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I. The Cauchy Problem 

Introduction 

The present paper is a survey of results on the correctness’ of the Cauchy 
problem for operators both with constant and with variable coefficients. We 
mainly concentrate on results that apply to as general operators as possible, in 
particular, without distinguishing the principal part. Statements that apply for 
specific classes of operators, such as hyperbolic, parabolic, etc., are discussed only 
insofar as they illustrate general constructions. Such specific statements may be 
found in more detail in papers devoted to the particular type of equation. In our 
selection of results dealing with equations with constant coefficients, we chose 
the ones at least a significant part of which also covers the case of variable 
coefficients. 

The Cauchy problem is a classical problem in partial differential equations: it 
arises naturally in physical problems. The first examples of partial differential 
equations appeared in the middle of the XVIIIth century in the framework of 
mathematical physics. D’Alembert, Euler, and Bernoulli studied the equation of 
a vibrating string from different points of view. The main goal, as they saw it, 
was a derivation of a general solution (an integral) of the equation. The primary 
observation was that while the general solution of an ordinary differential equa- 
tion depends on some arbitrary constants, a general solution of a partial differential 
equation should depend on some arbitrary functions. D’Alembert’s solution of 
the string equation contained two arbitrary functions of one (space) variable. The 
works of the classics of the XVIIIth century contained in an inchoate form many 
basic ideas of the future theory: characteristics, separation of variables, expansion 
of a solution in a basis (harmonics). 

Having noticed that the arbitrariness in the solution can be removed by fixing 
the initial position and initial velocity of the string, Euler, in principle, considered 
the Cauchy problem for the string equation. The famous dispute of Euler and 
D’Alembert concerning the class of functions in which the string equation should 
be solved, not only aided in making precise the concept of function in analysis, 
but also foresaw the general problem of choosing a function space in which an 
equation should be solved, Contrary to D’Alembert’s opinion, who thought that 
the discussion should be restricted to analytic solutions, Euler maintained that 
the string can assume any shape, which can be depicted by “a free hand move- 
ment” (see below for a discussion of Hadamard’s ideas). A significant number of 
equations in mathematical physics, in particular Laplace’s equation and the 
two- and three-dimensional wave equations, appear in the works of Euler and 
D’Alembert. In cases other than the string equation, only special solutions 
were constructed; moreover, Euler considered three-dimensional problems to lie 
beyond the scope of the analysis of his time. 

1 The term “well-pos& is frequently used instead of “correct” in this context; we use “correct” and 
“correctness” throughout both for brevity and consistency. 
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In the XIX”’ century, mathematical physics continued to be the main source 
of new partial differential equations and of problems involving them. The study 
of Laplace’s equation and of the wave equation had assumed a more systematic 
nature. In the beginning of the century, Fourier added the heat equation to the 
aforementioned two. Marvellous progress in obtaining precise solution repre- 
sentation formulas is connected with Poisson, who obtained formulas for the 
solution of the Dirichlet problem in a disc, for the solution of the Cauchy 
problems for the heat equation, and for the three-dimensional wave equation. 
The physical setting of the problem led to the gradual replacement of the search 
for a general solution by the study of boundary value problems, which arose 
naturally from the physics of the problem. Among these, the Cauchy problem was 
of utmost importance. Only in the context of first order equations, the original 
quest for general integrals justified itself. Here again the first steps are connected 
with the names of D’Alembert and Euler; the theory was being intensively 
developed all through the XIX”’ century, and was brought to an astounding 
completeness through the efforts of Hamilton, Jacobi, Frobenius, and E. Cartan. 

In terms of concrete equations, the studies in general rarely concerned equa- 
tions of higher than second order, and at most in three variables. Classification 
of second order equations was undertaken in the second half of the XIX”’ century 
(by Du Bois-Raymond). An increase in the number of variables was not sanc- 
tioned by applications, and led to the little understood ultra-hyperbolic case. 
Increase in the order of the equation required the removal of a significant 
psychological block: instead of solving the classification problem, the problem 
of distinguishing different classes of equations had to be attempted. 

As far as the general theory is concerned, the first important results in this direc- 
tion are connected with the name of Cauchy, who, in general was more interested 
in general problem settings in a century when concrete problems were valued 
higher in analysis, his results were not widely disseminated, and aroused interest 
only when they were rediscovered thirty years later by S. Kovalevskaya. The 
Cauchy-Kovalevskaya theorem states that for a non-characteristic Cauchy 
problem for a system with analytic coefficients and with analytic initial data, 
there is (local) existence and uniqueness in the class of analytic functions. 

The study of holomorphic solutions to the characteristic Cauchy problem was 
carried on by Riquier, Janet, and others. In the process, analogs of the Cauchy 
problem with initial data prescribed on manifolds of different dimension, appeared. 
A complete theory of such problems (couched in terms of Pfaflian equations) was 
constructed by E. Cartan and Klhler. 

The idea to renounce analyticity in the study of the Cauchy problem (or its 
generalizations) appeared comparatively early: it was tempting to substitute 
smoothness for analyticity in the Cauchy-Kovalevskaya theorem. Moreover, 
because of Weierstrass’ work, it was very much in vogue to approximate contin- 
uous functions by analytic ones, especially by polynomials. An additional argu- 
ment in favour of this approach was provided by the Holmgren theorem, which 
under the conditions of the Cauchy-Kovalevskaya theorem gives uniqueness in 
the class of functions with a finite number of continuous derivatives. Hadamard 
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showed that a naive strategy of passing from analytic functions to smooth ones 
cannot in general be successful, as nearby initial conditions can correspond to 
substantially differing solutions. Using the Cauchy problem for Laplace’s equa- 
tion as an example, Hadamard showed that an arbitrarily small perturbation of 
initial data can lead to an arbitrarily large perturbation of the solution. To this 
example, Hadamard added the remark that no physical problem known at that 
time led to the Cauchy problem for elliptic equations. In this context, Hada- 
mard [1932] introduced the concept of a correct (well posed) initial or boundary 
value problem for partial differential equations. A problem is called correct if it 
has unique solution that depends continuously on the initial data of the prob- 
lems, in a class of functions of finite smoothness. 

Hadamard [1932] proved correctness of the Cauchy problem for general linear 
hyperbolic second order equations. In the case of constant coefficients the corre- 
sponding results followed from the work of Volterra and his students. The case 
of variable coefftcients and two variables was considered before by Riemann, but 
his results did not become widely known. Hadamard suggested a generalisation 
of Riemann’s method to the case of many variables, which allowed him to 
construct the fundamental solution for the Cauchy problem for a second order 
hyperbolic equation (the Riemann function), and, using it, to express the solution 
of a linear second order hyperbolic equation in terms of the right hand side and 
the Cauchy data. As the existence of a Riemann function was proved for small 
times, Hadamard obtained formulas for the solution in a small (but independent 
of the initial data and of the right hand side) time interval. Additional applica- 
tions of this procedure made it possible to construct the solution on any finite 
time interval. However, at each step “loss of smoothness” of the solution, which 
is characteristic of hyperbolic equaitrons, occurred. Thus, in order to ensure 
existence of a classical C(*’ solution on a time interval of length T, a high degree 
of smoothness (depending on T) had to be assumed. 

The use of energy estimates enabled Schauder and Sobolev [1950-J to get rid 
of the exaggerated smoothness assumptions. Schauder established solubility of 
the Cauchy problem by approximating the coefficients by analytic functions and 
using the Cauchy-Kovalevskaya theorem. Sobolev used methods similar to the 
ones used by Hadamard. Considering generalized solutions in classes of func- 
tions that are square summable together with their derivatives (Sobolev spaces), 
Sobolev obtained sharp regularity results for solutions of hyperbolic equations. 

Another approach to the Cauchy problem, based on direct methods (finite 
differences) and estimates of the energy integral, was suggested by Courant, 
Friedrichs, and Lewy [1928]. 

Some other methods in the general theory were being developed from the start 
of the century. The connection between equations with constant coefficients and 
the algebraic properties of their symbols, in particular using operational calculus, 
was being mooted. This led to some explicit formulas for solutions, viz. by 
Fredholm, Zeilon, Herglotz. On the other hand, general methods for equations 
with variable coefficients were being invented, notably the parametrix method 
of Picard, Hilbert, Hendrick, and Levi (see Levi [1907]). 
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The work of Petrovskij in the thirties proved to be of great significance. As far 
as the Cauchy problem is concerned, Petrovskij tried to describe systems for 
which the Cauchy problem is correct in the sense of Hadamard. In the case of 
constant coefficients, he succeeded in obtaining quite effective final results. 

Petrovskij [1938] considered the Cauchy problem for a general system with 
coefficients that depend only on time, 

kocnj, i=l,..., N, 

ahi 
at’ t=O = Cpi~(X), i = 1, . . . , N, 1 = 0, . . . , ni - 1. 

(1) 

(2) 

The main result is as follows: problem (l), (2), is correct in Ctk’ on the interval 
[0, T] if and only if condition (A) is satisfied: the system of ordinary differential 
equations 

(3) 

obtained from (1) by a formal Fourier transform with respect to the space 
variables, has a fundamental matrix of solutions which grows in 5 not faster 
than some power of 151. 

In the case of constant coefficients, condition (A) is equivalent to requiring that 
imaginary parts of the roots of the algebraic equation 

det (il)“dij - k,,g,km A’~‘...,kn(il)ko(i51)k1.. . (i<,)kn 
/I II 

= 0 

go to -cc at least as fast as constln(1 + [<I). As we shall see below, this is 
equivalent to asking that the imaginary parts of the roots are uniformly (in 5) 
bounded from below by a constant. Such systems became known as correct in 
the sense of Petrovskij. 

Let us explicitly state these conditions for a scalar equation. For the operator 

p f&g-Y..,& 
( > 

the correctness conditions in the sense of Petrovskij re- 

duce to the fAllowing”conditions on the symbol P(z, <): (i) P can be solved with 
respect to the highest power of z, that is P = rk + Q, de& Q < k - 1; (ii) there 
exists y such that P(z, 5) # 0 for Im r c y, 5 E R”. 

In the case of t-dependent coefficients, the fundamental matrix of (3) is found 
by integrating the system of ordinary differential equations, and condition (A) in 
general is not formulated in terms of algebraic conditions on the coefficients. 
Petrovskij singled out two classes of systems: strictly hyperbolic systems (which 
generalize the wave equation), and 2b-parabolic ones (which generalize the heat 
equation), for which condition (A) necessarily holds for t-dependent coefficients, 
so that we have correctness of the Cauchy problem. 
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At the same time, Petrovskij [1937] studied the Cauchy problem for strictly 
hyperbolic equations with variable coefficients. As regards 2b-parabolic equa- 
tions, it turned out later that a theory of the Cauchy problem for variable 
coefficients can also be constructed (see Ladyzhenskaya [ 19501, Ejdel’man [ 19643, 
Ladyzhenskaya, Solonnikov, and Uraltseva [1967]). 

At the end of the forties, Schwarz [1950/51] reformulated Petrovskij’s re- 
sults in the language of the then nascent distribution theory. He showed that 
Petrovskij’s correctness condition is a necessary and sufficient correctness condi- 
tion for the Cauchy problem in the space of distributions of slow growth that 
depend smoothly on time. In addition Schwarz noted that differential operators 
with respect to space variables in Petrovskij’s results could be replaced by 
convolution operators. 

The development of distribution (generalized functions) theory was accom- 
panied by a study of Cauchy problems for systems with constant coefficients in 
very general settings. This refers first of all to works dealing with exponential 
uniqueness classes and correctness of the Cauchy problem. Starting with the 
work of Holmgren, Tikhonov, Tacklind, and Ladyzhenskaya on parabolic 
equations, function spaces with exponential growth in which the Cauchy prob- 
lem is soluble (correctness classes) or has a unique solution (uniqueness classes) 
were investigated for different classes of solutions and systems. Gel’fand and 
Shilov described exponential uniqueness classes for general systems with con- 
stant coefficients, while Shilov and his students considered correctness questions 
with the same degree of generality. In this survey, we do not discuss questions 
that are specific to systems with constant coefficients. Their detailed exposition 
can be found in the monograph of Gel’fand and Shilov [1958]. The result of 
Hiirmander [1983-19851 (Ch. XII) on the correctness of an equation in D’, is also 
beyond the scope of this survey. 

The theory of generalized functions (distributions), the method of u-priori 
estimates, and the theory of pseudodifferential operators, have all found their 
reflection in the present state of the general theory of the Cauchy problem. In 
the framework of a general theory for the constant coelIicient case, it is now 
natural to work in terms of convolution equations, while in the variable coefficient 
case it is often natural to conduct the discussion in the general framework of 
pseudodifferential operators. Both these circumstances have been taken into 
account in the present survey. 

The survey consists of three parts. Chapter 1 and 2 are devoted to the Cauchy 
problem for differential equations with constant coefficients and for more general 
convolution equations. In the first chapter we have collected questions relating to 
the Cauchy problem in spaces of slowly growing and rapidly decreasing functions 
and distributions, while in Chapter 2 analogous questions for spaces of exponen- 
tially growing or decaying functions and distributions (exponential correctness 
classes) are discussed. Chapter 3 is devoted to extending a number of results 
obtained for the constant coefficient case, to the case of variable coefficients. 

We use consecutive numeration of formulas in each chapter. Referring to a 
formula from inside the same chapter, we give only its number, while if reference 
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is made to a formula from a different chapter, we also give the number of the 
chapter. Thus (1.20) means formula (20) from Chapter 1. 

In each section we, as a rule, have one central claim (a theorem, proposition, 
etc.) Then, referring to, say, the theorem from Section 2.3 we write Theorem 2.3. 
If there is more than one theorem (proposition) in a section, we shall indicate the 
number of the theorem (proposition) and of the section. 

Chapter 1 
The Cauchy Problem in Slowly Increasing and 

Rapidly Decreasing Functions and Distributions 
(Constant Coeflicients) 

Schwarz’s [1950] book on the theory of distributions appeared in 1950. The 
language of the theory of tempered distributions proved to be exceptionally 
well-suited both for the formulation of Petrovskij’s theory itself, and for its 
extension (due to Schwarz) to the case of initial data with polynomial growth. 
In essence, the present chapter is a modernized exposition of Petrovskij’s theory, 
using the language of distribution theory. We also discuss some natural generali- 
zations of the theory and related topics. Proofs of the principal proposition of 
this chapter can be found in Volevich and Gindikin [1972]. As it turns out, most 
of the results of Petrovskij’s theory do not rely on specific features of differential 
operators. In view of that, we conduct our discussion in the framework of a wider 
class of equations, namely, convolution equations. 

All the results of this and the following chapter are obtained with the help of 
the same construction. This construction is best explained using a simple example 
not directly connected with the Cauchy problem, namely, the question of solu- 
bility of convolution (and in particular, differential) equations in Schwarz spaces 
on all of R”. 

9 1. Convolution Equations in Schwarz Spaces on R” 

1.1. Schwarz Spaces of Test Functions. The space sP(R”) consists of infinitely 
differentiable functions which decrease faster than any power of 1x1 as 1x1 + co 
together with all their derivatives. 

The precise meaning of this statement is that 4 E Y has finite Holder norms 

ld$33 = sup (1 + x2)~‘2IDi’(p(x)I. 
XE W,lal<s (1) 
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Here s > 0 is an integer, 1 is a real number, 9” = (i&y’...(+Lr. Let us 

denote by C{# the Banach space of s-times continuousl; differentiable functions 
with norm (1). Then we have the continuous embeddings 

q c c[$ s > s’, 1 > I’, 

that is, C{# form a scale of Banach spaces which we denote by {C$}. The space 
Y is the projective limit of this scale: 

Y is a countably normed space, and therefore a FrCchet space. 
By definition, continuity of an operator A: 9’ + 9’ means that for any sufti- 

ciently large s, 1 there exist s’, l’, such that estimate 

IAtpl$,’ < const I’p@,). (2) 

holds. Let us remark that though Y is not dense in C$‘], the closure of Y in the 
( I[$,’ norm will contain C t$‘:‘, for any 1” > I’. Therefore the operator A can be 
extended as a continuous operator from C&‘, to C$. This means (again, by 
definition) that A acts continuously on the scale {C#}. Thus, a continuous 
operator A on Y is automatically extended to the scale {C[$}. 

Let us note that the theory of Schwarz spaces can be formulated equivalently 
either in terms of projective limits of Banach spaces or in terms of Banach scales. 
It is frequently convenient to pass from one viewpoint to the other. 

By taking inductive and projective limits, the space C# can be used to con- 
struct further spaces, which are important in what follows: 

0 = y qy = y n q, (3) 
s 

A? = (-) C(o) = (-j (J q. (3’) 
s s I 

The space U consists of P-functions, all the derivatives of which grow as Ix!+ co 
not faster than some power of Ix I which depends only on the function. The space 
A! consists of P-functions, each derivative of which has its own polynomial 
growth rate. Clearly, 0 c A!. The example of the function exp(i [xl’) E A? shows 
that the inclusion is proper. 

The space A is a ring with respect to multiplication. If a E A! and cp E 9, then 
a(x)rp(x) E 9, that is, elements of A? are multipliers in 9. 

In any of the spaces C$, 1 > n, we can define the classical Fourier transform 

9: q(x) H c)(g) = (27~)~“‘* 
s 

exp( - ix * t)(p(x) dx, 

which maps this space into Cts,, u’) 1’ + n < 1. Moreover, we have the estimate 

[@I&) < const I’pl#, 1’ + n < 1, (4) 
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which it is natural to call “Parseoul’s inequality” for Holder norms. Since similar 
estimates can be obtained for the inverse Fourier transform 9-l, we deduce from 
this that the Fourier transform is an automorphism of 9, that is 

99=X (5) 

In view of the above, there corresponds to every symbol a(r) E .M a pseudo- 
difirentiul operator (PDO) u(o) which maps the space Y into itself: 

w)cp)w = ~&m%&‘P = (279-“/z s ew(ix+ 043~(5) &. 
1.2. 9’ Considered as a Countably Hilbert Space. A most important property 

of 9’ is that it can be regarded not only as a countably normed, but also as a 
countably Hilbert space. 

As (1 + lQ2)“‘2 E M, the PDO (1 + 1z?2[2r/2 is defined on 9, and we can 
consider on Y the family of Hilbert norms 

lI~ll{“~ = IU + 142Y’2u + 1~12)“‘2~11, (6) 

for any 1, s, where 11. II is the usual L, norm on R”. Let us denote by H(s) the 
Hilbert spaces obtained as completions of Y in the norm (6). We have the 
continuous embeddings: 

H;;+k’ c C$,’ c H&), k,m>;, ~20 

where the first result follows from the classical Sobolev embedding theorem, and 
the second one is trivially true. Hence it follows that 

9 = H&j ttf (-) H[;;, 
S.1 

0 = y I@’ = y n H#, 
s 

(7) 
A? = n HpmJ = n (J H{$ 

s s I 

The scale {HI;‘} is self-conjugate, that is 

(H$’ = #IS’ ( 0’ (8) 

This property is an important advantage of Hilbert norms as compared to the 
Holder norms. 

In view of (7) and (8), the conjugate spaces 9’ and 0’ can be defined in terms 
of inductive and projective limits: 

9’ = H[ljdzf u H&‘, 0’ = n H&“’ = n u f@. (7’) 
s.1 1 I s 

This equality is to be understood as an algebraic isomorphism of linear spaces. 
As far as topological isomorphism is concerned, it can be proved for the spaces 
9’ and Y’, Y being a projective limit of Hilbert spaces. At the same time, the 
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question of topology on 0 and 0’ is quite complicated, and we do not consider 
it here. In this context we call an operator A: Co + 0 with domain and range in 
0, continuous, if it admits the following estimates: VI 3 I’, and t/s 3 s’ such that 

ll-44l~?, < const IIdIcI, w v’cp E 9. 
Let us remark that the continuity condition above is stronger than the continuity 
condition for an operator A on the inductive limit of countably normed spaces 
H{$’ 1 E R. 

1f;he operator A maps 0’ into itself, and for the choice of s, I, s’, 1’ above 

ll44$? G const lldl I;?, vcp E 9, 
we shall call A a continuous operator from 0’ into 0’. 

For comparison, we remind the reader that continuity of operator A: 9’ + Y 
is determined by estimates (2), or by analogous estimates in the 1) 11$1;’ norms, 
while continuity of an operator A: 9” + 9” is determined by availability of the 
following estimates: Vs, 13 s’, 1’ such that 

II&ll$~,) G const llvll$,‘. 
Elements of 9” are called distributions (generalized functions) of temperate 

(polynomial or power law) growth, or just tempered distributions, while the 
el’ements of 0’ are called rapidly decreasing distributions. 

On the space Y’ we can define the Fourier transform by conjugation; moreover 
in view of (5) 

99’ = 9’. (5’) 

It can be shown that the norm 11 II$,’ of (6) is equivalent to the norm ‘(1 II{;;, in 
which PDO (1 + 1912)s/2 and the operator of multiplication by (1 + 1~1~)“’ 
exchange places. For this pair of norms we have the “Parsed equality” (compare 
with the Parseval inequality from the previous section): 

‘ll4ll${ = llvll IS,‘. 
Hence it follows that 

@-Hi;; = H(l) 6). 

From (7) (8) and these equalities we deduce that 

%FO’ = A. (9) 

In conclusion, let us emphasize again that the availability of equivalent families 
of Holder (I 1;) and Hilbert (11 II{;,‘) norms is the main advantage of working with 
the spaces Y and 9” and with the scales corresponding to these spaces. 

1.3. Convolution Operators 

Definition. A convolution operator on the space Y (or 0,9”, 0’) is any con- 
tinuous operator that commutes with shifts. 
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Proposition. Let @ = 9, 0. For every convolution operator A on @ there exists 
a distribution f E @’ such that 

kW(x) = (f, IT,cp)> (10) 

where (I&(x) = 4(-x), (T,#)(y) = q5(x + y), and (f, $) is the value of the func- 
tional f E W acting on the test function I,+ E @. 

Conversely, if for each q4 E @ the right-hand side of (10) is a function in @ for 
f E @‘, (10) defines a convolution operator. 

In the case of a functional defined by a function, (10) has the form of the usual 
convolution: 

(f * 44(x) = 
s 

f(y)+ - Y) dy. 
R” 

Let us sketch the proof of the proposition. We set a correspondence between 
any continuous operator A on @ and a family of distributions f, E @’ where 
(fx, ZT,cp) = (Aq)(x). (Here we use the fact that @ = 9, 0 are invariant with 
respect to the shifts TX and reflections 1.) It can be directly verified that commuta- 
tivity of A with shifts is equivalent to the distributions f, being independent of x. 

As regards the converse statement, note that the right-hand side of (10) defines 
a closed operator on 57, 0’. Then continuity of this operator follows from the 
closed graph theorem, which holds in Frkchet spaces (and thus, in 9) and in their 
inductive limits (and thus in 0). 

Under the conditions of the proposition, let us call A the convolution operator 
corresponding to the conuolutor f, using the notation 

Aq=con,.cp=f*cp. (107 

We denote the set of convoluters by 2(Q). 
Obviously, convolution operators on Y’, 0’ are the transpose operators of 

convolution operators on spaces of test functions 9, 0. Let us denote the operator 
on @’ = Y’, 0’ which is the transpose of cons f E 2(Y) by con,,. This is consistent 
notation, since on CD n CD’ this operator coincides with the operator conIf: @ -+ @. 
Since Y and 0 are invariant with respect to reflections I, 

f?(Q) = f?(W), @ = x0. (11) 
It is clear that composition of convolution operators conf and con,, f, g E !2(@), 

(D = 9, 0, commutes with shifts and therefore, in view of the proposition, is a 
convolution operator con,, for some h E !i?(@). On the other hand, as we have just 
pointed out, for f E 2(Q) and g E @’ the convolution f * g E @‘can be defined. 
It is immediately verified that f * g and h coincide; that is, we have 

Lemma. Let f, g E 2(O), where @ = 9’,0. Then conf tong = cons.,. 

1.4. Description of Convolutors 

Theorem. 

i?(Y) = 2(F) = qq = !i?(O’) = 8’. (12) 
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Sketch of the proof. To prove all the equalities of (12) it is enough to demon- 
strate the inclusions 

0’ c 2(Lq, co’ c ii?( (12’) 

!i?(Lq c 8’. (12”) 

In fact, then !S(Y) = Co’, and by (11) !G(.Y”) = 0’. By definition, B(0) c O’, 
and then !S(o’) c 0’. The two final equalities of (12) follow then by (12’) and (11). 
Let us outline the proof of (12’). Let f E O’, f(t) E A, where / is the Fourier 
transform of J Then f* is a multiplier in Y and in 4, while the PDO f((o) maps 
both 9’ and 0’ into itself. Clearly,{(D) is a convolution operator. It can be directly 
shown that the convoluter that corresponds to it coincides with f, that is 
f (5 fw% f E WV. 

The idea of the proof of (12”) is the following: every operator con,-: Y + .Y, 
f E !S(Y) can be extended by continuity to a continuous operator con,.: 0’ + 0’. 
Then, using the fact that 6(x) E O’, and that f* 6 = S, we obtain (12”). 

Continuity of con/: Y + Y means (see Section 1.1.) that Vs, 1 we can find s’, 1’ 
such that 

IV* dl&] < constIIcpII$). 

Using the description (7’) of the spaces 9” and 0, it can be checked that the 
operators con/, f E e?(9) commute with PDO a(D), a(<) E A, and in particular 
with the PDO (1 + 1012)5’* which grade the scale {E@} according to smoothness. 
In view of this, we could choose 1’ = n(1), s’ = s + a(l). But then in the last 
inequality s and s’ can be interchanged, that is, V s, 1 3 s’, 1’ such that 

IV* dl{$ < constllcpII{& 

These estimates mean precisely that the operator car+: 0’ + 0’ is continuous. 
Thus, the space 0’ of rapidly descreasing distributions is simultaneously the 

space of convoluters both for rapidly decreasing functions (distributions) and for 
temperately growing ones. 

We note that the differential operator P(D) with constant coefficients is 
the operator of convolution with the distribution P(D)+) E 0, and the shift 
operator Th is the operator of convolution with 6(x + h). 

Let us emphasize that the ability to provide an explicit description of con- 
volutors is one of the most remarkable properties of Schwarz spaces. 

1.5. Convolution Equations on R” 

Theorem. Let @ = 9, 0,9”, O’, and A E Lo’ (that is, A E 2(G)). Then the follow- 
ing conditions are equivalent: 

(I) For every t+b E @, the convolution equation 

A*(p=$ (13) 
has a unique solution cp E @. 
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(II) Equation (13) has the jiindamental solution G E 0’: 

A*G=G*A=J(x). (14) 

For @ = 0’ 3 6(x) condition (II) follows from (I) trivially. 
From condition (I) and from the Banach bounded inverse theorem, we deduce 

continuity of the operator 

(con,))‘: @ + @, @ = Y, 0,Y’. (15) 

It is clear that this operator commutes with shifts, that is, it is a convolution 
operator: (con,)-’ = cone for some G E 0’. Using Lemma 1.3 we arrive at (14). 
Using Lemma 1.3 and commutativity of convolutions in O’, we deduce (I) from 
(II). 

In the number of equivalent conditions of the theorem we can also include 
(II’), For some c > 0 and p, the symbol L(t) is bounded from below: 

l&)1 > 41 + IW VY E w. (16) 

In fact, condition (II) means that the distribution A is an invertible element of 
the ring (with respect to convolution) 0’. Isomorphism (9) is a ring isomorphism. 
Then (II) is equivalent to the invertibility of the symbol kin the ring (with respect 
to multiplication) JZ, that is, each derivative D” AI-’ must grow not faster than 
some power of c. An elementary computation shows that under the condition 
i(t) E Jli”, the latter statement is equivalent to the existence of the bound (16). 

Remarks. 1) Deciphering the conditions for continuity of the operator (15) for 
@ = 9, 0, ,40’, O’, we can replace (I) by statements about continuity of the 
operator 

(con,))’ : C{$ + C(s::, P) (I) + fq” 

for some set of s, s’, 1, l’, that is, by statements about the solubility of (13) in spaces 
of functions (distributions) of finite smoothness and of fixed growth (decay) at 
infinity. 

2) The operators con,, A E 0’ map the spaces C{$, H{$“’ into themselves for 
all 1 E R (this is connected to the fact that distributions in 0’ decay faster than 
any power). The operator con, acts on the scales Ccs = (C#>, Hto = (H$} as an 
operator of finite order, that is, there exists a d(l) such that for all s the operator 

con . c(s) + c(s-x’ A. (0 (1’ ’ Hg’ + H;;)-‘, x > 40, 

is continuous. Invertibility of A in the ring 0’ means that the inverse operator is 
also a finite order operator, that is, there exists a function a(1) such that (13) has 
a solution cp E C&+“’ or cp E H$+“), 
t,b E H$‘. 

x < 6(l), for any right-hand side JI E Cl:, 

1.6. Differential Equations on IV. As we have already said above, a differential 
operator P(D) with constant coefficients is a convolution operator with distri- 
bution P(D)G(x) E O’, and Theorem 1.5 can be applied to it. Moreover, condition 
(16) is simplified. The reason for this is that, according to the Seidenberg-Tarski 
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theorem (see for example the appendix in Hiirmander [ 19631) for the polynomial 
i(t) = P(c), the inequality (16) follows from the fact that A(<) # 0. Thus, we have 

Theorem. The dlerential equation with constant coeficients 

wbP(x) = w (17) 

is uniquely soluble in any of the spaces 9, Co, 9”, 0’ if and only if the symbol P(t) 
does not vanish anywhere on KY. 

1.7. Some General Remarks. In the results we described above, we encounter 
a state of affairs that is going to recur frequently. It so happens that in some 
function spaces there is a natural (either constructive or axiomatic via invariance 
conditions) definition of convoluters. It turns out, furthermore, that the space of 
convoluters can be characterized more or less effectively. Moreover, solubility 
of equations in convolutions turns out to be equivalent to the existence of the 
fundamental solution, which is a convoluter. Let us note that many solubility 
proofs are in essence based on obtaining estimates of the fundamental solution, 
which ensure that it really is a convoluter in the corresponding space of right 
hand sides or of the initial data. Basically, that is exactly what Petrovskij Cl9383 
does in his work on the correctness of the Cauchy problem. 

Furthermore, in view of the available description of convoluters, the above 
mentioned solubility condition becomes an effective one. In this context, the 
Seidenberg-Tarski theorem allows us in the case of differential operators to 
simplify the condition due to the fact that the necessary power estimates are 
automatically satislied. 

Let us remark on another important point, which occurs in the theory we 
described above: solubility conditions in scales coincide with these in “limit 
spaces” (in our case, in 9, 0, Y, 0’). 

Our discussion in this section was considerably simplified by the fact that the 
functional space was invariant with respect to shifts. In the following sections 
dealing with the Cauchy problem, we shall have invariance with respect to an 
“incomplete” set of shifts, which, however, is sufficient to follow through with the 
procedure indicated above. 

5 2. The Homogeneous Cauchy Problem in Rapidly Decreasing 
(Slowly Increasing) Functions (Distributions) 

Let P(D) be a differential operator of mth order with respect to differentiation 
in x1. As we already stated above, the Cauchy problem is the problem of finding 
a (smooth) function U(X) satisfying the equation 

P(mw = f(x), Xl > 0, 

and the initial conditions 

D:uJ,~=~ = (pk(x2, . . . . x,,), k = 0, . . . . m - 1. 
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If cpo = .*. = ‘pnt-i = 0, then the resulting problem is called the homogeneous 
Cauchy problem. In this case u(x) and f(x) can be extended by zero for xi < 0; 
let us denote these extensions by u, andf,, so that the equation can be replaced 
by the following equation on the whole space: 

Wb+W = f+(x). 
The resulting problem is amenable to treatment using the construction of the 
previous section. 

We shall find necessary and sufficient conditions for solubility of the homo- 
geneous Cauchy problem in the space of rapidly decreasing (slowly increasing) 
functions (distributions). It should not be thought that solubility in decreasing 
functions is a weaker property of the operator as compared to solubility in 
increasing functions: though data is taken from a smaller space, the solution is 
sought for also in a smaller function space. Similarly, solubility in the space of 
distributions is not a stronger property than solubility in the space of smooth 
functions. Thus, an exhaustive study of the problems under consideration would 
involve examining solubility in four different types of spaces. In the case of 
equations on R” these were the spaces 9, 0, O’, 9’; invertibility conditions for 
convolution operators coincide in all of them. 

In this section we shall obtain analogous results for the subspaces Y+, O,, 
(O’),, (Y’), consisting of elements with support in the half-space x1 > 0. In 
this case solubility conditions in the cases of growing and decreasing func- 
tions (distributions) will be different. In all solubility conditions for convolution 
operators, the passage from limit spaces to scales with respect to smoothness and 
growth exponent can be effected automatically; we shall not do it due to lack of 
space. 

2.1. Notation. Let us distinguish one coordinate in R”, t, so that x = (t, y), 
t = x,,y =(x,, . ..) x,), (0, q) are the dual coordinates, z = e + ip, C$ = (CT, q). 

If @ is a space of functions or distributions, let us set 

@* = (‘p E @, supp q E (Wkn}, Iw,” = ((t, y), kt 2 0, y E ,“-l}. (18) 

We denote by @o, Do the quotient spaces @/a- and Q/Q+. 
For a < b let us set @[a, b) = F-o,O)@+/q-b,O)@+ and @(a, b] = q+,,,,@-/ 

7;-,,o,@-. 
Spaces of the type @+ and @[a, b) correspond, respectively, to the homo- 

geneous Cauchy problem in the half-space t >, 0 or in the strip a < t < b. The 
space Qe is connected with the problem which is adjoint to the homogeneous 
Cauchy problem. 

2.2. Spaces 9+ and (0’) + . As the notion of support of a function (distribution) 
is defined in the spaces @ = 9, 0, O’, Y’, the general definition (18) makes sense 
in the indicated spaces. These same spaces can otherwise be defined as projective 
or inductive limits of the subspaces C#+ or H#+. 
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Analogously, quotient spaces 9’@, . . ., (Sp’)@ can be understood either as 
quotient spaces of the corresponding linear topological spaces, or as projective 
and inductive limits of the quotient spaces C{& or H&&. In other words, 
equalities (2), (3), (7), (7’) will stay valid if both right and left hand side spaces are 
equipped with the symbols +, -, 0, 0. 

The relations holding between subspaces and quotient spaces of the Hilbert 
spaces H# are as follows: 

(19) 

which induce duality of the corresponding “limit spaces” (see the remarks follow- 
ing (7)). 

(CD+)’ = (@‘)@, (@@)I = (CD’)+, @ = $0. (19’) 

Let us indicate another way of characterizing the subspaces Cl:+. It can be 
verified directly that if cp E C$“+, then the following equality holds: 

Irpll;] = sup sup leP’(l + l~l~)“~D”cp(~)l cf ;y! Ivl&pj. (20) 
p-z0 XE wlalss 

Conversely, if exp (pt)cp E Cli”:, Vp < 0, and the right hand side of (20) is finite, 
then cp E C(;‘. 

In connection with the description of images of @+ type spaces under the 
Fourier transform, we shall have recourse to the following construction. 

Let E be a Banach space of functions of < = (0, q) with norm I IE. Let us denote 
by E+ the space of functions of the variables (r, q), r = o + ip with the following 
properties. 

1) For each fixed p < 0, the functions cp,(r) = cp(o + ip, q) belong to E and 
are continuous functions of p E (-co, 0] with values in E. 

2) The functions cp(z, q) ayerolomorphic in r in the half plane Im r < 0. 
3) The norm SUP~<~ 1~~1~ = I rp, E+I is finite. 
Using the projective and inductive limit operations, we can define the spaces 

If cp E C[$+, 1 > n, then the classical Fourier transform @(t, q) is defined for 
Im z < 0, and is holomorphic in r for Im z < 0. Applying the Parseval inequality 
(4) to the functions exp (pt)cp, q E C#+, using (20) and the definition of norm in 
C$,‘+, we obtain 

14, C$))+I < constlcpl I$, 1’ + n c 1, cp E C&. 

Hence it follows that KY+ c sP+. The reverse inclusion is proved with the help 
of the Cauchy integral, so that 

9v+ = Y+. (21) 

It is immediately seen that functions in JZ+ are multipliers in Y+. In view of the 
isomorphism (21), to each symbol a E .&?+ there corresponds a PDO a(o) (see 
Section 1.1) mapping Y+ into itself. 
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To obtain a Hilbert scale in Y+, let us introduce symbols in JZ+ that are 
holomorphic in t: 

6&+(z,+(+iz+JTqpy, &GJt+. (22) 

The PDO’s 6:(D) can be taken to be the operators that grade the smoothness 
of the scale H$+: 

H$,‘+ = {cp E H{;T”, K+(W E 41,+)- 

If IIS,‘(D), I),,, is taken to be the norm on H$/, we have the Hilbert space equivalent 
of equality (20), 

that is, cp E H$+ if and only if exp(pt).cp E H# Vp < 0, and the right hand side of 
(20’) is finite. 

According to the classical Paley- Wiener [ 19341 theorem, 

%=H+ = H+, 

and moreover, the isomorphism is an isometry (Parseval’s equality holds). This 
isomorphism can be extended to the spaces H(i”:+ for any s E R and integers 12 0: 

SH$)+ = Ht”j+ s * (23) 

Hence it follows that 

5F(O’)+ = A+. (24) 

2.3. Convolutors in 9+ and (S’),. A convolution operator in @+, @ = ~7, 0, 
Y’, Co’, is any continuous operator, which commutes with shifts, the range of 
which is in @+, that is, with operators qt,yj, t < 0. 

For @ = 9, 0, let us denote by @a the subspace I?;,,,,@+ = q-,,Oj@-, which 
consists of elements of @ that are zero for t 2 a. Clearly, Qb I GJ,, for b > a, and 
we can consider the inductive limit @, = u~zo @,,. 

Proposition. Let @ = 9, 6. For each convolution operator on @+ there exists 
a distribution f E (@,)’ such that (10) holds. 

Conversely, iffor f E (Q,,,)’ the right hand side of (10) is in @+ for each cp E @+, 
then (10) is a convolution operator. 

To prove the proposition, we consider, as we did in the case of Proposition 
1.3, the distributions j&, t > 0, which belong to (@J’. Note that &,YJ = 0. The 
condition of commutativity with shifts stated above, is equivalent to saying 
that the functional j&) is independent of y, and that its restriction to 4, h < t, 
coincides with A,,, ,,) . Hence it follows that the functionals &t,yj define a unique 
distribution f on the inductive limit @,, that is, (10) holds. The converse state- 
ment follows from the closed graph theorem. 

As in Q 1, we denote the operator (10) by con,-, and the set of all convoluters 
by W@+). 
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Theorem. (i) e&Y+) = (S’), 
(ii) Every convolution operator on (Co’), can be obtained by extending by con- 

tinuity some convolution operator on Y+. 

Taking (ii) into consideration, we shall write 

Q((‘w+) = (W+. 

The proof of the theorem follows the argument of Theorem 1.4. Let us remark 
that for f E (O’),, the operator cony coincides with the PDO f”(O). 

2.4. Convolutors in 0 + and (9”) +. In the course of describing convoluters on 
O,, there arise spaces of distributions that behave differently with respect to the 
variables t and y. Let us introduce the necessary concepts. For 2,) I E R! let us set 

H$j,,, = (1 + t2pq1 + ( y12)-l’2H(s). 

We define C[fl,I, in a similar way. Let us set 

sf = Q fqZ!l, = (I y fq&,. (25) 
3 1 

Remark. The space X consists of distributions in Y’, which decay in y faster 
than any power, and grow temperately in t. In the case n = 1, X = Y’(R). For 
n > 1, the space %’ is in a certain natural sense the tensor product 

X(R”) z 9’(R) @ ,I(,“-l). 

We shall need the characterization of the image under the Fourier transform 
of distributions in X+. Let us denote by 9+ the space of functions +(r, q) that 
are holomorphic in r for Im r < 0 together with all their derivatives D$,h, and 
that moreover their derivatives admit the estimates 

(D,“t&, ?)I < c,(l + (z( + (q()PaIIm 21eqn, Im z < 0, q E R”-l. (26) 

Then 

9x+ = 9+. (27) 

Let us explain the idea of the proof of the isomorphism (27). 
If f E X+, then for any integer 1 > 0 we can find s and an integer k > 0 such 

that f E H~2k,lJ+, that is f = (1 + tZ)kg, g E I$&,+. From the classical Paley- 
Wiener theorem combined with (23), we derive the isomorphisms 

SH&,+ = H#*“+, (23’) 

where H”*” is defined to be the space of functions ll/([) belonging in L, together 
with the derivatives D&h, /cl1 < 1. Since 9((1 + t2)kg)) = (1 + i8/&)kg, elements 
of 9X+ are obtained from elements of the space nl us H,$‘)+ by differentiation 
in r. This last space can effectively be defined as fll us C[$r)+. Hence it follows 
easily that 9X+ c 9’. The opposite inclusion is proved using the Cauchy 
integral. 

In Section 2.3 we already defined convoluters on CO,. 
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Theorem. (i) f?(cO+) = X+. 
(ii) Every convolution operator on (.9”)+ can be obtained by extension by con- 

tinuity of some convolution operator on 0,. 

Taking (ii) into consideration, we shall write 

2(V)+) = &. 
Let us comment on the differences between the proof of this theorem and 

the proof of Theorem 2.3. As the Fourier transform cannot be defined in U,, 
the inclusion X+ c g!(C)+) is verified directly by reducing convolutions with 
distributions in X+ to compositions of differential operators with operators of 
convolution with usual functions. 

As far as the converse inclusion is concerned, (ii) is proved using the procedure 
of Theorem 1.4, from which it follows that Q(0,) c (Y’),. Thus the theorem is 
proved for n = 1. 

For n > 1, let us restrict the convolution operator A to functions of the form 
q(t)+(y), cp E O(R,)+, II/ E B(lR;-‘). Let us associate with each tj E O(R”-‘), the 
operator 

wu+ -+ ww + (cp -+ (4m4)k 0)). 

This is a convolution operator, and by the argument above, it is given by a 
convolution with some distribution Fti E (.!Y”(R,))+. Thus, there arises the operator 

o(q-‘) + W’(~*))+W -+ F,). 
From a certain version of the kernel theorem it follows that this operator is given 
by a generalized kernel in X+, that coincides with the original convoluter (see 
Proposition 2.3 for @ = 0). 

2.5. Convolution Equations. On the basis of the results of Sections 2.3-2.5, and 
following the plan of Sections 1.5 and 1.6, we can prove the following statements. 

Theorem 1. Let @ = 9, o’, ,40’, and A E 2(@+). The following conditions are 
equivalent: 

(I) For any $ E CD+, the convolution equation (13) has a unique solution rp E @+. 
(II) Equation (13) has a fundamental solution G c I?(@+). 
(II’) Zf A^ is the symbol of A, then A-’ E YI?(@+). 
Zf @ = 0, (II) and (II’) are equivalent, and (I) follows from (II). 

Remark. In the case @ = 0, we cannot include the‘implication (I) =z- (II) in the 
theorem, as in this case the Banach bounded inverse theorem cannot be used. 

Now we have to give substance to condition (II’). We shall use the explicit 
description of 9!Z(@+). 

If @ = 9, Co’, then FQ(@+) = &‘+. For a symbol 2~ Jll+, condition (II’) is 
equivalent to the existence of the following lower bound. 

I~(z,~)I>c(l+l~l+Irll)~, ImzGO, rl~[W”-l (28) 

for some c > 0 and ,u. 
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If @ = 0, Y, then se(@+) = Y+. For a symbol JE 9”, condition (II’) is 
equivalent to the existence of the following lower bound: 

Mh ?)I > 41 + Id + IvIYIIm dyp Im t < 0, q E lR”-’ (28’) 

for some c > 0, fi, v. 
Under the conditions of Theorem 1, all the remarks of Section 1.5 can be 

repeated word for word once all the spaces considered there are equipped with 
the + symbol. 

In the case of differential operators, taking the Seidenberg-Tarski theorem into 
account makes it possible to replace the estimates (28) and (28’) with conditions 
for the non-vanishing of the symbol in the corresponding domains. Thus, we have 

Theorem 2. (i) The difirential equation (17) is uniquely soluble in Y+ or (S’), 
if and only if 

P(z, q) # 0, Im r < 0, q E lR”-l. (29) 

(ii) The dijfirential equation (17) is uniquely soluble in (9”)+ if and only $ 

P(q q) # 0, Im z < 0, r] E IX”-‘. (297 
Let US sum up. As we showed in 0 1, in the case of R”, the set of convoluters 

did not depend on whether we were considering functions (distributions) of 
temperate growth, or rapidly decreasing ones. In the case of the half-space t 2 0, 
for functions (distributions) of temperate growth we obtain a larger set of con- 
volutors than for rapidly decreasing functions: in the first case power growth law 
of convolutions in the variable t is allowed. This situation leads, in particular, to 
the fact that solubility conditions for differential operators in spaces of functions 
(distributions) of temperate growth, is weaker than in the case of rapidly decreas- 
ing ones. In the language of scales, it is connected to the fact that in one case we 
are dealing with the solubility of the Cauchy problem in spaces of functions where 
any asymptotic power law is possible, while in the other one, only some are. 

2.6. Convolution Equations in a Finite Strip. In Petrovskij’s theory, necessary 
and sufficient conditions for correctness of the Cauchy problem on a finite time 
interval were considered. That is, equation (17) was studied in the strip {a < t < b, 
y E W’-1}. In this section we shall extend the theory developed above to con- 
volution equations in the spaces @[a, b) (see Section 2.1) for @ = 9’: Co, O’, 9”. 
First of all let us remark that @[a, b) can be defined in two ways: as quotient 
spaces of linear topological spaces q-c,O) @+ or as (respectively) inductive and 
projective limits of the spaces C$i[u, b) or H$[a, b). Both these methods lead to 
the same spaces. 

The scales {H#[a, b)} and {H$i(u, b]} are conjugate to each other. Conjugacy 
of these scales induces the following conjugacies: 

(@[a, b))’ = @‘(a, b], (@(a, b])’ = @‘[a, b), @ = 9, 0. 

As we already stated above, the PDO’s 6,,?(D) map the scale {H#+ > into itself, 
and define on it a smoothness gradation. As PDO’s and shift operators commute, 
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the operators 6,f(D) map into themselves all shifts of the scale (HI;?}, and 
therefore map into itself the scale of quotient spaces {H{#+ [a, b)}, defining on it 
a smoothness gradation. In a similar manner, the operators S;(D) realize a 
gradation on {H{#+(u, b]}. 

Let us move on now to the definition of shift operators in a finite strip. Shift 
operator q-f,yj for t 2 0 are well defined in quotient spaces. 

Th: @[a, b) + @[a, b), h = (h,, . .., h,), h, < 0. (30) 
For hi < a - b this is the null operator. 

The concept of a continuous operator can be extended from the space @ to 
the space @[a, b), @ = 9,0, Y, 0’. 

We call any continuous operator A: @[a, b) + @[a, b] a convolution operator 
on @[a, b), @ = 9, Co, L’, O’, if it commutes with the shifts (30). Let us go on to 
describe the corresponding convoluters. We shall start with the analogs of 
Propositions 1.3,2.3 for convolution operators in a strip. For that, let us note as 
a function cp runs through the space @[a, b), the functions ZT,cp, x = (t, y), 
a < t < b, run through @[O, b - a). Using the argument of Proposition 1.3, we 
can prove 

Proposition. Let Qi = 9’: 0. For every convolution operator on @[a, b) there 
exists a distribution f E @‘(O, b - a] such that (10) holds for x = (t, y), a < t < b. 

Conversely, if for f E @‘(O, b - a] for each cp E @[a, b) the right-hand side of 
(10) is in @[a, b), then (10) defines a convolution operator. 

As above, we denote the operator (10) by cons, and the set of all convoluters 
by Q(@[u, b)). It is clear that 

i?(@[u + c, b + c)) = 2(@[u, b)) Vc E R, 0 = 9, 0. (31) 

Thus, in our description of convoluters we may assume without loss of generality 
that a = 0. 

Theorem 1. 
!i?(Y[O, b)) = !2(0[0, b)) = cO’[O, b). (32) 

According to Theorems 2.3 and 2.4, the operator co+ f E (o’), maps the 
spaces 5?+,, O,, and their shifts, into themselves. Therefore it can be extended to 
a continuous operator 

con,.: @CO, b) + @[O, b), f E (S'),, @ = 9,U. 
From (10) it can be seen that if the support off belongs to the half-space t > b, 
conf acts as the null operator. Thus, we have shown that O’[O, b) c G(Y[O, b)), 
O’[O, b) c !2(U[O, b)). 

The inclusion O’[O, b) 1 p(O[O, b)) follows from the proposition, while the 
inclusion 

QP’P, b)) = @‘CO, b) 

is proved by using the argument of Theorem 1.4. 
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Using the relations 

@(a, b] = I@[-b, -a), @‘[a, b) = I(@[-b, -a))l, 

it is possible to show that 

!i?(zqO, b]) = !i?(lqO, b]) = O’( -b, O] 

and 

!i?(y’[O, b)) = i?(U[O, b)) = L!J’[O, b). 

Following the procedure of 0 1 we can prove 

Theorem 2. Let A E O’[O, b), and CD = 9, 0, O’, 9. The following conditions are 
equivalent: 

(I) The convolution equation (13) is uniquely soluble in @[a, a + b] for all a E R. 
(I’) The convolution equation (13) is uniquely soluble in @[a, a + b) for some * 

a c R. 
(II) There exists a G E S[O, b) such that A * G - 6(x) = G * A - 6 = 0 in the 

sense of 0’ [0, b). 

Let A E O’[O, b). Let us denote by A(z, q) the Fourier transform of a representa- 
tive of the residue class of A. Condition (II) of our theorem, unlike the analogous 
condition of Theorem 1.5, does not, in general, allow us to obtain effective 
necessary and sufficient conditions on A^ ensuring (I). However, we can extract 
separately a necessary and a sufficient condition from (II). 

According to (II) there exists a symbol G E .&?+ such that 

X(7, q)G(z, q) - 1 E 9(17;-b,o,(0’)+) = e-irbM+. 

From the definition of the space in the right hand side it follows that for some 
c > 0 and p 

IL(z, ~)G(T, fl) - 11 < c(1 + 171 + IrjI)peb’mr. 

Hence, trivially, we have 
A necessary condition for (II) to hold. 3 cl, c2 such that 

{A(r, V) = 0} = {Im z > cl ln(1 + IrI + 1~1) + c2}. (33) 

A sufficient condition for (II) to hold. 3 c > 0, p, p d 0 such that 

I&, 441 > 41 + Id + IrlY, Im z G P. (34) 
If p = 0, inequality (34) is the invertibility condition of A in (O’),. For p < 0 

this condition ensures invertibility in (O’), of the distribution A, dzf eP’A, as the 
symbol LJt, q) equals k(r - ip, q). Taking into account the fact that spaces 
@[a, b) b < cc are invariant with respect to multiplication by exp(pt) for any p, 
we obtain the sufficiency of (34). 

Let us discuss the connection between (33) and (34). Condition (34) means that 
the symbol i(r, ‘I) has no zeroes in the half-plane Im z < p for some p < 0, and 
admits a power law lower bound in that half-plane. Condition (33) means that, 
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in general, the symbol A(r, q) has zeroes in the lower half-plane, but the manifold 
of these zeroes separates (as q is increased) from any straight line Im z = const. 
very slowly. 

In the case of differential operators, that is, A = P(D)G(x) and A^ = P, as we 
already stated above, condition (34) is equivalent to 

P(z, q) # 0, Im z < p, ye E IX-‘. (35) 

On the other hand, the imaginary part of the algebraic function z(r]) which solves 
the equation P(z, q) = 0, cannot according to the Seidenberg-Tarski theorem, go 
to ---co slower than some power of 1~1. Therefore (35) follows from condition (33). 
Thus, we have proved 

Theorem 3. Let @ = 9’: 0, Y’, 0’. The differential equation (17) is uniquely 
soluble in the space @[a, b) for any a, b E Iw, a < b (or for some a < b) if and only 

i if there exists a p for which (35) holds. 

Definition. We shall say that a polynomial P(r, q) satisfies the homogeneous 
correctness condition of Petrovskij if there exists a p for which (35) holds. 

This condition is different from the Petrovskij condition (see the Introduction) 
in that there is no assumption of solubility of the polynomial with respect to the 
highest power of r. 

Remark. As we already stated in the introduction, Petrovskij [1938] had a 
“scissors” cut between conditions (33) and (35); the Seidenberg-Tarski theorem 
shows that in the case of polynomials these conditions coincide. 

2.7. A Problem Dual to the Homogeneous Cauchy Problem. In view of the 
conjugacy relations (19) we mentioned above, operators on quotient spaces 

tong: @o + Qs, tong: (a’)@ -+ (@I)@, @ = Y,O 

can be interpreted as operators adjoint to 

con,: (@)+ + (@‘)+, con,: @+ + @+, A = IB. 

Following this direction of thought, it is possible to obtain a description of 
convoluters: 

!2(9&) = (X)-, e(o,) = (O’)- (36) 
and to prove analogs of theorems of Section 2.5. 

The results indicated above can also be obtained directly, by constructing a 
theory of convoluters in quotient spaces as of operators that commute with shifts; 
in fact, such a theory was constructed in the previous section, in the arguments 
of which we can set a = -co, b = 0. Then we have a theory of convolution 
operators in @-; the theory in @+ is obtained by using the reflection operator I. 

Similarly, analogous theorems (of the type of Theorems 1,2 of Section 2.5) for 
equations on quotient spaces can be obtained either following the scheme of 
Section 1.5, or from conjugacy considerations. We do not go into these details. 
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9 3. The Non-ho;ogeneous Cauchy Problem in Slowly 
Increasing (Rapidly Decreasing) Functions (Distributions) 

In 42, the Cauchy problem with zero initial data was reduced to a problem on 
the whole space in functions (distributions) supported in t > 0. This problem was 
investigated in the framework of convolution equations. We can treat the non- 
homogeneous problem in a similar manner. 

Let P(D) = ~jm_opi(D,,)(Dt)j b e a differential operator with constant coeffi- 
cients, and let u(t, y) be a smooth solution of the Cauchy problem 

l fv?, qJu(t, Y) = fk  Y), t  2 0, (37) 

D:u(t, y)ltzo = q+‘(y), k = 0,. .., m - 1. (38) 

Let us extend u, f smoothly for t < 0, using the same symbols u and f for 
these extensions. Let us set u, = 8+u, f+ = 0+f, where e+(t) is the characteristic 

function of the semi-infmite line t 2 0. Using the fact that :0+(t) = 6(t), we 

obtain for u, the equation 

Wt, D,)u+ = F+, (39) 
1 m-l m-l-j 

F+ = f+ + i z. lgo Pj+l+l(D,)cp,(y)D:‘6(t). (40) 
i 

Let @ = Y, 8, and let p be a negative integer. Let us set 

@[+I = b+ = e+m CP E 6 (41) 

@I!“] = 
i 

IP -1 

(P=(P++ j=. Vj(Y)D/d(t)9 (P+ E @[+I, ‘pi E @tRnml), j = O9 ea.7 IPI - l lk 
> 

. 

(42) 

Then the problem (37), (38) for u, f E @@I;), and cpo, . . . , q,,, E @(W”-‘) becomes 
the problem of invertibility of the operator 

for p = 0. Setting 

we shall consider a more general problem of invertibility of convolution opera- 
tors in the space (42’). This problem will be solved using the procedure of & 1,2. 
First of all we shall describe the class !i!(@/$‘l) of corresponding convoluters 
for @ = Y, 0. As we shall see below, it consists of the elements of !Z(@+) that 
satisfy additional smoothness conditions in t for t > 0. These conditions are the 
analogs ofthe transmission (smoothness) conditions of Boutet de Monvel[1966], 
and of Vishik and Eskin [1964], in the classes 0’ and X. We shall show that the 
invertibility of the operator (43) is equivalent to P(D) having a fundamental 
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solution in e(O/;,mo’), while this latter condition is e{uivalent to the invertibility 
of the symbol P(r, q) in the space of the images of the Fourier transform, 
~Q(@J/+-,~~). Using a characterization of this space, we shall obtain simple neces- 
sary and sufficient conditions on the symbol, under which (43) is an isomorphism. 

At the end of the section, using the procedure in Section 2.7, we shall con- 
sider equations of the type (39), (40) in the strip a < t < b, obtaining thus, in the 
case of one equation of higher order, a modification of Petrovskij’s Cl9381 
theorem. 

3.1. Convolutors on f?(@{;,m’). As we shall see below (see (47), (47’)), the 
spaces @&“}, @ = 9, 0, are constructed from Banach spaces with the help of 
inductive and projective limit operations. Starting with (47), (47’) it is possible to 
introduce the concept of a continuous operator on Y;i; “1, CC&,“‘) in a way similar 
to the one used for 0, Y’, and so on in Section 1.1. 

We call a continuous operator on @/+;“l, @ = 9, 0, a convolution operator 
on that space, if it commutes with differential operators, and if its restriction to 
@+ is a convolution operator on that space. 

Let us emphasize that unlike the case of spaces @, @+, in the definition of 
convolution operators on @t!!“l, we replaced the condition of commuting with 
shifts, by a condition of commuting with differential operators; these conditions 
are similar, and in the case of spaces invariant relative to shifts, the second 
condition follows from the first one. Naturality of the condition of commuting 
with differential operators in @;+;ml is related to the fact, that differentiations 
(unlike shifts) are detined on all elements of this space and map it into itself. 

We shall study convoluters on $iT ml using the procedure of 0 1.2. Beforehand, 
we must introduce a space of distributions Y+ 1 Y;i;col that contains 6(x) and 
onto which convolution operators acting on @yrn} must be extended. It is clear 
that distributions in the space Y+ must satisfy two conditions: 1) same decay 
estimates must hold for them and for distributions in Y;,,, 2) they have the same 
smoothness in t as elements of y;l;ml. 

In the case n = 1, the original space ~~~“l(iR) has all these properties. Intui- 
tively it is clear that in the case n > 1, we must take for !Y+ the tensor product. 

q&“)(R) @ !i?(Y(R”-‘)), that is @;“l(R) @ 0’(R”-I). 

To give precise meaning to this definition, we are obliged to introduce special 
bigraded scales. 

Let us denote by pe the canonical projection of @ onto CD@ = Q/Q-. The 
homomorphism 

pe: II&;’ + H$$’ w 

defines an additional filtration by smoothness, of the left hand side space. (We 
remind the reader that we denote by ZYI(~*~) a space of functions of smoothness p 
in t and of smoothness s in JJ). In view of the above, for any integer q 2 p let US set 

Hf&q}*s) = { cp E H&J’, p&l E H&J}. (45) 
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For p = 0 the mapping (44) is an isomorphism. For p > 0 this mapping is 
injective and has a cokernel, since functions in the left hand space together with 
their derivatives in t up to order p - 1 are zero at t = 0. If p < 0, functions from 
H{J;“’ can take any values for t + +O, so that the mapping (44) is surjective. Its 
kernel consists of distributions supported in the plane t = 0. These are of the form 

r-1 
jzo gj(Y)D[S(t), Sj E H{#(~“-l)~ 0 Gj d r - 13 (46) 

where I = Ip(. For spaces (45) natural embeddings are defined so that scales of 
spaces (45) can be considered together with their projective and inductive limits 
with respect to various indices. We have: 

y;p,’ = u H(y‘#.” = u n Hgp.S), (47) 
P P 9,s.l 

(J&m, = u H$P;“h=@ = u (-) H~~~Qh.)~ (47’) 
P.1 P.1 9,s 

Let us return to the problem of convoluters in Y;!jm). Let us set 

Ur+, = u U/J], 
P 

U#‘/ = 9 H,$fiq~3-m’. (48) 

The space (48) satisfies the requirements for an admissible space of convoluters 
on (47); for n = 1, spaces (47) and (48) coincide. 

Theorem 1. (i) We have the equality 

i?(y;pq = q+,. (49) 
(ii) Each convolution operator in q!+irn) can be extended by continuity to a 

continuous operator in Ur+,. 

Note that in view of the statement of the theorem, Ur+, is a ring with respect 
to convolution, so that it is natural to say that 

fw,+,) = q+,. (49’) 
Proof of the theorem is by the following argument. If we take a convolution 

operator A on Y;ii”‘l, then its restriction to Y+ is defined. This restriction (see 
Theorem 2.3) is an operator of convolution with some distribution f E (Co’), . The 
operator conf: Y+ -+ 5J’+ can be extended by continuity (see Theorem 2.3) to a 
continuous operator A on the space (O’), which contains S/&ml. We have to 
show that A = A”on Y;&ym}. Operator A - iequals 0 on Y; and commutes with 
differential operators; a direct examination of the generalized kernel of this 
operator shows that it equals 0 on Y;i;O”l. 

Remark. The space Ur+] can be interpreted as the tensor product 

q+, = y;p’(R) @ o’(R”-l), 

while equality (49) can be formally rewritten in the form 

e(Y;~jm~(lR) 0 c!qR”-l)) = !2(9$“@2)) 0 i?(Y(W’)). 
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Theorem 2. Let @[+, = Y;!i”l, Ur+]. The following conditions are equivalent 
for a distribution A E UC+,: 

(I) Equation (13) is uniquely soluble in @[+,. 
(II) Equation (13) has a fundamental solution in Ur+,. 

As Ut+r c (Co’),, distributions A E Ur+, can be associated with convolution 
operators with symbols x(r, q) E PLJ,,, c JP. Because of that, we can include 
in the set of equivalent conditions of the theorem also 

(II’) The symbol A(z, n) is an invertible element of the ring 9U,+,. 
In order to make Theorem 2 effective, we must provide an explicit description 

of the space 0’ dAf 9LJ,+,. 

3.2. The Spaces UC+, and fi +. According to definition (45), H~/$q~~s) 1 $8:); 
let us fix a complement to the space on the right. 

The Complement Lemma. Every element cp E H,$fiqj*S) can be represented in 
the form 

cp = cp’ + cp”, cp’ E HIP,;“‘, cp” E (0, - i)-*g, (50) 
where g has the form (46) with r = q - p. 

For q = 0 the decomposition (50) follows from the fact that (44) is a surjective 
mapping with kernel given by (46). For q # 0 we can write the corresponding 
decomposition for (0, - i)¶q E H{~+-q*o),S), and then to apply to this decomposi- 
tion the operator (0, - i)-q. 

The filtration of the space (45) induces the filtration 

u,‘+p c u,l,4-” c ... c u/+;~)d~ff[+l 

and we have isomorphisms 

(Dt - i)“U,ip) = U$‘<k}. 

Similarly, 
(0, - i)kqy;!q) = Y;&-“}. 

For p < 0, k > 0 these isomorphisms follow from our definitions. For k < 0 they 
may serve as definitions of spaces (42) for p > 0. Using the complement lemma, 
we can prove the 

Gradation Lemma. Let YC+I = ,4”;$;“}, Ur+]. Then cp E !PI+I if and only if for 
every q we have the expansion 

4-p 

r~ = jzo Vp-j(Y)(Dt - i)“-j&t) + q(q), (P(~) E Y’$r], (51) 

where CP,-~(Y) belongs, respectively, to Y(I&!“-~) and cY(R”-~). 

Let us remark that the distributions cp,-j(y)(D, - i)“-‘s(t) belong to Yt!!l-j-l) 
and do not belong to !P#‘-jl. In other words, the subspaces of such distributions 
grade our filtration. Comparison of expansions (51) for different q shows that 



30 I. The Cauchy Problem 

coefficients of (ppmj do not depend on q. The smallest p for which cp,(y) # 0 is 
called the order of cp in t and is denoted by deg,cp. 

Let us denote by @‘{-m}+ c 0’ c .Mf the spaces of images under the Fourier 
transform of distributions from 9$;m) and I++,. From the gradation lemma we 
obtain 

Proposition 1. Functions $(z, q) E M+ belong, respectively, to g{--ml+, 6’ ij 
and only iffor any sufliciently large q we have the expansion 

(52) 

moreover: 
a) if * e 9 - { *I+, then epmj E 9’(R”-I), tiC4) E M+ and Vt, s 3 clSq such that 

IvB~~~qk 491 < c,,,(l + Id + lWq, ISI G 1, I4 < s, Im z < 0;. 

b) If $ E i?, then *P-j E k!(W’-‘) and Vs 3 pSq, cSq such that 

lD,“$&, ?)I < csq(l + lqlP(1 + Wq, I4 G s, Im r G 0. 

Thus, the symbols of distributions from 9$j-m) and Ut+, are asymptotic Laurent 
series in z with coefficients in 9’ or M. As is easily seen, spaces from Proposition 
1 are rings with respect to multiplication, and moreover the elements of 6’ are 
multiplicators over 9(-a)J+. 

Proposition 2. A function @ E 6’ is an invertible element of this ring if and only 
if 

(a) $ is an invertible element of the larger ring &iC; 
(b) the highest order coeflicient tip(q) of expansion (52) is an invertible element 

of the ring J%(W’-~). 

Let us remark on the proof of this proposition. Condition (b) guarantees 
invertibility of $ in the ring of formal series ~$p,-j(~)(r - i)P-j, therefore a 
expansion of form (52) can be written down for $-‘. Condition (a) guarantees 
the required estimate for the remainder. 

In view of 0 2, (a) is equivalent to the estimate 

IW, ?)I > conW + Id + MY, h-0 z < 0; (53) 

while, in view of 0 1, condition (b) is equivalent to the estimate 

I$p(q)l > const(1 + Iql)“‘, q E UP-‘. (53’) 

From (53), (53’) and the Seidenberg-Tarski theorem we obtain the following 

Theorem. The difirential operator with constant coefficients P(z, q) = 
& Pj(?)Z’ has a fundamental solution in Ur+, if and only if 

P(z, q) # 0, Im r G 0, q E IV-l, (54) 

P,(v) # 0, q E UT’. (54’) 
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3.3. Convolution Equations in 0, +, ( - ml. Definition of convolution operators on 
cO/:rm) was given in Section 3.1. To describe the convoluters we have, first of all, 
to single out a space l$+, 2 &,“’ that contains 6(x) and such that the operator 
(10) can be extended by continuity from c&~I to v+,. 

On an intuitive level, of’+;“’ is O/;,m’(R) 0 O(R”-‘), therefore for v+r we should 
take Lo&,,“)(R) 0 ~‘(R”-‘). In a precise manner this space is defined in the 
following way: 

(55) 

Elements of the space (55) have the same smoothness in t as elements of Co/;,“‘, 
however, unlike convoluters in Lo,, they have power law growth in y. Therefore 
prospective convoluters must be sought among elements of v+, n X+, where 
X+ is defined by (25). To describe these elements, we shall need the spaces H[j#, 
elements of which have different power asymptotics in the variables t and y. Let 
us set 

H#‘,;j = {‘p E H{;,$‘, (1 + l~t12)p’2(l + P,l”Y’“~ E H,,,,,). 

By analogy with (45) we can also introduce the spaces H[&$‘“‘. Let us set 

9I+ = u %p}, 51qp} = n H,‘lp&$,;“‘. 
P 4.k 

Remark. For n = 1, the space (56) coincides with ~$4”). 

Theorem 1. (i) We have the equality 

!qo,c,-,q = a+. 

(56) 

(ii) Each convolution operator on O/J,“} can be extended by continuity to a 
continuous operator on F+,. 

Let us note that in view of the statements of the theorem it is natural to consider 
that 

wy+,) = s+. 
The proof of the inclusion of ‘%+ in the space of convoluters on 0/;“’ is done 

directly by using expansions of type (51) for R!?&,~} and for ‘%+. As far as the 
reverse inclusion is concerned, we first prove (see the remark following Theorem 
1 in Section 3.1) that a convolution operator A on CC&,;“’ is an operator conI, 
where the distributions f E X+ correspond to the restriction of A to 0,. Verilica- 
tion of the inclusion f E !B+ uses a version of the kernel theorem (compare with 
Theorem 2.4). 

Theorem 2. Let A E %+. Existence of a fundamental solution G E 9I+ is a 
sufficient condition for unique solubility of (13) on cV/;~“‘, y+,, and a necessary and 
sufficient condition for solubility on %+. 

Since ‘?B+ c X+, the Fourier transform maps %+ into some set Q!+, while the 
existence of a fundamental solution is equivalent to the condition 
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(II’) The symbol L(r, q) is an invertible element of ER+ ‘!Zf P. 
Let us describe the space !P. First of all let us notice that for spaces Yt+r = 

O/yl”}, Y+,, ‘%+, expansions of the form (51), with ‘pP-j belonging, respectively, to 
CO(lR-l), ~‘(lW1), and cO’(lW1), exist. Hence follows 

Proposition 1. A function ll/(z, n) E P’+ belongs to !I? if and only if we have the 
expansion (52), moreover: $P-j E M(R”-‘), $(,,) E !F and Vs 3 vq, uSq, cSq such that 

ID,“$cq,(~, 41 < csq(l + I~lP IIm 4Y1 + lWq, I4 < s. 
Proposition 2. A function + E !P is an invertible element of this ring if and only 

if 
(a) $ is an invertible element of IL?+; 
(b) the highest order coefficient I,/&,(V) is an invertible element of A. 

Condition (a) is equivalent to the estimate 
l$(z, q)l > const(1 + 171 + Iql” IIm zlr, Im z > 0. 

From (56) (54’) and the Seidenberg-Tarski theorem we have 

(56’) 

Theorem 3. A differential operator with constant coefficients P(D,, 0,) = 
cpj(D,,)D:’ has a fundamental solution in %+ tf and only if 

P(T, q) # 0, Im T < 0, (57) 
and condition (54’) holds, 

Comparing Theorem (3) and Theorem 3.2, we see that the solubility condition 
for the inhomogeneous Cauchy problem includes the solubility condition for the 
homogeneous problem as well as the condition of non-vanishing of the coefficient 
of the highest power in r of P(z, q). 

3.4. Relation to the Classical Formulation of the Cauchy Problem. Let 

@ = Sq 0, A E Q(@&,ml) and m = deg, A. 

Then the following operators are continuous: 

con,: @r1+/ + @&” vp E z. (58) 

If A satisfies the conditions of Theorem 2 of Section 3.1 and of Theorem 2 of 
Section 3.3, then operators (58) have a continuous inverse that is a convolution 
operator with G E !zZ(@&~I), deg, G = -m, 

(con,)-’ = con 0: @#“l”’ + qq. (59) 

Let us consider particular cases of isomorphism (58), (59). 
(a) p = 0, deg, A = m > 0. According to the definition of the space @&,“I, 

the isomorphism (58) means that there exists a unique solution to the problem 
m-l 

A * U[+I = fr+, + jzo ~;(YP&)> u[+], f;+j E @)[(+o, fj E @@“-l), (60) 

j=O,l,..., m-l. 
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In view of the gradation lemmas of Sections 3.2, 3.3, the distribution A can be 
represented in the form A = P + A,, where A E Uti’) (or %i’)), while P = 
Cjm,O Pj(Dy)D:'S(t) is a differential operator. Then (60) can be rewritten in the form 
(see (39), (40)) 

8+(Pu + A, 

1 m-l m-l-j 

* u[+]) + 7 jgo lso Pj+l+l(Dj)D:u(o, Y)D/,‘b(t) 

Ill-1 
= e+.f + 1 fj(YP:‘w), 

j=O 
(61) 

where u E @ is an arbitrary smooth extension of p@~t+,, and moreover the left 
hand side does not depend on the choice of the extension. As first terms in both 
the right hand and in the left hand side belong to @t+], while the rest are 
distributions concentrated in the plane t = 0, we deduce from (61) the equalities 

e+vu + A0 * q+J = e+f, (62) 

Pm(Dy)D?-‘-ju(o, Y) + C 
I<m-l-j 

Pj+l+l(Dy)Dh(o, Y) = ifj(Y), 

j=O,...,m- 1. (63) 

In the case of differential operators A, = 0, that is, (62) becomes (37). Next we 
show that suitably choosing the functions J(y) E @ = 9, Co in (60), we obtain a 
solution u, that satisfies the Cauchy conditions (38) as t --* + 0. For that we take 
as fj functions obtained from (63) if we substitute cp,(y) for @‘u(O, y). Clearly, if 
cp,(y) E @,fi(y) E @. Now let us show that with such a choice offi in (60) we obtain 
a solution of the problem (37), (38). In fact, from (63) it follows that 

pm(Dy)(D?-‘-ju(o~ Y) - %-l-j(Y)) = ,4m~lpj ~+l-l(Dy)(Db(03 Y) - 4%(Y))* 

Forj = m - 1, we get 

~m(~yMo~ Y) - (PO(Y)) = 0. 

If condition (54’) is satisfied, the operator P,(D,,) is invertible on @ = 9, 0, 
whence ~(0, y) = cpo(y). Consecutively setting j = m - 2, etc., we arrive at the 
relations (37). 

Thus, the general theorems of this section lead to a solubility theorem for the 
original problem (37), (38) with initial data in .Y, 0. From that, using the scheme 
of 0 1, we can derive Petrovskij [ 19381 type solubility theorems in spaces Cf. 

(b) deg, A = -m, m > 0, p = -m. In this case the isomorphism (58) means that 
for any right hand sidef E at+,, we can pick functions u+ E @r’+“l), uj(y) E @(KY’), 
j = 0, . . . . m - 1, such that 

( m-l 

A * u+ + C uj(Y)D,‘S(t) = .f+, 
j=O > 

that is, we have a problem in half-space with potentials on the boundary. 
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(c) m = deg, A = p = 0. In this case the equation A * ut,, = fr+, is uniquely 
soluble in @t+,. 

3.5. Convolution Equations in a Finite Strip. If in the construction of spaces in 
this section, we start in (44) not with H{t$‘, but with H$“‘[a, b), we obtain spaces 
in a strip, which are naturally denoted by 

9+qu, b), o~-qa, b), U[a, b), V[u, b). 

A convolution operator on 9’-“l[u, b), @{-“}[a, b) is a continuous operator, 
the restriction of which to 9’[u, b), @[a, b) is a convolution operator. Using the 
procedure of Section 2.6 we can show that 

!i?(Y+‘$z, b)) = i!(O-[a, b)) = U[O, b - a). (65) 

Each convolution operator on Y (-“)[a, b), O{-“)[a, b) can be extended by 
continuity to U[u, b), V[u, b), so that 

i?(U[u, b)) = !2(V[u, b)) = U[O, b - a). 

As in the case of the homogeneous Cauchy problem, it can be proved that 
solubility of the convolution equation in spaces named above is equivalent to 
the existence of a fundamental solution G E U [0, b - a). 

The expansion 

A = A,(y)(D, - i)“d(t) + A,-,(y)(D, - iy-‘h(t) + ... + A(@’ 

is also valid for distributions A E U[O, c). Here A,, FI~-~, . . . E cO’QfF1), At4) E 
UC4’[0, c), and the number p and the distributions A,, Ap-l, . . . are independent 
of q. 

Invertibility of A E U[O, c) (see Proposition 2 of Sections 3.2,3.3) is equivalent 
to invertibility of A in the bigger ring cO’[O, c) and the invertibility of the highest 
order term A,(y) in Lo’(lJY1). 

As we already mentioned in Section 2.6, in the case of differential operators, 
that is, for A = P(D)6, an ineffective invertibility condition in O’[O, c) becomes 
the effective Petrovskij homogeneous correctness condition. In the case of inveri- 
bility in U[O, c) it is supplemented by condition (54’). 

Theorem. Let @[a, b) = Y{-“)[a, b), 0{-“)[u, b), U[u, b), V[u, b). The difir- 
entiul equation (17) is uniquely soluble in the space @[a, b) for any a < b (or for 
some a < b) if and only if the polynomial P satisfies the Petrovskij homogeneous 
correctness condition and the additional condition (547.’ 

Let us make an interim summary. We embedded the inhomogeneous Cauchy 
problem into the problem of invertibility of a class of convolution operators. 
These operators form a subset of operators corresponding to the homogeneous 
Cauchy problem. Symbols of these operators can be expanded in an asymptotic 

‘In the case of operators P that are soluble with respect to the highest order derivative in time, 
the Petrovskij correctness condition holds (see the Introduction). 
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Laurent series in the variable dual to t. They constitute a generalization of 
symbols with a transmission (smoothness) condition that arise in the study of 
elliptic problems (see Vishik and Eskin [1964], Boutet de Monvel[1966]), to the 
inhomogeneous case. Invertibility conditions for convolution operators corre- 
sponding to the inhomogeneous Cauchy problem, consist of invertibility condi- 
tions for the homogeneous Cauchy problem and of conditions for the invertibility 
of the coefficient of the highest order time derivative in the ring of convolution 
operators with a smaller number of variables. In the case of differential operators, 
condition (54’) is added to the Petrovskij homogeneous correctness condition. 

0 4. Boundary Value Problems for Convolution Equations 

As a prototype for the theory of @ 1,2, together with the theory of the Cauchy 
problem for partial differential equations with constant coefficients, we can take 
the theory of integral equations on the semi-infinite real line (in, say, Lp) with a 
difference kernel supported on the semi-axis t 2 0: 

s 

co 
u(t) + a(t - O)u(O) dfl = f(t) E LJO, 00). (66) 

0 

Extending u and f by zero for t < 0, we obtain an equation on the entire axis 
which can be solved with Fourier integrals. The theory of equations (66) with 
kernel u(t) with support in the entire axis can serve as a model of theory of 
boundary value problems for convolution equations. In the early thirties, a 
method of solution of such equations was suggested by Wiener and IIopf. An 
exhaustive theory of equations (66) with kernel u(t) E L, was developed by Krein 
[1958]. He showed that the left hand side defines (for example, in I,,) a Fredholm 
operator if and only if the kernel ,4(t) = u(t) + d(t) E W (W is the Wiener ring) 
admits the (canonical) factorization A = A, * A-, where A, are invertible ele- 
ments of the subrings W+ c W consisting of elements of W concentrated in 
k t > 0. In the present section we construct the analog of this theory in spaces 
of smooth functions and of distributions. For simplicity, we restrict ourselves to 
the case of the semi-infinite real line, and not of a half-space. 

Setting A = d(t) + u(t), we rewrite (66) in the form 

PcdA*u) =f, (67) 
where pee is the canonical projection operator onto the quotient space. 

We shall seek a solution u E @+ of equation (67) for an arbitrary right hand 
side f E oe. As A we shall take distributions, for which the left hand side of (67) 
makes sense and defines a continuous operator from @+ into @o. We shall call 
these distributions Wiener-Hopf conuolutors. Let us start by describing them in 
the case @ = 9, Co. 

Remark. For the case of homogeneous distributions, the highest order sym- 
bol of which is different from zero outside of the origin (elliptic convolution 



36 I. The Cauchy Problem 

equations), there exists a well developed theory (see Vishik and Eskin [1964]). 
We shall investigate equation (67) for more general classes of symbols, in which, 
in general, gradation with respect to homogeneity is impossible. 

4.1. Wiener-Hopf Convolutors. Let @ be one of the spaces of 0 1 on the real 
line. The left shift operator Th, h > 0, maps @- into itself and induces a contin- 
uous operator Th: Go --+ Go. 

We shall say that an operator A: @+ + Gs commutes with left shifts if 

@A UP E @+I * {AT&P = T,&l. (68) 

We call an continuous operator A from @+ into Q. a convolution operator 
if it commutes with left shifts in the sense of (68). An exact analog of Proposition 
2.3 holds for such operators. Let (@,)’ be the space dual to the inductive limit 
u hrO IT,@+. Then for any convolution operator A: @+ + Gs there exists a 
distribution f E (@,)’ such that (10) holds fort > 0. 

Conversely, if for f E (0,)’ and for any cp E @o the projection p0 maps the 
right hand side of (10) into as, then (10) defines a convolution operator from 
@+ into @@. 

Let us denote the convolution operator corresponding to the right hand side 
of (10) by p ocons, and the family off E (@,)’ for which this operator is contin- 
uous, by e(@+, Qe). As we already said above, we call the elements of !G(@+, De) 
Wiener-Hopf convoluters in @. 

Let us remark that for 0 = 9, 0, and f E !G(@+, Qo) the operators 

p .conf: (a’)+ + (Q’),, p@con,: @+ + Q. 

are adjoint to each other if g = IJ Therefore it is natural to take 

e((@‘)+, (We) = W@+, @@I, @ = sq (3. (69) 

Theorem. 

(9 fW% yO) = if E y, P& E (@‘I,), 

(ii) 2(0+, 0,) = (f E Y’, pef E (Co’),}. 

Let us clarify the meaning of the equalities above. In case (i) the Wiener-Hopf 
convoluters must decrease rapidly from the right: this is necessary in order that 
the convolution product decay rapidly for t > 0. In case (ii) the Wiener-Hopf 
convoluters decay rapidly from the left: this is necessary in order that the 
convolution with functions temperately growing for t > 0, exist. From equalities 
(i), (ii) it follows that 

w% sp,) f-3 a@+, 0,) = 0’9 (70) 
that is, distributions in 0’ are Wiener-Hopf convoluters both on rapidly decreas- 
ing and on slowly growing functions. Moreover, these distributions preserve the 
fixed order of growth or decay of functions. It can be shown that 
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Remark. From the theroem and from definition (69) it follows that 

Q(W)+, VW = W%Y Y,)? (71) 

W(F)+, VW = wo+, Q). (71’) 

These equalities can be arrived at directly, having established the possibility to 
extend by continuity convolution operators peconJ: Y;, 0, + Ye, 0, to con- 
tinuous operators from (O’),, (Y)+ to (O’),, (Y’),. 

4.2. Wiener-Hopf Convolutors with a Transmission’ Property. As we saw al- 
ready in 6 3, in the study of the inhomogeneous Cauchy problem arise spaces of 
functions that are smooth in the interior of a half-space and have singularities 
on the boundary. In spaces f!(@+) we singled out the convoluters that can be 
extended to such spaces. In this section we shall consider the analogous problem 
for Wiener-Hopf convoluters. We shall single out Wiener-Hopf conoolutors with 
a transmission property. We note that this kind of spaces of distributions first 
appeared in the work of Vishik and Eskin [1964] and of Boutet de Monvel 
L-19661. 

Let @ = Sq 0, and, as in 9 3, let @t+, = 0+(t)@, where O+(t) is the characteristic 
function of the semi-infinite real line t > 0. Differential operators act on the space 
@l+,. The action of these (unbounded) operators is induced by their action on 
V”‘)+ 3 qpL 

A convolution operator from at+, into Q. is a continuous operator which 
(1) induces a convolution operator from @+ into Gs; 
(2) commutes with differential operators. 
Let us denote by !Z(@i+,, Qo) c L1(@+, @& the corresponding space of 

convoluters. 

Theorem. A distribution f~ f?(@+, Oce), CD = 9, 0, belongs to !2(@~+,, @J if 
and only if pef E Qp,. 

Taking into account Theorem 4.1, the proposition above can be rewritten as 
the equalities 

wq+,, %) = U-E Y’, PC& E %I> (72) 

Q(q+,Y fJ0) = {f E y’? Pof E (~‘)09 Pef E &D>. (73) 

Comparing (72), (73) with Theorem 4.1, we see that the transmission condition 
does not change the character of growth or decay of the convoluter; it only adds 
it a smoothness condition for t > 0. 

From (72) and (73) it follows that 

(74) 

ZThe term “transmission property” is equivalent to the “smoothness condition” introduced by Vishik 
and Eskin. 
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It can be shown that distributions on lJ are convoluters on functions of fixed 
growth (decay), that is 

n wg+,, qig) = n wq+,, q;k) = U. (74’) 
1 I 

4.3. Equations on the Semi-infinite Axis (67) Corresponding to Convolutors 
from U. Next we formulate the main result of this section, having to do with the 
soiubility of equation (67) in the case of convoluters having the transmission 
property. An operator from @+ into @o that corresponds to the left hand side 
of (67) can have a kernel or a cokernel. To account for these, we pass from the 
spaces @+, @o to scales {@@,}, {@$)}, which contain the original spaces. The 
first of these scales was defined in Section 3.1. Let us define the second one. 

Let U be the space on the right hand side of (74). Then U- = (0’) and 
U, = 9$ym). For any integer I, let us set 

9p = u/s:,(o’)-, (75) 

where 6?,(D) is the PDO corresponding to the symbol (0, - i)‘. For r = 0, the 
space (75) is identified with 9,. There are surjectives maps of quotient spaces 

~~~-lJ~~~l~~~+ll~..., (76) 

where kernels of all the maps are one-dimensional. Let us denote by pg} the 
canonical projection of U onto Y&j. 

Lemma. For any integer I the mapping 

p&j: 9# + YJ) 

is an isomorphism. The inverse operator has the form 

cp H cw+w:(%P. 

Let us associate with A E U a continuous operator in the scales 

P$’ con,: .9$ym) + .@I, A E U. (77) 

If in the construction above we substitute for U V = {f E Y’, p@f E Co,}, then 
we obtain the spaces @$I. To each distribution A E U corresponds a continuous 
operator 

p$}con,: Lot,, (--ml + op. (77’) 

In a similar way, replacing U by U,,, = (f E I%&“‘, p@f E H$A} we define 
spaces u{$+] and u(l)c+l. Iql For A E U, the following mapping between scales is 
defined: 

pg”)con,: U{-““) i--m} 
(O[+l + vcO@ . (78) 

Theorem. For a distribution A E U the following conditions are equivalent: 
(I) A is an invertible element of U, that is, A * G = A * G = s(t) for some G E U. 
(II) A admits a canonical factorization in U, that is 

A= A+*A-, (79) 
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where A, are invertible elements of U+, 
some G&E U,. 

- that is, A,*G, =A,*G, =6(t) for 

(III) For any 1 E [w the mapping (78) is a finite order scale isomorphism, that is, 
there is an integer c, such that for any r the mappings 

pg~conA: Ul’f’l @I 
M+l + %@ (80) 

are isomorphisms between spaces. 

The remaining part of this section is devoted to a discussion of the theorem 
stated above. In Section 4.4 we describe invertible elements of U and expalin the 
equivalence between (I) and (II). In Section 4.5 we present the method of Wiener- 
Hopf and prove equivalence of (II) and (III). In the end of the section we discuss 
various cases of the isomorphisms (78), (80). 

4.4. Factorization of Distributions in U. We start by describing the invertible 
elements of the algebra U. According to definition (74), 

AeUoA=A-+a, A-E(@)-, ae9 (81) 

if we denote by 6 the Fourier-image of U, then 

&OoA=Al+a, Ldf-,ae, (81’) 

that is, symbols of distributions from U, up to rapidly decaying functions, are 
functions with power law growth that are holomorphic in the upper half-space. 

Let us clarify the invertibility conditions for A in U. As from invertibility in U 
follows invertibility in the larger ring Lo’, we have the following lower bound for 
the symbol Al: 

I&)l > c,(l + lol)P, (TE I& (82) 

If G = G- + g, G- E (O’)-, g E Y is the inverse of the distribution A written 

in the form (81), then 
A-*G- --s(t)= -(A-*g+G-*a+a*g). 

The left hand side of that equality belongs to (O’)-, while the right hand side is 
in K. Passing to Fourier-images, we obtain 

A A 
A-(z)G-(7) - 1 = O(lrl-“), 171 + co, Im z > 0. 

Hence we deduce a lower bound for large 1~1: 

IA-(z)1 > c,(l + lrl)‘, Im r > 0, 1~1 > R. (83) 
As in the representation (81) the distribution A- is defined mod E, the symbol 

x-(r) is defined up to a function that is holomorphic in the upper half-plane 
and decays faster than any power. Therefore the estimate (83) is independent of 
the choice of A-. 

Conditions (82), (83) are in fact also sufficient invertibility conditions for A in 
U. Let (83) be satisfied. As the function k-(r) can have only a finite number of 
zeroes inside a half-disc of radius R, A-(z) = P(z)&.(z), where P(z) is a poly- 
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nomial, while g-(z) is an invertible element of A-. Thus 

i(o) = ill, C(o) = P(a) + d(o)/B-(a), (84) 

and, in view of (82), 

IQd > c,u + MY’, W’) 

,Next we describe a subclass %? c 6, to which the symbol 2 belongs; moreover, 
condition (82) will turn out to be the invertibility condition in that class. 

Let us denote by X a subspace of U: 

X = {A E O’, p,A E 9&, p,A E 9&}. 

Hence it follows that 

CEXoC=C+ +a=C- +a’, C+EL$$m1,a,a’.9 

From the description of the Fourier-image of the space Y;i;“’ presented in 5 3, 
it follows that c E S? if and only if c E A, and for every z E C, Im z # 0, c can 
be expanded in the asymptotic series 

C(o) = jro cp-j(rJ - zy-‘, 
and series for the derivatives are obtained by differentiating this series. The 
estimate (82’) ensures invertibility in 2. Thus we have established 

Proposition. For A E U, the following conditions are equivalent: 
(I) A is an invertible element of U; 
(II) estimates (82), (83) are valid for the symbol A ;̂ 
(III) A admits the representation 

A = B- * C, B-, C are invertible elements of (Co’)-, AC. (85) 

Definition of the canonical factorization has already been given in condition 
(II) of Theorem 4.3. Distribution A, of (79) is defined up to a constant. In fact, 
let A = B, * B-, where B, is an invertible element of U,. Then - 

that is, e is an entire function that grows not faster than a polynomial. By 
Liouville’s theorem c is a polynomial. In a similar way it is proved that l/c is 
a polynomial, whence e z const. 

Let us set d, = deg A+(A+ E U+). As A+ is defined up to a constant, d, is 
uniquely determined by the canonical factorization. This integer is called the 
index of the factorization. 

Let us sketch the proof of equivalence of (I) and (II) in Theorem 4.3. In view 
of the proposition, it suffices to establish the existence of canonical factorization 
for invertible elements A E 2 (that is, of ones that satisfy (82)): 

A=A+*A-, A,EX*, (A,*G, =G+*A, =6(t)). (86) 
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Without loss of generality, we shall assume that deg A = 0; otherwise we can 
represent A in the form ((0, - i)“@t)) * B, where deg B = 0. If deg A = 0, then 
A( -co) = A^( +co) # 0 (due to (82)). In this case the increment of arg A(a) as 
-cc < (T < cc is an integer multiple of 271, say, 2m7r. This also is the increment 
of the symbol (a + i)“(o - i)-“, which already is factorized. 

Thus let us consider the factorization (86) of A such that deg A = 0 and the 
increment of arg J(a) is zero; we shall take A^( *co) = 1. Then In L(o) is a 
single-valued function on the compactitied real line. This function can be 
expanded in power series of l/a, that is, In A(o) E 2, deg In A(a) < - 1. Such a 
function can be represented as 

In x(o) = B+(o) + B-(a), B, E 2*, deg B, < -1, 

hence 

~?(a) = A+(+-(o), k+(o) = exp(B*(a)) E 2*. 

Passing to the inverse Fourier transform, we obtain the desired factorization (86). 

4.5. The Wiener-Hopf Method. Let A be an invertible element of U. Then A 
admits the canonical factorization (79), and let d, be the factorization index. As 
operator con,-, A- E (O’)- commutes with projection operators pg}, we have the 
commutative diagram 

I 
con.4 + CO% - 

UP) 
irJ PC3 

w[+l - 
u(r) 

(00 

If A, is an invertible element of U,, the vertical mappings are space iso- 
morphisms. According to Lemma 4.3 the lower mapping is an isomorphism, and 
therefore the upper one is also an isomorphism. Thus, we have shown the 
implication (II) + (III) of Theorem 4.3, and moreover the number c in (80) equals 
the factorization index. 

Remark. From what we said above it follows that for f E UC0 the equation 

A *u - f E G?,(D)(O’)- (87) 

has a unique solution u E U$,=“,+‘, which is given by the explicit formula 

u = G, * c~_‘,~~+cY,?(D)G- *f, 

where G, is the distribution from (79). 
Let us now sketch the proof of necessity of the invertibility condition for A for 

solubility of equation (87). Without loss of generality we may assume that r = 0, 
d, = 0 (otherwise we can replace u by 6J+(D)u). Thus, for all I, and in particular 
for I = 0, the operator 
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has a bounded inverse, and therefore there exists an s such that we have the 
estimate 

s 
m lu(t)12dt<c 

0 s 
m I&-(D)(A * u)(t)12 dt vu E HI’?]. (88) 

0 

Without loss of generality we may assume that s = 0 (otherwise we can replace 
A,by 6;(D)A). We have to show that conditions (82), (83) on the symbol A follow 
from estimate (88). 

Let us consider in detail the derivation of (83). For that let us substitute into 
(88) the auxiliary function 

u,(t) = J2Imze+(t)e’“’ E y;+,, 

corresponding to an arbitrary point z E C, Im z > 0; the factor ,/s is 
included for normalization: IJv,II = 1. A direct calculation shows that 

iJIm z 
ez(a) = && - z)’ 

(A- *u,)(t) = --A&)u,(t). 

Substituting it (with s = 0) into (88) we obtain 

where 

c-l < I Al(z)1 + Ila * t&II, 

lb * hll = Il44W)II G b Im V’llall. 

Substituting this estimate into (89), we get that 

IA-(z)1 > - f ic or Im z 2 4~~~~a~~~/7~. 

On the other hand, as IzjZ(o)l < constla - zl-l, 

Ila*u,ll <c(h)/lRezl, UEY, O<Imz<h; 

(89) 

(90) 

comparing this inequality with (90), we arrive at (83). 
In conclusion, let us go back to those corollaries from Theorem 4.3, that are 

relevant to the question of solubility of the original equation (67) in the space 
@#], @ = 9, 0, H$“: 

a) Let the factorization index d, > 0. For I = -d+, theorem 4.3 states that 
for each f E @ = U, V, V,,, there exists unique solution u E @t+, of the equation 

A * u - f E is,++(D)(O’)-. 

Let zi(t), . . . . za+(t) be solutions corresponding to f = c5c_,(D)@t), j = 1, . . . , d,. 
The functions zj(t) are linearly independent and belong to the kernel of the 
operator p@ con,. Conversely, it can be shown that every element in the kernel 
of pe con, is a linear combination of the Zj. Thus, for d, > 0 equation (67) has 
a d+-dimensional kernel. In order to make this problem well defined, we must 
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impose additional (boundary) conditions on u: 

Bj(u) = cj, j = 1, . . . , d,, 

where Bj are linear functionals, and cj are arbitrary constants. The solubility 
condition for the resulting problem (Lopatinskij condition) consists of the following: 

If’ 
det IIBj(Zk)ll f 0. 

B’(U) = (Bj(D)U) (01, 

(91) 

where Bj(D) are pseudo-differential operators, then the Lopatinskij condition (91) 
takes the form 

1s 

co 
det Bj(o)ok-‘A;‘(a) da # 0. 

-.%I I/ 

b) Let d, c 0. For I = 0, Theorem 4.3 states that for any right hand side 
fE@t+1 we can find u E Q/t;‘, such that A *u - f E (O’)-. Every distribution 
u E G/f”;) has the form u = ut+r + C cjDi’s(t)9 u[+] E @[+I* Thus we obtain solubility 
of the problem with potentials 

A * (U[+] + 1 CjD/d(t)) - f E (O')-. 
Hence it follows that 

U[,] + CcjD,‘6(t) = G, * e+(G- *f). 
The coefficients cj are equal to zero if and only if 

(D/(G-*f))(+O)‘=O, j=O ,..., Id+1 - 1. 

Thus, for d, < 0, equation (67) has a solution ut,, E @t+, if and only if the right 
hand side f satisfies Id+1 additional conditions, that is, the problem has a 
Id, I-dimensional cokernel. 

Chapter 2 
Exponential Correctness Classes for the Cauchy Problem 

A classical result states that that Cauchy problem for the heat equation can 
be solved for initial data growing as exp(alx12). For the wave equation (because 
of finite domain of dependence) there are in fact no restrictions on the growth 
rate of the initial data. On the other hand, when solving the Cauchy problem for 
the Schrodinger equation, it is impossible to depart from initial data with power 
law growth. How is this distinction expressed in terms of symbols of differential 
operators? 
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Initially the problem of determination of maximal exponential growth admis- 
sible for the Cauchy data was investigated for parabolic equations and systems 
thereof (Ladyzhenskaya [1950], Ejdel’man [1964]). Shilov (see Gel’fand and 
Shilov [1958]) studied the general problem of correctness classes for the Cauchy 
problem of the form exp(alxlP) for arbitrary systems of differential equations with 
constant coefficients. He introduced a characteristic of the symbol (the type), 
th,at determines the character of the correctness class. Analysis shows that this 
characteristic is unstable, and Shilov’s classes are intrinsically connected with the 
constant coefficient case. 

Below, a different procedure for the determination of correctness classes is 
adopted. At the level of constant coefficients, the difference lies in the fact that 
together with the Cauchy problem we consider a problem with exponentially 
growing right hand side, controlling the character of the change of exponential 
asymptotics with time. As the result we obtain more stable classes, and the 
passage to the variable coefficients case becomes possible, so that as a particular 
case we recover the parabolic theory. Another distinguishing feature lies in 
that we study anisotropic classes, that contain principally different estimates in 
different directions (usually the analysis is restricted to isotropic classes of the 
form exp(h(lx)), where h is a convex function of one variable; more frequently 
just exp(a 1 x 1”) is considered). 

The correctness class for the Cauchy problem is determined by the behavior 
of the symbol of the differential operator in a complex domain (in all the variables, 
and not only in a variable that is dual to the time, as in Petrovskij’s theory). In 
the version we have adopted everything is determined by the maximal tubular 
domain in which the symbol is different from zero. The scheme for studying 
exponential correctness classes is the same as the one used in the case of power 
law classes (Chapter 1): we study convolution equations in spaces of test functions 
and of distributions with exponential asymptotic behavior. In particular, we 
investigate subspaces of Y’(R”), elements of which are distributions with support 
in some fixed convex set, or the dual question about Hardy type spaces of 
functions holomorphic in tubular domains that take generalized boundary 
values in Y’. These equations have been thoroughly studied in cases of the light 
cone and of future-past tubes (in fact for arbitrary cones and radial tubular 
domains) connected with problems of mathematical physics (Vladimirov [1978], 
Schwarz [ 19521). 

8 1. Convolution Equations in Spaces of Exponentially 
Decaying Functions and Distributions 

As our guide, we take the Cauchy problem in exponentially decaying (growing) 
functions (distributions). All four of the possible combinations can be fruitfully 
studied. Conjugacy considerations prompt us to group them in twos. Let us start 
with exponentially decaying functions. We preface this study by reminding the 
reader of some notions from the theory of convex functions. 
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1.1. Convex Functions. Let p(x) be a function on R; that takes either finite 
values or the value +co. Let dom p be the closure of the set of x on which p(x) 
is finite (the support of p). Let us denote by E, its epigraph in lR:i,\: the set 
{(x0, x): x0 > p(x)}. In what follows we shall assume that p is a convex function, 
that is, E, is a convex set, and that E, is a closed set, that is, that p is lower 
semicontinuous. 

An asymptotic cone VP for E,, or simply for ,u, is the maximal convex cone a 
translation of which is contained in E,. If U is a closed set in R”, then we say that 
its indicator function pLv is a function that is zero at points x E U and +co 
otherwise. The function pU is convex; dom ,uU = U. 

Let [wt be the space dual to R!J, and let (5, x) be the duality pairing. Let us 
denote by ,h({) the conjugate in the sense of Young function to p(x): 

PW = xwp (-P(X) f (t-3 x>)* (1) 

This function will be convex. We have that fi = p. Let us note that if pV is 
the indicator function, then &(g) = SUP,,~ (5, x) is a degree 1 homogeneous 
function, and therefore Eku is a cone. 

With respect to conjugacy in the sense of Young, the concepts of asymptotic 
cone V, and of the support dom ,u, are conjugate in the sense that if E, = VP, then 
0 is the indicator function of dom fl. 

We shall also make use of two other cones connected with convex functions: 
dom VP, the projection of VP on R:, and V(dom p), the asymptotic cone of dom CL. 
It is clear that V(dom ,u) =, dom VP. If v is the indicator function of V(dom p), 
then 0 is the indicator function of dom(Q. Let us note that if I/ is a cone, fiV is 
the indicator function of the cone p, where the dual cone 7 is the set of all 5 such 
that ({, x) > 0 for all x E V. 

Let us denote by L, the maximal subspace, a translation of which is contained 
in E, (or, which amounts to the same, in VP). Then L, is necessarily contained in 
Rz(x, = 0). Let LI be the subspace orthogonal to L, in the dual space RF. Then 
dom fi c LI, and L; is generated by dom 4. Thus dom fi is of full dimension if 
and only if E, contains no straight lines. 

Examples. 1) Let ~(x,, . . . , x,) = (xf + ... + x:)/4x, for x1 > 0 and ,u = +oo 
for x1 < 0. Then E, is a cone and the function conjugate in the sense of Young, 
fi, is the indicator function of the paraboloid {cl < -(<z + ... + e,‘)}. 

2) Let p = pU, where lJ is defined by the conditions x1 > 0, x: - x4 - . . . - 
xf > 0, that is, U is one half of the spherical cone. Then ,& is also the indicator 
function of one half of the spherical cone <I < 0, t: - 52 - *.* - <,” > 0. 

Let us describe the set of the functions we can base ourselves on in applications 
to the Cauchy problem. 

3) Let x(q) be a convex function, and let v^[x] (p, ye) be the indicator function 
of the set (p < -x(q)}, (t, y) are the dual variables. Then the conjugate function 
in the sense of Young v[x] = 00 for t < 0, and v[x] = tf(y/t) for t > 0, where 2 
is the conjugate function of x. 
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4) Let us truncate the function v[x] for t < a, a > 0, that is, let us consider the 
function v[x, a] that coincides with v [x] for t > a and equals + cc for t c a. Then 
dam 4% al = dam Cl and QCx, al(p, rl) = a(~ + x(q)) for p < --x(q). 

1.2. Hiilder Scales Corresponding to Exionentially Growing Weights. Let p(x) 
be a convex function satisfying conditions of Section 1.1, and such that dom p is 
of full dimension. Let us consider the spaces C#, with the norm 

Id{sl;‘,p = sup lexp(&))(l + Ixl)‘W-W~ XE R”,lalds 
Functions in this space are equal to zero for x $ dom ~1. Let us set 

(2) 

If p = 0, we obtain Y(W); if p = 0 for x1 > 0 and p = +cc for x1 G 0, we ok)ain 
Y+. Let U be a convex set, and let ,u” be its indicator function. Then yZ, = Yu 
consists of elements of Y(R”) with support in U. For p(x) of Example 1 (p(x) = 
(xz + a** + x,2)/4x, for x1 > 0), functions in yl for a fixed x1 > 0 decay as 
exp(-u(xg + 1.. + xi)), a > 0. 

The norm (2) is equivalent (compare with (20) of Chapter 1) to the norm 

sup lev(-P(t)) ew((L x)Ml + Ixl)‘W(x)l 
XE R”,lal<s,e;edomp 

“Af ,;:wB ewk4~McPl~~I~n. (2’) 

The same argument as in Section 2.2, Chapter 1, leads to the following proposition. 

Proposition. The space YP is dual relative to the Fourier transform to the space 
9” of functions 1c/(t) that are infinitely difirentiuble on the tubular set 

D(p) = (5 E C”, Im 5 E dom ,&, ,QIm 5) < co}, 

holomorphic in complex directions in D(p) (these correspond to LL), and, further- 
more, for all u, N and for some c, 

IWWI < c exp(P(Im 5))(1 + I#“, 5 E W). (4) 

If E, contains no straight lines, and only in this case, the space .Y’ consists of 
functions holomorphic in all the variables. This will happen, in particular, for 
Y” dzf 9”‘” if U contains no straight lines. If then I/ is the asymptotic cone of U 
(it contains no straight lines) then D(p) is the closure of the radial tubular domain 
R” - ic where P is the cone dual to K If (and only if) the cone VP coincides with 
the ray {x0 > 0, x = 0}, the space 9” consists of entire functions. 

1.3. Hilhert Scales Corresponding to Exponentially Growing Weights. Let us 
. impose an additional restriction upon the functions p. Let us demand that the 

cone dom V, is of full dimension. This condition is stronger than the one imposed 
before, that is, that dim(dom p) = n. The present condition is equivalent to 
requiring that dom fi (or V(dom fi)) contain no straight lines. Hence it follows 
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that by an afline transformation dom fl can be mapped into a direct product of 
some number of semi-infinite straight lines. 

Lemma. Under the conditions imposed above on p, there exists a polynomial 
S(5) such that S(5) # 0 for 5 E D(P), and IS(<)1 > c(1 + 151) for 5 E D(b). 

In view of the remark above the statement of the lemma, its proof is reduced 
(by an afflne transformation of D(p)) to the case of direct product of R“ with 
(n - k) copies of half-planes, and in that case the polynomial can be constructed 
directly. 

Obviously, for all s S’(t) is a multiplicator on sPP, and therefore the pseudo- 
differential operator S’(D) leaves 9, invariant. Let us consider the spaces H&$ 
with the norm 

(S > 

112 
II’PIII;],p = IW3cp12(1 + lx12Y wGN4) dx . (5) 

Proposition. The scales C,f,, 
H{“] p = fW%!p. 

and H[$, are equivalent. In particular, Sp, = 
co, 

Let us set 

We use the notation “with primes” in order to establish the correspondence 
with the analogous notation from Chapter 1, and in the meantime we do not 
discuss the question of realization of these spaces as paired by duality (we do not 
introduce Co, either). The space &P of partially holomorphic functions admitting 
the estimate (4) with iV depending on a, is defined in a natural way. With respect 
to the Fourier transform, we have the duality 

9(0’), = “M’. 

A number of words about the proofs are in order. The estimate of Hilbert 
norms in terms of the Hiilder ones is obtained in an elementary fashion (and so 
that no specific properties of the weights exp p are used). The possibility of 
estimating the HGlder norms in terms of the Hilbert norms is, on the other hand, 
non-trivial. Let us introduce an equivalent Hiilder norm1 

‘ldl~I,p = xfk;p Ikw PU(~)U + I~lYW3cpW 

This can be done, since C#, c (Y’), (by the part of the equivalence we have 
already proved). For 5 E dom fi let us set 

‘I’pllS],[<, = ‘kPl&,X)~ lI’pII{;][~, = lI’PIlI;‘,<~,x,. 

’ For these norms monotonicity in s, 1 is hard to prove. However, from the said above it follows that 
there exists E such that ‘I 1 can be estimated in terms of the analogous norm with indices s + E, 1 + E. 
All our arguments can be automatically extended to Banach scales with this property, so that, in 
particular, limit spaces are well defined. 
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For some k we have the estimate 

with constant c independent of 5. Let us set 

lC~II{~],, = sup exp(-li(S))II~lll~l,lT1. 

It’is clear that 

(7) 

From (8) and (6) it follows directly that 

1.4. Convolutors on the Spaces 9: and (o’),. Let us consider shift operators 
T-,cp(x) = q(x - h), where h are internal points of the cone dom V,. Recall that 
in view of our assumptions dom I$ is of full dimension. These operators leave 
the spaces 9’, (O’), invariant. Note that they are dual to operators of multi- 
plication by exp( - i(& h)). Continuous operators on yZ, (O’), that commute 
with the indicated shifts, are called convolution operators on the corresponding 
spaces. As in Chapter 1, it is proved that every convolution operator on yP can 
be represented in the form (l.lO), and that every operator of the form (1.10) is a 
convolution operator. In this manner we introduce the space of convoluters 
Q!(q). 

We shall obtain a description of the space of convoluters if yet another 
restriction is imposed on the function p(x). We shall call a function p(x) almost 
conic if for some c the supremum in (1) is attained for 1x1 < c. Let us denote the 
set of all such p by 9. 

An example of a function p E 9 is provided by a function p = p[ V, a], such 
that E, coincides with a translation of a cone V to the point a. Here the supremum 
is attained for x = a’, a = (a,, a’). A function ,U E 9 can be represented in the 
form inf LIE K p[ V, a], where K is a compact set, T/ = VP. In terms of ,~2 it means 
that the restriction of fi to dom /i can be extended to a convex function on all of 
[w”, and, moreover, it must be possible to project the asymptotic cone of the 
extended function on all of [w” (that is, it must have no vertical generating lines). 

Let D be the indicator function of dom /2, and let v(x) be the function conjugate 
to it in the sense of Young. The epigraph E, is the asymptotic cone of the epigraph 
EP. 

Theorem. Let ,u E 9. Then convolution operators on YP can be extended by 
continuity to convolution operators on (O’),. We have that 

1 

w$4”,) = ww,) = Kc (10) j 

Furthermore (Cl’), is a ring with respect to convolution.’ 

*The restriction p E dip is not needed in the proof of the inclusion (0’)” c 51?(YN). 
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The argument of the proof is as before. Inclusion in one way follows from the 
fact that elements of the ring with respect to multiplication M’ are multiplicators 
on YP. The proof of the reverse inclusion uses the extension of the convolution 
operator to (iY), and a uniform bound on the family 6(x - &L(y), where the 
parameter y runs through dom p. 

.1.5. Convolution Equations on Sp, and (O’),. Using the procedure of Chapter 
1, we prove 

Theorem. The equation A * cp = $ is uniquely soluble on Yfl, (ol),, if and only if 
it has the fundamental solution G E (a’),: A * G = 6(x). This is equivalent to having 
fir some c > 0, N, the following estimate for the (symbol) Fourier transform of 
the convoluter, A(c), 

I&)l ’ 41 + 1511N, 5 E D(P). (11) 

In particular, we must have A(<) # 0 on D(b). 

Corollary. The d@n-ential equation P(D)cp = + on Yfl, (ol),, is uniquely soluble 
if and only if the distance d(5) from < E D(b) to the surface of zeroes {P(t) = 0} 
admits a power law lower bound (in terms of c( 1 + 1 tj I”)). 

The reduction is achieved by estimating the modulus of the polynomial in 
terms of the distance to the surface of zeroes (see Lemma 4.1.1 in Hormander 
[1963]). 

If D(b) is a semi-algebraic set (that is, one defined by a system of algebraic 
equations and inequalities) then the desired estimate follows from the condition 
P(l) # 0 according to the Seidenberg-Tarski theorem. That is what happens 
in the case D(p) = R” (that is, for the space Y(R”)) and in the case D(p) = 
IF’ x C-, where C- is the lower half-plane (for Y(lfP)+). An important example 
of a semi-algebraic set is provided by the maximal tubular set on which a given 
polynomial is different from zero. 

1.6. Connection with the Cauchy Problem. Let dom ii be an unbounded set. 
Then it contains a ray. We can choose variables 5 = (p, o) such that the ray is 
given by the condition o = 0, p > 0. In the conjugate picture, the asymptotic 
cone V, will be contained in the half-space {t 2 a}, where (t, y) are the variables 
dual to (p, 0). If here dom p is contained in a half-space t 2 a, then a convolution 
equation in Y’, (O’), can be interpreted as a homogeneous Cauchy problem in 
spaces of functions with respective exponential asymptotics. 

If the ray (o = 0, p > 0} coincides with the asymptotic cone of the set dom fl, 
then V, is the half-space (t > 0} and generically dom p is a half-space. The case 
of dom p = IR” is interpreted in a natural way as the homogeneous Cauchy 
problem with zero data at t = -co. 

A meaningful set of examples will result if we consider convolution equations 
A Y cp = + on spaces 9’ for p = v[x, a] (see Example 4). If here A is an invertible 
element of (O’)Vu.,, then all such equations are soluble. We remind the reader 
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that we are dealing here with functions, which decrease for a fixed t > a as 
ew( - cf(y/O). 

If the asymptotic cone V(dom fi) is not a ray, then any of its directions can be 
taken as the direction dual to time. Consequently, dom V, will lie in the inter- 
section of dual half-spaces. In this case, when dim V(dom $) = n, convoluters in 
!G(Yp) are naturally called hyperbolic. Here dom p is generically a space-like 
domain with respect to dom V,. 

Let the symbol of a differential operator P(D,, D,,) satisfy the homogeneous 
correctness condition in the sense of Petrovskij: P(r, q) # 0 for p = Im r < c, 
rj E R”-‘. Let us denote by Sz, c R&,, the maximal set for which (i) P(r, r) # 0 
for (Im r, Im 0 E Qp, (ii) {(p, 0): p < c, o = 0} c a,.. Let Dp = R” + isZ, be the 
corresponding tubular set in C” (in which the symbol is different from zero). The 
set G$. is convex, and has the form {p < X&B)}, where xp is a convex function. 

Theorem. Zf the support dom /I c s2, is at a distance admitting a power lower 
bound from the boundary Qp, then the equation P(D,, DJu = f is uniquely soluble 
in Yp. Zf p E 9, then the indicated condition on p is necessary for solubility of 
the d$erential equation in 9,. In particular, the equation is soluble in Yp for 
dom fi = {p =Z --x,(o) - E}, E > 0. 

The last claim used the semi-algebraicity of Sz,. The most important class of 
p for which we have solubility in 5$ is 

p(t, y) = v[xp, a] - Et = tkp(y/t) - Et, t > a, E > 0. 

Examples. 1) Let us consider the heat equation, that is, an operator with 
symbol P(r, q) = z - i(qI)’ - a** - i(q,-1)2. For this symbol the domain Sz, is 
the paraboloid p < - ImI’. That means that the heat equation is soluble, in 
particular, in spaces Yp for p(t, y) = -et + Iyl’/4t for t > 0; p = cc for t G 0. 
Solubility will persist if we make a translation in t and consider, for example, 
p(t, y) = et + ly12/4(t + a) for t > 0; p = co for t < 0. 

2) Let us consider the wave equation P(r, ‘1) = r2 - Cqj. Then Q, is one 
half of the spherical cone p2 - loI2 > 0, p < 0. Let us use the notation V = 
{t2 - Iy12 > 0, t > O}. We denote by .4pV,, the space of functions obtained from 
9” (the functions in 9’ with support in V) by multiplication by exp et. Let 
YV,,[a, ~0) be the subspace of functions that vanish for t < a. The results we 
formulated above, as applied to the wave equation, establish solubility in the 
spaces 9V,E[~, co), a > 0, E > 0. 

3) In the case P(t, q) = r + Cr$ (symbol of the Schrodinger operator) Q, 
coincides with a ray, and therefore we cannot transcend the bounds of power 
weights in space variables. 

1.7. Remarks About the Problem in a Strip and the Inhomogeneous Cauchy 
Problem. The convexity property will be preserved if outside a convex set we 
take the value of ~1 to be +cc (“truncate”). Let 5 = (p, w), (t, y) are the dual 
variables and V(dom fl) contains the ray {o = 0, p = O}. The function ~[a, co) 
is obtained by truncating p for t 6 a. For example, v[x, a] = v[x] [a, co). We 
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set YI,[a, 6) = YP[a, oo)/S$[b, co). In particular, 9&,[a, co) = 9&ol/9V4pv(X,bl. The 
spaces (@),[a, b) are defined similarly. In these quotient spaces, a theory of 
convoluters can be developed following the line of Section 2.6, Chapter 1. 

In particular, in the notation of Theorem 1.4, (ol),[O, b - a) c f?($[u, b)) c 
(9”)V[0, b - a). In particular, this is the case for /J = VEX]. If dom 4 has the form 
p < -J&D), and the polynomial P(r, 5) # 0 for Im z < -c - X(Im 5) for some c, 
then the equation P(D,, D,,)u = f is uniquely soluble in Y?,[u, b). If the set dom fi 
is semi-algebraic, then this condition on ,u, P is necessary for solubility. In 
particular, we have solubility for x = xP. 

By analogy with $3 of Chapter 1, we introduce spaces connected with the 
inhomogeneous Cauchy problem (for exponentially decreasing data). Let p(u) = 
pit=,,. Let us denote by 9$ODJ[u, b) the space of distributions of the form 
$+ + &, W&W, where II/+ = e+(t - QM ti E yl,l$Cb, ~0)~ th E ypt.,. 

Assume that P(r, r,~) is a polynomial soluble with respect to the highest power 
of r, and that the equation P(D,, 0,)~ = f is soluble in gP[u, b). Then it is soluble 
in 9$-mJ[a, b). For ,U E 9 solubility conditions in YI,[a, b), .YI(-“)[a, b) coincide. 
This statement can be interpreted as the solubility of the Cauchy problem for 
data decaying as exp( -p(u, y)). Let us state these results for p = v[x]. 

Theorem. Let P(z, n) be a polynomial correct in the sense of Petrovskij, and let 
x(n) be a conuex function such that x(n) 2 xr(n) - c, 0 < a < b < co. Then the 
equation P(D,, D,)u = f is soluble in the spaces YVrx,[u, b), (Y’),,,,[u, b), and 
9$,*J[u, b). In particular, we can take x = xr. Conversely, if we have solubility in 
any of these spaces, and tf x is a semi-algebraic function, then it satisfies the 
indicated condition. 

$2. Convolution Equations in Exponentially Growing 
Functions (Distributions) 

2.1. Spaces of Exponentially Growing Functions (Distributions). While dealing 
with exponential decay, we introduced norms containing weights of the form 
exp p, where p is a convex function. With exponentially growing functions 
we connect weights, logarithms of which are concave. We keep the standard 
notation ,u for (downward) convex functions. Then the functions -,u will be 
concave; they can take the value -co as well as finite values. We also retain the 
restrictions on p from the previous section: the asymptotic cone VP is of full 
dimension (dom fi contains no straight lines), and p is almost conic (p E 9’). 

Let us introduce spaces C{$,--, with norm 1 I$;,-,,, defined by (1.2). Let us set 
EP = ns,, C{$,-,. In these spaces, there is factorization with respect to values of 
a function outside of dom p. We define the Hilbert norms 11 [I$;, -c (of the space 
H(I”: -J as dual to the norms I( 
(yzi = (y’)-,. 

III:;’ ,,. We set (Y’)-, = us,~H{$-,. By definition, 

Proposition. For p E 3, the scales ( I{$,-, and 1) I[#,-, are equiualent. 
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As we already mentioned, the non-trivial part here is the estimation from 
above of the Holder norms in terms of the Hilbert ones. The proof proceeds by 
iterative widening of the set of p for which the embedding holds. As the first 
step we consider ~1 of the form pLy + (5, x), where pLv is the indicator function of 
some n-hedral angle. This case is easily established by the classical embedding 
theorems. Next we consider the case when E, is an arbitrary polyhedral angle: 
by a finite triangulation this case is reduced to the previous one. After that we 
can consider the case when E, is an arbitrary cone, and finally, when p E 9. 
During these two final steps we use the fact that if embedding has already been 
proved for pd (uniformly in a) and p = inf, p., then embedding holds for p as well. 

Corollary. 
9’- P = H{,$,, (9Q’ = (Y’),. 

The theory of convolution operators and of convolution equations on (.YPP 
is constructed by conjugacy: 

wn,) = (O’)lv, 

where E, = VP is the asymptotic cone of E, (see theorem 1.4). We do not go into 
details of this case. 

2.2. Convolutors on ~7~~ and (Y’),. The shift operators, Th, where h is an 
interior point of VP act in the spaces E,,. Convolution operators are continuous 
operators that commute with these shifts. On 92, they can be given the repre- 
sentation (1.10). We have that f?((Y”),) = 2(X,,). The description of the con- 
volution operators depends essentially on whether the epigraph E, contains 
straight lines or not (that is, whether dom fl is of full dimension or not). Let us 
denote by 3’ the set of all weights p E 2’ for which E, contains no straight lines. 

Theorem. For p E 9’ 

WqJ = WvIp) = Gf’)IW (12) 

where E, = VP. In particular, if the cone E, = V, contains no straight lines (0 is the 
indicator function of a convex domain that contains no straight lines), then (Y’), 
is a ring with respect to convolution. 

Let us discuss the connection with multipliers and with the Fourier transform. 
The functions in K, grow rapidly and can have no regular Fourier transform. 
On the other hand, distributions in (Y),, and, in particular, convoluters in (Y), 
have as Fourier transforms holomorphic functions in tubular domains II($) = 
R” + i(dom fi). 

Proposition. For p E 3’ the space (Y’), is dual with respect to the Fourier 
transform to the space of functions $(c) that are holomorphic in interior points of 
D(p) and for which for some c > 0, k, N, we have 

IWl < c ew(P(Im 0) WkU + 151)Np 

where d(5) is the distance from l to the boundary of D(p). 
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2.3. Convolution Equations 

Theorem. The equation A * cp = $, A E 2(X,) = (Y’),, on LfL,, (or the adjoint 
equation IA * cp = J/ on (9”)t,J is uniquely soluble if and only if there exists a 
fundamental solution G E (Y),,. This is equivalent to having for some cl, c2 > 0, 
k,, k,, N,, N2 

cl dWkl(l + 15DNL < l&)1 < ~2 d(Ok2U + 151)N2 
at interior points of D(Zp) = D(ZO), A^ being the Fourier transform of A. 

Here the right inequality means that A(<) is a multiplier, while the left one ensures 
invertibility of A^ in the ring of multipliers. 

Corollary. The differential equation P(D)u = f on L.f-,, (9”),p is uniquely solu- 
ble if and only if P( - 5) # 0, if 5 is an interior point of D(p). 

As we see, in the case of exponentially growing weights, the standard simplifica- 
tion for differential equations of the solubility condition for convolution equa- 
tions can be effected without any additional constraints on the domain D(p). 

Let us describe briefly how these results change for weights that do not satisfy 
condition P’O. Let [W”I be the maximal subspace, a translation of which is 
contained in E,, and let UP be some complementing subspace; x = (x,, x2) is 
the corresponding subdivision of the variables: x1 E lR”l, x2 E OX”‘. In (2), let us 
replace the weight (1 + Ix I)’ by (1 + I x1 I)“( 1 + I x1 1)*2, and, correspondingly, let us 
introduce the spaces C$j,lzJ,P, as well as H{~~,12),p. Let us set .& = nl, U~2,SH&2~,P. 

Proposition. 2(X,) = 2((Y),,) = X,,. 

A particular case of this proposition is the description of G((Y’)+) (see Section 
2.4 of Chapter 1). For 9(X,) all the scheme of convolution equations construc- 
tion goes through, but we shall not state the corresponding results. 

2.4. Remarks Concerning the Problem in the Strip and Concerning the 
Inhomogeneous Cauchy Problem. The constructions of Section 1.7 can be 
automatically applied to the case of exponentially growing weights. With the 
same notation, and under the same conditions on p (dom fi contains the ray 
{p -c 0, w  = 0)) let us define 

E,(a, bl = ~,~-m,aIIY)-,~-.,.l, a < b. 
We have that 

(K&, blI’ = P’),,Ca, b). 
Let p E 3. Then i?(X,,(a, b]) = Q(.X,(a - b, 01). In particular, for /J E Y”, 
!2(9L,(a, b]) = (P”),,(a - b, 0] in the notation of Theorem 2.2. We shall not 
discuss general convolution equations, restricting ourselves to differential equa- 
tions. Let dom fi have the form (p < -x(o)} and let the symbol P(z, n) never 
vanish for Im r > c + X(Im c) for some c. Then we have solubility in .4P,(a, b]. 

In the semi-algebraic case this condition on x is also necessary. 
As in Section 1.7, we can define the space 9-,, {-m)(a, b], consisting of distribu- 

tions of the form +- + CL=1 t,bkDf8(t), where II/- = e-(t - b)$, $ E L?.-,,/%,,(m,.l, 
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*k E q4(b,. If the symbol of the differential operator is soluble with respect to 
the highest power of z, and if the equation P(D,, D,)u = f is soluble in %,(a, b], 
then it is soluble in @~~)[a, b). In the case of ,u E 9 the solubility conditions 
coincide. In the case of ,u of the form v[x] we obtain the 

Theorem. Let P(z, q) be a polynomial that is correct in the sense of Petrovskij; 
let x(o) be a convex function such that I > x,,(o) - c for some c, --co < a < 
b ‘< 0. Then the equation P(D,, D,,)u = f is soluble in the spaces 5‘?,,I,1[a, b), 
(Y’-I,w[a, b), 9’$;OX{[a, b). In particular, we can take x = xp. Conversely, if x is 
semi-algebraic, then the indicated condition on x follows from solubility in one of 
these spaces. 

This statement can be given an interpretation in the language of homogeneous 
and inhomogeneous Cauchy problems with exponentially growing data. In order 
to solve the Cauchy problem in the positive direction, we changed the direction 
of time in the statement of the theorem (passing to Iv[x]). In the case of 
the inhomogeneous problem, we prescribe data for t = a, a < 0, that grow as 
exp( 1 a 1 i(y/a)). Making a translation in time, we can prescribe such data for t = 0. 
Let us remark that the solution is considered in a time interval of length not 
exceeding 1 a 1 (in 9& there is factorization with respect to values for t 2 0). This 
corresponds to the well-known fact that the Cauchy problem with exponentially 
growing initial data has a solution with controllable growth only on a finite time 
interval. 

We shall obtain the maximal admissible growth rate for x = xp. In particular, 
for the heat equation (for t = 0) the growth rate exp(lyl’/c), c > 0, is admissible, 
while for t < c the solution grows as exp(lyl’/(c - t)). 

Let us indicate how the classical results concerning isotropic correctness 
classes are obtained in this scheme. Let dom xp = KY-l, and let p be the smallest 
integer, for which the majorant c1 [VIP + c2 2 x,(q) exists. We shall call this p the 
genus of the symbol P (this concept is different from the genus of Shilov). From 
homogeneity considerations for the function f(y) = cIyIp’, p’ = p/(p - l), we 
have for some c that x(q) 2 x,(q) - c’. Let p(t, y) = cla - tl-‘l(P-‘)lyJ~(J’-‘), ,u = 
+cc for t < 0. Then in the spaces K,[O, a - E), 9?;“)[0, a - E) we shall have 
solubility for all a. (The constant c is determined by the symbol P and does not 
depend on a). We emphasize again that solubility in the spaces @;,,;“,),,[a, -6) 
can be interpreted as a sharp description of anisotropic correctness classes, that 
take into account various possibilities for growth rates of the initial data (and of 
the right hand sides) in different directions. 

0 3. Special Classes of Differential Operators and 
their Correctness Classes 

3.1. Exponentially Correct Operators. Let P(z, q), z E C’, q E IR”-’ be the sym- 
bol of a differential operator, that is correct in the sense of Petrovskij. Let us 
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remind the reader that this means tht P can be solved with respect to the highest 
power of z (say, z”) and P(z, q) # 0 for Im r c c, u E R”-I, for some c. In 9 1 we 
associated with P the set Sz, = {p < -x,(o)} c I$,, for which P(r, [) # 0 for 
I@, 0 E Sr,. 

We shall call a polynomial P semi-exponentially correct, if the projection 
dom xp of the set Srp on Rn;’ is an unbounded set of full dimension. In this case 
the asymptotic cone V(dom x,) does not reduce to a point. 

A polynomial P(z, q) is called exponentially correct (or, in different terminol- 
ogy, strongly correct) if the projection of Q,, (that is, dom x,) coincides with KY-‘. 
In other words, exponential correctness means that all the translates of P into 
the complex domain, Pw(z, q) = P(z, q + io) are correct in the sense of Petrovskij. 
In the case of semi-exponential correct polynomials this is true for some un- 
bounded open set of o E [w”-‘. 

Two other versions of the definition of exponential correctness are: 
(i) d(z, q), the distance to the manifold of zeroes of P goes to infinity as 

Im r + -co, q E IX”-‘. 
(ii) P@)(t, q)P-‘(z, q) + 0 uniformly in (Re r, q) as Im z + -co, q E BY-‘, for 

any non-zero multi-index tl. 
Semi-exponential correctness is equivalent to the existence of a, N E R”-l, for 

which d(~, q + ia + ioN) + co for 0 + co, Im r -+ -co. The vectors a, N are 
characterized by N E V(dom x,); a + iaN E dom xp for sufficiently large c. 

The alternate formulations (i), (ii) of exponential correctness invite one to relate 
it to hypoellipticity. 

Proposition. Hypoelliptic symbols that are correct in the sense of Petrovskij, are 
exponentially correct. 

The converse is, naturally, untrue, as the example of hyperbolic polynomials 
shows (see below). 

An important characteristic of P(z, TV) is I$, the asymptotic cone of Qp. Every 
direction in V, can be chosen to be the direction dual to time, so that the 
polynomial will preserve its correctness in the sense of Petrovskij. 

In terms of solubility of the Cauchy problem, the characteristic feature of 
exponentially correct polynomials consists of the following. Let Y~(Iw”) be the 
space 9, corresponding to the weight p(t, y) = exp clyl; Yc[u, co) is the subspace 
of functions with support in t > a, Yc[u, b) = ‘4pE[u, co)/YC[b, CO), a < b. Analo- 
gous definitions are given for (Y’),. Below we assume that b -z co. 

Theorem. The equation P(D)u = f is soluble in x[u, b) for all c if and only if 
P(z, [) is exponentially correct. 

Analogous claims can be established for c < 0, and also for solubility in 
(Y),[u, b) and in y7c(-O”)[u, co). 

These statements follow directly from @ 1,2, but it is easier to prove them than 
the case of general weights. In analogous claims for semi-exponentially correct 
operators, the exponential weight can be prescribed only in certain directions in 
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I$-‘. We do not quote the corresponding statements. Results of @ 1,2 allow us 
to formulate solubility theorems in Yp, that take into account the possible 
character of exponential decay (growth) in a much more precise manner. We turn 
next to the consideration of special types of operators. 

3.2. Hyperbolic Polynomials. Let us start with operators with a homogeneous 
symbol. Recall that a homogeneous symbol Po(r, q) is correct in the sense of 
Petrovskij if and only if it is hyperbolic, that is, when P,(r, q) = fl&r (z - S(s)), 
where the roots Aj(q) are real. Homogeneous hyperbolic polynomials are always 
exponentially correct: for them s2p,, = I& is the connected component of the set 
(PC4 r) z 0, (0, rl) E W”>. 

A homogeneous symbol P,(r, q) is called strictly hyperbolic if it remains correct 
in the sense of Petrovskij after the addition of lower order terms. The condition 
of strict hyperbolicity is Ai # S(q), i #j (the roots are simple). If PO is a 
homogeneous strictly hyperbolic symbol, then the inhomogeneous symbol P = 
P,, + Q, deg Q < k = deg PO is also called strictly hyperbolic. This is equivalent 
to the following statement: for every cr there exists c2, for which IP(z, q)I > 
cr (1~1 + 1~ I)k-’ for Im z < c2, q E IF-‘. An inhomogeneous strictly hyperbolic 
symbol is exponentially correct. Here V, = s2, = I$,,. 

An exponentially correct polynomial is called hyperbolic if dim V, = n. Then 
its principal part is necessarily hyperbolic (but not necessarily strictly hyperbolic). 

3.3. Z&Parabolic Polynomials (in the Sense of Petrovskij). We turn now to the 
consideration of quasi-homogeneous exponentially correct polynomials. Let us 
prescribe the weight 2b to r, and let us denote by deg,, the weighted degree with 
respect to weights (2b, 1, . . . , 1). Let P,(z, q) be a quasi-homogeneous polynomial 
with respect to this system of weights, and deg,, PO = m. It will be called 2b- 
parabolic if P,,(z, q) # 0 for Im r G 0, q # 0. This, in terms of the roots Aj(q) (these 
are homogeneous algebraic functions), is equivalent to Im S(q) > 0 for q # 0. A 
2b-parabolic polynomial is exponentially correct. Here the cone I$, is reduced 
to a ray, while p = x,(w) is a homogeneous function of degree 2b. 

Adding any lower order term with respect to the weight (2b, 1, . . . , l), that is, 
in passing to P = P,, + Q, deg,, Q < m = deg,, PO, we again obtain an exponen- 
tially correct polynomial. Such a polynomial is called (inhomogeneous) 2b- 
parabolic. Equivalent conditions of 2b-parabolicity are: for some ci, c2, we have 
that IP(z, ?)I > c,(lrl + lr~l’~)~ for Im r < c2, or for every cr there exists c2, for 
which IP(z, ?)I > cl(lzl + lq12b)k-1 for Im r < c2. 

The domain G$, has the same asymptotics as Sz,,,; in particular, G$, contains a 
translate of !& in the direction p. Hence it follows that if x satisfies the conditions 
of Theorems 1.7,2.4 for the symbol PO, then for all P = PO + Q, deg,, Q < m, we 
have solubility in &$,[a, b), 9$,l”}[a, b), 9&..[u, b), 9$;;Dxj[u, b). In the semi- 
algebraic case, there is no solubility for other x. In particular, we can take v [x,] = 
t-“(2b-‘)&,(y). Recall that fp is a homogeneous function of degree 2b/(2b - 1). We 
obtain thus a description of anisotropic correctness classes of the Cauchy prob- 
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lem. Isotropic classes correspond to weights of the form exp(ct-“(2b-‘)(y12b’(2b-1). 
The use of tubular domains allows us to obtain sharp estimates of the Green’s 
function for 2b-parabolic equations, and frequently also to compute the asympto- 
tic behavior by using the method of sharpest descent. 

3.4. (26 + l)-Hyperbolic Polynomials. As we pass from the even weight 2b to 
the odd one 2b + 1, it turns out that for b # 0 there are no exponentially correct 
polynomials in the class of (2b + 1, 1, . . . , 1)-homogeneous ones. However, there 
may be semi-exponentially correct ones. We shall call such a semi-exponentially 
correct polynomial (2b + 1)-hyperbolic. A polynomial is called strictly (2b + l)- 
hyperbolic if it remains semi-exponentially correct under any change of its 
(2b + 1, 1, . . . . 1)-lower order terms. It is clear, that the property of polynomial 
being (2b + l)-hyperbolic, is a property of its (2b + 1, 1, . . . , l)-principal part. 
Hyperbolic polynomials are included in this scheme for b = 0. 

Thus, let P,(r, q) be a quasi-homogeneous polynomial with respect to the 
weights (2b + 1, 1, . . . , l), deg2bfi PO = m; PO = n&l (r - S(v)) is called strictly 
(2b + l)-hyperbolic if and only if(i) all the roots Aj(q) are real and simple: n,(q) # 
nj(?), i # j, q # 0; (ii) for some N E R”-‘, the directional derivative (grad lj(q), 
N) > 0 for allj for q # 0. Then N is called a (2b + 1)-hyperbolicity direction of 
PO(r, q). These directions, moreover, form a cone I/ = V(dom 52,). Necessarily, 
dim V = n. The condition of strict (2b + 1)-hyperbolicity for P = P,, + Q is 
equivalent to the existence for every c, of cr, c2, such that IP(z, q + ivN)I > 
c(bl + I?1 2b+1)k-1 for v > cl, Im r < c2. 

As far as the question of solubility of differential equations in the spaces YP, 
etc., is concerned, everything we said about 2b-parabolic operators carries over 
to (2b + I)-hyperbolic ones. However, the homogeneous functions xP of degree 
2b + 1 have a substantially different structure. 

Let PO be a quasi-homogeneous strictly (2b + 1)-hyperbolic polynomial; let 
V be the cone of (2b + l)-hyperbolicity directions. This is a solid cone that 
contains no straight lines for b > 0. Then dom xP. = V, and xP, is a homo- 
geneous function of degree of homogeneity 2b + 1. Then everywhere in R”-’ j&, 
is a finite homogeneous function of degree (2b + 1)/2b. For (- y) E V’, where 
V’ is the cone dual to V, the function fa vanishes. On the other hand, if 
r II(- V’) is a cone, then outside of 3 the function fPO can be estimated from 
below by ~lyl(*~+‘)/*~, c > 0. This means that for the solution of the Cauchy 
problem, only power law growth in y is allowed on (- v’), while outside of (- V’), 
exponential growth (as exp(uly1(2b+‘)‘2b )) is allowed as well. A simpler fact is: if 
p(t, y) = cly 1 outside of v and p = 0 on 7, then we have solubility in the spaces 
YZCa, b). 

As an example, let us consider P(z, q) = r - (q: + ... + &,). This is a 3- 
hyperbolic polynomial, and its 3-hyperbolicity cone V+ is the positive n-hedron 
{ylj > 0, 1 <j < n - l}. For q E V+, we have that xP(q) = (y12 + . . . + &,). Corre- 
spondingly, xP(y) = c[(yr)y* + ... + (Y,-~)$‘~], where c = 2&9, J.y* = A3’* for 
2 > 0, A:/* = 0 for I < 0. In particular, aP = 0 in the purely negative n-hedron. 
An interesting situation arises already for n = 2, when the Cauchy problem can 
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be solved with data growing as exp(aly13’2) for y + co, but only power law growth 
is allowed for y--f -co. 

3.5. Polynomials Parabolic with Respect to the Newton Polygon. We shall 
extend the concept of 2bparabolicity so as to include in one class 2b-parabolic 
polynomials for different b, as well as their products. Let us fix a polynomial 
P(r, q), and in the positive quadrant IF!: let us consider the set of all integer pairs 
(a, y) such that for some monomial r”@ in P with non-zero coefficient, I/II = y. 
Let us supplement this set by projections on the axes (a), (y), and the point {0}, 
and let us take the convex hull of this set. The resulting polygon NP is called the 
Newton polygon of the polynomial P. The solubility condition in rk entails that 
there is no non-coordinate horizontal side. We also assume that there is no non- 
coordinate vertical side. 

Under these conditions, we call a polynomial N-parabolic, if there exist con- 
stants c1 > 0, c2, such that for every (~1, y) E NP, we have that 1 P(z, ?)I > cl IT Ial q Iy 
for Im r < c2. If N, is the triangle (2bcr + y < m, ~12 0, y > 0}, we obtain the 2b- 
parabolic polynomials. The set of N-parabolic polynomials is closed (i) relative 
to small perturbations by monomials r”@ (a, l/II) E NP, (ii) relative to arbitrary 
perturbations by monomials raqB (a, 181) is an interior point of NP, (iii) relative 
to multiplication. In particular, any products of 2b-parabolic polynomials (with 
different b) are N-parabolic. 

In the definition of a quasi-homogeneous 2b-parabolic polynomial in terms of 
the roots S(r), we can discard the polynomial dependence in u (retaining homo- 
geneity). We shall call the corresponding, polynomial in z, symbols, 2b-parabolic 
quasi-polynomials. In a similar way we can define hyperbolic quasi-polynomials. 
It turns out, that every 2b-parabolic polynomial can be represented, modulo 
lower order terms, as a product of 2bj-parabolic quasi-polynomials. The his 
encountered in the product have a simple geometric interpretation: (2bj, 1) are 
the direction vectors of non-coordinate sides of N,, (for more details, see Volevich 
and Gindikin [ 19681). 

Every N-parabolic polynomial is exponentially correct: here VP coincides with 
a ray. Let b be the largest of bj entering the decomposition above. Then the 
2b-parabolic quasi-polynomial in the decomposition of P is a polynomial; let us 
denote it by Pzb(z, q). Let x; be the function xPZ,. It is homogeneous of degree 2b. 
We have solubility in Y),txs,[a, b), ,4P_lyrX;,[a, b), etc. 

3.6. Dominantly Correct Polynomials. We do not demand any longer that 
NP have no vertical non-coordinate sides. Let UP c NP be the set of all integer 
lattice points in N,, such that (a, y) E UP =S (CL + 6, y) E NP for some 6 > 0. This 
corresponds to lower order monomials. Let us call a polynomial P(z, q) domi- 
nantly correct, if for arbitrary c > 0, there exists cl, such that for every (a, y) E UP, 
we have that IP(z, ?)I > clrlal~Iy for Im z < ci. In this class belong all the 2b- 
parabolic polynomials, and all the hyperbolic ones. It is closed relative to any 
variation in monomials r’qfl with (CI, l/II) E UP. Every dominantly correct poly- 
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nomial admits a decomposition (modulo lower order terms that correspond to 
U,) rbH(r, q)R(z, q), where H is a strictly hyperbolic, and R is an N-parabolic (a 
product of 2bparabolic) quasi-polynomials (see Volevich and Gindikin [1968]). 

By direct verification it is seen that dominantly correct polynomials are expo- 
nentially correct. Estimates of the correctness classes are obtained as in Section 
3.5. 

.The concept of dominant correctness can be generalized (to semi-dominant 
correctness), so that from it follows semi-exponential correctness, and so that 
(2b + 1)-hyperbolic polynomials belong in the resulting class. We do not go into 
these details. 

3.7. Pluriparabolic Polynomials. We introduce another class of exponentially 
correct polynomials. They will be, in some natural sense, hyperbolic in some 
variables, and parabolic in others. In this context, the coexistence of two types 
of variables in the same symbol occurs in a non-trivial way. Thus, let there 
be two types of variables r = (ri, . . . , rJ, and q = (vi, . . . , q,,,). To the first ones 
we give weight 2b, and to the second set, weight 1. Let the polynomial 
Po(r,, ..-, 7,; rll, ***, q,,,) be quasi-homogeneous with respect to this system of 
weights of degree k in r (of quasi-homogeneous degree 2bk). Assume that it 
possible to choose one of the z-variables, say, rl, to be the variable dual to 
time, in such a way, that we have a polynomial that is correct in the sense of 
Petrovskij. We shall call PO pluriparabolic if for some c > 0 we have that 
IP,(z, ?)I > c(lIm rll + 1~12b)k(lrl + l~l’~)~-’ for Im r1 < 0. If Aj(r’, q) are the 
roots of PO in ri, 7’ = (r,, . . . , rr) E Iw’-‘, then this condition is equivalent to the 
following: (i) ;lj(~‘, 0) are real and simple (PO(z, 0) is a strictly hyperbolic poly- 
nomial), and (ii) for some c > 0 we have that Im ;li(r’, q) > cI~IZb, t’ E [WI-‘, 
q E KY. 

For a fixed q the symbol PO will be strictly hyperbolic, while for a fixed r’ it 
will be 2b-parabolic. For k = 1, pluriparabolic polynomials have a simple struc- 
ture: they can be represented as a sum of a hyperbolic polynomial of degree 1 
and of a degree 2b homogeneous elliptic polynomial with positive definite imagi- 
nary part. For k > 1, the “intertwining” of the variables has a more complicated 
character. Let us demonstrate it by an example. 

Let Q(r) be a strictly hyperbolic polynomial, and let V = VP be the corre- 
sponding cone. Let us consider a polynomial mapping F of degree 2b of R” into 
C’, such that Im F(q) is an interior point of I/ for every q E R”, q # 0 (F is 
T/-elliptic). Then the polynomial P(z, q) = Q(r - F(q)) is pluriparabolic. 

Pluriparabolic polynomials are exponentially correct, as are the polynomials 
obtained by adding any lower order terms with respect to the weights (2b, . . . ,2b, 
1 9 .-., 1). The asymptotic cone of P coincides with the cone of its hyperbolic part, 
and each of its directions can be taken as the variable dual to time, retaining the 
pluriparabolicity. The spaces Y,, in which pluriparabolic differential equations 
are soluble, are easily described. We do not present this description, noting that 
we have coexistence of a finite domain of dependence in hyperbolic variables, 
with parabolic behavior in the rest of the variables. 
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Chapter 3 
The Cauchy Problem for Linear Equations 

with Variable Coefficients 

In previous chapters, we treated the Cauchy problem for differential equations 
with constant coefficients in classes of functions (distributions) with power law or 
exponential decay (growth) as a particular case of the more general problem of 
solubility of convolution equations in certain function spaces, and, in that form, 
it was completely solved. 

Formulation of the Cauchy problem for equations with variable coefficients 
in such generality cannot be justified, and in this case discussion from the very 
beginning is restricted to a specific class of operators. 

Up till now two main approaches to the study of the Cauchy problem for 
equations with variable coefficients have been developed: the parametrix method 
originating with Hilbert and E. Levi, and the method of energy estimates due to 
Courant, Friedrichs, and H. Lewy [1928]. The natural target for the parametrix 
method is presented by parabolic equations, while the method of energy esti- 
mates is best applied to hyperbolic equations. The corresponding classes of 
higher order equations (systems) were singled out by Petrovskij in mid-thirties 
(see Petrovskij [1938], [1937]). These, respectively, are the 2b-parabolic in the 
sense of Petrovskij, and strictly hyperbolic (hyperbolic in the sense of Petrovskij) 
equations (systems). For 2b-parabolic systems Petrovskij constructed Green’s 
matrices and obtained the solution of the Cauchy problem in the form of their 
convolution with the initial data. Petrovskij restricted himself to the case of 
coefficients depending on time only, remarking at the same time that this restric- 
tion is related to the use of Fourier’s method, and does not follow from the nature 
of the problem. Later on, using the parametrix method, Ladyzhenskaya [1950] 
(in the case of a single high order equation) and Ejdel’man [1964] constructed 
Green’s matrices for general parabolic systems with variable coefficients (see also 
the monograph of Solonnikov [1965]). As elements of these matrices decay 
exponentially in the space variables, their use made possible solving the Cauchy 
problem in classes of exponentially growing functions. 

In the case of hyperbolic systems with variable coefficients, Petrovskij [1937] 
obtained estimates of the L, norms of solutions and of their derivatives up to 
some finite order in terms of L, norms of the right hand side and of the Cauchy 
data. Estimates of this nature ensure uniqueness of solutions, and, if combined 
with direct methods of construction of solutions, lead to existence theorems. 
Petrovskij [ 19371 approximated coefficients of the hyperbolic system by entire 
functions, and constructed the approximate solution by the Cauchy-Kovalevskaya 
method. Technically, Petrovskij’s construction of energy integrals is very cumber- 
some as it uses a very rudimentary form of the theory of singular integral 
operators (which was to be developed twenty years later). 

For general hyperbolic systems with variable coefficients (both linear and quasi- 
linear) Ladyzhenskaya [ 19521 constructed convergent finite difference schemes, 
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extended Petrovskij’s estimates to these schemes, and obtained an existence theo- 
rem for the Cauchy problem without using the Cauchy-Kovalevskaya theorem. 

In the case of a single high order hyperbolic equation, a simpler way of 
obtaining energy estimates was suggested by Leray [1953]; this is the so-called 
“separating” operator method. 

In this chapter we present both these methods of solution of the Cauchy 
problem for equations with variable coefficients. We try to single out the natural 
classes of operators these methods can be applied to. It turns out that in the case 
of the parametrix method it is convenient to extend the treatment beyond the 
confines of differential operators, and to conduct the discussion in classes of 
pseudo-differential operators (PDO). 

0 1. The Homogeneous Cauchy Problem for 
Pseudodifferential Equations 

1.1. The General Idea of the Method consists basically of solving an equation 
with variable coefficients by the method of successive approximations, where as 
the first approximation we take the solution of the equation with constant 
(frozen) coefficients. This approach succeeds in the cases when locally, in appro- 
priate function spaces, the operator is a small perturbation of a similar operator 
with coefficients frozen at some point. 

To make the above precise, let us consider the homogeneous Cauchy problem 
for a differential equation with variable coefficients 

p(x; Ot, Dy)“(t, Y) = 1 PjaCx)D:‘DZu = f(4 Y) 

u(x, t) = f(x, t) = 0 for t < 0, (t, y) E [w”, 
(1) 

where the symbol P(x; r, q) satisfies the Petrovskij homogeneous correctness 
condition uniformly in x: P(x; r, q) # 0 for Im r < y,,. We seek a solution of 
(1) in the form 

u(t, y) = (274-Q 
s 

exp(itr + iy . v)P-‘(x; r, &?(r, q) dt, (2) 
Imr=y 

where 5 = (Re r, q), while 4 is the Fourier-Laplace transform of some unknown 
density g, g(t, y) = 0 for t < 0. If the coefficients of P do not depend on x, then 
(2) gives the solution of the problem (1) for g = J In the case of variable 
coefftcients, let us substitute (2) into (l), more the differential operator inside the 
integral and differentiate using the Leibnitz-Hormander formula. Then we obtain 
for g the following pseudo-differential equation (a precise definition of a PDO is 
given below): 

with the symbol 
9 + 4x; Q9 Ql = f (3) 



62 I. The Cauchy Problem 

r(x; 7, q) = yg ; P’“‘(x; 7, q)D,P(x; 7, q). 
a . (4) 

We shall use the standard notation 

For CI = 0 (p = 0) we shall write cl(@) (respectively, a(,,). We want the symbol (4) 
to be bounded by a constant c(p), such that the c(p) + 0, p = Im 7 + -a~ To 
attain this, it is sufficient to demand that the two following conditions hold: 

P(x; 7, q)/P(x; 7, q) + 0, Im 7 + -co (uniformly in x, Re 7, q) 

IP(,,(x; 7, tj)P-‘(x; 7, q)I < const. 

The first condition, in view of Section 3.1, is the condition 
(A) For any fixed x E R”, the polynomial P(x; <) is exponentially correct. 
The second estimate follows from the condition of constancy of the strength: 
(B) There exist constants c and y0 such that Vx’, X” E [w” 

~P(x';7,~)P-'(xv,7,ty)~ < c, (e R”, Im 7 d yo. 

Under conditions (A), (B) not only the symbol (4), but also all its x derivatives 
tend to zero as Im 7 + -co. Hence we deduce that the PDO r(x; D,, 0,) maps 
(I$,,)+, p < ye, into itself, and its norm + 0 asp + -co. But then for p < yi < y0 
equation (3) can be solved in (HtY,)+ by a Neuman series. Having found g, we can 
use (2) to obtain the solution u(x) of the original problem. PDO (2) is called the 
parametrix (more precisely, the right parametrix) of equation (1). Making opera- 
tor (2) act on equation (1) on the left, we can again obtain an equation of the 
same type as (3); from uniqueness for this equation, uniqueness for problem (1) 
follows. 

Thus, in the case of exponentially correct differential operators of constant 
strength the problem (1) has a unique solution in (I&,,)+ (for J pi sulliciently large). 
We want to study in detail the question of the dependence of the smoothness of 
the solution of (1) on the smoothness of the right hand side J For that, it will be 
convenient for us to include operators satisfying conditions (A) and (B) into the 
algebra of PDO which contains both these operators and their parametrices. 

1.2. Calculus of Pseudo-differential Operators Associated with the Homoge- 
neous Cauchy Problem. The traditional calculus of PDO, which is oriented 
towards the study of local properties of differential operators, is developed in the 
scale of spaces {H(“)}, and the operators themselves are considered up to lower 
order (smoothing) operators. For solutions of the homogeneous Cauchy problem 
we shall develop a calculus of PDO acting simultaneously in all the scales {I$$} 
for all p < yO; moreover, these operators are considered up to (modulo) operators 
the norm of which in this scale goes to zero as p --t -co. 
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The Class of Symbols. A function a(x; r, q) is called a symbol if it is defined 
and infinitely differentiable for x E [w”, q E [W”-l, r E C, Im T < yO(a), holomorphic 
in r, and grows together with its derivatives not faster than a power of IrI + 1~1, 
that is, for some m = m(a) 

Ia&; 5 $1 < 4 + 14 + b11)“. (5) 

Furthermore, we shall assume that the symbol stabilizes for sufficiently large x, 
that is 

4x; 5 4 = ah 44 + a’(x; z, 4, (6) 

a’(x; 7, ye) = 0 for 1x1 > X(a). (6’) 

Remark. All results of this section remain valid if (6’) is replaced by a weaker 
condition 

s IaS; r, ~91 dx < c,U + Id - Irl)“. (6”) 

Pseudo-dijferential Operators. Every symbol considered above can be made to 
correspond to a PDO: 

a(x; D,, D,)u = (27t-“” a(x; z, q)li(z, q) exp(itz + iy . q) dc. (7) 

The right hand side of (7) is defined for all u E H[$ and p < ye(a). It can be 
checked that this operator maps H# into itself. If u E (H,‘$)+, then for p < y the 
right hand side of (7) is independent of p and defines an operator that maps 
(Ht$‘)+, y < y,(a), into itself. By continuity this operator can be extended to a 
continuous operator mapping (H,‘,;“‘), (H{y;m))+ into themselves. 

The Spaces ($?,,,)+. We related to each symbol a PDO acting in the limit spaces 
Z$$“‘, (H$‘))+. Now we want to connect these spaces by a scale of spaces of 
functions of finite smoothness (distributions of finite order). In Chapter 1 we 
considered the space (H$+ defined as the image of the PDO 6?,(D). Were we 
to restrict ourselves to PDO’s with homogeneous symbols, these spaces would 
have sufliced. However, for a precise description of operators with inhomoge- 
neous symbols we require a wider and more flexible scale. This is the scale of 
spaces (HP,,),, defined as images in (Zf{Yj”‘)+ of PDO with constant coefficients: 

(ffp,,)+ = {cp E W[yj”‘)+, W)cp E Wry,)+ >F (8) 

here we introduce the norm Il~lli”,~ = 116(D)ull,,,. 
In order that the spaces (8) are modules over H’“‘, we impose an additional 

restriction on the symbol 6: 3V = N(6) such that 

16(z’, tjqP(2”, f)I < c(1 + 15’ - <“I)N, V<‘, 5” E RN, 

Im r’ = Im r” < y,(6), 5’ = (Re r’, q’), g” = (Re t”, $‘). 
(9) 

An example of symbols for which (9) is satisfied is provided by exponentially 
correct polynomials and their real powers. 
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The class Sd of symbols is defined by the conditions: 

lq,,k z, ~91 < c,lQ, 4% Vt E R”, Im 7 G yl; (10) 
3N such that t/c’ = (Re r’, q’) and V<” = (Re T”, q”), Im r’ = Im r” = p 

lq,,k 7’3 $1 - q,,(x; r”, r”) < &,(P)(l + 15’ - 5”lYl(q~‘, ?‘)I, 

a4 + 0, P + --co. (11) 
Remark. If condition (9) holds for 6 (and we shall deal only with such 6), then 

it follows from (11) that an analogous estimate with 5’ and c” exchanging places, 
is also valid. 

Proposition 1. Zf u(x; z, q) E S’, then the operator 

4x; QY q: (q$+ + W:,,),~ Y G Yo@ 4, 

is bounded, and its norm does not exceed a constant independent of y. 

Proposition 2 (Commutation formula). Let uj(x; z, v) E S’j, j = 1, 2, and 
u(x; z, q) = (a, a,)(~; z, q). Then the operator 

a,(% D)-a,(x, D) - 4x3 9: (qp)+ + (q$)+, 

is bounded, and its norm goes to zero us y + --co. 

These statements are proved by techniques that are in principle the same as 
the classical PDO techniques used to obtain estimates in the scales H@) (see for 
example Kohn and Nirenberg [ 19651). 

1.3. The Homogeneous Cauchy Problem for PDO and for Exponentially Cor- 
rect Differential Operators of Constant Strength. Next we shall study the ques- 
tion of solubility of the equation 

4x; Q, qJu = f E (f&)+9 (12) 

where in the left hand side we have a PDO with a symbol satisfying a certain 
analog of conditions (A), (B) of section 1.1. 

Condition (C). u(x; z, q) E Sa(xo) for any x0 E W, where a(~‘) = a(~‘; t, q) and 
there exists A > 0 such that 

14~; 7, Y)I > A14x”; 7, rl)l, Im r G 144. 
We immediately note that from (C) follows the constant strength condition 

[a(~‘; z, q)l < clu(x”; z, ?)I, Vx’, x” E R”, Im r < yo. (13) 

Remark. For u = /I = 0 and x = x0, it follows from (11) that the symbol 
6(z, q) = a(~‘; r, ‘I) satisfies (9), so that a E S’. 

Let us quote two statements dealing with symbols that satisfy condition (C); 
these can serve to motivate the introduction of this class. 

Proposition 1. The symbols u(x; z, v) and a-‘(~; z, q) satisfy condition (C) 
simultaneously. 
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Proposition 2. The polynomial symbol P(x; z, q) satisfies condition (C) if and 
only if it satisfies conditions (A), (B) of section 1.1. 

The first statement is obvious; let us sketch the proof of the second one. If 
conditions (A), (B) are satisfied for a polynomial symbol P, then, expanding it in 
the Taylor series in the variable r at a point 5” = (Re r”, q”) we find that (Im r’ = 
Im r”) 

w; 7’3 vl’) - w; r”, r”) = [ Jo (5’ - y)” P’“‘(x; 7”) q”) 
U! P(x; t”, q”) 1 P(x; Y’, q”), (14) 

whence (11) follows trivially for u = b = 0. In view of the finite dimensionality of 
the space of polynomials, it is possible to choose a number of points x1, . . . , xJ 
in such a way that 

p(x; 79 vl) = jil cj(x)p(xj; z~ VI. 

With the help of this representation, the right hand side of (14) can be epxressed 
as a linear combination of similar expressions with constant coefficients. Hence 
(lo), (11) follow for c1 > 0, B = 0. 

Using the Lagrange interpolation formula, we can express the symbols P$, 
/I > 0, as linear combinations of the symbols PC,+ thus proving (11) for /I > 0. 

On the other hand, if (11) is satisfied, the square bracket in the right hand side 
of (14) does not exceed c&(p) for I<’ - 5”1 d 1. In view of the Lagrange interpola- 
tion formula, the coefficients of the polynomial (in (5’ - 5”) do not exceed c’s(~), 
that is, (A) is satisfied, while (B) follows from (13). 

Theorem. Let condition (C) be satisfied, and let 6(z, q) = a(xO; t, q). Then for 
each A.(z, q) that satisfies (9) there exists y1 = yI(A), such that for y < y1 the 
mapping 

4x, D): W$)+ -+ W&J+. (15) 

is an isomorphism of spaces. 

The proof follows the construction of Section 1.1 and is based on Propositions 
1, 2 of Section 1.2. We seek a solution of (12) in the form u = a-‘(x, D)g. 
9 E W:,,)+ . According to Proposition 1, u E (HE), and by Proposition 2, g satisfies 
the equation 

g + [a(x; D).a-‘(x; D) - l]g = g + Rg = f, (16) 

where the norm of the operator R: (HE;,), + (H&)+ goes to zero as y -+ --co. 
From that we deduce surjectivity of operator (15). Acting on (15) on the left by 
the operator a-‘(~, D), we shall show injectivity of this operator. 

Assume that a(x; r, q) satisfies condition (C) and that in equation (12) the right 
hand side f belongs to (H&)+. Then with every symbol 1 that satisfies (9) we can 
associate y(A) such that the solution u(x) belongs to (Hi,)+ for y < y(l). In order 
to establish solubility of (12) in the space of C” functions, we must pass to a finite 
strip. 
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For a < b the quotient spaces 

H’Ca, b) = T,-,~o,(H~,)+IT,-,,o,(H~,)+ 
are defined. 

The right hand side does not depend on y either in the “stock” of its elements 
or in topology, so that the spaces are well defined. The PDO we have introduced 
ma,p the scale of spaces H(-@ [a, b) into itself. From the theorem above we derive 

Corollary 1. Let condition (C) be satisfied for a(x; z, q), 6 = a(~‘, .), --co < 
a < b < 0~). Then the mapping 

H”‘[u, b) + H”[u, b)(u H u(x; D)u) 
is an isomorphism. 

Corollary 2. Under the conditions of the theorem, for any --ax < a < b < 00, 
the mapping 

H(*=‘)[u, b) + l+‘=)[u, b)(u H u(x; D)u) 
is an isomorphism. 

1.4. The Homogeneous Cauchy Problem in Slowly Growing and Slowly 
Decreasing Functions. In preceeding sections we considered PDO’s in smooth- 
ness scales related to H(-“‘. In the remaining part of the section we shall deal 
with scales with weights. Let us start with the simpler case of power weights; 
moreover, we restrict ourselves to weights l(x) that satisfy conditions of the type 
of (9), 

Il(x’)P(x”)l < c(1 + Ix’ - x”I)N(C = c(l), iv = N(1)) 

and estimates for derivatives l’“‘(x) = D@l(x): 

Il’“‘(x)l-‘(x)1 < c,; x E IL?“. (17) 

Let a symbol 6(r, q) satisfy condition (9) and let estimates of the type of (17) 
be satisfied for its derivatives, 

.I~@)(T, q)6-‘(z, ?)I < D,, q E R”-l, Im r < y(6). 

We remark that exponentially correct polynomials and their real powers satisfy 
the conditions indicated above. By analogy with (8) let us define 

&,+ = {cp E w,,,+, ww~ E f&,+1, (18) 

and let us introduce in this space the norm Ilull&, = Il~?I(~)l(x)ullt,,. In definition 
(18) 6(D) and l(x) can be interchanged. The norm thus arising will be eqivalent 
to the norm (( II&,,. 

With each pair of weights 6(z, q), I(x) that satisfy the conditions indicated 
above, we can associate a class $ of symbols a&; r, q) that are infinitely differenti- 
able in all variables, holomorphic in r for Im r < y(u) and satisfy the condition 
(compare with (lo), (11)) 

l@$(x; T, dl -= &Im 4lW M4l, Im r G da, a), 
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where 

e&Irn 7) -+ 0, Im z + --co, CI 2 0, B > 0. 

Proposition 1. Zf a(x; z, q) E Sf then fir any pair of weights m(x), n(z, q) satis- 
fying the condition above, the operator 

4~; 4, D,,: (f%),,,+ + W,$,,,+, Y G I@,& 1, m). (19) 
is bounded. 

Proposition 2 (commutation formula). Let uj(x; z, q) E SC, j = 1, 2, then there 
exists a symbol a(x; z, q) E Sf’:z such that a,(~; Dt, 0,). a,(~; D,, 0,) = a(x; D,, 0,). 
Also, the norm of the operator 

4~ 4 0,) - @14(x; 4 0,): W;,i$,&+ + We),,,, 
goes to zero as y + --co. 

Proofs of these statements make essential use of the Calderon-Vaillancourt 
theorem of boundedness of PDO in L, (see for example Taylor [1981]). It 
is exactly this theorem that allows us to renounce the symbol stabilization 
condition we used in Section 1.2. 

Propositions 1 and 2 allow us to prove an analog of Theorem 1.3 for the spaces 
(18). 

Theorem. Let a(x; z, q) E Sf, and assume that there is a constant A such that 

14~; 7, rl)l > Al&7, ?YWl, Im 7 d ~(4. 

then for any symbols 1, m satisfying the conditions indicated above, it is possible 
to find y(& m) such that for y -C y(n, m) the mapping (19) is a space isomorphism. 

Passing to a finite strip, 0 < t < c for definiteness, we shall obtain isomor- 
phisms for various “limit” spaces of the scale (18). 

Corollary. Let the conditions of the theorem be satisfied, and @ = 9’,0, Co’, Y’. 
Then Vc > 0 

a(x; D): @CO, c) + @CO, c). (20) 

is an isomorphism. 

Remark. As @ in (20) we can take various spaces obtained from (18) by 
operations of taking projective and inductive limits. In particular, we can take 

ov 
H$“‘; 9 0 H$j”‘. (21) 

The first bf these can be interpreted as O’(W) @ Y(lR”-‘), and the second one as 
Y’(R) Q O(W-‘). 

1.5. The Inhomogeneous Cauchy Problem in Slowly Increasing and Slowly 
Decreasing Functions. We shall say that a symbol a(x; 7, q) of Section 1.2 satisfies 
the transmission condition, if it belongs, in the variables 7, q, to a translation of 
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the space 0’ of 9 3 of Chapter 1, that is, in some half-plane Im r < y0 it can be 
expanded in an asymptotic Laurent series in r: 

a(x; z, q) = 2 ammj(x; q)(z - iyJ-j. 
j=O 

(22) 

If a,,,(~; q) f 0, then m is called the order of a in t; m = ord, a. With each symbol 
we can associate a PDO. It can be checked that this operator maps the spaces 
(21) into themselves, as it does the analogous spaces in a strip, 

u(x, D): a’-“‘CO, c) + @‘-“‘[O, c), @ = 9, 0. (23) 

Theorem. Let the symbol u(x; z, q) satisfy conditions of Theorem 1.4 and the 
transmission condition. Let us assume, in addition, that 

a,,,(~; q) = const, m = ord, a. 

Then the mappings (23) are space isomorphisms. 

(24) 

Let us explain the proof of this theorem in the case @ = 9’. Let us denote by 
Y the first of the spaces in (21). Then, according to Section 1.4, the mapping 

u(x, D): Y[O, c) + Y[O, c) (23’) 

is an isomorphism. As 9{-“l[O, c) c Y[O, c), and as symbols with the trans- 
mission condition leave Y{-“l[O, c) invariant, (23) can be considered as the 
restriction of the mapping (23’). Hence follows the injectivity of (23). To prove 
surjectivity, let us take an arbitrary element f E Yl-“}[O, c). Then there exists 
an element u E Y[O, c), such that u(x; D)u = J It remains only to prove partial 
hypoellipticity of the PDO a in the variable t: 

(u E Y[O, c), u(x, D)u E wqo, c)} * {u E 9-‘co, c)}. (25) 

The idea of the proof of (25) is very simple. In view of (24), we can assume that 
u(x; D) = (0, - iy,)“’ + (0, - iy,)“-‘I?, where the operator B does not lower 
smoothness in t. Thus, 

u = -(D, - iy,)-‘Bu + (0, - iy,)-“f. (26) 

If the distribution u has smoothness so in t for t > 0, then, by (26) it has 
smoothness so + 1. Iterating on this argument, we obtain (25). 

In fact, the isomorphism (25) means that all the mappings 

u(x, D): @(pl[O, c) -+ @{P-m)[O, c), m = ord, a. (27) 
are isomorphisms. 

From definition (A) it follows that an exponentially correct symbol is soluble 
with respect to the highest power of z, so that exponentially correct polynomials 
of constant strength satisfy the conditions of the theorem, while the mapping (27) 
is an isomorphism for @ = 9, 0. For p = 0, we deduce from the isomorphism 
(27) the correctness of the Cauchy problem in a strip with initial data in 9’ or 0. 
The Cauchy problem with initial data in Cu, (UJ) for any (even) 1 can be treated 
similarly. 
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1.6. PDO’s with Holomorphic Symbols and Correctness Classes for the Cauchy 
Problem with Variable Coeffkients. We saw in Chapter 2, that the study of 
operators in spaces with exponential asymptotics exp p, where p is a convex 
function, is reduced to the study of their simultaneous action in spaces with 
norms containing weight functions exp((& x > ), where 5 runs through the 
convex set dom $. The preceeding part of section 1 consisted of the study of 
pseudo-differential operators acting on spaces with norms containing exponen- 
tial weights in t, exp(yt). Here the symbols have to be holomorphic in the variable 
that is dual to time. This allowed us to study power law correctness classes of 
the Cauchy problem for variable coefficients. It is natural to expect, that the 
addition of exponential weights in the space variables, and the consideration of 
simultaneous action of PDO’s with symbols holomorphic in tubular domains, 
will allow us to investigate exponential correctness classes. 

Let us remark first of all, that if in Propositions 1, 2 of Section 1.2 we replace 
exp(pt) by the weight exp(pt + o-y), and consider the symbol a(x; r, c), 
i = q + io for a fixed o, then all these statements remain valid. 

Let now p(t, y) be a convex function, and let dom & = {p < -X(W)}. Let the 
symbol a(x; r, [) be holomorphic in the tubular domain D@) = R” + i dom fl, 
and let it satisfy conditions of the form (5) for every Im(r, c) E dom fi. With each 
such symbol we associate the PDO (5 = Re(r, [)) 

a(x, D)u(x) = (27$“‘2 
s 

a(x: z, c)fi(r, [) exp(itz + iy - [) d<. (28) 
Im(r,lJ E dom P 

Let us consider the spaces A?$?,“) with the system (2.7) of norms. The right 
hand side of (28) makes sense for every ZJ E JF&“~, is independent of the choice of 
Im(r, [) E dom fi and defines a continuous operator that can be extended to 
$I,,,“‘. 

Let us associate a class of symbols 6(r, [), that satisfy conditions of the form 
(9), (9’): 

ld(z’, y’)s-‘(r”, [“)I < c(1 + Ir’ - t”l + Ii’ - i”l)N, 

(z’, 5’), b”, C”) E WV, 

with the domain D(fi), and let us use these operators to define the spaces X(f),,. 
Replacing in conditions (lo), (11) (7, q) by (r, [) E O(p), we establish the analogs 
of Propositions 1,2 of Section 1.2 for the spaces A?$,. Condition (C) of Section 
1.3 carries over trivially to symbols holomorphic in O(,Q; let us denote the 
resulting condition by (C,). Let us set p(y) = ,u + yt. Using the argument of 
Theorem 1.3, we can prove the 

Theorem. Let condition (C,) be satisfied. Then for each 1 there exists ye(l), such 
that for y < y,(l) the mapping 

4% D): “x;&{,) + 1x;:,,,(,), a 0 = 4x0, -L 0, (29) 

is an isomorphism. 
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Results relating to the inhomogeneous problem are obtained in a similar way. 
Let us quote a corollary for differential operators. 

Theorem. Let P(x; z, c) be the symbol of a difirential operator, such that 
for each x P is correct in the sense of Petrovskij and P(x; r, [) # 0 for Im r < 
-x(Im c), x(o) # co, 0 E Iw”-‘. Let the constant strength condition (condition B) 
be satisfied under these conditions on T, tl. Then the equation P(x; D,, DJu = f is 

If the symbol P(x; r, q) belongs in any of the classes of 0 3, Chapter 2, if the 
functions xPcXJ have non-trivial majorants, and if the constant strength condition 
is satisfied, then the relevant theorem is applicable to P and 2, and the results 
concerning correctness classes for constant coefficients carry over to the case of 
variable coefficients. 

1) Let the symbol P(x; r, q) be 2b-parabolic for each x, and such that deg,, P 
does not depend on x, and the estimates are uniform in x. Let x(o) be the 
majorant of xPtX,; it will be a homogeneous function of degree 2b. Then the 
conditions of the theorem are satisfied automatically. 

2) Let the symbol P(x; r, q) be N-parabolic for each x, and such that the 
polygon NPcX, does not depend on x, and let x(o) be the majorant of xPcXJ. The 
theorem is applicable to the pair P, 2. 

The other classes of exponentially correct symbols of $3, Chapter 2 can 
be considered in a similar manner. However, for them the constant strength 
condition is very restrictive. Thus, in the case of hyperbolic operators, the 
constant strength condition (with solubility of the symbol with respect to the 
highest power of t taken into account) entails constancy of coefficients in the 
principal part. 

Remark. Let the boundary K! of the domain Sz be given by the equation 
p = x(o). Let us consider the class of weight functions of the form P2(X) = s exp(2tx(8) + 2(y, 0)) dx(8) for x E 52, 

aR 

p’(x) = +co for x $0, where ~(0) is some absolutely continuous measure on 852. 
For such weights, the square of the norm in H,, has the form 

ss exp(2tx(8) + 2(y, fI))lu(x)l* dx dx. 
an wn 

(30) 

Starting with the “zero” norm (30), it is not hard to construct the scale H&+ 
for which analogs of propositions of section 1.2 are valid. 

Since the norm in H-, has the same form (30) (only in the “exp” t and y have 
to be replaced by -t, -y), we immediately obtain by duality a calculus in 
exponentially growing functions. 

A drawback of the weights under consideration is their insufficient effectivity: 
we do not know the value of the weight in different points, and can only find the 
asymptotic behavior as (xl --) cc by Laplace’s method. 
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5 2. Energy Integrals of Differential Operators with 
Variable Coeffkients 

As we mentioned at the end of Q 1, the parametrix method does not allow us to 
prove solubility of the Cauchy problem for hyperbolic equations with variable 
coefficients in the principal part; other methods, based on energy estimates of the 
solution (see the introduction to this chapter) are better suited for the study 
of such equations. The present section is devoted to the examination of energy 
methods and to the description of classes of inhomogeneous differential opera- 
tors with variable coefficients, for which there are energy estimates (energy 
integrals) necessary in the proof of the correctness of the Cauchy problem. 

2.1. Proof of Solubility of the Homogeneous Caucby Problem, Based on Energy 
Estimates in H&. In 9 1, while reducing the Cauchy problem to an auxiliary 
pseudo-differential equation, we were not especially interested in estimates for 
the inverse operator. However, from the arguments of 6 1, it easily follows 
that the H${ norm of an exponentially correct differential operator of constant 
strength is equivalent (uniformly in y for y < ye) to the analogous norm of the 
operator with frozen coefficients. Hence we derive an estimate for “lower order 
terms” for any a > 0 

IIP’“‘(x; Wllf$ G ~,(~)llPk Wlf;, vu E H;ya;), 
Es(Y)+% Y + --co. (31) 

From conditions (A), (B) also follows an estimate for the formally adjoint opera- 
tor P*(x; D): 

Il~‘“‘(x; D)ull[Ij < ~f(y)llP*(x; D)ull;T;, Vu E H’“’ 1 rl* 

&f(Y) + 0, y + --co. (31’) 

Let us clarify the meaning of this estimate. As is well known, the symbol P* equals 

Hence it follows that if conditions (A), (B) are satisfied for P(x; r, q), then they 
are satisfied for P*(x; - r, ‘I) as well, while an estimate of form (31) holds for the 
corresponding operator. Substituting t + -t, we obtain (31’). 

Now we shall show that using weaker estimates than (31), (31’) we can prove 
unique solibility of the homogeneous Cauchy problem in H[$. This statement 
means that V’ E (H$)+ there exists u E (H#)+ that satisfies the equation Pu = f 
in the sense of distributions: 

(u, p*(P) = (5 cp) vv E D. (32) 
Existence and uniqueness of (32) in H[;{ follow, because of the Hahn-Banach 

theorem, from the estimates 
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Ibll# < conWJ(x; W4l& Y < yo, u E H[;), (33) 
IIuII[I$ d constl)P*(x; D)ullfI;i, y < yo, u E I-F [ 71’ (33’) 

The bound (33) guarantees uniqueness of solution of the equation (32) in H,‘;], 
and a fortiori also in H,‘j+. A more difficult question is the one of solubility of 
equation (32) in a half-space, that is, of existence of a solution u E H,‘%j+ for the 
right hand side f in the same space. Estimate (33’) is insufftcient to prove this. 
For the proof of existence it would have been enough to be able to prove the 
analog of (33’) in the scale of spaces dual to H#+, that is, in the scale of quotient 
spaces H$],. However, a direct derivation of this estimate seems to us difficult, 
and we propose a different approach. We shall show that if (33’) is replaced by 
a somewhat stronger estimate in the scale HI’:,“{ (and not in the scale of quotient 
spaces), then from this estimate would follow existence not only in H&, but also 
in H#+. 

Theorem. Assume that estimate (33) holds for the differential operator P(x; D), 
and that we also have the estimate 

where we set 
(34) 

P”‘(x; z, q) = d’P(x; z, r)/&‘, k = deg, P(x; z, q), 

Then for t/s E [w we can find yz(s) such that for y -C y2(s) Vf E (H#)+ there exists 
a unique solution u E (H#+ of equation (32). 

Let us indicate the argument of the proof. According to Section 2.2 of Chapter 
1, the space (H&$+ consists of those (and only of those) elements of the inter- 
section n,, H# having finite norm 

+ Ilf II = 3: Ilf II& 

Therefore for f  E (H#)+ equation (32) has in general a whole family of solutions 
u, E H& and, moreover, due to (33) 

ll~,ll~sl, G Wupllgj = cllf llg!] G c+ Ilf II& 
The theorem will be proved, if we show that the functions up do not in fact depend 
on p. For that it is enough to check that 

u,. = uyw, y’ < y” < y, y” - y’ < 6 (small 6). (35) 

Let us denote by Hf;!,,,.,, y’ < y”, the intersection &+,9,S, Hf;‘,, equipped with 
the norm 

Ilf II[;?,y”, = sup Ilf II& Y’GPQY” 
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Condition (35) follows from solubility in the respective space H[;!,,..,. In fact, let 
u,,,,,, be the solution corresponding to the right-hand side f E (H#)+ c ZYZ~~S!,~~~~. 
By uniqueness in any of H$, we have that uyS = u~,,~,, = uy,,. 

Solubility in I$!, yj,l is equivalent to having an estimate of P* in the norm of 
the dual space. This norm is equivalent to the norm 

IIuII;Iy,-v”,~f IlXUll~~“,!] + [I(1 - x)uII[I”y!*,, 

where x(t) E C”(R), x(t) = 1 fort > 1, x(t) = 0 for t < - 1. In view of estimate (34) 

Let us combine this estimate with an analogous estimate for (1 - x)u (replacing 
y’ by 7”). For y” - y’ < 6, the bound (34) allows us to estimate the sum in the 
right hand side in terms of the one in the left hand side with a constant E < 1, 
y’ < y” < yr, and -yl large enough. We arrive at the estimate 

which concludes the proof of our theorem. 

2.2. Sufficient Conditions for Existence of Estimates (33), (34). Deriving energy 
estimates for hyperbolic equations, Leray [1953] considered the quadratic form 

-Im(eY’P(x, D)u, eYfQ(x, D)u), y < 0, (36) 

in which as the (“separating”) operator Q(x, D) we can take the operator with 
the symbol 

Qk z, 4 = Wx; t, WT. (37) 

The main claim of Leray is that the form (36) can be bounded both from below 
and from above in terms of Irl( ~~u~~[rJ;-“)“, whence we have the estimate 

IYI Ibll[;-‘) G con4lPb, WII,l. 

This estimate can be extended to an estimate in the scale: 

(y( (I~llt$;-~+“) < const((Pu@\, Vs E R. (38) 

The following observation lies at the root of all these estimates: the strict hyper- 
bolicity condition for P is equivalent to the following two-sided bound: 

c-‘lvl(l4 + 18)2m-2 < -ImCP&, rl)Qo(z,l < clyl(l~l + 151)2”-2, (39) 

where P,,, Q, are the higher order homogeneous parts of P and Q, and m is of 
ord P. The transition from the algebraic estimate (39) to an estimate of the Leray 
form (36) is based on the Girding inequality. 
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Following Petrovskij, Leray proved solubility of the Cauchy problem by 
combiling local Cauchy-Kovalevskaya theorems with global estimates (38). 
Girding developed a direct (functional) method of proof of the existence theorem. 
It is based on the fact that the formally adjoint operator P* is also strictly 
hyperbolic and, therefore, energy estimates of the form (38) are available for it as 
well. 

In this section we shall consider a generalization of Leray’s argument to the 
case of inhomogeneous operators. Let P(x; D) be a differential operator, such 
that its symbol P(x; r, q) is a polynomial that is correct in the sense of Petrovskij 
at each point x E IV’. Let the symbol Q(x; r, q) have the form (37); let us set 
5 = (Re t, q), y = Im z, 

f&(x; Y, 0 = - ImCW; r; rl)Q(x; G $1. (40) 

Theorem. Let the symbol P(x; 5) satisfy the following conditions: 
(I) There is y0 such that for y < y,, symbols (40) satisfy the constant strength 

condition: 

Wx’; Y, 5) G cwx”; Y> 0, Y G Yo, 5 E lw. 

(IIa) For any x’, x” E [w” and p > 0, 

1 P@)(x’; 7, ?)I < e(y)IP(x”; z, ?)I, e(y) + 0, y = Im t -+ --co. 

(IIb) For any a > 0 

IP(& r9 rl)l d wP(~; z9 ?Nl + ITI + ISI), w + 0, 
y+ -co. 

Then we have estimates (33), (34), and, consequently, solubility of the Cauchy 
problem (32) in (I#)+ for every s E R. 

Let us first of all discuss the conditions of the theorem. (I) can be interpreted 
as an analog of Leray’s condition for general inhomogeneous symbols. From 
condition (IIa) it follows that Vx E Iw” the symbols P(x; t, q) will be exponen- 
tially correct. Condition (IIa) means in addition that the symbol at a point X” 
“restrains” with a large parameter the “lower order” terms at any other point x’. 

It can be shown that conditions (I), (IIa), (IIb) hold for exponentially correct 
symbols of constant strength. Thus, conditions of our theorem are a weakened 
version of conditions (A), (B) of 0 1. As the examples we give in subsequent 
sections show, this is quite a substantial weakening, which allows us to consider 
the Cauchy problem for a number of operators with variable coefficients. 

The condition of our theorem are invariant with respect to passage to the 
formally adjoint operator (of course, the direction of time has to be changed). 
For that reason, we only sketch the proof of a stronger version of estimate (33): 

I$ (7 - ~0YllP(‘k Wl[$ G const IIPb; Wllf”,, Y < Yo. 

First of all we mention a simple algebraic fact. 

(41) 



Chapter 3. The Cauchy Problem for Linear Equations with Variable Coefficients 75 

Lemma. A polynomial P(z, q) soluble with respect to the highest power of z, 
satisfies the Petrovskij condition if and only if for some y,, 

g (Y - Yo)21-1 IP’% $I2 G CHP(Y, 0 

The proof of the lemma is based on an explicit formula that expresses HP in 
terms of the roots lj (j = 1, . . . , k) of the polynomial P. 

Hp(Yv 5) = jil t--Y + ilit?)) kgj IT - &(vl)l'. 

Let the symbol (40) satisfy the conditions of the theorem. Let us take an 
arbitrary point x0 E Iw” and let us set P(z, ‘I) = P(x’; r, q). According to the 
lemma, for y < y. the symbol H,(y, <) will be positive, so that it can be used to 
define the norm 

(S > 

l/2 
I Cul I[$ = WY, W + Id2 + Ivl’)“lW ~11’ & . 

From the lemma and from condition (I) we easily derive the estimate 

(43) 

therefore (41) will follow from the inequality 

lCulI# G const IIPk Wl#, Y < yo. 

To prove (44), let us consider the quadratic form 

--IWYx; W, Qk W)#, 

where 

(44) 

(45) 

(u w)f$ = e2”d,‘(D)u~ dx. 7 
s 

If in the form (45) we freeze the coefficients of the operators P and Q, we shall 
obtain norms equivalent to (43). 

Under the conditions of the theorem, the form (45) admits an appropriate 
estimate: for y < ye(s) 

c-‘(lCu]l~~>” < --Im(P(x; D)u, Q(x; D>u)[;\ < c(l[~ll{~)~ 
Vu E H#. (46) 

Let us clarify the meaning of the estimate (46) in the simpler case s = 0. Let us 
consider the Hermitian form 

H(w, w) = Re(H,(x; y, D)w, w). 

According to the conditions of the theorem, the symbol HJx; y, 5) is positive, 
satisfies the constant strength condition, and, in view, of (IIa) for any B > 0 
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I@-%; Y, 511 < ~/?(YuM~~ Y9 e, 7 e@(Y)-4 y-, --oo. 

With these properties, the form H(w, w) can be estimated both from above and 
from below by analogous forms with frozen coefficients: 

c-'(fMy, D)w, w) G H(w, w) G C(Hp(Y, w, 4. (47) 

In case of estimate (39) this inequality was established by Girding, so that (47) 
can be regarded as an analog of the G&ding inequality for inhomogeneous 
quadratic forms. 

Let us go back to estimate (46). After the substitution w  = exp(yt)u and 
integration by parts, we can rewrite the form(45) as the sum of two forms: 

ww, w) + (W; Y, m, 4, (48) 

where, as a direct computation shows, 

From conditions (I), (IIa) we have an estimate for the symbol C: 

IW; y, 01 < dYW& Y, 0, E(Y) + 0, Y --) --oo. (49 

Standard techniques of PDO theory allow us to extend the estimate for the 
symbol to an analogous estimate for the form 

(ax; Y, w, w) < E’(Y)WAY, D)w, 4, E’(Y) + 0, y --, --co. 

Comparing this estimate with (47) and returning to the function u, we obtain (46) 
for s = 0. We note that no use of condition (IIb) was made. 

In the case s # 0, the form (45) can also be represented as in (48), but the second 
summand now will be a pseudo-differential quadratic form, and not a differential 
one as before. For its symbol we can also obtain an estimate of the type of (49). 
However, in the proof of this estimate both conditions (IIa) and (IIb) have to be 
used. 

From the lemma and from condition (I) we easily derive that 

IIQ(x, QMl# G cona lblI~$. 
The desired estimate (44) follows from this inequality and from the left of the 
inequalities (46). 

2.3. The Cauchy Problem in Spaces of Slowly Increasing (Decreasing) and 
Exponentially Decaying (Growing) Functions. First of all let us remark that 
under conditions of Theorem 2.2, the same argument delivers an estimate of the 
form (45) in the space H#t,,,. As a result we obtain the estimate 
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An analogous estimate holds also for P*. A trivial modification of Theorem 2.1 
leads to the following claim. 

Theorem. Let conditions (I), (IIa), (IIb) of Theorem 2.2 be satisfied. Then Vs, 
1 E Iw we can find a y2(s, 1) such that for y c yz(s, 1) equation (32) has a unique 
solution u E (H[$,,)+ for Vf E (H$&+. 

Corollary. Let @ = 9, 0,9”, 0, H(,, @). Let conditions of Theorem 2.2 be satis- 
fied. Then for Vc > 0 we have the space isomorphism 

P(x, D): @[O, c) + @CO, c). 

Remark. Under the conditions of Theorem 2.2 it is possible to prove energy 
estimates in the spaces H]Si;:l, the norms in which are defined by the PDO 
(iD, + Jl+lo,l”r x (1 + ID,,I’)r’*. Then, following the procedure of Section 
1.5, it is hard to obtain an isomorphism of the type of (27), that is, to prove the 
correctness of the inhomogeneous Cauchy problem in 9, 0, or in C{$‘, 1 E R. 

Conditions of Theorem 2.2 will still be valid if in them we replace the symbol 
P(x; 5) by P,(x; 5) = P(x; 5 + io), o E R”. Hence it follows that estimate of the 
type of (33), (34) will still hold if the weight exp(yt) is replaced by exp(yt + w. x). 
With the use of these estimates it is possible to establish solubility of the homoge- 
neous Cauchy problem in the scales &&,, of Section 1.6. From that, using the 
arguments of Chapter 2, it is possible to obtain solubility in spaces of expo- 
nentially growing functions. Due to lack of space, we do not go into these details. 

Next we shall give concrete applications of results obtained above to classes 
of exponentially correct operators considered in 0 3 of Chapter 2. 

2.4. Strictly Hyperbolic Operators with constant coefficients were defined in 
9 3, Chapter 2. The symbol P(x; r, q) is called strictly hyperbolic if for each x E R” 
the polynomial P,(z, q) = P(x; r, q) is strictly hyperbolic, that is, its homogeneous 
principal part P&x; r, q) has distinct real roots S(x, q), such that the root simplic- 
ity condition is uniform in the parameter x, that is, 36 > 0 such that 

IAj(x, V) - A*(x9 V)l > 61rll, x E R”, j # 1. (50) 

This definition can be restated in terms of the symbol HP (see estimates (39)). 

Lemma. The symbol P(x; 0, m = deg, P is strictly hyperbolic if and only if 
3c > 0, y0 < 0, so that 

c-~IYI(I~ + l~l)2m-2 G &(x Y, 0 < 4rl(l~l + It~l)*~-*, 
Y G Yo, 5 E R”. (51) 

Let us clarify this statement. If the symbol P is strictly hyperbolic, then, in view 
of the equality (42), 

HP& Y, 5) = -Y j$l lgj [(a - 4(x, lr))* + ~‘1. 

From (50) the inequalities (51) with y. = 0 follow for the symbol HpO. Noticing 
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that HP - HP0 is a polynomial in 5 and y of degree not higher than 2m - 2, we 
obtain (5 1). 

From the left inequality of (51) follows the estimate 

clrl(l7l + Irll)“-’ G I% 7, rl)l, Y G Yo, (52) 

from which the strict hyperbolicity condition (50) is easily derived. 
In the case of strictly hyperbolic symbols all conditions of Theorem 2.2 are 

fulfilled: (I) trivially follows from (52), while (IIa), (IIb) follow from (52). In the 
case at hand, Theorem 2.2 can be not only relined, but also supplemented by a 
converse statement. We have the following 

Theorem. The following conditions are equivalent: 
(i) The symbol P(x; 5) is strictly hyperbolic. 
(ii) For Vs E R there is y(s), such that for y c y(s) equation (32) has unique 

solution u E (H$)+ for Vf E I#)+. For this solution we have the estimate 

IYI II4 $Tmml) < const IjP(x, D)ull[$, y < yo, m = ord P. (53) 

Let us sketch the proof of (ii) +(i). If P(x; 5) is a homogeneous symbol 
independent of x, that is, P(x; <) = P,(t), then from the Parseval equality we 
derive inequality (52), and thus the condition (50). 

In the general case we construct, starting with f E (I$,“{)+ the sequence f, = 
.zemf((x - x0)/s) E (Ht$)+. According to (ii), to this sequence there corresponds 
a sequence of solutions u, E (H&$-‘) )+, for which we have estimate (53) with 
y replaced by y/s. Setting u, = u,((x - x0)/s), we see that u, E (@Tm-i))+ and 
that 

124 Ilu,II~Sy~m-l) G const Ilf II&. 
By this inequality the sequence u, is weakly compact in (Z$;S;“-l))+ and has the 
weak limit u E (H{yST”-l))+. M oreover, in the sense of distributions Po(xo, D) = f, 
so that we are reduced to the case we already considered above. 

2.5. 2b-Parabolic Operators. A symbol P(x; 5) is called 2b-parabolic if all the 
polynomials P,.(t) = P(x; r) are 2b-parabolic with the following (uniform in x) 
estimate for the roots: 

Im1j(x,~)>61~(2b, 6>0, q~lR”-‘, j=l,..., k. (54) 
Here Aj(x, q),j = 1,. . . , k, are the roots of the principal (2b, 1, . . . , l)-homogeneous 
part P,(x; <) of the symbol P(x; 5). As we mentioned in Section 3.3 of Chapter 
2, the number b has to be an integer. 

Lemma. Condition (4) of 2b-parabolicity is satisfied if and only if 3c > 0, 
y. < 0, such that 

c-‘(lrl + I?lZb)U71 + lv12b~2k-2 G 44x; y, 5) 

G 4lYl + 1112b)(171 + 1112b)2k-2, Y G Yo, r 6 UJi”. (55) 
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The estimate (55) is derived from (52) with the use of (42), From the left 
inequality of (55) it follows that 

424 + l~12b)(l~l + 1442b)k-1 G IW; 5 dl, Im z d yo. (55’) 
Though this is a weaker estimate than 

c,(bl + lvIZb)’ < IW; z, 41, Im z < yo, 
which follows from (54), (54) itself already follows from (55’). 

Conditions of Theorem 2.2 follow trivially from (55) and (55’). We shall not 
reline Theorem 2.2 for the case of 2b-parabolic operators, since we are going to 
formulate this refinement in a slightly more general setting. 

2.6. Pluriparabolic Operators. Let the variables be subdivided, as in Section 
3.7, into two sets: 5 = (a, q), (r = (or, . . . , a,) E R’ q E R”-‘. We prescribe weight 
2b to rr, and weight 1 to q, denote by P,(x; 0, q) the principal (2b, . . . ,2b, 1, . . . , l)- 
homogeneous part of the symbol P(x; 0, and let S(x, cr’, q), j = 1, . . . , k, CJ’ = 
((72, **a, a,) be the roots of P,,(x; (T, q) with respect to the variable cl. 

A symbol P(x; cr, q) is called strictly pluriparabolic if the symbol P(x; 0, 0) is 
strictly hyperbolic in the sense of Section 2.4 and 36 > 0 such that 

Im n,(x, (r’, q) > 61~1~~, Vx E IR”, Va’ E RI-l, Vq e CR”+. (56) 
Let us set Q(x; cr, q) = %(x; c, q)/&r, and 

%(x; Y, 8 = -ImCP(x; o1 + iy, c’, rl)Q(x; o1 + iy, o’, ~11. 
Lemmas 2.4 and 2.5 are particular cases of the following claim. 

Lemma. The symbol P(x; 0, q) is strictly pluriparabolic if and only if 3c > 0, 
y0 < 0, so that 

44x; Y, 5) 
‘-l ’ (y + Iq12b)(lvl + 1~1 + lq12b)2k-2 G ‘3 7 G 70, 5’ Iw”’ (57) 

This estimate is derived from the strict hyperbolicity of P(x; (r, 0) and (56) using 
(42). On the other hand, pluriparabolicity will already follow from the weaker 
estimate 

c(IYI + l~12bNlrl + 101 + lr112b)k-’ < IPk o1 + iy, cf, dl, Y d y. (57’) 
All the conditions of Theorem 2.2 follow from inequalities (57), (57’). Let us 
introduce all the spaces necessary in order to reline this theorem. 

Let US denote by H&G2b) the set of all u E H&03) having finite norm 
112 

IIuIgj-b) = 

(s 
(1 + l~12b)11(a, + iy - i(la’l + I~12b))“li(~I + iy, D’, v)12 d5 

> 
. 

Theorem. The following conditions are equivalent: 
(i) The symbol P(x; (T, q) is strictly pluriparabolic. 
(ii) For Vs E R there is y(s), such that for y c y(s) equation (32) has unique 

solution u E (I~Zffj~;~~))+ fir Vf E (H[;j”‘2b) )+. For this solution we have the estimate 
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Y dY0. 

This theorem is proved using the scheme of Theorem 2.4, and becomes that 
theorem for 1 = n; for 1 = 1 we obtain the solubility theorem for 2b-parabolic 
equations. 

2.7. Dominantly Correct Polynomials. Let us consider a symbol P(x; 5). For 
each x to this symbol there corresponds a polynomial P,(t) = P(x; 5) having a 
Newton polygon A&) and a polygon of lower order terms UPfX). The symbol is 
called dominantly correct if 

(i) the lower order polygons UPtX) are independent of x, that is, UPC,.) = 
ux UP(x) = 4. 

(ii) there exist y. E R and a function s(y) + 0 as y + -00, such that 

bkqBI < E(Y)IW; T, rN, KC E R”, Im 7 = Y < yo, 5 E R”, (k WI) E Up; 

in other words, the polynomials P,(t) satisfy conditions of Section 3.6 of Chapter 
2 uniformly in x. 

Dominantly correct polynomials satisfy all conditions of Theorem 2.2. The 
verification of these conditions is non-trivial. It is based on an equivalent descrip- 
tion of dominantly correct polynomials in terms of the symbol HP. Let us present 
this description. Let us write 

HP(Y, <) = -Im p(? v)Q(G ?) = c hjkpYiflk?B 
and let us denote by r, the convex polyhedron in !R3 stretched over all triples 
(j, k, IPI) such that hjkb # 0, and their projections on all coordinate planes and 
axes. 

Lemma. The polynomial P(z, ye) is dominantly correct if and only if the follow- 
ing conditions hold: 

(a) We have the estimate 

(b) For every monomial B = bzk$ (k, I/II) E U, and for every E > 0 there exists 
y(e, B) such that 

I&+tdy, 5) - fb(y, 511 -= E%(Y, 0, Y < ~6, J% 5 E UP. (58) 

(c) The polyhedron I$ c [w3 can be uniquely reconstructed from the lower order 
terms polygon U, c [w2. 

The idea of the proof of this lemma is to represent P as a product of a strictly 
hyperbolic and a 2bj-parabolic quasi-polynomials (see Section 3.6 of Chapter 2) 
and then to estimate the functions (42) for each of the factors. 

Remark. The polyhedron r’, can be given quite an explicit description. From 
this description and from inequality (58) we can derive the estimate 
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Hence follows an estimate for an operator with variable coefficients, 

(k,,gE”p I~W~lh w  Q E(y)llP(x; o,q& 

Thus, in the case of dominantly correct operators, equation (32) Vf E (H{$)+ 
has solution u belonging to (H[$)+ together with all its derivatives D:D,Bu, 
k WI) E UP. 

2.8. (26 + l)-Hyperbolic Operators. The symbol P(x; 5) is called strictly q- 
hyperbolic, where q = 2b + 1 if the polynomials PX(z, y) satisfy the conditions of 
Section 3.4 of Chapter 3 uniformly in x, that is, its (q, 1, . . . , 1)-homogeneous 
principal part P,(x; 5) has distinct real roots s(x, q) and there exist a,, 6, such 
that 

6) IS(X, 4’) - &(% ~)l > ~IvI’, k #j, X E R”; 
(ii) if q > 1, there is a direction N E W-l, such that 

(grad, ~j(X, q), N) > 6,Iq lqel, j = 1, . . . , k, x E FY’. 

As we mentioned in Section 3 of Chapter 2, a q-hyperbolic polynomial P(t, q) 
is correct in the sense of Petrovskij, as are all its shifts P(z, q + ivN), v > 0. From 
here follows the positivity of the symbol 

H,(y, v, 5) = -Im[P(a + iy, ye + iviV)Q(a + iy, q + ivN)] > 0 (59) 
under the condition 

v > vo, y < -Rvq, v. > 0, R > 0. (60) 

Moreover, a complete description of strictly q-hyperbolic polynomials and of 
strictly q-hyperbolic symbols (dependent on the parameter x) can be given in 
terms of (59). 

Lemma. The symbol P(x; 0 is strictly q-hyperbolic if and only $ there are vo, 
R, c, such that under the conditions (60) the following two-sided estimate holds: 

c-l < &(x; y, v, rl) 
CIYI + v(v + Irl)“-‘1Cl~l + (v + lrl)q12k-2 G c. (61) 

From the left inequality we also have the estimate 

cv(v + l~l)q-1(121 + vq + IIJI~)~-~ < IP(x; z, fj + ivN)I. (62) 

The estimate (61) also gives a clue to the derivation of energy estimates for 
q-hyperbolic differential operators. Let us consider the scalar product with 
weight exp(yt + v(y, TV)): 

(u, #‘%, = s exp(W + MN, ~))4(~)~4(~)~ dx, 
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where the symbol &(z, [) is defined as follows. In the space of variables y E Iw”-’ 
we change by rotation to variables { y,, y’}, where the direction of the { y, } axis 
coincides with N and y’ E Iwne2. Let (cl, c’) be the dual variables. Then we set 

Employing the procedure of Section 2.2, the estimate (60) allows us to obtain 
upper and lower bounds for the form 

in terms of the analogous form with frozen coefficients. Taking (62) into con- 
sideration, we obtain the a priori bound 

where we set 

l141’,s,lqAv, = II% u)~~,qt!N,l”2 W) 

replacing y by - y and N by -N, we can prove corresponding bounds for the 
adjoint operator P*. Following the scheme of Section 2.1, we can establish 
solubility of the homogeneous Cauchy problem (32) in spaces corresponding to 
left and right norms of (63). 

As the case q = 1 is included in the definition of q-hyperbolicity given above, 
we have estimates (63) (and the corresponding existence theorem) for strictly 
hyperbolic operators. Here as N we can take any N E Iw”-‘. Analogous results 
can also be established for 2b-parabolic operators. 

Results of Sections 2.4,2.5, and of the present section, can be combined to give 
the following general theorem. 

Theorem. The following conditions are equivalent for a differential operator 
P(x; D). 

(I) For Vs E Iw there exist constants vo(s), R(s), c > 0, such that for v > t+,(s) 
and y < - R(s)v’t, equation (32) has a unique solution u E (IYZ$!~~,)+ (here we denote 
by (H~~!vlvl)+ the space with norm (64)) for any right hand side f E (I$&,)+. For 
this solution we have the estimate (63). 

(II) Condition (A,) below is satisfied. 
(A,) q is a positive integer and 
(a) if q = 2b + 1, b > 1, then conditions (i), (ii) hold, that is, P is a strictly 

q-hyperbolic symbol, and N E V = nX V,, where V, is the q-hyperbolicity cone of 
the polynomial P(x; 5) (see Section 3.4, Chapter 2); 

(b) if q = 1, then we have (i), that is, P is a strictly hyperbolic symbol, and the 
vector N is arbitrary; 

(c) if q = 2b, then P is a 2b-parabolic symbol (see sectuib 2.5), and the vector 
N E R”-’ is arbitrary. 

In the appendix we present the precise analog of this theorem for the mixed 
problem. 
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Appendix 
The Mixed Problem 

Let a family of differential operators A(x; D), Bj(x; D), j = 1, . . . , CL, be given in 
a cylindrical domain Sz = G x R:, G c &I;-‘. A mixed problem (with homo- 
geneous initial data) is the problem of determination of a function u(t, y) from 
the conditions 

A(x; D)u(x) = f(x), x E 52; 

Bj(x; D)u(x) = Sj(X), j = 1, . . .) p, x E ac x Rf, 

where aG is the boundary of G: 

(1) 

(2) 

U(t, y) = gj(t, y) = f(t, y) = 0 for t < 0 (3) 

As the mixed problem is of interest in a “curved” domain, it is natural to make 
an isotropy assumption in space variables for equations under consideration. 
Since the Cauchy problem enters as an ingredient of the mixed problem, it is 
natural to construct a theory of the problem (l), (2), (3), in the spaces of functions 
considered in this chapter. However, even this framework is too general for the 
mixed problem. We shall restrict ourselves to three classes of differential opera- 
tors: 2b-parabolic, strictly hyperbolic, and q-hyperbolic (for some details see 
Volevich and Gindikin [1980]). Well posedness results for the mixed problem 
can be stated in one unified theorem, which is exactly what we are going to do. 

For simplicity, we restrict ourselves to the case when G is the half-space 
(N, y) 2 0; the points of the plane (N, y) = 0 will be denoted by x’, and the 
dual variables by 5’. In other words, we set 5 = 1N + <‘, and shall write 5 = 
(A 5’). 

Let condition (A,) of Theorem 2.8 be satisfied. Let us consider the polynomial 
A,(1) = A,(t, x’; 7, 5’ + AN), where A, is the principal (q, 1, . . . , 1)-homogeneous 
part of A. 

Condition (B,). The polynomial Ao(A) has the form 

A,(1) = u(t, X’)P + o(P-l), la@, x’)l > a > 0 

and has no real zeroes for y -c 0. 

Let m, be the number of zeroes of A,(1) in the half-plane f Im I > 0 (m+ is 
independent of t, x’, y, 0, 5’ by (B,)), and let A,(1) = ,4,+(,4)&j(L) be the corre- 
sponding factorization. 

Condition (CJ. m, = p, where p is the number of boundary conditions (2). 

Now we only have to impose conditions on the boundary operators. Let us 
denote by Boj the principal (4, 1, . . . , l)-homogeneous part of Bj, and let Boj(A) = 
Boj(t, x’; 7, r’ + AN). 
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Condition (0,). The polynomials {Boj(;l)}, j = 1, . . . , p, are independent 
mod A:(A) uni$ormly with respect to (t, x) E Iw”, y < 0, and lo/ + IyI + 15’lq = 1. 

Remark. For q = 2b, condition (0,) becomes the Lopatinskij condition for 
parabolic equations, which was introduced by Zagorskij, and refined and gener- 
alized by Agranovich and Vishik [1964], Ejdel’man [1964], and Solonnikov 
[1965]. 

For q = 1, we have the “uniform” Lopatinskij condition introduced by Agmon. 
This condition was generalized in the works of Sakamoto and Kreiss. 

For q = 2b + 1, this condition was introduced in Volevich and Gindikin 
[1980]. 

Let us introduce the spaces necessary for the study of the mixed problem. Let 
H~$,${ be the space of distributions with the norm 

(s 
jto Ii + iP(l~l’~q + 15’1) 

> 

l/2 
2(‘+s-J31t2(~, t’ + 1N + ivN)12 da d<’ . 

Let H,‘~;$,(lR~) be the space of restrictions to the half-space IR+ = {(t, y), (y, N) > 
0}, equipped with he induced norm, which we denote by 11 [I~;,‘$$. On the plane 
(N, y) we define the space H#) with the norm 

> 
112 

(1~1~‘~ + l~‘1)2”l&, <‘)I2 do d5’ . 

Theorem. For the problem (l)-(3), the following conditions are equivalent: 
(i) t/s E Iw, there are v(s), R(s), c(s) > 0, such that for v > v(s), y < - R(s)vq for 

Vf E (H/~~~~Iq))+ and all gj E H~~‘&-‘j’“’ (pj is the (q, 1, . . . , 1)-order of Bj) there 
exists unique solution u E (H$$/)+ of the problem (l)-(3). Moreover, 

(N, DY’uI<~,~>=~ E H;yn;+‘--jq) 

and the energy estimate 

44 
[ 

m-l 

wll~“;,$92 + jgo ({(N, D)ju}$-‘+S-Bjlq))2 1 
Q i 

( 
IIA(X, D)UIlfSy~l&‘q))2 + jto ({Bj(X, D)U}j~+S-Bj’q) 

> 

2 

holds. 
(II) Conditons (A,), (I?,), (C,), (0,) are satisfied. 

The proof of (I) *(II) is based on energy bounds for the original and for a 
certain “allied” problems. To prove (II) *(I), we first derive (I) for a problem I 
with frozen coefficients, after which everything is reduced to the study of ordinary 
equations with constant coefficients. A detailed discussion of this theorem is to i 
be found in Volevich and Gindikin [ 19801. C 
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Introduction 

In the general theory of equations of elliptic and parabolic type much attention 
is devoted to questions of existence and uniqueness of solutions to various 
problems. In contrast, in the qualitative theory of these equations it is assumed 
that the solution of the problem at hand is given a priori, and one considers the 
question of what conclusions can be made about the properties of solutions. 

In the context of harmonic functions and of solutions to the equation of heat 
conduction, such questions have been studied for a long time. The simplest and 
the most representative result in this direction is the maximum principle. Ques- 
tions such as the validity of Harnack’s inequality, of Louiville’s theorem for 
harmonic functions, of Holmgren’s theorem stating that solutions of the heat 
equation belong in a certain Gevrey class, also fall in this domain. In the early 
twenties Wiener obtained his well-known criterion of boundary point regularity. 
In the early thirties Carleman showed that solutions of elliptic systems with 
simple characteristics in the plane have the same uniqueness properties as analytic 
functions. 

All these questions can be considered as belonging in the qualitative theory. 
However, it was only in the mid-fifties that the qualitative theory came into being 
as an independent field. Its emergence was partially connected with the fact that 
after the appearance of Petrovskij’s works on classification of systems, the general 
theory of equations of various types started developing rapidly. This theory was 
mostly concerned with questions of existence and uniqueness, and thus a need 
appeared to find an appelation for the branch of theory dealing with other 
questions. 

The papers of Heinz [1955], Cordes [1956], and Landis [1956b] dealing with 
questions of the connection between uniqueness of solutions to equations not of 
hyperbolic type and their vanish rates, as well as theorems of the Phragmen- 
Lindelof type (Landis [1956a], Lax [1957]) appeared in the early fifties. These 
works had numerous extensions. At that time the name “qualitative theory of 
elliptic and parabolic equations” (in analogy with the qualitative theory of 
ordinary differential equations) came into use. 

In this survey we want to give an up to date description of the state of this 
field. We shall mostly present the work of the last lo-15 years. Moreover, we 
shall deal not only with the results obtained, but also with some of the methods 
used to obtain them. Having in mind the space limitations of this survey, we 
consciously refrained from covering too wide a range of works in this field, as 
just a complete listing of these works would have turned the present survey into 
not more than a bibliographic handbook. Such a handbook might be of some 
use, but in the case of key theorems we wanted not only to present their statement, 
but also to explain as far as possible the methods used in the proof. Moreover, 
we wanted to present in a sufficiently detailed manner some recent work that we 
consider important and that had not appeared in monographs. 
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The study of higher order equations, naturally, has the character of generaliz- 
ing results pertaining to second order equations. However, not all the results 
obtained for second order equations can be extended to cover the case of 
equations of higher order, and not all the methods used to study second order 
equations can be applied to higher order ones. Therefore we restrict ourselves to 
second order equations, even though higher order ones are doubtless no less 
interesting and are encountered in applications. 

The work comprises two chapters, the first of which deals with elliptic equa- 
tions, while the second deals with parabolic equations. 

Each of the chapters is subdivided into three paragraphs: equations in non- 
divergence form, equations in divergence form, and equations with smooth 
coefficients. 

In physical problems, second order elliptic (parabolic) equations appear in 
such a form, that their principal part is in divergence form, div(A grad u). CoelIi- 
cients of the matrix A do not have to be smooth functions. Lately the require- 
ments of mechanics, and from inside mathematics, of probability theory, have 
led to the need for considering matrices A with coefficients that are non-smooth, 
for example, just measurable. In these cases solutions are of course to be under- 
stood in a generalized sense: they are to belong to a natural energy space. Thus 
6 2, Chapter 1 and $2, Chapter 2 are devoted to the study of qualitative properties 
of solutions of such equations. 

In 0 1, Chapter 1 we consider elliptic equations in non-divergence form, under 
no restriction on the coefficients apart from the uniform ellipticity condition. At 
first glance it would appear that such equations constitute an exotic object of 
inquiry. However, the significance of theorems proved in that paragraph lies in 
the following: let the coefficients of the equation at hand be smooth (C’ for 
example), and we have to find estimates on solutions that do not depend on 
derivatives of the coefficients, but only on the ellipticity constant of the operator. 
This allows us to use the method of Leray-Schauder to prove solubility of 
nonlinear equations. The same can be said about parabolic equations (4 1, 
Chapter 2). 

We use consecutive numeration of formulae in each of the chapters. For 
theorems, a dual system is used: chapter number followed by the number of the 
theorem in the chapter. 

We tried to make the various chapters and even paragraphs independent of 
each bther. This led to the same equation being identified sometimes by different 
numbers in different places. 

We use well established notation for the classical Sobolev spaces and for spaces 
of continuously differentiable functions, as well as for the functions, k-th deriva- 
tives of which satisfy the Holder condition. Let us only note that in our work the 
space W$‘) is denoted by W’. 
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Chapter 1 
Second Order Elliptic Equations 

5 1. Equations in Non-divergence Form with 
Measurable Coefficients 

In this section we shall consider operators of the form 

where x = (x1, . . . , xn), uik(x) = uki(x), and all the coefficients of the operator L 
are assumed to be measurable functions. The operator L is called elliptic at a 
pointxER”ifthematrix/aik(x)I),i,k=l,... , n, is positive definite. The operator 
L is called elliptic in a domain G c R”, if it is elliptic at every point of the domain. 
L is called uniformly elliptic in G if there exist constants 1 > 0, M > 0, such that 

C(X) < M, Ibi(X)l < M, luik(x)l < M, i, k = 1,. . . , n, x E G. A function U(X) E C’(G) 
satisfying the equation 

Lu=f (3) 

is called a solution of this equation. Let us note that sometimes solutions 
u(x) E WP2(G), which satisfy (3) almost everywhere, are considered. 

We call a function u(x) E C2(G) which satisfies the inequality Lu < 0 (Lu 2 0) 
superelliptic (subelliptic). 

Note that if bi E 0, i = 1, . . . , n, c E 0, u(x) is a subelliptic function and the 
function f(t), defined for inf u < t < sup u, satisfies the conditions f’(t) 2 0 and 
f”(t) > 0, then the function w(x) = f(o(x)) is also subelliptic. 

An important role is played by subelliptic functions of the form 

1 
44 = Ix _ xoIs’ 

where s is a large enough positive constant. The function u(x) is necessarily 
subelliptic if 

s 2 n(12 + M) - 2, c(x) = 0. 

1.1. A Maximum Principle. The following statements are well known, and 
their proofs are completely elementary. 

Theorem 1.1. Iffor a uni$ormly elliptic operator the coeficient c(x) < 0, and u(x) 
is a solution in a bounded domain G, then 
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sup 24 < max 0, sup lim u(x) , 
G ( -i- > xg E ac x+.x0 

inf u 2 min 0, 
G ( 

inf 14 u(x) . 
xg E ac X-+X~ > 

Theorem 1.2. Iffor a uniformly elliptic operator the coefficient c(x) < 0, and u(x) 
is a subelliptic (superelliptic) function in a bounded domain G, then 

sup u d max 0, 
G XDE aG X’XO 

inf u 2 mm 0, 
G ( 

inf la u(x) . 
xg E aG x+x0 > 

In particular, if u(x) is continuous in G then maxc u = maxaG u (mint u = minaG u). 

Theorem 1.3. Zf for a uniformly elliptic operator the coefficient c(x) < 0, and 
u(x) is its subsolution in G which reaches a negative minimum at a point x0 E G, 
then 

u(x) = const. 

If there are no restrictions on the sign of the coefficient c(x) then, naturally, 
there is no maximum principle. However, for domains of small diameter or, in 
greater generality, for domains contained in a sufficiently narrow layer, the 
following weakened version of the maximum principle is true. 

Theorem 1.4. For every E > 0 there is a 6 > 0 which depends on E, I, and M, such 
that if the domain G is contained in the layer [xl1 c 6, and if u(x) is a subelliptic 
(superelliptic) function for a uniformly elliptic operator L, then 

sup u < max 0, (1 + E) sup lim u(x) , 
G - > xg E aG x+.x0 

infu 2 
G 

min 
( 

0, (1 + c) inf lim 
x0 E ac x-+x0 

Indeed, let us set u = v(1 - Kxf). Choosing K sufficiently large, we see that 
if 6 is small enough, 1 - Kx: > 0 in G and v satisfies the inequality L’v 2 0 
(L’v < 0), where L’ is an operator of the same form as L, but with a non-positive 
coefficient of v. Therefore, the maximum principle applies to v. Taking 6 small 

1 
enough so that 1 - Kxf > -, 

l+s 
we obtain the statement of the theorem. 

Let us now consider a solution of equation (3) and let us try to estimate 
maxG [u(x)1 in terms of 5 It is not hard to obtain an estimate of maxB [u(x)/ in 
terms of sup, If I. However, such an estimate is too rough. A considerably more 
relined one is given by a theorem due to Aleksandrov (Aleksandrov [ 19661). 



Chapter 1. Second Order Elliptic Equations 93 

Theorem 1.5. (A.D. Aleksandrov). Let c(x) < 0 in the operator L, and let u(x) 
be a solution of equation (3) in a bounded domain G, which is continuous in G and 
satisfies the condition u(x)lac = 0. Then 

where C is a constant which depends on 1, n, M, and on the diameter of the domain G. 

We give here a proof of this theorem in the case b,(x) = c(x) = 0. In the general 
case the proof is in principle the same, but requires a number of technical 
modifications. 

Let maxBIu(x)l = lu(xo)l = M, x0 E G, with R being the diameter of G. With- 
out loss of generality, we can assume that u(xa) < 0. Let us denote by E the set 
of points x E G such that u(x) < 0. For each p E R” with 

IPI < M/R, (5) 

let us consider the n-dimensional hyperplane z = (p, x) + C in the (n + l)- 
dimensional space (x1, . . . , x,, z), which supports from below the graph of the 
function z = u(x). In view of condition (5), the set H of points x’ E E, for which 
u(x’) = (p, x’) + C, is non-empty. In each of these points the second differential 
is non-negative definite. Let us consider on this set the gradient mapping x + 
grad u(x) = p. The image of H under this mapping contains the ball IpI < M/R. 
The Jacobian of this map is given by det IluXiX,(x)ll i, k = 1, . . . , n. Taking into 
account the fact that the Hessian Ilu.&x)ll i, k = 1,. . . , n is non-negative definite, 
we obtain 

where 9, is the volume of the unit ball. 
We have 

s det Il~,&Nl dx = det IIu,~~,C~II -det Ilaik(X)II dx 
H s H det II aik(X) II 

= 
s 

deW,&)ll * Ilaik(X)II) dx 
H det Ilaik(x)ll 

< 1” 
s 

det(llasII * II~x,x,ll) dx = 1” 
f 

H ,Q /4x) dx, (6) H 
where pi(x), . . . . p,,(x) are the eigenvalues of the matrix llail,II . IIuXiXkll. As the 
matrix IIai~ll is positive definite, and the matrix IIu.+.~ll is non-negative definite, 
we obtain that pi 2 0, i = 1, . . . , n. (In fact, by positive definiteness of IIaikll, 
both matrices can simultaneously be reduced to diagonal form.) From non- 
negativity of pi(x) it follows that 
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‘In 

= l/n C Qik(X)xiUxixk = fW/n. 
i,k=l 

From this inequality and from the inequality (6) we obtain that 

P( l/n) 
s 

VW dx 2 W4 G s 
Ifl” dx 2 fwm H 

or 
M < lR/n(Q,)““IlfnllLn 

which had to be shown. 0 

(7) 

0’5) 

(9) 

1.2. The Two-dimensional Case. The case of two variables occupies a special 
place in the theory of elliptic equations. In this case, on one hand a number of 
theorems are, naturally, simplified, while, on the other hand, some phenomena 
specific to this case, occur. 

In the case n = 2 the maximum principle by itself allows one to obtain 
theorems on the qualitative behaviour of functions. We shall say that a contin- 
uous function z = f(x, y) has a graph of non-positive generalized curvature if for 
every function z = ax + by + c neither of the sets {(x, y):f(x, y) > ax + by + c} 
and ((x, y):f(x, y) < ax + by + c} contains connected components belonging to 
the domain of definition of the function (that is, a “cap” cannot be cut by any 
plane from the graph of the function). 

The following theorem was obtained by Adel’son-Vel’skij [1945]. 

Theorem 1.6. Zf z = f(x, y) is a continuous function with a graph of non-positive 
generulised curvature defined on all of R2, then either the graph of z = f(x, y) is a 

- 
cylinder or hm max If (x, y) I/r > 0. 

r+co ( .++y2=r* > 

In particular, the two-sided Liouville theorem holds for a non-cylindrical 
function f(x, y) with a graph of non-positive generalised curvature, that is, if 
I f(k, y)l < M on R2 then f(x, y) - const. The one-sided Liouville theorem is false 
as shown by Bernstein: the functions u = eX-Y2 is a solution of the equation 
2(1 + 2y2)u,, + 4yuXy + uyy = 0, and it is non-negative. 

The following formulation (due to Gerasimov, see Landis [1971]) of a 
Phragmen-Lindeliif type theorem holds for functions of two variables with a 
graph of non-positive generalised curvature. 

Theorem 1.7. Let f(x, y) be a continuous function with a graph of non-positive 
generulised curvature, defined in the half-plane y 2 0 and such that f(x, 0) < 0. 
Then either f(x, y) < 0 for y > 0 or 

- 
hm > 0. w-8 r+co ,2yy;1,2 If (x3 Y) I/r 

> 
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These theorems cannot be extended to functions of a larger number of vari- 
ables. A counterexample to Theorem 1.6 has been constructed for n > 3 by Hopf 
[ 19291. 

A slight modification of this example provides also a counterexample to 
Theorem 1.7 for n 2 3. 

In the proofs of Theorems 1.6 and 1.7 topological properties of the plane are 
extensively exploited. 

In the planar case of equations in non-divergence form with discontinuous 
coefficients and satisfying the uniform ellipticity condition (2), Nirenberg obtained 
an internal estimate of the Holder norm of first derivatives of the solution. 
Nirenberg’s method is presented in detail in the monograph of Ladyzhenskaya 
and Uraltseva [1973]. 

In the case of many variables this result is false. More than that, Safonov 
[1987] has shown that for any a > 0 a sequence of equations L,u = 0 of form 
(1) can be constructed in a domain 52 c R”, satisfying condition (2) with the same 
constant A, and having solutions u&) for which 

sup W’) - W”)l > c sup ,Uk, 

xs;IF;‘E/ Ix’ - X”V ’ k R ’ 

and, moreover, C, + co. 

1.3. The Inward Directional Derivative Lemma 

Lemma 1. Let Q be an open bull in Iw” of radius R let c(x) E 0, and let u(x) be 
a continuous function on Q, which is subelliptic (superelliptic) in Q. Let us assume 
that u(x) reaches its maximum (minimum) at a point x0 E aQ and that moreover in 
the interior of Q the function is strictly less (larger) than u(xo). Zf a vector 1 based 
at x0 is directed inward into Q, then the lower (upper) derived number of u at x0 is 
negative (positive). 

The proof is completely elementary. One uses for sufficiently large s the barrier 

function u(xO) * E 
( 

I I 
~ - - 
/x - ~‘1’ R” > 

in the layer Q \ Q’ where Q’ is a ball concentric 

with Q and x’ is the center of the ball Q. 
Immediate corollaries of this lemma are the strong maximum principle and the 

uniqueness theorem for solutions of the Neumann problem in the following 
version. 

Theorem 1.8. Let G c Iw” be a bounded domain such that for each boundary 
point x0 a ball Q”” tangent to X at x0 can be inscribed into G, and let u(x) be a 
solution of equation (3) which is continuous in C? and satisfies the conditions 
at&l,, = 0, where the vector v is directed into Q”“. Zf c(x) = f(x) - 0, then 
u s const. 

The condition requiring every boundary point to be a tangency point for an 
inscribed ball is a restrictive one. A number of authors made efforts directed at 
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proving Lemma 1 of 9 1.3 under less stringent restrictions on the boundary of 
the domain. The following problem was considered: let the origin belong to aG, 
and let the “paraboloid” 

lie in G; under what conditions on 4(t) at 0 is the statement of the Lemma of 9 1.3 
valid? In Kamynin and Khimchenko [ 19721 it is shown that for 4(t) one can take 
the function d(t) = t h(t) where h(t) is a continuous monotone decreasing function 
such that 

‘S “ho&<co 
ot ’ 

h(0) = 0. (11) 

It turns out that condition (11) cannot be improved. It is shown in Kamynin and 
Khimchenko [1972] that if 

s a h(t) _ dt = co, 
0 t 

h(0) = 0, 

there exists in II a harmonic function which is continuous in n, positive in II, 
zero at 0 and such that 

iTU/dXn~,=O = 0. 

Thus, uniqueness of solutions of the Neumann problem for equation (3) holds 
for a bounded domain, each of boundary points of which can be touched from 
inside the domain by the vertex of a paraboloid congruent to II with 4(t) = 
t h(t), where h(t) satisfies condition (11). 

The question of uniqueness of solutions of the Neumann problem in the 
classical formulation remained unresolved for a long time. This formulation is: 
given that G is a bounded domain with a C’ boundary, and that U(X) is a function 
harmonic in G, continuous in G and having at each point of boundary zero 
normal derivative, does it follow that u = const. The solution of this problem, 
known as the Lavrientiev-Keldysh problem, has been obtained by Nadirashvili 
[1983] in a considerably more general setting. We quote here the statement and 
the proof of Nadirashvili’s lemma from which uniqueness of solutions to the 
Neumann problem will follow. The essence of this lemma is that although at an 
extremum point the derivative of a solution of equation (3) with c(x) < 0, f = 0, 
in a direction which is not tangent to the boundary, can be zero, in any neighbor- 
hood of such a point there exists a point at which this derivative is non-zero. 

We shall say that a bounded domain G c R” has a boundary satisfying the 
cone condition if there are numbers H > 0, a,, 0 < a, c 742 and a continuous 
vector field on 8G such that for every point x E aG a cone of height H with vertex 
at x, opening angle SLY, and with the axis directed along v(x) is contained in its 
entirety (except for the vertex) in G. In particular, the cone condition is satisfied 
by a domain with a Lipschitz boundary. 
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Lemma 2 (N.S. Nadirashivili [1983]). Let G c R” be a bounded domain satis- 
fying the cone condition. Let us consider a superelliptic (subelliptic) function u(x) 
which is continuous in Gand non-constant. Zfx’ E G and u(x) > u(x’) (u(x) < u(x’)) 
for all x E G, then in any neighborhood 52 E aG of the point x’ there is a point 
x” E aG such that 

au i% 
where - 

0 
- & a0 is the lower (upper) derived number of the function u in the direc- 

tion of the vector v. 

The proof is based on the following elementary lemma from function theory. 

Lemma 3. Let f(x), g(x) be functions on the interval [0, /3] such that f(0) = 0, 
f(x) > 0 for all x E (0, /I), f  (x) is lower semicontinuous on [0, /?I and the lower right 
derived number off at 0 is zero; g(x) is in C1 [0, j?], g(0) = 0, g’(x) > 6 > 0 for all 
x E [0, B]. Then there exists a continuous function h(x) defined on (0, g(B)), that 
is twice difirentiuble on that interval, such that h(x) > 0, h’(x) > 0, h”(x) 2 0 for 
all x E (0, g(p)), and such thut h(g(x)) <f(x) on (0, /?). Furthermore, h(g(x,)) = 
f(x,) where x, E (0, 8) is a sequence such that x, + 0 us m + co. 

Proof of Lemma 2. We break the proof into a number of steps. 
a) Let u be a superelliptic function, u(x’) = 0. Let us set E = {x E c: u(x) = O}. 

By the maximum principle, E c aG, u(x) > 0 for x E G. Let us show that there 
is a ball Q:;, Q;,” n E # 0, and such that there exists x1 E IR n E n S:t satisfying 
the condition (x0 - x1, v(xr)) > 0. 

By assumption there exists a cone of height H with vertex at x’ and axis 
directed along v(x’), which is completely, apart from the vertex, contained in G. 
Let us denote it by K. We can assume (making, if needed, a linear transformation, 
and choosing a smaller H) that the opening angle of the cone is larger than 37r/4. 

Let us choose r’ > 0 small enough so that aG n G$ c Q. In view of the 
continuity of the vector field v, there exists r”, 0 -E r” < r’ such that for all 
x E aG n Q:: the angle between v(x) and v(x’) is less than n/8. Let us select any 
ball Q c K n Qs and let us translate it along the axis of the cone K so that it 
touches the set E n Q$. The resulting ball clearly has the desired property. 

b) Let us set r, = min(r,/2, 1). In the ball Q:o, consider a radius connecting the 
center x0 and the point x1, and let us take on that radius a point x2 which lies 
at a distance r, from x1. Then the (open) ball Q:,’ is disjoint from E, while the 
sphere SF; intersects E in only one point x1. Moreover, (x2 - x1, v(xl)) > 0. 

c) If there exists an E > 0 such that Q:; n Q:l contains no points of aG, then 
Q:; n Q:’ c G, and then the boundary point x1 can be touched from inside the 

domain by a small enough ball, so that, by Lemma 1, F 
a_v x=x, 

> 0. Let us assume 

now that for any E > 0 the set Q:,’ n Q:l n aG is non-empty. 
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d) Let us set A(<) = S&n aG. Let us define on the interval [0, r,/2] the 
function f(5) by setting 

f@2/2) = min 44; f(5) = min 44, 5 E CO, r,/2), S:$“G xEA(‘3 
if A(<) is non-empty. In all the other points we set f = max U. As the set of 5 for 
which A(<) = @ is open, f(t) is lower semicontinuous. 

e) Let us assume that f:(O) = 0. For s sufficiently large the function Ix - yl-“, 
as a function of x, is subelliptic for 0 < Ix - yl < 1. Let us fix such an s. Set 

1 
g(5) = (5 _ rz)s 

1 
z. The functions f and g satisfy the conditions of Lemma 3. 

Let us find the corresponding function h and the sequence 5, + 0, 5, > 0, 
h(g(&,,)) = f(&,,). Then there exists a sequence z,, z, E Q:,’ n aG, Iz, - x1 I + 0, 
h(lz, - xzlp - rTs) = u(z,). The function h( Ix - xzIVs - 11’) is also subelliptic, 
and by the maximum principle h(lx - xzIPs - 12’) < u(x) in G n (QjY,‘\Q&). In 

a au 
a neighborhood of x1 we have - h( Ix - xl;” - rJ > 0. Therefore - do au x=xm 

>o 

for all m starting with some m,. 
f) f:(O) = 6 > 0. In this case we can choose an E > 0 such that E(IX - xzI-’ - 

1;‘) < uinGn(Q;;\Q$). Ask(lx -~~/-~-r;~)l~=~, >O,$ > 0. Lemma 
- x 

= 
x, 

2 is proved. 0 

1.4. A Growth Lemma. In this section we consider a technical lemma known 
as the “growth lemma” which is useful in applications. Let us assume that an 
open set D is contained in the ball Q&, 0 c R < l/4, such that its intersection 
with Q? is non-empty. Let a solution of the equation Lu = 0 be defined in D and 
let moreover c(x) < 0. If u is continuous in 0, positive in D and u = 0 on that 
portion of aD which is strictly contained in Q& then by the strong maximum 
principle maxjj u > rnaxDTO u. Let us try to estimate 

To do that some restriction must be placed on the structure of the domain 
under consideration. Let H = Qz\D. Then the larger is the ratio of the measure 
of the set H to the measure of Q?, the larger is h. 

Next we state the growth lemma. Let us use the following notation: D c Q& 
0 < R < l/4 is an open set, H = Q$'\D, r = aD n QTj, and u(x) is the solution 
of the equation Lu = 0 which is positive in D and zero on r. Then 

where 5 is a positive function, which depends on the ellipticity constants of the 
operator. 
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This lemma was proved by Krylov and Safonov [1979,1980]. Here we present 
the main steps of the proof, restricting ourselves to the case hi(x) = c(x) = 0. The 
presence of lower order terms (and they are present in works quoted above) 
introduces non-essential complications in the proofs. 

a) Let H contain the ball Q;‘, where p is of the same order of magnitude as 
(meas H)l’“. 

Let us consider the function l/lx - ~‘1’. The number s can be chosen so that 
this function is a subsolution of the equation Lu = 0. Let M = maxD U. Let us set 

We see that I/ > u in D. Therefore 

proves the lemma in this case: here < = ($(; - 4). 

b) Let us now consider the case of D of small measure. Namely, we shall show 
that there exists a 6 > 0 depending on I and n, such that if meas Dlmeas Q$’ < 6, 
then maxn u > 2 maxDnOpO u. 

We shall assume that the functions aik(x) are continuously differentiable. It 
will turn out that the number 6 will depend on 1 and n only, and not on the 
magnitude of derivatives of the coefficients of the equation. A simple limiting 
procedure allows us then to remove all restrictions on the smoothness of the 
coefficients. 

We can assume that meas r = 0. In the opposite case, we could consider 
instead of D the set D' = (x E Q& U(X) > E}, E > 0 and instead of u(x) the 
function u’(x) = u(x) - E for E arbitrarily small. If meas r = 0, there exists an 
open set D, such that D c D,, and meas D,/meas Q? c 6. Let us construct a Cm 
function f(x) such that 

nl . 
fcx) = 8RZ lfx E D’ 

0 ifxE Q2\D,,, 

and 0 > f(x) > -$ for x E (Do n Q$')\D. 

Let us solve in the ball Qi& the Dirichlet problem, 

Lu =f, l&g = 0. 

Smoothness of coefficients was needed for existence of solutions to this problem 
(Miranda [1970]). By Theorem 1.5, 

IUI < a”“. 

Let maxn u = M. Let us set w(x) = M (x - XOY 
(4R)’ 

+ u(x) + l/4 
> 

. It is easy to see 
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that Lo(x) < M 
(nl. 4 

8RZ + f( ) < 0 in D. The statement of the lemma now follows 

from the maximum principle applied to the function o - u in D. 
c) Let us move on now to the general case: let meas H be an arbitrary number 

less than meas Q&. 
By a similarity transformation the equation under consideration is trans- 

formed into an equation with the same ellipticity constant ,l., and therefore it is 
sufficient to consider the case R = l/4. 

Let the number h be such that meas(ZZ n Q;B-,,) = (meas H)/2, u1 = 1 - 
u/maxn u. We have to prove that there exists a G = a(meas H), such that 
inf--- QI;p,,D vi 2 e. Let H = H,. Let us set Q&.,, n H, = Z$’ so that meas ZZY = 
(meas H,)/2. Let x be a point of density of the set ZZ! and let r, be the largest 
number not exceeding h such that meas(QtX\ZZi,) < 6r,“, where 6 is the constant 
from part b). 

Two cases can occur: 1) r, < h and 2) r, = h. In case 2), by part b) we conclude 
that u1 Ipl: > l/2, and then by part a) v1 ID,,Q;P4 > cr where 0 depends on 1 and h, 
that is on L and meas H. The lemma is proved. 0 

Let case 1) hold for all points x E Z$‘. Then meas(Q:_\H,) = 6~:. All of the set 
Z!ZF is covered by balls QfX, x E @ for which this equality holds. Let us select, 
using the Banach procedure, either a finite or a countable number of pair- 
wise disjoint balls, the sum of measures of which is larger than meas Hy/5” = 
meas H,/(2.5”). Let these balls be Q1, . . . , Q,, . . . By part b) 

UIIQ,\H1 ’ l/2. 

Let us set u2 = 2u,, D, = {x E D: u2 < l} and H, = Q;y4\Dz so that 
meas H, > meas H, (1 + d/(2.5”)) = meas H( 1 + 6/(2 * 5”)). 

We now repeat the same argument substituting u2, D,, and H,, respectively, 
for ul, D,, and H, . We shall find u3 = 20, = 2%, D, = {x E D: u3 < l} and 
H, = Q)lik\D3 such that 

meas H3 > meas H( 1 + d/(2. 5”))2, 

if case 1) holds, or, if case 2) holds, the lemma will be proved. Continuing this 
process, we shall obtain uk, Dk, Hk such that ok = 2’u1, Dk = (x E D: uk c l}, 
Hk = Qf%\& d an meas Hk > meas H(l + 6(2 * 5”)r-I. But Hk c Q& and there- 
fore this process must terminate after a finite number of steps k,, which depends 
on 6, meas H, and h, that is, on meas H, 1, and n. On the other hand it will not 
terminate before meas(Q$\H,) = 0. Thus ukOIQ;finD > 1, or u,[~;~,-,~ > 1/2ko, 
that is, 0 = 1/2k~, and the lemma is proved. 

From the growth lemma we can deduce a-priori estimates of the Holder norm 
and the Harnack inequality (for equations (2) in non-divergence form with 
arbitrary coefficients they were first obtained by Krylov and Safonov [1979, 
19801 in papers quoted above). 

Theorem 1.9 (Holder norm estimate theorem). Zf u(x) is a solution of the 
equation Lu = 0 in a domain G c Iw”, then for any subdomain G’ compactly 
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embedded in G, there exist a > 0 depending on 1, u, and n, and C > 0 depending 
on the distance of G’ from aG, such that 

b(x) - U(Y) 
Ix - Yl” 

< c sup u 
G 

(13) 

for all x, y E G’, x # y. 

This theorem is a direct consequence of the following oscillation theorem. 

Oscillation Theorem. Let a solution of the equation Lu = 0 be defined on Q?, 
R < R,. Then 

oscu>(l +rj)oscu (14) 
QR QRi4 

where n > 0 depends on 1, M, n, and R,. Zf bi = c = 0, the restriction R < R, can 
be removed and n depends only on A and n. 

Proof. We shall assume that bi z c = 0. Let us Set supQgfi u - infQ;;p, u = d, 
and v = infQ;;p, u - d/2. Let furthermore Ef = {x E Q;P: v 3 0} and E- = 
{x E QX$: v < O}. At least one of the sets E+ or E- satisfies the condition 
meas E+(-) > (meas Q&)/2. Let it be E-. Then, by the growth lemma supQI v > 
(1 + t)d/2, or oscp, u > (1 + </2)d. 0 

As we already stated in 0 1.2, Safonov (Safonov [1987]) showed that the 
constant a in Theorem 1.9 can turn out to be arbitrarily small. 

Theorem 1.10. (the Harnack inequality). Let a positive solution of the equation 
Lu = 0 be defined in Qz, R < R,. There exists a constant C > 0, depending on 1, 
M, n, and R, such that 

sup u inf u < C. 
QRll6 I QR/l6 

If bi = c = 0, the restriction R < R, is not needed. 

We detail here the procedure for obtaining the Harnack inequality from the 
growth lemma; it is similar to the procedure used in Landis [1971] for the 
analogous proof in the particular case of an equation with a small spread of 
eigenvalues of the matrix )I aij(x) II. 

We shall assume that b,(x) E c(x) z 0. In this case we can use similarity 
transformations on If%” and also change the solution by adding constants. We 
shall assume that R = 16 and for convenience let the center of the ball be at the 
origin 0. 

Thus, ulQ~s > 0. By multiplying the solution by a constant we can get supQl u = 
2. The problem at hand is then to show that there exists a constant e > 0 
depending on A and n such that infQ1 u > cr. We break the proof into steps: 

a) The growth lemma can be modified in the following way: for any A > 1 
there exists a co > 0 such that if u(x) is a positive solution of the equa- 
tion in D c Q4, D n Q& # a, uJdDnQfo = 0, and meas D < Ed meas Q4, then 
sup, u > A SupDnQXO u. R/4 
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In fact, let 6 be the constant from part b) of the proof of the growth lemma, 
and let N be the smallest natural number such that 2N > A. Let us subdivide 
QXRO\Qf& into N layers of thickness 3R/4N by concentric spheres Si. Let us 
consider the point Xi E Si such that U(Xi) = maxDnS, U. Applying part b) of the 
proof of the growth lemma to the balls Q&,4N, Q&rhN, and to D n QjRjbN, we 
obtain the desired statement. 

In what follows, given I and n, A will be chosen as above. We shall assume 
henceforth that it is given and shall find the corresponding so. We shall use the 
notation G = {x E Qz: u(x) > 11. 

b) Let meas G > E,&, where Q” is the volume of the unit ball. Let us set in 
the growth lemma 5 = r((meas Q&)/4”), and u = 1 - u + 5. Let us denote 
D = {xEQ~~: u(x) > O}. Then meas(Qi\D) > meas Qi-,,. If at some point 
x0 E Qs, u(xo) < C, then sup Dno;6 u > 1. Thus by the growth lemma, supD,ops u > 
1 + 5, that is, infDnp16 0 u < 0, and we have a contradiction. 

Therefore, as cr we can take 5 and in this case our inequality is proved. Let us 
from now on assume that meas G < so. 

c) Let us set u1 = u - 1. Then there is a point x1 on the sphere Sy such that 
ul(xl) 2 1. Let us denote by G, the component of the set (x E Q$ z+(x) > 0} 
which contains x1. For p small enough, meas(G, n Qt) > .zo meas Q;‘. For p = 1, 
meas (G, n Q;“) < .so meas Q’f”. Therefore by continuity of the measure 
meas(G, n Q;I) in p, there exists pi such that meas(G, n Q;:) = so meas Qfy. Let 
us denote G, n Qf:, by D,. Then supD, u > A. Let us set B = A/2. We have, 
firstly, ulD, > 1 = B*, meas D, > ,zo meas Q” P;, and, secondly, there is a point x2 
on the sphere So+,+,, such that ur(xJ > 2B. Let us set u2 = u1 - B. Denote by 
G, the component of the set {x E Qi: u(x) > 0} which contains x2. Repeating the 
foregoing argument, we can find pz such that meas(G, n Qf:) = co meas Qf:. If 
we set D, = Gz n Q&, then 

uID2 > B’, meas D, > &o meas Q;;. 

Let us continue this process. Then we shall obtain the sequences pl, . . . , pi, . . . , 
Xl, *‘-, Xi, . f f) D 1, *a’, Di, . . . such that 

XiESf+4p,+...+4pi, uID, > B’-l, meas Di > EOQ~I. 

Let k be the smallest index such that 4pi + ... + 4p, < 1. (such a k exists as u(xi) 
growth without bound with i). Therefore there exists i. < k such that pi > l/4. 
l/$‘. Thus 

Di, c Q:, meas Die > ~~s2,1/(4*2”‘0), u[~,, > Biopl. 

d) Using the growth lemma we can find the constant co = <(l - l/4”). Let 
B = l/c,. Therefore A = 2/l,, and thus so depends only on 1 and n. 

Let us set < = <(l - so), u = ~(1 - ll). Using the argument of part a) we 
find that uI~;~~ > l1 Bio-’ = <,(l/~,)‘o-‘. H ence, applying the same argument to 
u = ~(1 - ?j47t,,io-‘), we find that 

ulp~:o, > t051J+‘-~ = 5051 L 
0 

i,-2 

50 
. 
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Applying the same argument, consecutively, to the balls Q2pPi0, Q”41;opi,, etc., we 
find that 

io-I-l 

. 

There exists an 1 such that Q2Pi, 2 Q21,4.(1,2ji0 I> Qy, 

1 -c i,/2 + 3. 

Therefore 

or 
i. < (In l/5& l/to) + 4. 

Therefore i0 depends on 1 and n, and thus meas Die > sl, that is, meas G > .sl, 
where &I > 0 depends on il and n, so that the argument of part a) allows us to 
conclude that there exists (I > 0 depending on 1 and n such that info, u > cl. 
The Harnack inequality is proved. 0 

A proof of the growth lemma, and, consequently, an estimate of the Hiilder 
norm and the Harnack inequality, for solutions of the equation Lu = 0 was later 
presented by Novruzov (Novruzov [1983a]) employing different methods. He 
uses barrier functions constructed with the help of potentials with kernels [xl-’ 
where s > 0 and small enough. Instead of the original equations a new one is 
considered 

a5 Lu+F=o 
n+1 

(15) 

and u(x,, . . . . x,, x”+~) = #(x1, . . . . x,). The function 1x1-’ for s > 0 and small 
enough is a supersolution of the new equation. 

From Harnack’s inequality we can deduce Liouville’s theorem. 

Theorem 1.11 (Liouville’s theorem). Let u(x) be a solution of the equation 
L~=OinlW’andletb~(x)~O,i= l,..., n, c(x) s 0. Zf u(x) is bounded either from 
above or from below, then u z const. 

Without loss of generality, we can assume that u 2 0 and inf,” u = 0. In view 
of the homogeneity of the equation, Harnack’s inequality provides us with the 
estimate supoZO u/infopo u c C where C is independent of R, x0. Let us consider 
the sequence of points x, E IR” such that u(x,) + 0 as m + KI, and a sequence of 
balls Q;;O, 3 x,. Then #(x0) < s~po~~ u < Cu(x,) + 0 as m + co; that is, u(xO) = 0, 
which means that u z 0. 

m 

Liouville’s theorem admits the following generalization. 

Theorem 1.12. There exists a positive number CI depending on A and n such that 
if u(x) is a solution of the equation 

i,kl aik(xJ& = O 
k 

(16) 
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in Iw” and 

u(x) > - Clxl” (17) 
for any positive C and 1x1 large enough, then u - const. 

Proof. Let us set R, = 2&R,, k = 0, 1, . . . , R,, > 0. Let Mk = u(0) - info! u, 
k = 0, 1, . . . From Harnack’s inequality it follows that 

ll 

1 
-M MkG 1 + < k+l 

where t > 0 depends only on 1 and n. Therefore 

u(o)-~~“$(l +c)k L(u(O) + CR”,-2ak) 

for sufficiently large k. If a < ln(1 + l)/ln 2, then u(O) - info;, u = 0, and u 2 u(O) 
in Qg,. As R, was arbitrary, we see that u - const. 0 

The question whether in Theorem 1.2 condition (17) can be changed to 
u(x) > d(x) with d(x) < 0, d(x) = 0(1x1), is of interest. 

We conclude this section with the following proposition. 

Proposition (Landis and Nadirashvili [1985]). Let K be a cone in R” with vertex 
at the origin and with a Lipschitz boundary. Let the equation 

with coefficients satisfying the Holder condition, be defined in K. Then there exists 
a unique (up to multiplication by constants) positive solution of this equation which 
is zero on aK. 

In what follows we denote by QR the open ball of radius R in R” with center 
in the origin, and by &-its boundary. We break the proof of this proposition 
into steps. 

1. Let K, = QZm and let u,(x) be the solution in K, of the Dirichlet problem 
4 dKnQ,m = 0, u ImspI = M,,, = const., where M,,, is chosen so that at some fixed 
point x,, E K, u&c,,) = 1. From the Harnack inequality and the growth lemma 
it follows that u, are uniformly bounded on every Kt, 1 < m. Therefore from the 
application of the Holder condition to the coefficients of the equation, and from 
the fact that all boundary points are regular, it follows that we can choose a 
subsequence which converges to a positive (in view of the condition u,(xc) = 1) 
solution which is zero on aK. 

2. We shall show that there is a constant c > 0 such that if u(x) is a solution 
which is positive in K4 and zero on aK n Q4 such that supx, u = 1, then, given 
that v(x) is a solution in K, which is zero on aK n Qz, and such that supx, Iv1 < 0, 
it follows that u + v > 0 in K,. 
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Let E > 0, G, = (x E K,: p(x, aK n (Q1+E\Q1-J) > 0} and 0 < I < l/2. Let 
us use the notation D’ = K l+,\Kl-r, r = aK n (Ql+E\Ql-A IL,, = 8% n D’, 
d,,, = G, n D’, H, I = D’\d,,, .X8 = (GE n S’+‘) v (G, n D’). 

Let q be a solution of the equation Lq = 0 in D’, q1 r = 0, q > 0 in H,,,, q > - 1 
in D’. Let us denote q+ = max(O, q), q- = min(O, q). Let us consider functions s, 
w, z which solve the following Dirichlet problems: Ls = 0 in D’, slaor = q+, 
Lw = 0 in d,,,, (4 - ~LM,,,\~~ = 0, wlr, = 4+lze, Lz = 0 in d,,,, 4~d,,~z~ = 0, 
4.q = 4-1,q. 

Thus q = o + z in d,,,. Furthermore s > 0 in D’, s 2 0 in HE,,. Therefore by 
Harnack’s inequality s > C in HE,Z,r-E where C > 0 depends on the ellipticity 
constant and K. We have that s = o on ad,,,\y,,,, s < 20 on yE,,. Hence, by 
the maximum principle we obtain that w  > C/2 in HE,Z,r-E. By the growth 
lemma there exists a constant N > 0 depending on the ellipticity constant and 
on K, such that IzI < C/4 in de,,-NE. Therefore q > C/4 in He,Z,r-NE. Hence it 
follows that if q’ is a solution of the equation Lq’ = 0 in D’, q’jr = 0 and 
minH8, 4’ 2 mine, q’, then minH,,2 r-NI q’ > minDV+ q’. 

Let us set ri = l/2, E~ = 1/(4N). We define ri, si by induction, setting ri = ri-i - 
si-iN, si = siP1/2. Let us examine the solution u. By Harnack’s inequality, we 
have u > c’ in HE,,r,,2 for some C’. Let us set c = C/2 and write q = u + u. We 
have that Lq = 0 in D”‘, qlr = 0, and minHS1,,l q > min,,, q. From the argument 
above q > 0 in HEi,,, for any i > 0. As K n S’ c U& H,i,,i, q 2 0 on K n S,. 
From the fact that sup(u + u) > 0 and from the strong maximum principle it 
follows that u + u > 0 in K,. 

3. Let u and u be positive solutions in K which are zero on aK. Let us set 
K,=KnQ,,. Let N > 1 be a natural number and let a*, u* be, respectively, 
the restrictions of u and u to K,. We set u*/llu* IIC(K,j = U, u*/II u* IICtKNj = V, and 
denote by u, and u, the restrictions of U and V, respectively, to K,, m = 0, 1, 
. . . , N. Then, from part 2, and taking into account the fact that under a similarity 
transformation the equation is transformed into an equation of the same form, 
we find that there exists a number G,O < e < 1 such that u, - CXJ,,,I~, > 0, m = 0, 
1 , . . . , N - 1. Let a,,, be equal to the lowest upper bound of cI such that u, - uu, > 
OinK,-,,m = 1,2 ,..., N. If at a point of K,-, u, - a,u, = 0, then by the strong 
maximum principle u, - a,,,~,,, - 0 in Kmel, and, in particular, for some a, 
u - au in K,. Let us assume that u, - a,,,~,,,l~,_~ > 0 for m = 1, . . . , N. As 
cru, - u,,,IK,-, c 0, c < a, < l/a for all m = 1, . . . , N, and, therefore a,,/a,, < 
l/(a’), m,, m, = 1,. . . , N. Moreover, 

urn-l - adh 
lb, - %U,llC(K,) - 0 llum~“,,,,, < 0 in Km-,. 

We denote IIum i ;.umi’c&?) = a,,,, so that u,,,-~ - a,u,-, - c~S,,,u,,,-~ in K,-l, or 
u CULJ 

a, a, u,,,-~ - ___ u, > 0 in K,-, , and thus in K,-, as well, so that a,,,-, > ~. ‘1 - OS, 1 - OS, 
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Since -1 um um-1 - ad,-, 
fJ II%AIC(K,) + Il%l - am41C(K,) 

c 0 in K,-l, and a,-, > a,,,, we have 

1 %I-1 that a fortiriori -- k1 - a,-, k1 
0 lI%&(K,) + II&n - ad, IICtK,) 

< 0 in K,-l, from which it 

follows that a,,,-, < 0~8,. 

We shall show that llul - alul I&,, < 
1 _ oW-l) 

0 
lIullccr,,. Let us assume that 

II4 - alul IIC~KI~ > 
1 - a2’tN-l) llu,l 1 _ a2/W1) 

0 C(K,). Then 4 > , and as S,,,,, > 
(T 

We have shown above that a,-, > &, and therefore a,-, > A, a2/W1) and 
,,. 

thus a, > aN/a2. But earlier it was shown that am,/am2 < l/a2 for all m,, m,, so 
that a, < aN,/c2, which is a contradiction. 

This means that j/u1 - a,u,II,~,,, < 
1 _ g2/Wl) 

Ilull cr 
cCK1). Since N was arbi- 

trary, it follows from this that for some au = au in K,. Thus in all the cases u E au 
in K,. As we remarked earlier, under a similarity transformation the solution is 
transformed into a solution of an equation with the same properties. Therefore 
u = au in K, and our proposition is proved. 0 

Corollary. Zf u(x) is a solution of the equation Lu = 0 in the upper half-space 
x, > 0, which is zero for x, = 0, then u(x) is a linear function. 

1.5. Phragmen-Lindeliif Type Theorems. A number of theorems dealing with 
the behaviour of solutions of elliptic equations in unbounded domains, which 
generalize the classical Phragmen-Lindeliif theorem, have been proved in Landis 
[1963, 1971, 19791. The Phragmen-Lindelof theorem says that if u(x) is a har- 
monic function in the strip 17 = ((x, y): 0 < y < rr, -cc < x < co), which is con- 
tinuous in 8 and non-positive on the boundary of Z7, then either u d 0 in Z7 or 

b max u(x, y)-‘e > 0. 
t+m IxI=t 

In the works quoted above certain restrictions were imposed on the coeffi- 
cients. These restrictions were used only in the proof of the growth lemma, while 
the main results were derived from the growth lemma without making direct use 
of the restrictions on the coefficients. Since at present the growth lemma in terms 
of the measure (see Section 1.4) is proved without any restriction on the coeffi- 
cients of a uniformly elliptic operator, we have corresponding results for equa- 
tions with coefficients satisfying the inequalities (2). 

We shall say that an unbounded domain G c IV is a cylinder type domain 
with parameters R > 0 and se, 0 < E,, < 1, if meas (QXR\G) > .q,R”, Vx E W. 
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Theorem 1.13. Zf G c [w” is a cylinder type domain with parameters R and E,,, 
and u(x) is a solution of the equation Lu = 0 in G which is continuous in G and 
non-positive on aG, then either u < 0 in G, or lim --I’03 M(r)e+‘lR > 0, where M(r) = 
max,+, u(x), and C > 0 depends on so, I, M, and n. 

We shall say that an unbounded domain G c R” is a cone type domain with 
parameter e,, if for sufficiently large integers N meas (Q8N\G) > so meas Q$. 

Theorem 1.14. Zf u(x) is a solution of equation (16) in a cone type domain G with 
parameter so, which is continuous in G and non-positive on aG, then either u < 0 
in G, or 

lim M(r)r-C@o) > 0, 
r+m 

where C(eO) > depends on so, 1, and n. 

We quote another theorem of the same type which extends the Hadamard 
theorem about the connection between the growth of an entire function and the 
density of its zeros, to the case of solutions of elliptic equations. 

Theorem 1.15. Let u(x) be a solution of equation (16) in W. Let there be N 
regions in which u(x) is of one sign. Then 

lim M(r)reN”(“-” > 0, 
r-w3 

where C = const > 0 depends on 1 and n. 

We also state a different version of this theorem. Consider u(x), a solution of 
equation (16) in R”. Assume that for N sufficiently large, the number of regions 
in which u(x) is of one sign in the ball Qg, is large than N. Then hr~ M(r)eWc’ > 0, 

f’rn 
where C = const > 0 depends on L, M, and n. 

These theorems follows quite easily from the growth lemma (see Landis [1963], 
where they are proven under the assumption that the coefficients of the equation 
are smooth functions). 

Theorem 1.14 can be modified as follows: 

Theorem 1.16. Let G’ c Iw” be a cone type domain with parameter so, and for 
R arbitrary, let there be defined a solution of equation (16) in G = G’\Qg, which 
is continuous up to Z = aG\Qg and zero on r. Then there exists C(eO) = const. 
such that either h,,, M(r)r-c(eo) > 0, or lim -r-m M(r)rCtEo) = 0. The constant C 
depends on il and n as well as on Ed. 

A very simple and effective generalization of the Phragmen-Lindelof theorem 
can be derived from the simplest version of the growth lemma, in which the set 
H contains a ball of commesurate with R radius (see p. 99 of the work). 

Theorem 1.17. Let 4(t), 0 < t < co be a positive continuously differentiable 
function with I&(t)/ < const. For convenience we can take IQ’(t)1 < l/16 (the gen- 
eral case is reduced to this one by a linear transformation). Let us set 
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112 
. Then the following claim holds: 

Let 0, contain an unbounded domain G. Let us consider in G a solution u(x) 
of equation (l), the coefficients of which satisfy condition (2) and c 6 0 tf 4 is 

T- 
bounded, and bi = c = 0 if 4 is unbounded. Let llm,+acu(x) < 0. Then either 
u < 0 everywhere in G, or XEG 

lim (M(r)/e”G dt’o(r)) > 0, M(r) = max /+)I, 
r-rm IXI=l 

where u > 0 is a constant depending on ;1 and M in inequality (2), and on n, the 
dimension of the space. 

Proof Let there exist a point x’ E G, such that lu(x’)l = a > 0, u(x’) = a. Let 
us set 

Let 
r. = WI, rl = ri-1 + q(ri-1). 

M. = max u(x) = u(x(‘)) I 3 Ix(~)( = r. I, i = 0, 1, . . . . 
IXI=li 

Let us consider the balls Q$&, and Q$,,, with center in x”) and with radii, 
respectively, 8d(ri) and 24(ri). In Q&, let us consider the set of points x E G in 
which u(x) > 0. Applying the growth lemma in the elementary formulation given 
above, to this set, we find that there exists 5 > 0 depending on 1, M, and n, such 
that 

Mi+1 > (1 + t;)Mi, i = 0, 1, . . . . 

Consequently, Mi > a(1 + 5)’ = aesi, where p > 0 depends on 1, M, and n. On 
the other hand, in view of the condition I&(t)1 < l/16, we have that 

1 

s 
‘*+I 

8 ri 

dt < 1 
__ . 
dt) 

Therefore 
Mi > ae”~~‘d’lQ”‘, 

where a > 0 depends on 1, M, and n. Using the maximum principle, we obtain 
an estimate for r lying between ri and ri+l . 

1.6. s-Capacity. Let s > 0, let E be a Bore1 set in R”. Let us consider on E all 
measures defined on some o-algebra of subsets of E which contains all Bore1 sets. 
We call a measure p admissible if 

s 

44y) 

E (x - y(” G l 
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outside of E. Let us put c,(E) = sup p(E), where the supremum is taken over all 
admissible measures. The number c,(E) is called the s-capacity of the set E. 

The following properties of s-capacity can be easily proved (the proofs are to 
be found, for example, in Landis [1971]). 

4 If& c E2, c,(E,) < c,(E,). 
b) Under the similarity transformation x = kx’, s-capacity of a set is multi- 

plied by k”. 
c) s-capacity of the ball Q4 is not less that R”. 
d) Let s > 1, let Z,,, be the cylinder 

s-l 

z,,, = x: 1 xf < p2, 0 < x, < h . 
i=l 

Then c,(Z,,,) > ChpS-’ where c = const > 0 depends on s. 
e) Ifs < n and E c Qf”, then c,(E) > K meas E, where K = const > 0 depends 

on s and n. 
Let us set 

where G is a domain in R” and A,,,(x) is the smallest eigenvalue of the matrix 
IlUik(x)ll. Let us call e the ellipticity constant of the operator L (of form (1) with 
c < 0). 

Let s 2 e - 2. If G c Qz where R is sufficiently small, then l/lx - x01’ is a 
subelliptic function (see Landis [1971]). If bi E c E 0, this function is subelliptic 
for all R. 

We remark that e is always larger or equal to n, and if e = n, the equation 
becomes an equation, the principal part of which is a Laplacian multiplied by a 
bounded function with a positive lower bound. 

Let x0 E 8G and let L be the operator (1). We call x0 a regular boundary point 
if the following conditions hold. For every pair s1 > 0, s2 > 0 there exists 6 > 0 
such that for any domain G’ c G from the facts that Lu = 0 and that 

it follows that 

lim u(x) < 0, 
x+aG’nQ,Xp 

x E G’ n Q;;, 

In the case of sufficiently smooth equation coefficients this definition of regu- 
larity coincides with the usual definition of regularity due to Wiener (see 9 2.7). 

Let D c R” be an open set with boundary r, x,, E r and let e > n be some 
number. We call the point x0 an e-regular boundary point if the following 
conditions hold. For every pair s1 > 0, s2 > 0 there exists 6 > 0 such that for any 
domain D’ c D with boundary r’, uniformly elliptic operator L defined on D’ 
with ellipticity constant e’ < e, and for any function u(x) subelliptic with respect 
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to L and bounded from above, from the fact that 
- 
hm u(x) < 0, 

“+,T$?F,o 

it follows that 
‘bn~p < E2- 

Theorem 1.18. Let x0 belong to the boundary r of domain D. Let e 3 n be an 
arbitrary number. Set s = e - 2. Let us denote 

c,(QZm\D) = ‘y,- 

Then in order that the point x,, is e-regular, it is suflcient that the series 

(18) 

diverges. 

Thus, if a point of the boundary aG of a bounded domain G c R” is e-regular, 
then it is regular for the Dirichlet problem for every equation Lu = 0, such that 
the ellipticity constant of the operator L does not exceed e. 

This allows us to obtain sufficient conditions for regularity. 
We quote here an example of e-regularity conditions for a boundary point in 

the case e 2 n. 

Theorem 1.19. Let x0 E aG, n > 4, e > n, and let the domain G be such that an 
orthogonal system of coordinates y,, . . . , y, with origin at x0 can be introduced in 
such a way that for some h > 0 the set of points 

B = {y: p < y,/l In Y~[“@~), 0 < y, < h}, 

where p = (c!Zf yf)‘12 belongs to the complement of the domain G. Then the point 
x0 is e-regular. 

1.7. Removable and Non-essential Sets. Let D c IX!” be a domain, and let 
K c 52 be compact. A compact set K is called removable for a harmonic function 
u(x) defined and bounded on 52\K, if this function can be extended to K in such 
a way that the extension is harmonic in Q. 

This definition can be modified in the following way. 
Let D c Sz be a neighbourhood of K with smooth boundary. Let us solve the 

Dirichlet problem: dv = 0 in D, t&n = t&,. Let us set o = u - v. We have 
obtained a harmonic function w  which is defined and bounded in D\K and zero 
on aD. The set K is removable if and only if o c 0. 

We shall apply the definition above to solutions of equations Lu = 0. 
Let the operator L be defined and uniformly elliptic in a domain Sz with a 

smooth boundary, and let K c B be a compact set. We shall say that K is a 
non-essential set if from the fact that u(x) is a bounded solution of the equation 
Lu = 0 in f2\K which is zero on 80, it follows that u 3 0. 
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It is known that a necessary and sufficient condition for a set to be non- 
essential for Laplace’s equation is the condition 

c,-,(K) = 0. (19) 

In particular, an isolated point is always non-essential for a harmonic function. 
In the case of a uniformly elliptic equation with discontinuous coefficients, this 
is not necessarily so (even if the coefficients have a single discontinuity point, the 
point to which K can be reduced). This was first observed by Gilbarg and Serrin 
[1954/56], who constructed an example of an equation in the punctured ball 
Q:\(O) for which a solution is given by the function 

u(x)=l-1x1&, O<&<l. (20) 

Conditions on the operator which make such a phenomenon possible in R”, 
have been investigated by Miller [1966]. 

Remark. The function (20) belongs to the space W2 for n > 3. Hence we 
see that the generalized solution in Wz (in the sense in which it is defined 
in the introduction to this section) does not necessarily satisfy the maximum 
principle. 

To state sufficient conditions under which a set K is non-essential for the 
equation Lu = 0, let us introduce the number 

where Iz,,Jx) is the largest eigenvalue of the matrix Ila&)ll. We shall call the 
number Z the super ellipticity constant of the operator L. 

Theorem 1.20. In order that a set K to be non-essential it is suficient that 

c,-,(K) = 0. 

The proof of this theorem follows easily from the fact that the function 
U(x) = l/lx - yl”-* is superelliptic. 

This theorem gives a sufficient condition for non-essentiality, which, however, 
is not necessary. A set of non-zero (Z - 2)-capacity can be non-essential if it is 
spread well enough in the space. The following theorem clarifies the situation. 

Theorem 1.21 (Landis and Bagotskaya [1983]). Let K be contained in a smooth 
l-dimensional manifold M,, 2 < 1 < n. For any number s, 0 c s -C n - 2, there exist 
a constant 6 > 0 and a compact set K, such that c,(K) > 0, and such that for any 
operator L, the superellipticity constant of which satisfies the inequality 

le - (s + 2)) < 6, 

the set K is non-essential. 

For any s, I= 2 < s < m, a compact set K c M, and a number 6 > 0, there 
exists an operator L in 52, the superellipticity constant of which satisfies the 
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inequality 
IF- (s + 2)1 < 6 

and for which the set K is essential. 

5 2. Equations in Divergence Form 

In this section we shall consider operators of the form 

where x=(x1,..., x,), uik(x) = uki(x) are measurable and bounded functions. 
The operator L is called elliptic in a domain G c R”, if at every point of the 
domain the matrix IIaik(x)II is positive definite. L is called uniformly elliptic in G 
if there exist constants I > 0, M > 0, such that 

~-‘1512 G f aik(x)citk G n1512, 
i,k=l 

Ibi(x)l d M, i = 1, . . . . n, c(x) < M; luik(x)l < M, (22) 

i,k=l,..., n, XEG; PER”. 

A function u(x) E W’(G) is called a generalized solution of the equation 

LU = f + i$l & f E L,(G), fi E LAG), i=l 7 -**, n, 
I 

if for every u(x) E I@‘(G) we have the equality Et’, U) E s G i,zl G(x)& & dx - jG ig b,(x)u(x)gdx - s G 
c(x)v(x)u(x)dx+IGfidx-&$dr-0. (24) 

We call a function u(x) E IV’(G) superelliptic (subelliptic) if for every 
u(x) E l@“(G), u(x) 2 0, the following inequality holds: 

s G ,fI, uik(X) g g dx - JG i$ b(X)u(X) g dx 
I 

- 

s 
c(x)u(x)u(x) dx > 0 (GO). (25) 

G 

We denote by L, the operator L in the case bi E 0, i = 1, . . . , n, c = 0. 

2.1. The Maximum Principle. We shall state now a maximum principle due 
to Stampacchia [1965], which holds for solutions of equations (21). We call a 
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function u(x) E W1(G) non-negative on E c G if there is a sequence u, of C’(G) 
functions such that 1) u, > 0 on E, 2) u, + u in I&I’(G, E). 

A function u(x) E IV’(G) satisfies the inequality u(x) < k, x E cYG, k = cons& if 
the function k - u(x) is non-negative on JG. 

Stampacchia’s maximum principle takes the following form: 

Theorem 1.22. Let u(x) E W’(G) be a subelliptic function, let the operator L be 
uniformly elliptic and such that, moreover, c(x) < 0, x E G. Then zf u(x) < k on aG, 
ess sup, u < max(O, k). 

Let u(x) E I@‘(G) be a generalized solution of (23). Let us set ourselves the 
problem of estimating the solution in terms of the right-hand side. In the case 
c(x) < 0, f E 0, such an estimate has been obtained in by Chicco [1971]: 

where C depends on G, n, il and M of inequality (22). For the same equation 
an estimate of /u(x)1 in terms of the right-hand side has been obtained by 
Stampacchia [1958]: 

maxlul < C[meas G]“P-l’” i$ Ilf;lL,~ P > 6 

where C dpends on p, n, A, and M. The best possible value of the constant C has 
been found by Weinberger [1962]. The same type of estimates for the solutions 
were obtained by Maz’ya [ 19691. 

Next we state a theorem due to Ladyzhenskaya and Uraltseva [1973]. This 
theorem gives an estimate of maxlu(x)l up to the boundary of the domain. 

Theorem 1.23. Let u(x) be a generalized solution (23) with fi E L,(G), i = 1, . . . , 
n, fe L,,,(G), q > n. Then for any G’ CC G, the number ess maxlu(x)l is finite 
and bounded from above by a constant depending only on A, m, II fillL,, i = 1, . . . , 
np I~f~IL4,2(G)~ Ibh.2(G)~ and on the distance between G’ and aG. If moreover 
ess maxlu(x)l < oc, for any part S, of the boundary dG, then if G, is a subdomain 
of G positively separated from aG\S,, ess maxG, [u(x)] is finite and bounded from 
above by a constant depending on 1, m, Il.&.,, i = 1, . . . , n, Ilf IIL4,2, 4, IlullL,cc,, 
and the distance between G, and aG\S,. 

2.2. Continuity of Generalized Solutions. One of the most important results 
concerning the properties of the generalized solution of the equation 

n a 

= -( i,j=l axi 
ai( = 0 

J > 
(26) 

is the following theorem which was first proved by Nash Cl9581 and De Giorgi 
[1957]. 

Theorem 1.24. For any domain G’ such that G’ c G, there exist constants 
K = K(I, G’, G), tl = a(A, G’, G) such that 
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IIW) - WY G m4IL,(G)I~’ - X”lU, (27) 

where x’, X” E G’. 

A simpler proof of this theorem has been given by Moser [1960] (see also 
Landis [1971]). Moser considered the case when bi E c E 0. Without this restric- 
tion theorem 2.2 has been proved by Ladyzhenskaya and Uraltseva [1973]. 

We present here Moser’s method for obtaining the estimate (27). Though this 
proof was obtained a long time ago, its basic idea is still widely in use. 

We consider the equation 

Lu E t a c2ij(x)g. = 0, 
i,j=l aXi ( > J 

(28) 

where aij = uji and 

~-‘1512 ~ ~Uij5i5j ~ n1512 Vg E Iw”. (29) 

Let us denote by QR the ball of radius R with center at the origin. It is sufficient 
to prove the following fact. Let u(x) be a generalized solution in W’ defined in 
the ball Q3. Then 

osc u > (1 + p) osc u, (30) 
Q3 Ql 

where p > 0 depends on 1 and on the dimension n of the space. 
Below, in Section 2.4, we show that the generalized W’ solution of equation 

(28) in Q3 can be approximated in the norm of that space by classical solutions 
of equations (28) with infinitely differentiable coefficients, and such that all the 
equations satisfy inequalities (29) with the same constant A. Therefore we shall 
consider only such smooth solutions of equations with smooth coefficients. 

We divide the proof into a number of steps: 
1”. Let u be a solution of equation (28), let f(t) be a function in C2(infQs u, 

supQs u) satisfying the conditions f(t) > 0, f’(t) 2 0, f ” ( t )  2 0. If q(t), t > 0 is a 
twice differentiable function such that cp’ 2 0, cp” > 0, then 

b(m)) 2 0. (31) 

This inequality is verified by direct substitution. Let us put f(u(x)) = z(x). 
2”. Let 1 < R, < R, c 3. We shall show that then 

s Cl 
QR, 

l~zl* dx G cR2 _ R,I2 s Qn, z* dx, 

where C, depends on il and the dimension n of the space (in what follows, we 
denote constants depending on I and n by Ci). 

Let YI E C2(Q3) be a cut-off function in Q3 such that 0 < q < 1, q = 1 in QR1, 
v = 0 outside of QR2. 
gives us 

We have that JQR2~*zLz dx 2 0. Integration by parts 
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Using (29) and the inequality 

2ab$ea2+;b2 (&>O), (33) 

we obtain (32). 
3”. We shall use the following Sobolev embedding theorem: for g E Wi in the 

ball QR, 1 < R < 3, for p = 2n/(n - 2), we have JJgJILP < C,)) g)lw;. Let us set 
Pl = P/2. 

4”. Let /I > 1. In view of (31), we can apply the result of part 2” to the function 
zB, so that 

s Cl 
QQ 

lv(zs)12 dx ’ (R, _ RI)2 
s 

z2fi dx. 
Qa, (34) 

Let p = p: where k is a non-negative integer. Then, using for k = 0 the result 
of part 2” and for k > 0 inequality (34), we obtain 

s Cl 
Q% 
Iv(zd;)12 dx ’ (R2 _ RI)2 s z2p: dx. QR2 (35) 

setting in the embedding theorem g = zpt, we find that 

Using (35), we obtain 

s QRI (z2)fi+' dx G ((R2 c'Rl)2y( s,, CzYy dx. (36) 
LetussetR@)=l+i,I=k,k-l,..., 0. We substitute 1 for k in (36) and set 

R, = R(l), R, = R(‘+‘). Letting now 1 take all the values from k to 0, we get by 
induction 

s 
(z2)P:+’ dx < C-. 22@+l)P1 

Q,&+ I ) 
(s,,., (z21pf d$’ 

s (z2)~’ dx < c,p’ .22((k+l)P1 +kP:) (z’)Pf-’ dx 
P: 

Q,tr+l) (I Q,#-1) > 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

s 
(z2)d;+’ dx < ,++I. 22((k+l)Pl+kP:+-+P:+‘) 

Q,$k+l) 
(s,, z2 dxy+‘, 

that is, 

(s,, (z”)fi+’ dx)l”:” < (c$2Pdk+1. 22@i+2/(P~-l)))1~P:+’ IQ, z2 dx. 
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Letting k go to co, we find that 

(37) 

5”. Multiplying u by a constant and adding another constant, we can get 
supQS u = 1, infQ, u = 0, so that by the strong maximum principle 0 < u(x) < 1 
in Q3 (we remind the reader that Q3 is an open ball. Let E = (x E Q21u(x) < l/2}. 
We can assume that meas E 2 (meas Q2)/2, otherwise we could consider the 

function 1 - u. Let us set f(t) = In A, 0 < t < 1. The function f(t) satisfies 

1 
the requirements of part 1”. Let z(x) = f(u(x)) = In ~. 1 - u(x) 

We set zl(x) = 

z(x) - In 2, then E is the set of points of Q2 where z1 < 0. Therefore, by the 
generalized Friedrichs’ inequality (see, for example (Kondrat’ev [ 1967]), 
s Q2\E zt dx G cd JQ2\E 1 Vz, 1’ dx, and since zls < In 2, we have that 

s 
z2 dx d C, 

Q2 s 
lVz12 dx + C,. (38) 

Q2 

6”. We remark that for our choice of S, j-“/f” = 1 and f’ > l/2. Let q be a 
cut-off function in Qs: vi E C2, 0 d vi < 1, ql = 1 in Q2, and q1 = 0 in a neigh- 
borhood of aQ,. Then jQ3 q, f’(u)Lz dx 2 0, or 

s qff”(u) C aijuxizxj dx + s 2~,f’(u) 1 aijzxiqlxj dx < 0. 
Q3 ij Q3 

Taking into account that f’(u)u,, = zXi, and that f”/(f’)’ = 1, f’ > l/2, we 
obtain that 

s ~1 C aijz,,zq dx + s 2~1 1 aijzx,qxj dx G 0. 
Q3 ij Q3 ij 

Using (29) and (33) we find that JQz I Vz12 dx < C,. Together with (38) this means 
that JQ2 z2 dx < C,, and therefore, by (37), supQ, z < C,, which concludes the 
proof of this theorem. 17 

Remark. In the proof of the theorem we did not use the fact that meas E 2 
(meas Q2)/2. We could assume that meas E 2 CI meas Q,, where u S- 0 is some 
constant. This means that Moser’s proof also provides us with a proof of the 
growth lemma in the following formulation: 

Let there exist a solution of equation (28) in the ball QR, and let E- = 
{x E QR,31~(~) < 01. Let meas E- > a meas QR,3. Let us assume that u(x) > 0 at 
some point x E QR,3. Then 

sup u > (1 + 5) sup 24, 
QR Q&V3 

where 5 > 0 depends on A, n, and a. 

(39) 
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This version of the growth lemma is sufficient in order to obtain the Harnack 
inequality by following the general construction (see Landis Cl9713 or Safonov 
[ 19803). 

Moser [1961] proved the Harnack inequality by appealing to the complicated 
John-Nirenberg lemma which uses the Euclidian structure of the space. The 
method of proof of the Harnack inequality we propose here does not use this 
lemma and therefore is applicable in more general cases, such as, for example, 
the Laplace-Beltrami equation on manifolds (if a number of isoperimetric condi- 
tions are satisfied). 

It is possible to find examples of equation (28) which have generalized solutions 
that do not satisfy the Holder condition for any given exponent c( > 0. Let 
n > 3 and cl0 > 0. Let us consider a cone K with vertex at the origin, and 
let (r, 01, . . . . 0,-i) be the spherical system of coordinates. Let us consider the 
function r”@(e), where Q(0) is an eigenfunction of the Beltrami operator in 
K with zero Dirichlet data on Qy n K, which corresponds to the eigenvalue 
p = cr(cr + n - 1). If Qy\Qy n K is of small (n - 1)-dimensional measure, then p, 
and thus ~1, will also be small. Let us choose the cone in such a way that c1 < aO. 
We can make a change of coordinates y = g(x), g(0) = 0, such that the functions 
g,(x) satisfy the Lipschitz condition, which maps c?K onto the hyperplane y, = 0. 
After the transformation y = g(x), Laplace’s equation has the form 

t LAij(y)aU = 0 

i,j=l ayi aYj 
(40) 

and is uniformly elliptic in R”, while the function u = r’@(e) turns out to be its 
solution which is zero on y, = 0. Let us define u on all of R”, by using in the 
domain y, < 0 its odd extension, and let us extend Aij(y) to this domain by even 
extension. As a result we have that equation (40) has for jyl < 1 a generalized 
solution that satisfies the Holder condition with the given exponent a, and does 
not satisfy it with any larger exponent. Similar examples can be constructed for 
n = 2. 

The following claim is only valid for a domain, the boundary of which satisfies 
certain smoothness conditions. Let G be a ball. Then if A E L,, (i = 1, . . . , n) and 
u E W,‘, p > n, then the solution of equation (3) is such that u - f E W’ is Holder 
continuous in C. 

There exist other methods for proving De Giorgi’s theorem. One of these 
(Landis [1967]) is based on the following theorem from function theory (see 
Landis [1971]). Let 0 < R, -C R,, and let an open set D be contained in the 
annulus Q = {x E R”: R, < 1x1 < R,}. We shall say that a piecewise smooth 
(n - l)-dimensional surface .Z separates the spheres SR, = { 1x1 = R,} and S,, = 
(1x1 = R,) in D ‘f 1 any continuous curve connecting SR1 and SR2, all the points 
of which, apart from the ends, lie in D, intersects Z’. 

Theorem 1.25 (integral mean value theorem). Let there be defined in D a 
symmetric positive definite matrix A = IIuik(x)II, coeficients of which are con- 
tinuously differentiable, and eigenuulues of which are bounded by 1-l and 1 (A > 1). 
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Then there exists a constant C > 0 depending on I, such that for any twice 
differentiable function j(x) defined in D, there exists a piecewise-smooth surface 
Z separating SR, and SR, in D, and such that 

Sl I 
osc f. meas D 

af ds<C D 
z av (R, -w ’ 

(41) 

a 
where av = 

a 
t Uik(X) cos(O$ n)Z - is the derivative co-normal to C. 

i,k=l k 

2.3. The Harnack Inequality. The following theorem holds for a generalized 
solution of the equation Lu = 0. 

Theorem 1.26 (the Harnack inequality). Let R,, > 0, let u(x) be a positive 
solution of equation (26) in the ball Qg, 2R < R,. Then 

sup u(x)/inf u(x) < C, 
Q;O QP 

where the constant C > 0 depends on 1 and M in conditions (22). 

(42) 

This theorem was first proved by Moser [1964] in the case bi = c = 0. Later 
Stampacchia [ 19651 established its validity for a generalized solution of the full 
equation Lu = 0. In Stampacchia [1965] this theorem is even proved for a 
generalized (in the sense of an integral identity) solution (belonging to IV’) of 
the more general equation 

n a 
= -( i,j=l axi %E+diu + k b.?+cu=o, 

J i=l laxi (43) 

where aij satisfy conditions (22), bi E L,, di E L,, c E L,,Z, p > n. 
In the case of equation (26), L,u = 0, the constant C in Harnack’s inequality 

(42) is independent of R,. 
The Harnack inequality is equivalent to the following two inequalities 

sup u - sup u infu- infu 
Q2R QR 
supu-infu 

> A and ” Q2n > A 
supu-infu ’ (44) 

QR QR QR QR 

where u is a generalized solution in the ball QZR. 
In the case of u being a solution of equation (23), we impose on R the restriction 

R < R,, and the constant A > 0 then depends on 1, M, and R,. In the case of u 
solving equation (43), R is arbitrary, and A > 0 depends only on 1 and M. 

A corollary of the Hat-track inequality is the following one-sided Liouville 
theorem. 

Theorem 1.27 (Liouville’s theorem). Zf a generalized solution of equation (26) 
in Iw” is bounded either from below or from above, then it is constant. 

We shall prove now a stronger claim. 
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Theorem 1.27’. There exists an u > 0 depending on 1 and M in condition (22) 
such that if u(x) is a generalized solution of equation (26) in [w”, and for sufficiently 
large R either 

sup u < R” (45) 
Ixl-=R 

or 

then u = const. 

inf u> -R”, (45’) 
lxl<R 

Proof, It is sufficient to consider the case (45). Let R, > 0 be an arbitrary 
number. Let us put R, = R, . 2k, k = 1,2, . . . Let us assume that 

sup u(x) - inf u(x) = a. 
IF+& Ixl-b 

From inequality (44) it follows that 

sup u(x) > a(1 + ,4)k = a. 2’“(1+A)‘(‘” ‘) > aRi 
Ixl<Rr 

for u depending on A (and therefore on Iz and M) and sufficiently small, and for 
k sufficiently large. Hence it follows that for such a, a = 0, and therefore u = const 
in the ball Q&. From the fact that R, was arbitrary, it follows that u = const in 
KY. 0 

Note that for every a > 0 we could construct an example of equation (26) in 
OX”, the solution of which satisfies 

IWI < 1x1= 

for all x. This construction is similar to the construction of the example on 
page 117. 

We state some other elementary consequences of the Harnack inequality. 

Theorem 1.28. Let G be the semi-infinite cylinder, 

G = x E R”: x1 > 0, 2 xi” < h2 < R; 
i=2 

and let there be defined in G a solution u of equation (43), such that ulac = 0. Let 
us set 

M(t) = max u(x). 
x, =t 

Then there exists a constant B > 0 depending on A, M of condition (22), and on 
R,, such that for t large enough eetBlhjt < M(t) c eCBlhjt. If instead of (43), the 
simpler equation L,u = 0 is considered, then condition h2 c Ri is not required, and 
consequently, B will depend only on 1 and M. 
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Theorem 1.29. Let G be the cone 

112 
G = 

and let there be defined in G a solution u of equation (43), ulac = 0. If we set 

M(r) = sup u(x), 
IXI=l 

1’2 < b’12 

then for sufficiently large r 

rValb < M(r) < ralb, 

where c1 > 0 is a constant depending on A and M. 

2.4. On the Approximation of Solutions by Solutions of Equations with 
Infinitely Differentiable Coeffkients 

Theorem 1.30. Let G c Iw” be a bounded domain, and let u(x) be a generalized 
solution of equation (23) in G. Assume that there exists a sequence of equations 

i gl & (ai?)%) + 2 b!“‘(x) 2 + @“)u* = 07 
J I 

(43”) 

the coejicients a$“‘, bjm), c(“” of which satisfy condition (22) with the same constants 
il and M as do the coeficients of aik, bi, c of the original equation (43), c < 0. Let 
a$‘), b/“), ccrn) converge, respectively, to aik, bi, c almost everywhere as m + 00. 

Let u, be a solution of equation (43”) satisfying the condition 

Then 

%I - u E l&“(G). 

u, + u in W’(G). (46) 

Corollary 1. In view of the a-priori estimate of the Holder norm, for every 
subdomain G’ cc G, the sequence u, is precompact in C(G) and therefore 

u, =t u on every G’ CC G. (47) 

Remark. For every equation (43) there exists a sequence of equations (43”) the 
coeffkients of which satisfy (22) with the same constants I and M, are infinitely 
differentiable and converge to the respective coefficients of the given equation 
almost everywhere. The sequences may be obtained, for example, by averaging. 

The generalized solution of an equation with infinitely differentiable coefh- 
cients is an infinitely differentiable function which satisfies the equation in the 
classical sense. Therefore, once we have obtained estimates depending only on 
the constants 1 and M of inequalities (22) for classical solutions of equations with 
smooth coeffkients, by (47) these estimates can automatically be applied to 
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generalized solutions of equation (43). For example, it was enough to prove the 
a-priori estimate of the Holder norm or the Harnack inequality for classical 
solutions of equations with smooth coefficients. 

In what follows we shall sometimes use this argument: in some cases we shall 
obtain estimates directly for the generalized solution, while in others we shall 
obtain them for the classical solution of an equation with smooth coefficients. 

We now prove Theorem 1.30 in the particular case of bi = c = 0, that is, for 
the equation Lou = 0. Its proof in the general case requires a greater effort and 
can be found, for example, in Stampacchia [ 19581. 

Thus, let up’ + aik almost everywhere and Vq E l@‘(G) 

s G i,$l aikUxiVx, dx = 0, 
Subtracting the first equality from the second, adding and subtracting 
j-GE;&=1 ai&Umx,(Px dx and setting cp = u, - u, we see that 

s. G i & aik(Um - uLi(Urn - UL, dx 

< (up’ - a,)‘~;~ dx 
f 

grad’ u, dx, 
G 

and therefore by inequality (22) and by the Friedrichs inequality (see for example 
Landis [1971]), I/u,,, - uIIwl + 0 as m -+ 00. 0 

2.5. Green’s Function. In this and in the two subsequent sections we shall 
consider for simplicity the case n > 2. 

Generalized solutions of equation (23) have a number of properties analogous 
to the properties of the solutions of Laplace’s equation. This is connected with 
the fact that equation (23) has a fundamental solution with the same singularity 
as the fundamental solution of Laplace’s equation. 

We call a function G(x, y) a Green’s function for operator (21) in a bounded 
domain D if is satisfies the relation. 

for every $ E @I’(Q) n Co@) such that 

We call G(x, y) a Green’s function for operator L in R” if 

vcp E ti’(uP) n CO(W”), L*cp E CO(W), 
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and for every fixed y E UP we have the equality 

s 
GL*(cp) dx = CP(Y) 

W” 
The following theorem was proved by Stampacchia [1958]. 

Theorem 1.31. There exists a Green’s function G(x, y) for operator (21) in a 
bounded domain G, and for x, y E G’ cc G the following inequality holds: 

Cl C2 
Ix - yin-2 

< G(x, y) < 
Ix - yy-2’ 

where C, > 0 and C, > 0 depend on constants 1 and M of conditions (22) and on 
the distance from G’ to aG. 

This theorem generalizes the following theorem which was obtained earlier by 
Littman, Stampacchia, and Weinberger [ 19631: 

Theorem 1.31’. There exists a Green’s function G(x, y) for the operator L, in R” 
such that conditions (48) are satisfied with constants C, > 0 and C, > 0 depending 
on A and M of conditions (22). 

We supply below two methods of proof of the latter theorem. 
First method of proof. Note that it suffices to consider the case of G being the 

unit ball and G’ being a concentric ball of radius one half, with y coinciding with 
the center of the ball, and a, E C”. 

Let us consider in the annular layer Sz, = {x: 2-” < 1x1 < l}, s > 2, a solution 
u, of equation (26), which is continuous in a,, zero on Sf and equal on Si-. 
to a positive constant, such that for any surface separating Sy and Si-. in 9, 

s 

au 
- ds = 1. (By Green’s formula all such integrals are equal.) 

s au 
Proposition 2.1. There exist constants C, and C,, 0 < C, < C,, depending on 

1 and n such that 
C11x12-” < u,(x) < c21xi2-n, 2s-’ < 1x1 < 2-l. (49) 

Proof. 1) Let 1 < k < s. Let us use the notation r, = 2-k and Mk = 
maxI.+,,. u,(x). Let us apply Theorem 1.25 (the integral mean value theorem) to 
the layer Sz’ = {x: rk+r < Ix I < rk}. Thus there exists a surface Z contained in the 
layer which separates the boundary spheres, and such that 

s osc v, meas Qk 
l= * ds < C Ok 

z av rk2+1 
< C*Mkr[-2 

Hence Mk < C*rl-” and, by the Harnack inequality, v,(x) > C, Ix12-“, x E Qk. 
2) Let us fix r, 2l-’ < r < 2-l, and let m = min,,,,, u,(x). We set S, = r. 2’/@, 

l=O, l,..., and let us denote by t+ the volume of the ball of radius S,. We set 

Hl = 
1 
x E cl,: u(x) > m 21Jn-2 I ,l=O,l,... 
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By assumption, meas H, > uO. On the other hand, for I sufficiently large 
meas HI < u. Therefore there exists 1, such that meas H10 3 uIO and meas H1o+l < 
u~~+~. Let us denote by E, the level set E, = {x E In,: u,(x) = t}. (By Sard’s theorem 
for almost all t the set E, is a smooth (n - r)-dimensional surface). We have that 

Thus there exists Elo, m/2(‘0+‘)J;;r? < to < m/2’Ow, (Et0 is a smooth SUrfaCe) 
au l-l an I&, 

= 1 grad u 1 IE,, # 0, such that 

with C’ > 0 depending on n. As Et0 contains &,, by the isoperimetric inequality 
meas,-, Et0 = jEto 1. ds > (meas H,)(“-I)‘” > ujbn-r)‘“. 

By the Cauchy-Buniakovsky inequality, 

or 

(51) 

Combining (50) with (51), we find that 

where c” and c” depend on n, and as on the level surface 

depends on il and n), m < CVrr-“, and by the Harnack inequality L(x) < C2 1x1’-“, 
2l-‘lxl < 2-l. This concludes the proof of Proposition 2.1. 0 

Let us show that there exists a Green’s function G(x, 0) in the unit ball with a 
singularity in the center of the ball, which satisfies the estimate 

C11x12-” < G(x, 0) < C21x12-“. (52) 

In order to prove this statement, it is enough to consider u, as s + co. The 
family (us} is precompact in C2 on each of fitt, for t fixed (due to inequal- 
ity (49) and to interior Schauder estimates (Miranda [1970])). Here Qts = 
(x: l/t < 1x1 < t}. The limit function is in fact the desired function G(x, 0). 

A different method of obtaining an estimate for Green’s function for the 
operator L, was given in the work of Littman, Stampacchia, and Weinberger 



124 II. Qualitative Theory of Second Order Linear Partial Differential Equations 

[ 19631 (historically, this method has precedence). The method uses the concept 
of capacity of a set relative to an operator. As above, we shall assume that the 
coefftcients aij(x) of the operator are C” functions (in what follows, a passage to 
the limit is effected). We want to estimate, the Green’s function G(x, 0) for the 
unit ball Qr, moreover, y = 0. 

Let E c Q1 be a compact set with a smooth boundary. Let us put 

caPLo E = inf Q, F aij(x)VxiV.xj dx, s (53) 

where the infimum is taken over all cp E Cz(Qr) such that (~1~ 2 1. From this 
definition it follows that if E, c E,, capLo E, d capLo E,. Let us solve the fol- 
lowing Dirichlet problem in Q,\E: L,cp, = 0, q+,laa, = 0, q,,laE = 1, and extend 
its solution by 1 to all interior points of E. Then from the variational principle 
it follows that capLo E = Jo, c aij~Poxi~Oxj dx. Let us use Green’s formula in 
Q,\E: 

Hence capLo E = 
s 

a(po ds, where k is the differentiation in the direction of 
aE av 

co-normal interior to aE. 
Since we assumed that the coefficients of the operator I,, are smooth, the 

Green’s function G(x, y) exists; all we want is an estimate of G(x, 0) depending 
on 1, the dimension II ofthe space, and the distance to the boundary of the ball Q1. 

Let a > 0, and Z, = {x E Ql\(O}~G(x,O) 2 u}. Using Sard’s theorem, and if 
necessary, changing a by an arbitrarily small amount, we can assume that al, 
is a smooth surface. We have that G(x, O)lar, = a. Furthermore, since for 

any surface S in Q1 encircling the center of the ball, 
s 

aw, 0) & = 1 ~ 
s av ' 

s 

1 aG(x, 0) 
- ~ ds = i, and therefore capLo Z, = l/u. 

ar, a av 
Let Q, be a ball with center at 0, obtained from Q1 by uniform shrinking 

with coefficient y (0 < y. < y < l), and let a = minaQ 
principle QY c I,. By the monotonicity of the capacity 

G(x, 0). By the maximum 

capLo Q, < capLo I, = l/u = l/min G(x, 0). 
aQ? 

Similarly, if b = max, E aQ, G(x, 0), then 

capLo Q, 2 capLo I, = l/b = l/max G(x, 0). 
JQ, 

Thus 

min G(x, 0) < l/cap,,, 0, < max G(x, 0). 
aQY JQ, 
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AS G(x, 0) is a positive solution of the equation L,u = 0 in Ql\{O}, by 
Harnack’s inequality there exists C 2 1 depending on A, yO, and n such that 

Therefore on 8Q, 

max G(x, O)/min G(x, 0) < C. 
XE JQy XE JQ, 

C-‘(capLo 0,) < G(x, 0) < C(capLo Q,)-‘. (54) 

Since the ellipticity constant is invariant with respect to similarity transfor- 
mations, we have that for 0 < y < y0 < 1, C depends on 1, ‘yO, and n only. 

Let us now consider the operator A, the ellipticity constant of which equals 

1 d 1. Let G,(x, 0) = A 
pj- 

be its Green’s function (A depends on n). According 

to (54) 
C-l capd Q, < G,(x, 0) < C(cap,Q,)-‘. (55) 

Furthermore, 1-i cap, E < cap,,, E < il cap, E. Together with (54), this gives 

;1-2c-2 A 
< G(x, 0) < ~~c2 

A 
IxI”-2 IxI”-2’ 

for x E Q,, which is exactly what was to be shown. 

2.6. A Growth Lemma. A Version of a Phragmen-Lindeliif Type Theorem. 
In this section, as above, we shall consider the case n > 2. We shall call the 

1 
capacity of a Bore1 set E, generated by the potential 1”-2, the Wiener capacity, 

and denote it by cap E. 

Lemma 2.1 (growth lemma). Let us consider R, > 0 and let R be a number 

such that 0 c R < 2. Let an open set D be contained in the ball QhR. We set 

r = aD n Q& and let D n QTj # 0. Let us consider in D a solution u of equation 
(41) which is continuous in 0, positive in D and zero on r. Then 

cap(Q”,“\D) 
R”-2 

> 
sup 4 

DnQ;o 
(56) 

where 5 depends on the constants in inequality (22) and on R,. 

This version of the growth lemma which incorporates capacity was first proved 
by Maz’ya [1963]. 

Proof. By Theorem 2.10, the Green’s function G(x, y) is defined in the ball Q;;“,. 
It satisfies for x, y E Q& and thus for (x, y) E Q&, the conditions 

Cl c2 

Ix - yin-2 
Q G(x, y) < 

Ix - yp2’ (57) 

where C, > 0, C, > C,, depend on the constants of condition (22) and on R,. 
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Let us set E = Q;;“\D and let pc, be the equilibrium measure for the potential 
1 

Ix - yin-2 
defined on that set, so that 

s &o 
E Ix - YY2 

< 1 outside of E 

and cap E = pO(E). 
Let 

.=(,,,(l -$Js, Gb, Y) 444 + & cap E 
> 

. 

Then -z--- 
lim V> lim ulr 

x-‘dD 
XED 

t;. y:;a; 
x, 

and, by the maximum principle, u < V. 
Therefore, 

sup tl<g$&$&;pu 
DnQ;o 

andthusl=$(&-&).m 

Remark. If instead of equation (43) we consider equation (26), then, according 
to Theorem 1.31, the Green’s function G(x, y) is defined on R” and satisfies (48) 
with constants depending on 1 only (that is, R, is not needed, and the ball QR 
can be of arbitrary radius). 

Definition. Let R and y be two positive numbers. We shall say that a domain 
G (which in general is unbounded) has an internal diameter not exceeding R to 
order capacity y if for every point x0 E R” we have the inequality 

cap(Qp\G) > yRne2. (58) 

Definition. Let G c IF!” be an unbounded domain. We shall say that u E @;,1, 
if for any cp E C$(R”) ucp E I@‘(G n D) where D = {x E lW’l&c) # O}. 

Theorem 1.32 (a Phragmen-Lindeliif type theorem). Let R, and y be fixed 
positive numbers, 0 < R < R,, and let G c UP be an unbounded domain of interior 
diameter not exceeding R to order capacity y. Let u E e,l, be a solution of equation 
(43) in G. Let us set 

M(r) = r=; IWI. x 
XEG 

Then if u+ 0, for r large enough 

M(r) > eCalR)‘, (5% 

where u > 0 depends on R,, y, and also on the constants A and M of inequality (22). 
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Proof. Let u f 0. There exists a point x0 E G such that u(x’) # 0. We can 
assume that &(x0) = a > 0 (otherwise we could switch the sign of u). Let us 
consider the balls QTj and Qz. From (58) and from Lemma 2.1 (the growth 
lemma) 

sup u > (1 + g,)a. 
Q;onG 

‘Therefore, there exists a point x1 E G such that Ix1 - x01 < R and u(x’) > 
(1 + 57)~. Considering the balls Q’;k and Qz, we shall find a point x2 E G with 
1x2 - x1 1 < R and u(x’) > (1 + &)‘a. Continuing in the same manner, we obtain 
asequencex’,xl,...suchthatIx’-x i-1 I < R and u(x’) > (1 + @)‘a. Therefore, 
by the maximum principle for generalized solutions, we get 

M@) > (1 + ~Y)Wlxol)/Wu = u(l + ,zy)(-l~ol/Wl . e(Wl+WW, 

and if a < ln(1 + tr), then for I large enough, M(r) > e(a’R)‘. 0 

This theorem is more subtle than the Phragmen-Lindelof type theorem we 
obtained in Section 1 (Theorem 1.13). 

Next we give an example of a domain with interior diameter less than R to 
order capacity y. Let us consider the integer lattice in R”. Let us place at every 
point of the lattice the center of an (n - 1)-dimensional disc of radius not less 
than I, 0 < I < 1. Every disc can be oriented in an arbitrary way. Let us denote 
by E the union of these (closed) discs. Then our domain is G = R’\E. 

Remark. If instead of equation (43) we consider the simpler equation (26), then 
in Theorem 1.32 R does not have to be bounded by R,, thus u will depend only 
on y, A, and M. 

Let E c R” be a bounded Bore1 set. The capacity cap E can be introduced by 
a different, though equivalent, method. Let llJz be the set of functions f E Cg(W”) 
which take the value one in some neighborhood of E. Then 

cap E = inf L 
s 

Imad fl” dx, 
fEmmn R” 

(60) 

where o, is the area of the (n - 1)-dimensional surface of the unit sphere in R”. 
We give another example of the use of the Lemma 2.1 (the growth lemma). 

For that we use the following lower bound for the Wiener capacity of a set in 
terms of its n-dimesional Lebesgue measure (n > 2). Let E c Q?. Then 

cap E , C meas E 
R”-2’ R” 

where C is a constant depending only on the dimension of the space (see for 
example Landkof [1966]). 

Then the following claim can be derived from Lemma 2.1: 
Let D c QTR (0 c R < R,) be an open set having non-empty intersection with 

Q4, and let r = i?D n QTR. If u(x) is a generalized solution of equation (43) in D 
which is continuous in D, positive in D and zero on r, then 
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> 
sup u, E = Q?\D, 

where 4 > 0 is a constant depending on 1 and p of inequality (22) and on R,. 
Using this statement and the maximum principle, we can subsequently deduce 
the following fact. 

Lemma 2.1’. For any A > 0 there exists Ed > 0 such that $ D c Qz, 0 < R < 1, 
. . 

is an open set contamzng x,,, r = aD n Q?, and u(x) is a solution of equation (43) 
in D which is continuous in 0, positive in D and zero on r, and 

then 

meas D < ERR”, 

max u > Au@,). 
D 

Let us prove now the following proposition. 
Let a generalized solution of equation (43) be defined in a domain G c W, 

G’ cc G, and p(G’, 8G) = r, r < 1. Then 

mp I4 G WIIL~~G~~ 

where C > 0 depends on I, M, and r. 

Proof. We set in Lemma 2.1’ R = f , A = 2” and find the corresponding sO. 

Let maxG IuI = 2M = lu(xO)l. We can assume that u(xO) = 2M (if u(xO) = -2M 
we can change u to -u). Let us set u1 = u - M and D, = {x E Q$ n G: u1 > 0}, 
so that ulD, > M. If 

meas D, > Ed r 
0 

n 

4 ’ 

2.4” 
then fGu dx > M, and putting C = ~ 

COP ’ 
we get the desired inequality. Let 

n 

Then there exists pr, 0 < p1 < i such that 

meas D, n Q;:, = E,,P;. 

Applying Lemma 2.1’ to the ball Qfy, the set D n Qf;, and the function u, we 
find a point x1 E G, x0 - x11 < p1 such that 

u(xl) > 2.2”. M. 
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Next, put u2 = u - 22M, and D, = {x E Qg2: u2 > O}. Ifmeas D, > so 
r n 

0 
-4 , then 
. 

the proposition is proved with the same value of C as above. 
Let 

meas D, < .zo r 
0 

” 

4 ’ 

Then there exists p2, 0 < p2 < i such that 

meas D, n Q;; = cop;. 

Applying Lemma 2.1’ to the ball Qf;, the set D, n Q;;, and the function u2, we 
find a point x2 E G, Ix2 - x1( < p2, such that 

2.4~~) > 2.2n.M. 

Continuing this process, we obtain a sequence pl, . . . , pk, . . . . Let pk be the first 

number such that pi + * * * + pk > $. Such a number exists since u(xJ + co for 

k + co, while the function u is bounded in the ball Q$. Therefore there exists a 
number i,, 1 < i, < k, such that 

r 1 

OnthesetDi~u>2’.M,andmeasDi~~o.(~):~.Thus~~udx>w.(~~, 

where o, is the volume of the unit ball, and we obtain the inequality 

max Iuj < Cw, 
s 

I4 dx, 
G G 

where G is the constant characterized above. 0 
Kondrat’ev [1967] introduced the concept of capacity of order k connected 

with elliptic equations of order 2k, which generalizes definition (60). Subsequently 
Maz’ya [ 19651 used a different (but equivalent for bounded sets) definition. Let 
E be a bounded Bore1 set in R”, 

cap E = inf 
fe ‘1R 

where YJI is the same family of functions as above. 
In terms of this (so-called polyharmonic) capacity, we can derive a growth 

lemma and a Phragmen-Lindeliif type theorem for elliptic equations of order 2k, 
in analogy with Lemma 2.1 and Theorem 1.32 (on this topic, see Landis [1974]). 

2.7. The Question of Regularity of Boundary Points. Let us consider the clas- 
sical Dirichlet problem for Laplace’s equation. We have a bounded domain G, a 
continuous function f is given on its boundary, and we have to find a function 
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harmonic in G, continuous in G and equal to f on JG. As is well known, such a 
problem is not always soluble. In view of the removable singularity theorem, in 
the punctured disc, in general, the classical Dirichlet problem cannot be solved. 

In 1912 Lebesgue constructed an example of a domain in R3 which is homeo- 
morphic to a ball and has a boundary that is smooth everywhere except at a 
single cusp point. For this domain the Dirichlet problem is not soluble for some 
continuous boundary data. 

Let us quote this example. Consider the function 

u(x) = xf + x$ + xg + x1 ln(Jm - x1). 

This function is harmonic everywhere except on the positive part of the x1 
axis. Let us consider the level surface u(x) = - 1. This is a surface of revolution 
around the x1 axis, which touches the x1 axis at the origin and has a cusp point 
there. 

Let us construct a closed surface which coincides with the surface u(x) = - 1 
in a neighborhood of the origin and does not intersect the positive x1 semi-axis. 
Let us denote by G the bounded region this surface encloses. Let us prescribe 
boundary values on 8G which coincide with u except at the origin and equal - 1 
at the origin. 

The boundary function is continuous, while u(xl, 0,O) + 0 as x1 + 0, that is, 
u does not take the prescribed boundary values at the origin. At the same time 
it is easy to show that any other bounded harmonic function coinciding with u 
on 3G outside of the origin, coincides with u everywhere in G. That is, a classical 
solution of the Dirichlet problem does not exist. 

In 1924 Wiener gave necessary and sufficient conditions on the boundary of 
a domain under which the classical Dirichlet problem is soluble for any con- 
tinuous boundary function. Moreover, he put every continuous function f in 
correspondence with a certain harmonic function uf which nowadays is called a 
generalized solution in the sense of Wiener, and gave a necessary and sufficient 
condition in order that for any continuous boundary function S, u/(x) + f(xO) 
as x + x0 for any given point x0 of the boundary. This condition depends locally 
on the structure of the domain in a neighborhood of the given boundary point 
x0. A boundary point x0 with the property that for any continuous function f 
defined on aG, u/ converges to f(xo) as x + x0, is called a regular point. 

The function uf is usually constructed by one of the two following methods: 
1) Wiener’s method-the domain is approximated from the interior by domains 

Gk with smooth boundary. The function f is continuously extended from the 
boundary into the interior of the domain. Let us denote the extension by F. Then 
the Dirichlet problems utlaG, = FlaGk are solved. It can be proved that the 
sequence of such solutions uk converges to a harmonic function which depends 
neither on the method of approximation of the domains, nor on the way of 
extending the function. This limit function is ur. 

2) Perron’s method. We call a superharmonic function an upper solution if it 
is continuous on G and larger than f on the boundary. The intimum of all upper 
solutions is the desired function ur (it coincides with the function constructed 



Chapter 1. Second Order Elliptic Equations 131 

by the Wiener method, see for example Keldysh [1941]). Perron studied this 
problem more or less at the same time as Wiener (1923) and independently of 
him. He constructed a generalized solution and established a sufficient regularity 
condition. 

The necessary and sufficient boundary point regularity conditions given by 
Wiener (Wiener’s criterion) consists of the following (we remind the reader that 
in this section we consider the case n > 2): let us examine a sequence of balls 
{QP} with center at the point x0 we are interested in, the radii of which decrease 
in a geometric progression (0 < q < 1). If the series 

k=l 
q(n-2)k (61) 

diverges, the point is regular. Otherwise, it is irregular, that is, there exists a 
continuous boundary function f such that u&c) $, f(x,J as x + x,,. For example, 
a continuous boundary function that is zero at x0 and positive otherwise, will 
have this property. 

We shall use the facts that for equations with infinitely differentiable coefti- 
cients the generalized solution uf can be constructed following methods 1) or 2) 
(see Olejnik [1947]), and that the (boundary point) regularity condition coincides 
with the regularity condition for Laplace’s equation (Olejnik [1949]). 

Owing to the fact that for an elliptic operator in divergence form (21) there 
exists a fundamental solution, the ratio of which to the fundamental solution for 
the Laplacian is finite (at least in a neighborhood of the singularity), boundary 
points for equations in divergence form are regular (or irregular) if they are so 
for Laplace’s equation. 

Prior to dealing with this question, we introduce the notion of a generalized 
solution in the sense of Wiener of the Dirichlet problem for such an equation. 
This can be done using one of the methods indicated above, but it is more 
conveniently done in a different way. 

Thus let G c R” be a bounded domain, and let a function f be given on 8G. 
We extend f to G in a continuous fashion, and use the same symbol f for the 
extension. 

Had f belonged to W’, we would have been able to find a generalized solution 
u in W’ such that u - f E I@‘. It turns out that this would have been the function 
u/ we are after. However, not every function continuous on 8G can be extended 
in a continuous way to a function in W’(G). 

Let us take a sequence of infinitely differentiable functions on R”, the restric- 
tions of which to G, fk, converge uniformly to 5 

Let us solve the generalized Dirichlet problem for each of fk. Thus we find the 
solution uk(x) of equation (26) such that uk - fk E 6”. The sequence {uk] con- 
verges to a function UT which is a generalized solution of the given equation 
(43) on every subdomain G’ CC G. 

From the maximum principle for generalized solutions (see Theorem 1.22 of 
Section 2.1) it is easily seen that u y depends neither on the way we extended f, 
nor on the approximation off by smooth functions we used. 
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Definition. A point x0 E 8G is called regular for equation (43) if for each f 
continuous on 8G, 

uy + f&o) 

as x --,x0. 

Theorem 1.33. In order that a point x,, E aG be regular for an equation of form 
(43), it is necessary and suJ?cient that it is regular for Laplace’s equation (that is, 
if Wiener’s criterion is satisfied: the series (61) diverges (Stampacchia [1965])). 

We shall prove suhiciency of this condition. Take any two ql, q2, 0 < q1 < 1, 
0 < q2 < 1. The series (61) either diverges or converges for both of them. There- 
fore we can choose a specific q. It is convenient to put q = l/4. Thus let 

kz, cap(Q>P_,\G)4(“-2)k = co. 

If we prove that for any f that is continuous on aG, and every E > 0, there 
exists 6 > 0 depending only on f and on the constants 1 and M of inequality 
(22), such that for every equation of form (43) with infinitely differentiable coefft- 
cients satisfying (22) with the same Iz and M, its generalized solution in the sense 
of Wiener uf satisfies the inequality 

for 
lUf(4 - U/(X0)1 G E 

Ix - XOI < 4 

then we would have proved that for any equation (43) with bounded measurable 
coefficients that satisfy (22) with given I and M 

for 

luyw -f(%)l G 6 

which follows directly from Theorem 1.30 of Section 2.4. 
Thus, let us(x) be a generalized solution in the sense of Wiener of equation (43) 

with infinitely differentiable coefficients. Let us extend f continuously to G. Let 
F be the extension. 

We assume for simplicity that c(x) = 0. The presence of the term c(x)u in the 
equation, even independently of the sign of c(x) leads to a non-essential com- 
plication in the proof (instead of the usual maximum principle, a generalized 
maximum principle for domains of small diameter (see Theorem 1.4) has to be 
used). Thus let c(x) s 0. Then 

v = Uf -f(xO)-; 
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is a generalized solution in the sense of Wiener for the function fi = f - j&-J - 
& 
-, v = Uf,. 
2 

As the continuous extension off on G we can take Fr = F - f(xo) - 

E 
2’ 

There exists a 6, such that Fl < 0 for x E Q;; n G. Let us consider a sequence 

Gk of domains that approximates G from the interior and have a smooth bound- 
ary. Solutions of (classical) Dirichlet problems uk I aG, = Fl I aGk converge to Us,. 
Therefore, if we show that there exists 6, > 0, such that 

for Ix - x01 < 6,, then 

for Ix - x01 < 6,. 

Uf G fbo) + E 

Let 1, be the smallest integer such that 4-‘0 < 6,. Then for 12 I, 

(63) 

4~~~~~;:~ < 0 (if Gk n Q>, f 0). 
Let us set Di = Gk n Qzl and Mr = supD, u(x). Let us select 1, such that Mr, 2 s/2 
(if such 1, > 1, + 1 does not exist, we can set d2 = 4-(‘o+‘)). Let I, < 1 c 1,. Let 
us apply Lemma 2.1 (the growth lemma) to Q>,, Q>CI+,,, and D to obtain 

Ml+, > (1 + 5 cap(Q~~\G))4-‘(“+2’M,. 

Let us set maxE F = M. Then 

2M > max Fl > i f/ (1 + 5 cap(Q>P-I\G)4-‘(“-2)) 
G 0 

2 i a ,$ 4-1(“-2) cap(QF1\ G) 
0 

where a > 0 depends on 5, that is, on I and M. This gives an upper bound for 
I,: 1, < I,, and we may set a2 = 4-r2. 

Thus we have proved (63). In a similar way we find 6, such that 

Uf a f(xo) - E 

for Ix = x01 c 6,, and put 6 = min(b,, 6,). 
We shall not prove here the necessity of condition (61) in order that a point 

x0 be regular. The idea of the proof, however, is simple. Let 

kzl 4-k(a-2) cap(Qzk\G) < cc 

and let the number k, be such that 

,g 
0 

4-k(n-2) cap(QFk\G) c i. 
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Let us prescribe a continuous non-negative boundary function f such that 
f = 1 for x E aG n Q-&0+lj, and f = 0 for x E aG n Q&,. Let CL,, be the equilib- 
rium measure for the set Q~kO\Q$!,kO+lj \G and let uk(x) be the potential corre- 
sponding to it. Let us set 

U(x) = ,=$+, Wx). 
0 

It can be shown that I+(X) < U(x) and that in any neighborhood of the point 
x0 there are points x in G where U(x) < l/2. 

From the proof given above it is seen that at a regular point the modulus of 
continuity of the solution can be determined. It will depend on the modulus of 
continuity off, on max IfI and on the rate at which the series (61) diverges. The 
first to establish this was Maz’ya [1966]. We quote here the relevant theorem. 

Theorem 1.34. Let x0 E aG be a regular boundary point, let f be a function 
continuous on dG, and such that for some 6 > 0 

If(x) - f(xJ =G 41x - x01) for Ix - x01 -c 6, 
where o(t) JO, o”(t) < 0 for t > 0. 

Then for Ix - x,,I c 6 

cw(Qfo\G) dp + 
n-1 

o(6) 
. . . . 

P 

where j3 > 0 depends on I, M, 6, and K depends on maxac If I as well. 

2.8. Stability of Solutions of the Dirichlet Problem. Let us next consider the 
question of stability of solutions of the Dirichlet problem for equation (43) under 
perturbations of the boundary of the domain. In the following study of the 
question of stability of solutions to the Dirichlet problem we shall consider 
domains G, the boundary of which contains no interior points of G, that is 
domains such that in a neighborhood of any boundary point there are points of 
the complement of G. We restrict ourselves to the case of Laplace’s equation, 
that is, when aij = dij; hi(x) E 0, c(x) E 0, f(x) = J(x) = 0. It is easily seen that 
this discussion extends easily to general equations of form (43). We introduce 
here definitions given by Keldysh [1941] and describe the main results he 
obtained in this direction. 

Thus, let a bounded domain G have no interior boundary points. Let us 
consider a sequence of domains Gk, k = 1, . . . , with infinitely smooth bound- 
ary which contain G and approximate G from the outside. Let f(P) E C(aG), 
&?P) E C(R”), f (9) = cp I ac. Let us consider a sequence of harmonic functions U,,, 
in G, such that Uk,JBGk = cp. It is not difficult to show that the sequences U,,, 
converge in G, and that moreover, the convergence is uniform in the interior of 
G, and that the limit function U,-(P) depends neither on the choice of the function 
q(P), nor on the choice of the sequence Gk. 
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Let z+ be the generalized solution in the sense of Wiener of the Dirichlet 
problem in G. We shall say that the Dirichlet problem is stable in G if for every 
continuous functionf(B) in sequence U,,,(P) converges in G uniformly, then the 
Dirichlet problem is stable in G. 

In the study of the stability question of solutions of the Dirichlet problem in 
a domain, an important role is played by the concept of a point of stability of 
the boundary of a domain. A point 9 E aG is called a point of stability if for 
every continuous function f(x) 

U,(P) = lim U,,,(B) = f(P). 
k+m 

The following proposition holds: a point of stability is regular in the sense of 
Wiener. To show that, let Q E aG be a point of stability. To prove regularity of 
the point f(9) in the sense of Wiener, it is sufficient to consider the case when 
f(~9’) coincides on aG with the values of some function ~(9) defined on the 
neighborhood of G and subharmonic there. From the subharmonicity of cp(.9) 
it follows that in G 

4-w) G UJV) G UfV). (64) 

From the definition of a point of stability it follows that for k large enough we 
have the inequality 

f(Q) G uk,,(9) < U,(Q) + E = f(Q) + E. 

Fixing such a k let us select a p-neighborhood of the point Q in which the 
inequality U,,+,(P) < f(Q) + E still holds. The functions for U,,, decrease with 
increasing k, therefore L&*,,(g) <f(Q) + E for all k* > k. This shows that 
lim sup&,Q U,(P) < f(Q). From (64) we deduce that lim inf,,Q U’(P) > f(Q) and 
therefore lim8+Q U,(9) = f(Q), which proves regularity of the point Q. 

It is possible to formulate a necessary and sufficient condition of stability of a 
boundary point in terms of the Wiener capacity, which is similar to the necessary 
and sufficient condition of regularity in the sense of Wiener. Such a condition 
has been obtained by Keldysh and consists of the following. 

Let Q E aG, let 1, be the capacity of the open set ok, the points of which belong 
to the complement of G such that their distance from the point Q is between 
2-(k+1) and 2-‘. The point Q will be stable if and only if the series 1 2-k(n-2)ik 
diverges. 

Let us move on to the question of stability of solutions of Dirichlet problems 
in a domain. An important role in this question is played by the concept of 
harmonic measure. 

Let us introduce this concept. Let G E R” and let F be a closed set contained 
in aG. Let us consider a family {U} of functions that are superharmonic in G and 
satisfy the following conditions: 

1) For any point Q E F the limiting values as 9’ + Q of any function U(9) 
from this family are less than one. 

2) U(Y) 2 0, 9 E G. 
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We define the harmonic measure of the set F at a point 9 of a domain G to 
be the inlimum of the values taken by functions of the family {U} at 8: 

h(F, G, 9) = inf{ V(P)}. 

If F = 8G and G is a bounded domain, then clearly h(P) E 1. The harmonic 
measure of an arbitrary set E is defined in a manner analogous to the definition 
of the Lebesgue measure of a set. 

The following distinguishing properties of the harmonic measure are easily 
proved. 

a) the harmonic measure h(E, G, 9) of a measurable set is a harmonic function 
of the point 9. 

b) If h(E, G, 9) is zero at any point, then h(E, G, 9) = 0. 
The following proposition provides a link between the Wiener capacity and 

harmonic measure. If a set E c dG has capacity zero then the harmonic measure 
of E is zero. 

We also have the following form of the maximum principle. If a bounded 
harmonic function U(9) satisfies the inequality 

lim sup U(9) < A4 
P-+Q 

at all points of 8G except for a set E of harmonic measure zero, then everywhere 
in G, 

U(P) < M. 

To see this, let PO be a point of the domain G, and let Q be an open set contained 
in the boundary such that E c 52, and h(Q, P,,) -C E. Let us set K = ess sup, u(9). 
For all regular points of the boundary we have 

~(9’) < M + (K - M)h(SZ, G, .9’), (65) ~ 

In fact, if a boundary point does not belong to Sz, we have (65) by (64), and if 
a regular point 9 belongs to sl then h(Q, G, 9) = 1 and (65) holds again. But 
from (65) it follows that u(P,,) < M + (K - M)E, which proves our assertion. 

In particular, if two bounded functions take the same values on the boundary 
except on a set of harmonic measure zero, then they coincide. 

Using the harmonic measure of a set it is possible to give the following integral 
representation of a generalized in the sense of Wiener solution of the Dirichlet 
problem: 

u/v’) = 
s 

f(M) WE, G, 9’). 
ac 

Now we can state the following criterion of stability of solutions of the 
Dirichlet problem in the interior of the domain G. 

Theorem 1.35. In order that the Dirichlet problem be stable in the interior of 
the domain G it is necessary and sufficient that the set of points of instability of 
the boundary of G has harmonic measure zero. 
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Theorem 1.36. If every point of the boundary of G is a point of stability, then 
the Dirichlet problem is stable in G. 

The above results can be extended without difficulty to the case of equations 
of form (43), at least with bi = 0, i = 1, . . . , n, c E 0, due to the properties of their 
fundamental solutions. The analog of harmonic measure constructed with the 
help of the operator L is called the L-harmonic measure. 

Cafarelli et al. Cl9871 give an interesting example: G is the unit circle, and the 
authors construct a set of positive Lebesgue measure, L-harmonic measure of 
which is zero. They also construct an example of a set of zero Lebesgue measure 
that has positive L-harmonic measure. In all these examples the coefficients aij 
of the operator L are continuous in G 

2.9. The Neumann Condition. Trichotomy. Let D be a cylindrical domain, 
D = G’ x (- 00 < x, < co), and let us consider Laplace’s equation 

Au(x) = 0, x ED, fff 
an aGT 

= 0, 

where G’ is a bounded region with smooth boundary in (n-1)-dimensional space 
(4 = {(Xl, . . . , X.-l,>. 

If a harmonic function is defined in the semi-infinite cylinder D+ = 
(x E D, x, > O> and satisfies the zero Neumann condition on its lateral boundary, 
then as x, + co, it approaches exponentially either a constant or a linear 
function, or 

lim (In M(t)/t) > 0, - t’m 

where 
M(t) = sup lu(x)l. 

X,=f 

We shall use the word trichotomy to denote such a subdivision of all solutions 
into three classes according to their behavior as x, + co. It also holds for 
solutions of uniformly elliptic equations in divergence form. 

Here we restrict ourselves to the consideration of the simpler equation 

n a 
= 4 i,k=l dxi 

a,(x); = 0. 
k 

Let G c R” be a domain, and let r be a relatively open set of aG. We shall say 
that a generalized solution u E IV& of equation (43) satisfies the zero Neumann 
condition on r if Vq E C:, supp(cp . u) c G u r, we have the relation 

s GktIaik&gdx=O. 
I k 

Let D and D+ have the same interpretation as above. The boundary of G’ is, 
as above, assumed to be smooth. (Probably, it is sufficient that the Poincare 
inequality holds in G’, but this case has not yet been considered). 
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We have the following theorems: 

Theorem 1.37 (Lakhturov [1980]). Let u E wt, be a generalized solution of 
equation (26) in D+ that satisfies the zero Neumann condition on the lateral 
boundary of the semi-infinite cylinder D+. Then there exist constants C,, C,, 
0 < C, < C, such that one of the following three cases occurs: 

1) u(x) + const as x, + 00; 
2) C1x, < u(x) < CZx. or - CZx, < u(x) < -Clxn for x, sufliciently large; 
3) iii&,, (In M(t)/t) > 0. 

Theorem 1.38 (Nadirashivili [1958]). For any equation of form (26), all three 
classes of solutions are non-empty. 

Theorem 1.37 can be sharpened in the following manner. 

Theorem 1.39 (Lakhurov [1980]). There exists a solution u0 E &;,‘,(D+) of 
equation (26) which satisfies the zero Neumann condition on the lateral boundary 
of D+, such that 

CIX, < uo(x) < c2x,, 0 < c, < c,, 

and for any other solution satisfying the zero Neumann condition on the lateral 
boundary that doesn’t satisfy condition 3), there exist constants a and b such that 

u(x) = au, + b + o(exp - (ax,)), 

where CI > 0 is a constant that depends on the ellipticity constant of the equation. 

We have the following assertion in the case of a whole cylinder D. 

Theorem 1.40 (Lakhturov [1980]). There exists a solution vo(x) satisfying the 
zero Neumann condition on the lateral boundary of D such that C1x, < vo(x) < 
Czx, for large positive x, and -CZx. < vo(x) < - C1x, for x, negative with a 
large absolute value (0 < C, < C,); any other solution u(x) of this equation with 
zero Neumann conditions either satisfies 

lim (In M(t)/t) > 0, 
t-m 

or there exist constants a and b such that u(x) = au,(x) + b. 

The following theorem is similar to Theorem 1.40. 

Theorem 1.41. (Lakhturov [1980]). If in the equation Lu = f the function f is 
finite then there exists a solution uo(x) satisfying the zero Neumann condition 
on the lateral surface of D such that C, x, d uo(x) < CZx. for x, > 0 large enough 
and - Czx, < uo(x) < - C, x, for x, < 0 of large enough absolute value. 

Furthermore, it is clear that if 
s 

!?!, 
x,=o au 

x1 . . . dx,-I is suitably defined for gen- 

eralized solutions, then 
s 

2,x x,=-t au 1 . ..dx.+ - 
s 

fidx 
++ au 

I...dx,-I = f dx 
s 

for t > 0 sufficiently large. 
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Solutions of class 2) differ from solutions of class 3) also in that for x, sufh- 
ciently large solutions of class 2) do not change sign, while solutions of class 3) 
necessarily change sign for x, arbitrarily large. 

This allows us to prove trichotomy of solutions also in the case of non- 
cylindrical domains. Let us state one such theorem for harmonic functions 
(Ibragimov [1983a]). 

In order to avoid introducing cumbersome definitions from (Ibragimov 
[1983a]) which describe the domain under investigation in terms of isoperi- 
metric inequalities, we consider here a simple particular case that follows from 
the results of Ibragimov [1983a] (see also Lakhturov [1980]). 

Theorem 1.42. Let q(t), 0 < t < 1 be a continuously differentiable function 
I&O) = 0, Ii/(t) > 0, for t > 0, [q’(t)1 < K. Let us consider a function u(x) which is 
harmonic in 

and satisfies the zero Neumann condition on 

s=IO<x”<l,(“~x’)m=p(x”)~. 

Let us use the notation M(t) = rnaxXnEt lu(x)l. Then one of the following three 
possibilities occurs: 

1) There exists a constant M, such that 

44 = MO + O(exp( --a f:. W(ynW~‘)), 

where a > 0 is a constant that depends on K. T- 
2) hm,,,(ln M(t)/j: dz/Gp(z)Y-‘) 0 d > an u changes sign in every neighborhood 

of the point 0; 
3) There are constants l,, lz, 0 < 1, < 1, such that for x, sufjciently small 

s 1 

11 
dz 

x, o)“-’ 
< u(x) < 1, 

s 

1 dz 
x, o)“-’ 

or 
1 1 

-4 s dz 
y < u(x) G -1, 

s 
dz 

x, (cp(4) - x, o)“-’ 

and u(x) does not change sign in a neighborhood of 0. 

2.10. Zaremha’s Problem. This term describes a mixed boundary value prob- 
lem for a second order elliptic equation in which a Dirichlet condition is pre- 
scribed on a part of the boundary and a Neumann condition is prescribed on 
the rest of the boundary (see Zaremba [1910]). 
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Let G be a bounded domain in UP and let E c aG be a closed set. Let us 
introduce the class of functions l+‘,‘(G). This is the subspace of W’(G) obtained 
by taking the closure in the W’(G) norm of the set of infinitely differentiable 
functions in G which vanish in a neighborhood of E. When the domain G is fixed, 
we simply write W’, WE’ instead of W’(G), W,‘(G). 

Let a solution of (43) be defined in G and let cp E W’ be some given function. 
We call a function u E W1 a generalized solution with Dirichlet data on E defined 
by the function q, and with zero Neumann data on aG\E, if u - cp E WE’ and 
V% E w,l 

Let the function cp be continuous in G. Let us take x0 E E and consider the 
following question: when does u(x) + cp(x,) for any 40 E W’ n C(G) and when is 
u(x) continuous on aG\ E. 

If the domain has a Lipschitz boundary, that is, if in a neighborhood of each 
of its points, aG is the graph of a function satisfying the Lipschitz condition, then 
this question is easily soluble. On aG\E the function u is always continuous, 
while the question of continuity of u at a point x0 E E is reduced to the question 
of convergence or divergence of the following series: 

m cap(E n Q,4 c dn-2)k ' O<q<l, n>2. 
k=l 

(67) 

If this series diverges, then u(x) + cp(x,) for any cp from the class above, and if it 
converges, then there exists cp E W’ n C(G) for which U(X) does not converge to 
cp(%). 

In order to prove this statement we must apply a “Lipschitz diffeomorphism”, 
that is, a bijective Lipschitz mapping f: G + G’ that straightens the boundary in 
a neighborhood of x,,. Let moreover f(x) = x’, f(x,,) = 0, let the boundary in a 
neighborhood of x0 be mapped into the coordinate hyperplane xi = 0, and let 
the image G in a neighborhood of 0 lie in the half-space xi < 0. Let us examine 
this neighborhood of the origin (in the new coordinate system). 

Let f(E) = E’. Set u’(x’) = u(x). The function u’ is a generalized solution of an 
equation of the same form as (43) (with some different constants in the inequality 
(22)). Let this equation be 

Let us extend u’(x’) in xi in an even fashion, let us extend the coefficients uik 
multiplying derivatives of even order in xi evenly, and those multiplying first 
order x; derivatives, oddly. This extension of the solution is a generalized 
solution of the extended equation everywhere (in a neighborhood of the origin) 
outside of E’. Furthermore, the points x’ E {xi = O}\E’ are interior points, 
therefore at these points, due to the a-priori Holder norms bound, the solution 
is continuous. The question of convergence of u’(x’) to q’(O) = cp(x,) is thus 
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reduced to the question of regularity of the origin, in a neighborhood of which 
the boundary consists of points of E’, that is, we have to consider whether 
Wiener’s series for E’ diverges. Since the mapping f is Lipschitz, the corre- 
sponding series converges (or diverges), if so does the series (67). 

Kerimov et al. [ 198 1] consider the case in which the boundary does not satisfy 
the Lipschitz condition in a neighborhood of x0, and the point itself is a limit 
point both for the sets of points on which a Dirichlet condition is prescribed, and 
for the set of points on which the Neumann condition is prescribed. They obtain 
sufficient conditions on the boundary in order that the generalized solution of 
Zaremba’s problem satisfy the Holder condition at x,,. 

Kerimov [ 19821 considers the semi-infinite cylinder Q = G x [0, co), with the 
conditions au/au = 0, x E %2\ F; u = 0, x E F being prescribed on %2. He obtains 
a necessary and sufficient condition under which the solution converges to zero 
as 1 x 1 --+ co, which is similar to Wiener’s condition of boundary point regularity. 

5 3. Second Order Elliptic Equations with Regular Coefficients 

Up to now we considered equations with no restriction on the coefficients, 
apart from the uniform ellipticity condition. In this section we shall consider 
equations of the form 

Lu = 2 Uij(X) 
i, j=l 

&, + itl bitx)g + c(x)u = O 
1 .l I 

or 

+ 2 bi(X)$ + C(X)U = 0, (69) 
i=l I 

with various restrictions supplementing conditions (2) and (3) imposed on the 
coefficients. 

3.1. Dependence of the Smoothness of the Solution on the Smoothness of the 
Coefficients. First we mention some classical results. 

If the coefficients are analytic functions, then the solutions are also analytic 
(Bernstein, Levi, Gevrey, Petrovskij). 

If the coehicients of equation (68) are continuously differentiable k > 1 times 
in a domain G, then the solution is (k - 1) times continuously differentiable, and 
its derivatives up to (k - l)‘h order inclusive satisfy in every interior subdomain 
G’ an estimate in terms of the maximum of the modulus of the solution and of 
the distance between G’ and the boundary of G (Bernstein estimates). 

A sharper result was obtained by Schauder (see Miranda [1970], Landis 
[1971]): 

If the coefficients of equation (68) are in CkVa (0 c a < l), k 2 0 in a do- 
main G c R”, then in G, = {x E G, dist(x, aG) > p} the solution u E Ck+2.’ and 
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Ml cL+2,Z can be estimated in terms of the CL,” norm of the coefficients, the 
maximum of the modulus of the solution, and p. 

Under the same conditions on the coefficients, if the boundary of the domain 
G is smooth of class Ck+2*a, and if ulaG = cp E Ck+2Va, then u E Ck+2,a(G), and the 
norm of the solution in this function space admits an estimate in terms of the 
corresponding norms of the coefficients, the boundary function, and of the 
functions defining the boundary (Schauder estimates up to the boundary). In the 
case of generalized solutions of equation (69) Morrey [ 19431 obtained the follow- 
ing result: if the coefficients are in Ck’“(G), k 2 0,O < a < 1, then the generalized 
solution belongs to Ck+i*=(G). 

The results mentioned above have been extended to the case of elliptic equa- 
tions of arbitrary order (Morrey [1943]). 

Instead of imposing the Holder condition on the k”’ derivative as in the 
theorems of Schauder and Morrey, one could require that a repeated Dini 
condition is satisfied. Then the corresponding order derivative of the solution 
will also satisfy the Dini condition. The most complete result in this direction has 
been obtained by Ejdel’man and Matijchuk [1970] who proved similar state- 
ments in the case of general elliptic and parabolic systems. 

When the coefficients of equation (68) do not satisfy the Holder condition in 
G, Gilbarg and Hormander [1980] obtained the following generalization of the 
Schauder estimates: 

Let G c R” be a bounded domain. Let us set, as before, 

G, = {x E G: dist(x, 8G) > p}, p > 0 

Let a and b be real numbers such that a 2 0 and a + b 2 0. Set 

Il4llp’ = sup Pa+bIIa&,9 (70) 
P 

where Il~ll..~, is the C” norm of the restriction of u to G,. 
It can be verified that the right-hand side of (70) satisfies the norm axioms. Let 

us denote the completion of Cm(G) in this norm by HLb’. Let us use the notation 
Hi-“’ = H,, IIuII$-‘) = Ilull. Let H, (b-o) be the set of functions u such that 

;t Pcr+bI1410,c, = 0. 

Theorem 1.43. Let us assume that aG E C1+y, y 3 0 (this means that locally the 
boundary can be represented us the graph of a function of that class). Let 

p = c P=(X)D” 
Ial <2 

(71) 

be a uniformly elliptic operator, let a and b be non-integer numbers such that a > 2, 
0 < b < a, b < y. Let us assume that 

p, E HA?;b) for ) al < 2, 

P=EH~ for lal=2, 

p a E Hi?;‘=‘-‘) for b < [al. 
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Then there exists a constant C > 0 such that 

c-‘wlb + lI~4!l~~bb’ + Il4lo) G Il4l:-*’ 
G c(ll”llb + IIpult,%* + Il”llO) 

for all u E HA-*‘. 

Theorem 1.44. Let 8G be a Lipschitz surface such that each of its points can be 
touched from the outside by a cone with the angle of opening 0. Let the uniformly 
elliptic operator (71) be such that 

P.E H$)2 for Ial = 2, 

pa E Hi?;‘) for la\ = 1, 

p. E HA?;*‘, 

where a > 2 is a non-integer number, 0 < b < b, where 6 < 1 depends on 8. Then 
there exists a constant C > 0 such that 

c-‘(bh, + lb& + IIpull%*‘) G Ilull:-*’ 

< ClbdiO + llUllb + llpull:%*‘) 

for all u E Hi-*‘. 
Zf 8G E C’ this statement is true for all b < 1. 

If the coefficients are such that the spread of roots of the characteristic equation 
is small, then the C’s”(G,) norm of the solution can be estimated in terms of 
maximum of the modulus of the solution, p, and constants Iz and M of inequalities 
(2) and (5). This result was obtained by Cordes [1956a]. 

3.2. Behavior of Solutions in a Neighborhood of a Boundary Point. A necessary 
and sufficient condition of regularity of boundary points for Laplace’s equation 
was obtained by Wiener in 1924. In 1949 Olejnik Cl9493 showed that the 
boundary point regularity condition for equation Lu = 0 where L is an operator 
of form (1) with smooth coefficients, coincides with the regularity condition for 
Laplace’s equation (this was conjectured by Petrovskij [1946]). Krylov [1967] 
weakened the smoothness condition on coefficients, replacing them by a Dini 
condition. 

It appears that the Dini condition is the weakest possible under which the 
boundary point regularity condition coincides with the regularity condition for 
Laplace’s equation. Novruzov [ 19791 constructed an example demonstrating 
that for every continuity modulus o which does not satisfy the Dini condition, 
it is possible to construct an equation, the coefficients of which have o as their 
continuity modulus and for which regularity conditions are different from regu- 
larity conditions for Laplace’s equation. Novruzov and his students also showed 
that in the general case of an equation with continuous coefficients, necessary 
and sufficient conditions stated in terms of the continuity modulus of coefficients, 
do not coincide; he obtained these conditions. On the other hand, if some 
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additional restrictions are imposed on the structure of the coefficients, then even 
in the case of discontinuous coefficients it is possible to find conditions, under 
which necessary and sufficient regularity conditions coincide and are identical 
to the corresponding conditions for Laplace’s equation. 

Let us quote some of these results. 
We consider in a domain G c R” the operator 

(72) 

which satisfies uniform ellipticity conditions and the maximum principle 

L-’ ItI2 < $, aik(x)citk G n1112~ Vx E G ‘it E R”, (73) 

Ibi(x)l < M9 -M<c(x)dO VXEG. (74) 

Novruzov [ 1983b] introduces the following function: 

n(x, Y) = n 

2 %tx) 

, XEG, yEaG, 
i,z, %ktXi - Yi)txk - yk) 

This function is called the ellipticity function of operator L. 
Let us assume that there exist constants s1 and s2 such that 

where 

4x, Y) - Sl s 44x - YIL 

s2 - 4x, Y) 2 -m - Yl), 

(75) 

(76) 

(77) 

s dt/cp(t) < co. 
0 

Let us consider the functions 

G+ (4 = 
s 

diam G 

tl-+ exp 
I [S 

diam G 

MW dz dt, 
t 1 

s diam G 

[S 

diam G 

G-(r) = tleS2 exp (cp(W) dz dt. 
I t 1 

Using the kernels G,(v), we construct capacities y,(E) of a Bore1 set E by a 
standard method (see, for example Landkof [1966]). Let x0 E aG. Let us con- 
struct the Wiener series for these capacities. Thus, let E, = Q’;o-,\G and yz = 
y*(E,); we consider the series 

(78) 
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Theorem 1.45 (Ibragimov [ 1983b]). 1f condition (76) holds and if the series (78) 
with the (+) sign diverges, then the point x,-, is regular. Zf condition (77) holds and 
if the series (78) with the (-) sign converges, then the point x0 is irregular. 

Corollary. In the particular case s1 = s2 = n, the capacities y’(E) and the 
Wiener capacity of the set E are finitely related. In this case we obtain a necessary 
and suficient boundary point regularity condition for the equation Lu = 0, which 
coincides with the analogous condition for Laplace’s equation. 

As shown by Ibragimov [1983b], in this particular case the coefficients of the 
operator L can actually be discontinuous. 

In the case of equation Lu = 0, where L is an operator of form (72) with 
continuous higher order terms coefftcients and bounded measurable coefficients 
of lower order terms, Bauman [ 19851 obtained necessary and sufficient boundary 
point regularity conditions, which are similar to Wiener’s criterion. 

Let n 2 3, 0 < R’ < R and let Qa, Qs, be concentric open balls. Let x0 E 
QR\QR, be some fixed point. Capacity cap, K is defined for a compact set 
K c QR, in the following way: 

cap, K = inf u(xe), 

where the infimum is taken over all supersolutions of the equation Lu = 0 in QR 
such that ulaG = 0, ulo 2 0, and u(x) > 1 on K. cap, K depends, of course, on 
the choice of the points x0, but capacities with respect to different points are 
finitely related. 

There exist Green’s functions G(x, y) for the operator L in QR. Bauman 
constructs a function @x, y) which she calls the “normalized Green’s function” 
by setting 8(x, y) = G(x, y)/G(x,, y). Of course, this function is not a Green’s 
function but it turns out that it has many properties in common with Green’s 
function. 

Let now &&be a domain, a c QR, and let x* E aS2. Let us consider the family 
of balls Q, = {x E R”: lx - x*1 < 2-k}, and set K, = Q,,,+,\Q,+,. 

As is well known, the classical Wiener criterion states that a necessary and 
sufficient condition for regularity of the point x* is the divergence of the series 

Z2(“-2)“cap K In, 

where cap K, is the Wiener capacity of the set K,. The number 2(“-‘jm is 
proportional to the value G(x*, x,) of Green’s function in QR with pole at x*, at 
the point x, E aQ,. Moreover, the proportionality constant is independent of m. 
Let e be an arbitrary unit vector. Then we can set x, = x* + 2-“e so that the 
Wiener condition can be rewritten in the form 

mco G(x*, x* + 2P”e) cap K, = co, 

where m, is so large that K,O c QRj. 
The necessary and sufficient regularity condition obtained by Bauman is the 

divergence of the series 
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g &x*, x* + 2-“e) cap, K,. 

3.3. Questions Related to the Cauchy Problem for an Elliptic Equation. Let us 
consider the elliptic equation 

+ i hi(X)& + C(X)U = f 
i=l I 

(79) 

in a domain 52 c IV. Let us study the Cauchy problem associated with it: let S 
be a smooth (n - 1)-dimensional manifold with a boundary; we want to find a 
solution of equation (79) satisfying 

where 1 is a direction which is not tangent to S and which changes smoothly 
along S, and with cp, rj being given functions. 

As is well known, this problem is not well posed in the sense of Hadamard. 
However, if the coefficients of higher-order terms of L are in C’, and if the rest 
are bounded, we have uniqueness of solutions of this problem. 

Theorem 1.46 (uniqueness theorem). Zf u1 and u2 are two solutions of (79) in 
Sz satisfying on S conditions (80) with the same functions cp and II/, then u1 = u2 in 
52 (see, for example Hijrmander [ 1986-883). 

If aik do not satisfy the Lipschitz condition, then in general the uniqueness 
theorem for the solution of the Cauchy problem is no longer valid even if the 
coefficients satisfy the Holder condition with any given, arbitrarily close to one, 
exponent. The first such example was constructed by Plis [ 19631. The equation 
he employs has the form u,, + a(t, x, y)u,, + b(t, x, y)u,, -t I.o.t = 0, 0 < a < 
a(t, x, y), b(t, x, y) < /I. The coefficients in this equation satisfy the Holder con- 
dition with exponent arbitrarily close to one, and are C” outside of the coor- 
dinate plane t s 0. This equation admits a solution u(t, x, y) E C” which is zero 
for t < 0 and is non-zero in any neighborhood in the half-plane t > 0. 

In the example above, the equation is not in divergence form. However, Miller 
[1974] showed that the uniqueness theorem does not hold for equations in 
divergence form either. He constructed an example of an equation of the form 

Utt + f (aik(t, XT Y)uxk).q = 0, 
i,k=l 

which is uniformly elliptic with coefficients which are periodic in x and y, which 
satisfy the Holder condition with any a-priori given constant smaller than one, 
and are infinitely differentiable for t # 0. This equation has a solution u(t, x, y) 
periodic in x and y, which is also zero for t < 0 but not identically zero for t > 0. 

In these examples it is essential that the number of independent variables is 
larger than two. In the case of two independent variables, Bers and Nirenberg 
showed that uniqueness of solutions of the Cauchy problem does take place both 
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in the case of equations not in divergence form and of equations in divergence 
form. For this to hold, it is enough that coefficients are measurable and bounded. 

To have uniqueness in the case when the coefficients of higher order terms are 
C’ and those of lower order ones are bounded, it is not necessary to prescribe 
u and au/al on all of the surface S. 

Let f - 0 in equation (79). Then the following theorem, due to Nadirashvili 
[1986-j, holds: 

Let E c S be such that its Hausdorff dimension is larger than n - 2, and 
uIE = grad uIE = 0. Then u E 0 in 52. 

It is essential that the surface S belong to the interior of the domain 52 in which 
the solution is defined. If, on the other hand, S belongs to a smooth piece of the 
boundary of 52 and has positive (n - l)-dimensional measure, then the question 
of uniqueness of solution to the Cauchy problem in the case of dimensional n >, 3, 
is unresolved even in the simplest case when 52 is a ball and S is its boundary. 
Let u E Cm@), E c S is a set of positive (n - l)-dimensional measure and u& = 
grad ujE = 0. Does it follow that u E O?l 

Uniqueness of the solution for the Cauchy problem for the equation Lu = 0 
is equivalent to the problem of extending the solution from a subdomain to the 
entire domain: if 52’ c 52 and ~1~ = 0, then u = 0 in 0. A strengthened form of 
this result states that if x0 E Sz and u(x) is a solution of the equation Lu = 0 which 

decays as x + x0 faster than any power, that is, Vk lim 44 
x-+x0 Ix - XoIk 

=O,thenu-0. 

Under assumption of sufficient smoothness of coefficients, this was first proved 
by Cordes [ 1956b] (this is also a corollary of the three ball theorem we formulate 
below). 

If the point x0 belongs to the boundary, then as x + x0, the solution can 
already decay exponentially without being identically zero. Let Sz be a disc in 
the plane x1, x2 

B = {(xl, x2): (x1 - 1)2 + xf < l}, xi + ix, = z. 

Then as z approaches (0,O) the function u’ - = Re e-l/’ decays exponentially. 
Borai [1968] obtained the following result for the equation Lu = 0, with 

assumptions on coefficients being as follows: ai,k E C2, bi E C’, c(x) is a bounded 
function. 

If u(x) is a solution of the equation in a domain a with a C’ boundary, x0 E 80, 
and there exists an E > 0 such that lim,,,O(u(x)/e- l/(l~-~~l’+~)) = 0, then u E 0 in Q. 

The question of uniqueness of solutions to the Cauchy problem is closely 
related to the question of continuous dependence of the solution on the Cauchy 
initial data in a class of a-priori bounded functions. We have the following 
theorem: 

1 Recently, T.H. Wolf announced that he had constructed a counterexample for Laplace’s equation 
in a ball in Iw3. 
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Theorem 1.47 (on continuous dependence of solutions to the Cauchy prob- 
lem). Let S2 c 02” be a domain, let S c &2 be a smooth (n - l)-dimensional surface; 
let Q’ be a subdomain of D adjoining S, that is S = a!2 A aa. 

Let u(x) be a solution of the equation Lu = 0 in Q v S, and assume that aik E C’, 
and that bi and c are Holder continuous. Let M be a positive number. Then there 
exist numbers C > 0 and o > 0 such that if lul,o < M, and for arbitrary E > 0 

< e then (u( < C.9 in 52’. 
IS 

This theorem was proved, under somewhat stronger assumptions on the 
coefficients than those given above, by one of the authors (Landis [1956bJ). 
Subsequently these requirements were weakened as indicated by Borai [1968]. 
He derived this theorem from the Hornunder inequality (Hbrmander [ 1986-881). 
As this is an important result, we quote it here. 

Let p = CI.K~ a a (x)D” be a differential operator of order m, and let P,,, = 
~,n,=m a,(x)D” be elliptic. Assume that the coefficients of P, are in C’, and that 
the rest of coefficients of P are bounded. Let a function cp E C2 be defined in a 
neighborhood of x0 E R”, and grad I # 0. The level surface q(x) = cp(x,) is 
called strongly quasiconvex (in a sufficiently small neighborhood of x0) if the 
equation g’,(t + iz grad rp(x,)) = 0 has no multiple roots r for any real 5. If this 
condition is satisfied and if u E fi,,, such that the support of u is contained in a 
small enough neighborhood of x0, then for sufficiently large positive r 

,=gm z’(m - lal) - 1 
s 

(Doru(2e2rrp dx i K 
s 

IPu12eZzV dx, 

K = const > 0. (81) 
Any surface’ is strongly quasiconvex for a second order elliptic operator. 

Therefore inequality (81) holds. The derivatives in (81) are generalized derivatives 
in the sense of Sobolev. The Holder condition on the lower order terms in the 
statement of the theorem is only needed in order that a classical solution may be 
obtained via Schauder’s theorem. 

The following theorem on continuous dependence in a class of a-priori 
bounded functions in the problem of continuation of a solution from a sub- 
domain to the entire domain parallels the theorem on continuous dependence 
of solutions of the Cauchy problem. 

Theorem 1.48. Let 52,52’, and Sz” be domains in R” such that $2” cc 51’ cc 12, 
and let there be defined in 52 a solution u(x) of the equation Lu = 0 with the same 
assumptions on the coef@cients as in the previous theorem. Let M be a positive 
number. Then there exist constants C > 0 and o > 0 depending on 9, Q’, KY’, and 
M, and L such that for any E > 0, it follows from JuJln < M and IuJ,o,, < E, that 
(ullpr < Ce”. 

This theorem is contained in the paper of Borai Cl9681 mentioned above. 
If stronger smoothness conditions aik E C2, bi E C’, c(x) is a bounded function, 

are imposed on the coefficients of the operator L, then a sharper theorem can be 
obtained. 
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Theorem 1.49 (three balls theorem). Let Q,” be the bull of radius r with center 
at the origin. Let there be defined in Qy a solution u(x) of the equation Lu = 0, 
coeficients of which satisfy the conditions detailed above. Let Iul,o, < 1. Then there 
exists a constant C > 0 depending on L such that if rl, r,, 0 < rl < r2 < 1, and 
c( > 0 are arbitrary numbers and IuIIQF, < r:, then 

141~;~ < (CrJ. (82) 

This theorem is proved in Landis [1963] under slightly stronger smooth- 
ness requirements on coefftcients, and instead of (82) the estimate IuI,~~, < 
(Cr,)“l In r2 I is given. Gusarov [ 19751 weakened the requirements on coefftcrents 
as indicated in the theorem. 

Since in general the constant C is large, the theorem is meaningful for small 
r, (and large a). Gusarov, Landis [1982] also considered a different version of 
this theorem, which provides an estimate in the case when r2 is close to 1. 

The three ball theorem can be considered as a generalization to solutions of 
elliptic equations of the Hadamard three circle theorem from the theory of 
analytic functions of a complex variable. 

Nadirashvili [1976] proved the following version of the three balls theorem in 
the case when the coefftcients of the operator are analytic functions. 

Theorem 1.50 (modified three balls theorem). Let equation Lu = 0 with analy- 
tic coefficients be defined in Qy. There exist constants (r > 0 and 01~ > 0 such that 
if 0 < r1 < r2 c l/2, E c Q’& is a set such that meas E = meas QzI and u(x) is a 
solution in Q” satisfying conditions Iul,o~ < 1 and lulls < r:, where a > CL~, then 
IuII~:, < rT. 

Whether a similar theorem holds in the case when L has non-analytic coeffi- 
cients, is an open question. 

3.4. A Phragmen-Lindeliif Type Theorem Connected with the Cauchy Data. 
Apart from the generalization of the classical Phragmen-Lindelijf theorem from 
the theory of analytic functions, which is related to the transition from an analytic 
function f(z) to the harmonic function u(x, y) = In If (z)l, that was given above, 
there exists a different generalization, related to the transition from an analytic 
function f(z) to the harmonic function Re f(z). 

We consider the equation Lu = 0 with coefficients satisfying the following 
conditions: uik(x) E C’, hi(x) and c(x) are Holder continuous. 

Theorem 1.51. Let Q be a cylinder defined by the inequalities &2 xi’ < h2, 
x1 > xy and let S be its lateral surface. Suppose that u(x) is a solution of equation 

Lu = 0 satisfying lulls < 1, E 
I I 

< 1. Then either u(x) is uni$ormly bounded in Sz 
S 

for large xi, or 

lim b4411ev(CxI)) > 0, (83) x,-m2 
where C > 0 is a constant depending on the equation and on h. 
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Proof. For arbitrary a > xy + 1, let us denote by Z,, and ZL cylinders defined, 
respectively, by inequalities 

ig x? G h2, a-l<x,<a+2 

and 

i$ x? G h2, a<x,<a+l. 

Let S, be the lateral surface of the cylinder Z,. 
From the theorem of Borai [ 19681 on continuous dependence of solutions of 

the Cauchy problem quoted above, it follows that there exist constants so > 0 
and p, 0 < ,u < 1, depending on the equation and on h, such that if E, 0 < E < so, 
is an arbitrary number, and if u(x) is a solution of the equation Lu = 0 in Z,, 
which satisfies the conditions 

au 
ulclinz,, IuI,s,<u, au <s, I I IS.7 

(84) 

then 
Iv1 < E” in Z,. (85) 

Let us set M, = maxxEz. IuI and ML = max,,,Jul. M = max(l/e,, l), and 
assume that u(x) is unbounded in the cylinder Q as x1 --, co. Then we can find 
a > xy + 2 such that 

M;>M, M,:>M;-,. (86) 

Consider in Z, the function u(x) = u(x)/M,. This function solves the equation 
au 

Lu = 0 and satisfies the inequalities Iv(x)1 G 1 in Z,, lulls < l/M,, z 
I I 

< l/M,. 
IS 

Therefore, by (84) and (85) 

I4 < WW in Z,, 
that is, 

M, > (M;)“‘‘-“‘. (87) 
As M, = max(ML-,, ML, Mi+l), it follows from (86) and (87) that Ma = M;+l, 

and thus 
ML,, > (M;)“‘‘-“‘. 

Now we can repeat the argument, substituting first a + 1 and then a + 2, etc. 
for a, to obtain 

M;+k > (M;)(‘/(‘+‘ = exp(ln M’expb ln&)), 

hence inequality (83) follows; we can take for C any number smaller than In 
u/u - cl)). cl 
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Let us give another example of a theorem in the same vein. Its proof is similar 
to the above, and uses the theorem on continuous dependence of solutions of the 
problem of continuation from a subdomain to the entire domain. 

Theorem 1.52. Let 0 be a ball punctured at the center: 52 = {x: 0 < 1x1 < R}, 
and let K be the cone defined by inequalities 

t2 XT < a2x:, a # 0, Xi > 0. 

Let u(x) be a solution in 52 of the equation Lu = 0 with the same assumptions on 
the coeficients of L as above, and suppose that u(x) is bounded in 52 n K. Then 
either u(x) is bounded everywhere in Sz, or 

7 

hm (I~bWwW43) > 0, 
lb+0 

where C > 0 is a constant depending on the equation and on a. 

Let us quote, finally, another theorem of this class. It was obtained by Nadi- 
rashvili [1972] and uses the modified three balls theorem. 

Theorem 1.53. Let L be a uniformly elliptic operator defined on I??‘, the coefi- 
cients of which are analytic, can be analytically continued into the region {z E 42’: 
Re z E [w”, Jim zI < S}, and are bounded in modulus in this region. 

Let R and u be positive numbers, and let E be a set with the following property: 
for any point x0 E R”, meas(E n Q2) > u, where Qz is the ball of radius R with 
center at x0. 

Let us consider u(x), a solution of the equation Lu = 0 in W, which is bounded 
on E. Then either u is bounded everywhere in W, or 

where C > 0 depends on R, u, and the operator L. 

It seems quite plausible that the analyticity requirement in this theorem 
can be relaxed, as it is related to the method of proof (the modified three balls 
theorem has, up till now, been proved only under analyticity assumption on the 
coefficients). 

3.5. On the Possible Rate of Decay of Solutions of Elliptic Equations. Let G, 
be the semi-infinite cylinder 

G,, = x E KY’: x1 > 0, 2 x? < h2 
i=2 1 

and let a solution of equation (79) be defined in Gk. Let us set M(t) = 
max,,,, lu(x)l. Then there exists a constant a > 0, depending on the equation, 
such that if for large t 
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M(t) < exp( -expWh)), 
then necessarily u E 0. 

This theorem follows immediately from the three balls theorem. 
If u(x) is a solution defined in the cone 

and in equation (79) bi = c z 0, then from the same three balls theorem it follows 
that there exists a constant b depending on the equation such, that if the solution 
decays at infinity faster than exp( - b [xl/h), then it is identically zero. 

Up to the constants a and b, these estimates are the best possible, as shown 
by the following examples: u(x, y) = Re e?‘h in GCR-Ej,h and u(x, y) = Re ezlh in 
f&)/h. 

In the remainder of this section we shall consider solutions of (79) in domains 
exterior to some ball. 

The following theorem was obtained by Kato [ 19593. 

Theorem 1.54. Let u(x) (x E R”, 1x1 > R,) be a solution of the equation 

Au + (k2 - p(x))24 = 0, 

where k2 is a positive constant and 

& lim r sup [p(x)1 = p < 1. 
r+m IxI=r 

Then $ u(x) = o(JxJ-(“+~)‘~) u - 0. 

This theorem was extended to the case of elliptic equations with variable 
principal part coefficients by Shifrin [1972]. We shall quote statements of theo- 
rems from that work. 

Change of Variable Theorem. Let LO be the operator 

the coefficients of which are defined in a neighborhood of infinity and satisfy the 
following conditions: 

1) aij = uji 

2) aij E c2; aij = a$ + cpij(x) with ‘pij = O(l~l-~), 2 = O(lxl-3), a’pij = 
k axkaxl 

O([X[-~), k, 1, = 1, . . . . n and the constant matrix Ila~ll is positive deJinite. 
Then in a neighborhood of infinity we can choose new coordinates, denoted again 

by x 1, . . . , x,, such that in polar coordinates introduced in the usual way, L, has 
the form 

Lo = @(O, r) n-la-N, 
r dr r2 1 + Q(& r)$, 
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and moreover 1 @(g, I) - 11 < C, /r and C, can be made arbitrarily small if 1 x I2 cpij(x) 
and Ix13&pij/ax, are small enough; for every function v E C’(S”-I) we have that 

$ (N,v, v) < 0; the operator -N, is uniformly elliptic (in 0; with ellipticity constants 

independent of r); rQ(l9, r) + 0 as r + co. 

Theorem 1.55. Let the operator 

+ i$l b,(x)& + Ck2 - P(X)I, 
1 

be defined in a neighborhood of infinity and suppose it satisfies the following 
assumptions: 

1) the principal part satisfies the conditions of the change of variables theorem; 
2) k2 is a positive constant; 
3) hi(x) and p(x) are Holder continuous. 
4) liq+ 1x1 p(x) = 2ku, P < 1; 
5) IxI(~~=~ Ib,(x)()“’ + 0 as 1x1 + 00; 
6) the constant C, in the change of variables theorem is so small that C, + u < 1. 
Let u(x) be a twice difirentiable solution of the equation Lu = 0. Let us set 

M(r) = (jsr 14412 d0.)112 

Then, if M(r) = O(r-‘) and u(x) grows not faster than an exponential, u(x) = 0. 

Corollary. Zf Lu = 0 and u(x) = O(IXI-(“+~)‘~), then u = 0. 

The assumptions on the smoothness of aij and on the decay rates of first and 
second partial derivatives of the coefficients aij are used only for the change of 
variables. It could be that these restrictions are not essential. 

However, another restriction, viz. llmlxl+m Ix/p(x) = 2k,u, p < 1, is essential. 
More precisely, it is essential that this limit superior is finite. It is possible to 
construct examples showing that this requirement cannot be relaxed. If it is not 
fulfilled, the solution may decay faster than any power. 

An example also exists which demonstrates that the requirement of decay of 
the coefficients of the first derivatives is essential as well. 

If u(x) is a solution of the equation --du + k2u = 0, defined in R” outside of 
some compact set K, then, as is well known, if u(x) decays as [xl+ cc at the rate 
e-(k+E)lxl, E > 0, then u - 0. 

Now let u(x) be a solution of the equation -du + q(x) = 0 also defined on 
R”\K. Is it true that if Iq(x)l < k2 and lu(x)l < e-(k+E)lxt for some E > 0 and for 
1x1 sufficiently large, then u E O? So far, this is an open question. The answer to 
the weaker question, whether it is true that if u(x) decays as IxI+ co faster than 
e-“l”l for all CL, then u - 0, is also not known. 

A closely related problem is the following one. 
It is well known that if a harmonic function u(x) is defined outside of a compact 

set K and u(x) decays as 1x1 -+ co faster than any power, then u = 0. 
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Let us again consider the equation -Au + q(x) = 0. How fast must jq(x)l 
decay as [xl+ co in order that this property of solutions is conserved? This 
problem was solved by Meshkov [1986]. He shows that the relation q(x) = 
O((xl-*) must hold; this estimate is the best possible one. 

3.6. The Behavior of Solutions in a Neighborhood of an Irregular Boundary. 
The survey paper of Kondratiev and Olejnik Cl9821 is devoted specifically to this 
question. Here we only discuss briefly some particular cases. Namely, in this 
section we will study the question of behavior of solutions in a neighborhood of 
a boundary point 0 E aG. Moreover, we shall assume that in no neighborhood 
U of 0 does there exist a smooth non-degenerate mapping U -+ R” that maps 
aG n U into the (n - 1)-dimensional ball. Such a point will be called irregular, 
otherwise it is regular. The degree of smoothness of the mapping needed in the 
definition of a regular point is defined separately in every concrete case. 

Let u(x) be a generalized solution of the problem Lu = lilac, ulBG = 0, and at 
the point 0, which we take to be at the origin, the coefficients Uij(x) are contin- 
uous. Without loss of generality we may assume that Uij(O) = 6,. The following 
theorem gives an estimate of the modulus of continuity of the solution in a 
neighborhood of 0. 

Theorem 1.56. Let S, be the intersection of the sphere (xl = p with G. Let us 
denote by SL the set of points x on the unit sphere, such that px E S,,. Let us denote 
by 1, the smallest in absolute value eigenvalue of the Beltrami operator in Sl, with 
zero Dirichlet data on aSi. Let us assume that &I 2 A, n = const. > 0, f = 0 in 
a neighborhood of 0. Then 

lu(x)12 < CEIXIY-e 
s 

(grad u12 dx, (88) 
G 

if 1x1 is small enough, E > 0 is arbitrary, 
y = 2 - n + ((n - 2) - 4A*)“*. 

It s&ices to prove this theorem in the case when aG is an infinitely smooth 
surface, and aij(x) are infinitely smooth functions, since only an approximation 
argument is needed in order to pass to the general case. For the sake of simplicity, 
let US assume that b,(x) = 0, i = 1, . . . , n; c(x) 3 0, and that the support of u(x) is 
contained in the ball 1x1 < 6, where 6 = const > 0 is small enough. 

Let us rewrite the equation in the form 

AU = f + t ((aij(o) - Q(X))Uxi)xj* 
i, j=l 

Let us multiply both parts of equations (89) by r”u; a = const. > 0 which will be 
chosen later. After integration by parts we obtain 

s 

a+n-1 - FnP1 ul dr do + 
f 2 G 

rui”-3u2 dr dw 
G 

- 
s 

r a+“-3(V~u)2 dr dw 
G 
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= s s raU*j(Uij(0) - Uij(x))uxi dx 

G i,j=l G 

- arae ~u(a,(O) - Uij(x))u,, dx, (90) 

where (r, o) is the spherical system of coordinates, (Ao”)~ is the spherical part of 

s 

al 
grad2 u. From the classical Hardy inequality 

for y(0) = y(co) = 0, and using (90) we obtain’ 

S[ 
(a+n-2)-2.(1 +4 - ab+n-22) ra+n-3U2drdo 

G 4 2 1 
-K 

s 

I=+“-lu,z dr do + (2, + K) 
G s 

ra+n-3u2 dr dw 
G 

+Ic 
f 

ra+“-3(Dm~)2 dr dw < r’[uI IfI dx 
G s G 

+rl 
s 

ra grad’ u dx + q rae2 grad2 u dx 
G s G 

VJC > 0. 

To get the estimate (91) we used the variational principle 

(91) 

s 

u2 do 6 ; (A,u)~ do. 
s;r s P s; 

If I a I < ,/(n - 2)2 + 41, then from inequality (91) for IC, u small enough it follows 
that 

s 

rae2u2 dx + 
G s 

r2 grad’ u dx < C 
G [S G 

PY2dx+jGgrad2udx]. (92) 

From Theorem 1.56 it follows that 

lu(x)12 < CA-” 
s 

u2 dx, (93) 

if A/./2 < (xl < 2A, and A is so small that f E 0 for 1x1 < 2L Inequality (93) means 
that 

lu(x)12 < Ix12-“+a 
s 

r2-Q2 dx, 

which, together with (92), concludes the proof of the theorem. 
Theorem 1.56 is sharp in the sense that the exponent E > 0 in estimate (88) 

cannot be taken to be zero without additional restrictions. Verzhbinskij and 
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Maz’ya [1971] showed that estimate (88) holds with E = 0 if the coefficients Clij(X) 

satisfy the Holder condition. There are many works dealing with the case in 
which there is only one (or a finite number of) singular point(s) on the boundary 
of the domain. The case of n = 2, and of the boundary containing a finite number 
of corner points was considered by Nikol’skij [1956] and by Fufaev [ 19821. They 
considered Laplace’s equation and Poisson’s equation. 

Au = f(X1) x,), (94) 

The following properties of the solution u of (94) with zero Dirichlet conditions 
on the boundary of the domain G were obtained. Let 8G be an infinitely smooth 
curve everywhere apart from the point 0 which is placed at the origin. In a 
neighborhood of 0, let the boundary 8G be composed of two straight intersecting 
segments, with intersection angle being w. The smoothness of the solution 
depends on the magnitude of o. 

Theorem 1.57. Zff E Ck*‘(G), o c 7c 
k+2+1’ 

then u E Cki2,“. 

Proof. Let us assume initially that all derivatives off up to order k inclu- 
sively, are zero at 0. Then 1 f 1 < Clxlk+‘. Let us choose coordinate axes in 
such a way that in a neighborhood of 0, G is contained in the infinite angle 
0 < r < co, 0, 0 c cp < ‘p,, = n/(k + 2 + A). For E > 0 sufficiently small and for 
C > 0 sufficiently large, the function u1 = Cr~“p’-“. sin(ncp/cp,) satisfies the condi- 
tion du, - f < 0 for r < r,. Moreover for C sufficiently large, u1 > u on the 
boundary of the sector 0 c r < r,, 0 < cp c o. From the maximum principle we 
obtain that in the interior of this sector u < ur. Similarly, we have that u > - ul. 
Thus IuI d ai and therefore everywhere in G 

IUI < cr(n’++- < c/+2+“. (95) 

Next we use the classical Schauder theorem (see Miranda [ 19701) concerning 
the regularity of solutions close to a smooth section of the boundary. Namely, 
let Q c R”, Q’ c 0, let r c 852 be a Ck+2*“(fi) surface with k > 0, 1 > 0, let 
X!’ n 8Q cc IY Assume that the coefficients of equation (89) are in C”s”(@, 
f E Ck’l, ulr = $(x) E Ckf2,“(T). Then Ck+‘,” and moreover 

I14C~+~.~~R~ G C Ilf ILkA + IIIC/IIC~+~.~~r~ + max I4 , 
[ G 1 (96) 

where the constant C depends on the ellipticity constant of equation (l), on the 
Ck*’ norms of its coefficients on 9, and on 0’. 0 

Let us apply this theorem to the solution of equation (79). Let 

Q = (x E G, h/2 < Ix1 < 2h}, 0 = (x E G, ah < 1x1 < h). 

Inequality (96) leads to the estimate 
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I”f(4l IWI 
+ ‘1 x”;p, IXlk+l + ,“yp, IXlk+Z+A’ 

From the assumption If(x)1 < Clxlk+” and inequality (95) it follows that the 
number 

sup I~“44 - D”4Y)l 
I”?=,“&’ Ix - Yl” 
YE 0’ 

is bounded uniformly in h. In a similar manner we obtain from inequality (95) 
that ID”u(x)l/(lxl)” is bounded uniformly in h in Q’. 

From these statements it follows easily that O%(x) E C”(c). If the condition 
Ifc4l = clxlk+” is not satisfied, then one proceeds as follows. 

Let us use Taylor’s formula to represent f(x) in the form f(x) = g(x) + fi(x) 
where Y(x) is a polynomial of order k, and Ifi < C(X[“+~. Let us find a 
particular solution of the problem 

Au, = B(x), uzlg=o = 0, uzlrp=rp, = 0, 0 < r < 00, 
in the form of a polynomial of order k + 2. Since rr/‘pe is a non-integer number 
by assumption, such a solution exists. The function o(x) = u - u2 satisfies the 
equation Au = fi(x), where fi E Ck*l, Ifi I < C(X[“+~. 

The situation is slightly different if n/w is an integer. In this case u E C”(G) if 
f E Cm(G) and satisfies a finite number (which depends on k) of compatibility 
conditions at the point 0. These compatibility conditions are framed in terms of 
linear combinations of values off and of some of its derivatives at 0. 

Let us give an example of compatibility conditions. Let the domain Q coincide 
in a neighborhood of 0 with the straight angle {x1 > 0, x2 > O}. Let us consider 
solutions of Poisson’s equation (94) with the boundary condition alan = 0. Let us 
assume that the boundary dSZ is an infinitely smooth curve everywhere except at 
0. Then the following proposition holds: if f E C”(fi), 0 < il < 1, f(0) = 0 and 
f,,,,(O) - f,,,,(O) = 0, then u E C2~“@). The condition fX,X,(CJ - f,,,,(O) = 0 is 
the compatibility condition necessary in order that u E C”,“(Q). 

From the argument above it follows that if X/O is an integer and f - 0 in a 
neighborhood of 0, then u E Cm@). Proof of this statement was first obtained by 
Fufaev [ 19631 who used a conformal mapping of the plane o = zrr’w to transform 
Q into a domain with a smooth boundary. 

As we can see, the solution of Dirichlet’s problem for Poisson’s equation in IR 
has, in general, a finite number of derivatives that are continuous in a. Moreover, 
this number depends on the intersection angle o of arcs of the boundary curve. 
The smaller o is, the smoother is the solution (under sufficient smoothness of the 
data of the problem). There exist exceptional angles (such that rc/w is an integer) 
which present no obstacle to the differentiability of solutions. Solutions of both 
the second and of the mixed boundary value problems for Poisson’s equation 
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have the same properties. Schauder type estimates for the aforementioned prob- 
lems were obtained under certain conditions on the boundary by Grisvard [1981]. 

Let us consider whether Bernstein’s estimate 

Ml W-(G) G C[llfllL2(G) + bh.21 (97) 

holds for solutions of equation Lu = f, satisfying the boundary condition 
Ul(yG = 0. 

If aG is composed of a finite number of smooth arcs that intersect at angles 
smaller than rr, then the generalized solution of the problem Lu = f, uI~G = 0 is 
in W’(G) and inequality (97) holds. Moreover, coefficients aij(x) have to be in 
C’(G), f E L’(G). If the boundary contains angles larger than rc, the generalized 
solution does not necessarily belong to W’(G). There is an example in which the 
boundary of domain G consists, in a neighborhood of the point 0, of straight 
segments contained in the rays cp = 0 and cp = o (o > rr), such that the solution 

in a neighborhood of 0 coincides with the function rnlo sin F p. 

The survey paper of Kondratiev and Olejnik Cl9833 deals in detail with the 
results of papers devoted to questions of asymptotic behavior of solutions of 
elliptic equations in a neighborhood of a corner or of a conical point, as well as 
in a neighborhood of a rib. 

Ioselian and Olejnik [1971] consider the mixed problem for the equation 
Lu = 0 in a domain 52, with boundary conditions of the type 

wherey,vy,vy,=aQ,g= k aijvj&,v=(p,,..., cp,) is the unit normal 
i,j=l I 

vector, cpl, (pZ, (p3, and o are given functions. It is assumed that the Gauss- 
Ostrogradskij formula holds in 52. Let a, = Q\a, where a, is a neighborhood of 
some set (r of points in X2. Under some restrictions on the coefficients of the equa- 
tion Lu = f, the authors obtain estimates for solutions of the problem Lu = f 
with (98), cpr, (pZ, (p3 = 0 and f = 0 in a neighborhood of cr. These are estimates 
of the Dirichlet integral over 52,, in terms of the Dirichlet integral over s2,* under 
the condition Sz,, c QZ2 (r is a parameter), with a coefficient depending on the 
geometric structure of X2 n a(Q,2\a,,). From these estimates the authors deduce 
uniqueness theorems for solutions of the problem Lu = f with (98) on the 
boundary of the domain in the class of functions having unbounded Dirichlet 
integral over 0, as well as theorems dealing with removable singularities of 
solutions of the problem Lu = f with condition (98) on the boundary of the 
domain. These theorems indicate that either the Dirichlet integral over Q, grows 
fast enough as meas o, + 0 or that u(x) has a bounded Dirichlet integral over 0. 
Examples are given to show that the obtained estimate and uniqueness classes 
are the best ones possible. Similar assertions can be made for certain classes of 
second order equations with non-negative characteristic form. 
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Chapter 2 
Parabolic Equations 

3 1. Parabolic Equations in Non-divergence Form 

Let 

be a uniformly elliptic operator defined on some domain G c lR”+’ = W: x R:. 
In this section we shall consider parabolic operators 

L-i. 

A solution of the equation 

Lu2!!L() 
at 

is a function u E C2* l for which (2) is identically satisfied. We call a function 
at4 

u E C2,’ such that Lu - - >, 0 (< 0) a subparabolic (superparabolic) function. at 
In what follows, we shall use the symbol Zz,,:’ (x E R”, r > 0, t, > 0) to denote 
the cylinder 

Z :“d,,:’ = {(x, t) E lRn+l: Ix - x01 < I, to < t < tl} 

Let G be a domain in IW”+‘. We call a set y(G) c aG the upper top of the set 
G if for each point (x,, to) E y(G) there exists E > 0 such that Z~~~‘*” c G and 
Z ~~~s*O n G = 0. The set T(G) = aG\y(G) is called the parabolic boundary of the 
set G. 

1.1. The Maximum Principle. The following statement is elementary (see for 
example Landis [ 197 11). Let G be a bounded domain and let an operator of form 
(1) be defined in G with c(x, t) < 0; let u(x, t) be a subparabolic (superparabolic) 
function. Then if sup, u ) 0 (inf, u < 0), 

sup u = lim u(x, t) 
G ‘“i *);;$f) x, 

( 
inf u = la u(x, t) . 

G (y,;;fg) ) x, E 

If the condition c(x, t) 6 0 is not satisifed, there exists a constant K depending 
on 2 and M of inequalities (2) of Chapter 1, such that for every solution of 
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equation (2) in G we have the inequality 

Nirenberg (see for example Landis [1971]) proved the following strong maxi- 
mum principle. 

Let G c KY+’ and (x0, to) E G u y(G). We shall say that a subdomain G’ c G 
is subordinate to the point (x0, to) if every point (x, t) E G’ can be connected to 
the point (x0, to) by a curve belonging to G u (x,, to) which can be projected in 
a one to one fashion onto the interval [t, t,], t c to. 

Theorem 2.1 (the strong maximum principle). Let operator (1) with c(x, t) < 0 
be defined in G c R”+l. Zf u(x, t), a subparabolic (superparabolic) function in 
G u y(G), reaches a positive maximum (negative minimum) at some point (x0, to) E 
G u y(G), then u E const in a subdomain G’ subordinate to the point (x0, to). 

1.2. Sub- and Superparabolic Functions of Potential Type. Let the operator (1) 
be defined in a domain G c lR”+‘. Let us consider in 5P’ \O the function 

1 

4,&9(x, t) = 

1 

se -W)/48r for t > 0 
t 

Let 

0 for t < 0 away from x = 0, t = 0, 

s = const > 0, p = const. > 0. 

Mr = sup k aii(X, t), M, = inf t aii(x, t), 
(x,f)eG i=l (x,t)~G i=l 

cI1 = inf min i a&x, t)&&, CI~ = sup max $J aik(x, t)t&. (3) 
(x,f)~G l<j=l i,k=l (x,t)sG ICI=1 i,k=l 

The following lemmas are easily proved by direct computation. 

Lemma 1. If the coefficients of the operator L satisfy the condition 

14(x, t)l G Kl(IxI + I), 

Ick 4 d ~,(l4z + I), 
K,, K, = const > 0, and we have that 

(4) 

then there exists q > 0 such that C&(X, t) is a superparabolic (subparabolic) func- 
tion for x E R”, 0 < t G q, (x, t) # (0,O). 
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Lemma 2. If the coefficients of operator L are such that 

f, bi(-T t)xi 2 O 
i=l 

(2 bi(Xp t)Xi < 0) y 

c(x, t) < 0 (c(x, t) 2 0) 

and 

161 

(6) 

(7) 

then the function 8S,s is superparabolic (subparabolic) everywhere except at the 
origin. 

The lemmas are proved by direct substitution. Using &S,s we can construct 
potential-type functions that are super- or subparabolic for suitable chosen 
parameters. 

Let E c [W”+i be a Bore1 set on which a measure p, p(E) < co, is defined. In 
the complement of E let us consider the function u&x, t) = s KS,& - 5, t - 4 d/45,4. 

E 

From lemma 1 it follows that if relations (3) and (4) hold, and if E is contained 
in the layer to < t < to + q, then US,s is a superparabolic (subparabolic) function 
in this layer outside of E. If, on the other hand, conditions (6) and (7) are satisfied, 
then it follows from Lemma 2 that US,., is superparabolic (subparabolic) in 
lR”+‘\ E. 

1.3. Uniqueness for the Cauchy Problem. The Cauchy problem for the equation 

Lu - u, = 0 (8) 

consists of finding a solution of equation (8) in the layer to < t < T < co, which 
is continuous up to the hyperplane t = to and satisfies the condition 

a, to) = f(x) 
where f(x) is a given continuous function. 

It is not hard to prove uniqueness of the solution to the Cauchy problem if 
the operator L is uniformly elliptic and it is a priori known that the solution is 
bounded for t, < t G 7’. Precise conditions that have to be imposed on the 
solution under which uniqueness holds, were pointed out by Tikhonov [1935]. 

We say that a function v(x, t) defined in the layer t < t < T belongs to the 
Tikhonov class if there exists C, > 0, C, > 0 such that jv(x, t)l < C1ec2~x~z. 

Theorem 2.2. Zf coeflicients of the operator L satisfy conditions (3) and (4), the 
Cauchy problem has unique solutions in the Tikhonov class. 
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This theorem derives from the following maximum principle for a layer. 

Theorem 2.3. Let u(x) be a subparabolic (superparabolic) function for equation 
(8), the coefficients of which satisfies conditions (3) and (4) in the layer t, < t < T. 
Let u(x, t) be continuous up to the hyperplane t = t, and non-positive (non-negatioe) 
for t = to. Zf u(x, t) belongs to the Tikhonoo class, then u(x, t) < 0 (u(x, t) 2 0) for 
t,<t<T. 

Proof of Theorem 2.3. For definiteness, let u be a subparabolic function. Let 
us set B = 2~ and s = M,/Su, where the constants uz, M, are defined in 
inequality (3). Let q be the constant from Lemma 1 corresponding to these /?, s. 
Let us set 

and for arbitrary R > 1 let us consider the function 

uR(x, t) = MeCzR2 
s 

8s,,s(t - to + E, x - 5) ds<, 
le;l=R 

where dsc is a surface element of the (n - 1)-dimensional sphere ) 51 = R. If t > to, 
then 

Me C,R2 

hdx, t, = 
(t - t, + E)S s le;,=R e 

-(1x-51*)/(48(1-r,+&)) ds 
C’ 

Below we shall choose the constant M > 0 in such away that it is independent 
of R. 

From Lemma 1 it follows that vR is superparabolic for to < t < to + E. 
Let us consider the cylinder Zz2+‘. On its lower base uR > 0. Let us choose 

M such that on the lateral surface uR > C1eCzR2. To do this, note that for 
0 < t - to < E, we have the inequality 

~~‘3 
uR 2 (2e)s 

s 
lr,=R e-(Ix-r12)‘4fiE dsc. 

If 1x1 = R, R > 1, JI+Re -ww)‘~~~ dsg > a, where a = const > 0 independent 
of R. Therefore, setting M = &(2.$/a we see that on the lateral surface of 
Zto’to%, > C1ec2R2. From the maximum principle we deduce that u d OR inside O,R 
this cylinder. 

Let (x’, t’) be an arbitrary point in the interior of the layer to < t < to + E, and 
let R > 1 be an arbitrary number such that R > 21x11. Then MeCzR2 u(x’, t’) < u(x’, t’) < ~ 

ES s e-W2)2/48’2& ds 
c 

ICI=R 

M UM < -eGR20,~.-2e-2W2 = Le -C2R2p-1 

ES ES 
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Here o, is the surface area of the n-dimensional sphere. Letting R go to infinity, 
we get that u(x’, t’) < 0. Thus u(x, t) < 0 for to < t < to + E. Taking to to be 
t, + E, we see that u(t, x) t < 0 for to < t < to + 2s. After a finite number of such 
steps we get that U(X, t) < 0 for to < t < T which is exactly what had to be proved. 

0 

Tacklind (see for example Kamynin and Khimchenko [ 19811) found a wider 
class of functions in which uniqueness of solutions of Cauchy problems holds. 
He showed that uniqueness holds in the class of functions such that lu(x, t)I < 

eCtxih(lxl), where h(t) > 0 is a monotone non-decreasing function such that 
s 

m dt 
- = 
h(t) 

co. We shall call this class of functions the Tacklind class. Tacklind also showed 
that this class of functions is the widest one possible: if h(t) > 0 is monotone 
non-decreasing and such that 

s 

a, 
dt/h(t) < co, 

then there exists a non-zero solution u(x, t) of the Cauchy problem for the heat 
equation such that uI,=c and Iu(x, t)l < e ‘lxlh(lXI). Kamynin and Khimchenko 
[ 198 l] showed that uniqueness of solutions of the Cauchy problem holds in the 
Tacklind class of functions for parabolic equations with bounded coefficients. 

Petrovskij Cl9461 posed the question of finding uniqueness classes for solu- 
tions of the Cauchy problem for parabolic equations of high order and for 
parabolic systems. The first sharp results of this kind were obtained by Gel’fand 
and Shilov [1953]. This result turned out to be one of the most interesting 
applications of the theory of distributions. Gel’fand, Shilov, and their students 
considered quite general, not necessarily parabolic, equations and systems with 
constant coefficients. The case of the Cauchy problem for parabolic systems with 
variable coefftcients was studied by Ejdel’man [1964]. 

The proof of uniqueness given above employed the maximum principle. 
Kamymin and Khimchenko [1981] also use this tool. This method is compari- 
tively easy, but only applicable for equations of second order. In Gel’fand and 
Shilov’s [1953] paper the question of uniqueness is reduced to the question of 
existence of solutions of the adjoint problem, which is tackled by Fourier trans- 
form methods. Ejdel’man [1964] obtained estimates for the fundamental solution 
that are used to prove solubility of the adjoint problem. Olejnik and Radkevich 
[1978] study parabolic problems by the method of introducing a parameter. 

1.4. A Weak Stabilization Theorem for the Solution of the Cauchy Problem as 
t + 00. We quote here a stabilization theorem for the solution of the Cauchy 
problem for equation (8), the coefficients of which satisfy only conditions (3) and 
(4). Later on, during the discussion of equations in divergence form, we shall 
return to the question of stabilization. 

Theorem 2.4. Let the coeflicients of operator L in (8) satisfy conditions (3) and 
(4). Let u(x, t), to < t < CO be the Tikhonov class solution of the Cauchy problem 
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Ult=t, = f(x), and let f(x) + 0 as 1x1 * co. Then u(x, t) -+ 0 as 1x1 + 00 untformly 
in x. 

Proof. Let E > 0 be arbitrary. We fix R such that f(x) c i for 1x1 > R. Let us 

consider an arbitrary function 

u = Mc$&, t - to + 1) + f = 
M 

2 (t - t() + 1) 
e-lxl*lw8(t-~o+l)) + 4, 

where s = M,/2a,, /I = u2 (M, and c(~ are the constants defined in equality (3)). 
By Lemma 2 of Section 3.5 the function u is superparabolic. Let us choose the 
constant M so large that for 1x1 < R the inequality u(x, to) > f(x) holds. Then 
u(x, to) > f(x) everywhere in R” and therefore u < u for t > 0. If we put t, = 
(2MI.5)‘” + to - 1, then u(x, t) < E for t > t,, x E R”. In a similar manner we 
obtain that for t > t,, x E R”, u(x, t) > --E. The theorem is proved. 0 

1.5. The Growth Lemma. An a-priori Bound of the HSlder Norm and the 
Harnack Inequality. The results of this section were first obtained by Krylov and 
Safonov [1979]. As before, we consider equation (8), Lu - u, = 0, the coefficients 
of which satisfy conditions (3) and also the following condition 

Ibitx9 t)l G KI, -K, < c(x, t) < 0. (9) 

Lemma 3 (the growth lemma). Let there be given a number I, 0 c I < 1, and a 
point (x0, to) E UP+l. Let us consider the following three cylinders 

2, = q,,:“++, 
z 

2 
= p+(3/4P2, to++ 

x0, (3/4)r 

z, = Zto+(1/4)r2,20+(1/2)r2 
x0. ( W)r 

Let D be an open set in IW”+l contained in Z, and hauing non-empty intersection 
with Z,. Let us consider E c Z,\D such that meas E > 0. We denote T(D) n Z, = 
r,. Let, finally, there be defined in D a solution u(x, t) of equation (8) and 

lim u(x, t) < 0, sup u > 0 
c%o+r 
(.x,0 ED 

D nZZ 

Then 
sup u > (1 + <) sup u 

D DnZl 

where 5 > 0, e = const. and depends on K,, K,, a2, M,, M2 (these are constants 
from inequality (3)) and on meas Z,/meas E. 

The proof of this theorem is similar to the proof of the corresponding lemma 
in the elliptic case (Section 1.4, Chapter 1). From the growth lemma we derive 
the theorem about an a-priori estimate of the Holder norm. 

Theorem 2.5. Let G c [W”+l, let u(x, t) be a solution of equation (8) in G. For 
each p > 0 the following inequality holds 
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lb4 C=(G,) G M suP 1 u 1) 
G 

where G, = {(x, t) E G: p((x, t), 8G) > p}, c1 > 0 and depends on a,M,, K,, K,, n, 
and M, moreover depends on p as well. 

The Harnack inequality in the formulation below, also follows from this lemma. 

‘Theorem 2.6. (the Harnack inequality). Let 0 < r < 1 and let u be a positive 
solution of equation (8) in Z,. Then 

sup u/inf u c C 
Z3 22 

where C is a positive constant that depends on ul, MI, K,, K,, n; Z,, Z,, and Z, 
have the same meaning as in the statement of Lemma 3 of Section 1.5. 

The method of proof of the Harnack inequality is similar to the method we 
used in deriving the Harnack inequality from the growth lemma in the elliptic 
case (see Section 1.4, Chapter 1). It resembles the method used by Landis [1971] 
to prove the Harnack inequality for parabolic equations with a small spread of 
the roots of the characteristic equation of the matrix Ilaikjl. 

Remark 1. Let in the operator L, bi = c = 0. Then the number r does not enter 
Lemma 3. Therefore the Harnack inequality holds in Z, , Z,, Z, for any value of r. 

In view of the a-priori Holder norm bound both for parabolic, and for elliptic 
equations, the following question presents itself. Let us consider a cylindrical 
region, for example the cylinder 

a = z,o;: 

Let r be its parabolic boundary. Let L be a uniformly elliptic operator (1) 
with measurable bounded coefficients aik, bi, c. Let f be the restriction to r 
of a smooth, for example, infinitely differentiable, function defined on IW”+l. Let 
moreover (a$‘}, {b,‘“‘} and (c’“‘} be sequences of infinitely differentiable functions 
converging, respectively, to aik, bi and c almost everywhere, and comprising the 
coefficients of uniformly elliptic operators L, with the same constant of ellipticity 
and with the same bounded for the coefficients. Let u, be the solution of the 

boundary-value problem with the value f on rfor the equation L,u, - $’ = 0. 

By the a-priori bound for the Holder norm, we can extract a subsequence of {u,} 
which converges in a, and uniformly on every compact set. Moreover, we can 
extract s subsequence converging uniformly in 52. The question is whether all 
such subsequences converge to the same limit. 

1.6. Phragmen-Lindeliif Type Theorems. In this section we shall assume that 
in equation (8) bi = 0, i = 1, . . . , n, c(x, t) < 0. The two theorems below are 
obtained from the growth lemma (Lemma 3, Section 1.5). 

Theorem 2.7. Let G c Iw”+’ be a bounded domain in the layer 0 < t < T, having 
limit points on both boundaries of the layer. Let u(x, t) be a solution of equation 
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(8) which is continuous in G and zero the part of the boundary of G contained in 
the interior of the layer. Let meas G = cr. Let us use the notation M = maxIu(x, O)l, 
m = maxlu(x, T)I. Then M > m exp(CT(“-Z)~2/02~“), where C > 0 is a constant 
dependent on M, and a,. 

Theorem 2.8. Let cp(t), 0 < t c 0~) be a continuously diflerentiable function such 
that lc$l < k = const. Let G c KY’+’ be a domain lying in the half-space t > 0, and 
such that for every z > 0 section of G by the hyperplane t = t, G,, is bounded. 
Moreover, 

meas G, < q(r), 0 < r < co. 

Let a function u(x, t) be a solution of equation (8) in G, continuous in G and zero 
on the part of the boundary lying in the half-space t > 0. Let us use the notation 

M(t) = max lu(x, t)l, 0 < t < co. 
x 

Then 

M(t) < M(0)e-c~q$z)-2”’ dz, 

where C > 0 is a constant which depends on c(, M, n, and k. 

This theorem was first proved by Cheremnykh [1959] in the case of smooth 
coefficients (and of one space variable). 

We assumed here that bi(x, t) E 0, i = 1, . . . , n. If q(t) is non-increasing in t, 
then a statement identical to Theorem 2.8 is true for bounded coefficients bi, and 
if q(t) + 0, then the coefficients bi can grow at a certain rate. Of great interest 
is the case when the coefficients bi are different from zero, and do not tend to 
zero as t + co, while q(t) + co. In this regard, the first result was obtained by 
Cheremnykh Cl9593 who showed that logarithmic expansion of the domain G 
is permissible here. In a certain sense, Il’in [1985] obtained the final result in this 
direction: q(t) must grow not faster than logarithmically. 

The Phragmen-Lindelof type theorems, in particular for domains that can 
become unbounded in x for finite values oft, were obtained in a series of papers 
of Olejnik, Radkevich and Iosilian (Iosifian and Olejnik [1977], Olejnik and 
Iosilian [1977], Olejnik and Radkevich [1978]). They used estimates of the 
energy integral of the solution using Green’s formula (the principal part of the 
equation must, therefore be in divergence form). The same authors also obtained 
similar results for higher order equations and for systems. We shall return to this 
question when we talk about equations in divergence form. 

1.7. Liouville Type Theorems. In this section we shall asume that in the 
operator L bi(x, t) E c(x, t) E 0, i = 1, . . . , n. Then Lemma 1 gives the following 
oscillation theorem. 

Theorem 2.9. Let (x0, to) E R”+’ be an arbitrary point, let Z, and Z, have the 
same meaning as in the statement of Lemma 1. Let a solution u(x, t) of equation 
(8) be defined in Zi. Then 
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ox # > p osc u 
Zl 22 

where p > 1 depends on M,, ul, and n. 

The following version of the two-sided Liouville theorem is immediately 
obtained from this theorem. 

Theorem 2.10. Let u(x, t) be a solution of the equation Lu - u, = 0 in the 
half-space t < 0 and JuI G M. Then u = const. 

The one-sided Liouville theorem does not hold for parabolic equations, as the 
following example shows: eX+’ is a solution of the equation u,, - u, = 0. How- 
ever, the following theorems, that are obtained from the Harnack inequality, can 
be considered as analogs in a certain sense of the one-sided Liouville theorem. 

Theorem 2.11. Let u(x, t) be a solution of equation (8) Lu - u, = 0, which is 
defined and non-negative for t < 0. Let u(x, 0) < M. Then u E const. 

Theorem 2.12. Let u(x, t) be a solution of equation (8) Lu - u, = 0, in the 
half-plane t < 0. Let. 

infu=m>-a supu=M<+cc . 
X0 ( l<O > 

Then u(x, t) + m (u(x, t) + M) as t + --co for each x. 

These last two theorems were proved by Glagoleva (see Landis [1971]). 

$2. Parabolic Equations in Divergence Form 

Let Q be a domain in UP1 = lF8: x W:. Let us consider the simplest parabolic 
equation in divergence form 

(10) 

where aie(x, t) are bounded measurable functions that satisfy the following 
conditions: 

%(X, t) = %(X, t), 

V(x, t) E 52vt E R”1-‘1Q 6 aikC6 t)ti5k G n1512. 
i,k=l 

A generalized solution of equation (10) in Q in a function u E Vi*” such that 

(for a definition of the space V:*” see Ladyzhenskaya, Solonnikov, Uraltseva 
[1967]). 
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2.1. The Harnack Inequality. The Oscillation Theorem. An a-priori Bound for 
the HSlder Norm. We shall begin our study with the case when ail, E C” and 
u(x, t) is the classical solution of equation (10). 

The following theorem was proved by Moser [1964]. 

Theorem 2.13. Let (x, t) E [W”+l, I > 0. Let us use the notation 

2, = zy+” 

z2 = zz+(3/4)rZ,t+r* 
x,r/2 

z, = z:+l::14)r2.t+(1/2)r2 

Let a positive solution equation (10) be defined in Z, . Then 

sup u/inf u < c, 
Z3 22 

where C > 0 is a constant depending on 1. 

(13) 

The following two facts are obtained from inequality (13). 
1. There exists a constant 5 depending on I such that for a solution u of 

equation (10) defined in Z,, we have that 

osc u > (1 + 5) osc u (14) 
Zl 22 

(for an equation containing first and zeroth order terms, this theorem was first 
proved by Ivanov [1983]). 

2. (A-priori bound for the Holder norm). Let G be a domain in R”+’ and let 
p be a positive number. We set 

G, = {(x, t) E G u y(G): Z&f** c G} 

(y(G) is the “top” boundary of G). Let a solution u of equation (10) be defined in 
G u y(G). Then 

Ilull C’(G,) G CIbk’(G)~ 

where M depends on 2 and C, depends on p as well. This theorem was first 
obtained by Nash [1958]. 

Let us consider a cylinder Z!&:. We have. 

Theorem 2.14. Let a generalized solution u of equation (10) be defined in Z:f,?. 
Then there exists a sequence of matrices (11 a$“(~, t)ll} with infinitely differentiable 
coefficients, which satisfy conditions (11) with the same constant 1 and a sequence 

13dm) 
of classical solutions tP(x, t) of equations i a uir)----- 

( > 

&P) 
- _____ = 0 such 

i,k=l aXi 8X, at 
that tkm’ + u, and furthermore, the covergence is untform on every compact set in 
z:of; u y(Z:b::‘). 

This theorem can be proved, for example, by employing Gal&kin’s method 
and using the uniform a-priori estimate of the Holder norm (see Ladyzhenskaya, 
Solonnikov and Uraltseva [ 19671). 
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Hence it follows that Theorems 2.11 and 2.12 of this section hold for gen- 
eralized solutions as well; in particular, each generalized solution satisfies the 
Holder condition in every interior subdomain (the top boundary of the original 
domain can be taken as belonging to the subdomain). 

2.2. Green’s Function and its Estimate. Let equation (10) be defined in (W”+r. 
A function G(x, t) that is a generalized solution of equation (10) everywhere apart 
from the origin, is called Green’s function if it has the following properties: 

a) G(x, t) + 0, as t -+ 0, x # 0. 
b) G(x, t) = 0 for t < 0. 
c) G(x, r) forms a family of functions converging to the d-function in the 

variables x E R” as r + +O. 
Aronson [1967] proved the following theorem: 

Theorem 2.15. Let equation (10) be defined everywhere in rWT+‘. Then Green’s 
function exists and admits the estimates 

where k,, k,, C,, C, are positive constants dependent on 1. 

Remark to Sections 2.1,2.2. Porper and Ejdel’man [ 19841 noticed that results 
of these sections are still valid if instead of equation (lo), the equation Lu - 
p(x)u, = 0 is considered, where p(x) is a measurable function bounded both from 
below and above by positive constants. Definition of a generalized solution will 
change in an obvious manner, since p is independent oft. 

2.3. The Maximum Principle. G-Capacity. The Growth Lemma. The Strong 
Maximum Principle 

Theorem 2.16 (the weak maximum principle). Let G c IF1 be a bounded 
domain and let r be its parabolic boundary. If u(x, t) is the generalized solution of 
equation (10) in G, then 

s;p u < hm u(x, t) 
(x,0-r (x,f)~G 

and 
inf u > hm u(x, t). 

G (x. 0’ r (x,f)sG 
The prooffollows directly from the fact that it is possible to approximate u(x, t) 

by solutions u,(x, t) of equations with smooth coefficients uniformly in every 
interior subdomain. 

Let E c IW”+r be a bounded Bore1 set. Let us consider in E all possible measures 
p such that p(E) < cc and 

s G(x - 5, t - r) dp(& r) < 1 outside of E. 
E 
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We call the number sup u(E), where the supremum is taken over all measures 
satisfying condition (16), G-capacity of the set E and denote it by C,(E). It can 
be shown that there exists a measure ,u~ that satisfies inequality (16) and realizes 
this extremum, so that Co(E) = p,,(E). This measure is called the equilibrium 
measure (see for example Watson [1978]). We shall not use this fact. 

Note that from Theorem 2.15 of Section 2 it follows that 

Co(E) > K meas E, 

where K > 0 is a constant depending on 1. 
Furthermore, under the transformation 

xf = kx,, i=l , .--, n, t’ = k2t 

(17) 

G’(x’, t’) = k G(x, t) is Green’s function in the new coordinates. Therefore if E’ 

is the image of E under the transformation, 

C,r(E’) = k”&(E). (18) 

Let (x,, to) E KY+‘. Let us consider the three cylinders 

z, = Z$$y+br2, 
z 

2 
= Zt,+(b-a)r2,to+br2 

XO,(ll > 

z, = z~p++arz, 

where 0 < a < b, 0 < I < 1. Let S1 be the lateral surface of the cylinder Z,, let 

and 

m= sup G(x - 5, t - z) 
(X,I)ES, (h9EZ3 (X@rO)E R”+’ 

M= inf G(x - 5, t - T) 
(X,O~Sl t&T) EZ3 (x,, lo) E iR”f’ 

In view of the inequality (13), the numbers a and b, that depend on k,, k,, cl, 
c2, and therefore on A, can be found in such a way that 

M > 2m. (19) 
These numbers will depend neither on r, nor on the point (x0, to). 

Lemma 1 (the growth lemma). (Compare with Lemma 3 of Section 1.4, Chap- 
ter 1). Let (x0, to) E R”+l, I > 0, and let a, b be the numbers we fixed above, and 
let Z,, Z,, and Z, be the above defined cylinders. Let us assume that D c Z,. Let 
us consider the generalized solution of equation (10) in D, which is continuous in 
D, positive in D and zero on r, the parabolic boundary of D. Let E = Z,\D. Then 

where 5 > 0 depends on 1. 

(20) 
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To prove this theorem let us choose an arbitrary E > 0 and find on E the 
measure p that satisfies (16) and such that p(E) > C,(E) - E. Let us set 

Consider the function 

V(x, t) = max ~(1 - U(x, Q/r” + (C,(E) + &)/I”). 
D (21) 

By the maximum principle, u > I/ and D and we obtain inequality (20) from (19) 
and (21). 0 

A corollary of this lemma is 

Theorem 2.17 (the strong maximum principle). Zf u(x, t) is the generalized 
solution of equation (10) in a domain B and u takes either its maximum or minimum 
value either at an interior point of the domain or on its top boundary, then this 
solution is a constant in any domain subordinate to this point (see the definition of 
subordination in Section 1.1 of Chapter 2). 

2.4. Stabilization of Solutions as 1+ co. A sizable number of recent works is 
devoted to the question of stabilization of solutions of parabolic equations. We 
take the stabilization of solutions at a point x to mean the existence of a limit 
lin-bm u(x, t). If the limit is uniform on a compact set K (or in UP) we say that 
the solution stabilizes uniformly on K (respectively, in R”). The first study of the 
stabilization of solutions of the heat equation was performed by Tikhhonov 
[ 19503. 

Let us state the result obtained in that work. Tikhonov considered the equation 

au ah -=- 
at ax2 

for 0 < x < co, t > 0, with the boundary condition 

kzo akgp(o. t) = f(t)- 

He proved the following proposition: 
In order that the solution of the boundary value problem above has a limit as 

t + cc for every function f(t), it is necessary and sufficient that all the roots of 
3a 

the equation C&, akqk = 0 lie in the region -q < arg qj < 4. Furthermore, 

lim,,, u(x, t) = lim,,,f(t). 
In the early fifties, Krzyzanski initiated interesting studies of stabilization of 

the solution of the Cauchy problem. In particular, he (Krzyzanski [1957]) con- 
structed an example of a bounded initial function uo(x) for which the solution of 
the Cauchy problem for the heat equation has no limit as t + co. 
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Necessary and sufficient conditions of uniform stabilization on compact sets 
were obtained in the work of Repnikov and Ejdel’man Cl9671 in the case of a 
bounded initial function IQ,(X). Their condition is given by the existence of the 

finite limit lim,,, & 
I 

U&X) dx, where V, is the ball ~~ZI x? < p2. 

Necessity of the condicioz given above was first established by Repnikov 
[1963] using one of Wiener’s Tauberian theorems (Wiener [1932]). Let us con- 
sider in detail the question of uniform, in R”, stabilization of solutions of the 
Cauchy problem for the heat equation. Let us introduce the concept of the 
uniform limit of the average over cubes. 

A measurable function q,(x) has a uniform limiting average 1 if for every E > 0 
there is R&S) such that for any cube VJ with side 2R and center at 11 we have the 
inequality 

U,(Y) dy - 1 -= E 

for all q and R 2 RO. Repnikov [1963] showed that if the initial function U&X) 
is bounded, then in order that the solution of the Cauchy problem stabilize 
uniformly in R”, it is necessary and sufftcient that u,,(x) has a uniform limit of the 
average over cubes. 

The question of stabilization in he case of an unbounded initial function, is an 
interesting one. The survey paper of Denisov and Repnikov [1984] is devoted 
to this question. Let us examine the question of stabilization in the case of 
variable coefficients. 

Consider the equation 

P(x); = i -c i,j=l axj(aij(x, t)iQ (22) 

where 0 < y1 < p(x) < y2, yl, y2 = const., while the matrix A = IlaijJI is sym- 
metric, bounded, and positive definite, 

A-‘(& 5) < (At, 5) d A(& 0, 1 = const 2 1. 

Drozhzhinov [1962], and Valitskij and Ejdel’man [1976] obtained sufficient 
conditions of pointwise stabilization of the solution as t --+ cc. 

Following Porper and Ejdel’man [ 19781, we shall say that f(x) has zero corner 
limit average at a point x0 with speed not less than 6(N, x,), if 

I($ ai)-’ JRa,xofWd~~ < W,xo) VaE K 

a=h,...,a,), lail > N, 

where we denote by R,,,O the parallelipiped (x = (x,, . . . , x,) E Iw”: lxoil < lxil < 
lxOil + a, i = 1, . . . , n, X0 = (Xoi, . . . , X& (Xi - X&Ii > O}. 

Porper and Ejdel’man Cl9753 prove that if the function p(x)u(O, x) has zero 
limit average at x0 with speed 6(N, x,,) then there exists e(t), s(t) + 0 as t + a~, 
defined by the constants yl, yZ, I, and 6(N, x,), such that lu(x,, t)I < e(t). 
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Various forms of necessary and sufficient stabilization conditions were obtained 
by Porper and Ejdel’man Cl9751 and by Mikhailov [1970]. 

Zhikov [1977] and Zhikov, Kozlov and Olejnik [1981] use averaging methods 
to obtain stabilization results. In this method an important role is played by 
Nash-type estimates. 

Gushchin [ 19821 studies the question of stabilization of the Neumann prob- 
lem. He also considers the question of dependence of the speed of stabilization 
on the geometry of the boundary of the domain. His results are, in particular, 
applicable to the Cauchy problem. 

2.5. On Uniqueness Classes of the Solution of the Second Initial-boundary Value 
Problem for Parabolic Equations in Unbounded Domains. Let G c Iw” be an 
unbounded domain, 52 = G x [0, T], and let dG be piecewise continuously 
differentiable, dG x [0, T] = ZY Consider in Q the equation 

i,& Y$ ( %ktX) g) + 2 Mx) g + dx) - g = O’ (23) 

where au(x) = ski(X) are continuously differentiable and satisfy the following 
conditions: there exist ;Z 2 1 and M > 0 such that 

Ihi( < My [c(x)1 < M* 

Let us consider the second homogeneous initial-boundary value problem 

au uI,=o=o, ~ =o 
av r (25) 

a -- 
av is the co-normal derivative to i3G 

> 
. 

Let a function h(r), 0 < r < 00 be monotone increasing and such that 

s 

O” dr 
h(r)= O”. 

Let us set F,(r) = &‘(‘). The so-called Tlcklind condition demands that for Ix I 
sufficiently large, 

IWI G ~O(l~l)~ (26) 

In Section 1.3, Chapter 2, we saw that this is precisely the condition satisfied in 
the uniqueness class for the Cauchy problem. Olejnik and Radkevich [ 19781 and 
Gushchin [1982] showed that if a solution of the problem (23), (25) in Q for an 
arbitrary domain G, satisfies condition (26), then it is necessarily identically zero. 
In this section we investigate the dependence of uniqueness classes of the problem 
(23) (25) on the geometry of the domain. We shall consider classical solutions 
u E Czg ’ of equation (23). 
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Let an arbitrary unbounded domain G c R” be given. Let us consider a 
sequence of pairs of numbers (r;, r;1} such that 0 < t-i c r[ < ri+I k = 1, 2, . . . 
andri+coask+co. 

Let us denote by Gk the part of G contained between the spheres 1x1 = r; and 
1x1 = rt. 

Theorem 2.18. Let P(r), r > 0 be an arbitrary positive monotone increasing 
function, and let the domain G satisfy the condition 

meas Gk * P2(rL)/(rL - rL)2 + 0 as k + 00, (27) 

and let I.+, t) be a solution of the problem (23), (25) nS2 = G x [0, T]. Then iffor 
large 1x1 the inequality 

holds, then u E 0. 

Iuh 01 G Wxl) (28) 

Proof. It suffices to consider the case when T is sufficiently small. Let to, 
0 < to < T be arbitrary. Let us set V(x) = sfou2(x, t) dt. Let us consider the 
restriction of V to G,. By the integral mean-value theorem (cf. Theorem 1.25) 
there exists a piecewise smooth surface & separating the spheres 1x1 = ri and 
1x1 = r[ in G,, such that 

f 
IdV/dvI ds < C meas G.. osc V/(rl - r,!)‘. (29) 

&I 
Let us denote by Dk the portion of G which is contained in the ball 1x1 < r[; 

and which is not separated from the sphere 1x1 = r[ by the surface .&. Multiplying 
equation (23) by u and integrating over Dk x [0, to], we obtain, having used 
Green’s formula and having taken into account (24) and (29), that 

s b fo 
u’(x, to) dx + 1-l [grad, u12 dx dt - M Jgrad, ul .u dx dt 

Dk fS f Dk s 0 

-M u2 dx dt < 
s 

liTV/cYv( ds < C meas Gk*F2(rL)(rL - rL)2. 
& 

Integrating with respect to to from 0 to T and taking T sufficiently small, we find 
that 

u~(x, t) dx dt < T* C meas Gk * P2(r,J)/(rc - ri)’ + 0 

ask+co.Thatis,u-0.0 

Let us now consider a particular form of domain G. Let f(r) E C’(0, oo), 
SW > 0 and f(r) 1% f’(r) 10 as r + co. Let us use the notation 

G={r~[W”:x~>O,lx~l<f(x~),i=2 ,..., n}. (30) 
Let h(r), 0 < r < co be a positive continuous monotone decreasing func- 
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tion, and let F(r), I > 0 be monotone increasing and such that F(r) = 
o(h(r)““-’ (f(r - h(r)))2/“-‘) as I + co. 

Theorem 2.19. For G and F as above the following claim is true: Zf u(x, t) is a 
solution of the problem (23), (25) in Q such that 

4x, t) < F(M), 

then u 3 0. 

Obviously, this theorem is a particular case of the preceeding one. 
In particular, for a domain G defined by f(r) = exp( - rk), k > 2, according to 

(30), the uniqueness class is defined by the function F(r) = o(r21n) exp 
n-l 

( > 
Trk ; 

for a domain G defined by f(r) = exp( -exp), F(r) = o(exp( - r)) exp( - exp r)). 
In the more general case when the coefficients of the equation depend on x 

and t, a similar theorem was proved by Gagnidze [1984], who used the method 
of introducing a parameter suggested by Olejnik and Radkevich. We also note 
that earlier Olejnik [1983] constructed an example of an equation of the form 

AU + 1 bi ~ - g = Ofor which, forf(r) 2 exp( - Cr), the Tlicklind class cannot 

be made larger. 

0 3. Parabolic Equations with Smooth Coeffxients 

3.1. On the Regularity of Boundary Points for Parabolic Equations. Let us first 
consider the heat equation 

Au - 24, = 0. (31) 

Let G be a bounded domain in (n + 1)-dimensional space (x, t), x = (xi, . . . , x,). 
Let us denote by y the set of boundary points (x0, to) of this domain 
for each of which there exists a positive number E such that the cylinder 
{(x, t): t, - & < t < to, Ix - x01 < E) is contained in G, while the cylinder 
{(x, t): t, < t < to + E, Ix - x01 < E) lies outside G. The set y is called the top 
boundary of the domain G, and the set r = aG\y is its parabolic boundary 
(see 0 1, p. 159). 

The first boundary value problem for equation (31) is posed as follows. Let f 
be a function continuous on the parabolic boundary. It is required to find a 
solution of the heat equation in G u y, which is continuous on G and equal to f 
on r. Naturally, this problem is not soluble for all domains G. But as in the case 
of Laplace’s equation, it is possible to find a solution of equation (31) corre- 
sponding to any function f continuous on ZY This solution uJx, t) is called the 
generalized solution of the boundary value problem at hand. It can be obtained 
either by the method of supersolutions of Perron (see, for example, Petrovskij 
[1935]) or by Wiener’s method of approximating the domain from the interior 
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by step-shaped domains (see, for example, Landis [1971]). Both methods lead to 
the same function U&X, t). 

A point (x,, to) belonging to the parabolic boundary is called regular if for 
every function f which is continuous on r, UJX, t) + f(x,, to) as (x, t) + (x,,, to), 
(x, t) E G. 

In 1934, Petrovskij (see Petrovskij [1935]) undertook a thorough study of 
regularity conditions in the case of G being a planar domain. His criterion is as 
follows. 

Let (x,, to) E dG, and suppose there is a continuous curve with an endpoint in 
this point, which is contained in the intersection of the half-plane t -C t, with G. 
Let p(q) be a positive function defined for 0 < q -C E < 1, which goes to zero as 
q + 0. Let us use the notation 

H = {(x, t): Ix - x0/ < 2J(to - t)lln p(to - t)l, 0 < t, - t < E < l}, 

II- = {(x, t): x0 - & < x < x0,0 < t, - t < &}\H, 

H+ = {(x, t): x0 < x < x0 + E, 0 < t, - t < &}\H. 

If 

(32) 

and either H+ or H- belong to the complement of G, then the point (x0, to) is 
regular. If 

s 
drl 

Optlo=m 

and H belongs to G, then the point (x0, to) is irregular. 
Using the methods of Petrovskij’s work quoted above, it is possible to obtain 

a quite general regularity condition in the multidimensional case. Let us consider, 
in the space xi, . . . , x,, t the surface 

{(x, t): r = 2Jltllln p(ltl)l, 1x1 = r < r,, --E -c t < 0}, 

where p satisfies condition (32). 
Let us cut out of this surface a piece S. Using the hyperplane t = -H < 0 

and the cylinder 

{,x,t):x”=~(~~x:~‘2,e>o}. 

Let us call the point (0,O) the vertex of S. Let us consider rigid body translations 
of S composed of translations in the x space and along the t axis. If there exist 
H and E such that S can be translated so that its vertex coincides with (x0, to) E 
c?G, while all other points of S belong to the complement of G, then the point 
(x0, to) is regular (for the part of G contained in the half-space t < to, which is 
assumed to be non-empty). 

Tikhonov [1938] showed that if G is the cylindrical domain G = Sz x (0, T] 
where 52 is a domain in the n-dimensional x-space, a boundary point (x0, to) E 
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22 x [0, T] is regular if and only if x0 is a regular point for Laplace’s equation 
defined in 0. (The points of the bottom base of the cylinder are, naturally, always 
regular.) 

Continuing Petrovskij’s studies. Pini [ 19541 considered the equation 
u xx - u, = 0 (33) 

in. a planar domain, assuming that in a neighborhood of the boundary point 
under consideration, the boundary is a graph of a continuous function x = q(t). 
He found a necessary regularity condition and also gave a certain sufficient 
regularity criterion. Significantly, Pini stated his conditions in terms similar to 
the ones used in stating Wiener’s criterion of regularity of boundary points for 
Laplace’s equation. 

AS is well known, Wiener’s condition consists of the following. Let Sz c Iw” be 
a bounded domain and let x,, E X2. For simplicity, let us assume that n > 3. Let 
q, 0 < q < 1 be an arbitrary number. Let us denote the ball of radius qk with 
center at the point x0, by Qk, and the part of the complement of 52 which is 
contained in the aUUUkir Qk\Qk+l, by Ek. Let us consider the series 

gg~ (34) 

where cap E, denotes the capacity of the set E,. Then divergence of the series 
(34) is a necessary and sufficient condition for regularity of the point x0. 

The terms of series (34) can be given different interpretations. One of these goes 
as follows. The annulus Qk\Qk+l is a domain in which the fundamental solution 
of the Laplacian (with a pole at x0) is bounded from below and from above by 
the two constants 2, and ,I,+, such that 

;1 k+l = il,.l, i > 1 

(1 = l/q(“-2)). Every term of the series (34) is the product of the capacity of the 
part of the complement of the domain that is contained in the relevant annulus 
and of the value of the fundamental solution on the outer boundary of the 
annulus (or at any other point of the annulus: it doesn’t make any difference, 
since values of the fundamental solution at any two points of the annulus are 
finitely related). 

Thermal capacity can be defined in a natural way for the heat equation. Thus, 
let E c KY+’ = {(x, t)} b e a B ore se ; a measure p on E is called admissible if 1 t U(x, t) = s G(x, t; 5,4 d/45,4 d 1, 

E 

where G(x, t; 19, z) is the fundamental solution: 

1 e-(Ix-51*/(4@-r))), t > z 

G(x, t; <, z) = 2"('+ - z))"" 
9 

The number C(E) = sup p(E), where the supremum is taken over all admissible 
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measures is called the thermal capacity of the set E. (We note that the measure 
for which the supremum is obtained, always exists; it is called the equilibrium 
measure). 

Thermal capacity was introduced by Pini Cl9543 in order to study questions 
of boundary point regularity. (At present, much more is known about the thermal 
capacity, see, for example, Watson [ 19783). 

Pini’s condition is stated in the following way: let us consider the annulus lying 
between level curves of the fundamental solutions of the equation u,, + u, = 0 
(which is adjoint to (33)), corresponding to the values Ik and ik+l, where ,?> 1. 
Let ek be the part of the curve x = q(t) that is contained in this annulus. Then 
Pini’s necessary regularity condition is the divergence of the series 

As in the case of Laplace’s equation, it would have been more natural to 
consider the part of the complement to the domain contained in the annulus, 
and its capacity, instead of considering the part of the boundary contained in 
the annulus. When the boundary is the graph of a continuous function x = q(t), 
the two approaches are equivalent: the resulting series converge or diverge 
simultaneously. However, in the multi-dimensional case (and even in the planar 
case of a more complicated boundary), this is no longer so. It turns out that it is 
exactly the capacity of the part of the complement of the domain that is contained 
in the annulus, that has to be considered. That was exactly what Lanconelli 
[ 19733 did. He proved the necessity of such a regularity condition for a general 
(n + l)-dimensional domain. Lanconelli himself could not prove sufficiency of 
his condition (in the work quoted above he gave a more restrictive sufficient 
condition that does not coincide with the necessary one). However, Evans and 
Gariepi [1982] showed that Lanconelli’s condition is both a necessary and a 
sufficient regularity condition. 

Let us return to Wiener’s criterion for Laplace’s equation. A different inter- 
pretation of the terms of series (34) is possible. 

Let pk be the equilibrium measure corresponding to the set E,, and let 

ukb) = 
s 

‘&c(Y) 
Ek ix - Yi”-2 

be the potential corresponding to it. Then each term of series (34) is finitely related 
to the value of this potential uk at x e: there exist positive constants C, and C, 
such that 

C, cap EJq(n+2)k < uk(xo) 6 C, cap Ek/q(n-2)k. 

Therefore, series (34) converges and diverges if and only if the series 

(36) 

does. 
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Instead of the balls Qk, radii of which decrease in geometric progression, we 
could consider balls Q, with centers at x0, the radii of which decrease faster than 
that. Let us denote by & the intersection of the complement of the domain G 
with the annulus Q,\Q,+,, let us find the equilibrium measure /& for &., the 
corresponding potential I&(X) and let us construct the series 

Divergence of this series is also a necessary and sufficient if regularity of the 
point x0. However, the faster is the rate of decrease of the radii of the balls &, 
the closer this necessary and sufficient condition comes to becoming a tautology. 
In order that the criterion contain as much information as possible, the rate of 
decrease of radii of the balls must be made as low as possible. On the other hand, 
it can be shown that radii have to decrease at such a rate that li, on &+,,, 
p = const. is commensurate with z?(O). Hence it follows that radii cannot decrease 
slower than in geometric progression, and we conclude that Wiener’s criterion 
is the best possible criterion of this type. 

Interpreted as the divergence of a series of the form (36), this criterion was 
extended to the heat equation by one of the authors (Landis [1969]) in the 
following way. 

Let {tk}, k = 1,2,. . . be an increasing sequence converging to to. Let us denote 
the intersection of the layer {(x, t): t, < t < t k+l, x E IF!“} with the complement of 
domain G by E,. Let us consider pk, the equilibrium measure of the set E, for a 
parabolic potential, and let u,(x, t) be the corresponding potential: 

1 
t&(x, t) = ~ 

s 

1 

(2&) El, (t - 2)“‘2 
e-(l~-~l~/(4w~))) dPk(<, z), t > t,. 

Let us construct the series 

If tk converges to t, fast enough, then the divergence of this series is a necessary 
and sufficient condition of regularity of the point (xc,, to). 

Here it is important to find the slowest admissible rate of decrease of the 
thickness of the layer t, < t < tk+l. The appropriate sequence { tk} was found in 
the work (Landis [1969]) quoted above. 

The sequence (tk} is defined as follows. By recursion, an auxiliary sequence 
{pk} is constructed: p,, = l/2, pk+l = pk Jm tk is found from the condition 
4t,*ln (t,l = pi-Z. 

The following generalizations deal with the extension of the results for the 
heat equation (31) to linear second order parabolic equations with variable 
coefficients. 

Let us consider the equation 
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If 
a,,JO,O)=&, i,k=l,..., n, (37) 

where Si, is the Kronecker delta, and the coefficients satisfy the Dini condition 
(with respect to the parabolic distance) in a neighborhood of a point (x0, to), 
then, as Novruzov [1973] showed, regularity conditions for the point (x0, to) 
coincide with regularity conditions for this point for equation (31). He also 
showed (Novruzov [1973]), that if the Dini condition is violated, a point that is 
regular for the heat equation is not necessarily regular for the equation with 
variable coefficients. 

Let us note that here condition (37) is essential. Unlike the elliptic case, when 
under sufficient smoothness conditions on the coefficients, boundary point regu- 
larity conditions coincide for all elliptic second order equations, in the parabolic 
case the situation is different. For example, equations 

and 

au a2u 
Z-ax2 (38) 

au a2u 
z=a,x,, a = const > 0, 

for a # 1 have different regularity conditions. To see that, let a = l/(1 + E), E > 0. 
Let us consider the domain 

1 
(x,t):x2<41n---, 

lnl4 

The point (0,O) is regular for equation (38). 

Let US make a change of variables in equation (38): x = x1, t = f t,, so that if 

wesetu(x, t) = u,(x,, t,)wegetthat$ = 
a%, 

1 
=. Under this change of variables, 

1 

G is mapped into the domain 

(x1, t,): x1 < 4(1 + .z)tl In 
1 

WIU + 4 ,aH<t,<O 1 
. 

As for 1 HI and E sufficiently small, 4( 1 1 1 + 6) t In 1 
W,(l + 41 

> 4(1 + .s)tl In------, 
lnlt,l 

the point (x,, to) will be irregular for the domain G and for equation (39). 
Therefore if one wants to find necessary regularity conditions and sufficient 

regularity conditions that should hold for the whole family of uniformly para- 
bolic second order equations one cannot expect these conditions to coincide. 

Such sufficient conditions were found for equations with principal part in 
divergence form, 

au n a 
at' = -( i,k=l dxi 

a&(X, t)g 
k 

+ t bi(Xy t)& + C(Xp t)U 
i=l I 

(40) 
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by Lanconelli [ 19751. He only required measurability and boundedness of coefli- 
cients, as well as that the inequality 

holds for some A 2 1. 
Using Aronson’s [1967] estimate of the fundamental solution of such an equa- 

tion in terms of the fundamental solution of the heat equation (see Section 2.2), 
Lanconelli obtained the following regularity condition for a boundary point 
(x,, to) of a domain 52 c R”, which holds for any equation of the form (40). 

Let 0’ be the complement of Q, and let I, 0 < 1< 1 be an arbitrary number. 
Let us set 

ch,, = {(x, t) E Q’: A“+1 < to - t < Ak, A”+’ < e-(lx--Q/(4(‘-‘))) < A”}. 

A sufficient condition of regularity is that for any a > 0 

where C(S26,k) is the thermal capacity of the set &&. 
Landis [1971] obtained sufficient boundary point regularity conditions for 

uniformly parabolic equations not in divergence form with, in general, discon- 
tinuous coefficients. These conditions are stated in terms of the divergence of a 
series similar to Wiener’s series. Using these conditions, sufficient geometric 
criteria are found. For example, a point (x,,, to) will always be regular if it can 
be reached from outside the domain by the vertex of a “squashed cone”. (K is a 
“squashed cone” if in a neighborhood of x,, in R” an orthogonal system of 
coordinates xi, . . . , x; can be introduced such that for some a > 0, b > 0 

K = (x’, t): t < t,, 0 < x; < b, i (xl’ + t, - t)‘lZ 
i=Z 

3.2. Behavior of Solutions on Parabolic Equations on the Characteristic. We 
saw that solutions of elliptic equations share properties with analytic functions 
even in the case where the coefficients of these equations are differentiable only 
a finite number of times. It turns out that bounded solutions of parabolic 
equations on the characteristic also have similar properties. 

Let us consider a parabolic equation of the form 

+ c(x)u - g = 0 (41) 

with coefficients depending on x and having some degree of smoothness 
(Uik E c2, E L”). 

In order to study this equation on the characteristic, Landis and Olejnik 
[ 19741 employed the following method, which they call the elliptic continuation 
of solutions of parabolic equations. 
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Theorem 2.20. Let a bounded solution u(x, t) of equation (41) be defined in the 
cylinder D = ((x, t): 0 < t < to, 1x1 < R}. Then for every p > 0 there exist con- 
stants C > 0 and 6 > 0 depending on L, R, to, and p such that there exists a solution 
U(x, y) of the elliptic equation 

aw 
-----+LU=O, 
aY2 

in the cylinder Q = ((x, y), x E Iw”, y E [w’, 1x1 < R - p, lyl < S}. U(x, y) satisfies 

UI,=, = u(x, to), av 
ay y=o= 

0 

and 

sup IUI < c sup IUI. 
Q a 

In the work quoted above, this theorem is proved for parabolic equations of 
high order. 

A number of corollaries follow from this theorem. 

Theorem 2.21 (uniqueness theorem). Let Q be the same cylinder as above, and 
let u(x, t) be a solution of equation (41) in Sz. Suppose lx01 c R, and that as x + x,, 
the function u(x, to) decays faster than any polynomial, that is, for each k there 
exists C, such that Iu(x, to)1 < C, lx - x,,lk. Then u(x, to) E 0. 

As a particular case of this theorem, we have a uniqueness theorem for the 
extension of a solution on the characteristic from a subdomain to the whole of 
the domain. We also have a stronger claim. 

Theorem 2.22 (the three balls theorem). Let rl, r and r, be three arbitrary 
numbers satisfying 0 < rI c r < r, < 1. Let a solution u(x, t) of equation (41) 
be defined in the cylinder Sz = {(x, t): 0 < t < r,‘, 1x1 < r2}. Let us set M, = 
sup, Iu(x, t)I and M(r) = ~up,.+~ lu(x, $1. Then there exist positive constants C,, 
C, and C, that depend only on the operator L, such that for any x > C,, it follows 
from the inequality 

that 

W-lYW < r; 

M(r)/M, < (C, r)y’c2. 

Theorem 2.23 (continuous dependence in the problem of extension from a 
subdomain to the whole of the domain on the characteristic). Let Sz be a domain 
of the space (x, t), and let (3, to) E 9. We say that the parabolic distance from (A, to) 
to the boundary of D is larger than r, tf the cylinder 0, = {(x, t): to - r2 < t < t,, 
Ix - RI < r} lies in Sz. 

Let a solution u(x, t) of equation (41) be defined in a, let (3, to) E 0, and let the 
parabolic distance from (A, to) to the boundary of S2 be larger than r. Then there 
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exist constants C’ > 0 and o > 0,O < o c 1, that depend only the operator L, such 
that tf sup, Iu[ < M and ~up,,-~,+, lu(t,, x)1 = E, then 

sup It&,, x)1 < (CM)l-O.&O. 
IX-*l<r/Z 

From this theorem we can derive a Liouville type theorem. 

Theorem 2.24. Let equation (41) be uniformly elliptic in the semi-infinite cylinder 

Q = 
i 

(X, t): 0 < t < r2, 0 < x1 < co, 2 xf < r2 
I 

, r< 1, 
i=2 

Assume that derivatives of its coefficients to some order are uniformly bounded, and 
let u(x, t) be its solution which is uniformly bounded in 52. Then there is a constant 
H > 0 depending only on L, such that iffor some constant C > 0 

124(x, r’)j < Ce-eHx”r, 

then u(x, r2) = 0. 

In the case when 0 is the layer 0 < t < t,, x E R“, Gusarov [1975] proved the 
following rather sharp Liouville type theorem. He considers equation (41) with 
the following restrictions imposed on its coefficients: DPaik(x) = 0(1x1-‘PI), p = 1, 
2, c(x) = o(IxI-~) as [xl+ co. 

Theorem 2.25 (sharp Liouville type theorem). Let u(x, t) = O(e”lX”) uniformly 
in t E (0, to], where K is some positive constant. 

Then there exists a constant C > 0, such that if in a cone contained in the 
characteristic t = t, we have the estimate 

u(x, to) = O(exp( -C(K + ilx12))). 

then u E 0. 

Here C depends on the constant of ellipticity of the operator L, on the 
dimension of the space and on the angle of opening of the cone. 

Remark. If the coefficients are assumed to be somewhat smoother, we can 

consider the full operator &=i ai,Jx)& 
I k 

+ ~~& b,(x): + c(x) in Theo- 
I 

rems 2.20-2.25 instead of the operator L. 
In order for the methods of Gusarov [1975] to work, it is essential that the 

coefficients be independent of the variable t. It would be interesting to know 
whether similar results hold in the case, where the coefficients depend both on x 
and t. 

Glagoleva proved the following three cylinder theorem: 
Let equation 

bi(x,t)&+c(x,t)u-g=O (43) 
I 
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be defined in Z$i. Assume that its coefficients satisfy 
a) Uik(X, t) E d3’ ’ ; 
b) CF,k=l aik(X, t)tfitk 2 n1512, 1 > 0 
c) uik(x, t), their derivatives to indicated order, bi(x, t) and c(x, t) are bounded. 
For a function defined on Z2.2’ let us set 

Theorem 2.26 (the three cylinder theorem). Let 0 < r, < R. Let u(x, t) be a 
solution of equation (43) in Z$i satisfying the condition 

M,,(r,, 0, T) = A, M,(R, 0, T) = M. 

Then for any r, r, < r < R/2C and any positive number a for sufficiently small 
A, the following inequality holds: 

In M,(r, a, T - a) < In A ___ 

where B > 0, C > 0 are constants depending on the equation and on a. 

It seems plausible that smoothness of the coefficients uik can be weakened to 

C2,‘, and that the term In 
Cr 

0 
R of inequality (44) can be neglected (compare this 

with the three balls theorem for elliptic equations (theorem 1.49)). 
Kudryavtseva [1971] proved the following theorem concerning the rate of 

decay of a solution in a layer over a cone. 
Let K be the cone 

K = x E [w”: x1 > 0, 2 xi” < Cxf, C > 0 
i=2 

and 

Q = ((x, t) E R”+l: 0 < t < T, x E K}. 

Let equation (43) be defined in Sz. Assume that its coefficients satisfy condition 
b), that all the coefficients are bounded, that the coefficients aik are differentiable 
with Da,(x, t) = O(lxj-‘). 

Theorem 2.27. Let a solution of equation (43) with coefficients satisfying the 
conditions indicated above, be defined in Q. Then there exists a constant No that 
depends on the equation, such that if any solution u(x, t) in 52 satisfies for x large 
enough the inequality 

ILYu(x, t)I < e-(xl)No, 1 al < 2, (45) 

then u E 0. 
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Remark. It follows from the Schauder estimates that if the coefficients satisfy 
the Dini condition, then we can have the inequality lu(x, t)I < e-(xl)No instead of 
(45). The method of elliptic continuation of parabolic equations can be used to 
obtain interesting theorems concerning the stabilization of solutions of the 
Cauchy problem. Groza [1976] proved the following theorem. 

Theorem 2.28. Let a solution u(x, t) of equation (43) be defined in the half-space 
{k w E R”, t > o>, and assume that c(x) < 0. Zf E c Iw” is a Bore1 set of positive 
measure, and if u(x, t) is bounded in modulus and converges to zero as t + 00 at 
every point x E E, then u(x, t) converges to zero everywhere, moreover, the con- 
vergence is uniform on compact sets. 

(A similar theorem in the case of parabolic equations of high order was proved 
by Nutsubidze [ 19831). 

Comments on the References 

We comment here on the monographs and survey articles referred to in the text, 

Monographs 

Ladyzhenskaya, Solonnikov and Uraltseva [1967] is one of the most complete monographs dealing 
with second order parabolic linear and quasilinear equations. At the end of the book some 
results concerning parabolic systems are to be found as well. 

Ladyzhenskaya and Uraltseva [1973] is a basic monograph in the theory of linear and quasilinear 
elliptic equations. 

Landkof [1966] is an exposition of potential theory mainly in connection with its applications to 
elliptic equations. 

Landis [1971]. A substantial part of this monograph is devoted to questions of the qualitative theory 
of second-order elliptic and parabolic equations. 

Miranda [1970]. This monograph deals with various questions in the theory of elliptic equations. 
In its breadth of scope it has no equals. It is invaluable as a reference book. 

Sobolev [1962]. This is a book dealing with embedding theorems and their applications to the theory 
of partial differential equations, written by the originator of the method. 

Hormander [1983-851 is a four volume monograph that faithfully reflects the contemporary state of 
the art in questions dealing with linear differential operators. Q 17, Volume 3 of this monograph 
comes closest to the topics covered in our paper. There the author proves what we called 
“Hormander’s inequality.” 

Ejdel’man 119641 is a book mainly devoted to systems that are parabolic in the sense of Petrovskii. 
Results concerning a single second order parabolic equation can be found in the book, appearing 
as particular cases of results for systems. 

Gilbarg and Trudinger [1977] is devoted to second order elliptic equations. The book is in two parts, 
dealing respectively, with linear and quasilinear equations. The book has the character of a 
textbook and is very clearly written. 

Grisvard [1981] deals with solutions of boundary value problems in non-smooth domains. 
Morrey [1943], as seen from the title, does not deal directly with qualitative theory. We used some 

embedding theorems contained in it. 
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Survey Articles 

Gel’fand and Shilov Cl9533 contains results concerning uniqueness classes of the Cauchy problem 
with constant coefficients. 

Denisov and Repnikov [1984] is a survey of questions of stabilization of solutions of parabolic 
equations as t + co. 

Zhikov, Kozlov, and Olejnik [1981] deal with questions of G-convergence, that is, with the question 
of the possibility of the description of heterogeneous media by equations describing homo- 
geneous media. 

Ioselian and Olejnik [1977] consider the character of growth and decay of solutions of parabolic 
equations in unbounded domains of different types. 

Keldysh Cl9413 has not, in spite of the fact that it is an old paper, lost its importance. This is especially 
true with regard to the second part of the article, which deals with stability of solutions of the 
Dirichlet problem under perturbation of the boundary. 

Kondrat’ev and Olejnik 119831 survey results of the theory of boundary value problems for partial 
differential equations in domains with irregular points on the boundary. 

Landis [1963] is partially contained in (Landis [1971]). At the same time, many of the results 
contained in this paper (such as the three balls theorem, the connection between the number of 
domains in which a solution of an elliptic equation does not change sign and its growth) are 
not to be found in that monograph. 

Olejnik and Radkevich [1978] survey results obtained with the help of the method of introducing a 
parameter proposed by the authors. It deals with widely varying aspects of the theory of elliptic 
and parabolic equations. 

Porper and Ejdel’man [1984] is devoted to estimates offundamental solutions and their applications. 
In particular, it contains a lucid exposition of Aronson’s estimates. 

Stampacchia [ 19851 can be considered as a survey by the author of his results on generalised solutions 
of non-selfadjoint second-order elliptic equations with principal part in divergence form. 

Watson [1978] is a survey of works dealing with thermal capacity. 
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