ) dλ may be defined as the limit when n→∞ of the sequence of operators
An∫
0

f(λ) dλ,

and this definition does not depend on the choice of the sequence of numbers An →∞.

Consider the function e(λ) = η(t;λ). Let us find the derivative e′(λ). We have

t2 ? e(λ) = η2(t;λ) =

{
0 for t < λ,
(t−λ)2

2 for t ≥ λ;

hence,
∂η2(t;λ)
∂λ

= −η1(t;λ) =

{
0 for t < λ,

−(t− λ) for t ≥ λ.

Here η1(t;λ) =
t∫
0

η(u;λ)du; therefore,

de(λ)
dλ

= e′(λ) = −η1(t;λ)
t2

= −1
t

η1(t;λ)
t

,

or, taking into account that 1
t = p and η1(t;λ)

t = η(t;λ) = e(λ), we obtain

e′(λ) = −pe(λ). (2.4.20)

On the other hand, it was proven, see formula (2.3.14) that

e(λ) ? e(µ) = e(λ+ µ). (2.4.21)

Up to now the operator function e(λ) was defined only for λ ≥ 0. Let us define e(λ) also

for λ < 0 on setting

e(−λ) =
1

e(λ)
; λ > 0.

Let us prove that in this case (2.4.21) holds for all real λ and µ.

Indeed, for λ < 0 and µ < 0 we have

e(λ)e(µ) =
1

e(−λ)
?

1
e(−µ)

=
1

e(−λ) ? e(−µ)
=

1
e(−λ− µ)

= e(λ+ µ).

If λ > 0 and µ < 0, then we have to distinguish two cases. In the first one λ+ µ ≥ 0, then,

see formula (2.3.14),

e(λ)e(µ) =
e(λ)
e(−µ)

=
η(t;λ)
η(t;−µ)

=
η(t;λ+ µ)

1
= e(λ+ µ).

If λ+ µ < 0, then

e(λ)e(µ) =
η(t;λ)
η(t;−µ)

=
1

η(t;−λ− µ)
= e(λ+ µ).
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Hence, the relation (2.4.21) holds for all real λ and µ. The function 1
e(λ) is not reducible,

therefore (2.4.20) has no meaning for λ < 0. However, we can formally define a derivative

of 1
e(λ) , λ > 0, on setting

(
1

e(λ)

)′
= − e′(λ)

e(λ)?e(λ) . In this case (2.4.20) implies(
1

e(λ)

)′
=

pe(λ)
e(λ) ? e(λ)

= p
1

e(λ)
. (2.4.22)

The properties of e(λ) for λ < 0 formulated above show that is convenient to denote

e(λ) = e−λp (2.4.23)

for all real λ,−∞ < λ <∞.

It was proven (see 2.3.6, (2.3.78)) that

e−pλf(t) =

{
0 if t < λ

f(t− λ) if t ≥ λ.

In the general case e−pλf(t) for λ < 0 is an operator. Instead of e−pλf(t) for λ < 0

it is more convenient to consider epλf(t) for λ > 0. The expression epλf(t) is reducible

to a function if and only if f(t) is equal to zero in the interval (0, λ). More precisely, it

must be
t∫
0

f(u) du = 0 for all 0 ≤ t ≤ λ. Indeed, if epλf(t) = ϕ(t) is a function, then

f(t) = e−pλϕ(t) and therefore, f(t) = 0 (see formula 2.3.78) for 0 ≤ t < λ.

Conversely, if f(t) = 0 for 0 ≤ t < λ, then

e−pλf(t+ λ) =

{
0 for 0 ≤ t < λ,

f(t) for t ≥ λ

}
= f(t) (2.4.24)

for all t ≥ 0. Hence, epλf(t) = f(t+ λ) is a function; thus,

epλf(t) = f(t+ λ) (2.4.25)

under the condition that
t∫

0

f(u) du = 0 for all 0 ≤ t ≤ λ.

Let f(λ) ∈ L. The expression a(λ) = e−pλf(λ) is, obviously, an operator function. Let

us compute the integral
A∫
0

e−λpf(λ) dλ. Since

t ? a(λ) =

{
0 for t < λ,

(t− λ)f(λ) for t ≥ λ,

then the function t ? a(λ) = ϕ(t;λ) belongs to the ring M for all λ ≥ 0. Using the definition

of the integral of an operator function, we obtain

A∫
0

e−λpf(λ)dλ =
1
t
?

A∫
0

ϕ(t;λ)dλ =


p
t∫
0

(t− λ)f(λ)dλ for 0 < t < A

p
A∫
0

(t− λ)f(λ)dλ for t > A,
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or
A∫

0

e−λpf(λ) dλ =

t∫
0

f(λ)dλ for 0 < t < A.

Hence, the following relation holds:

p

A∫
0

e−pλf(λ)dλ = f(t) for 0 < t < A.

Let us now

A1 < A2 < A3 < · · · < An < An+1 < . . . ,

lim
n→∞

An = ∞ and an = p

An∫
0

e−λpf(λ) dλ.

Let us prove that the sequence an converges as n → ∞. Indeed, let (0, T ) be an arbitrary

fixed interval and n0 be such that An0 > T . In this case for all n > n0 we have

an
p

= t ? an =

t∫
0

f(λ) dλ for 0 < t < T.

This implies the convergence and the relation

lim
n→∞

an = f(t).

It is clear that the limit does not depend on the choice of the sequence A1 < A2 < · · · <
An < . . . . Hence, there exists the improper integral

p

∞∫
0

e−pλf(λ)dλ = f(t). (2.4.26)

2.5 Operators Reducible to Functions

2.5.1 Regular Operators

An operator a belonging to the field M(S) is called regular if the function ā(p) associated

with a in the field M̄(S) is analytic in a neighborhood of the point at infinity. The regular

operators form a large and important class of operators for applications. Obviously, the

sum of two regular operators is also a regular operator, and the product of two regular

operators is a regular operator, too. Any regular operator is reducible to a function. This

follows from the following theorem.
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Theorem 2.5.89 Let ā(p) be a regular operator. Hence, in a neighborhood of the point at

infinity |p| > R we have the expansion ā(p) =
∞∑
k=0

ak

pk ; then the following relation holds

ā(p) =
∞∑
k=0

ak
pk

=
∞∑
k=0

akt
k

k!
= a(t), (2.5.1)

and the radius of convergence is equal to infinity.

Proof. The function
∞∑
k=1

ak

pk may be represented by a Laplace integral, see section 1.4.2,

formula (1.4.13),
∞∑
k=1

ak
pk

=
∫ ∞

0

( ∞∑
k=1

akt
k−1

(k − 1)!

)
e−ztdt;

therefore
∞∑
k=1

ak
pk−1

=
∞∑
k=1

akt
k−1

(k − 1)!
,

the series converges for all values of t, and multiplying it by the operator 1
p , we find

∞∑
k=1

ak
pk

=
∞∑
k=1

akt
k

k!
;

hence,

a = ā(p) =
∞∑
k=0

ak
pk

=
∞∑
k=0

akt
k

k!
.

Theorem 2.5.90 If for a sequence of regular operators
(
F̄n(p)

)
n∈N

, the series

∞∑
n=0

F̄n(p) = F̄ (p) (2.5.2)

converges uniformly in the region |p| > R, then F̄ (p) is a regular operator and

F̄ (p) =
∞∑
n=0

Fn(t), (2.5.3)

where

Fn(t) = F̄n(p).

Series (2.5.3) converges uniformly on every segment 0 ≤ t ≤ A.

Proof. Every function F̄n(p) is analytic in the region |p| > R. The uniform convergence

implies that the function F (p) is also analytic in the region |p| > R. If CR1 is a circle with

the center at the point p = 0, then it is known that the following formula holds:

tk

k!
=

1
2πi

∫
CR1

ept

pk+1
dp.
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Replacing tk

k! in (2.5.1) with 1
2πi

∫
CR1

ept

pk+1 dp and supposing the radius R1 of the circle CR1

to be larger than R, we find

1
2πi

∫
CR1

ā(p)
p
eptdp = a(t). (2.5.4)

Applying this formula to F̄n(p) we have

Fn(t) =
1

2πi

∫
CR1

F̄n(p)
p

eptdp (2.5.5)

and by virtue of the uniform convergence of series (2.5.2) we have

∞∑
n=0

Fn(t) =
1

2πi

∫
CR1

∞∑
n=0

F̄n(p)
p

eptdp

or
∞∑
n=0

Fn(t) =
1

2πi

∫
CR1

F̄n(p)
p

eptdp = F (t).

It remains now to prove the uniform convergence of series (2.5.3) in the segment 0 ≤ t ≤ A.

Let ε > 0. Then there exists N such that∣∣∣ ∞∑
n=N

F̄n(p)
∣∣∣ < εe−R1A in the region |p| ≥ R1 > R.

Therefore, (2.5.4) and the last inequality imply (setting p = R1e
iϕ, 0 ≤ ϕ ≤ 2π)∣∣∣∣∣

∞∑
n=N

Fn(p)

∣∣∣∣∣ ≤ 1
2π

∫
CR1

e−R1Aε |ept|
R1

dϕ ≤ 1
2πR1

2πR1ε = ε.

Thus, ∣∣∣∣∣
∞∑
n=N

Fn(t)

∣∣∣∣∣ < ε for all 0 ≤ t ≤ A.

The uniform convergence is proven.

Example 2.5.55 The operator e
λ
p is, obviously, regular. We have the expansion

e−
λ
p =

∞∑
n=0

(−λ)n

n!pn
.

The series converges for |p| > 0; therefore,

e−
λ
p =

∞∑
n=0

(−1)n
λntn

(n!)2
= Jo(2

√
λt).

Similarly, we have

e
λ
p = Jo(2

√
−λt) = Jo(i2

√
λt) = Io(2

√
λt).

© 2006 by Taylor & Francis Group, LLC



Operators Reducible to Functions 239

In the same way one can easily obtain

1
pν
e−

λ
p =

( t
λ

) ν
2
Jν(2

√
λt), (2.5.6)

1
pν
e

λ
p =

( t
λ

) ν
2
Iν(2

√
λt) (2.5.7)

Example 2.5.56 The operator p√
p2+λ2

is, obviously, regular, and for |p| > λ > 0 we have

p√
p2 + λ2

=
1√

1 + λ2

p2

=
(

1 +
λ2

p2

)− 1
2

=
∞∑
k=0

(
− 1

2

k

)(λ2

p2

)k
=

∞∑
k=0

(
− 1

2

k

)
(λt)2k

(2k)!
,

or
p√

p2 + λ2
=

∞∑
k=0

− 1
2 (− 1

2 − 1) · · · (− 1
2 − k + 1)(λt)2k

k! · 1 · 2 · 3 · · · k(k + 1) · · · (2k − 1)2k

=
∞∑
k=0

(−1)k1 · 3 · 5 · · · (2k − 1)(λt)2k

2k · k! · 1 · 3 · · · (2k − 1) · 2kk!

=
∞∑
k=0

(−1)k(λt2 )2k

(k!)2
= Jo(λt);

Thus
p√

p2 + λ2
= Jo(λt).

We have obtained the operator transform of the Bessel function of order zero.

2.5.2 The Realization of Some Operators

In operational calculus, one deals, as a rule, with operators represented by the form ā(p).

Two problems arise here:

1) some criteria must be formulated, which allow us to decide if a given operator ā(p) is

reducible to a function;

2) if an operator is reducible to a function, then we need to find this function.

This problem often may be solved only approximately, i.e., one can calculate only indi-

vidual values of the function.

An operator ā(p) is reducible to a function ϕ(t) ∈ S if and only if ā(p) and ϕ(t) satisfy

the relation

ā(p) = p

∞∫
0

ϕ(t)e−ptdt = pL[ϕ](p), p ∈ Hγ . (2.5.8)

Hence, an operator ā(p) is reducible to a function ϕ(t) if the function ā(p)
p of a complex

variable is representable by an absolutely convergent Laplace integral. In section 1.4.4 some

sufficient conditions for an analytical function in the half-plane Hγ to be representable by

the Laplace integral were given. If it is shown that the operator ā(p) is reducible to a
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function, then in order to find this function we have to use the inversion theorem for the

Laplace integral (see Theorem 1.4.13 and formula 2.5.8) and we obtain

ϕ(t) =
1

2πi

∫
(γ)

ā(p)
p
eptdp. (2.5.9)

In order to obtain a convenient expression for the function ϕ(t) we often must deform

the path of integration in formulae (2.5.9). Sometimes, applying Jordan’s lemma and the

Cauchy theorem on the residues, one can obtain an explicit series expansion of ϕ(t); see

1.4.5.

Theorem 2.5.91 Let

1) ā(p) be a regular function in any finite part of the plane of the complex variable p

except the set of points p1, p2, · · · , pn, · · · (|p1| < |p2| < · · · < |pn| < · · · ) which are the

poles of the function ā(p)
p such that Re(pn) < γo for all n;

2) the following limit exists

lim
ω→∞

1
2πi

γ+iω∫
γ−iω

ā(p)
p
eptdp =

1
2πi

∫
(γ)

ā(p)
p
eptdp, γ > γo;

3) there exist a sequences of simple contours Cn relying on the line Re(p) = γ at the

points γ + iβn, γ − iβn. (These contours lie in the half-plane Re(p) < γ and do not go

through the poles pn.) Each contour Cn contains the origin and n first poles p1, p2, · · · , pn
(see Figure 10).

4) for all t > 0

lim
n→∞

∫
Cn

ā(p)
p
eptdp = 0;

then the value of the integral is equal to the convergent series

1
2πi

∫
(γ)

ā(p)
p
eptdp =

∞∑
n=0

rn(t),

where rn(t) is the residue of the function ā(p)
p ept at the point p = pn(n = 1, 2, · · · ) and

ro(t) is the residue at zero.
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Figure 10

NOTE. If the function ā(p)
p satisfies the conditions of Jordan’s lemma, then it is natural

to choose as Cn arcs of circles.

If there exist sequences of positive numbers βn and δn and a number Q > 0 such that

1) lim
n→∞

βn = ∞, lim
n→∞

δn = 0;

2)
∣∣∣ ā(σ ± iβn)
σ ± iβn

∣∣∣ < δn,
∣∣∣ ā(−βn + ir)
−βn + ir

∣∣∣ < Q, −βn ≤ σ ≤ γ, |r| ≤ βn,

then one can take as the contours Cn the contour shown in Figure 11.

Figure 11

Example 2.5.57 Let us consider the operator
√
pe−λ

√
p, λ > 0. The function f̄(p) =

√
p

p e
−λ√p is, obviously, bounded on the half-plane Hγo

, γo > 0 and

∞∫
−∞

∣∣∣ 1√
σ + ir

e−λ
√
σ+ir

∣∣∣dr <∞,

© 2006 by Taylor & Francis Group, LLC



242 Operational Calculus

therefore (see section 1.4.5, Theorem 1.4.15) the function f̄(p) is representable by a Laplace

integral. Hence, the operator
√
pe−λ

√
p is reducible to a function. The value of this function

is equal to the integral
1

2πi

∫
(γ)

e−λ
√
p+tp

√
p

dp, γ > 0.

In order to calculate this integral we use the formula
√
tp− λ

2
√
t

= ω to change the variable

of integration. We have

1
2πi

∫
(γ)

e−λ
√
p+tp

√
p

dp =
1

πi
√
t

∫
(γ)

e
(
√
tp− λ

2
√

p )2−λ2
4t d(

√
tp) =

e−
λ2
4t

πi
√
t

∫
L

eω
2
dω;

in this case the line Re(p) = γ transforms into the hyperbola L; thus,

√
pe−λ

√
p =

e−
λ2
4t

πi
√
t
C,

where C =
∫
L

eω
2
dω is constant. In order to find C, let us set λ = 0. Then

√
p = C

πi
√
t
, and

from 2.3.2, (2.3.24) and the remarks on this formula in 2.3.3, we have

√
p = p

1
2 =

t−
1
2

Γ(1− 1
2 )

=
1√
πt
,

hence, we have 1√
πt

= C
πi
√
t
. or C = i

√
π; thus,

√
pe−λ

√
p =

1√
πt
e−

λ2
4t . (2.5.10)

2.5.3 Efros Transforms

The following theorem is useful for solving the question about the reducibility of a given

operator ā(p) to a function and computation of this function.

Theorem 2.5.92 If an operator ā(p) can be represented by the form

ā(p) = pH
[ h̄(p)
p

]
, (2.5.11)

where the operator h̄(p) is reducible to a function h(p) ∈ S and H(z) is an analytic function

in the disk |z| < ρ and H(0) = 0, then ā(p) is reducible to the function a(t) belonging to S.

Proof. Indeed, the formulated assumptions imply that the function h̄(p)
p is reducible by

an absolutely convergent Laplace integral. This implies the representability of the function

H
[
h̄(p)
p

]
by an absolutely convergent Laplace integral, i.e.,

ā(p) = pH
[ h̄(p)
p

]
= p

∞∫
0

a(t)e−ptdt,
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and this integral is absolutely convergent for Re(p) > γ; hence, the operator ā(p) is reducible

to a function.

Consider the function G(z) = 1
ζ−z −

1
ζ , where ζ is a complex parameter. Obviously, the

function G(z) is analytical in the region |z| < |ζ| = ρ; therefore, the operator p

ζ− h̄(p)
p

− p
ζ is

reducible to a function. Let us introduce the notation

p

ζ − h̄(p)
p

− p

ζ
=

ph̄(p)
ζ(ζp− h̄(p))

= K(t; ζ). (2.5.12)

Multiplying both sides of this relation by 1
2πiH(ζ) and integrating along the circle |ζ| = ρ,

we have

1
2πi

∫
|ζ|=ρ

pH(ζ)

ζ − h̄(p)
p

dζ − p

2πi

∫
|ζ|=ρ

H(ζ)
ζ

dζ =
1

2πi

∫
|ζ|=ρ

K(t; ζ)H(ζ)dζ.

But H(0) = 0; therefore, from the Cauchy integral formula we have

pH
[ h̄(p)
p

]
=

1
2πi

∫
|ζ|=ρ

K(t; ζ)H(ζ)dζ = a(t). (2.5.13)

This formula may be applied to compute the function a(t). The simplest example is the

case of h̄(p) = 1; then the operator pH
(

1
p

)
is regular. For h̄(p) = 1 we have

K(t; ζ) =
p

ζ(pζ − 1)
=

p

ζ2(p− 1
ζ )

=
1
ζ2

exp
( t
ζ

)
and

pH
(1
p

)
=

1
2πi

∫
|ζ|=ρ

exp
( t
ζ

)
H(ζ)

dζ

ζ2
.

On setting 1
ζ = z, we have

ā(p) = pH
(1
p

)
=

1
2πi

∫
|ξ|= 1

ρ

etzH
(1
z

)
dz.

This equation coincides with (2.5.4), section 2.5.1.

Consider now another method of computing the function by its operator transform.

Theorem 2.5.93 If an operator ā(p) may be represented by the form ā(p) = Φ̄(q(p))
pq(p) , and

a) Φ̄(p) = p
∞∫
0

Φ(t) exp(−pt)dt and
∞∫
0

|Φ(t)| exp(−γot)dt <∞, where γo > 0;

b) q(p) is analytic in the half-plane H̄γo
, γo ≥ 0, satisfying in this half-plane the condition

Re(q(p)) ≥ γo,
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then the operator ā(p) is reducible to a function belonging to S:

ā(p) =

∞∫
0

L(t; ξ)Φ(ξ)dξ, (2.5.14)

where

L(t; ξ) =
1
p
e−ξq(p). (2.5.15)

Proof. The conditions a) and b) imply the absolute and uniform convergence in the half-

plane H̄γo
of the integral

1
q(p)

Φ̄(q(p)) =

∞∫
0

e−ξq(p)Φ(ξ)dξ. (2.5.16)

Indeed,

∣∣∣ ∞∫
0

e−ξq(p)Φ(ξ)dξ
∣∣∣ ≤ ∞∫

0

e−ξRe(q(p))|Φ(ξ)|dξ ≤
∞∫
0

e−ξγo |Φ(ξ)|dξ <∞; (2.5.17)

therefore, the integral (2.5.16) represents in the half-plane H̄γo
an analytic function. The

inequality ∣∣∣ Φ̄(q(p))
q(p)

∣∣∣ ≤ ∞∫
0

e−ξγo |Φ(ξ)|dξ

implies the uniform boundedness of the function Φ̄(q(p))
q(p) in the half-plane H̄γo ; therefore,

there exists the integral
1

2πi

∫
(γ)

Φ̄(q(p))
p2q(p)

eptdp = a(t),

and

p

∞∫
0

a(t)e−ptdt =
Φ̄(q(p))
pq(p)

= ā(p). (2.5.18)

Hence, the operator ā(p) is reducible to the function a(t). In order to compute a(t) we note

that for any ξ, 0 ≤ ξ <∞, the operator 1
pe
−ξq(p) is reducible to the function

L(t; ξ) =
1

2πi

γ+i∞∫
γ−i∞

e−ξq(p)+pt

p2
dp (2.5.19)

because the function eξq(p)

p2 , 0 ≤ ξ <∞, satisfies all the conditions of Theorem 1.4.13, section

1.4.4, and hence it may be represented by an absolutely convergent Laplace integral. In

particular, integral (2.5.19) is absolutely convergent, and taking into account (2.5.15) and
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(2.5.17) we find

∞∫
0

L(t; ξ)Φ(ξ)dξ = lim
A→∞

1
2πi

∫
(γ)

ept

p2
dp

A∫
0

e−ξq(p)Φ(ξ)dξ

=
1

2πi

∫
(γ)

ept

p2
dp

∞∫
0

e−ξq(p)Φ(ξ)dξ

=
1

2πi

∫
(γ)

eptΦ̄(q(p))
q(p)

dp

p2
= a(t).

Comparing this relation with (2.5.18), we obtain the formula

Φ̄(q(p))
pq(p)

=

∞∫
0

L(t; ξ)Φ(ξ)dξ,

which implies

Φ̄(q(p)) = pq(p)

∞∫
0

L(t; ξ)Φ(ξ)dξ. (2.5.20)

On multiplying both sides by the operator b̄(p), we obtain

b̄(p)Φ̄(q(p)) = pb̄(p)q(p)

∞∫
0

L(t; ξ)Φ(ξ)dξ.

After denoting pb̄(p)q(p)L(t; ξ) = Ψ(t; ξ) we obtain

b̄(p)Φ̄(q(p)) =

∞∫
0

Ψ(t; ξ)Φ(ξ)dξ.

Hence, the integral, generally speaking, is convergent in the operational sense (see section

2.4). Formula (2.5.20) is called the Efros transform.

Example 2.5.58 Let q(p) = 1
p . Obviously, Re( 1

p ) > 0, if Re(p) > 0. Hence, γo = 0. In

accordance with (2.5.6), section 2.5.1, we have

L(t; ξ) =
1
p
e−

ξ
p =

√
t

ξ
J1(2

√
tξ);

hence,

Φ̄
(1
p

)
=

∞∫
0

Φ(ξ)J1(2
√
tξ)
√
t

ξ
dξ.

Applying the operator p1−n to both sides of this relation and taking into account that

p1−nL(t; ξ) = 1
pn e

− ξ
t =

(
t
ξ

)n
2
Jn(2

√
tξ), we find

p1−nΦ
(1
p

)
=

∞∫
0

Φ(ξ)J1(2
√
tξ)
( t
ξ

)n
2
dξ.
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Example 2.5.59 Let q(p) =
√
p. From (2.5.10), section 2.5.2, we have

√
pe−ξ

√
p =

1√
πt
e−

ξ2

4t ;

hence,
1
p
e−ξ

√
p = L(t; ξ) =

1
p
√
p

1√
πt
e−

ξ2

4t ,

and therefore,

Φ̄(
√
p)

p
√
p

=
1

p
√
p

∞∫
0

1√
πt
e−

ξ2

4t Φ(ξ)dξ,

or

Φ̄(
√
p) =

∞∫
0

1√
πt
e−

ξ2

4t Φ(ξ)dξ. (2.5.21)

Example 2.5.60 Let q(p) = 1√
p . The simplest way to compute the operator Φ

(
1√
p

)
is the

following: we compute Φ̄
(

1
p

)
from the first example, then, using the second example, we

compute Φ̄
(√

1
p

)
= Φ̄

(
1√
p

)
. So we obtain

Φ̄
( 1
√
p

)
=

1√
πt

∞∫
0

e−
ξ2

4t dξ

∞∫
0

Φ(u)J1(2
√
ξu)

√
ξ

u
du.

Example 2.5.61 Let q(p) = p+ 1
p . We have

L(t; ξ) =
1
p
e−ξ(p+

1
p ) =

e−ξp

p
e−

ξ
p =

1
p
e−ξpJo(2

√
tξ),

or, see formula (2.3.78),

L(t; ξ) =

{
0 for t < ξ,
1
pJo(2

√
ξ(t− ξ)) for t ≥ ξ;

hence, we obtain

Φ(p+ 1
p )

p(p+ 1
p )

=
1
p

t∫
0

Jo(2
√
ξ(t− ξ) )Φ(ξ)dξ,

or

Φ(p+ 1
p )

(p+ 1
p )

=

t∫
0

Jo(2
√
ξ(t− ξ))Φ(ξ)dξ. (2.5.22)
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2.6 Application of Operational Calculus

2.6.1 Ordinary Differential Equations

Problem 2.6.1. Consider a linear ordinary differential equation of nth order with con-

stant coefficients

x(n)(t) + an−1x
(n−1)(t) + · · ·+ a1x

′(t) + a0x(t) = f(t), 0 ≤ t <∞ (2.6.1)

with the initial conditions

x(0) = x0, x′(0) = x1, . . . , x(n−1)(0) = xn−1. (2.6.2)

Applying the formula

x(k)(t) = pkx(t)− pkx(0)− pk−1x′(0)− · · · − px(k−1)(0), (2.6.3)

we can rewrite (2.6.1) in the form

L(p)
[
x(t)− x0 −

x1

p
− · · · − xn−1

pn−1

]
= f(t)− b0 −

b1
p
− · · · − bn−1

pn−1
,

where

L(p) = pn + an−1p
n−1 + · · ·+ a0;

bk =
n−1∑
s=k

xsas−k (k = 0, 1, . . . , n− 1);

therefore, we obtain

x(t) =
1

L(p)
f(t)− 1

L(p)

n−1∑
k=0

bk
pk

+ x0 +
x1

p
+ · · ·+ xn−1

pn−1
. (2.6.4)

This formula gives us the solution of equation (2.6.1). We see immediately that the right-

hand side of (2.6.4) is an n times differentiable function, satisfying the initial conditions.

The first part of solution (2.6.4), namely,

x1(t) =
f(t)
L(p)

, (2.6.5)

is a solution of the nonhomogeneous equation (2.6.1) with zero initial conditions, and the

second part

x2(t) = − 1
L(p)

n−1∑
k=0

bk
pk

+ x0 +
x1

p
+ · · ·+ xn−1

pn−1
(2.6.6)

is the solution of the associated homogeneous equation with arbitrary initial conditions

(2.6.2). In the case when λ1, λ2, . . . , λn are simple roots of L(p), we have

L(p) = (p− λ1)(p− λ2) . . . (p− λn) =
n∏
ρ=1

(p− λρ),
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and the function z̄(p) = 1
L(p) may be decomposed into partial fractions:

z̄(p) =
1

L(p)
=

n∑
ν=1

cν
p− λν

. (2.6.7)

Multiplying (2.6.7) by (p− λµ), we obtain

p− λµ
L(p)

= cµ + (p− λµ)
n∑
ν=1

′ cν
p− λν

,

where the prime sign by the sum means that in the sum the term with µ = ν is omitted.

After passing to the limit as p→ λµ, we obtain

cµ = lim
p→λµ

p− λµ
L(p)

= lim
p→λµ

1
L(p)−L(λµ)

p−λµ

=
1

L′(λµ)
.

Therefore, the decomposition of z̄(p) into partial fractions has the form

z̄(p) =
1

L(p)
=

n∑
ν=1

1
(p− λν)L′(λν)

.

According to formula (2.3.49) we have

z(t) =
n∑
ν=1

eλνt − 1
λνL′(λν)

,

therefore, by formula (2.3.52) and (2.3.4), we have

x1(t) = z̄(p)f(t) =
d

dt

t∫
0

z(t− τ)f(τ)dτ =
n∑
ν=1

eλνt

L′(λν)

t∫
0

e−λντf(τ)dτ. (2.6.8)

In the case where L(p) has multiple roots

λ1 = λ2 = · · · = λr, λr+1, λr+2, . . . , λn,

we have

L(p) = (p− λ1)r(p− λr+1)(p− λr+2) . . . (p− λn) = (p− λ1)rLr(p),

where

Lr(p) = (p− λr+1)(p− λr+2) . . . (p− λn),

and the function z̄(p) may be represented by the following sum of partial fractions

z̄(p) =
1

L(p)
=

c11
p− λ1

+
c12

(p− λ1)2
+ · · ·+ c1r

(p− λ1)r
+

cr+1

p− λr+1
+ · · ·+ cn

p− λn
,

or

z̄(p) =
1

L(p)
=

r∑
ν=1

c1ν
(p− λ1)ν

+
n∑

ν=r+1

cν
p− λν

. (2.6.9)
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Multiplying (2.6.9) by (p− λ1)r, we obtain

(p− λ1)r

L(p)
=

1
Lr(p)

= c1r +
r−1∑
ν=1

c1ν(p− λ1)r−ν + (p− λ1)r
n∑

ν=r+1

cν
p− λν

. (2.6.10)

Passing to the limit as p− λ1, we find

c1r = s(λ1) =
1

Lr(λ1)
. (2.6.11)

Similarly, differentiating (2.6.10) (r−µ) times (µ = 1, 2, . . . , r− 1) and passing to the limit

as p→ λ1, we obtain

c1µ =
s
(r−µ)
r (λ1)
(r − µ)!

(µ = 1, 2, . . . , r − 1), (2.6.12)

where

sr(p) =
1

Lr(p)
.

It follows from (2.6.11) and (2.6.12) that

c1ν =
s
(r−ν)
r (λ1)
(r − ν)!

(ν = 1, 2, . . . , r). (2.6.13)

In the same way the coefficients cν may be found. After multiplying (2.6.9) by p − λµ

(µ = r + 1, r + 2, . . . , n), we have

p− λµ
L(p)

= (p− λµ)
r∑

ν=1

c1ν
(p− λ1)ν

+ cµ + (p− λµ)
n∑

ν=r+1

′ cν
p− λν

,

where the prime sign by the sum denotes again that the term with µ = ν is omitted in the

sum. On setting p = λµ, we find

cµ = lim
p→λµ

p− λµ
L(p)

= lim
p→λµ

1
L(p)−L(λµ)

p−λµ

=
1

L′(λµ)
;

hence,

cν =
1

L′(λν)
=

1
(λν − λ1)rL′r(λν)

, ν = r + 1, r + 2, . . . , n. (2.6.14)

According to formulas (2.3.48) and (2.3.51) we have

z̄(p) = z(t) =

t∫
0

eλ1τ
r∑

ν=1

c1ντ
ν−1

(ν − 1)!
dτ +

t∫
0

n∑
ν=r+1

eλντ

L′(λν)
dτ. (2.6.15)

Finally, using formula (2.3.52) we find

x1(t) = z̄(p)f(t) =
d

dt

t∫
0

z(t− τ)f(τ)dτ

= eλ1t
r∑

ν=1

c1ν

(ν − 1)!

t∫
0

(t− τ)ν−1e−λ1τf(τ)dτ

+
n∑

ν=r+1

eλνt

L′(λν)

t∫
0

e−λντf(τ)dτ.

(2.6.16)
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In particular, if λ1 is a simple root of L(p), i.e., r = 1, then c11 = 1
L′(λ1)

and (2.6.16) implies

(2.6.8).

Now we are going to consider the homogeneous differential equation associated with

(2.6.1) with initial conditions (2.6.2). Setting in formula (2.6.2)

x0 = x1 = x2 = · · · = xn−2 = 0, xn−1 = 1,

from (2.6.6) we find

x2(t) =
p

L(p)
= Ψ̄(p). (2.6.17)

In order to find the function Ψ̄(p) = Ψ(t), according to the formulas (2.3.48), (2.6.7),

(2.3.51), and (2.6.9) we have

Ψ(t) =
n∑
ν=1

eλνt

L′(λν)
(2.6.18)

or

Ψ(t) = eλ1t
r∑

ν=1

c1νt
ν−1

(ν − 1)!
+

n∑
ν=r+1

eλνt

L′(λν)
. (2.6.19)

Obviously, the function Φ(t) satisfies the conditions

Ψ(0) = Ψ′(0) = Ψ′′(0) = · · · = Ψ(n−2)(0) = 0, Ψ(n−1)(0) = 1. (2.6.20)

Representing the expression (2.6.6) in the form

x2(t) =
1

L(p)

n−1∑
k=0

xk(pn−k + a1p
n−k−1 + a2p

n−k−2 + · · ·+ an−k−1p), (a0 = 0), (2.6.21)

and using (2.6.3), (2.6.20), we find the solution of the homogeneous equation, satisfying

arbitrary initial conditions

x2(t) =
n−1∑
k=0

xk[Ψ(n−k−1)(t) + a1Ψ(n−k−2)(t) + · · ·+ an−k−1Ψ(t)]. (2.6.22)

Problem 2.6.2. Let us introduce into consideration a system of linear differential equa-

tions of the first order with constant coefficients (aik), solved with respect to the first

derivatives:
dx1

dt
= a11x1 + a12x2 + · · ·+ a1nxn,

dx2

dt
= a21x1 + a22x2 + · · ·+ a2nxn,

.........................................................

dxn
dt

= an1x1 + an2x2 + · · ·+ annxn,

(2.6.23)

0 < t <∞.
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It is known that any system of differential equations solvable with respect to the highest

derivatives of unknown functions may be reduced to a system of the form (2.6.23). We shall

derive a solution of the system (2.6.23), satisfying the initial conditions

x1|t=0 = x0
1, x2|t=0 = x0

2, , . . . , xn|t=0 = x0
n. (2.6.24)

The system of equations (2.6.23) may be rewritten in the form

dxk
dt

=
n∑
s=1

aksxs, k = 1, 2, . . . , n. (2.6.25)

Using formulae (2.6.3), we reduce the system (2.6.25) to a system of algebraic equations

px̄k(p) =
n∑
s=1

aksxs(p) + px0
k, k = 1, 2, . . . , n. (2.6.26)

The extended form of the system (2.6.26) is

(a11 − p)x̄1(p) + a12x̄2(p) + . . . + a1nx̄n(p) = −px0
1,

a21x̄1(p) +(a22 − p)x̄2(p) + . . . + a2nx̄n(p) = −px0
2,

. . . + . . . + . . . + . . . = . . . ,
an1x̄1(p) + an2x̄2(p) + . . . +(ann − p)x̄n(p) = −px0

n.

(2.6.27)

Let

∆(p) =

∣∣∣∣∣∣∣∣
a11 − p a12 . . . a1n

a21 a22 − p . . . a2n

. . . . . . . . . . . .
an1 an2 . . . ann − p

∣∣∣∣∣∣∣∣ (2.6.28)

be the determinant of the system (2.6.27), ∆ks(p) the minor of the entry in the kth row

and sth column of this determinant, i.e., the determinant obtained after omitting the kth

row and the sth column in the determinant ∆(p) and multiplied by (−1)k+s.

The solution of the system (2.6.27) may be expressed in the form

x̄s(p) = −p
n∑
k=1

x0
k

∆ks(p)
∆(p)

, s = 1, 2, . . . , n. (2.6.29)

In order to find xs(t) we have to find the functions

ψks(t) = ψ̄ks(p) = −p∆ks(p)
∆(p)

. (2.6.30)

The functions ψks are easy to determine after breaking down ψ̄ks(p) into partial fractions.

In order to break down ψ̄ks(p) into partial fractions we need to know the roots of the

characteristic equation

∆(p) = 0. (2.6.31)

After determining the functions ψks(t) and finding xs(t) we have

xs(t) =
n∑
k=1

x0
kψks(t), s = 1, 2, . . . , n. (2.6.32)
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The formulated method may be applied to the integration of a nonhomogeneous system of

linear differential equations of the first order with constant coefficients of the form

dxk
dt

=
n∑
k=1

aksxs + fk(t), k = 1, 2, . . . , n. (2.6.33)

We seek the solution of system (2.6.33), satisfying the initial conditions (2.6.24). The

operator transform has the form

px̄k(p) = pxk0 +
n∑
s=1

aksx̄s(p) + f̄k(p). (2.6.34)

Similar to the previous case, we find the solution of the linear system (2.6.34):

x̄s(p) = −p
n∑
k=1

(
xko +

f̄k(p)
p

)
∆ks(p)
∆(p)

, (2.6.35)

or

x̄s(p) = −p
n∑
k=1

xko
∆ks(p)
∆(p)

−
n∑
k=1

f̄k(p)
∆ks(p)
∆(p)

. (2.6.36)

Taking into account (2.6.32) we have

xs(t) =
n∑
k=1

[
x0
kψks(t) +

t∫
0

fk(τ)ψks(t− τ)dτ
]
. (2.6.37)

Similarly, one can consider a more general system of linear ordinary differential equations

of the form
n∑
k=1

(
aνk

d2xk
dt2

+ bνk
dxk
dt

+ cνkxk

)
= fν(t), ν = 1, 2, ..., n, (2.6.38)

with the initial conditions

xk(0) = αk, x′k(0) = βk, k = 1, 2, . . . , n. (2.6.39)

The operator transform of the system (2.6.38) with conditions (2.6.39) is the system of

algebraic equations with respect to unknown functions x̄k(p):
n∑
k=1

(aνkp2 + bνkp+ cνk)x̄k(p) = f̄ν(p) +
n∑
k=1

(aνkp2 + bνkp)αk + aνkpβk,

ν = 1, 2, . . . , n,

(2.6.40)

After finding from this system the functions x̄k(p) and passing to the originals, one obtains

the desired solution.

Example 2.6.62 Find the solution of the system of two linear ordinary differential equa-

tions
dx

dt
= ay + f(t),

dy

dt
= −ax+ g(t)

(2.6.41)
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with initial conditions

x(0) = 0, y(0) = 0. (2.6.42)

The operator transform of the system (2.6.41) with conditions (2.6.42) has the form

px̄(p)− aȳ(p) = f̄(p),

ax̄(p) + pȳ(p) = ḡ(p).

Let us find the solution of these equations:

x̄(p) =
pf̄(p) + aḡ(p)

p2 + a2
, ȳ(p) =

−af̄(p) + pḡ(p)
p2 + a2

.

Using the operational formulae

ap

p2 + a2
= sin at,

p2

p2 + a2
= cos at,

we obtain the desired solution

x(t) =

t∫
0

[f(τ) cos a(t− τ) + g(τ) sin a(t− τ)]dτ,

y(t) =

t∫
0

[−f(τ) sin a(t− τ) + g(τ) cos a(t− τ)]dτ.

Example 2.6.63 Find the solution of the system of three linear ordinary differential equa-

tions
dx

dt
= −x+ y + z,

dy

dt
= x− y + z,

dz

dt
= x+ y + z,

(2.6.43)

with initial conditions

x(0) = 0, y(0) = 0 z(0) = 0. (2.6.44)

The operator transform of the system (2.6.43) with conditions (2.6.44) has the form

(p+ 1)x̄(p)− ȳ(p)− z̄(p) = p,

− x̄(p) + (p+ 1)ȳ(p)− z̄(p) = 0,

− x̄(p)− ȳ(p) + (p− 1)z̄(p) = 0.

From the last system we find:

x̄(p) =
1
3

p

p+ 1
+

1
2

p

p+ 2
+

1
6

p

p− 2
,

ȳ(p) =
1
3

p

p+ 1
− 1

2
p

p+ 2
+

1
6

p

p− 2
,

z̄(p) = −1
3

p

p+ 1
+

1
3

p

p− 2
.
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Using the formula (2.3.49), we obtain the desired solution:

x(t) =
1
3
e−t +

1
2
e−2t +

1
6
e2t,

y(t) =
1
3
e−t − 1

2
e−2t +

1
6
e2t,

z(t) = −1
3
e−t +

1
3
e2t.

Problem 2.6.3. In some cases operational calculus may be applied in order to solve linear

ordinary differential equations with variable coefficients

x(n)(t) + a1(t)x(n−1)(t) + a2(t)x(n−2)(t) + · · ·+ an(t)x(t) = f(t). (2.6.45)

We consider only the case when all functions ai(t) are polynomials. In order to obtain the

operator transform of the equation in this case, it suffices, obviously, to know how to write

the operator transform of the function tkx(n)(t). As it is known,

tx(t) = −p d
dp

[
x̄(p)
p

]
. (2.6.46)

Applying this formula to the function tx(t) we obtain

t2x(t) = (−1)2p
d2

dp2

[
x̄(p)
p

]
. (2.6.47)

In a similar way one can easily obtain the formulae

t3x(t) = (−1)3p
d3

dp3

[
x̄(p)
p

]
, (2.6.48)

.............................................

tkx(t) = (−1)kp
dk

dpk

[
x̄(p)
p

]
. (2.6.49)

After expanding the operator dk

dpk in the last formula, we have

tkx(t) =
k∑
ν=0

(−1)ν
(
k

ν

)
(k − ν)!
pk−ν

x̄(ν)(p) =
k∑
ν=0

(−1)ν
k!
ν!

1
pk−ν

x̄(ν)(p). (2.6.50)

In order to obtain the operator transform of the function tkx(r)(t) we need to substitute in

(2.6.50) instead of x̄(p) the operator transform of the function x(r)(t) = prx̄(p)− prx(0)−
pr−1x′(0)− · · · − px(r−1)(0):

tkx(r)(t) =
k∑
ν=0

(−1)νk!
ν!

[prx̄(p)− prx(0)− pr−1x′(0)− · · · − px(r−1)(0)](ν)

pk−ν
. (2.6.51)

For zero initial conditions

x(0) = x′(0) = · · · = x(r−1)(0) = 0. (2.6.52)
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The formula (2.6.51) takes the form

tkx(r)(t) =
n∑
ν=0

(−1)νk!
ν!

[prx̄(p)]ν

pk
. (2.6.53)

As an example, we consider Hermite’s equation

x′′(t)− tx′(t) + nx(t) = 0 (n ∈ No).

We shall seek the solution for the following initial conditions:

x(0) = 1, x′(0) = 0, if n = 2k is an even integer;

x(0) = 0, x′(0) = 1, if n = 2k + 1 is an odd integer.

On putting k = 1 and r = 1 in (2.6.51), we obtain

tx′(t) = −pdx̄(p)
dp

.

Hence, the operator transform for Hermite’s equation has the form

p2

[
x̄(p)− x(0)− 1

p
x′(0)

]
+ p

dx̄(p)
dp

+ nx̄(p) = 0,

or
dx̄(p)
dp

= −
(
p+

n

p

)
x̄(p) + px(0) + x̄′(0);

therefore, we have the solution:

x̄(p) = cp−ne−
p2

2 + p−ne−
p2

2

∫
[px(0) + x′(0)]pne

p2

2 dp. (2.6.54)

Consider the first case, when n = 2k is an even integer, x(0) = 1, x′(0) = 0:

x̄(p) = cp−2ke−
p2

2 + p−2ke−
p2

2

∫
p2k+1e

p2

2 dp.

Let us denote

Ik =
∫
p2k+1e

p2

2 dp.

After integrating by parts, we have

Ik =
∫
p2k+1e

p2

2 dp =
∫
p2kd

(
e

p2

2

)
= p2ke

p2

2 −
∫

2kp2k−1e
p2

2 dp,

i.e.,

Ik = p2ke
p2

2 − 2kIk−1.

Thus,

Ik =
ep

2

2

k∑
s=0

(−1)s2ss!
(
k

s

)
p2k−2s.

Hence, from (2.6.54) we have

x̄(p) = cp−2ke−
p2

2 +
k∑
s=0

(−1)s2ss!
(
k

s

)
p−2s.
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The function f(p) = f(σ + iτ) = cp−2ke−
p2

2 is not bounded for a fixed σ and τ → ∞.

Indeed,
c

p2k
e−

p2

2 =
c

p2k
e−

(σ2−r2+2iστ)
2 =

c

p2k
e

τ2−σ2
2 +iστ ;

therefore, ∣∣∣∣ cp2k
e−

p2

2

∣∣∣∣ =
c

|p|2k
e

τ2−σ2
2 →∞ as τ →∞.

It follows from here, that for c 6= 0 the function f(p) is not representable by a Laplace

integral; therefore, c = 0 and the solution is

x(t) =
k∑
s=0

(−1)s2ss!
(
k

s

)
t2s

(2s)!
.

One can show that x(t) up to a constant factor is the Hermite polynomial.

The second case, when x(0) = 0, x′(0) = 1 and n = 2k + 1 is an odd integer, may be

solved analogously. From (2.6.54) we have

x̄(p) = cp−ne−
r2
2 + p−ne−

p2

2

∫
pne

p2

2 dp,

where n = 2k + 1. Previously we investigated the integral
∫
p2k+1e

p2

2 dp and found that it

is equal to Ik; therefore, c = 0 and the solution has the form

x(t) =
k∑
s=0

(−1)s2ss!
(
k

s

)(
t2s+1

(2s+ 1)!

)
.

Problem 2.6.4. Consider a differential equation with delayed argument and constant

coefficients

x(n)(t) =
n−1∑
k=0

akx
(k)(t− hk) + g(t), 0 ≤ t <∞, hk ≥ 0. (2.6.55)

For the sake of simplicity we shall assume the initial conditions to be equal to zero. Hence,

we have to find the solution of equation (2.6.55) under the condition that

x(0) = x′(0) = · · · = x(n−1)(0) = 0. (2.6.56)

In addition, we suppose that

x(t) = x′(t) = · · · = x(n−1)(t) = 0 for t < 0.

Taking into account that

x(k)(t− hk) = pke−hkpx(t),

we find the operator transform of equation (2.6.57):

pnx(t) =
n−1∑
k=0

akp
ke−hkpx(t) + g(t);
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therefore,

x(t) =

(
pn −

n−1∑
k=0

akp
ke−hkp

)−1

g(t).

Let us introduce the notation

ω(p) =
1
pn

n−1∑
k=0

akp
ke−hkp.

Then we obtain

x(t) =
g(t)
pn

1
1− ω(p)

. (2.6.57)

In order to show that (2.6.57) is the solution of equation (2.6.55), satisfying initial conditions

(2.6.57), it is sufficient to show that the operator 1
1−ω(p) is reducible to a function. Obviously,

there exists a constant Q such that for all p in the half-plane H̄σo
, σ0 > 0 the following

inequalities hold:

|ω(p)| < Q

|p|
< 1.

Let us represent the operator 1
1−ω(p) in the form

1
1− ω(p)

=
[
1 + ω(p) +

[ω(p)]2

1− ω(p)

]
. (2.6.58)

Since the operator [1 + ω(p)], obviously, is reducible to a function, it is sufficient to show

that the operator [ω(p)]2

1−ω(p) is reducible to a function, or, the equivalent, that the function of

the complex variable p = σ + iτ
[ω(p)]2

p[1− ω(p)]
(2.6.59)

may be represented by the Laplace integral. Indeed, in the half-plane H̄σo
, σo > 0 the

function [ω(p)]2

p[1−ω(p)] , which is analytical in this half-plane, satisfies the inequality

∣∣∣∣ [ω(p)]2

p(1− ω(p))

∣∣∣∣ <
(
Q
|p|
)2

|p|
(
1− Q

|p|
) =

Q2

|p|3
(
1− Q

|p|
) ;

therefore, in the half-plane <(p) ≥ σ0 the function (2.6.59) is uniform with respect to arg p

tending to zero as |p| → ∞, and the integral

∞∫
−∞

∣∣∣∣ [ω(p)]2

p(1− ω(p))

∣∣∣∣ dτ , (p = σ + iτ) ,

is convergent.

Then from section 1.4.4, Theorem 1.4.13 it follows that the function [ω(p)]2

p(1−ω(p)) is represent-

able by an absolutely convergent Laplace integral. Thus, the operator 1
1−ω(p) is reducible

to a function, and the solution, in fact, is given by the formula

x(t) =
g(t)
pn

∞∑
m=0

[ω(p)]m,
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where

ω(p) =
1
pn

n−1∑
k=0

akp
ke−hkp.

The function x(t) is n times differentiable and

x(0) = x′(0) = · · · = x(n−1)(0) = 0.

2.6.2 Partial Differential Equations

Consider a partial differential equation whose coefficients aµν(x) are numerical functions

of the variable x:
m∑
µ=0

n∑
ν=0

aµν(x)
∂µ+νu(x, t)
∂xµ∂tν

= f(x, t). (2.6.60)

On applying the formula

∂µ+νu(x, t)
∂xµ∂tν

= pν
∂µu(x, t)
∂xµ

− pν
∂µu(x, 0)
∂xµ

− pν−1 ∂
µ+1u(x, 0)
∂xµ∂t

− · · · − p
∂µ+ν−1u(x, 0)
∂xµ∂tν−1

,

we reduce equation (2.6.60) to the form

m∑
µ=0

aµ(x, p)
∂µu(x, t)
∂xµ

= f(x, t) +
m∑
µ=0

n∑
ν=1

ν−1∑
k=0

pν−k
∂µ+ku(x, 0)
∂xµ∂tk

,

where

aµ = aµ(x, p) =
n∑
ν=0

aµν(x)pν .

On denoting the right-hand side of this equation by Φ(x, p) and considering u(x, t) as an

operator function depending on the parameter x, u(x, t) = ū(x, p) = ū(x), we have

amū
(m)(x) + am−1ū

(m−1)(x) + · · ·+ a0ū(x) = Φ(x, p). (2.6.61)

Here the coefficients ak are also operator functions depending on x. Thus, the problem of

integrating equation (2.6.60) is reduced to integrating a linear operator differential equation.

Equation (2.6.61), which is the operator transform equation (2.6.60), is called the operator

or transformed equation.

When solving equation (2.6.61), the isomorphism of fields M(S) and M(S) must be used.

In the field M(S) the transformed equation (2.6.61) becomes an ordinary linear differential

equation of the nth order, whose coefficients and right-hand side depend on the parameter

(complex number) p. Such equations have been fully investigated. Let ū(x, p) be a solution

of the equation. If it turns out that ū(x, p) belongs to the field M(S) for the given values

of x, α < x < β, this will imply that (2.6.60) has the solution ū(x, p) in the field M, where

p is regarded as the operator p = 1
t .

The application of operational calculus to the solution of partial differential equations is

performed as follows:
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1) Replacement of the original equation by the transformed equation. Similarly, the

boundary conditions of the problem are replaced by transformed boundary conditions, which

will be the boundary conditions for the solution ū(x, p) of the transformed equation (2.6.61).

2) Finding the solution ū(x, p) of the transformed equation with the given transformed

boundary conditions.

3) Investigation of the solution obtained for the purpose of proving that the solution

ū(x, p) belongs to the field M(S). In the case when ū(x, p) belongs to M(S), auxiliary

investigations have to be made to establish whether the solution u(x, t) = ū(x, p) is a

generalized solution or whether it can be reduced to a function having partial derivatives

with respect to the variables x and t up to and including the derivative ∂m+nu(x,t)
∂xm∂tn . This

latter case will imply that u(x, t) satisfies the initial partial differential equation in the

ordinary classical sense.

4) Realization of the operator ū(x, p), i.e. determination of the function u(x, t) = ū(x, p).

The investigation of point 3) can often be considerably simplified if point 4) is carried

out.

5) Proof of the fact that the solution u(x, t) satisfies the initial and boundary conditions

of the problem.

Let us take as an example the equations

ρ(x)ut = ρ0(x)uxx + ρ1(x)ux + ρ2(x)u; (2.6.62)

ρ(x)utt = ρ0(x)uxx + ρ1(x)ux + ρ2(x)u; (2.6.63)

in the domain 0 ≤ x < l, t > 0. Here, ρ(x), ρo(x), ρ1(x), ρ2(x) are given continuous

functions in the interval 0 < x ≤ l and ρ(x) > 0. The solution u(x, t) must have continuous

partial derivatives up to and including the second order in the domain (0 < x ≤ l, t > 0)

and must satisfy the initial conditions

lim
t→+0

u(x, t) = ϕ(x), 0 < x ≤ l (2.6.64)

for equation (2.6.62) and

lim
t→+0

u(x, t) = ϕ(x), lim
t→+0

ut(x, t) = Ψ(x), 0 < x ≤ l (2.6.65)

for equation (2.6.63), as well as the boundary conditions

lim
t→+0

u(x, t) = f(x), aux(l, t) + but(l, t) = cu(l, t) (2.6.66)

for t > 0, where ϕ(x), Ψ(x) are given piecewise continuous functions; f(t) ∈ S and is

continuous for t > 0; and a, b, c are given constants.

We shall seek the solution of the equations in the form u(x, t) = ū(x, p). The transformed

equations for (2.6.62) and (2.6.63) will be

ρ0(x)
d2ū

dx2
+ ρ1(x)

dū

dx
+ [ρ2(x)− pρ(x)]ū = −ρ(x)pϕ(x); (2.6.67)
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ρ0(x)
d2ū

dx2
+ ρ1(x)

dū

dx
+ [ρ2(x)− p2ρ(x)]ū = −p2ρ(x)pϕ(x)− pρ(x)pΨ(x). (2.6.68)

We obtain from the boundary conditions of the problem the boundary conditions for the

solution {
ū(+0, p) = f̄(p), where f̄(p) = f(t),
ūx(l, p) + bp[ū(l, p)− ϕ(l)] = cū(l, p).

(2.6.69)

Theorem 2.6.94 Let ū(x, p) be a solution of equation (2.6.67) or (2.6.68) with conditions

(2.6.69). Furthermore, let

1) the operators ū(x, p), ūx(x, p) and ūxx(x, p) reduce to functions for 0 < x ≤ l;

2) there exist a number σ0 such that, as t→∞,

ū(x, p) = 0(eσ0t), ūx(x; p) = 0(eσ0t), ūxx(x; p) = 0(eσ0t),

uniformly with respect to x in any segment ε ≤ x ≤ l;

3) there exist an integer k ≥ 0 such that |p−kū(x, p)| < Q= const in the field M(S) for

all 0 ≤ x ≤ ε < l, Re(p) > σ1 > σ0;

4) there exist the limit lim
t→+0

ū(x, p) = g(t), t > 0, where g(t) is a continuous function for

t > 0 and is bounded as t→ 0.

Then u(x, t) = ū(x, p) is the solution of equation (2.6.62) or (2.6.63), satisfying the given

boundary and initial conditions.

Proof. First, we prove that the conditions of the theorem imply the existence of the deriv-

atives ux(x, t) and uxx(x, t) for 0 < x ≤ l. Indeed, let ūx(x, p) = v(x, t), then we have

ū(x, p) = p

∞∫
0

u(x, t)e−ptdt; (2.6.70)

ūx(x, p) = p

∞∫
0

v(x, t)e−ptdt, (2.6.71)

and according to condition 2) the integrals for Re(p) > σ0 are absolutely and uniformly

convergent with respect to ε ≤ x ≤ l. Therefore, the second integral may be integrated by

the variable x from ε to l:

ū(x; p)− ū(ε, p) = p

∞∫
0

( y∫
ε

v(y, t)dy
)
e−ptdt, Re(p) > σ0,

or

ū(x, p) = p

∞∫
0

[
u(ε, t) +

x∫
ε

v(y, t)dy
]
e−ptdt, Re(p) > σ0.

Comparing the latter integral with (2.6.70), we conclude that

u(x, t) = u(ε, t) +

x∫
ε

v(y, t)dy.
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It follows from here that the solution u(x, t) is differentiable with respect to x and the

following equation holds:

ux(x, t) = v(x, t) = ūx(x; t), 0 < x ≤ l. (2.6.72)

If we introduce the notation ūxx(x; p) = w(x; t), taking into account condition 2) of

the theorem, equation (2.6.71) and equation (2.6.72), in which u(x, t) must be replaced by

ux(x, t) and v(x, t) by w(x, t), then we obtain

uxx(x, t) = w(x, t) = ūxx(x, p), 0 < x ≤ l. (2.6.73)

Thus, the existence of the derivatives ux(x, t) and uxx(x, t) is proved.

Now, (2.6.72) and (2.6.73) imply

ρ0(x)uxx(x, t) + ρ1(x)ux(x, t) + ρ2(x)u(x, t) = ρ0(x)ūxx(x, p) + ρ1(x)ūx(x, p) + ρ2(x)ū(x, p),

or, taking into account the transformed equation (2.6.68), we have

ρ0(x)uxx(x, t) + ρ1(x)ux(x, t) + ρ2(x)u(x, t)

= ρ(x)p2

[
ū(x, p)− ϕ(x)− 1

p
Ψ(x)

]
= ρ(x)p2[u(x, t)− ϕ(x)− tΨ(x)].

(2.6.74)

It follows from (2.6.73), (2.6.72) and the second condition of the theorem that the sum

ρ0(x)uxx(x, t) + ρ1(x)ux(x, t) + ρ2(x)u(x, t)

belongs for 0 < x ≤ l to the set S, therefore, the function

ρ(x)p2[u(x, t)− ϕ(x)− tΨ(x)]

also belongs to the set S; however, ρ(x) > 0 for 0 < x ≤ l, and hence, for 0 < x ≤ l the

operator

p2[u(x, t)− ϕ(x)− tΨ(x)]

is reducible to a function belonging to S. Let us introduce the notation

p2[u(x, t)− ϕ(x)− tΨ(x)] = q(x, t) ∈ S;

then we obtain

u(x, t)− ϕ(x)− tΨ(x) =
1
p2
q(x, t) =

t∫
0

(t− ξ)q(x, ξ)dξ.

Hence, the function u(x, t) for 0 < x ≤ l is twice differentiable with respect to the variable

t and

u(x, 0) = ϕ(0); ut(x, 0) = Ψ(0), 0 < x ≤ l.
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It follows from (2.6.74) that in the domain t > 0, 0 < x ≤ l, we have

ρ0(x)uxx(x, t) + ρ1(x)ux(x, t) + ρ2(x)u(x, t) = ρ(x)utt.

Thus, it has been proved that

u(x, t) = ū(x, p) (2.6.75)

is the solution of equation (2.6.68), satisfying the initial conditions (2.6.65). The condition

aūx(l, p) + bp[ū(l, p)− ϕ(l)] = cū(l, p)

and (2.6.72) and (2.6.75) for x = l imply that

aux(l, t) + but(l, t) = cu(l, t),

i.e., the boundary conditions hold for x = l.

It remains now to consider the behavior of the solution as x → 0. Let us introduce the

notation

lim
x→+0

u(x, t) = g(t).

According to the fourth condition of the theorem, this limit exists and is a continuous

function for t > 0 and g(t) is bounded as t → 0. Hence, it remains only to prove that

g(t) = f(t), t > 0. However, this immediately follows from the condition ū(+0, p) = f̄(p),

see (2.6.69) and condition (2.6.62) of the theorem. Indeed, condition (2.6.62) implies the

continuity of the operator function ū(x, p) in the domain 0 ≤ x ≤ l. Therefore, we have

lim
x→0

ū(x, p) = ū(o, p) = f̄(p) = f(t), i.e., g(t) = f(t).

Remark 2.6.101 Instead of using the notion of an operator function one can in the proof

of the latter fact explicity prove, starting from conditions 3) and 4) of Theorem 2.6.94, the

relation f(t) = g(t). Indeed, for sufficiently large n we have

1
2πi

σ+i∞∫
σ−i∞

ū(x, p)
pn+1

eptdp =
1

(n− 1)!

t∫
0

(t− ξ)n−1u(x, ξ)dξ, (2.6.76)

and the integral in the left-hand side converges absolutely and uniformly with respect to

x→ 0. Therefore, we can pass in (2.6.76) to the limit as x→ 0, then we have

1
2πi

σ+i∞∫
σ−i∞

f̄(p)
pn+1

eptdp =
1

(n− 1)!

t∫
0

(t− ξ)n−1g(ξ)dξ,

or
t∫

0

(t− ξ)n−1f(ξ)dξ =

t∫
0

(t− ξ)n−1g(ξ)dξ;

© 2006 by Taylor & Francis Group, LLC



Application of Operational Calculus 263

therefore, f(t) = g(t) for all t > 0.

Let us consider some problems of mathematical physics.

Problem 2.6.5. Find the distribution of the temperature in a semiinfinite line 0 < x <

∞, if its left end has the constant temperature equal to zero, and the initial temperature

of the line is equal to one.

We need to find the solution of the heat equation

∂u

∂t
=
∂2u

∂x2
(x > 0, t > 0) (2.6.77)

under the conditions

u = 0 for x = 0, t > 0; (2.6.78)

u = 1 for x > 0, t = 0. (2.6.79)

The operator transform of equation (2.6.77) has the form

∂2ū

∂x2
= pū− p, (x > 0) (2.6.80)

under the condition

ū(x, p) = 0 for x = 0. (2.6.81)

The general solution of equation (2.6.80) is

ū(x, p) = 1 +Aex
√
p +Be−x

√
p, (2.6.82)

where “the constants” A and B in the general case depend on p and are defined by the

boundary conditions. The condition of boundedness of the solution as x→∞ implies that

A = 0. From (2.6.81) we find 0 = 1 +B. Thus, we have

ū(x, p) = 1− e−x
√
p.

In this case by the inversion theorem of the Laplace transform (see section 1.4.4, Theo-

rem 1.4.12) we have

u(x, t) = lim
τ→∞

1
2πi

σ+iτ∫
σ−iτ

{
1
p
− e−x

√
p

p

}
eptdp, σ > 0. (2.6.83)

As it is known (see formula 1.4.8) the inversion of 1
p gives the function f(t) ≡ 1 for t > 0.

Now we begin the inversion of the function 1
pe
−x√p, i.e., the computation of the integral

J =
1

2πi

σ+iτ∫
σ−iτ

e−x
√
p

p
eptdp, σ > 0.
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The function 1
pe
−x√p is analytical on the whole plane of the complex variable p except the

origin, therefore, 1
pe
−x√p is univalent and analytical in the plane with the cut along the

negative part of the real axis. According to the Cauchy theorem, the integration along the

line (σ − iτ, σ + iτ) may be replaced by the integration along any curve with the ends at

the points σ ± iτ , which does not intersect the cut.

In particular, it is convenient to use the contour shown in Figure 12; we have

σ+iτ∫
σ−iτ

=
∫
AC

+
∫
CD

+
∫
DE

+
∫
EF

+
∫
FB

. (2.6.84)

Figure 12

Let us show that the integrals
∫
AC

and
∫
FB

approach zero as τ →∞. We have

∣∣∣∣e−x√pp

∣∣∣∣ =
e−x

√
p

|p|
, (−π < arg p < π);

hence, −π
2 < arg

√
p < π

2 , and therefore, Re(
√
p) ≥ 0 and for x ≥ 0∣∣∣∣e−x√pp

∣∣∣∣ ≤ 1
|p|
.

According to Jordan’s lemma (see section 1.4.5., Lemma 1.4.1) for t > 0 and R → ∞ the

integral of the function e−x
√

p+pt

p along the arcs AC and FB approaches zero.
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Now we begin the computation of the integrals along the lines CD and EF . On these

lines p
1
2 is equal to i|p| 12 and −i|p| 12 , respectively. On setting ρ = |p|, we have

∫
CD

+
∫
EF

= −2i

R∫
r

ρ−1 sin
(
xρ

1
2
)
e−tρdρ = −4i

R1/2∫
r1/2

sinxξ
ξ

e−tξ
2
dξ; (2.6.85)

hence, there exists the limit

lim
r → 0
R→∞

{ ∫
CD

+
∫
EF

}(
1
p
e−x

√
pept

)
dp = −4i

∞∫
0

sinxξ
ξ

e−tξ
2
dξ. (2.6.86)

Finally, we have∫
DE

=
∫
DE

e−x
√
p+pt

p
dp =

π∫
−π

e−x
√
εe

iϕ
2 +εeiϕ

εeiϕidϕ

εeiϕ
=

π∫
−π

e−x
√
εe

iϕ
2 +εeiϕ

idϕ.

Hence,

lim
r→0

∫
DE

= lim
ε→0

π∫
−π

e−x
√
εe

iϕ
2 +εeiϕ

idϕ = 2πi. (2.6.87)

Thus, combining (2.6.84) through (2.6.87), we find

lim
r→∞

1
2πi

σ+iτ∫
σ−iτ

1
p

exp
(
− xp

1
2 + tp

)
dp = 1− 2

π

∞∫
0

sinxξ
ξ

e−tξ
2
dξ.

According to (2.6.83), the final solution of our problem has the form

u(x, t) =
2
π

∞∫
0

sinxξ
ξ

e−tξ
2
dξ. (2.6.88)

Let us reduce this solution to another form. On differentiating (2.6.88) with respect to

x, we obtain

∂u

∂x
=

2
π

∞∫
0

e−tξ
2

cosxξdξ. (2.6.89)

The computation of this integral may be made with the help of the theory of residues. Let

us introduce into consideration the function

f(z) = e−tz
2
,

whose integral along the real axis may be computed with the help of Poisson’s integral,

known from calculus:
∞∫
0

e−u
2
du =

√
π

2
. (2.6.90)

© 2006 by Taylor & Francis Group, LLC



266 Operational Calculus

On the line τ = h we have

e−t(σ+ih)2 = eth
2
e−tσ

2
(cos 2 tanhσ − i sin 2 tanhσ).

The real part of this expression at h = x
2t differs from the integrand by a constant factor.

In accordance with this, we use the contour of integration, shown in Figure 13.

Figure 13

By Cauchy’s theorem, we have ∫
I

+
∫
II

+
∫
III

+
∫
IV

= 0, (2.6.91)

here, ∫
I

=

R∫
−R

e−tξ
2
dξ =

2√
t

R√
t∫

0

e−ξ
2
dξ;

∫
II

= −e x2
4t

R∫
−R

e−tξ
2
e−ixξdξ.

On the segments II and IV, where x = ±R, we have

|e−tz
2
| = e−t(R

2−τ2) ≤ e
x2
4t e−tR

2
;

therefore, assuming t > 0, we find
∫

II,IV

→ 0 as R→∞. Performing in (2.6.91) the limit as

R→∞, and using (2.6.90), we obtain

√
π√
t
− e−

x2
4t

∞∫
−∞

e−tξ
2
e−ixξdξ = 0,

and comparing the real parts, we find

∞∫
0

e−tξ
2

cosxξdξ =
1
2

√
π

t
e−

x2
4t , t > 0. (2.6.92)
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Thus, according to (2.6.92), formula (2.6.89) takes the form

∂u

∂x
= (πt)−

1
2 e−

x2
4t . (2.6.93)

Taking into account that u(0, t) = 0, and integrating equation (2.6.93), we obtain

u(x, t) = (πt)−
1
2

x∫
0

e−
y2

4t dy.

On changing the variable by the formula ξ = y√
2t

, we reduce this equation to the form

u(x, t) = 1− e−x
√
p =

√
2
π

x√
2t∫

0

−e
ξ2

2 dξ =
2√
π

x
2
√

t∫
0

e−ξ
2
dξ = erf

(
x

2
√
t

)
. (2.6.94)

It is obvious from here that u(0, t) = 0, u(x, 0) = 1.

Note that equation (2.6.94) may be obtained easily with the help of operational calculus

in the following way. By formula (2.5.10) we have

√
pe−λ

√
p =

1√
πt
e−

λ2
4t .

However,
∞∫
λ

e−ξ
√
pdξ =

1
√
p
e−λ

√
p;

hence,

e−λ
√
p =

∞∫
λ

√
pe−ξ

√
pdξ =

1√
πt

∞∫
λ

e−
ξ2

4t dξ =
2
√
t√
πt

∞∫
λ

2
√

t

e−u
2
du =

2√
π

∞∫
2
√
t

e−u
2
du

= erfc

(
λ

2
√
t

)
= 1− erf

(
λ

2
√
t

)
.

(2.6.95)

Problem 2.6.6. On an infinite cylinder of the radius a the constant temperature u0 = 1

is maintained. Determine the temperature at any point of the external space at an instant

t, if at the initial instant the temperature in the space was equal to zero.

The problem is reducible to the solution of the differential equation

∂u

∂t
= k

(
∂2u

∂r2
+

1
r

∂u

∂r

)
(2.6.96)

under the initial condition

u = 0 for t = 0 and a < r <∞ (2.6.97)

and the boundary conditions

u = 1 for r = a, t > 0 and lim
r→∞

u(r, t) = 0, t > 0. (2.6.98)
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The transformed equation has the form

d2ū

dr2
+

1
r

du

dr
− p

k
ū = 0.

The solution must satisfy the conditions

ū = 1 for r = a, and lim
r→∞

u(r, p) = 0.

The equation has two linearly independent solutions K0(νr) and I0(νr), where

ν =
√
p

k
. (2.6.99)

Hence, the general solution is c1K0(νr) + c2I0(νr). Taking into account the boundary

conditions of the problem, we find the desired solution:

ū(r, p) =
K0(νr)
K0(νa)

;

we have chosen the branch of root (2.6.99) for which lim
r→+∞

K0(νr) = 0, i.e.,
√
p > 0, if p is

a real positive number and arg p = 0. Thus, if the operator K0(νr)
K0(νa)

, where ν is the same, as

in (2.6.99), satisfies the conditions of Theorem 2.6.94 (see 2.6.2), then the solution of the

problem is the function

u(r, t) =
1

2πi

∫
(γ)

K0(νr)
K0(νa)

ept

p
dp, γ ∈ R+. (2.6.100)

The function K0(νr)
K0(νa)

is analytical in the complex plane with a cut along the negative

part of the real axis. For large values of ν the asymptotic representation, see [E.1], vol. 2,

section 7.13.1, formula (7), holds:

K0(νr)
K0(νa)

∼
√
a

r
e−ν(r−a),

where ν is the same as in (2.6.99). The integral (2.6.100) converges uniformly in the domain

r − a ≥ ε > 0 and 0 ≤ t ≤ T ; hence, the function u(r, t) is continuous in this domain. Let

us transform expression (2.6.100) to the form convenient for computation. For this purpose

we consider the integral
1

2πi

∫
L

K0(νr)
K0(νa)

ept
dp

p
, (2.6.101)

where L is the contour shown in Figure 12.

Taking into account that the integrand satisfies the conditions of Jordan’s lemma, we deduce

from (2.6.101) as R→∞

u(r, t) =
1

2πi

∫
Γ

K0(νr)
K0(νa)

ept

p
dp,

where Γ is the contour, shown in Figure 14.
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Figure 14

Contracting the contour Γ to the edges of the cut and taking into account the singularity

at the point p = 0, we find

u(r, t) = 1− 1
π

∞∫
0

J0(aν)Y0(rν)− J0(rν)Y0(aν)
J2

0 (aν) + Y 2
0 (aν)

e−pt

p
dp, ν =

√
ρ

k
.

In these transformations we used the equations

K0(zei
π
2 ) = −πi[J0(z)− iY0(z)],

K0(ze−i
π
2 ) = πi[J0(z) + iY0(z)],

(see [E.1], vol. 2, section 7.2.1, formulas 16, 17, 5, and 6). The function u(r, t) may be,

obviously, represented by the form

u(r, t) = 1 +
2
π

∞∫
0

e−tkα
2 J0(rα)Y0(aα)− J0(aα)Y0(rα)

J2
0 (aα) + Y 2

0 (aα)
dα

α
. (2.6.102)

It follows immediately from the expression obtained for u(r, t) the continuity of u(r, t) when

approaching any point (a, t), t > 0. Indeed, for t > 0 we have

lim
r→a

u(r, t) = 1.

© 2006 by Taylor & Francis Group, LLC



Chapter 3

Generalized Functions

3.1 Introduction

Distributions are a generalization of locally integrable functions on the real line, or more

generally, a generalization of functions that are defined on an arbitrary open set in the

Euclidean space.

Distributions were introduced as a result of difficulties with solving some problems of

mathematical physics, quantum mechanics, electrotechnics and so forth. In these domains

there are many theoretical and practical problems where the notion of function is not

sufficient in this or that sense.

In 1926 the English physicist Paul Dirac introduced a new element of mathematical

formalism into quantum mechanics, [Dir]. He named it the Delta function and denoted it

by δ(t). Dirac assumed that the delta function is defined on the real line and fulfills the

following conditions:

δ(t) =

{
0 for t 6= 0,
+∞ for t = 0,

(3.1.1)

and
+∞∫
−∞

δ(t)dt = 1. (3.1.2)

In the theory of real functions the two conditions (3.1.1) and (3.1.2) are contradictory.

No real function exists to fulfill both conditions at the same time. On the other hand,

both conditions give incorrect but highly convincing evidence of a physical intuition: δ(t)

represents an infinitely large growth of electric tension in the infinitely short time where

a unit of electricity loads. Nevertheless, the existence of mathematical models for which

the search for mathematical description would lead naturally to Dirac’s deltas should not

provide an excuse to use the imprecise mathematical notion that hides under δ(t), treat

it as a function and at the same time assume that it fulfills conditions (3.1.1) and (3.1.2).

Despite all formal objections many important results were achieved with the help of Dirac’s

delta.

In the 1930s it became obvious that Dirac’s delta has a fixed place in theoretical physics.

As a result scientists sought a new mathematical theory that would help define Dirac’s
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delta as it was previously used in the precise definition of real numbers, and so forth.

The mathematical theory known as the theory of distributions, which enabled introducing

Dirac’s delta without any logical objections, was developed in the 1940s. This theory allowed

the generalization of the notion of function as it was once done for real numbers.

There are many ways to define distributions (as generalizations of functions), i.e., I.

Halperin [Ha], H. König [Kö.1], J. Korevar [Ko.1], J. Mikusiński and R. Sikorski [MiS.1],

W. S lowikowski [S lo], S. Soboleff [So], L. Schwartz [S.1], and G. Temple [Te.1], [Te.2]. The

two most important in theory and practice are the functional approach of S. Soboleff (1936)

and L. Schwartz (1945), where distributions are defined as linear continuous functionals in

certain linear spaces; and the sequential approach of J. Mikusiński (1948), where distribu-

tions are defined as classes of equivalent sequences.

The functional theory is more general but more complicated. It uses difficult notions of

functional analysis and the theory of linear spaces. L. Schwartz developed and presented

his theory together with applications in a two volume manual [S.2].

The sequential approach is easier because it is based on fundamental notions of mathe-

matical analysis. It has a geometrical and physical interpretation that relies on an intuitive

understanding of Dirac’s delta, which is common in physics. The sequential approach is

easier to understand and easier to apply. A formal definition of distribution was given by

J. Mikusiński in [Mi.2]. Based on that definition J. Mikusiński together with R. Sikorski

developed the sequential theory of distributions and published it in [MiS.1] and [MiS.2].

The theory was developed and together with P. Antosik a monograph “Theory of Distri-

bution, The Sequential Approach,” [AMS], was published.

The starting point for the definition of distributions in the sequential approach are se-

quences of continuous or smooth functions (i.e., of class C∞) in a certain fixed interval

(a, b), (−∞ ≤ a < b ≤ +∞). The definition given by J. Mikusiński is analogous to the

definition of real numbers in Cantor’s theory. The aim of introducing real numbers was the

performance of certain mathematical operations within this set. Similarly, the introduc-

tion of distributions enabled differentiation that cannot always be performed in the set of

functions.

3.2 Generalized Functions — Functional Approach

3.2.1 Introduction

In the following we will assume that the functions to be considered can have complex

values. Let f and ϕ be functions of class C∞(R) and the function ϕ vanishes outside a finite
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interval. Integrating by parts we get

+∞∫
−∞

f(x)ϕ′(x)dx = −
+∞∫
−∞

f ′(x)ϕ(x)dx. (3.2.1)

Note that the left-hand side of (3.2.1) makes sense also for much weaker assumptions con-

cerning the function f . Namely, it is sufficient to assume that f is integrable on every

bounded interval. Therefore, we can use (3.2.1) to define a generalized derivative Df .

Namely, we assume that a generalized derivative is a function g ∈ Lloc1 (R) such that for an

arbitrary function ϕ fulfilling the above conditions we have:

+∞∫
−∞

f(x)ϕ′(x)dx = −
+∞∫
−∞

g(x)ϕ(x)dx. (3.2.2)

If we want to apply the same reasoning to define the generalized second derivative D2f for

a function f ∈ Lloc1 we would have to strengthen the regularity conditions and assume that

ϕ belongs to C2(R). Therefore, it is better to assume at once that ϕ has derivatives of all

orders, i.e., ϕ ∈ C∞.

We define the support of a continuous function ϕ as a closure of a set {x : ϕ(x) 6= 0} and

denote it by suppϕ. By C∞o we denote a set of all continuous functions on R as well as all

their derivatives of any order with compact support.

Let [a, b] = suppϕ. The regularity conditions imply that the x axis is a tangent of an

“infinite order” to the graph of the function ϕ at the points x = a and x = b. The fact that

such a function exists is not so obvious. We will, however, show that it is easy to construct

such a function. Let, for example,

h(t) =

{
e−

1
t for t > 0,

0 for t ≤ 0.
(3.2.3)

The function h is of the class C∞(R) and its support is a half line [a,∞). Taking a constant

a > 0 we define a function

ϕa(x) = h
(

1− x2

a2

)
, (3.2.4)

i.e.,

ϕa(x) =

{
e

a2

(x2−a2) for |x| ≤ a,

0 for |x| > a.
(3.2.5)

It follows from the equation (3.2.4) that ϕa, being a superposition of two infinitely many

times differentiable functions, has derivatives of all orders. On the other hand, (3.2.5)

implies that suppϕ = [−a, a].

Let f be a locally integrable function on R. The function g ∈ Lloc1 (R) is called a gener-

alized derivative of f if (3.2.2) holds true for every function ϕ ∈ C∞o (R). In this chapter we

denote the generalized derivative by g = Df .
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Example 3.2.64 Let f(x) = x · 1+(x), where 1+(x) is the Heaviside function:

1+(x) =

{
1 for x > 0,
0 for x ≤ 0.

Integrating by parts gives

+∞∫
−∞

1+(x)xϕ′(x)dx =

∞∫
0

xϕ′(x)dx = −
∞∫
0

ϕ(x)dx,

which means that Df = 1+(x). Because Df is a locally integrable function we will try to

find its generalized derivative, i.e., D2f . Integrating, we have

+∞∫
−∞

1+(x)ϕ′(x)dx = −ϕ(0). (3.2.6)

It is, therefore, sufficient to represent the right-hand side of (3.2.6) in the form of the integral

appearing on the right-hand side of (3.2.2). It is easy to show that such a representation is

not possible. Namely, we may assume that such a function exists. In particular, we may

take g ∈ Lloc1 (R) and let

+∞∫
−∞

g(x)ϕ(x)dx = ϕ(0) for any ϕ ∈ C∞o (R). (3.2.7)

In particular, we take ϕ = ϕa and let a→ 0. Then the right-hand side of (3.2.7) is constant

and equal to e−1 but the left-hand side tends to 0, which follows from the estimation

∣∣∣ a∫
−a

g(x)ϕa(x)dx
∣∣∣ ≤ e−1

a∫
−a

|g(x)|dx.

The example given above shows that not every locally integrable function has a generalized

derivative that also belongs to Lloc1 (R). In other words, repeating the operation of gene-

ralized differentiation, i.e., obtaining generalized derivatives of higher orders is in general

not possible. This is a serious drawback of the definition introduced above. What makes the

formula (3.2.1) incorrect is the assumption made about its result, namely the assumption that

a generalized derivative is a function. In the next chapter we will show that it is possible to

find a more general class of objects for which generalized derivatives can be obtained without

restrictions.

3.2.2 Distributions of One Variable

Let us understand the equality (3.2.1), section 3.2.1 in a different way. The class C∞o (R)

is a linear space over the field of complex numbers and the integral on the right-hand side
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of (3.2.8) defines a linear functional Λg, namely,

Λg(ϕ) :=

+∞∫
−∞

g(x)ϕ(x)dx. (3.2.8)

Using the previously introduced notation we can write (3.2.1), section 3.2.1 in a different

way:

Λf (ϕ′) = −Λg(ϕ), ϕ ∈ C∞o (R).

Let us return to Example 3.2.64, section 3.2.1. Differentiating twice the function f in the

generalized sense we obtain a linear functional on

C∞o (R) 3 ϕ→ ϕ(0).

This idea comes from contemporary mathematicians L. Soboleff [So] and L. Schwartz [S.1],

who are regarded as the creators of the theory of distributions. The theory of distributions

proved to be very useful in the theory of linear partial differential equations.

The Space D(R)

As we have mentioned before the space C∞o (R) is a linear space.

We will denote by D(R) the set of all infinitely differentiable functions with compact

supports contained in R. Such functions will be called smooth. In order to define a class

of convergent sequences on that space it is sufficient to introduce the notion of a sequence

convergent to zero, i.e., to a function equal to zero identically. A sequence (ϕν)ν∈N will be

called convergent to a function ϕ if and only if the difference (ϕν − ϕ)ν∈N is convergent to

zero.

Definition 3.2.51 We say that a sequence (ϕν)ν∈N, ϕν ∈ D(R), converges to zero if

(i) there exists a bounded interval [a, b] ⊂ R such that suppϕν ⊂ [a, b] for each ν ∈ N;

and

(ii) the sequence (ϕ(j)
ν )ν∈N converges to zero uniformly on [a, b] for each j ∈ N.

The sequence (ϕν)ν∈N converges to ϕ in D(R) if the sequence (ϕν −ϕ)ν∈N converges to zero

in D(R).
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Definition and Examples of Distributions

Definition 3.2.52 A functional Λ : D(R) → C fulfilling the conditions

(iii) Λ(c1ϕ1 + c2ϕ2) = c1Λ(ϕ1) + c2Λ(ϕ2),where cj ∈ C, ϕj ∈ D(R), j = 1, 2;

(iv) every sequence (ϕν)ν∈N ⊂ D(R) that converges to zero Λ(ϕν) → 0

is called a distribution.

The condition (iii) means that functional Λ is linear while the condition (iv) means

that the functional is continuous with respect to the convergence introduced in the space

D(R). The set of all distributions on the real line, i.e., the set of all linear and continuous

functionals on D(R) will be denoted by D′(R).

The symbol < Λ, ϕ > or Λ(ϕ) will denote the value of a functional Λ ∈ D(R) on the

function ϕ ∈ D(R).

Theorem 3.2.95 A linear form Λ defined on D(R) is continuous iff for every bounded

closed interval I ⊂ R there exist a constant C > 0 and an integer m ∈ N such that

|Λ(ϕ)| ≤ C‖ϕ‖m,I , (3.2.9)

where

‖ϕ‖m,I = max
|s|≤m

sup
x∈I

|ϕ(s)(x)| and suppϕ ⊂ I.

Proof. That it is sufficient is evident; we now prove it is necessary. Assume that Λ ∈ D′(R)

and (3.2.9) does not hold for some compact (bounded, closed) interval I ⊂ R. Therefore,

for each ν ∈ N there exists a function

ϕν ∈ D(R) such that suppϕν ⊂ I and |Λ(ϕν)| > ν‖ϕν‖ν,I .

Obviously, one can choose ϕν such that Λ(ϕν) = 1 for each ν ∈ N. From this we obtain

1 = Λ(ϕν) > ν‖ϕν‖ν,I ,

consequently, ‖ϕν‖ν,I < 1
ν . Hence,

‖ϕν+µ‖µ,I ≤ ‖ϕν+µ‖ν+µ,I ≤
1

ν + µ
≤ 1
ν
.

From this it follows that ‖ϕν+µ‖µ,I → 0 as ν →∞ for fixed µ. Therefore, (ϕν)ν∈N converges

to zero as ν →∞ in D(R). This contradicts the continuity of Λ. Thus, the proof is complete.
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We give some examples of distributions.

Example 3.2.65 Let f ∈ Lloc1 . We take

Λf (ϕ) :=

+∞∫
−∞

f(x)ϕ(x)dx. (3.2.10)

It is easy to see that

|Λf (ϕ)| ≤ ‖f‖L1(I)‖ϕ‖0,I , if suppϕ ⊂ I.

Therefore, Λf belongs to D′.

Property 3.2.1 The mapping f → Λf is an injection from Co(R) into D′(R).

Proof. The mapping is linear so it is sufficient to show that the condition

< Λf , ϕ >= 0, ϕ ∈ D(R) (3.2.11)

implies that the function f vanishes identically. Suppose, on the contrary, that it does not

vanish. Therefore, for a certain xo ∈ R, we have f(xo) 6= 0. Let f(xo) > 0. Because

f is continuous, there exists a number η > 0 such that f(x) > 0 for |x − xo| < η. Let

ϕ(x) = ϕη(x− xo). Then we have

< Λf , ϕ >=
∫

|x−xo|<η

f(x)ϕη(x− xo)dx > 0,

which contradicts (3.2.11). This completes the proof.

The Property 3.2.1 can be generalized to the case when f is an arbitrary locally integrable

function. Namely, we have:

Property 3.2.2 The mapping f → Λf is an injection from Lloc1 (R) into D′(R).

This is an immediate consequence of the following.

Lemma 3.2.37 (du Bois Reymond) If f is in Lloc1 (R) and

+∞∫
−∞

f(x)ϕ(x)dx = 0 for ϕ ∈ D(R)

then f(x) = 0 a.e. in R.

For a proof see [Vl.1], p. 18.

Distributions that can be represented by the form (3.2.10) are called regular distributions.
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In the following we will identify the distribution Λf with the function f . In that sense, all

continuous functions, and more generally all locally integrable functions, can be regarded

as special cases of distributions. Therefore, in addition to the term “distribution,” one finds

the term “generalized functions,” which has, however, a slightly broader meaning.

Example 3.2.66 The distribution

< δ, ϕ >= ϕ(0), ϕ ∈ D(R) (3.2.12)

is called the Dirac delta distribution. We have already shown in Example 3.2.64, sec-

tion 3.2.1, that it is not a regular distribution. Therefore, it cannot be identified with any

locally integrable function. Nevertheless, in the physical and technical literature it is called

a “delta function.” The equality (3.2.12) can be written in the “integral” form:

+∞∫
−∞

δ(x)ϕ(x)dx = ϕ(0).

This representation is, however, purely formal.

Example 3.2.67 The function 1
x is not locally integrable, because its integral over every

interval of the form [0, a] is divergent. Nevertheless, we can assign to it a distribution

defined by the identity

Λ(ϕ) =
1
(·)

(ϕ) := lim
ε→0

∫
|x|>ε

ϕ(x)
x

dx, (3.2.13)

where ϕ ∈ D and suppϕ ⊂ [−a, a].

Let us take a new function

ψ(x) =

{
ϕ(x)−ϕ(0)

x for x 6= 0,
ϕ′(0) for x = 0.

Clearly, ψ is continuous and ϕ(x) = ϕ(0) + xψ(x) for x ∈ R. Of course, ψ(x) = ϕ′(Θx ·
x), 0 < Θx < 1 for x 6= 0. This implies that

|ψ(x)| ≤ max
x∈[−a,a]

|ϕ′(x)| ≤ ‖ϕ‖1,[−a,a]

for x ∈ R. Note that ∫
|x|>ε

ϕ(x)
x

dx =
∫

ε<|x|≤a

ϕ(x)
x

dx =
∫

ε<|x|≤a

ψ(x)dx.

By the Lebesgue dominated convergence theorem we have

Λ(ϕ) = lim
ε→0

∫
|x|>ε

ϕ(x)
x

dx =
∫

|x|<a

ψ(x)dx.
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Hence, we obtain the following inequality:

|Λ(ϕ)| ≤ 2a‖ϕ‖1,[−a,a],

if suppϕ ⊂ [−a, a]. Thus, we have shown that Λ is a distribution. The distribution 1
(·) is

called the Cauchy finite part of the integral
∫
R

1
(·) .

3.2.3 Distributional Convergence

Let Λ, Λα be in D′(R), α ∈ R.

Definition 3.2.53 We say that Λα distributionally converges to Λ as α→ αo if

lim
α→αo

Λα(ϕ) = Λ(ϕ) for each ϕ ∈ D(R).

In particular, if n ∈ N then we take

lim
n→∞

Λn = lim
1
n→0

Λn = Λ if lim
n→∞

Λn(ϕ) = Λ(ϕ) for each ϕ ∈ D(R).

Example 3.2.68 The following sequences(1
2

√
n

2π
e−nx

2/2
)
n∈N

(Picard),( 2
π

n

enx + e−nx

)
n∈N

(Stieltjes),

and( 1
π

n

1 + (xn)2
)
n∈N

(Cauchy)

distributionally converge to δ (see also section 3.5.3).

Example 3.2.69 For each ϕ in D the Sochozki formulas

lim
ε→0+

∫
R

ϕ(x)
x+ iε

dx = −iπδ(ϕ) +
1
(·)

(ϕ) (3.2.14)

and

lim
ε→0+

∫
R

ϕ(x)
x− iε

dx = iπδ(ϕ) +
1
(·)

(ϕ), (3.2.15)

where
1
(·)

(ϕ) = lim
ε→0

∫
|x|≥ε

ϕ(x)
x

dx (see Example 3.2.67, section 3.2.2),

hold.

We shall show the equality (3.2.14). Let ϕ be in D and suppϕ ⊂ [−a, a]. We know that

ϕ may be written as follows:

ϕ(x) = ϕ(0) + xψ(x), where ψ is a continuous function.
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Moreover,

1
(·)

(ϕ) =

a∫
−a

ψ(x)dx (see Example 3.2.67, section 3.2.2).

Hence, we have ∫
R

ϕ(x)
x+ iε

dx =

a∫
−a

ϕ(0)
x+ iε

dx+

a∫
−a

xψ(x)
x+ iε

dx.

Note that

a∫
−a

ϕ(0)
x+ iε

dx = ϕ(0)

a∫
−a

x

x2 + ε2
dx− πiϕ(0)

1
π

a∫
−a

ε

x2 + ε2
dx = −πiϕ(0)

1
π

a
ε∫

−a
ε

1
t2 + 1

dt.

Finally, we have

lim
ε→0+

∫
R

ϕ(0)
x+ iε

dx = −πiϕ(0) = −πiδ(ϕ).

We see that

lim
ε→0

a∫
−a

xψ(x)
x+ iε

dx =

a∫
−a

ψ(x)dx;

thus, the formula (3.2.14) is proved. The proof of formula (3.2.15) is similar.

Example 3.2.70 Let f, fn ∈ Lloc1 (R) for n ∈ N and the sequence (fn)n∈N converges to f

as n→∞ in the sense of Lloc1 (R). It is easy to see that for each ϕ ∈ D(R) the sequence(∫
R

fn(x)ϕ(x)
)
n∈N

converges to
∫
R

f(x)ϕ(x)dx as n→∞.

This means that the sequence (fn)n∈N distributionally converges to f .

3.2.4 Algebraic Operations on Distributions

As we have mentioned before, all continuous functions, hence, also all differentiable func-

tions can be regarded as distributions. This indicates that one could generalize onto the

class D′(R) all operations that can be done on functions having certain properties. In this

chapter we provide definitions of operations on distributions and examine the properties of

those operations.

Definition 3.2.54 Two distributions S and T are regarded to be equal if they are identical

as functionals on D(R), i.e., if

< S,ϕ >=< T,ϕ >, for all functions ϕ ∈ D(R).
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Addition and Multiplication by a Constant

The operations of addition of two distributions and multiplication by a constant can be

defined in a manner similar to the case of any space of linear functionals on an arbitrary

space over the field of complex numbers.

Definition 3.2.55 Let S and T be in D′(R).

The expression S + T defined in the following way

(S + T )(ϕ) = S(ϕ) + T (ϕ), ϕ ∈ D(R)

is called the sum of the distribution S and T .

The expression λS is defined in the following way

(λS)(ϕ) = λS(ϕ), ϕ ∈ D(R)

and is called the product of arbitrary distribution S by an arbitrary complex number λ.

Obviously, S + T is also a continuous linear form on D(R). Moreover, if Sf and Tg are

regular distributions corresponding to the functions f and g, then Sf + Tg is also a regular

distribution and it corresponds to the function f + g.

Multiplication of Distribution by a Smooth Function

There is no a natural way to define the product of two arbitrary distributions. Neverthe-

less, it is possible to define the product of any distribution Λ by an infinitely differentiable

function ω. Note that the product of an infinitely differentiable function ω and function ϕ

from D(R) belongs to D(R). Moreover, if the sequence (ϕν)ν∈N, ϕν ∈ D(R) converges to

zero in D(R) then the sequence (ωϕν)ν∈N also converges to zero in D(R).

Definition 3.2.56 Let Λ be a distribution, ω ∈ C∞(R). The mapping ϕ → Λ(ωϕ) is said

to be the product of the distribution Λ and the function ω, i.e., the product ωΛ can be defined

as a functional:

< ωΛ, ϕ >=< Λ, ωϕ >, ϕ ∈ D(R). (3.2.16)

For the regular distribution Λf corresponding to the locally integrable function f , multi-

plication by ω corresponds to multiplication of f and ω in the usual sense.

Differentiation of Distributions

Let ϕ be in D(R) and f ∈ Cm(R). Integrating by parts and recalling that ϕ is in D(R)

we arrive at
+∞∫
−∞

f ′(x)ϕ(x)dx = −
+∞∫
−∞

f(x)ϕ′(x)dx.
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By induction we have

+∞∫
−∞

f (m)(x)ϕ(x)dx = (−1)m
+∞∫
−∞

f(x)ϕ(m)(x)dx. (3.2.17)

Of course, the mapping

ϕ→ (−1)m
+∞∫
−∞

f(x)ϕ(m)(x)dx

is a linear continuous form on D(R). From (3.2.17) it follows that the mapping above is

the regular distribution corresponding to the function f (m), where f (m) denotes the m-th

derivatives of f . We shall use the equality (3.2.17) to define the derivative of a distribution.

Definition 3.2.57 Let Λ ∈ D′(R) and let ϕ be in D(R). The linear form defined by

ϕ→ (−1)mΛ(ϕ(m))

will be called the m-derivative of Λ. This form will be denoted by DmΛ. In other words, the

derivative DmΛ of distribution Λ can be defined as the functional

< DmΛ, ϕ >:= (−1)m < Λ, ϕ(m) >, ϕ ∈ D(R). (3.2.18)

From now on, for simplicity of notation, we write f instead of Λf if Λf is the regular

distribution corresponding to the function f . Note that if f is in Cm(R) then Dmf = f (m).

In particular, for a regular distribution f ∈ C1(R) the identity

< f ′, ϕ >= − < f, ϕ′ > for ϕ ∈ D(R) (3.2.19)

becomes a rule of intergrating by parts (3.2.1), section 3.2.1, in which f ′ denotes the deriv-

ative in the classical sense. As a result, the operation of differentiating in the distributional

sense and classical sense coincide in the class C1(R). It is noteworthy that the theorem is

not valid for weaker assumptions; see Example 3.2.71.

Example 3.2.71 Let us consider a function f :

f(x) =

{
g(x) for x < 0
h(x) for x ≥ 0,

where functions g, h ∈ C1(R).

The function f is continuous in every point except for zero. Its derivative in the classical

sense, df
dx , is a function defined and continuous for x 6= 0 and has right and left finite

limits at zero. Thus, it is a locally integrable function and may be considered as a regular
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distribution. Now, we calculate the distributional derivative of f . We can write the right-

hand side of (3.2.19) in the integral form:

< f ′, ϕ >= −
0∫

−∞

g(x)ϕ′(x)dx−
∞∫
0

h(x)ϕ′(x)dx, (3.2.20)

hence, after differentiating the right-hand side of (3.2.20) by parts, we get

< f ′, ϕ >=

0∫
−∞

dg

dx
ϕ(x)dx+

∞∫
0

dh

dx
ϕ(x)dx+ [h(0)− g(0)]ϕ(0). (3.2.21)

We can write the right-hand side of (3.2.21) in the functional form

< f ′, ϕ >=
〈 df
dx
, ϕ
〉

+ [h(0)− g(0)] < δ, ϕ >,

in which

f ′ =
df

dx
+ σoδ, (3.2.22)

where

σo = lim
x→0+

f(x)− lim
x→0−

f(x) (3.2.23)

is the jump of the function f in the origin. From (3.2.23) we see that the derivatives df
dx

and f ′ are equal, if f is continuous at 0.

Remark 3.2.102 For the generalization of Example 3.2.71 see Theorem 3.7.161, section 3.7.2.

The differentiation of distributions is a linear continuous operation in D′(R). Namely, we

have:

Theorem 3.2.96 If Λ and Λn (n ∈ N) are in D′(R) and sequence (Λn)n∈N tends to Λ as

n→∞ in D′(R) then

sequence (DmΛn)n∈N tends to DmΛ as n→∞.

Proof. The theorem is an immediate consequence of the definition of the derivative of

distributions.

Theorem 3.2.97 If ω, ω1, ω2 ∈ C∞(R) and S, T ∈ D′(R), then the following equalities

hold:
(ω1 + ω2)S = ω1S + ω2S,

ω(S + T ) = ωS + ωT,

D(ωS) = ω′S + ωDS (Leibniz’s formula)

D(S + T ) = DS +DT.
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Proof. We shall show Leibniz’s formula. The remaining follows from definition. For any

function ϕ ∈ D(R) we have

< D(ωS), ϕ >= − < S,ωϕ′ > .

According to the formula of differentiating the product of smooth functions we can write

ωϕ′ = (ωϕ)′ − ω′ϕ,

hence,

< D(ωS), ϕ >= − < S, (ωϕ)′ > + < S,ω′ϕ >,

and finally we obtain

< D(ωS), ϕ >=< ωDS,ϕ > + < ω′S, ϕ >,

which proves our assertion.

Example 3.2.72 We shall show that

Dln | · | =
1
(·)
.

Let ϕ ∈ D. Note that

Dln | · |(ϕ) = −
+∞∫
−∞

ln |x|ϕ′(x)dx = −
0∫

−∞

ln (−x)ϕ′(x)dx−
+∞∫
0

lnxϕ′(x)dx.

We have
+∞∫
0

lnxϕ′(x)dx = lim
ε→0+

+∞∫
ε

lnxϕ′(x)dx,

−
−ε∫

−∞

ln (−x)ϕ′(x)dx = −ϕ(−ε)ln ε+

−ε∫
−∞

ϕ(x)
x

dx

and

−
+∞∫
ε

lnxϕ′(x)dx = ϕ(ε)ln ε+

∞∫
ε

ϕ(x)
x

dx.

It is easy to verify that

lim
ε→0+

[ϕ(ε)− ϕ(−ε)]ln ε = 0.

Hence,

−
+∞∫
−∞

ln |x|ϕ′(x)dx = lim
ε→0+

∫
|x|≥ε

ϕ(x)
x

dx

and finally we obtain

Dln | · | =
1
| · |
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which completes the proof.

Linear Transformations of an Independent Variable

Let f be a continuous function defined on the real axis. Then the function composed of

f(ax+ b), where a 6= 0, may be considered a regular distribution.

We make a substitution in the integral

y = ax+ b, a 6= 0, for ϕ ∈ D(R), (3.2.24)

and we get
+∞∫
−∞

f(ax+ b)ϕ(x)dx =
1
|a|

+∞∫
−∞

f(y)ϕ
(
y − b

a

)
dy,

i.e., in the functional form

< f ◦ d, ϕ >=
1
|a|

< f, ϕ ◦ d−1 >, (3.2.25)

where d is a transformation defined by the formula (3.2.24).

According to (3.2.25) we define a linear substitution in an arbitrary distribution Λ ∈
D′(R). We use the notation for functions

< Λ(ax+ b), ϕ(x) >=
1
|a|

〈
Λ(y), ϕ

(y − b

a

)〉
,

We have to remember that the notation Λ(ax + b) or Λ(y) should be treated as purely

formal.

Translation is a special and important case of linear substitution:

y = x+ b. (3.2.26)

We use the notation for functions:

(rbϕ)(x) := ϕ(x+ b).

According to (3.2.25) we define a translation of a distribution by putting

< rbΛ, ϕ >: =< Λ, r−bϕ > . (3.2.27)

The second example of a linear substitution is a reflection from the origin:

y = −x. (3.2.28)

The reflection for a function is defined by

ϕ∨(x) = ϕ(−x)

and for a distribution Λ ∈ D′(R) by

< Λ∨, ϕ >:=< Λ, ϕ∨ > . (3.2.29)
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Example 3.2.73 We will show the result of applying the distribution r−bδ on a function

ϕ ∈ D(R). According to (3.2.27) we have

< r−bδ, ϕ >= ϕ(b). (3.2.30)

In the technical and physical texts the translated distribution r−bδ is frequently denoted by

δ(x− b) and the equality (3.2.30) is written in the form

+∞∫
−∞

δ(x− b)ϕ(x)dx = ϕ(b).

The symbol of an integral is purely formal here because δ is not a regular distribution and

it cannot be written in the integral form.

The Antiderivative of a Distribution

By an antiderivative of a continuous (−∞,+∞) function f we mean a differentiable

function g fulfilling the condition g′(x) = f(x) for x ∈ R. It is well known that every

continuous function has an antiderivative, and two arbitrary antiderivatives of the same

function differ by a constant. Thus, the theorem can be generalized to distribution.

Definition 3.2.58 By an antiderivative of a distribution Λ ∈ D′(R) we mean a distribution

S ∈ D′(R) such that

DS = Λ.

Theorem 3.2.98 Every distribution Λ ∈ D′(R) has infinitely many antiderivatives that

differ by a constant.

Proof. Let H = {ϕ ∈ D(R) : ϕ = ψ′, ψ ∈ D(R)}. It is easy to verify that

ϕ ∈ H iff

+∞∫
−∞

ϕ(x)dx = 0;

moreover ψ(x) =
x∫

−∞
ϕ(t) dt. From the definition it follows that the antiderivative S is a

functional defined on the set by the formula

< S,ϕ >= − < Λ, ψ >, ϕ ∈ H. (3.2.31)

This functional has to be generalized to the whole class D(R).

Let us consider a function ϕo ∈ D(R) such that

+∞∫
−∞

ϕo(x)dx = 1,
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we can, for example, take ϕo = ϕa

[ +∞∫
−∞

ϕa(x)dx
]−1

, where ϕa is a function given by (3.2.5),

section 3.2.1. An arbitrary function ϕ can be uniquely represented by the form

ϕ = λϕo + ϕ1 (3.2.32)

where ϕ1 ∈ H and λ =
+∞∫
−∞

ϕ(x)dx. By the above, according to (3.2.31) and (3.2.32) we

take

< S,ϕ >= λ < S,ϕo > − < Λ, ψ1 >, (3.2.33)

where ψ1(x) =
x∫

−∞
ϕ1(t) dt, and the number < S,ϕo > is arbitrary. An easy computation

shows that the above-defined functional is a distribution, and DS = Λ. If S1 and S2 are

the antiderivatives of the same distribution then D(S1 − S2) = 0. To complete the proof

it is enough to show that every distribution S ∈ D′(R) that fulfills the condition DS = 0

is a regular distribution equal to a constant function. The above property results from the

decomposition (3.2.32) which gives

< S,ϕ >=

+∞∫
−∞

c ϕ(x)dx,

where c =< S,ϕo > is an integration constant.

3.3 Generalized Functions — Sequential Approach

3.3.1 The Identification Principle

The identification principle relies on the identification of objects that have a common

property. It is often applied in mathematics to construct new concepts. In this chapter the

identification principle will be defined and then explained by means of examples.

Definition 3.3.59 We say that the relation ρ ⊂ X ×X is a equivalence relation in the set

X, if ρ satisfies the condition of reflexivity, symmetry and transitivity, i.e., if

(i) (xρx) for all x ∈ X (reflexivity),

(ii) [(xρy) =⇒ (yρx)] for all x, y ∈ X (symmetry),

(iii) [(xρy) ∧ (yρz) =⇒ (xρz)] for all x, y, z ∈ X (transitivity).

We denote the relation of equivalence by ∼.

Let ∼ be an arbitrary equivalence relation in X 6= ∅. For each element x ∈ X, let us

denote by [x] the class of all elements y ∈ X satisfying the relation x ∼ y. By definition it
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follows that

[x] = {y ∈ X : x ∼ y}, (3.3.1)[
(y ∈ [x]) ⇔ (x ∼ y)

]
, for all x, y ∈ X. (3.3.2)

The class [y] thus obtained will be called an equivalence class in X.

Theorem 3.3.99 If ∼ is an arbitrary equivalence relation in the set X 6= ∅, then for each

x, x1, x2 ∈ X the following conditions are satisfied:

x ∈ [x], (3.3.3)

if x1 ∼ x2, then [x1] = [x2], i.e., the classes [x1] (3.3.4)

and [x2] have the same elements,

if the relation x1 ∼ x2 does not hold, then the classes (3.3.5)

[x1] and [x2] have no common element.

Proof. Property (3.3.3) follows from (i). To prove (3.3.4) suppose that x1 ∼ x2. If x ∈ [x1],

then x ∼ x1. Hence, by (iii), x ∼ x2, i.e., x ∈ [x2]. Thus, [x1] ⊂ [x2]. On the other hand,

it follows from (ii) that x2 ∼ x1. Therefore, if x ∈ [x2], i.e., x ∼ x2, then also x ∼ x1, by

(iii), i.e., x belongs to [x1]. Thus, [x2] ⊂ [x1]. Hence, by previously proven inclusion, we

get [x1] = [x2].

To prove (3.3.5) suppose that the relation x1 ∼ x2 does not hold and that there exists

an element x belonging to [x1] and [x2]. Then x ∼ x1 and x ∼ x2, and x1 ∼ x2, by (ii) and

(iii), contrary to the hypothesis.

Theorem 3.3.100 The set X 6= ∅ with an equivalence relation ∼ in it, can be decomposed

into equivalence classes without common elements so that two elements x, y ∈ X are in the

same equivalence class if and only if x ∼ y, i.e., they are equivalent.

Example 3.3.74 Let X will be a set of directed segments on the plane. We say that two

directed segments x and y are equivalent if they are parallel, have the same length, and the

same direction. It is easy to check that the relation defined above is an equivalence relation.

By identifying equivalent objects we can obtain the notion of a free vector. By means of

the equivalence relation we obtain a decomposition of the set of all directed segments into

disjoint classes such that segments in the same class are equivalent. Thus, each free vector

is a class of equivalent segments.

Example 3.3.75 Let X be the set of all fundamental sequences of rational numbers. By

a fundamental sequence we mean a sequence (an)n∈N satisfying the Cauchy condition: for

every ε > 0 there exists a number no(ε) such that

|an − am| < ε, n,m > no(ε), m, n ∈ N.
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We say that two fundamental sequences (an) and (bn) are equivalent if the sequence

(an − bn)n∈N converges to 0, i.e.,

lim
n→∞

(an − bn) = 0.

In this case we write (an)n∈N ∼ (bn)n∈N. Thus,

(an)n∈N ∼ (bn)n∈N ⇐⇒ lim
n→∞

(an − bn) = 0.

It is easy to verify that the relation of equivalence defined above is an equivalence relation,

i.e., it has the properties (i), (ii), and (iii) of Definition 3.3.59.

Identifying equivalent fundamental sequences we obtain the notion of real numbers. Thus,

in the Cantor theory, a real number is a class of equivalent fundamental sequences of rational

numbers.

3.3.2 Fundamental Sequences

We recall:

Definition 3.3.60 We say that a sequence (fn)n∈N of functions is convergent to a function

f uniformly in the interval I, open or closed, if the function f is defined on I and, for any

given number ε > 0, there is an index no such that for every n > no the function fn is

defined on the interval I and for every x ∈ I the inequality

|fn(x)− f(x)| < ε, n > no,

is true.

The symbol

fn(x) ⇒ f(x), x ∈ I; fn(x) ⇒ x ∈ I,

will denote the uniform convergence in the interval I.

We write

fn(x) ⇒⇔ gn(x), x ∈ I

if both sequences (fn) and (gn) converge uniformly on I to the same limit.

Definition 3.3.61 We say that a sequence of functions (fn)n∈N is convergent to function f

almost uniformly in the open interval (a; b) if it converges uniformly to f on every interval

I inside (a; b).

The symbol

fn(x)
a.u.c.
⇒ f(x), x ∈ (a; b)
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will denote almost uniform convergence in the interval (a; b).

It is easy to see that every uniformly convergent sequence is also convergent almost

uniformly. The limit of an almost uniformly convergent sequence of continuous functions is

itself a continuous function.

Lemma 3.3.38 The sequence of functions
(
fn(x)

)
n∈N

is uniformly convergent to the func-

tion f(x) in the interval (a; b) if

lim
n→∞

( sup
a<x<b

hn(x)) = 0, where hn(x) = |f(x)− fn(x)|.

The proof of Lemma 3.3.38 is based on Weierstrass’s theorem.

Example 3.3.76 Show that the sequence

Fn(x) =
x

2
+
x

π
arctg (nx)− 1

2πn
ln (1 + n2x2), n ∈ N,

is uniformly convergent in the interval (−∞; +∞).

Let us discuss the pointwise convergence of the sequence
(
Fn(x)

)
n∈N

.

Applying l’Hospital’s rule (with respect to n) we obtain:

lim
n→∞

ln (1 + n2x2)
2πn

= lim
n→∞

nx2

π(1 + n2x2)
= lim
n→∞

x2

2πnx2

= lim
n→∞

1
2πn

= 0, x ∈ R.

On the other hand,

lim
n→∞

(x
2

+
x

π
arctg (nx)

)
=

{
x, for x > 0,
0, for x ≤ 0.

Hence, we obtain

lim
n→∞

Fn(x) = F (x) =

{
x, for x > 0,
0, for x ≤ 0.

In order to investigate the uniform convergence we apply Lemma 3.3.38.

We note that

sup
x∈R

|Fn(x)− F (x)| = sup
x∈R

∣∣∣x
2

+
x

π
arctg (nx)− F (x)− 1

2πn
ln (1 + n2x2)

∣∣∣
≤ sup

x∈R

∣∣∣x
2

+
x

π
arctg (nx)− F (x)

∣∣∣+ sup
x∈R

∣∣∣ 1
2πn

ln (1 + n2x2)
∣∣∣.

We have

a) sup
x∈R

∣∣∣x2 + x
πarctg (nx)− F (x)

∣∣∣ =

=


sup
x∈R+

∣∣∣ xπarctg (nx)− x
2

∣∣∣ = sup
x∈R+

∣∣∣ xπarctg
(

1
nx

)∣∣∣ ≤ sup
x∈R+

∣∣∣ x
πnx

∣∣∣ < 1
n ,

sup
x∈R−

∣∣∣ xπarctg (nx) + x
2

∣∣∣ < sup
x∈R−

∣∣∣ xπarctg
(
−1
nx

)∣∣∣ < 1
n .
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b)

sup
x∈R

∣∣∣ 1
2πn

ln (1 + n2x2)
∣∣∣ ≤ 1

2π
sup
x∈R

∣∣∣ln (1 + n2x2)
1
n

∣∣∣
≤ 1

2π
sup
x∈R

ln (2n2x2)
1
n → 0, if n→∞,

because

lim
n→∞

n
√
n2 · n

√
x2 = 1, x ∈ R.

From (a), (b) and Lemma 3.3.38 it follows that

Fn(x)
a.u.c.
⇒ F (x).

We recall: We say that a function defined in R is smooth if it is continuous in R as well

as its derivatives of any order and is denoted by C∞(R) = C∞.

Definition 3.3.62 We say that a sequence (fn)n∈N of smooth functions, defined in the

interval (a, b), (−∞ ≤ a < b ≤ +∞), is fundamental in (a, b) if for every interval I inside

(a, b) there exists a number k ∈ No and a sequence of smooth functions (Fn)n∈N such that

(E1) F (k)
n (x) = fn(x), x ∈ I

and

(E2) Fn(x) ⇒, x ∈ I,

i.e., the sequence Fn(x) is uniformly convergent in I.

Obviously constant functions are smooth. On this basis, identifying numbers with con-

stant functions we can assume that every number is a smooth function on R and a convergent

sequence of numbers is fundamental.

By Definition 3.3.60 it follows:

Theorem 3.3.101 Each almost uniformly convergent sequence of smooth functions in (a, b)

is fundamental, in (a, b).

Theorem 3.3.102 If (fn)n∈N is a fundamental sequence of smmoth functions, then the

sequence (f (m)
n )n∈N, m ∈ N, is fundamental, too.

Proof. In fact, if the sequence (Fn)n∈N satisfies conditions (E1) and (E2) then (F (k+m)
n )n∈N

= f
(m)
n and condition (E2) holds. This proves that the sequence (f (m)

n )n∈N is fundamental.
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Theorem 3.3.103 If the sequence (Fn)n∈N of smooth functions satisfies conditions (E1)

and (E2) and if m ≥ k, m ∈ N, then the sequence of smooth functions

∼
Fn(x) =

x∫
xo

Fn(t)dtm−k (xo ∈ I)

also satisfies conditions (E1) and (E2), with k replaced by k + m. Moreover, if Fn ⇒ F ,

then
∼
Fn ⇒

∼
F , where

∼
F (x) =

x∫
xo

F (t)dtm−k,

and the integral is defined in the following way:

x∫
xo

f(t) dtk =

x∫
xo

dtk

tk∫
xo

dtk−1 · · ·
t2∫
xo

f(t1)dt1.

Theorem 3.3.104 If a sequence (fn)n∈N of smooth functions is bounded and fn
a.u.c.
⇒ f in

the intervals (a, xo) and (xo, b), then

x∫
xo

fn(t)dt
a.u.c.
⇒

x∫
xo

f(t)dt in the interval a < x < b,

i.e., the sequence (fn)n∈N is fundamental in (a, b).

Proof. The sequence (fn)n∈N is bounded; thus, there is a number M > 0, such that

|fn(x)| < M, for n ∈ N.

From almost uniform convergence of the sequence (fn)n∈N it follows that for any ε > 0 and

an interval ā ≤ x ≤ b̄ (a < ā < xo < b̄ < b), there exists an index no such that

|fn(x)− f(x)| < ε

2(b̄− ā)
for n > no

in the intervals ā ≤ x ≤ xo − ε
4M and xo + ε

4M ≤ x ≤ b̄.

Hence, ∣∣∣ x∫
xo

fn(t)dt−
x∫

xo

f(t)dt
∣∣∣ < ε for n > no,

in the interval ā ≤ x ≤ b̄.

Theorem 3.3.105 A sequence (Wn(x))n∈N of polynomials of degree less than m is funda-

mental iff it converges almost uniformly.

To prove Theorem 3.3.105 the following two lemmas will be helpful.
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Lemma 3.3.39 If a sequence of polynomials (Wn(x))n∈N of degree less than k, where

Wn(x) = ano + an1x+ · · ·+ an(k−1)x
k−1, (3.3.6)

converges at k points, then the limits

aj = lim
n→∞

anj (j = 0, 1, · · · , k − 1) (3.3.7)

exist. Conversely, if the limits (3.3.7) exist, then Wn(x)
a.u.c.
⇒ W (x), where W (x) = ao +

a1x+ · · ·+ ak−1x
k−1.

Proof. a) Suppose that the sequence of polynomials (Wn(x))n∈N (3.3.6), is convergent at

k different points: x1, x2, · · · , xk. We get the system of equations
Wn(x1) = ano + an1x1 + · · ·+ an(k−1)x

k−1
1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Wn(xk) = ano + an1xk + · · ·+ an(k−1)x

k−1
k .

(3.3.8)

We shall show that the sequence of coefficients (anj)n∈N (j = 0, 1, · · · , k− 1) is conver-

gent. Let us assume that the coefficients are given. The determinant for the system (3.3.8)

is equal

A = det


1 x1 . . . x

k−1
1

. . . . . . . . . . . .

. . . . . . . . . . . .
...

...
. . .

...
1 xk . . . x

k−1
k

 =
k∏

l>m
m,l=1

(xl − xm) 6= 0.

By Cramer’s rule, the system has only one solution of the form

an,j =
Wn(x1)A1j + · · ·+Wn(xk)Akj

A
, j = 0, 1, · · · , k − 1,

where Ajk are minors of A(i = 1, ..., k) and are independent of n. Hence, the sequence of

polynomials (Wn(x))n∈N is convergent at k points which means that

lim
n→∞

Wn(x1) = g1, · · · , lim
n→∞

Wn(xk) = gk.

Hence,

lim
n→∞

anj = lim
n→∞

1
A

[Wn(x1)A1j + · · ·+Wn(xk)Akj ] =
1
A

[g1A1j + · · ·+ gkAkj ] = aj .

This means that the sequences of coefficients (anj)n∈N, (j = 0, · · · , k − 1) are convergent

lim
n→∞

anj = aj , j = 0, 1, · · · , k − 1.

b) Let us assume that the limits (3.3.7) exist and let W (x) = ao + a1x+ · · ·+ ak−1x
k−1.
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The uniform convergence of the sequence (Wn(x))n∈N in each interval < −b, b > results

from the estimation

|Wn(x)−W (x)| ≤ |ano − ao|+ |an1 − a1||x|+ · · ·+ |an(k−1) − ak−1||x| ≤
k−1∑
j=0

|anj − aj |bj .

Hence, it is easy to see that Wn(x)
a.u.c.
⇒ W (x).

Lemma 3.3.40 Let a sequence (fn)n∈N of continuous functions be given. If fn(x) ⇒ f(x),

for x ∈ I then the function f is continuous on I.

Examples of Fundamental Sequences

1. Consider the sequence of smooth functions on R defined by

fn(x) =
1

1 + e−nx
, n ∈ N.

The graphs of f1, f2, and f3 are sketched in Figure 15. We shall show that the sequence

is fundamental. In fact, this sequence is bounded by the number 1 and 1
1+e−nx

a.u.c.
⇒ in the

interval (0,∞). By Theorem 3.3.104 this sequence is fundamental.

2. Consider the sequence of the Picard functions on R defined by

fn(x) =
√

n

2π
· e−nx

2/2, n ∈ N.

The graphs of f1, f2 and f3 are sketched in Figure 16. We shall show that the sequence is

fundamental. In fact, the sequence (Gn)n∈N, where

Gn(x) =

x∫
−∞

fn(t)dt

is bounded by the number 1 and

Gn(x)
a.u.c.
⇒

{
0 in the interval −∞ < x < 0
1 in the interval 0 < x <∞.

In view of Theorem 3.3.104, the sequence (Gn)n∈N is fundamental. In view of Theo-

rem 3.3.102, the sequence (fn)n∈N is also fundamental.

© 2006 by Taylor & Francis Group, LLC



Generalized Functions — Sequential Approach 295

Figure 15. The graphs of functions: fn(x) = 1
1+e−nx ;n = 1, 2, 3

3. Consider the sequences of functions defined by:

fn(x) =
1
π

arctg (nx) +
1
2
, n = 1, 2, · · · ;

gn(x) =
1
π

n

n2x2 + 1
, n = 1, 2, · · · (see Figure 17);

hn(x) = − 2
π

n3x

(n2x2 + 1)2
, n = 1, 2, · · · (see Figure 18);

vn(x) =
2n3

π

3n2x2 − 1
(n2x2 + 1)3

, n = 1, 2, · · · .

(3.3.9)

Figure 16. The graphs of the Picard functions: fn(x) =
√

n
2π · e

−nx2/2;n = 1, 2, 3
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Sequences (3.3.9) are fundamental, since in the interval (−∞,+∞), we have

fn = F (1)
n , gn = F (2)

n ,

hn = F (3)
n , vn = F (4)

n ,

where

Fn(x) =
x

2
+
x

π
arctg (nx)− 1

2πn
ln (1 + n2x2), n ∈ N,

and

Fn
a.u.c.
⇒ in the interval (−∞,∞) (see Example 3.3.76).

4. The sequence of functions

fn(x) = cosnx, n ∈ N,

is fundamental because if Fn(x) = 1
n sinnx, n ∈ N and k = 1, then (E1) and (E2) are

satisfied.

Figure 17. The graphs of the Cauchy functions: gn(x) = 1
π

n
n2x2+1 , n = 1, 2, 3

5. The sequence of functions

fn(x) = n cosnx, n ∈ N,

is fundamental since if Fn(x) = − 1
n cosnx, n ∈ N and k = 2, then (E1) and (E2) are

satisfied.

6. The interlaced sequence of sequences 4 and 5

cosx, cosx, cos 2x, 2 cos 2x, cos 3x, 3 cos 3x, · · ·
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is fundamental because if (Fn)n∈N is the sequence

− cosx, − cosx, −1
4

cos 2x, −1
2

cos 2x, −1
9

cos 3x, −1
3

cos 3x, · · ·

and k = 2, then the conditions (E1) and (E2) are satisfied.

Figure 18. The graphs of the functions: hn(x) = − 2
π

n3x
(n2x2+1)2 , n = 1, 2, 3

3.3.3 Definition of Distributions

Definition 3.3.63 We say that two sequences (fn)n∈N and (gn)n∈N fundamental in (a, b)

are equivalent in (a, b) and we write

(fn)n∈N ∼ (gn)n∈N (3.3.10)

if the interlaced sequence

f1, g1 , f2 , g2 , · · · (3.3.11)

is fundamental in (a, b).
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Theorem 3.3.106 Two sequences (fn)n∈N and (gn)n∈N are equivalent in (a, b) if for each

interval I inside (a, b) there exist sequences (Fn)n∈N and (Gn)n∈N of smooth functions and

an integer k ∈ No such that

(F1) F (k)
n (x) = fn(x) and G(k)

n (x) = gn(x) , x ∈ I

(F2) Fn(x) ⇒⇔ Gn(x) , x ∈ I.

Proof. Suppose that sequences (fn)n∈N and (gn)n∈N are equivalent. This means that the

interlaced sequence (3.3.11) f1, g1 , f2 , g2 , · · · is fundamental. Then there exist an integer

k ∈ No and smooth functions Fn and Gn such that F (k)
n = fn and G

(k)
n = gn, and the

sequence

F1 , G1 , F2 , G2 , · · · (3.3.12)

converges almost uniformly in (a; b). Consequently the conditions (F1) and (F2) are satisfied.

Conversely, suppose that conditions (F1) and (F2) are satisfied. Then the sequence

(3.3.12) converges almost uniformly, i.e., the sequence (3.3.11) satisfies conditions (E1) and

(E2) with order k1 , k2, respectively. Then by the Theorem 3.3.103, sequences of smooth

functions
∼
Fn and

∼
Gn, such that

∼
Fn(x) =

x∫
xo

Fn(t)dtm−k1 (xo ∈ I), n ∈ N,

∼
Gn(x) =

x∫
xo

Gn(t)dtm−k2 (xo ∈ I), n ∈ N,

satisfy the condition (F1) with order m. Moreover

∼
F

(m)

n = F (k1)
n = fn,

∼
G

(m)

n = G(k2)
n = gn,

∼
Fn(x) ⇒⇔

∼
Gn(x), x ∈ I.

Thus, the sequence
∼
F 1 ,

∼
G1 ,

∼
F 2 ,

∼
G2 , · · ·

is almost uniformly convergent in (a, b); therefore the sequence (3.3.11) f1, g1, f2, g2, . . .

satisfies conditions (E1) and (E2), i.e., is fundamental. Sequences (Fn)n∈N and (Gn)n∈N

and the order k depend, in general, on the choice of the interval I.

Corollary 3.3.35 The integer k, appearing in the condition (F1) of equivalent sequences,

can, if necessary, be replaced by any greater integer.

Proposition 3.3.63 The relation (3.3.10) is an equivalence relation.

Proof. In fact. It is easy to observe that the relation (3.3.10) satisfies conditions (i) and

(ii), i.e., it is reflexive and symmetric.
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We shall show that the condition (iii) is also satisfied. If (fn)n∈N ∼ (gn)n∈N and (gn)n∈N ∼
(hn)n∈N in (a, b), then for each bounded open interval I inside (a, b) there exists an integer

k ≥ 0 and sequences (Fn)n∈N and (Gn)n∈N satisfying conditions (F1) and (F2) and there

exists an integer m ≥ 0 and sequences (
∼
Gn)n∈N and (Hn)n∈N satisfying conditions

∼
G

(m)

n = gn, H(m)
n = hn,

∼
Gn(x) ⇒⇔ Hn(x), x ∈ I

By Theorem 3.3.106 we may assume that k = m. Then, writing
∼
Hn = Gn −

∼
Gn +Hn, we get

F (k)
n = fn and

∼
H

(k)

n = hn,

Fn(x) ⇒⇔
∼
Hn(x), x ∈ I.

which implies that (fn)n∈N ∼ (hn)n∈N in (a, b).

Since the relation (3.3.10) ∼ is a relation of equivalence, the set of all sequences funda-

mental in (a, b) can be decomposed into disjoint classes (equivalence classes of the relation

∼) such that two fundamental sequences are in the same class if they are equivalent.

These equivalence classes are called distributions in the sense of Mikusiński (defined

on the interval (a, b)). An analogous definition can be formulated for distributions in an

arbitrary open set in Rn.

All fundamental sequences that are equivalent define the same distribution. The distrib-

ution defined by fundamental sequence (fn(x))n∈N will be denoted by the symbol [fn].

Two fundamental sequences (fn)n∈N and (gn)n∈N define the same distribution if they are

equivalent. The equality

[fn] = [gn] holds iff (fn)n∈N ∼ (gn)n∈N.

Thus

f = [fn] =
{

(gn)n∈N : (fn)n∈N ∼ (gn)n∈N

}
.

Distributions will be denoted by f, g, etc. in the same way as functions. The set of all

distributions is denoted by D′.
The sequences from the examples 2 (Figure 16) and 3 (Figure 17) are equivalent. There-

fore, they define the same distribution. This distribution is called the delta distribution

or the Dirac delta distribution and is denoted by δ:[√ n

2π
· e−nx

2/2
]

=
[ 1
π

n

n2x2 + 1

]
= δ(x).

We will discuss the δ Dirac distribution in section 3.4.

The sequences from examples 4 and 5 are equivalent. They define the same distribution:

[cosnx] = [n cosnx] = [0] = 0.
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Obviously, an arbitrary smooth function φ can be identified with a class of equivalence of

the sequence φ , φ , φ , · · · .

Remark 3.3.103 Smooth, continuous, and locally integrable functions are easily identified

with respective distributions.

Definition 3.3.64 If a fundamental sequence (fn)n∈N which defines the distribution f =

[fn] is such a sequence that there exists an integer k ∈ No and a sequence of smooth functions

(Fn)n∈N such that

F (k)
n (x) = fn(x) , Fn(x) ⇒

for all bounded intervals I included in (a, b), then we say that the distribution

f = [fn]

is of a finite order in (a, b).

In the opposite case we say that the distribution is of an infinite order.

Examples of Distributions of Finite Order in R

(1o)
[
x
2 + x

πarctg (nx)− 1
2πn ln (1 + n2x2)

]
;

(2o)
[

1
πarctg (nx) + 1

2

]
;

(3o)
[

1
π

n
n2x2+1

]
;

(4o)
[
− 2

π
n3x

(n2x2+1)2

]
;

(5o)
[

2n3

π
3n2x2−1

(n2x2+1)3

]
.

Example of a Distribution of an Infinite Order

The series

δ(x) + δ′(x− 1) + δ(2)(x− 2) + · · · ,

where derivatives are defined in the distributional sense, represents a distribution of infinite

order.

3.3.4 Operations with Distributions

Multiplication by a Number. The operation λf(x) of multiplication of a function f(x)

by a number λ has the following property:

(i) If (fn(x))n∈N is a fundamental sequence, so is
(
λfn(x)

)
n∈N

.

This property enables us to extend the operation to arbitrary distribution f(x) = [fn(x)].

© 2006 by Taylor & Francis Group, LLC



Generalized Functions — Sequential Approach 301

Definition 3.3.65 By the product λf of a distribution f = [fn] with a number λ we mean

the distribution [λfn].

It is easy to see that

(ii) The product λf(x) does not depend on the choice of the fundamental sequence

(fn(x))n∈N.

Addition. The operation f + g of addition of two functions f and g has the following

property:

1. if (fn)n∈N and (gn)n∈N are fundamental sequences, so is the sequence (fn + gn)n∈N.

Proof. 1. Suppose that there exist integers k, k1 ≥ 0 and sequences (Fn)n∈N and (Gn)n∈N

of smooth functions such that

F (k)
n = fn and Fn ⇒,

G(k1)
n = gn and Gn ⇒ .

By Theorem 3.3.106 we can assume that k = k1. Since

(Fn +Gn)(k) = fn + gn and Fn +Gn ⇒,

the sequence (fn + gn)n∈N is fundamental.

Property 1 enables us to extend addition to arbitrary distributions.

Definition 3.3.66 By the sum f + g of the distributions f = [fn] and g = [gn] we mean

the distribution [fn + gn].

To verify the consistency of this definition we must prove that:

2. the distribution [fn + gn] does not depend on the choice of sequences (fn)n∈N and

(gn)n∈N representing the distributions f and g.

Proof. 2. We must show that if

(fn)n∈N ∼ (
∼
fn)n∈N and (gn)n∈N ∼ (

∼
gn)n∈N

then

(fn + gn)n∈N ∼ (
∼
fn +

∼
gn)n∈N.

By definition of equivalence of fundamental sequences it follows that

f1,
∼
f 1, f2,

∼
f 2, . . . and g1,

∼
g1, g2,

∼
g2, . . .

are fundamental. By the property 1 the sequence

f1 + g1,
∼
f 1 +

∼
g1, f2 + g2,

∼
f 2 +

∼
g2, . . .
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is fundamental. Thus, by (3.3.10), we have

(fn + gn)n∈N ∼ (
∼
fn +

∼
gn)n∈N,

which implies the assertion.

Subtraction. The operation f − g of difference of two functions f and g has the property

1) if (fn)n∈N and (gn)n∈N are fundamental sequences, so is the sequence (fn − gn)n∈N.

Property 1) enables us to extend subtraction to arbitrary distributions.

Definition 3.3.67 By the difference f − g of the distribution f = [fn] and g = [gn] we

mean the distribution [fn − gn].

The consistency of this definition can be checked by a procedure similar to that already

used for the sum.

It is easy to see from the definitions of the operation introduced above that the following

properties are true:

Properties of Algebraic Operations on Distributions

1. f + g = g + f ;

2. (f + g) + h = f + (g + h);

3. the difference g = h− f is the only solution of the equation f + g = h;

4. λ(f + g) = λf + λg, λ ∈ R;

5. (λ+ µ)f = λf + µf, λ, µ ∈ R;

6. λ(µf) = (λµ)f, λ, µ ∈ R;

7. 1f = f .

Denoting by 0 the zero distribution, i.e., the distribution that is defined by the class [fn],

where fn are functions identically equal to zero, we have

0 + f = f and 0f = f.

In the last formula the symbol 0 has two different meanings: on the left-hand side it denotes

the zero distribution, on the right-hand side it denotes the number zero. This ambiguity in

practice does not lead to any confusion.
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3.3.5 Regular Operations

An advantage of the sequential approach in the theory of distributions is the ease of

extending to distributions many operations that are defined for smooth functions.

Definition 3.3.68 We say that an operation A, which to every system (ϕ1, . . . , ϕk) of

smooth functions in R assigns a smooth function in R (or a number), is regular if for arbi-

trary fundamental sequences (ϕ1n)n∈N, . . ., (ϕkn)n∈N of smooth functions in R the sequence(
A(ϕ1n, . . . , ϕkn)

)
n∈N

is fundamental.

Every regular operation A defined on smooth functions can be extended automatically

to distributions in the following way.

Definition 3.3.69 If f1, . . . , fk are arbitrary distributions in R and (ϕ1n)n∈N, . . . , (ϕkn)n∈N

the corresponding fundamental sequences, i.e., f1 = [ϕ1n], . . ., fk = [ϕkn], then the operation

A on f1, , fk is defined by the formula

A(f1, . . . , fk) =
[
A(ϕ1n, . . . , ϕkn)

]
.

Remark 3.3.104 This extension is always unique, i.e., it does not depend on the choice of

the fundamental sequences (ϕ1n)n∈N , · · · (ϕkn)n∈N representing the distributions f1, · · · , fk.

In other words, if

(ϕ1n)n∈N ∼ (
∼
ϕ1n)n∈N, · · · , (ϕkn)n∈N ∼ (

∼
ϕkn)n∈N

then (
A(ϕ1n, · · · , ϕkn)

)
n∈N

∼
(
A(

∼
ϕ1n, · · · ,

∼
ϕkn)

)
n∈N

.

Indeed, by hypothesis, the sequences

ϕ11,
∼
ϕ11, ϕ12,

∼
ϕ12, . . .

ϕ21,
∼
ϕ21, ϕ22,

∼
ϕ22, . . .

. . . . . . . . . . . . . . . . . .

are fundamental. By the definition of regular operation the sequence

A(ϕ11, ϕ21, . . .), A(
∼
ϕ11,

∼
ϕ21, . . .), A(ϕ12, ϕ22, . . .), . . .

is also fundamental, which proves the assertion.

Remark 3.3.105 Multiplication by a number, addition and difference are regular operators,

as we have seen in the previous section.
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The Following Operations Are Regular:

(1) addition of smooth functions;

(2) difference of smooth functions;

(3) mulitplication of a smooth function by a fixed number λ: λϕ;

(4) translation of the argument of a smooth function ϕ(x+ h);

(5) derivation of a smooth function of a fixed order m: ϕ(m);

(6) multiplication of a smooth function by a fixed smooth function ω: ωϕ;

(7) substitution a fixed smooth function ω 6= 0;

(8) product of smooth functions with separated variables: ϕ1(x)ϕ2(y);

(9) convolution of a smooth function with a fixed function ω from the space D (of smooth

functions whose supports are bounded)

(f ∗ ω)(x) =
∫
R

ϕ(x− t)ω(t)dt,

(10) inner product of a smooth function with a fixed function from the space D

(ϕ, ω) =
∫
R

ϕ(x)ω(x)dx.

Remark 3.3.106 The support of a distribution is the smallest closed set outside which the

distribution vanishes.

It is easy to check that:

Theorem 3.3.107 Substitution of regular operations is regular, too.

All formulae involving regular operations, which hold true for smooth functions, are

extended automatically to distributions.

Translation. The translation ϕ(x) → ϕ(x+ h) is a regular operation.

Moreover, if
(
ϕn(x)

)
n∈N

is a fundamental sequence in the open interval (c, d), then(
ϕn(x+ h)

)
n∈N

is a fundamental sequence in the translated inteval (ch, dh), where

(ch, dh) = {x : x+ h ∈ (c, d)}.

Thus, if f(x) = [ϕn(x)] is a distribution defined in (c, d), then

f(x+ h) = [ϕn(x+ h)] is a distribution defined in (ch, dh).

© 2006 by Taylor & Francis Group, LLC



Generalized Functions — Sequential Approach 305

Derivation. One of the most important benefits of extending the notion of a function to

the notion of a distribution is the fact that every distribution has all derivatives which are

again distributions.

The derivation ϕ(m) of an arbitrary order m is a regular operation. In fact, if (ϕn)n∈N is

a fundamental sequence, then so is sequence (ϕ(m)
n )n∈N (see 3.3.2, Theorem 3.3.102). Thus,

we can define the derivative of order m of distribution f in the following way:

Definition 3.3.70 We define the derivative of order m,m ∈ N, of any distribution

f = [ϕn] by setting

f (m) = [ϕ(m)
n ].

It is easy to see that the following theorem is true:

Theorem 3.3.108 Each distribution has derivatives of all orders.

The following formulas occurring in the ordinary differential calculus follow immediately

for distributions from the definition:

f (o) = f (3.3.13)

(f + g)(m) = f (m) + g(m) (3.3.14)

(λf)(m) = λf (m), λ ∈ R (3.3.15)

(f (m))(k) = f (m+k). (3.3.16)

Multiplication of a Distribution by a Smooth Function. The multiplication ϕω,

considered as an operation on two functions ϕ and ω, is not regular. Namely, if the sequences

(ϕn)n∈N and (ωn)n∈N are fundamental, their product (ϕn)n∈N and (ωn)n∈N need not be

fundamental.

However, multiplication may also be thought of as an operation on a single function, the

other factor being kept fixed.

Definition 3.3.71 We define the product of an arbitrary distribution f = [ϕn] by a smooth

function ω by means of the formula

ωf = [ωϕn].

To verify the consistency of this definition we must prove that the multiplication ωϕ by

a smooth function ω is a regular operation, i.e., we must prove the theorem:

Theorem 3.3.109 If a sequence (ϕn)n∈N is fundamental, ω ∈ C∞, then the sequence

(ωϕn)n∈N is fundamental, too.
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Proof. Since (ϕn)n∈N is fundamental for every interval I inside (a; b) there exist a number

k and smooth functions Gn such that

G(k)
n (x) = (ϕn), x ∈ I and

Gn ⇒ x ∈ I.

We shall show that for every order m and for every smooth function ω, the sequence

(ωG(m)
n )n∈N (3.3.17)

is fundamental. The proof follows by induction.

The case m = 0 follows from Theorem 3.3.101 in section 3.3.2. If the sequence is funda-

mental for some m, then the sequence is also fundamental for m+ 1, since

ωG(m+1)
n = (ωG(m)

n )′ − ω′G(m)
n

and the right-hand side in the difference of two sequences that are fundamental by Theo-

rem 3.3.101 (see section 3.3.2) and the induction hypothesis. Since the interval I is arbitrary,

the sequence (3.3.17) is fundamental in (a, b).

The following usual properties of multiplication follow directly from the definition:

ω1(ω2f) = (ω1ω2)f, ω1, ω2 ∈ C∞, f ∈ D′;
(ω1 + ω2)f = ω1f + ω2f, ω1, ω2 ∈ C∞, f ∈ D′;
ω(f + g) = ωf + ωg, ω ∈ C∞, f, g ∈ D′,

where D′ is the space of distributions.

Remark 3.3.107 We note that if f is a function, then the product defined above is the

ordinary product of functions. Moreover, if ω is a constant function and f is an arbitrary

distribution, this product coincides with the product in Definition 3.3.65; see section 3.3.4.

It is easy to prove the formula

(ωf)′ = ω′f + ωf ′, ω ∈ C∞, f ∈ D′. (3.3.18)

This formula may be considered a particular case (when k = 1) of the formula

ωf (k) =
k∑
j=o

(−1)j
(
k

j

)(
ω(j)f

)(k−j)
, ω ∈ C∞, f ∈ D′, (3.3.19)

which can be proved by induction in the same way as for functions. The following Leibniz-

Schwarz formulas hold true:

(ωf)(k) =
∑

0≤j≤k

(
k

j

)
ω(j)f (k−j), ω ∈ C∞, f ∈ D′; (3.3.20)

ω(k)f =
∑

0≤j≤k

(−1)j
(
k

j

)(
ωf (j)

)(k−j)
, ω ∈ C∞, f ∈ D′. (3.3.21)
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Substitution. Let ψ be a fixed smooth function defined in the interval (a, b) such that

ψ′(x) 6= 0 for x ∈ (a, b) and suppose that the values of the function ψ belong to the open

interval (c, d). Composition (ϕ ◦ ψ)(x) defined by means of

(ϕ ◦ ψ)(x) = ϕ(ψ(x))

is a regular operation on ϕ(y) (ψ being fixed). We shall show the following theorem:

Theorem 3.3.110 If (ϕn(y))n∈N is fundamental in open interval (c, d), the values of smooth

function ψ belong to (c, d) and ψ′(x) 6= 0 for x ∈ (a, b), then
(
ϕn(ψ(x))

)
n∈N

is fundamental

in (a, b).

Proof. Observe that if the sequence
(
ϕn(ψ(x))

)
n∈N

is fundamental then the sequence(
ϕ′n(ψ(x))

)
n∈N

is fundamental, too. This follows from the equality

(
ϕ′n(ψ(x))

)
=

1
ψ′(x)

(
ϕn(ψ(x))

)′
; (3.3.22)

see Theorem 3.3.102 (section 3.3.2) and Theorem 3.3.109.

Let I be an open interval inside (a, b). The function ψ maps I into an interval I ′ ⊂ (c, d).

Let (Fn)n∈N be a sequence of smooth functions such that

Fn(y) ⇒ y ∈ I ′,

F (k)
n (y) = ϕn(y), y ∈ I ′.

The sequence
(
Fn(ψ(x))

)
n∈N

of smooth functions converges uniformly for x ∈ I. Since the

interval I is arbitrary, the sequence (
Fn(ψ(x))

)
n∈N

is fundamental in (a, b). Consequently, the sequences(
F ′n(ψ(x))

)
n∈N

, · · · ,
(
F (k)
n (ψ(x))

)
n∈N

are also fundamental. The last of these sequences coincides with the sequence
(
ϕn(ψ(x))

)
n∈N

.

This completes the proof of this theorem.

Calculation with substitution of distributions can be carried out in the same way as those

with substitution of functions. In particular, we have the formula(
f(ψ(x))

)′
= f ′

(
ψ(x)

)
ψ′(x), ψ ∈ C∞, ψ′ 6= 0, f ∈ D′, (3.3.23)

since(
f(ψ(x))

)′
=
[
ϕn(ψ(x)

]′
=
[(
ϕn(ψ(x))

)′]
=
[
ϕ′n(ψ(x))ψ′(x)

]
= f ′

(
ψ(x)

)
ψ′(x),
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where (ϕn)n∈N is a fundamental sequence of f .

We have thus proved that the substitution of a given smooth function φ, satisfying con-

dition φ′(x) 6= 0, is a regular operation. Following the general method we define the

substitution.

Definition 3.3.72 We define the substitution of a fixed function φ ∈ C∞ (φ′(x) 6= 0 for x ∈
(a, b), with values in (c, d)), into an arbitrary distribution f(y) = [ϕn(y)] in (c, d) by the

formula

f(φ(x)) = [ϕn(φ(x))].

Theorem 3.3.111 For every distribution f and every integer k ≥ 0 we have the equality(
f(αx+ β)

)(k)

= αkf (k)(αx+ β), α 6= 0.

Proof. Let (ϕn)n∈N be a fundamental sequence of the distribution f . Then(
f(αx+ β)

)(k)

=
[
ϕn(αx+ β)

](k)
=
[
αkϕ(k)

n (αx+ β)
]

= αkf (k)(αx+ β).

From this theorem we have the following corollary:

Corollary 3.3.36 If a distribution f(x) is the k-th derivative of a continuous function

F (x), then the distribution f(αx+ β) is the k-th derivative of the function

1
αk
F (αx+ β).

Convolution with a Fixed Smooth Function. The convolution f ∗ ω of a distribution

f with a fixed smooth function ω of bounded support is meant here as a regular operation

A(f) = f ∗ ω,

(the proof will be given later), which for the smooth function ϕ is defined in the known

manner

A(ϕ)(x) = (ϕ ∗ ω)(x) =

+∞∫
−∞

ϕ(x− t)ω(t)dt;

see also section 1.3.3, formula (1.3.27).

Definition 3.3.73 We define the convolution of any distribution f = [ϕn] with the smooth

function ω of bounded support by setting

f ∗ ω = [ϕn ∗ ω].
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To verify the consistency of this definition we must prove that the convolution ω ∗ f by

a function ω ∈ D is a regular operation. To obtain this we need three preparatory lemmas.

Lemma 3.3.41 If f is a continuous function (or local integrable) in R and ω ∈ D, i.e., is

a smooth function of bounded support in R, then the convolution ω ∗ f is a smooth function

and the equality holds:

(f ∗ ω)(m) = f ∗ ω(m) for all m ∈ N. (3.3.24)

Proof. To prove that f ∗ω is a smooth function it suffices to show that for any fixed m ∈ N
the convolution (f ∗ ω)(m) is a smooth function.

Let k = f ∗ ω. For any fixed x the product f(t)ω(x − t) is an integrable function, since

f(x) is integrable on the set where ω(x− t) 6= 0. Thus, convolution

k(x) = (f ∗ ω)(x)

exists everywhere. Then

|k(m)(x)− k(m)(xo)| ≤
∫
R

|f(t)||ω(m)(x− t)− ω(m)(xo − t)|dt.

Since the function ω has a bounded support there exists integer r > 0 such that ω(t) = 0

for |t| > r. If xo is fixed and |x− xo| < 1 then the difference ω(x− t)− ω(xo − t) vanishes

for t satisfying inequality |t− xo| > r − 1. Hence,

|k(m)(x)− k(m)(xo)| ≤M

∫
R

|ω(m)(x− t)− ω(m)(xo − t)|dt

= M

∫
R

|ω(m)(t+ (x− xo))− ω(m)(t)|dt

for |x− xo| < 1.

By Lebesgue’s theorem the last integral tends to 0, if x→ xo, and this shows the conti-

nuity of considered convolution. The equality (3.3.24) can be obtained by simple transfor-

mations.

From Lemma 3.3.41 it follows:

Lemma 3.3.42 If f is a smooth function and ω ∈ D then

(f ∗ ω)(m) = f (m) ∗ ω = f ∗ ω(m) for all m ∈ N.

Lemma 3.3.43 If (ϕn)n∈N is a fundamental sequence and ω ∈ D, then the sequence of

convolutions (ϕn ∗ ω)n∈N is fundamental, too.
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Proof. Since ω is a function with bounded support there exists an integer α ∈ R+ such

that

ω(x) = 0 for |x| > α.

Let I be any bounded open interval in R and I ′ be a bounded open interval too such that

I ⊂ I ′−α, where I ′−α denotes the set of all points x ∈ I ′ whose distance from the boundary

of I ′ is greater than α. Since (ϕn)n∈N is a fundamental sequence there are integer k ∈ N,

continuous functions Fn, (n ∈ N) and F such that

F (k)
n = ϕn and Fn ⇒ F, x ∈ I ′.

Note that

|(Fn ∗ ω)(x)− (F ∗ ω)(x)| ≤
∫
R

|Fn(t)− F (t)||ω(x− t)|dt ≤ ε

∫
R

|ω(t)| ≤ ε

+α∫
−α

|ω(t)|dt.

This means that

Fn ∗ ω ⇒ F ∗ ω on I.

By Lemma 3.3.42 we have

(Fn ∗ ω)(k) = F (k)
n ∗ ω = ϕn ∗ ω on I.

This means that (ϕn ∗ ω)n∈N is fundamental. This proves the lemma.

Corollary 3.3.37 If a sequence (ϕn)n∈N is fundamental and ω ∈ D, then the sequence of

convolutions (ϕn ∗ ω)n∈N converges almost uniformly.

Remark 3.3.108 It follows from Lemma 3.3.43 and Theorem 3.3.101, section 3.3.2, that

convolution with a smooth function with bounded support is a regular operation.

Since the convolution with function ω ∈ D is a regular operation all formulae that hold

true for smooth functions can be extended to distributions. Thus, we have:

Proposition 3.3.64 If ω ∈ D and f1, f2, f3 are any distributions then the following for-

mulae are true:
f ∗ ω = ω ∗ f ;

(λf) ∗ ω = f ∗ (λω) = λ(f ∗ ω), λ ∈ R;

(f1 + f2) ∗ ω = f1 ∗ ω + f2 ∗ ω;

f ∗ (ω1 + ω2) = f ∗ ω1 + f ∗ ω2, ω1, ω2 ∈ D.
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3.4 Delta Sequences

In section 3.3.3 we mentioned that an arbitrary smooth function φ can be identified with

a distribution that is an equivalence class of a constant sequence φ, φ, φ, ..... In order to

identify an arbitrary continuous function and more generally a locally integrable function

with a distribution we have to approximate these functions by smooth functions, e.g., by

delta sequences. We will present one definition of a delta sequence.

3.4.1 Definition and Properties

Definition 3.4.74 By a delta sequence in R we mean any sequence of smooth functions(
δn(x)

)
n∈N

, x ∈ R, with the following properties:

(∆1) There is a sequence of positive numbers αn → 0 such that

δn(x) = 0 for |x| ≥ αn, n ∈ N;

(∆2)
∫
R
δn(x)dx = 1, for n ∈ N;

(∆3) For every k ∈ No there is a positive integer Mk such that

αkn

∫
R

|δ(k)n (x)|dx < Mk for n ∈ N.

Various definitions of delta sequences can be found in the literature (see [AMS], [MiS.2]).

Example 3.4.77 As an example of a delta sequence we can take

δn(x) = α−1
n Ω(α−1

n x) for n ∈ N,

where Ω ∈ D (i.e., Ω is any smooth function of bounded support) and such that∫
R

Ω(x)dx = 1,

where (αn)n∈N is an arbitrary sequence, different from 0 and tending to 0.

The delta sequences (δ sequences) have the following properties:

Property 3.4.3 The convolution of two delta sequences is a delta sequence.

Proof. Let (δ1n)n∈N and (δ2n)n∈N be two delta sequences. We have to prove that (δn)n∈N =

(δ1n)n∈N ∗ (δ2n)n∈N is another delta sequence. In fact, δn are smooth functions. Moreover,

if
δ1n(x) = 0 for |x| ≥ α1n and δ2n(x) = 0 for |x| ≥ α2n, n ∈ N,

then δn(x) = 0 for |x| ≥ α1n + α2n, n ∈ N.
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This implies that δn satisfies condition ∆1. Since∫
R

δn(x)dx =
∫
R

dx

∫
R

δ1n(x− t)δ2n(t)dt =
∫
R

δ2n(t)dt
∫
R

δ1n(x− t)dx = 1 · 1 = 1,

so that condition ∆2 is satisfied. Because∫
R

|δ(k)n (x)|dx =
∫
R

dx

∫
R

|δ(k)1n (x− t)||δ2n(t)|dt =
∫
R

|δ2n(t)|dt
∫
R

|δ(k)1n (x− t)|dx,

thus

αk1n

∫
R

|δ(k)n (x)|dx ≤M1kM2o.

Similarly, we obtain

αk2n

∫
R

|δ(k)n (x)|dx ≤M1oM2k.

Since

(α1n + α2n)k ≤ 2k(αk1n + αk2n),

by the last two inequalities, we get

(α1n + α2n)k
∫
R

|δkn(x)|dx ≤Mk, where Mk = 2k(M1kM2o +M1oM2k),

which proves condition ∆3.

Property 3.4.4 Every delta sequence is fundamental.

Proof. Let (δn)n∈N be an arbitrary delta sequence. Let us consider a sequence (γn)n∈N

such that

γn(x) =

x∫
−∞

dt

t∫
−∞

δn(t1)dt1.

It is easy to see that γn, n ∈ N, are smooth functions and γn ⇒ on R and γ
(2)
n = δn for

n ∈ N. This means that the sequence (δn)n∈N is fundamental.

It is easy to see that if (δ1n)n∈N and (δ2n)n∈N are two delta sequences, then the interlaced

sequence

δ11, δ21, δ12, δ22, δ13, δ23, · · ·

is also a delta sequence. Thus, we have the following property:

Property 3.4.5 Every two delta sequences are equivalent.

Since all delta sequences are equivalent, they represent the same distribution, which is

called Dirac’s delta distribution:

δ(x) = [δn(x)].
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By Theorem 3.3.109, we have

Property 3.4.6 The product of a smooth function with a delta sequence (δn)n∈N is fun-

damental.

Property 3.4.7 If ω is a smooth function, (δn)n∈N is a delta sequence, then the fundamental

sequence
(
ω(x)δn(x)

)
n∈N

is equivalent to a sequence
(
ω(0)δn(x)

)
n∈N

.

Proof. For an arbitrary positive integer ε, there exists an index no such that for n > no

|ω(x)− ω(0)| < ε for − αn < x < αn.

Hence ∣∣∣ x∫
−∞

(
ω(t)− ω(0)

)
δn(t)dt

∣∣∣ ≤ ε

∞∫
−∞

|δn(x)|dx = ε ·Mo,

which proves that the integral converges uniformly to 0. Hence(
ω(x)δn(x)− ω(0)δn(x)

)
n∈N

∼ (0)n∈N,

i.e., (
ω(x)δn(x)

)
n∈N

∼
(
ω(0)δn(x)

)
n∈N

. (3.4.1)

Sequences appearing on the left and right sides of the equality (3.4.1) are fundamental for

the products ω(x)δ(x) and ω(0)δ(x), respectively. This means that the considered products

represent the same distribution. Thus,

ω(x)δ(x) = ω(0)δ(x), ω ∈ C∞. (3.4.2)

Similarly, we obtain

ω(x)δ(x− xo) = ω(xo)δ(x− xo), ω ∈ C∞. (3.4.3)

In particular, if ω(x) = xn, n ∈ N, we obtain

xnδ(x) = 0 for n ∈ N. (3.4.4)

By induction we can prove that

xnδ(n−k)(x) = 0 for k = 1, · · · , n; n ∈ N, (3.4.5)

where δ(o) = δ.

Property 3.4.8 If f is a continuous function in (a, b) and (δn)n∈N is a delta sequence, then

the sequence of smooth functions

(f ∗ δn)n∈N
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converges to f , almost uniformly in (a, b).

Proof. Let I be any bounded interval inside (a, b). For every positive number ε there is an

index no such that for n > no the inequality

|f(x− t)− f(x)| < ε holds for x ∈ I and t ∈ (−αn, αn),

where (αn)n∈N is a sequence of positive numbers such that αn → 0 and δn(t) = 0 for

|t| ≥ αn, n ∈ N. Hence,

|(f ∗ δn)(x)− f(x)| ≤
∞∫

−∞

|f(x− t)− f(x)||δn(t)|dt =

αn∫
−αn

|f(x− t)− f(x)||δn(t)|dt

≤ ε

αn∫
−αn

|δn(t)|dt ≤ εMo

for n ≥ no and x ∈ I.

This proves that f ∗ δn converges to f almost uniformly in (a, b).

The generalization of the Property 3.4.8 is the following:

Property 3.4.9 If (fn)n∈N is a sequence of continuous functions convergent to f , almost

uniformly in (a, b) and (δn)n∈N is a delta sequence, then the sequence of smooth functions

(fn ∗ δn)n∈N converges to f , almost uniformly in (a, b).

Proof. Note that

fn ∗ δn = f ∗ δn + (fn − f) ∗ δn.

By Property 3.4.8 we have

f ∗ δn
a.u.c.
⇒ f in (a, b).

It suffices to show that

(fn − f) ∗ δn
a.u.c.

⇒ 0 in (a, b).

In fact, given any bounded interval I inside (a, b) and any positive number ε, we have, for

sufficiently large n,

|(fn − f) ∗ δn| ≤ |fn − f | ∗ |δn| ≤ ε ∗ |δn| ≤ ε ·Mo in I.

This proves the property.

Property 3.4.10 If f is a smooth function and (δn)n∈N is a delta sequence, then

(f ∗ δn)(k)
a.u.c.
⇒ f (k) for k ∈ No.
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Proof. It is easy to see that

(f ∗ δn)(k) = f (k) ∗ δn.

By Property 3.4.8 it follows immediately that

f (k) ∗ δn
a.u.c.

⇒ f (k),

which completes the proof.

Property 3.4.11 If f and fn (n ∈ N) are smooth functions and

f (k)
n

a.u.c.
⇒ f (k), for every k ∈ No,

then

(fn ∗ δn)(k)
a.u.c.
⇒ f (k).

Proof. It suffices to see that

(fn ∗ δn)(k) = f (k)
n ∗ δn

and to use Property 3.4.8.

Property 3.4.12 If f is a locally integrable function in R, then (f ∗ δn)n∈N converges in

norm to f , i.e., ∫
R

|(f ∗ δn)(x)− f(x)|dx→ 0, n→∞.

Proof. To prove this property, we first observe that∫
R

|(f ∗ δn − f)(x)|dx ≤
∫
R

|
∫
R

(
f(x− t)− f(x)

)
δn(t)dt|dx

≤
∫
R

(
|δn(t)|

∫
R

|f(x− t)− f(x)| dx
)
dt.

We now apply a well-known Lebesgue theorem to get∫
R

|f(x− t)− f(x)| dx→ 0, as t→ 0.

Hence, for any positive number ε there is an index no such that for n > no∫
R

|f(x− t)− f(x)| dx < ε, for |t| ≤ αn,

where (αn)n∈N is a sequence of positive number such that αn → 0 and δn(t) = 0 for |t| ≥ αn.

We conclude that∫
R

|(f ∗ δn)(x)− f(x)|dx ≤
∫
R

|δn(t)| dt · ε = Mo · ε→ 0,
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which proves our property.

Property 3.4.13 If f is a locally integrable function in (a, b), then the sequence (f ∗δn)n∈N

converges locally in norm to f , i.e., given any interval I inside (a, b), we have∫
I

|(f ∗ δn)(x)− f(x)|dx→ 0.

Property 3.4.14 If a sequence of function (fn)n∈N integrable in R converges in norm to

f , then the sequence (fn ∗ δn)n∈N also converges to f with respect to the norm in L1.

Proof. Note that∫
R

|((fn − f) ∗ δn)(x)|dx ≤
∫
R

dx

∫
R

|fn(t)− f(t)||δn(x− t)|dt

=
∫
R

|fn(t)− f(t)|dt
∫
R

|δn(x− t)|dx

≤Mo

∫
R

|fn(t)− f(t)|dt→ 0, as n→∞.

From this it follows that
(

(fn− f) ∗ δn
)
n∈N

converges to 0 with respect to the norm in L1.

Hence, by Property 3.4.12 and equality fn−δn = f ∗δn+(fn−f)∗δn, we get the assertion.

Property 3.4.15 If (fn)n∈N is a sequence of locally integrable functions that converges in

(a, b), to f locally in L1 norm, then the sequence (fn ∗ δn)n∈N converges locally in norm to

f in (a, b).

Proof. In order to prove this property note that

fn ∗ δn = f ∗ δn + (fn − f) ∗ δn.

Next, it suffices to show, using Property 3.4.13, that the sequence(
(fn − f) ∗ δn

)
n∈N

converges locally in norm to 0.

Remark 3.4.109 It is known that, if f and g are integrable functions in R, then the

convolution f ∗ g is an integrable function in R. In particular, if f is an integrable in R,

then f ∗ δn, for all n ∈ N, are integrable, too.
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Property 3.4.16 If f and g are locally integrable functions in R such that the convolution

of their moduli exists a.e. and represents a locally integrable function in R, then for every

delta sequence (δn)n∈N the sequence(
(f ∗ δn) ∗ (g ∗ δn)

)
n∈N

,

converges locally in norm to f ∗ g.

3.4.2 Distributions as a Generalization of Continuous Functions

Every continuous function can be treated as a distribution. In order to obtain the iden-

tification rule for continuous functions we will prove the following two lemmas.

Lemma 3.4.44 If a sequence of smooth functions (ϕn)n∈N is such that for every k ∈ N

ϕn ⇒ 0 and ϕ(k)
n ⇒ in (a, b),

then

ϕ(k)
n ⇒ 0 in (a, b).

Proof. This lemma is true for k = 0. We now argue by induction. Suppose that the

assertion holds for an order k, and that

ϕ(k)
n (x+ η)− ϕ(k)

n (x) =

η∫
0

ϕ(k+1)
n (x+ t)dt ⇒

η∫
0

f(x+ t)dt

in the interval a+ |η| < x < a−|η|. By the induction hypothesis, the last integral vanishes.

Because the number η is arbitrary, we obtain f(x) = 0.

Lemma 3.4.45 Almost uniformly convergent sequences of smooth functions are equivalent

if they converge to the same continuous function.

Proof. Let the sequences (ϕn)n∈N and (ψn)n∈N converge almost uniformly to a function

f . Then they satisfy condition (F1) and (F2) with k=0 (see 3.3.2, Theorem 3.3.101). Thus,

(ϕn)n∈N ∼ (ψn)n∈N.

Conversely, if (ϕn)n∈N ∼ (ψn)n∈N, then for every open and bounded interval I there exist

smooth functions Φn and Ψn and order k such that conditions (E1) and (E2) are satisfied.

Hence, Φn(x)−Ψn(x) ⇒ 0, x ∈ I. By Lemma 3.4.44

ϕn(x)− ψn(x) ⇒ 0, x ∈ I.

This means that the limits of sequences (ϕn)n∈N and (ψn)n∈N are the same.
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Now we are able to establish the correspondence between continuous functions and certain

distributions.

It follows from Property 3.4.8, section 3.4.1, that for every continuous function there

exists a sequence of smooth functions (ϕn)n∈N which converges almost uniformly to f(x).

By Theorem 3.3.101, section 3.3.2, this sequence is fundamental. Thus to every continuous

function f(x) there corresponds a distribution [ϕn]. By Lemma 3.4.45 the correspondence

is one to one.

In the sequel we will identify a continuous function f with a distribution [ϕn], i.e.,

f = [ϕn], as ϕn
a.u.c.
⇒ f.

In particular, by Property 3.4.8, section 3.4.1, we can have the equality

f = [f ∗ δn], (3.4.6)

for every continuous function and for every delta sequence.

In that way we have proved what can be stated as the following theorem:

Theorem 3.4.112 Every continuous function f can be identified with the distribution

[f ∗ δn], where (δn)n∈N is a delta sequence.

Of course, smooth functions ϕ are distributions. For them we have the simpler identity

ϕ = [ϕ].

In particular, the zero distribution, i.e., the distribution identified with the function that

vanishes everywhere, is denoted by 0.

The identification presented above shows that distributions are a generalization of contin-

uous functions. This justifies using the same symbols for functions and distributions.

Theorem 3.4.113 The convolution f ∗ω of a distribution f with a smooth function ω ∈ D
is a smooth function.

Proof. Let f = [ϕn]. The sequence (ϕn)n∈N is fundamental. By Lemma 3.3.43, sec-

tion 3.3.5, the sequence (ϕn ∗ ω)n∈N is fundamental, too, and converges almost uniformly

to a continuous function g. Moreover, for any order k ∈ N

(ϕn ∗ ω)(k) = ϕ(k)
n ∗ ω = ϕn ∗ ω(k), for k ∈ N,

and, by Lemma 3.3.42, section 3.3.5, the sequence (ϕn ∗ ω)(k)n∈N converges almost uniformly.

By a classical theorem this sequence of convolutions converges to g(k). Thus, g is a smooth

function. On the other hand,

f ∗ ω = [ϕn ∗ ω] = g,

by the definition of convolution and the identification of continuous function with distribu-

tion. Therefore, f ∗ ω ∈ C∞.
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Corollary 3.4.38 For every smooth function the identity

ϕ = ϕ ∗ δ, ϕ ∈ C∞ (3.4.7)

is true.

Proof. In fact, replacing f by ϕ in (3.4.6), we get

ϕ = [ϕ ∗ δn] = ϕ ∗ [δn] = ϕ ∗ δ.

Corollary 3.4.39 The distribution δ considered in R is not equal to the zero distribution,

but δ(x) = 0 for x 6= 0.

Proof. Since 0 = ϕ ∗ 0 for any smooth function ϕ, it follows by (3.4.7) that distribution δ

is not equal to the zero distribution when considered in the whole space. Since every delta

sequence (δn)n∈N converges almost uniformly to 0 for x 6= 0, thus δ(x) = 0 for x 6= 0.

Theorem 3.4.114 Every distribution in (a, b) is, in every interval I inside (a, b), a deriv-

ative of some order of a continuous function.

Proof. Let f = [ϕn]. By properties (F1) and (F2) there exist an order k ∈ N, smooth

functions Φn and continuous function F such that

Φ(k)
n = ϕn and Φn ⇒ F x ∈ I.

Hence, F (x) = [Φn(x)] in I and

f(x) = [Φ(k)
n (x)] = [Φn(x)](k) = F (k)(x) in I.

Theorem 3.4.115 If (δn)n∈N is a delta sequence and f is any distribution, then

f = [f ∗ δn]. (3.4.8)

Proof. In fact, by Theorem 3.4.114, for every interval I inside (a, b), when f is defined,

there exist an order k and a continuous function F such that F (k) = f in I. By (3.4.6)

F = [F ∗ δn] in I.

Hence, differentiating k times, we obtain

f(x) = F (k)(x) = [(F ∗ δn)(x)](k) = [(F (k) ∗ δn)(x)] = [(f ∗ δn)(x)], for x ∈ I.

Hence, by Lemma 3.4.44, formula (3.4.8) holds true in (a, b).
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3.4.3 Distributions as a Generalization of Locally Integrable Functions

In the previous section we have shown that distributions are a generalization of continuous

functions. We will prove that distributions embrace a wider class of functions, namely locally

integrable functions.

We recall:

Definition 3.4.75 We say that a function f defined in (a, b) is locally integrable in (a, b),

f ∈ Lloc1 , if the integral ∫
I

f(x)dx

exists for every open interval I inside (a, b).

Note that if f is a continuous function in an interval I, then in I

( x∫
xo

f(t)dt
)′

= f(x), xo ∈ I. (3.4.9)

If the function f is not continuous but it is locally integrable, then

x∫
xo

f(t)dt

is a continuous function. In this case equality (3.4.9) holds almost everywhere, where the

derivative on the left-hand side is defined in the usual way as the limit of the expression

fh(x) =
1
h

x+h∫
x

f(t)dt,

as h→ 0, h > 0. The left-hand side of (3.4.9) can be interpreted as a distribution that is a

distributional derivative of order 1 of the continuous function
x∫

xo

f(t)dt. (3.4.10)

One can easily see that this distribution does not depend on the choice of xo in I. This

remark suggests the following identification:

Definition 3.4.76 We say that a distribution g is equal to a locally integrable function in

the interval (a, b) if for every bounded, open interval I included in (a, b) this distribution is

a distributional derivative of the function (3.4.10), i.e.,

g(x) =
( x∫
xo

f(t)dt
)′
, xo ∈ I, x ∈ I.
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Such a derivative, if it exists, is uniquely defined by a locally integrable function f . We

will prove that the distribution always exists. Namely, the following theorem holds true:

Theorem 3.4.116 Every locally integrable function f can be identified with the distribution

[f ∗ δn], where (δn)n∈N is a delta sequence.

Proof. Let I be any given bounded interval inside (a, b) and let

F (x) =

x∫
xo

f(t)dt, xo ∈ I.

By Property 3.4.8 of delta sequences, we have

F ∗ δn
a.u.c.
⇒ F in I.

Hence, by the identification at continuous functions with distributions, we obtain

[(F ∗ δn)(x)] = F (x) for x ∈ I,

and hence,

[F ′ ∗ δn] = F ′,

i.e.,

[f ∗ δn] = f in I.

In that way we have proved that every locally integrable function f can be identifed with

the distribution [f ∗ δn].

If f is a continuous function then by Property 3.4.8 the sequence is convergent almost

uniformly to f . Therefore, the identification of integrable functions with distributions is

consistent with the identification in section 3.4.2.

In applications we often come across the so-called Heaviside function:

1+(x) =

{
0 for x < 0,
1 for x ≥ 0.

Its integral

G(x) =

x∫
0

1+(x)dt =

{
0 for x < 0,
x for x ≥ 0

is continuous. The Heaviside function 1+(x) is the distributional derivative of G(x); it is

also its ordinary derivative except at the point x = 0. Since G is the limit of the integrals

x∫
−∞

gn(x)dt, n ∈ N,
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where

gn(x) =
1

1 + e−nx

are the functions from example 1o of section 3.3.2, we obtain

[gn] = G′ = 1+,

i.e., the fundamental sequence (gn(x))n∈N represents the Heaviside function.

Similarly, the sequence

Gn(x) =

x∫
−∞

fn(t)dt, n ∈ N,

from Example 2, section 3.3.2, where (fn)n∈N is a sequence of Picard functions, represents

the Heaviside function. Hence, for the Picard functions fn from Example 2, section 3.3.2,

we have δ = [fn] = [G′] = (1+)′, thus

δ = (1+)′ (3.4.11)

i.e., the Dirac distribution δ(x) is the distributional derivative of the Heaviside function.

The Dirac distribution δ(x) in the interval −∞ < x <∞ is an example of a distribution

that is not a locally integrable function. Indeed, if the Dirac delta distribution was a locally

integrable function then from the identity it would follow that 1+ is continuous, which is

not true.

We note that it can happen that both derivatives ordinary and distributional of a locally

integrable function exist but are different. For example, the ordinary derivative of the

Heaviside function is equal to 0 everywhere except for the point x where it does not exist.

The distributional derivative of this function is a Dirac delta distribution.

Remark 3.4.110 In the theory of distributions the ordinary derivative plays a marginal

role. Therefore, if not otherwise stated, a derivative of a function in the sequel will be

understood as a distributional derivative.

3.4.4 Remarks about Distributional Derivatives

In section 3.3.5 we introduced the notion of the derivative of order m of a distribution.

Let us recall that definition.

The derivative of order m of a distribution f given as f = [ϕn] is a distribution [ϕ(m)]

denoted by f (m) or [ϕn](m), i.e.,

f (m) = [ϕ(m)
n ].

It is easy to see that the following theorem is true:
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Theorem 3.4.117 If a distribution is a function with a continuous mth derivative, then

its mth derivative in the distributional sense coincides with its derivative in the ordinary

sense.

The notion of the derivative of a distribution is a generalization of the notion of derivative

in the domain of continuous differentiable functions.

Theorem 3.4.118 The equality f (m)(x) = 0 holds iff the distribution f is a polynomial of

degree less than m.

Proof. The sufficiency is obvious. To prove the necessity, suppose that

f (m) = 0. (3.4.12)

Let f = [ϕn], where (ϕn)n∈N is a fundamental sequence. By the definition of distributional

derivative, we have

f (m) = [ϕ(m)
n ]. (3.4.13)

By (3.4.12) and (3.4.13) it follows that (ϕ(m)
n (x))n∈N ∼ (0)n∈N. There exists, an integer

k ≤ m and sequences (Fn)n∈N, (Gn)n∈N such that

F (k)
n = ϕ(m)

n , Fn ⇒ P : (3.4.14)

G(k)
n = 0, Gn ⇒ P. (3.4.15)

By (3.4.15) it follows that the functions Gn are polynomials of degree less than k. Hence,

by Lemma 3.3.39, section 3.3.2, it follows that P is a polynomial of degree less than k, too.

By (3.4.14) it follows that (ϕn − F
(k−m)
n )n∈N is a fundamental sequence of polynomial

of degree less than m. By Theorem 3.3.102, section 3.3.2, this sequence converges almost

uniformly to some polynomial p. Thus,

[ϕn − F (k−m)
n ] = p

and consequently

f = [ϕn] = [F (k−m)
n ] + p. (3.4.16)

Since P = [Fn], where P is a polynomial of degree < k, the distribution

[F (k−m)
n ] = P (k−m)

is a polynomial of degree less than m. Hence, by (3.4.16), f is a polynomial of degree less

than m.
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From Theorem 3.4.117 it follows

Corollary 3.4.40 The equality f ′ = 0 holds if the distribution f is a constant function.

Replacing f by f − g, in Corollary 3.4.40, we get:

Corollary 3.4.41 The equality f ′ = g′ holds if the distributions f and g differ from each

other by a constant function.

Theorem 3.4.119 If a derivative f (m) of a distribution f is a continuous function, then

f is a continuous function and f (m) is its ordinary derivative.

Proof. Let

g(x) =

x∫
xo

dt1

t1∫
xo

dt2 · · ·
tm−1∫
xo

f(tm)dtm.

By Theorem 3.4.118 it follows that p = f − g is a polynomial of degree less than m. Thus,

f is the function of the form g+ p and by Theorem 3.4.117, f (m) is its ordinary derivative.

The fact that we can include locally integrable functions to the set of distributions allows

us to state Theorem 3.4.119 in a stronger form:

Theorem 3.4.120 If a derivative f (m), m ∈ N, of a distribution is a locally integrable

function, then f is a continuous function and f (m) is its ordinary mth derivative.

In particular, from Theorem 3.3.108, section 3.3.5, it follows that every continuous func-

tion has a distributional derivative. This derivative in general is not a continuous function

but a distribution. For example, a nowhere differentiable Weierstrass function is differen-

tiable in the distributional sense but its derivative is not a function.

Theorem 3.4.121 If f(x) = 0 for x 6= xo, then the distribution f is of the form

f(x) = αoδ(x− xo) + α1δ
′(x− xo) + · · ·+ αkδ

(k)(x− xo). (3.4.17)

Proof. By Theorem 3.4.114, section 3.4.2, it follows that there exist an order k and a

continuous function f such that F (k) = f . From Theorem 3.4.118, by assertion it follows

that F is a polynomial of degree < k in each of the interval −∞ < x < xo and x0 < x <∞,

i.e.,

F (x) =

{
F (xo) + α1(x− xo) + · · ·+ αk−1(x− xo)k−1, for −∞ < x < xo,

F (xo) + β1(x− xo) + · · ·+ βk−1(x− xo)k−1, for xo < x <∞.
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The function F can be written in the form

F (x) = F (xo) + φ1(x) + · · ·+ φk−1(x),

where

φµ =

{
αµ(x− xo)µ, for −∞ < x < xo,

βµ(x− xo)µ, for xo < x <∞.

It is easy to check that

φ(µ)
µ (x) = µ!(αµ + (βµ − αµ) 1+(x− xo))

φ(k)
µ (x) = µ!(βµ − αµ)δ(k−µ−1)(x− xo), µ = 1, . . . , (k − 1),

which proves the theorem.

If f(x) = 0 for x 6= 0, then the representation of the distribution f in the form (3.4.17)

is unique. This follows from:

Theorem 3.4.122 If g is a function and

g(x) + αoδ(x− xo) + · · ·+ αkδ
(k)(x− xo) = 0

on the whole real line, then g(x) = 0 and αo = · · · = αk = 0.

The proof follows by induction.

3.4.5 Functions with Poles

Let us consider a function f(x) = 1
x . This function is not locally integrable because it is

not integrable in any neighborhood of zero. Excluding an arbitrary neighborhood of zero

we obtain an integrable function. This means that the function is a distribution in intervals

(−∞, 0)∪ (0,∞). It cannot be identified with a distribution on the real line (since it is not

integrable in any neighborhood of x = 0).

However, there exists a distribution f defined in R such that

f(x) =
1
x

for x 6= 0. (3.4.18)

For instance,

(ln |x|)′ =
1
x

for x 6= 0, (3.4.19)

where the derivative is understood in the distributional sense. If we add an arbitrary linear

combination of δ(x) and its derivatives to the left-hand side of (3.4.19), then the equality

(3.4.19) will be true.

The equality

(ln |x|)′ =
1
x

for x 6= 0
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can be considered the identification of the function 1
x with the distribution (ln |x|)′.

Such an identification can be extended to a wider class of functions which have poles at

some points and are locally integrable elsewhere. We shall consider functions f in some

interval (a, b) which, in a neighborhood of any point xo are of the form

f(x) = fo(x) +
k∑
ν=1

cν
(x− xo)ν

, (3.4.20)

where fo is an integrable function. The decomposition into the integrable function fo and

the remaining singular part is unique. The singular part can vanish.

The point xo, for which at least one of the coefficients cν differs from zero, is called a pole

of f .

In every finite closed subinterval with end point α and β included in (a, b), there is at

most a finite number of poles. The function f can be written in the form

f(x) = f1(x) +
m∑
µ=1

k∑
ν=1

cµν
(x− xµ)µ

, (3.4.21)

where f1 is an integrable function and x1, ..., xm are points of the interval (α, β).

If α, β are not poles, we define the integral from α to β by the formula:

β∫
α

f(t)dt =

β∫
α

f1(t)dt+
m∑
µ=1

cµln |x− xµ|
∣∣∣β
α

+
m∑
µ=1

k∑
ν=2

−cµν
(ν − 1)(x− xµ)ν−1

∣∣∣β
α
,

which is obtained from (3.4.21) by formal integration.

By these methods we have included in the space of distributions all rational functions,

all rational expressions of sine and cosine. In particular, we have the formulas

1
(x− xo)k

=
( (−1)k−1

(k − 1)!
ln |x− xo|

)(k)

,

tg (x) = (−ln | cos(x)|)′, ctg (x) = (ln | sin(x)|)′,

where the derivatives are understood in the distributional sense.

Similarly, we have included in the calculus of distributions, for example, the elliptic

functions and the Euler function, etc.

3.4.6 Applications

Problem 3.4.1 Prove that for every smooth function ω we have

ω(x)δ′(x) = ω(0)δ′(x)− ω′(0)δ(x), ω ∈ C∞. (3.4.22)
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Proof. By (3.3.18), section 3.3.5, we have

ω(x)δ′(x) =
(
ω(x)δ(x)

)′
− ω′(x)δ(x).

Hence, by (3.4.2), section 3.4.1, we get

ω(x)δ′(x) = ω(0)δ′(x)− ω′(0)δ(x).

By means of induction one solves:

Problem 3.4.2 Prove that for every smooth function ω and n ∈ N the formula

ω(x)δ(n)(x) =
n∑
k=0

(−1)k
(
n

k

)
ω(k)(0)δ(n−k)(x), ω ∈ C∞. (3.4.23)

is true.

Problem 3.4.3 Prove that

xδ′(x) = −δ(x), (3.4.24)

xkδ′(x) = 0 for k = 2, 3, ... (3.4.25)

Proof. By equality (3.4.22),

(i) for ω(x) = x, we have formula (3.4.24)

(ii) for ω(x) = xk, we get formula (3.4.25).

Problem 3.4.4 Find all derivatives of the function

f(x) = |x|.

Proof. Let φ be any function of class D and let 1+ be Heaviside’s function. We shall show

that
∞∫

−∞

|x|′φ(x)dx =

∞∫
−∞

(2 · 1+(x)− 1)φ(x)dx, φ ∈ D. (3.4.26)

Indeed, integrating by part, and making simple calculations, we obtain

∞∫
−∞

|x|′φ(x)dx = −
∞∫

−∞

|x|φ′(x)dx =

0∫
−∞

xφ′(x)dx−
∞∫
0

xφ′(x)dx

= xφ(x)
∣∣∣0
−∞

−
0∫

−∞

φ(x)dx− xφ(x)
∣∣∣∞
0

+

∞∫
0

φ(x)dx

= −
0∫

−∞

φ(x)dx+

∞∫
0

φ(x)dx = 2

∞∫
0

φ(x)dx−
+∞∫
−∞

φ(x)dx

= 2

+∞∫
−∞

1+(x)φ(x)dx−
+∞∫
−∞

φ(x)dx =

+∞∫
−∞

(2 · 1+(x)− 1)φ(x)dx.
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Thus,
+∞∫
−∞

|x|′φ(x)dx =

+∞∫
−∞

(2 · 1+(x)− 1)φ(x)dx, φ ∈ D.

Hence, we obtain the distributional derivatives of function |x|:

|x|′ = 2 · 1+(x)− 1,

i.e.,

|x|′ = sgnx. (3.4.27)

Since (1+)′(x) = δ(x), thus

|x|(2) = 2δ(x)

and generally

|x|(k) = 2δ(k−2)(x) for k = 2, 3, · · · . (3.4.28)

We have shown that the function f(x) = |x| is, in a distributional sense, infinitely many

times differentiable at any point x. It is obvious that this function has no derivative at

x = 0 in the usual sense.

Problem 3.4.5 Prove that

xnδ(n)(x) = (−1)n n! δ(x), n ∈ N; (3.4.29)

xnδ(n+1)(x) = (−1)n (n+ 1)! δ′(x), n ∈ N. (3.4.30)

Proof. We will prove the above formulas by induction.

1. For n = 1 the formula (3.4.29) takes the form

x δ(1)(x) = (−1)δ(x). (3.4.31)

which is the formula (3.4.22), in Problem 3.4.1, for ω(x) = x.

Let us assume that the formula (3.4.29) holds true for a certain k ∈ N

xkδ(k)(x) = (−1)k k! δ(x). (3.4.32)

We will prove that the formula holds true for k + 1, i.e.,

xk+1δ(k+1)(x) = (−1)k+1 (k + 1)! δ(x).

Indeed, multiplying equality (3.4.32) by k + 1 we get

xk (k + 1) δ(k)(x) = (−1)k k! (k + 1)δ(x). (3.4.33)
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By the formula (3.4.23), in Problem 3.4.2, for n = k + 1, ω(x) = x, it follows

x δ(k+1)(x) = −(k + 1) δ(k)(x).

Hence, and from (3.4.32), we get

xk+1δ(k+1)(x) = (−1)k+1 (k + 1)! δ(x),

which was to be shown.

2o For n = 1 the formula (3.4.30) takes the form

xδ(2)(x) = (−1)2!δ′(x).

Moreover, for n = 2, ω(x) = x, we get the formula (3.4.23), in Problem 3.4.2.

Let us assume that the formula (3.4.30) holds true for a certain k > 1, k ∈ N, i.e.,

xk−1δ(k)(x) = (−1)k−1 k!δ′(x). (3.4.34)

We will prove that the formula holds true for k + 1, i.e.,

xkδ(k+1)(x) = (−1)k(k + 1)!δ′(x).

Indeed, multiplying equality (3.4.34) by k + 1, we obtain

xk−1(k + 1)δ(k)(x) = (−1)k−1k!(k + 1)δ′(x). (3.4.35)

By formula (3.4.23), Problem 3.4.2, for n = k + 1, ω(x) = x, we get

(k + 1)δ(k)(x) = −x δ(k+1)(x);

thus,

xkδ(k+1)(x) = (−1)k (k + 1)! δ′(x),

what was to be shown.

Problem 3.4.6 Prove that the following formula is valid:

xnδ(n+k)(x) = (−1)n
(n+ k)!
k!

δ(k)(x), k, n ∈ No. (3.4.36)

Applying mathematical induction we obtain formula (3.4.36).

Problem 3.4.7 Prove that for any smooth function ω the following formula is valid:

ω(x)δ(m)(x− xo) =
m∑
i=0

(−1)i
(
m

i

)
ω(i)(xo)δ(m−i)(x− xo), ω ∈ C∞, (3.4.37)

m ∈ N, x, xo ∈ R.
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Remark 3.4.111 From the formula (3.4.37) it is easy to obtain other formulas, e.g.,

(3.4.29), (3.4.30) and (3.4.36). In the case when ω(x) = sinx, we have

sinx · δ(m)(x) = −
(
m

1

)
δ(m−1) +

(
m

3

)
δ(m−3)(x)− · · ·+

+ (−1)p
(

m

2p− 1

)
δ(m−2p+1)(x) +

(
m

m

)
sin

mπ

2
δ(x).

Problem 3.4.8 Prove that for the δ distribution the following formulas are valid:

δ(αx+ β) =
1
|α|

δ
(
x+

α

β

)
, α 6= 0, (3.4.38)

δ(m)(αx+ β) =
1

|α|αm
δ(m)

(
x+

α

β

)
, α 6= 0. (3.4.39)

Proof. By (3.4.11), section 3.4.3, and (3.3.23), section 3.3.5, it follows

δ(ϕ(x)) = 1′+(ϕ(x)) =

(
1+(ϕ(x))

)′
ϕ′(x)

, ϕ ∈ C∞, ϕ′ 6= 0.

If ϕ > 0, then the function 1+(ϕ(x)) is equal to 1 everywhere,

if ϕ < 0, then function 1+(ϕ(x)) is equal to 0 everywhere.

Hence,

δ(ϕ) =

{
(1)′

ϕ′ = 0, for ϕ′ > 0,
(0)′

ϕ′ = 0, for ϕ′ < 0,

If there exists only one point xo such that ϕ(xo) = 0 (since ϕ′ 6= 0 everywhere), then

1+(ϕ(x)) =

{
1+(x− xo), for ϕ′ > 0,
−1+(x− xo), for ϕ′ < 0.

Hence,

δ(ϕ) =


1′+(x−xo)

ϕ′(xo) = δ(x−xo)
ϕ′(xo) , for ϕ(xo) = 0, ϕ′ > 0,

− 1′+(x−xo)

ϕ′(xo) = − δ(x−xo)
ϕ′(xo) , for ϕ(xo) = 0, ϕ′ < 0

Finally, if ϕ ∈ C∞, ϕ′ 6= 0, then

δ(ϕ(x)) =

{
0, for ϕ 6= 0,

1
|ϕ′(xo)|δ(x− xo), ϕ(xo) = 0.

In the case if ϕ(x) = αx+ β, α 6= 0, we obtain formula (3.4.38). Differentiating (3.4.38)

further we get formula (3.4.39).

Problem 3.4.9 Calculate f ′ and f (2) of the following function:

f(x) = x 1+(x)− (x− 1) 1+(x− 1) + 1+(x− 1).

© 2006 by Taylor & Francis Group, LLC



Delta Sequences 331

Solution. Applying formula (3.3.18), section 3.3.5, we obtain

f ′(x) = 1+(x) + xδ(x)− 1+(x− 1)− (x− 1)δ(x− 1) + δ(x− 1).

Since ω(x)δ(x) = ω(0)δ(x) (see formula 3.4.2, section 3.4.1) thus,

f ′(x) = 1+(x)− 1+(x− 1) + δ(x− 1),

and next

f (2)(x) = δ(x)− δ(x− 1) + δ′(x− 1).

Problem 3.4.10 Calculate the second derivative of the function

g(x) = 1+(x) exp(x),

where 1+ is a Heaviside function.

Solution. By formulas (3.3.18), section 3.3.5, (3.4.2), section 3.4.1, and by the du Bois-

Reymond Lemma (see [Vl.1], p. 26), in turn we get

g′(x) = δ(x) exp(x) + 1+(x) exp(x),

g′(x) = δ(x) exp(0) + 1+(x) exp(x).

Thus,

g′(x) = δ(x) + 1+(x) exp(x).

Analogously, we have

g(2)(x) = δ′(x) + δ(x) exp(x) + 1+(x) exp(x).

Since

δ(x) exp(x) = δ(x) exp(0).

thus,

g(2)(x) = δ′(x) + δ(x) + 1+(x) exp(x).

Problem 3.4.11 Calculate derivatives of the following distributions:

1. f(x) = δ exp(−x)

2. g(x) = δ(x) sin(x).
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Answer. 1. f ′ = δ′; 2. g′ = 0.

Problem 3.4.12 Prove that( d
dx

+ λ
)

1+(x) exp(−λx) = δ(x).

Proof. By formulas (3.3.18), section 3.3.5 and (3.4.2), section 3.4.1, we obtain in turn( d
dx

+ λ
)

1+(x) exp(−λx)

= (1+(x) exp(−λx))′ + λ1+(x) exp(−λx)

= δ(x) exp(−λx)− λ1+(x) exp(−λx) + λ1+(x) exp(−λx)

= δ(x) exp(0) = δ(x).

3.5 Convergent Sequences

3.5.1 Sequences of Distributions

Definition 3.5.77 We say that a sequence of distributions
(
fn(x)

)
n∈N

converges in (a, b)

to a distribution f if the distribution f is defined in (a, b) and for every open bounded inter-

val I inside (a, b), there exist an order k ∈ No, a sequence of continuous functions (Fn)n∈N

and a continuous function F such that in I

F (k)
n (x) = fn(x) for n > no

F (k)(x) = f(x) and Fn ⇒ F in I.
(3.5.1)

The notation

fn
d−→f in (a, b) or lim

n→∞
fn(x) d=f(x) in (a, b)

will be used to denote the convergence of a sequence of distributions (fn)n∈N in (a, b) to a

distribution f .

Definition 3.5.78 We say that a sequence of distributions
(
fn(x)

)
n∈N

converges in (a, b)

if for every open bounded interval I inside (a, b), there exist an order k ∈ No, a sequence

of continuous functions (Fn)n∈N such that in I

F (k)
n (x) = fn(x) for n > no and Fn ⇒ in I.

The notation fn
d−→ in (a, b) will be used to denote the convergence of a sequence of

distributions (fn)n∈N in (a, b).
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Lemma 3.5.46 The order k ∈ No, which occurs in (3.5.1), can be replaced, if necessary,

by any order l ≥ k.

Proof. It suffices to observe that if conditions (3.5.1) hold, then also

∼
F

(m)

n = fn,
∼
F

(m)

= f,
∼
Fn(x) ⇒

∼
F (x), x ∈ I,

and
∼
Fn(x) =

x∫
xo

Fn(t)dtm−k,
∼
F (x) =

x∫
xo

F (t)dtm−k, xo ∈ I,

where
x∫

xo

F (t)dtl =

x∫
xo

dt1

t1∫
xo

dt2 · · ·
tl−1∫
xo

F (tl−1)dtl.

Lemma 3.5.47 If a sequence of continuous functions (fn)n∈N converges almost uniformly

to f in (a, b) and if f (k)
n (x) = 0 in (a, b) for n ∈ N, then f (k)(x) = 0 in (a, b).

Proof. Let (δn)n∈N be a delta sequence. By Property 3.4.9, section 3.4.1, sequence

(ϕn)n∈N = (fn ∗ δn)n∈N

converges almost uniformly to f in (a, b), such that

f = [fn ∗ δn].

Hence,

f (k) = [fn ∗ δn](k) = [f (k)
n ∗ δn] = [0 ∗ δn] = 0.

Theorem 3.5.123 The limit of a sequence of distributions, if it exists, is unique.

Proof. Let I be an arbitrary open interval inside (a, b). If (fn)n∈N is such that

fn
d−→f in (a, b) and fn

d−→g in (a, b)

then there exist orders k,m ∈ No, sequences of continuous functions (Fn)n∈N, (Gn)n∈N and

continuous functions f, G such that

Fn(x) ⇒ F (x), Gn(x) ⇒ G(x), x ∈ I

where
F (k)
n (x) = fn(x), G(m)

n (x) = fn(x), x ∈ I and

F (k)(x) = f(x), G(m)(x) = g(x), x ∈ I.

© 2006 by Taylor & Francis Group, LLC



334 Generalized Functions

We may assume that k = m, for otherwise we could replace both orders by a greater order.

Since (
Fn(x)−Gn(x)

)(k)

= 0 and Fn(x)−Gn(x) ⇒ F (x)−G(x), x ∈ I,

according to Lemma 3.5.47, we have(
F (x)−G(x)

)(k)

= 0,

which implies that f(x) = g(x) in I. Since I is arbitrary, it follows that the limit is unique.

Directly from the definition of the limit the following theorems follow:

Theorem 3.5.124 If a sequence of continuous functions converges almost uniformly, then

it also converges distributionally to the same limit.

Theorem 3.5.125 If a sequence (fn)n∈N of locally integrable functions converges almost

everywhere to a function f and it is bounded by a locally integrable function, then it also

converges distributionally.

In the proof of the theorem the following property should be used:

If a sequence (fn)n∈N converges almost everywhere to f and it is bounded, then

x∫
a

fn(t)dt
a.u.c.
⇒

x∫
a

f(t)dt.

Theorem 3.5.126 If a sequence converges distributionally, then its every subsequence con-

verges distributionally to the same limit, i.e., if fn
d−→ f , then frn

d−→ f , for every sequence

(rn)n∈N of positive integers such that rn →∞.

Theorem 3.5.127 If fn
d−→ f and gn

d−→ f , then the interlaced sequence

f1, g1, f2, g2, · · · ,

also converges to f .

It follows from the definition of distributional convergence and Lemma 3.5.46 that the

arithmetic operations on limits of the sequences of distributions can be done in the same

way as for limits of functions:

Theorem 3.5.128 If (fn)n∈N, (gn)n∈N are sequences of distributions such that

fn
d−→ f, gn

d−→ g, then fn + gn
d−→ f + g; fn − gn

d−→ f − g;

λnfn
d−→λf if λn → λ (λn, λ ∈ R).
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Theorem 3.5.129 If fn
d−→ f , then f

(m)
n

d−→ f (m) for every order m ∈ No.

Proof. It suffices to observe that, if condition (3.5.1) is true, then also the condition

F (m+k)
n = f (m)

n , F (m+k) = f (m), Fn ⇒ F

is fulfilled.

Remark 3.5.112 Theorem 3.5.129 is very important in distributional calculus. It allows

us to differentiate convergent sequences without any restrictions.

Theorem 3.5.130 If a sequence of distributions is convergent in (a, b), then it converges

to a distribution in (a, b).

Proof. Suppose that (fn)n∈N is convergent in (a, b). Let (δn)n∈N be any δ sequence and

δn(x) = 0 for |x| > αn > 0, n ∈ N. We shall prove that the sequence (ϕn)n∈N, where

ϕn = fn ∗ δn, is fundamental in (a, b) and that the sequence (ϕn)n∈N converges to [ϕn].

In fact, let I be an arbitrary bounded open interval inside (a, b), and let I ′ be an bounded

open interval inside (a, b) too, such that I ⊂ I ′−αn
, where I ′−αn

denotes the set of all points

x ∈ I ′ whose distance from the boundary of I ′ is greater than αn.

There exist an order k ∈ No and continuous functions Fn, n ∈ N, F , such that

F (k)
n = fn and Fn ⇒ F in I ′.

By Property 3.4.9 of delta sequence, we have

Fn ∗ δn ⇒ F in I. (3.5.2)

Since (
Fn ∗ δn

)(k)

= F (k)
n ∗ δn = fn ∗ δn = ϕn,

the sequence ϕn is fundamental in (a, b). It therefore represents a distribution f in (a, b).

By (3.5.2), we can write

Fn ∗ δn
d−→F and [Fn ∗ δn] = F in I.

Differentiating k-times, we get

ϕn
d−→F (k) and [ϕn] = F (k) in I.

Consequently,

ϕn
d−→ f in I, where f = F (k). (3.5.3)

Since Fn − Fn ∗ δn ⇒ 0 in I, thus differentiating k-time, we obtain

fn − ϕn
d−→ 0 in I.
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Hence, and with (3.5.3), we get fn
d−→ f in I. Since I is arbitrary, it follows that fn

d−→ f

in (a, b).

Theorem 3.5.131 If a sequence of distributions (fn)n∈N is convergent to f in every open

bounded interval inside (a, b), then fn
d−→ f in (a, b).

Proof. For any bounded open interval I inside (a, b) there exists an bounded open interval

I ′ inside (a, b) such that I ⊂ I ′. Since fn
d−→ f in I ′, there exist an order k ∈ No and

continuous functions F, Fn, n ∈ N, such that

F (k)
n = fn, F (k) = f and Fn ⇒ F in I.

Thus, fn
d−→ f in (a, b).

Example 3.5.78 The sequence (fn)n∈N, where

fn(x) =
1
n

sin(n2x)

converges to 0 for n → ∞ both in a usual and distributional sense. It follows from The-

orem 3.5.129 that we have distributional convergence of the sequence of distributions to 0,

i.e.,

n cos(n2x) d−→ 0.

However, the sequence is not convergent in the usual sense at any point.

Example 3.5.79 We will show that the following sequences are distributionally convergent.

Namely, we have

fn(x) =
1
π

arctg (nx) +
1
2

d−→ 1+(x);

gn(x) =
1
π

n

n2x2 + 1
d−→ δ(x)

hn(x) = − 2
π

n3x

(n2x2 + 1)2
d−→ δ′(x),

where 1+(x) is Heaviside’s function and δ is the Dirac delta distribution.

In fact, we have the equality

fn = F (1)
n , gn = F (2)

n , hn = F (3)
n ,

where

Fn(x) =
x

2
+
x

π
arctg (nx)− 1

2πn
ln (1 + n2x2)

and

Fn
a.u.c.
⇒ F in R,
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where

F (x) =

{
0 for x < 0,
x for x ≥ 0

(see Example 3.3.76, section 3.3.2). From Theorem 3.5.124 we have the following distribu-

tional convergence

Fn(x) d−→F (x), x ∈ R.

Hence, by Theorem 3.5.129, we obtain the desired distributional convergence:

fn(x) = F ′n(x) d−→F ′(x) = 1+(x);

gn(x) = F (2)
n (x) d−→F (2)(x) = 1′+(x) = δ(x);

hn(x) = F (3)
n (x) d−→F (3)(x) = δ′(x).

Example 3.5.80 The sequence of Picard functions (fn)n∈N, where

fn(x) =
√

n

2π
e−

nx2
2 ,

converges to Dirac’s delta distribution.

In fact, the conditions

fn = F (2)
n , Fn(x)

a.u.c.
⇒ F (x) in R,

are fulfilled, where

Fn(x) =

x∫
−∞

fn(t)dt2, F (x) =

{
0 for x < 0,
x for x ≥ 0.

By Theorem 3.5.124, it follows that Fn
d−→F . Hence, by Theorem 3.5.129, we have

fn(x) = F (2)
n (x) d−→F (2)(x) = 1′+(x) = δ(x).

Remark 3.5.113 In classical mathematical analysis one considers many sequences of func-

tions which are convergent distributionally to the Dirac delta distribution, i.e.,

(a) the sequence of Picard functions (see Figure 16, section 3.3.2)

fn(x) =
√

n

2π
e−

nx2
2 , n ∈ N;

(b) the sequence of Dirichlet functions (see Figure 19)

fn(x) =

{
sin(nx)
πx , for x 6= 0,

n
π , for x = 0, n ∈ N;

(c) the sequence of Stieltjes functions (see Figure 20)

fn(x) =
2
π

n

enx + e−nx
, n ∈ N;
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(d) the sequence of functions (see Figure 21)

fn(x) =
2
π

n

(x2n2 + 1)2
, n ∈ N;

(e) the sequence of Cauchy functions (see Figure 17, section 3.3.2)

fn(x) =
1
π

n

x2n2 + 1
, n ∈ N.

For the proof see the examples in section 3.3.2.

Figure 19. The graphs of Dirichlet’s functions, n = 1, 2, 3

Figure 20. The graphs of Stieltjes functions, n = 1, 2, 3
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Figure 21. The graphs of functions fn(x) = 2
π

n
(x2n2+1)2 , n = 1, 2, 3

3.5.2 Convergence and Regular Operations

The distributional limit commutes with all regular operators. The following formulas

hold true
lim
n→∞

λfn(x) d=λ lim
n→∞

fn(x), λ ∈ R;

lim
n→∞

(fn(x) + gn(x)) d= lim
n→∞

fn(x) + lim
n→∞

gn(x);

lim
n→∞

f (m)
n (x) d=( lim

n→∞
fn(x))(m), m ∈ No;

lim
n→∞

ω(x)fn(x) d=ω(x) lim
n→∞

fn(x), ω ∈ D;

lim
n→∞

(fn(x) ∗ ω(x)) d= lim
n→∞

fn(x) ∗ ω(x), ω ∈ D.

In the case of composite functions (fn ◦ σ)(x) = fn(σ(x)) the limit

lim
n→∞

fn(σ(x))

has two interpretations; as a limit of a sequence(
fn(σ(x))

)
n∈N
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and as a substitution of a function y = σ(x) in a distribution lim
n→∞

fn(y). The fact that

passage to the limit commutes with substitution implies that both interpretations give the

same result.

It is easy to check the commutativity of the convolution with a function of the class D
and multiplying by a constant, addition, substraction, differentation. The commutativity

of taking a limit with multiplication by a smooth function follows from Theorem 3.5.132

in this section. The commutativity of taking a limit with substitution follows from Theo-

rem 3.5.133.

Theorem 3.5.132 Let (fn)n∈N be a sequence of distributions, (ωn)n∈N a sequence of func-

tions in D and ω function in D. If fn
d−→ f, ω

(m)
n ⇒ ω(m) for each m ∈ No, then

ωnfn
d−→ωf .

Proof. It follows from the convergence of the sequence of distributions (fn)n∈N in (a, b) that

for every bounded open interval I inside (a, b) there exist continuous functions F, Fn(n ∈ N),

and the order k ∈ No for which

F (k)
n = fn, F (k) = f, Fn(x) ⇒ F (x) in I.

Therefore,

ωnFn ⇒ ωF in I.

Hence, by Theorem 3.5.124, section 3.5.1, we have

ωnFn
d−→ωF in I.

Similarly,

ω(k)
n Fn

d−→ω(k)F in I. (3.5.4)

One can check by induction that for smooth functions the following formula holds true:

ωϕ(k) =
∑

0≤m≤k

(−1)(m)

(
k

m

)
(ω(m)ϕ)(k−m). (3.5.5)

For a fixed ω both sides are iterations of regular operations. Therefore, the formula (3.5.5)

remains valid if ϕ is replaced by a distribution or a continuous function. In particular,

ωnF
(k)
n =

∑
0≤m≤k

(−1)(m)

(
k

m

)
(ω(m)
n Fn)(k−m).

Hence,

ωnF
(k)
n

d−→ωF (k) in I,

thus,

ωnfn
d−→ωf in I.
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Since I is arbitrary, it follows that

ωnfn
d−→ωf in (a, b).

Theorem 3.5.133 Let (fn)n∈N be a sequence of distributions, (σn)n∈N a sequence of func-

tions of the class D and σ a function in D. If fn
d−→ f , σ(m)

n

a.u.c.
⇒ σ(m) for each m ∈ No,

σn
′ 6= 0 (n ∈ No) and σ′ 6= 0, then

(fn ◦ σn)(x) d−→(f ◦ σ)(x).

The proof of this theorem will be omitted.

3.5.3 Distributionally Convergent Sequences of Smooth Functions

Theorem 3.5.134 The sequence of constant functions is distributionally convergent iff it

is convergent in an ordinary sense.

Proof. a) Let (cn)n∈N be a sequence of constant functions convergent in an ordinary sense.

This sequence is also uniformly convergent and hence by Theorem 3.5.124 (see section 3.5.1)

distributionally convergent.

b) Let us assume now that the sequence (cn)n∈N of constant functions is distributionally

convergent. Let us denote its distributional limit by c. The sequence (cn)n∈N is bounded.

In fact, if it was not bounded there would exist a sequence (crn
)n∈N, such that

(
1
crn

)
n∈N

would be convergent to 0 in a ordinary sense, and hence convergent to 0 in a distributional

sense. By Theorem 3.5.124 (see section 3.5.1) and the assumption crn → c and hence,

1 =
1
crn

· crn
→ 0 · c = 0, as n→∞,

which produces a contradiction.

Suppose that (cn) does not converge in the ordinary sense. Then there exist two subse-

quences which converge to different limits. That contradicts Theorem 3.5.124, section 3.5.1.

Lemma 3.5.48 A sequence of smooth functions (ϕn)n∈N is fundamental in (a, b) if for

every bounded open interval I inside (a, b) there exist continuous functions Fn, n ∈ N, and

an order k ∈ N such that in I

F (k)
n = ϕn, Fn(x)⇒ in I. (3.5.6)

Proof. a) Let (ϕn)n∈N be a fundamental sequence. By the definition it follows that for

every bounded open interval I inside (a, b), there exist a sequence of smooth functions
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(Φn)n∈N and an order k ∈ No such that in I

Φ(k)
n = ϕn and Φn ⇒ .

Since smooth functions are continuous, the condition (3.5.6) is satisfied.

b) Let us assume now that the condition (3.5.6) holds for every bounded open interval

I inside (a, b). Let I ′ be an arbitrary bounded open interval inside (a, b) such that I ⊂ I ′.

Let (δn)n∈N be a delta sequence. We define a sequence
(

Φnr
)
n,rN

of smooth functions in

the following way

Φnr(x) =
(
Fn(x)−

x∫
xo

ϕn(t)dtk
)
∗ δr(x) +

x∫
xo

ϕn(t)dtk,

where xo ∈ I.

We note that Φ(k)
nr = ϕn in I for sufficiently large r, say r > pn. By Property 3.4.8,

section 3.4.1, for the delta sequence, we have

Φnr ⇒ Fn in I as r →∞.

Let us denote by F the limit of the sequence (Fn)n∈N. By (3.5.6) we have Fn ⇒ F .

Therefore, there exists a sequence (rn)n∈N, rn > pn, n ∈ N, such that

Φn = Φnrn
⇒ F in I.

Of course,

Φ(k)
n = ϕn in I.

Hence, the function Φn, n ∈ N, have the desired properties.

Theorem 3.5.135 The sequence of smooth functions (ϕn)n∈N is distributionally conver-

gent to the distribution f if it is fundamental for f , i.e., f = [ϕn].

Proof. (a) Let (ϕn)n∈N be a fundamental sequence for f , i.e., f = [ϕn]. By the definition

of fundamental sequences it follows that for every bounded open interval I inside (a, b) there

exist smooth functions Φn, n ∈ N, a continuous function F and an order k ∈ No such that

Φn ⇒ F, Φ(k)
n = ϕn in I. (3.5.7)

By Theorem 3.3.101, section 3.3.2, the sequence (Φn)n∈N is fundamental, thus

[Φn] = F.

Differentiating this equation k-times

F (k) = [Φ(k)
n ] = [ϕn]
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we get the desired properties: F (k) = f in I. This and condition (3.5.7) means that ϕn
d−→ f

in (a, b).

(b) Let us assume now that the sequence of smooth functions (ϕn)n∈N is distributionally

convergent to f . By the definition of the distributional convergence we conclude that

for each bounded open interval I inside (a, b) there exist a sequence of smooth functions

(Fn)n∈N, a continuous function F and an order k ∈ No such that

F (k)
n = ϕn, F (k) = f and Fn ⇒ F in I.

By Lemma 3.5.46, section 3.5.1, the sequence (ϕn)n∈N is fundamental. In (a) we have

proved that every fundamental sequence converges to the distribution that it represents.

This implies that f = [ϕn].

Remark 3.5.114 An analogy to Theorem 3.5.135 is true in the Cantor theory of real num-

bers.

It is well known that a sequence of rational numbers is convergent to a real number α if

it is fundamental for α.

Example 3.5.81 By Theorem 3.5.135, Examples 3.5.79 and 3.5.80 (section 3.5.1), we may

write:

(a) 1+(x) =
[

1
πarctg (nx) + 1

2

]
;

(b) δ(x) =
[

1
π

n
n2x2+1

]
=
[√

n
2π e

−nx2
2

]
;

(c) δ′(x) =
[
− 2

π
n3x

(n2x2+1)2

]
;

(d) δ(2)(x) =
[

2n3

π
3n2x2−1

(n2x2+1)3

]
.

Example 3.5.82 For each x 6= 0, we have

lim
n→∞

1
π

n

n2x2 + 1
d= 0.

It is easy to check that in each interval I such that x = 0 6∈ I the convergence is almost

uniform. By the definition of equivalent sequence we get( 1
π

n

n2x2 + 1

)
n∈N

∼ (0)n∈N

in the interval −∞ < x < 0 and interval 0 < x < +∞. By definition of equal distributions

in the interval and by Example 3.5.81 (b), we have δ(x) = 0 in the interval −∞ < x < 0

and in the interval 0 < x < +∞.

We can see now that the distribution δ cannot be identified with any function in the whole

interval. It is, however, equal to a constant function in the interval −∞ < x < 0 and in

the interval 0 < x < +∞.
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3.5.4 Convolution of Distribution with a Smooth Function of Bounded
Support

According to section 3.3.5, Remark 3.3.108, convolution of a distribution f with a given

function ω ∈ D is a regular operation. If (fn)n∈N is a fundamental sequence of distribution

f then (fn ∗ ω)n∈N is a fundamental sequence for the convolution f ∗ ω. Hence, we have

f ∗ ω d= lim
n→∞

(fn ∗ ω),

where f = [fn], f ∗ω = [fn ∗ω]. By Theorem 3.5.135, section 3.5.3 and Theorem 3.4.115,

section 3.4.2, we get the following:

Theorem 3.5.136 If f is any distribution in (a, b) and (δn)n∈N is a delta sequence, then

(f ∗ δn)n∈N converges distributionally to f in (a, b), i.e.,

lim
n→∞

(f ∗ δn) d= f in (a, b).

Theorem 3.5.137 If a sequence of distributions (fn)n∈N converges to f in (a, b) and

(δn)n∈N is a delta sequence, then (fn ∗ δn)n∈N also converges to f in (a, b):

lim
n→∞

(fn ∗ δn) d= f in (a, b),

i.e., (fn ∗ δn)n∈N is a fundamental sequence for f .

Proof. Let (δn)n∈N be a delta sequence. By definition it follows that there exists a sequence

of positive numbers (αN )n∈N, converging to 0, such that

δn(x) = 0 for |x| ≥ αn, n ∈ N.

Let I be a bounded open interval inside (a, b) and I ′ = (α, β) be a bounded interval inside

(a, b), such that I ⊂ I ′−αn
where I ′−αn

= (α+αn, β−αn). Since sequence (fn)n∈N converges

distributionally to f , thus there exist an order k ∈ No, a sequence of continuous functions

(Fn)n∈N and a continuous function F such that

Fn ⇒ F, F (k)
n = fn, F (k) = f in I ′.

Hence, by Property 3.4.9, section 3.4.1, we get

(Fn ∗ δn)n∈N
a.u.c.
⇒ F in I,

by Lemma 3.3.42, section 3.3.5, we obtain

(Fn ∗ δn)(k) = fn ∗ δn in I.

Hence, the sequence (fn ∗ δn)n∈N converges distributionally to f in I. Since I is arbitrary,

we have

fn ∗ δn
d−→ f in (a, b),

and the theorem is proved.

© 2006 by Taylor & Francis Group, LLC



Convergent Sequences 345

Theorem 3.5.138 Let fn ∈ D′, ϕ, ϕn ∈ D, n ∈ N. If lim
n→∞

fn
d= f in (a, b), ϕn(x) = 0

for |x| > αo > 0, n ∈ N and for every m ∈ No

ϕ(m)
n ⇒ ϕ(m) as n→∞,

then for every m ∈ No

(fn ∗ ϕn)(m)
a.u.c.

⇒ (f ∗ ϕ)(m) in (a, b), as n→∞.

Proof. Let I be an arbitrary given bounded open interval inside (a, b), and let I ′ = (α, β)

be a bounded interval inside (a, b) such that

I ⊂ I ′−αo
, where I ′−αo

= (α+ αo, β − αo), αo > 0.

By distributional convergence (fn)n∈N to f it follows that there exist an order k ∈ No and

continuous functions F, Fn, (n ∈ N), such that

Fn ⇒ F, F (k)
n = fn, F (k) = f in I ′.

For any given m ∈ No, we have

(fn ∗ ϕn)(m) = Fn ∗ ϕ(k+m)
n , (f ∗ ϕ)(m) = F ∗ ϕ(m+k) in I.

Moreover, we have in I,

|Fn ∗ ϕ(m+k)
n − F ∗ ϕ(m+k)| ≤ |Fn − F | ∗ |ϕ(m+k)

n |+

|F | ∗ |ϕ(m+k)
n − ϕ(m+k)| ≤ εn

∫
|ϕ(m+k)
n |+ ηn

∫
|F |,

where εn → 0 and ηn → 0, as n→∞. Hence

(fn ∗ ϕn)(m) ⇒ (f ∗ ϕ)(m) in I.

Since I is arbitrary, we have

(fn ∗ ϕ)(m)
a.u.c.
⇒ (f ∗ ϕ)(m) in (a, b),

and the theorem is proved.

Definition 3.5.79 The sequence

(fn)n∈N = (f ∗ δn)n∈N (3.5.8)

where f is a distribution in (a, b) and (δn)n∈N a delta sequence, is called a regular sequence

for f .

Remark 3.5.115 Since expressions fn of (3.5.8) are smooth functions, it is a fundamental

sequence for f , by Theorem 3.5.137. The class of regular sequences is, therefore, a special

subclass of fundamental sequences.
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3.5.5 Applications

Problem 3.5.13 Prove that the sequence of Stieltjes functions (see Figure 20, section 3.5.1):

f(x) =
2
π

n

enx + e−nx
, n ∈ N,

converges distributionally to Dirac’s delta distribution δ(x).

Proof. Indeed, the following conditions are true:

fn = F (2)
n , Fn

a.u.c.
⇒ F in R,

where

Fn(x) =

x∫
−∞

fn(t)dt2 =

x∫
−∞

2
π

arctg entdt,

F (x) =

{
0 for x < 0,
x for x ≥ 0.

Hence, by Theorem 3.5.123, section 3.5.1, and Theorem 3.5.132, section 3.5.2, we get

fn = F (2)
n

d−→F (2) = 1′+(x) = δ.

Problem 3.5.14 Prove that the sequence of Cauchy functions (see Figure 17, section 3.3.2)

fn(x) =
1
π

εn
x2 + ε2n

, εn > 0, n ∈ N

converges distributionally to δ(x), where (εn)n∈N is a sequence of positive numbers converg-

ing to 0.

Proof. Indeed, the sequence of functions

Fn(x) =
1
π

arctg
x

εn
+

1
2
, n ∈ N,

has the following properties:

F (1)
n (x) = fn(x), Fn(x) d−→ 1+(x) in R.

Hence, by Theorem 3.5.128, section 3.5.1, we obtain fn = F
(1)
n

d−→ 1′+(x) = δ(x) in R.

Problem 3.5.15 Prove that the sequence of functions (see Figure 18, section 3.3.2)

fn(x) =
−2
π

εnx

(x2 + ε2n)2
, n ∈ N, εn > 0,

converges distributionally to a derivative of Dirac’s delta distribution δ′(x), where (εn)n∈N

is a sequence of positive numbers converging to 0.
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Proof. Indeed, the following equation is true:

− 2
π

εnx

(x2 + ε2n)2
=
( 1
π

εn
x2 + ε2n

)′
,

thus, by Problem 3.5.14 and Theorem 3.5.128, section 3.5.1, we have

lim
n→∞

(
− 2
π

εnx

(x2 + ε2n)2
)

d−→ δ′(x).

Problem 3.5.16 Prove that the sequence of functions (see Figure 21, section 3.5.1)

fn(x) =
2
π

ε3n
(x2 + ε2n)2

, n ∈ N, εn > 0,

converges distributionally to Dirac’s delta distribution, where (εn)n∈N is a sequence of pos-

itive numbers converging to 0.

Proof. Indeed, the sequence of functions

Fn(x) =
2
π

( xεn
x2 + ε2n

+ arctg
x

en

)
, n ∈ N,

has the following properties:

F ′n(x) = fn(x), Fn(x) d−→ 1+(x).

Hence, by Theorem 3.5.129, section 3.5.1, we get

fn(x) d−→ 1′+(x) = δ(x).

Problem 3.5.17 Prove that the sequence of Dirichlet functions (see Figure 19, sec-

tion 3.5.1) converges distributionally to Dirac’s delta distribution, i.e.,

lim
n→∞

sin(nx)
πx

d−→ δ(x).

3.6 Local Properties

3.6.1 Inner Product of Two Functions

First we recall the definition of the inner product of two functions.
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Definition 3.6.80 We define the inner product of two functions f, g : R → R by means of

the formula

(f, g) =
∫
R

f(x)g(x)dx, (3.6.1)

provided that the integral exists.

As in the case of convolution, the following convention is adopted: the (ordinary) product

fg takes the value 0 at a point, whenever one of its factors is 0 at the point, no matter

whether the other factor is finite, infinite or even undetermined. This convention implies

that, e.g., the inner product (f, g) exists, when f is defined in an open interval (a, b), g is

defined in R, the support of g is inside (a, b) and the product fg is locally integrable in

(a, b).

Since the integral is taken in the sense of Lebesgue, the existence of the inner product

(f, g) implies the existence of the inner product (|f |, |g|). Conversely, if the inner product

(|f |, |g|) exists and, moreover, the product fg is measurable, then the inner product (f, g)

exists.

It is easy to check that the following equalities hold:

(f, g) = (g, f), (3.6.2)

(λf, g) = (f, λg) = λ(f, g), λ ∈ R, (3.6.3)

(f + g, h) = (f, g) + (g, h), (3.6.4)

(f, g + h) = (f, g) + (f, h), (3.6.5)

(fg, h) = (f, gh). (3.6.6)

Using the notation f−(x) = f(−x), we can write

(f, g) =
∫
R

f−(0− t)g(t)dt. (3.6.7)

Hence, the inner product (f, g) exists whenever the convolution f− ∗ g exists at 0. We also

have

(f, g) = (f− ∗ g)(0). (3.6.8)

From the above, (3.6.2) and the commutativity both of inner product and the convolution

we have

(f, g) = (f ∗ g−)(0). (3.6.9)

In order to state Theorem 3.6.139 we recall the definition of the convolution of three

functions.

Definition 3.6.81 By the convolution f∗g∗h of three functions we mean the double integral∫
R2

f(x− t)g(t− u)h(u)dtdu, (3.6.10)
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provided that the integral exists.

The convolution exists at a point x ∈ R, whenever the product f(x − t)g(t − u)h(u)

is (Lebesgue) integrable over R2. As before, we understand that if one of the factors

f(x− t), g(t− u), or h(u) is 0 for x, t and u, then the product is always taken to be 0, even

if the remaining factors are not defined.

Since the integral (3.6.10) is meant in the sense of Lebesgue, the existence of f ∗ g ∗ h
implies the existence of |f | ∗ |g| ∗ |h|. The converse implication also holds, provided the

product f(x − t)g(t − u)h(u) is measurable. If we know that all the functions f, g, h are

measurable, then f ∗ g ∗ h exists, if |f | ∗ |h| ∗ |h| exist.

Theorem 3.6.139 If the convolution of three functions f, g, h is associativity at the origin,

i.e., at 0, then

(f−, g ∗ h) = (f ∗ g, h−). (3.6.11)

Proof. By (3.6.8) the left-hand side of (3.6.11) is equal to (f ∗ (g ∗ h))(0). By (3.6.9) the

right-hand side of (3.6.11) is equal to [(f ∗g)∗h)](0). Hence, the equality of two sides follows

by the associativity.

Corollary 3.6.42 If the convolution of functions f, g, h exists at 0, i.e., (f ∗g∗h)(0) exists,

then equality (3.6.11) holds.

Definition 3.6.82 By the inner product of three functions f, g, h, we mean the value of the

convolution f ∗ g ∗ h at the origin, i.e., at 0,

(f, g, h) = (f ∗ g ∗ h)(0).

By the definition of inner product and properties of convolution it follows:

Theorem 3.6.140 The inner product (f, g, h) exists, if the integral∫
R2

f(t)g(u)h(−t− u)dtdu

exists in the sense of Lebesgue.

Theorem 3.6.141 If the inner product (f, g, h) exists, then

(f, g, h) = (f ∗ g, h−) = (f−, g ∗ h) = (f ∗ h, g−).
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Inner Product with a Function of Class D.

Let ψ ∈ D. The inner product

(ϕ,ψ) =
∫
R

ϕ(x)ψ(x)dx

is defined for every smooth function ϕ ∈ R.

Lemma 3.6.49 If ψ ∈ D, ϕ ∈ C∞, then the inner product (ϕ,ψ) is a regular operation,

i.e., if (ϕ)n∈N is a fundamental sequence, then the sequence (ϕn, ψ), n ∈ N, is fundamental.

Proof. Let suppψ ⊂ I ⊂ R. Let the sequence (ϕ)n∈N be a fundamental sequence. Thus,

there exist a smooth function F , a sequence of smooth functions (Fn)n∈N, and an order

k ∈ No such that

F (k)
n = fn, Fn ⇒ in I.

Integrating by part, we get

(ϕn, ψ) =
∫
I

F (k)
n ψ = (−1)k

∫
I

Fnψ
(k)−→ (−1)k

∫
I

Fψ(k),

i.e., the sequence of numbers (ϕn, ψ), n ∈ N, converges, thus by the convention in sec-

tion 3.2.3, this sequence is fundamental too.

Using Lemma 3.6.49, we can formulate the following:

Definition 3.6.83 We defined the inner product of a distribution f in R with a function

ψ ∈ D in the following way:

(f, ψ) = [(ϕn, ψ)] =: lim
n→∞

(ϕn, ψ),

where (ϕn)n∈N is a fundamental sequence of a distribution f .

3.6.2 Distributions of Finite Order

In section 3.3.3 we introduced a definition of the distribution of finite order. This notion

can be defined in a different way:

Definition 3.6.84 A distribution f in R is said to be of a finite order, if there exist a

continuous function F in R and an order k ∈ No such that F (k) = f in R.

Theorem 3.6.142 If G is a locally integrable function in R and k ∈ No, then the distrib-

ution f = G(k) is of finite order.
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Proof. To prove this theorem it suffices to see that the function

F (x) =

x∫
0

G(t)dt

is continuous and the equality F (k+1) = f holds.

Theorem 3.6.143 The set of all distributions of finite order in R is a linear space.

Proof. It is clear that if f is of finite order, so is λf for every number λ. Therefore, it

suffices to show that if f and g are of finite order, then their sum f+g is also of finite order.

Let f = F (k), g = G(l), where F and G are continuous functions and k, l ∈ No. Let

p ∈ No, and p ≥ max(k, l), and let

∼
F (x) =

x∫
0

F (t)dtp−k,
∼
G(x) =

x∫
0

G(t)dtp−l,

where the integral is defined in the following way:

x∫
0

F (t)dtk =

x∫
0

dtk

tk∫
0

dtk−1 · · ·
t2∫

0

F (t1)dt1.

Then

f + g =
( ∼
F +

∼
G
)(p)

, where
∼
F +

∼
G is a continuous function.

Theorem 3.6.144 If a distribution f vanishes outside a bounded open interval I, it is of

finite order.

Proof. By Theorem 3.4.114, section 3.4.2, it follows that there exist a continuous function

F in R and an order k ∈ No such that F (k) = f in the neighborhood I2α, α ∈ R+, where Iα
denotes the set of all points x ∈ R whose distance from the set I is less than α. Let ϕ be a

smooth function such that

ϕ(x) =

{
1 for x ∈ Iα,
0 for x 6∈ I2α.

Since

f = F (k)ϕ =
∑

0≤m≤k

(−1)m
(
k

m

)(
Fϕ(m)

)(k−m)

,

thus, by Theorem 3.6.143, the assertion follows.
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3.6.3 The Value of a Distribution at a Point

Definition 3.6.85 We say that a distribution f takes the value c at a point xo if for every

regular sequence (fn)n∈N = (f ∗ δn)n∈N, we have

lim
n→∞

fn(xo) =: c. (3.6.12)

It is easy to check that if a distribution f is a continuous function at a point xo, then the

above definition coincides with the value of a function in the ordinary sense.

If the value of the distribution at a point xo exists, i.e., if the limit (3.6.12) exists, the

point xo is said to be regular. Otherwise it is said to be singular.

Theorem 3.6.145 ([AMS], [Lo.1]) If a distribution f has a value at xo, then

lim
α→0

f(αx+ xo) =: c. (3.6.13)

Remark 3.6.116 The limit (3.6.13) is a distributional limit of a sequence of distributions

f(αx + xo) that depend on a continuous parameter (α). It can be proved that if the limit

exists then it is also a distribution and that distribution is identical to a certain constant

function. S.  Lojasiewicz defines (see [Lo.1]) the value of a distribution f at a point xo as a

value of the above-mentioned constant function (at an arbitrary point).

It follows from Theorem 3.6.145 that if the limit (3.6.12) exists, then also the limit (3.6.13)

exists, i.e.,  L-value (the value of a distribution in sense of  Lojasiewicz) exists. We cite below

 Lojasiewicz’s theorem on the existence of a value of a distribution at a point. In particular,

it follows from that theorem the existence of a limit ( L-value) implies the existence of a limit

(3.6.12). This means that the definitions (3.6.12) and (3.6.13) are equivalent.

Theorem 3.6.146 (see [Lo.1, Lo.2]) A distribution f has a value c at a point xo ( L-value)

iff there exist a continuous function F and an order k ∈ No such that F (k) = f and

lim
x→xo

F (x)
(x− xo)k

=
c

k!
.

Theorem 3.6.147 If a distribution f ′ has a value at a point xo, then a distribution f has

a value at a point xo, too.

Proof. In fact, by Theorem 3.6.146, there exist an order k ∈ No, a continuous function F

such that F (k) = f and the limit

lim
x→xo

F (x)
(x− xo)k

.

If k = 0, then f ′ is a continuous function and so is f ; therefore, the theorem is true.

If k > 0, then

lim
x→xo

F (x)
(x− xo)k−1

= 0.
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It follows, by Theorem 3.6.146, that the distribution F (k−1) has a value at a point xo. Since

the distributions F (k−1) and f differs only by a constant number, thus the distribution f

also has a value at a point.

Theorem 3.6.148 If a distribution f is a locally integrable function continuous at xo, then

f(αx+ xo)
a.u.c.
⇒ f(xo) as α→ 0.

Consequently, the point xo is regular and the value of f at xo in the distributional sense is

equal to f(xo).

Theorem 3.6.149 If a locally integrable function F has an ordinary derivative F ′ at a

point xo, then this derivative is the value of the distribution F ′ at that point, i.e., F ′(xo).

Proof. By assumption there exists a limit

lim
α→0

F (αx+ xo)− F (xo)
αx

= F ′(xo),

where all the symbols are interpreted in the classical sense. Consequently,

F (αx+ xo)− F (xo)
αx

a.u.c.
⇒ xF ′(xo), x ∈ (−∞; +∞), as α→ 0.

Differentiating this formula distributionally, we obtain

lim
α→0

F ′(αx+ xo)
d=F ′(xo),

which proves the theorem.

Remark 3.6.117 The converse theorem to Theorem 3.6.149 is not true. It is possible for

the ordinary derivative not to exist at some point although the distributional derivative has

a value at this point.

For instance, the function

F (x) =

{
3x2 sin 1

x − x cos 1
x , for x 6= 0

0, for x = 0

does not have an ordinary derivative at the point 0. However, the distributional derivative

F ′(x) has the value 0 at that point 0.

In fact, we have

(αx)3 sin
1
αx

a.u.c.
⇒ 0 as α→ 0.

Hence, by successive differentiation,

lim
α→0

F (αx)
α

d= 0, lim
α→0

F ′(αx) d= 0.

The following theorem is a particular case of Theorem 3.6.149.
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Theorem 3.6.150 If f is a locally integrable function and the function

F (x) =

x∫
0

f(t)dt

has an ordinary derivative at xo, then this derivative is the value of the function f at the

point xo.

Remark 3.6.118 The value of a distribution f at a point xo will be denoted by f(xo) as

in the case of functions. This notation does not give rise to any misunderstanding. In

fact, if the distribution f is a continuous function, both meanings of f(xo) coincide by

Theorem 3.6.148. If f is only locally integrable then, by Theorem 3.6.150, the values of

the distribution f exist almost everywhere. Both meanings of f(xo) coincide then almost

everywhere but, in general, not everywhere. When the two values differ, we adopt the

convention of denoting by f(xo) the value in the distributional sense.

Example 3.6.83 By Theorem 3.6.148 each point xo 6= 0 is a regular point of the Heaviside

function 1+(x), and the value at xo in the distributional sense is the same as the value in

the usual sense. The point xo = 0 is singular since the limit of

1+(αx) =
α

|α|

(
1+(x)− 1

2

)
+

1
2

(3.6.14)

does not exist as α→ 0.

Remark 3.6.119 It can be proved that if the value of a distribution f is 0 everywhere, then

f is the null function (see [Lo.2]). Thus, a distribution is uniquely determined by its values

provided they exist everywhere.

Theorem 3.6.151 If a distribution f has a value f(xo) at a point xo, and ω ∈ C∞, then

the distribution ωf also has a value f(xo)ω(xo) at a point xo.

Theorem 3.6.152 Let ϕ ∈ C∞ and ϕ′(x) 6= 0 for every x ∈ R. If a distribution f has a

value at the point ϕ(xo), then the distribution (f ◦ ϕ)(x) = f(ϕ(x)) also has this value at

xo.

Example 3.6.84 The Dirac delta distribution δ has the value 0 at each point xo 6= 0 and

has no value at the point xo = 0. In fact, differentiating (3.6.14) we obtain

|α|δ(αx) = δ(x).

The existence of the limit lim
α→0

δ(αx) would imply that δ(x) is the function identically equal

to 0, which is not true.
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3.6.4 The Value of a Distribution at Infinity

Definition 3.6.86 The value of the distributional limit

lim
β→∞

f(x+ β), (3.6.15)

if it exists, is said to be the value of the distribution f at ∞ and is denoted by f(∞).

The value f(−∞) of the function f at −∞ is defined similarly. Obviously, the symbols

f(∞), f(−∞) have a meaning iff the corresponding limits exist.

If the limit (1) exists, then it is a constant function (see [AMS], p. 44).

Theorem 3.6.153 If a distribution f is a continuous function and has the ordinary limit

c at ∞, (or at −∞), then

f(x+ β)
a.u.c.
⇒ c as β →∞, (or as β → −∞).

Consequently, f(∞) = c (or f(−∞) = c).

3.6.5 Support of a Distribution

The notion of a support of a locally integrable function is introduced, for example, by

J. Mikusiński in [Mi.6], p. 196. In this section we introduce the notion of support of a

distribution. L. Schwartz [S.2] defined the support of a distribution as the smallest closed

set outside of which the distribution vanishes. We will explain here the notion of a support

of a distribution introduced by J. Mikusiński.

Following S.  Lojasiewicz, the value of a distribution at a point can be used to sharpen

the concept of the support of a distribution. Let f be a distribution in (a; b). By  Lf we

denote he set of all points in (a; b) at which the value of a distribution f does not exist or

is different from zero. The support of a distribution f is the closure of the set  Lf , i.e.,

suppf = cl  Lf .

It can be proved that the closure of  Lf is the support in Schwartz’s sense of f .

3.7 Irregular Operations

3.7.1 Definition

An advantage of the sequential approach to the theory of distributions is the ease of

extending to distributions many operations, which are defined for smooth functions, i.e.,
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regular operations (see section 3.3). An example of a regular operation is differentiation (of

a given order k ∈ No): A(f) = f (k), which can be performed for an arbitrary distribution

f . It is well known (see section 3.6) that every distribution is locally (i.e., on an arbitrary

bounded open interval in R) a distributional derivative of a finite order of a continuous

function.

It should be noted that in practice operations there are both regular and not regular

ones. For instance, the two-argument operations of product A(ϕ,ψ) = ϕ · ψ and the

convolution A(ϕ,ψ) = ϕ ∗ ψ are not regular operations and they cannot be defined for

arbitrary distributions.

J. Mikusiński pointed out a general method of defining irregular operations on distribu-

tions by using delta sequences (see [Mi.4], [Mi.3], and [AMS], pp. 256–257).

Let us assume that an operationA is feasible for arbitrary smooth functions ϕ1, ϕ2, · · · , ϕk
and let f1, f2, · · · , fk be arbitrary distributions in R.

Definition 3.7.87 If f1, · · · , fk are arbitrary distributions in R, we say that A(f1, · · · , fk)

exists if for an arbitrary delta sequence (δn)n∈N the sequence(
A(f1 ∗ δn, · · · , fk ∗ δn)

)
n∈N

is fundamental; then the operation A on f1, · · · , fk is defined by the formula

A(f1, · · · , fk) = [A(f1 ∗ δn, · · · , fk ∗ δn)].

Remark 3.7.120 If A(f1, · · · , fk) exists then the distribution does not depend on the

choice of a delta sequence (δn)n∈N.

If A is a regular operation then, of course, A exists and coincides with the earlier defined

result of the regular operation. If A is irregular, it need not exist for all distributions, but

the definition embraces not only earlier known cases, but also new ones. For instance, for

the operation of the product A(f1, f2) = f1 · f2, the definition can be expressed in the form

f1 · f2
d= lim
n→∞

(f1 ∗ δn)(f2 ∗ δn) (3.7.1)

and it exists in this sense for a wide class of distributions but not in the classical sense of

L. Schwartz [S.2].

Among other irregular operations an especially important role is played by the convolution

of distributions (see section 3.7.3).

Historical Remarks

The operations of integration, convolution and a product of distributions can be per-

formed only for certain classes of distributions. The operation of convolution of two dis-

tributions can be done if, e.g., their supports are compatible (see [AMS], p. 124). These
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difficulties were the impetus for the further search of new definitions of that operation.

This problem is especially visible in Fourier transform theory. In the classical mathematical

analysis the Fourier transformation transforms the convolution of integrable or square inte-

grable functions into the product of their transforms. The question arises: what similarities

can be found for distributions? An answer to that question can be found in the book by L.

Schwartz [S.2] and the papers by Y. Hiraty and H. Ogaty, [HiO], Shiraishi and M. Itano,

[ShI]. Those results, however, have not embraced all possibilities or they were too general.

R. Shiraishi in [Sh] stated a hypothesis whether a convolution of tempered distributions

is a tempered distribution. A negative answer to that problem was given by A. Kamiński

[Ka.1], and then independently by P. Dierolf and J. Voigt in [DV]. But R. Shiraishi’s ques-

tion motivated A. Kamiński to modify the notion of compatibile supports (the so-called

polynomial compatible) that guarantees that a convolution of tempered distributions is a

tempered distribution [Ka.4]. For a definition of tempered distribution see, for example,

[AMS], p. 165.

3.7.2 The Integral of Distributions

One of the most important operations on distributions is integration. Various definitions

of the definite integral of a distribution can be found in the literature (see [Mi.4], [Si.3],

[MiS.1], [Sk.2], [KSk]).

The indefinite integral or an antiderivative of a distribution f in R is a distribution h

such that

h′(x) = f(x).

The existence of an indefinite integral follows from the fact that every distribution is locally

a derivative of a certain order of a continuous function (see Theorem 3.4.114, section 3.4.2).

The integral of a distribution is uniquely given up to a constant, i.e., the following theorem

holds:

Theorem 3.7.154 For every distribution f there exists a family of antiderivatives. Any

two antiderivatives of f differ by a constant function.

Let f be any distribution in R, and h its indefinite integral.

If there are values h(a) and h(b) of distribution h at the points x = a and x = b, then

the number
b∫
a

f(x) dx = h(b)− h(a); (3.7.2)

we call it the definite integral of f in the interval (a, b).

In the statement one can have a = −∞ or b = +∞ and then the formula (3.7.2) defines

an integral of a distribution in an unbounded interval.
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One can show that the integral given by (3.7.2) has properties similar to those of the

integral of a function. Moreover, if a distribution f can be identified with a locally integrable

function then the distributional integral reduces to the integral of a function.

Remark 3.7.121 From now on we will consider integrals in the distributional sense.

Theorem 3.7.155 Let f, g be distributions and ϕ, φ are smooth functions (φ′ 6= 0), λ, a, b, c ∈
R. The following formulas hold for integrals:

b∫
a

f(x)dx = −
a∫
b

f(x)dx; (3.7.3)

b∫
a

λf(x)dx = λ

b∫
a

f(x)dx, λ ∈ R; (3.7.4)

b∫
a

f(x)dx =

c∫
a

f(x)dx+

b∫
c

f(x)dx; (3.7.5)

b∫
a

[f(x) + g(x)]dx =

b∫
a

f(x)dx+

b∫
a

g(x)dx; (3.7.6)

( b∫
a

f(t)dt
)′

= f(x); (3.7.7)

b∫
a

ϕ(x)f ′(x)dx = ϕ(x)f(x)
∣∣∣x=b
x=a

−
b∫
a

ϕ′(x)f(x)dx; (3.7.8)

φ(b)∫
φ(a)

f(x)dx =

b∫
a

f(φ(x))φ′(x)dx, (3.7.9)

provided the integrals on the right exist; in the case of the equality (3.7.8) we additionally

assume the existence of the value of the distribution ϕ(x)f(x) at the points x = a and x = b.

Moreover, for an arbitrary k ∈ No, if the distributions ϕ(l)f, (0 ≤ l ≤ k) are integrable in

R, and ϕ ∈ D, then ∫
R

ϕ(x)f (k)(x)dx = (−1)k
∫
R

ϕ(k)(x)f(x)dx. (3.7.10)

Remark 3.7.122 If the function f is locally integrable on R, then the integral
∫
R
f(x) dx

understood in the distributional sense coincides with the usual integral on R if the integral

exists.
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We will take the notation

b∫
a

f(x+ t) dt = h(x+ b)− h(x+ a), where h′(x) = f(x).

We will prove the following theorem:

Theorem 3.7.156 If fn ∈ D′ , n ∈ N and fn
d−→ f , then

b∫
a

fn(x+ t) dt d−→
b∫
a

f(x+ t)dt. (3.7.11)

Proof. It follows from the definition of distributional convergence of a sequence (fn)n∈N to

the distribution f (see Definition 3.5.77, section 3.5.1), that for any bounded open interval

I, there exist an order k ∈ No, a sequence of continuous functions (Fn)n∈N, a continuous

function F , such that

F (k)
n = fn, F (k) = f, Fn ⇒ F in I.

Consequently,

Fn(x+ b)− Fn(x+ a) ⇒ F (x+ b)− F (x+ a).

Hence, by Theorem 3.5.129, section 3.5.1, after differentiating (k−1)-times we obtain desired

convergence.

Theorem 3.7.157 If ϕ is an arbitrary element of D and (δn)n∈N an arbitrary delta se-

quence, then

lim
n→∞

∫
R

δn(x)ϕ(x)dx d=ϕ(0); (3.7.12)

∫
R

δ(x)ϕ(x)dx = ϕ(0), ϕ ∈ D; (3.7.13)

∫
R

δ(x− xo)ϕ(x)dx = ϕ(xo), ϕ ∈ D. (3.7.14)

Proof. Let ϕ ∈ D. For an arbitrary delta sequence (δn)n∈N we have:

|(δn, ϕ)− ϕ(0)| ≤
αn∫

−αn

|δn(x)| |ϕ(x)− ϕ(0)|dx→ 0,

for n → ∞, where (αn)n∈N is a sequence of positive numbers convergent to zero and such

that δn(x) = 0 for |x| ≥ αn, n ∈ N.

The proof of the equality (3.7.14) can be obtained in a similar way.
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Theorem 3.7.158 If for every function ϕ ∈ D the equality∫
R

f(x)ϕ(x) dx = ϕ(0),

holds, then f = δ.

Proof. Let fn = f ∗ δn, n ∈ N, be a regular sequence for the distribution f . Then, by

Definition 3.6.83, section 3.6.1, and the assumption for every function ϕ ∈ D we have

(fn, ϕ) d−→ϕ(0).

Similarly, by Definition 3.6.83, section 3.6.1 and the equality (3.7.13), we get

(δn, ϕ) d−→ϕ(0).

We note that also for every function ϕ ∈ D the interlaced sequence

(f1, ϕ), (δ1, ϕ), (f2, ϕ), (δ2, ϕ), · · ·

is distributionally convergent to ϕ(0) for each ϕ ∈ D. Hence, the sequence

f1, δ1, f2, δ2, · · ·

is fundamental, which implies f = δ.

Remark 3.7.123 The distribution δ is not a locally integrable function, which follows from:

Lemma 3.7.50 There is no locally integrable function f such that∫
R

f(x)ϕ(x) dx = ϕ(0), ϕ ∈ D.

For a proof see [Szm], p. 40, and Example 3.2.64, section 3.2.1; and Example 3.2.66,

section 3.2.2.

Theorem 3.7.159 If fn ∈ D′, n ∈ N and fn
d−→ f , then for every function ϕ ∈ D∫

R

fnϕ
d−→
∫
R

fϕ, i.e., (fn, ϕ) d−→(f, ϕ).

The proof of the above theorem follows from Lemma 3.6.49, section 3.6.1.

The opposite theorem to Theorem 3.7.159 is also true. Namely, we have:

Theorem 3.7.160 If for every fixed function ϕ ∈ D the sequence of numbers (fn, ϕ) is

convergent to (f, ϕ), then fn
d−→ f .
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Using the above theorems and the definition of equality of distributions (section 3.3.3)

one can easily show that the equality of two distributions f and g in R can be defined in

an equivalent manner:

(f = g) iff [(f, ϕ) = (g, ϕ) for every function ϕ ∈ D]. (3.7.15)

By the du Bois Reymond lemma (see section 3.2.2, Lemma 3.2.37), in case f and g are

locally integrable in R the definition (3.7.16) coincides with the definition of equality of

locally integrable functions.

Example 3.7.85 For a translated by point xo Heaviside function

1+(x− xo) =

{
1 for x ≥ xo,

0 for x < xo

we have

1′+(x− xo) = δ(x− xo).

This equation can be obtained in the same way as (3.4.11), section 3.4.3.

According to the notation (3.7.2), we can write:

b∫
a

δ(x− xo)dx = 1 for a < xo < b; (3.7.16)

b∫
a

δ(x− xo)dx = 0 for a < b < xo or xo < a < b; (3.7.17)

+∞∫
−∞

δ(x− xo)dx = 1. (3.7.18)

Example 3.7.86 For every function ω ∈ C∞ the equalities are true:

b∫
a

ω(x)δ(x− xo)dx = ω(xo), for a < xo < b; (3.7.19)

+∞∫
−∞

ω(x)δ(x− xo)dx = ω(xo), ω ∈ C∞. (3.7.20)

By equality (3.4.3), section 3.4.1 and (3.7.16), we obtain in turn

b∫
a

ω(x)δ(x− xo)dx =

b∫
a

ω(xo)δ(x− xo)dx

= ω(xo)

b∫
a

δ(x− xo)dx = ω(xo), if a < xo < b.
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In particular, if a = −∞, b = +∞, we get equality (3.7.20).

From (3.7.19) and (3.7.20) for xo = 0, we obtain

b∫
a

ω(x)δ(x)dx = ω(0), if a < 0 < b; (3.7.21)

+∞∫
−∞

ω(x)δ(x)dx = ω(0), ω ∈ C∞. (3.7.22)

Example 3.7.87 Let us consider a function ϕ given in the example, section 3.2.1, i.e., the

function

ϕ(x) =

{
exp α2

(x−α)2 , |x| < α,

0, |x| ≥ α.

Then, according to the equality (3.7.22) we have

+∞∫
−∞

exp
α2

(x− α)2
δ(x)dx = e.

Remark 3.7.124 The relations (3.7.19) and (3.7.22) describe one of the basic properties of

Dirac’s delta distribution δ(x). In the functional approach to theory of distributions those

properties are regarded as definitions.

Example 3.7.88 For every function ω ∈ C∞ and k ∈ No the equality

+∞∫
−∞

ω(x)δ(k)(x− xo)dx = (−1)kω(k)(xo), ω ∈ C∞ (3.7.23)

is true.

In fact, by Property 3.4.5, section 3.4.1 and (3.7.10), (3.7.19), we obtain in turn:

+∞∫
−∞

ω(x)δ(k)(x− xo) dx = (−1)k
+∞∫
−∞

ω(k)(x)δ(x− xo) dx

= (−1)k
+∞∫
−∞

ω(k)(xo)δ(x− xo) dx = (−1)kω(k)(xo).

Example 3.7.89 Let us consider the sequence of functions (see Figure 22):

fn(x) =


0, x < − 1

n ,

n(1 + nx), − 1
n ≤ x ≤ 0,

n(1− nx), 0 ≤ x ≤ 1
n ,

0, x > 1
n , n ∈ N.

The sequence (fn)n∈N is distributionally convergent to the distribution δ(x).
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Figure 22. The graphs of functions fn(x), n = 1, 2, 3

In order to prove it we note that

+∞∫
−∞

fn(x) dx = 1 for every n ∈ N,

and

lim
n→∞

x∫
−1

fn(t) dt =

{
0, if x < 0,
1, if x > 0.

Example 3.7.90 Let us consider the functions (see Fig. 23)

ha(x) =

{
1
2a , if x ∈ [−a, a], a > 0,
0, if x 6∈ [−a, a].

We shall show that

lim
a→0+

ha(x) d= δ(x).
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Figure 23. The graphs of functions ha(x), a = 1, 1
2 ,

1
3

In fact, for an arbitrary function ϕ ∈ D, by Lagrange’s theorem, we have

(ha(x), ϕ(x)) =

+∞∫
−∞

ha(x)ϕ(x)dx =
1
2a

a∫
−a

ϕ(x)dx = ϕ(ξ),

where −a < ξ < a. Hence, for a→ 0+, we obtain in turn

lim
a→0+

(ha(x), ϕ(x)) = lim
a→0+

ϕ(ξ) = ϕ(0) = (δ(x), ϕ(x)).

Thus, by Theorem 3.7.159, we get the required convergence.

Differentiation of a Piecewise Continuous Function

For piecewise continuous functions the following theorem holds true:

Theorem 3.7.161 Let the function f have discontinuities of the first kind at points xk,

k = 1, 2, · · · , n, with a jump equal to σk = f(xk+0)−f(xk−0) and let f have the derivative
df
dx continuous everywhere without points xk. Then the distributional derivative f ′ is given

by the formula

f ′(x) =
df(x)
dx

+
n∑
k=1

σkδ(x− xk).
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Figure 24. The graph of function with a jump σo at the point xo

Proof. It is sufficient to consider the case when the function f has only one discontinuity

of the first kind at a point xo with a jump equal to

σo = f(xo + 0)− f(xo − 0), (see Figure 24).

It follows from (3.7.10) that for every function ϕ ∈ D there holds

+∞∫
−∞

f ′(x)ϕ(x) dx = −
+∞∫
−∞

f(x)ϕ′(x) dx.

By straightforward calculations we get

+∞∫
−∞

f(x)ϕ′(x)dx =

xo∫
−∞

f(x)ϕ′(x)dx+

+∞∫
xo

f(x)ϕ′(x)dx

= f(x)ϕ(x)
∣∣∣xo

−∞
−

xo∫
−∞

df(x)
dx

ϕ(x)dx

+ f(x)ϕ(x)
∣∣∣+∞
xo

−
+∞∫
xo

df(x)
dx

ϕ(x)dx

= f(xo − 0)ϕ(xo)−
+∞∫
−∞

df(x)
dx

ϕ(x)dx− f(xo + 0)ϕ(xo)

= −ϕ(xo)
(
f(xo + 0)− f(xo − 0)

)
−

+∞∫
−∞

df(x)
dx

ϕ(x)dx
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= −σoϕ(xo)−
+∞∫
−∞

df(x)
dx

ϕ(x)dx

= −
+∞∫
−∞

δ(x− xo)σoϕ(x)dx−
+∞∫
−∞

df(x)
dx

ϕ(x)dx

= −
+∞∫
−∞

(df(x)
dx

+ σoδ(x− xo)
)
ϕ(x)dx,

where the equality
+∞∫
−∞

δ(x− xo)σoϕ(x) dx = ϕ(xo)σo

follows from (3.7.20). Hence, for every function f ∈ D we have

+∞∫
−∞

f ′(x)ϕ(x)dx =

+∞∫
−∞

(df(x)
dx

+ σoδ(x− xo)
)
ϕ(x)dx.

By (3.7.15), we obtain

f ′(x) =
df(x)
dx

+ σoδ(x− xo). (3.7.24)

Conclusion 3.7.1 If the functions f, f (1), f (2), · · · , f (n−1) have discontinuities of the first

kind at a point xo with jumps equal to σ(o)
o , σ

(1)
o , σ

(2)
o , · · · , σ(n−1)

o , then

f ′(x) =
df(x)
dx

+ σ(o)
o δ(x− xo);

f (2)(x) =
d2f(x)
dx2

+ σ(o)
o δ′(x− xo) + σ (1)

o δ(x− xo);

f (3)(x) =
d3f(x)
dx3

+ σ(o)
o δ(2)(x− xo) + σ(1)

o δ(1)(x− xo) + σ(2)
o δ(x− xo);

.....................................................

f (n)(x) =
dnf(x)
dxn

+ σ(o)
o δ(n−1)(x− xo) + · · ·+ σ(n−1)

o δ(x− xo)

=
dnf

dxn
+
n−1∑
l=0

σ(l)
o δ(k−l−1)(x− xo).

(3.7.25)

Proof. We will prove the above formulas by induction. For n = 1 the formula (3.7.25)

takes the form (3.7.24).

Let us assume that formula (3.7.25) holds true for a certain k ∈ N:

f (k)(x) =
dkf(x)
dxk

+
k−1∑
l=0

σ(l)
o δ(k−l−1)(x− xo). (3.7.26)
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We will prove that the formula holds true for k + 1. Indeed, differentiating the formula

(3.7.26), we get

f (k+1)(x) =
(
f (k)(x)

)′
=
(dkf(x)

dxk
+
k−1∑
l=0

σ(l)
o δ(k−l−1)(x− xo)

)′
=
dk+1f(x)
dxk+1

+ σ(k)
o δ(x− xo) +

k−1∑
l=0

σ(l)
o δ(k−1)(x− xo)

=
dk+1f(x)
dxk+1

+
k∑
l=0

σ(l)
o δ(k−l)(x− xo),

what was to be shown.

It follows from Conclusion 3.7.1 that the n-th distributional derivative is equal to a sum

of the n-th usual derivative and a sum of products of jumps of functions f, f (1), f (2), · · · ,
f (n−1) and relevant derivatives of δ – Dirac’s distribution, translated to the point x = xo. In

particular, if f is a smooth function, then the distributional derivative is equal to derivative

in the classical sense, i.e.,

f (k)(x) =
dkf(x)
dxk

.

Example 3.7.91 Let us consider a characteristic function of the interval [−a, a]

h(x) =

{
1, for |x| ≤ a,

0, for |x| > a > 0.

From formula (3.7.24) it follows that

h′(x) =
dh

dx
+ σ1δ(x+ a) + σ2δ(x− a) = 0 + δ(x+ a)− δ(x− a).

Hence

h′(x) = δ(x+ a)− δ(x− a).

Distributions with a One-Point Support

According to the definition of the support of the distribution (see section 3.6.3), a point

xo ∈ R is a support of the distribution f in R if and only if the distribution f is a zero

distribution in the set R \ {xo}, i.e., in the space R without the point xo, but f is not a

zero distribution in the whole space R.

We have the following theorem for distributions with one-point support.

Theorem 3.7.162 If the support of a distribution f in R is the origin, then f is a linear

combination of the Dirac delta distribution and its derivatives. In other words, there exist

a number k ∈ No and real numbers αm (0 ≤ m ≤ k) such that

f(x) =
∑

0≤m≤k

αm δ
(m)(x).
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In order to prove this theorem it is enough to consider Theorem 3.4.121, section 3.4.4,

for xo = 0.

Applications

Problem 3.7.13 Prove that a sequence of Dirichlet functions is distributionally conver-

gent to Dirac’s delta distribution δ(x), i.e., prove that the following takes place:

lim
n→∞

sinnx
πx

d= δ(x). (3.7.27)

Proof. Using the properties of the Fourier series (see [F]) we can write:

lim
n→∞

+∞∫
−∞

sinnx
x

ϕ(x) dx = πϕ(0), ϕ ∈ D. (3.7.28)

By (3.7.21) we have
+∞∫
−∞

ϕ(x)δ(x)dx = ϕ(0).

Hence, and from (3.7.28) we have the convergence of the sequence of functions( sinnx
πx

)
n∈N

to Dirac’s delta distribution, as n→∞. This implies the equality (3.7.27).

Problem 3.7.14 Prove the equality

1
2π

+∞∫
−∞

eiωxdω
d= δ(x). (3.7.29)

Proof. Let us consider the sequence

fn(x) =

n∫
−n

eiωxdω, n ∈ N.

From
n∫

−n

eiωx dω =
einx − e−inx

ix
= 2

sinnx
x

and (3.7.27) we obtain

lim
n→∞

n∫
−n

eiωxdω = lim
n→∞

2
sinnx
x

d= 2πδ(x);

thus we get the required equality (3.7.29).
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3.7.3 Convolution of Distributions

Among other irregular operations an especially important role is played by the convolution

of distributions. The sequential theory of convolution was developed in [AMS].

1. Convolution of Two Smooth Functions

J. Mikusiński has shown that if ϕ and ψ are smooth functions in R, then the convolution

ϕ ∗ ψ is not necessarily a smooth function, even if it exists at every point x ∈ R. We give

as an example, see [AMS], p. 130, the following:

Example 3.7.92 Let ω be a smooth function in R, such that

ω(x) = 0, if |x| ≤ 1
4

or |x| ≥ 1
2

and let

ϕ(x) = ψ(x) =
+∞∑

n=−∞
ω
(

2n(x− n)
)
.

It is easy to see that this series converges almost uniformly. Thus,

ϕ′(x) = ψ′(x) =
+∞∑

n=−∞
2|n|ω

(
2n(x− n)

)
.

If x 6= 0 the infinite integrals

+∞∫
−∞

ϕ(x− t)ψ(t)dt and

+∞∫
−∞

ϕ(x− t)ψ′(t)dt

reduce to integrals over a bounded interval. Thus, the convolution

h = ϕ ∗ ψ and h′ = ϕ′ ∗ ψ

exist for every x 6= 0. We have

h(0) =
+∞∑

n=−∞
2−|n|p where p =

+∞∫
−∞

ω(−t)ω(t)dt.

From this follows that the convolution ϕ ∗ ψ is also defined at x = 0, and is thus defined

everywhere in R. On the other hand, we have

h′(0) =
+∞∑

n=−∞
2−|n|2|n|q =

+∞∑
n=−∞

q, where q =

+∞∫
−∞

ω(−t)ω′(t)dt.

The series
∑+∞
n=−∞ q is divergent if q 6= 0. Whether or not h′ = ϕ′ ∗ ψ is defined at x = 0

depends on q, and we can choose ω in such a way that q 6= 0. Then h′(0) = ±∞ and h′(x)

does not tend to any finite limit as x → 0. Thus, although the convolution ϕ ∗ ψ of the

smooth functions ϕ and ψ exists at x = 0, it is not a smooth function.
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Definition 3.7.88 We say that the convolution ϕ ∗ ψ of the smooth functions ϕ, ψ ∈ R
exists smoothly if for any order m, k ∈ No the convolutions ϕ(k) ∗ ψ(m) exist in R and are

continuous, and the convolutions |ϕ(k)| ∗ |ψ(m)| are locally integrable functions.

If the convolution of smooth functions exists smoothly then it has the following properties:

Property 3.7.17 If the convolution of two smooth functions ϕ and ψ exists smoothly,

then it is itself a smooth function. Moreover,

(ϕ ∗ ψ)(k) = ϕ(k) ∗ ψ = ϕ ∗ ψ(k), for each k ∈ No.

Property 3.7.18 If the convolution of two smooth functions ϕ and ψ exists smoothly

and if λ is a real number, then the convolutions

(λϕ) ∗ ψ, and ϕ ∗ (λψ)

exist smoothly and the equalities

(λϕ) ∗ ψ = ϕ ∗ (λψ)

holds everywhere.

Property 3.7.19 If ϕ, ψ and χ are smooth functions and the convolutions ϕ ∗ψ and ϕ ∗χ
exist smoothly, then the convolution ϕ ∗ (ψ ∗ χ) also exists smoothly and

ϕ ∗ (ψ + χ) = ϕ ∗ ψ + ϕ ∗ χ

holds everywhere.

Property 3.7.20 If f, g are locally integrable functions such that the convolution |f | ∗ |g|
is a locally integrable function and h, u are smooth functions of bounded supports, then the

convolution

(f ∗ h) ∗ (g ∗ u)

exists smoothly.

2. Convolution of Two Distributions

Now we will introduce the operation of convolution of two distributions and will give

its basic properties. We have already mentioned different possibilities of introducing the

definition of convolution. Below we cite a definition of convolution in Mikusiński’s sense,

[AMS].

Let f and g be distributions in R and let (fn)n∈N = (f ∗δn)n∈N and (gn)n∈N = (g∗δn)n∈N

be their regular sequences with the same delta sequence.
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Definition 3.7.89 We say that the convolution of f and g exists if for every delta sequence

(δn)n∈N the corresponding convolutions fn ∗ gn (n ∈ N) exist smoothly and represent a

fundamental sequence. The distribution determined by the fundamental sequence is, by

definition, the convolution of f and g, i.e.,

f ∗ g : d= lim
n→∞

[(f ∗ δn) ∗ (g ∗ δn)]. (3.7.30)

Remark 3.7.125 Definition 3.7.89 does not depend on the choice of delta sequence (δn)n∈N.

Proof. Let (δ1n)n∈N and (δ2n)n∈N are two different delta sequences. If the convolution f ∗g
exists, then both sequences(

(f ∗ δ1n) ∗ (g ∗ δ1n)
)
n∈N

and
(

(f ∗ δ2n) ∗ (g ∗ δ2n)
)
n∈N

(3.7.31)

are fundamental. We have to show that they represent the same distribution.

Let δn be the n-th element of the interlaced sequence

δ11, δ21, δ12, δ22, δ13, δ23, · · · ;

then the sequence (δn)n∈N is also a delta sequence. This implies that the sequence(
(f ∗ δn) ∗ (g ∗ δn)

)
n∈N

is fundamental. Since sequences (3.7.31) are fundamental, they thus represent the same

distribution.

Remark 3.7.126 The convolution (3.7.30) is not a regular operation, since in this defi-

nition we have restricted ourselves to those particular fundamental sequences (fn)n∈N and

(gn)n∈N which are of the form

fn = f ∗ δn, gn = g ∗ δn, n ∈ N.

Remark 3.7.127 The convolution f ∗ g does not exist for any pairs of distributions f, g.

Remark 3.7.128 Definition 3.7.89 is compatible with the definition of the convolution of

two locally integrable functions in R.

Proof. If f and g are locally integrable functions in R, such that convolution of |f |∗|g| exists

almost everywhere and represents a locally integrable function, then (by Theorem 1, p. 286

in [Sk.4]) convolution fn ∗gn exists smoothly. Moreover, by Property 3.4.13, section 3.4, the

sequence (fn∗gn)n∈N converges locally in mean, and thus distributionally to f∗g. Therefore,

convolution f ∗ g is compatible with Definition 3.7.89 of the convolution of distributions.

© 2006 by Taylor & Francis Group, LLC



372 Generalized Functions

Remark 3.7.129 The definition of convolution (3.7.30) is compatible with the definition

of convolution, if the distribution g is a smooth function of bounded support (see Re-

mark 3.3.108, section 3.3.5)

f ∗ g d= lim
n→∞

(fn ∗ g) g ∈ D.

Proof. It is easy to check that the convolutions fn ∗ gn exist smoothly. It thus suffices to

check that

fn ∗ gn − fn ∗ g
d−→ 0, i.e. lim

n→∞
(fn ∗ (gn − g)) d= 0.

In fact, by Property 3.4.10, section 3.4.1, we have

(gn − g)(k)
a.u.c.
⇒ 0 for every k ∈ No.

Since fn
d−→ f , by Theorem 3.5.137, section 3.5.4, this implies that

fn ∗ (gn − g) d−→ f ∗ 0 = 0,

which completes the proof.

3. Properties of Convolution of Distributions

Property 3.7.21 If the convolution f ∗ g of the distributions f, g exists, then the convolu-

tions (λf) ∗ g and f ∗ (λg) also exist for every real number λ and we have

(λf) ∗ g = f ∗ (λg) = λ(f ∗ g), λ ∈ R. (3.7.32)

Property 3.7.22 If the convolutions f ∗ g and f ∗ h of the distributions f, g, h exist, then

the convolution f ∗ (g + h) also exists and we have

f ∗ (g + h) = f ∗ g + f ∗ h. (3.7.33)

Property 3.7.23 If the convolution f ∗ g of the distributions f, g exists, then g ∗ f exists

and we have

f ∗ g = g ∗ f. (3.7.34)

Property 3.7.24 If the convolution f ∗ g of the distributions f, g exists, then the convolu-

tions f (k) ∗ g and f ∗ g(k) also exist for every k ∈ No and we have

(f ∗ g)(k) = f (k) ∗ g = f ∗ g(k), k ∈ No. (3.7.35)
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Property 3.7.25 If the convolution f ∗ g of the distributions f, g exists, then f (k) ∗ g(l)

also exists for any k, l ∈ No and we have

f (k) ∗ g(l) = (f ∗ g)(k+l), k, l ∈ No. (3.7.36)

Proof. (of Properties 3.7.21 through 3.7.25) Let (δn)n∈No
be a delta sequence and let

fn = f ∗ δn, gn = g ∗ δn, hn = h ∗ δn.

If the convolution f ∗ g exists, then the convolutions fn ∗ gn exist smoothly and we have

(λfn) ∗ gn = fn ∗ (λgn) = λ(fn ∗ gn),

fn ∗ gn = gn ∗ fn,

(fn ∗ gn)(k) = f (k)
n ∗ gn = fn ∗ g(k)

n ,

and all the convolutions involved exist smoothly. This proves equality (3.7.32), (3.7.34),

(3.7.35), and (3.7.36). Moreover, if f ∗ h exists, then

fn ∗ (gn + hn) = fn ∗ gn + fn ∗ hn

and all the convolutions exist smoothly. This proves (3.7.33).

By (3.7.35), we have

(f ∗ g)(k+l) = [(f ∗ g)(k)](m) = (f (k) ∗ g)(m) = f (k) ∗ g(m);

this proves (3.7.36).

For convolution of two distributions, when at least one of them is of bounded support,

we have:

Property 3.7.26 If f, g are distributions in R and at least one of them is of bounded

support, then the convolution f ∗ g exists in R.

Property 3.7.27 If two of the distributions f, g, h are of bounded support, then all the

convolutions involved in

(f ∗ g) ∗ h = f ∗ (g ∗ h) (3.7.37)

exist and the equality holds.

Property 3.7.28 If one of the distributions f, g, h has a bounded support and the convolu-

tion of the remaining two exists, then all the convolutions involved in the equality (3.7.37)

exist and the equality holds.

Property 3.7.29 If f, g, h are distributions such that the convolution f ∗ g exists and each

of distributions h, u is of bounded support, then

(f ∗ h) ∗ (g ∗ u) = (f ∗ g) ∗ (h ∗ u) (3.7.38)
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and all the convolutions appearing in the equality exist.

Corollary 3.7.43 The Dirac delta distribution is a unit for the convolution, i.e.,

δ ∗ f = f ∗ δ = f for f ∈ D′,

(see Problem 3.7.13).

The operation of convolution is connected to the scalar product and to the value of

distribution at a point. From Theorem 3.6.139, formula (3.6.8), (3.6.9), section 3.6.1, we

have

Theorem 3.7.163 Let f and g be distributions and g−(x) = g(−x). If there exist convo-

lution f ∗ g and its value (f ∗ g)(0) at a point 0, then there exists scalar product (f, g−) and

the equality holds

(f ∗ g)(0) = (f, g−). (3.7.39)

Theorem 3.7.164 If a convolution of distributions f, g, h is associative, i.e., convolutions

(f ∗ g) ∗ h, f ∗ (g ∗ h) exist and their values
(

(f ∗ g) ∗ h
)

(0),
(
f ∗ (g ∗ h)

)
(0) at a point 0,

then

(f−, g ∗ h) = (f ∗ g, h−).

Problem 3.7.15 Prove the following formulas:

(a) f ∗ δ = f,

(b) f ∗ δ′ = f ′,

(c) δ(x− α) ∗ δ(x− β) = δ(x− α− β),

(d) (1+ ∗ ϕ)(x) =
x∫

−∞
ϕ(t)dt, ϕ ∈ D.

Proof. (a) By Property 3.7.26, section 3.7.3, there exists convolution f ∗ δ, i.e.,

f ∗ δ d= lim
n→∞

(
(f ∗ δn) ∗ δn

)
,

where (δn)n∈N is a delta sequence. By Property 3.7.27, section 3.7.3, and Property 3.4.3,

section 3.4.1, we have

(f ∗ δn) ∗ δn = f ∗ (δn ∗ δn) = f ∗ δn,

where (δn)n∈N is a delta sequaence, too. The sequence (f ∗ δn)n∈N is a regular sequence of

a distribution f , thus

lim
n→∞

(f ∗ δn) d= f.
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Hence

f ∗ δ = f, f ∈ D′.

(b) By Property 3.7.26, section 3.7.3, there exists a convolution f ∗ δ′, i.e.,

f ∗ δ′ d= lim
n→∞

((f ∗ δn) ∗ δ′n).

Similarly, we have in (a)

(f ∗ δn) ∗ δ′n = f ∗ (δn ∗ δn)′ = f ∗ δn
′

= f ′ ∗ δn.

Since the sequence (f ′ ∗ δn)n∈N is regular for a distribution f ′, thus we obtain

f ∗ δ′ = f ′, f ∈ D′.

Problem 3.7.16 Let

fk(x) = 1+(x)
xk−1

Γ(k)
eλx, k > 0, Γ(k) = (k − 1)!

Prove that for k = α, β, we have

(fα ∗ fβ)(x) = 1+(x) fα+β(x).

Remark. Put τ = xu.

3.7.4 Multiplication of Distributions

The product of distributions is an irregular operation. It has caused problems to the

creators of the theory of distributions from the very beginning. At first one could only

multiply distributions by smooth functions. L. Schwartz’s example (see Problem 3.7.20,

section 3.7.5) shows that even then problems with associativity of this operation arise. The

task of generalizing the product of distributions has been undertaken by many mathemati-

cians (see [BoL], [BoP], [Br], [BrD]). H. König ([Kö.1], [Kö.2], [Kö.3]) has shown that one

cannot define a general product of distributions without losing its “good” properties.

In the sequential approach of the theory of generalized functions one has J. Mikusiński’s

1962 definition of the product (see [Mi.5]):

f · g : d= lim
n→∞

(f ∗ δ1n)(g ∗ δ2n) (3.7.40)

if the limit exists for arbitrary delta sequences (δ1n)n∈N, (δn)n∈N. R. Shiraishi and M. Itano

have shown in [ShI] that the definition (3.7.40) is equivalent to the definition given by Y.

Hirata and H. Ogata in [HiO] also with the use of delta sequences. Their definition is not as

general as (3.7.42) because the product 1
x δ(x) does not exist in the sense (3.7.40) (see [It],
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[Ka.3]). The product of distributions was also of interest to many other mathematicians,

i.e., A. Kamiński ([Ka.1], [Ka.2], [Ka.3]), P. Antosik and J. Ligȩza [AL].

We start below with the definition of a product of distributions given by Mikusiński in

1966 (see [Mi.8], [AMS], p. 242):

Definition 3.7.90 We say that the product of distributions f and g exists in (a, b) if for

every delta sequence (δn)n∈N the sequence(
(f ∗ δn)(g ∗ δn)

)
n∈N

(3.7.41)

is distributionally convergent in (a, b).

Then we write

f · g : d= lim
n→∞

(f ∗ δn)(g ∗ δn). (3.7.42)

The definition (3.7.42) is very general and enables us to consider very interesting and

important products of distributions that do not exist in the sense of Schwartz. For example,

the significant in physics product 1
x · δ(x) exists and equals, according to expectations of

physicists, − 1
2 · δ(x) (see [Mi.8], [AMS], p. 249). The generalizations of this formula can be

found in [Fs.2] and [Is].

Theorem 3.7.165 If g is a smooth function in (a, b) then the limit (3.7.42) exists for

every distribution f defined in (a, b) and is equal to the product f · g, where the product is

understood as a regular operation.

Proof. It follows from the property of delta sequences, Property 3.4.10, section 3.4.1, that

(g ∗ δn)(k)
a.u.c.
⇒ g(k) for all k ∈ No.

Since

f ∗ δn
d−→ f in (a, b),

by the Theorem 3.5.132, section 3.5.2, follows that the sequence (3.7.41) is convergent to

the product f · g.

Corollary 3.7.44 It follows from the Theorem 1 that we can use the symbol f · g also in

the case when g is not a smooth function.

Properties of the Product The following equalities hold:

f · g = g · f ; (3.7.43)

(α f) · g = f · (α g) = α (f · g), α ∈ R; (3.7.44)
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(f ± g) · h = f · h± g · h; (3.7.45)

(f · g)(k) =
k∑
l=0

(
k

l

)
f (l) · g(k−l), k ∈ No, (3.7.46)

provided the products on the right exist.

Theorem 3.7.166 If a distribution f takes the value f(0) at the point x = 0, then

f(x)δ(x) = f(0)δ(x), f ∈ D′. (3.7.47)

Proof. Let ϕ ∈ D and ϕ(0) 6= 0. Since, by Definition 3.6.83, section 3.6.1 and equality

(3.7.14),

(δn, ϕ) d−→ϕ(0), as n→∞ i.e., lim
n→∞

∫
R

δn(x)ϕ(x)dx d=ϕ(0),

we have

γn = (δn, ϕ) 6= 0 for n ≥ no.

It is easily checked that the sequence

αn =
1
γn
δn ϕ, n ∈ N,

is a delta sequence for n ≥ no. Using the notation

αn(x) := αn(−x),

we can write for n ≥ no,(
(f ∗ δn)δn, ϕ

)
= γn

(
f ∗ δn, αn

)
= γn[(f ∗ δn) ∗ αn](0) = γn[f ∗ (δn ∗ αn)](0),

by (3.6.6), (3.6.10), section 3.6.1, Property 3.7.27, section 3.7.3. Hence, by Theorem 3.5.132,

section 3.5.2, we obtain (
(f ∗ δn)δn, ϕ

)
d−→ϕ(0)f(0),

since the sequence (δn ∗ αn)n∈N is a delta sequence, too.

If ϕ(0) = 0, we can write ϕ = ϕ1 + ϕ2, where ϕ1, ϕ2 ∈ D and ϕ1(0) 6= 0 and ϕ2(0) 6= 0.

Applying the preceding result to ϕ1 and ϕ2 we have(
(f ∗ δn)δn, ϕ1

)
d−→ϕ1(0)f(0),(

(f ∗ δn)δn, ϕ2

)
d−→ϕ2(0)f(0).

Hence, (
(f ∗ δn)δn, ϕ

)
=
(

(f ∗ δn)δn, ϕ1

)
+
(

(f ∗ δn)δn, ϕ2

)
d−→ϕ1(0)f(0) + ϕ2(0)f(0) = ϕ(0)f(0).
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Thus, (
(f ∗ δn)δn, ϕ

)
d−→ f(0)ϕ(0), for every ϕ ∈ D. (3.7.48)

According to (3.6.6), section 3.6.1 and Theorem 3.7.157, section 3.7.2, we have

(f(0)δ, ϕ) = f(0)(δ, ϕ) = f(0)ϕ(0). (3.7.49)

By Definition 3.7.90 it follows that

lim
n→∞

(f ∗ δn)δn
d= f(x)δ(x). (3.7.50)

Comparing (3.7.49) and (3.7.50) we get(
(f ∗ δn)δn, ϕ

)
d−→(f(0)δ, ϕ), for ϕ ∈ D. (3.7.51)

By (3.7.51) we have (
(f ∗ δn)δn, ϕ

)
d−→
(
f(x)δ(x), ϕ

)
, for ϕ ∈ D. (3.7.52)

According to (3.7.52), (3.7.53), and Theorem 3.5.123, section 3.5.1, we obtain

f(0)δ(x) = f(x)δ(x).

which proves our assertion.

On the Associativity of the Product

The product of three functions is always associative, i.e., (f · g) ·h = f · (g ·h). Therefore,

it may seem odd that an analogous property does not hold for distributions. The example

below given by L. Schwartz in [S.2] (see Problem 3.7.20) shows the difficulties that arise

when multiplying distributions. However, it should be noted that associativity does hold

whenever at least two of the factors are smooth functions. Explicity, if f is any distribution

and ϕ,ψ are smooth functions, then

(fϕ)ψ = f(ϕψ).

This equality follows from the remark that the products with ϕ, with ψ and with ϕψ are

regular operations. Namely, we have:

Theorem 3.7.167 (L. Schwartz) If ϕ,ψ are smooth functions and f is a distribution,

then

(ϕψ)f = ϕ(ψf).

One can state certain criteria for the existence of the product of distributions and its

associativity. In order to do that we give the definition of the order of a distribution with

respect to a continuous function. Let k+ = max(k, 0), k− = min(k, 0) for k ∈ Z, where Z
is the set of integers.
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Definition 3.7.91 We say that a distribution f is of the order k ∈ Z in (a, b) with respect

to a continuous function if there exists such a function F that

F (k+) = f in (a, b) and

F (j) for 0 ≤ j ≤ −k− is a continuous function in (a, b).

The order of the distribution defined above is not unique.

Theorem 3.7.168 (Mi.5) If f and g are distributions in (a, b) of orders k, m ∈ Z, re-

spectively, with respect to a continuous function and k+m ≤ 0 then the product f · g exists

in (a, b) and it is of the order max(m, k).

Theorem 3.7.169 If f, g and h are distributions in (a, b) of orders k, l,m ∈ Z with respect

to a continuous function and

k + l ≤ 0, k +m ≤ 0, m+ l ≤ 0

then

(f · g) · h = f · (g · h).

The Schwartz theorem (Theorem 3.7.167) can be obtained as a conclusion from Theo-

rem 3.7.169. Using the notation of an order of the distribution with respect to a measure,

P. Antosik generalized Theorem 3.7.168 and Theorem 3.7.169 (see [A]).

3.7.5 Applications

Nonexistence of δ2

By the square of the delta distribution, δ2, we mean the product δ · δ.

Problem 3.7.17 Prove that the product δ · δ does not exist, i.e., that the symbol δ2 is

meaningless.

Proof. According to the definition of the product (Definition 3.7.90, section 3.7.4), we can

write

δ · δ d= lim
n→∞

(δ ∗ δn)(δ ∗ δn), i.e., δ · δ d= lim
n→∞

δ2n,

where (δn)n∈N is an arbitrary delta sequence. Note that there exists a smooth function ϕ

of bounded support such that

ϕ(x) = 1 for − 1
4
≤ x ≤ 1

4∫
R

ϕ(x) dx = 1.
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The sequence

δn(x) = nϕ(nx), n ∈ N

is a delta sequence, and furthermore,

(δn(x))2 = n2 for x ∈ In =
{
x : − 1

4n
≤ x ≤ 1

4n

}
.

Hence,

(δ2n, ϕ) =
∫
R

δn(x)ϕ(x) dx ≥
∫
In

δ2n(x) dx =
∫
In

n2 dx =
n

2
→∞.

This means that the sequence (δ2n)n∈N does not converge, i.e., that the square δ2 does not

exist.

The Product x · 1
x

The distribution 1
x is defined as the distributional derivative of ln |x|:

1
x

= (ln |x|)′. (∗)

Problem 3.7.18 Prove that the product x · 1
x exists and

x · 1
x

= 1. (3.7.53)

Proof. Note that the function x · ln |x| is a primitive function, in the ordinary sense, of

1 + ln |x|. (3.7.54)

This function is a locally integrable function; thus it is equal to the distributional derivative

of x · ln |x|, i.e.,

(x · ln |x|)′ = 1 + ln |x|. (3.7.55)

Since x is a smooth function the product x · ln |x| can be regarded as a regular operation.

Differentiating, we get

(x · ln |x|)′ = x(ln |x|)′ + ln |x|.

Hence, by (∗) we obtain

(x · ln |x|)′ = x · 1
x

+ ln |x|. (3.7.56)

According to (3.7.56) and (3.7.55), we obtain the required equation, i.e.,

x · 1
x

= 1.
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The Product 1+ · δ

Problem 3.7.19 Prove that the product 1+ · δ exists and

1+ · δ =
1
2
δ. (3.7.57)

Proof. Let (δn)n∈N be any delta sequence and let Hn = 1+ ∗ δn, n ∈ N. At that time

H ′
n = (1+ ∗ δn)′ = 1′+ ∗ δn = δ ∗ δn = δn

and

1+
d= lim
n→∞

(1+ ∗ δn)2.

Note that

(H2
n)′ = 2HnH

′
n = 2Hnδn.

From here

lim
n→∞

Hnδn
d= lim
n→∞

1
2

(H2
n)′ d=

1
2
δ.

The product 1+ · δ exists and the equality (3.7.57) holds.

Problem 3.7.20

Prove that
( 1
x
· x
)
δ 6= 1

x
(x · δ).

Proof. According to Problem 3.7.18 and (3.4.3), section 3.4.1, it suffices to see that the

equalities hold: ( 1
x
· x
)
δ = 1 · δ = δ,

1
x

(
x · δ

)
=

1
x
· 0 = 0.

3.8 Hilbert Transform and Multiplication Forms

3.8.1 Definition of the Hilbert Transform

Let us define the Hilbert transform of the function ϕ ∈ D.
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Definition 3.8.92 By the Hilbert transform H of ϕ ∈ D we mean the limit

H(x) : d= lim
n→∞

∫
An

ϕ(x− t)
dt

t
, (3.8.1)

where An = {x ∈ R : |x| ≥ 1
n}.

Lemma 3.8.51 For every function ϕ ∈ D there exists the limit (3.8.1); moreover, the

equality

H(x) = ϕ(x) ∗ 1
x

(3.8.2)

holds.

Proof. Let ϕ ∈ D. Let us consider the integral∫
An

ϕ(x− t)
dt

t
,

where An = {x ∈ R : |x| ≥ 1
n}.

Integrating by parts, we obtain∫
An

ϕ(x− t)
dt

t
= lnn

[
ϕ(x− 1

n
)− ϕ(x+

1
n

)
]

+
∫
An

ϕ′(x− t)ln |t|dt. (3.8.3)

Note that, by Lagrange’s theorem, we have the equality

ϕ(x+
1
n

)− ϕ(x− 1
n

) =
2
n
ϕ′(ξn), where |ξn| <

1
n
.

Hence, by (3.8.3), we get

H(x) = lim
n→∞

∫
An

ϕ(x− t)
dt

t
= ϕ′(x) ∗ ln |x|. (3.8.4)

We now show that H is a square integrable function. In fact, there is a number xo such

that

ϕ(x) = 0 for |x| > xo.

This implies that for |x| > xo we can write

∣∣∣ ∫
An

ϕ(x− t)
dt

t

∣∣∣ ≤ +∞∫
−∞

∣∣∣ϕ(x− t)
t

∣∣∣dt =

+∞∫
−∞

∣∣∣ϕ(x)
x− t

∣∣∣dt ≤ M

|x| − xo
, with M =

∫
R

|ϕ|.

Thus, ∣∣∣H(x)
∣∣∣ ≤ M

|x| − xo
|x| > xo. (3.8.5)

Since H ∈ C∞, therefore, H ∈ L2(R).
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We recall that the distribution 1
x is defined as the distributional derivative of ln |x| (see

section 3.7.5), hus the formula (4) can be rewritten as

H(x) = ϕ(x) ∗
(

ln |x|
)′

= ϕ(x) ∗ 1
x
, (3.8.6)

which completes the proof.

Remark 3.8.130 By the formula (3.8.6) we can alternatively define the Hilbert transform

of the function ϕ ∈ D as the convolution:

H = ϕ ∗ 1
x
.

This definition suggests a generalization of the Hilbert transform onto any distribution f

for which the convolution

H = f ∗ 1
x

exists. For instance, the Hilbert transform of Dirac’s delta distribution exists and the equal-

ity

H = δ ∗ 1
x

=
1
x

holds.

3.8.2 Applications and Examples

Example 3.8.93 Nonexistence of
(

1
x

)2

:

By
(

1
x

)2

we mean the product
(

1
x

)2

= 1
x ·

1
x .

Lemma 3.8.52 The product 1
x ·

1
x does not exist in the distributional sense.

Proof. If 1
x ·

1
x existed, then, by the definition of product of distributions (see section 3.7.4),

for any delta sequence (δn)n∈N the sequence((
δn ∗

1
x

)2)
n∈N

would distributionally converge and

1
x
· 1
x

= lim
n→∞

(
δn ∗

1
x

)2

. (3.8.7)

Taking a special delta sequence we show that this limit does not exist. Let ψ ∈ D and

ψ(x) ≥ 0 for x ∈ R. Thus, there is a number xo such that

ψ(x) = 0 for |x| > xo.
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This implies that for every x satisfying |x| > xo there is an index no such that

∣∣∣ ∫
An

ψ(x− t)
dt

t

∣∣∣′ =

+∞∫
−∞

ψ(x− t)
|x|

dt =

+∞∫
−∞

ψ(t)
|x− t|

dt ≥
∫
ψ(t)dt

|xo|+ |x|
for n > no.

Hence, ∣∣∣ψ(x) ∗ 1
x

∣∣∣ ≥ ∫
ψ(t)dt

|xo|+ |x|
for |x| > xo.

Let ϕ be a nonnegative function of class D such that

ϕ(x) :

{
≥ 1

2 for |x| ≤ 1
2 ,

= 0 for |x| ≥ 1

and
∫
ϕ = 1. Then the sequence(

δn(x)
)
n∈N

=
(
nϕ(nx)

)
n∈N

is a delta sequence and we have∣∣∣δn(x) ∗ 1
x

∣∣∣ ≥ 1
1
n ∗ |x|

for |x| > 1
n
.

Hence, ((
δn ∗

1
x

)2

, ϕ
)
≥ 1

2

1
2∫

1
n

dx(
1
n ∗ |x|

)2 =
n(n− 2)
4(n+ 2)

−→∞.

This shows that the product (3.8.7) does not exist.

Remark 3.8.131 It should be noted that by definition

1
x2

=
(
− 1
x

)′
=
(
− ln |x|

)(2)

.

The symbol 1
x2 represents a distribution and should not be confused, in the theory of distri-

bution, with the square
(

1
x

)2

.

Example 3.8.94 The formulas of Gonzalez-Dominguez and Scarfiello

The formulas of Gonzalez-Dominguez and Scarfiello are of the form(
ϕ ∗ 1

x
, ϕ
)

= 0 ϕ ∈ D, (3.8.8)

(
ϕ ∗ 1

x
, xϕ

)
=

1
2

(∫
ϕ
)2

, ϕ ∈ D. (3.8.9)

We will prove the formula (3.8.10). It is easy to see that for t 6= 0, we have the identity

x
ϕ(x− t)

t
− (x− t)ϕ(x− t)

t
= ϕ(x− t). (3.8.10)
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Let ϕ ∈ D and An = {x ∈ R : |x| ≥ 1
n}. Then, by (3.8.10) it follows that∫

An

x
ϕ(x− t)

t
dt−

∫
An

(x− t)ϕ(x− t)
t

dt =
∫
An

ϕ(x− t)dt.

Hence, by (3.8.1), (3.8.6) in section 3.8.1, as n→∞, we have

x
(
ϕ ∗ 1

x

)
− (xϕ) ∗ 1

x
=
∫
ϕ. (3.8.11)

Note that from the properties of the inner product the following equality can be derived:(
x
(
ϕ ∗ 1

x

)
, ϕ
)

=
(
ϕ ∗ 1

x
, xϕ

)
,(

(xϕ) ∗ 1
x
, ϕ
)

=
(
xϕ,− 1

x
∗ ϕ
)

= −
(
ϕ ∗ 1

x
, xϕ

)
.

(3.8.12)

By (3.8.11) for the inner product with any function τ ∈ D in particular for ϕ ∈ D, we have(
x
(
ϕ ∗ 1

x

)
− (xϕ) ∗ 1

x
, ϕ
)

=
(∫

ϕ, ϕ
)
, ϕ ∈ D. (3.8.13)

By the property of the inner product and (3.8.12) the left side of (3.8.13) is of the form(
x
(
ϕ ∗ 1

x

)
, ϕ
)
−
(

(xϕ) ∗ 1
x
, ϕ
)

= 2
(
ϕ ∗ 1

x
, xϕ

)
.

Thus, (
ϕ ∗ 1

x
, xϕ

)
=

1
2

(∫
ϕ, ϕ

)
=

1
2

(∫
ϕ
)2

, ϕ ∈ D.

and the formula (3.8.9) of Gonzalez–Dominguez and Scarfiello is proved.

Example 3.8.95 The product 1
x · δ

The product 1
x · δ(x) appears in physics and its result − 1

2δ
′(x), in the distributional sense

of J. Mikusiński, fulfills the expectations of physicists.

According to the definition (3.7.42), section 3.7.4, the product 1
x ·δ, is given by the formula

1
x
· δ(x) d= lim

n→∞

(
δn ∗

1
x

)
δn.

We shall show that the limit exists and is equal to − 1
2δ
′(x), i.e.,

1
x
· δ = −1

2
δ′. (3.8.14)

Let fn =
(
δn ∗ 1

x

)
δn, n ∈ N and

Fn(x) =
1
2

x∫
−∞

(x− t)2fn(t)dt, n ∈ N;

then

F (3)
n = fn, n ∈ N.
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We show that Fn ⇒ in (−∞,+∞).

Since

fn(x) = 0 for x ≤ −αn, n ∈ N, (3.8.15)

thus, Fn(x) = 0 for x ≤ −αn. Since fn(x) = 0 for x ≥ αn, n ∈ N, thus

F ′n(x) =

x∫
−∞

(x− t)fn(t)dt = x

x∫
−∞

fn(t)dt−
+∞∫
−∞

tfn(t)dt

= x
(
δn ∗

1
x
, δn

)
−
(
δn ∗

1
x
, xδn

)
= −1

2

(∫
δn

)2

= −1
2
,

by (3.8.8), (3.8.9). Hence,

Fn(x) = Fn(αn)− x

2
+
αn
2

for x ≥ αn, n ∈ N. (3.8.16)

Finally, if |x| ≤ αn, we write

Fn(x) =
1
2

x∫
−αn

(x− t)2
( αn∫
−αn

δn(u)
1

t− u
du
)
δn(t)dt

=
1
2

x∫
−αn

(x− t)2
( αn∫
−αn

δ(2)(u)L(t− u)du
)
δn(t)dt,

where

L(x) =

{
xln |x| − x, for x 6= 0,
0, for x = 0.

Hence,

|Fn(x)| ≤ 1
2

αn∫
−αn

(2αn)2
( αn∫
−αn

|δ(2)n (u)L(2αn)|du
)
|δn(t)|dt

= 2L(2αn)α2
n

αn∫
−αn

|δ(2)n (u)|du
αn∫

−αn

|δn(t)|dt

= 2L(2αn)M2Mo = εn,

where for Mi(i = 0, 2); see section 3.4.1, Definition 3.4.74.

Since the function L is continuous and L(0) = 0, it follows that for |x| ≤ αn

|Fn(x)| ≤ εn → 0, as n→∞. (3.8.17)

By (3.8.15), (3.8.16), (3.8.17) it follows that the sequence (Fn)n∈N converges uniformly in

(−∞,+∞) to the function F given by

F (x) =

{
0, for x < 0,
−x

2 , for x ≥ 0.

Hence,

lim
n→∞

fn(x) d=F (3)(x) = −1
2
δ′(x),

which proves (3.8.14).
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Example 3.8.96 Some Other Formulas with Dirac’s Delta Distribution

As an interesting application we have the following formulas:

1
x
∗ 1
x

= −π2δ,(
δ +

1
πi

1
x

)2

= − 1
πi
δ2 − 1

π2

1
x2
,

δ2 − 1
π2

( 1
x

)2

= − 1
π2

1
x2
.

The proofs for existence of the left-hand sides of the above equalities and proofs of the above

equalities can be obtained with application of the properties of the Fourier transform. We

omit the proofs and refer interested readers to the book [AMS].
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[Mi.2] J. Mikusiński, Une definition de distribution, Bull. Acad. Pol. Sci. Cl. III 3 (1955),

589–591.
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