
 

Determinants, Matrices, 
and Linear Systems of 2 Equations 

1. Determinants 

Definition. The square array (matrix) A, with n rows 
and n columns. has associated with it the determinant 

a number equal to 

where i , j , k ,  ..., I is a permutation of the n integers 
1,2,3 ,..., n in some order. The sign is plus if the 
permutation is even and is minus if the permutation is 
odd (see 1.12). The 2 X 2 determinant 

has the value a 1 1 u 2 2 - a 1 2 u 2 1  since the permutation 
U,2)  is even and (2 , l )  is odd. For 3 X 3 determinants, 
permutations are as follows: 
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17 2, 3 even 
1, 3, 2 odd 
2, 1, 3 odd 
2, 3, 1 even 
3, 1, 2 even 
3, 2, 1 odd 

ThUS, 

[+=I1 . a22 . a33 

alI aI2 aI3 
-alI . a23 . 032 

a21 a22 a23 = ’ ‘1 92 . =2l . a33 

a3 a32 a33 
+=I2 . 023 . a31 
+a13 . =2l . =32 
--a13 . a22 . 031 

A determinant of order n is seen to be the sum of n! 
signed products. 

2. Evaluation by Cofactors 

Each element ajj has a determinant of order (n - 1) 
called a minor (Mjj) obtained by suppressing all ele- 
merits in row i and column j. For example, the minor 
of element a22 in the 3 X 3 determinant above is 

The cofactor of element aii, denoted Aij, is defined as 

kM,j, where the sign is determined from i and j: 

Aij = (- l)i+jqj. 
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The value of the n X n  determinant equals the sum of 
products of elements of any row (or column) and their 
respective cofactors. Thus, for the 3 X 3 determinant 

d e t A = a , , A , , + a , 2 A , 2 + a , l A , ~  (first row) 

or 

= a , , A , ,  + a , , A , ,  + a , , A l l  (first column) 

etc. 

3. Properties of Determinants 

a. If the corresponding columns and rows of A are 
interchanged, det A is unchanged. 

b. If any two rows (or columns) are interchanged, the 
sign of det A changes. 

If any two rows (or columns) are identical, det 
A=O. 

If A is triangular (all elements above the main 
diagonal equal to zero), A = a l ,  .a22 ' .  . . *ann:  

c. 

d. 

a , ,  0 0 '.. 0 
a,, a,, 0 0 . . . . . . . . . . . . . . . 
an, a n 2  a n 3  "' a n n  

e. If to each element of a row or column there is 
added C times the corresponding element in an- 
other row (or column), the value of the determi- 
nant is unchanged. 
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4. Matrices 

Definition. A matrix is a rectangular array of numbers 
and is represented by a symbol A or [ a i j ] :  

The numbers are termed elements of the matrk, 
subscripts i and j identify the element as the number 
in row i and column j .  The order of the matrix is m X n  

("m by n"). When m = n ,  the matrix is square and is 
said to be of order n. For a square matrix of order n 
the elements a , , ,  a,* ,... ,ann constitute the main diag- 
onal. 

5. Operations 

Addition. Matrices A and €3 of the same order may be 
added by adding corresponding elements, i.e., 
A + B = [(a,, + b,,)l. 

Scalar multiplication. If A = [a, , ]  and c is a constant 
(scalar), then cA = [ca,,],  that is, every element of 
A is multiplied by c. In particular, ( -  l ) A  = -A  = 

[ -a, , ]  and A + ( - A )  =0, a matrix with all 
elements equal to zero. 

Multiplication of matrices. Matrices A and B may be 
multiplied only when they are conformable, 
which means that the number of columns of A 
equals the number of rows of B .  Thus, if A is 
m x k  and B is k x n ,  then the product C=AB 
exists as an m X n  matrix with elements c,, 
equal to the sum of products of elements in row 
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i of A and corresponding elements of column j of 
B:  

For example, if 

bll b12 ". bl ,  
b2, b22 ". b2n . . . . . . . . . . . . 
bk l  b k 2  "' b k o  

then element c21  is the sum of products a , , b , ,  + 
a22b21  + ... + a z k b k , .  

6. Properties 

A + B = B + A  
A + ( B +  C) = ( A + B )  + C  
(cI + c 2 ) A = c 1 A + c , A  

c( A + B ) = CA + CB 
CI(C2A) = ( C I C 2 ) A  

( A B ) ( C )  = A (  B C )  
( A  + B ) ( C )  =AC+BC 
AB # BA (in general) 
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7. Transpose 

If A is an n X r n  matrix, the matrix of order m X n  
obtained by interchanging the rows and columns of A 
is called the transpose and is denoted Ar. The follow- 
ing are properties of A, E ,  and their respective trans- 
poses: 

(AT)' = A 

( A + B ) '  = A ~ + B ~  

( d ) T  = C A T  

A symmetric matrix is a square matrix A with the 
property A =Ar. 

8. Identity Matrix 

A square matrix in which each element of the main 
diagonal is the same constant a and all other elements 
zero is called a scalar matrix. 

a 0 0 ... 0 
0 a 0 .*. 0 
0 0 a *.. 0 

0 0 0 ... a 

... ... ... ... 

When a scalar matrix multiplies a conformable second 
matrix A, the product is aA; that is, the same as 
multiplying A by a scalar a. A scalar matrix with 
diagonal elements 1 is called the identity, or unit matrix 
and is denoted I. Thus, for any nth order matrix A, 
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the identity matrix of order n has the property 

AI=IA =A 

9. Adjoint 

If A is an n-order square matrix and Aij the cofactor 
of element ajj, the transpose of [A,j] is called the 
adjoint of A: 

adjA = [A,,]’ 

IO. herse Matrix 

Given a square matrix A of order n, if there exists a 
matrix B such that AB = BA = I, then B is called the 

inverse of A. The inverse is denoted A-‘. A necessary 

and sufficient condition that the square matrix A have 
an inverse is det A # 0. Such a matrix is called nonsin- 
gular; its inverse is unique and it is given by 

adjA A-1 =- 
det A 

Thus, to form the inverse of the nonsingular matrix A, 
form the adjoint of A and divide each element of the 
adjoint by det A. For example, 

has matrix of cofactors 
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adjoint= - 14 [ -:: 
Therefore. 

and determinant 21. 

-11 10 2 

27 27 27 
-14  - 2  5 
21 21 21 
19 - 5  - 1  

21 27 27 

- _ -  

- - -  

- - -  

11. Systems of Linear Equations 

Given the system 

a l l x ,  + a 1 2 x Z  + ... + a, ,x ,  = b ,  
a 2 , x l  + a2:x2 +... + aZnxn = b, 

a , , x ,  + a n 2 x 2  +... + annx,, = b, 

a unique solution exists if det A+O, where A is the 
n ~n matrix of coefficients [a , , ] .  

Solution by Determinants (Garner's Rule) 

t d e t  A 
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det A ,  
X k  = - 

d e t A  ' 

where A ,  is the matrix obtained from A by replacing 
the k th  column of A by the column of b's. 

12. Matrix Solution 

The linear system may be written in matrix form AX= 
B where A is the matrix of coefficients [a;,] and X and 
B are 

If a unique solution exists, det A # O ;  hence A - l  exists 
and 

x = A - ~ B .  
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