Determinants, Matrices, and Linear Systems of Equations

1. Determinants

Definition. The square array (matrix) A, with n rows and n columns, has associated with it the determinant

$$\det A = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

a number equal to

$$\sum (\pm) a_{1i} a_{2j} a_{3k} \dots a_{nl}$$

where i, j, k, ..., l is a permutation of the *n* integers 1,2,3,..., *n* in some order. The sign is plus if the permutation is *even* and is minus if the permutation is *odd* (see 1.12). The 2×2 determinant

$$\begin{array}{ccc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}$$

has the value $a_{11}a_{22} - a_{12}a_{21}$ since the permutation (1,2) is even and (2,1) is odd. For 3×3 determinants, permutations are as follows:

1,	2,	3	even
1,	3,	2	odd
2,	1,	3	odd
2,	3,	1	even
3,	1,	2	even
3,	2,	1	odd

Thus,

			$(+a_{11})$	•	a ₂₂	٠	a33)
10	0.0	<i>a</i> 1	$-a_{11}$	·	a_{23}	·	a ₃₂
a.	412 // aa	<i>a</i> ₁₃	$-a_{12}$	·	$a_{21} \\ a_{23} \\ a_{21} \\ a_{22}$	٠	a ₃₃
a ₂₁	a 22 A 22	$\begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} = \langle$	$+a_{12}$	·	a ₂₃	·	a_{31}
~ 31	÷ 32		$+a_{13}$	•	a_{21}	٠	a ₃₂
			$\begin{cases} +a_{11} \\ -a_{11} \\ -a_{12} \\ +a_{12} \\ +a_{13} \\ -a_{13} \end{cases}$	·	a ₂₂	·	a_{31}

A determinant of order n is seen to be the sum of n! signed products.

2. Evaluation by Cofactors

Each element a_{ij} has a determinant of order (n-1) called a *minor* (M_{ij}) obtained by suppressing all elements in row *i* and column *j*. For example, the minor of element a_{22} in the 3×3 determinant above is

$$\begin{array}{ccc} a_{11} & a_{13} \\ a_{31} & a_{33} \end{array}$$

The cofactor of element a_{ij} , denoted A_{ij} , is defined as $\pm M_{ij}$, where the sign is determined from *i* and *j*:

$$A_{ij} = (-1)^{i+j} M_{ij}$$

The value of the $n \times n$ determinant equals the sum of products of elements of any row (or column) and their respective cofactors. Thus, for the 3×3 determinant

det
$$A = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13}$$
 (first row)

ог

$$=a_{11}A_{11}+a_{21}A_{21}+a_{31}A_{31}$$
 (first column)

etc.

- 3. Properties of Determinants
 - a. If the corresponding columns and rows of A are interchanged, det A is unchanged.
 - b. If any two rows (or columns) are interchanged, the sign of det A changes.
 - c. If any two rows (or columns) are identical, det A = 0.
 - d. If A is triangular (all elements above the main diagonal equal to zero), $A = a_{11} \cdot a_{22} \cdot \dots \cdot a_{nn}$.

a _{n1}	a_{n2}	ang	•••	ann
•••	•••	•••	•••	
a ₁₁ a ₂₁ 	a ₂₂	0	•••	0
a_{11}	0	0	•••	0

e. If to each element of a row or column there is added C times the corresponding element in another row (or column), the value of the determinant is unchanged.

4. Matrices

Definition. A matrix is a rectangular array of numbers and is represented by a symbol A or $[a_{ij}]$:

$$\mathcal{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} = [a_{ij}]$$

The numbers a_{ij} are termed *elements* of the matrix; subscripts *i* and *j* identify the element as the number in row *i* and column *j*. The order of the matrix is $m \times n$ ("*m* by *n*"). When m = n, the matrix is square and is said to be of order *n*. For a square matrix of order *n* the elements $a_{11}, a_{22}, \ldots, a_{nn}$ constitute the main diagonal.

- 5. Operations
 - Addition. Matrices A and B of the same order may be added by adding corresponding elements, i.e., $A + B = [(a_{ii} + b_{ii})].$
 - Scalar multiplication. If $A = [a_{ij}]$ and c is a constant (scalar), then $cA = [ca_{ij}]$, that is, every element of A is multiplied by c. In particular, $(-1)A = -A = [-a_{ij}]$ and A + (-A) = 0, a matrix with all elements equal to zero.
 - Multiplication of matrices. Matrices A and B may be multiplied only when they are conformable, which means that the number of columns of A equals the number of rows of B. Thus, if A is $m \times k$ and B is $k \times n$, then the product C = ABexists as an $m \times n$ matrix with elements c_{ij} equal to the sum of products of elements in row

i of A and corresponding elements of column j of B:

$$c_{ij} = \sum_{l=1}^{k} a_{il} b_{lj}$$

For example, if

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \cdots & \cdots & \cdots & \cdots & a_{mk} \end{bmatrix} \cdot \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ b_{k1} & b_{k2} & \cdots & b_{kn} \end{bmatrix}$$

	c ₁₁	c_{12}	•••	c _{1n}]
_	C 21	c22	•••	c _{2n}
=		•••	•••	
	<i>c</i> _{m1}	c _{m2}		c_{mn}

then element c_{21} is the sum of products $a_{21}b_{11} + a_{22}b_{21} + \ldots + a_{2k}b_{k1}$.

6. Properties

$$A + B = B + A$$

$$A + (B + C) = (A + B) + C$$

$$(c_1 + c_2)A = c_1A + c_2A$$

$$c(A + B) = cA + cB$$

$$c_1(c_2A) = (c_1c_2)A$$

$$(AB)(C) = A(BC)$$

$$(A + B)(C) = AC + BC$$

$$AB \neq BA \text{ (in general)}$$

7. Transpose

If A is an $n \times m$ matrix, the matrix of order $m \times n$ obtained by interchanging the rows and columns of A is called the *transpose* and is denoted A^T . The following are properties of A, B, and their respective transposes:

$$(A^{T})^{T} = A$$
$$(A+B)^{T} = A^{T}+B^{T}$$
$$(cA)^{T} = cA^{T}$$
$$(AB)^{T} = B^{T}A^{T}$$

A symmetric matrix is a square matrix A with the property $A = A^{T}$.

8. Identity Matrix

A square matrix in which each element of the main diagonal is the same constant a and all other elements zero is called a *scalar* matrix.

	а	0	0	•••	0]
	а 0 0	а	0	•••	0 0 0
	0	0	а	•••	0
	•••	•••	•••	•••	
ļ	_ 0	0	0	•••	a]

When a scalar matrix multiplies a conformable second matrix A, the product is aA; that is, the same as multiplying A by a scalar a. A scalar matrix with diagonal elements 1 is called the *identity*, or *unit* matrix and is denoted I. Thus, for any *n*th order matrix A, the identity matrix of order n has the property

$$AI = IA = A$$

9. Adjoint

If A is an *n*-order square matrix and A_{ij} the cofactor of element a_{ij} , the transpose of $[A_{ij}]$ is called the *adjoint* of A:

$$adjA = [A_{ii}]^7$$

10. Inverse Matrix

Given a square matrix A of order n, if there exists a matrix B such that AB = BA = I, then B is called the *inverse* of A. The inverse is denoted A^{-1} . A necessary and sufficient condition that the square matrix A have an inverse is det $A \neq 0$. Such a matrix is called *nonsingular*; its inverse is unique and it is given by

$$A^{-1} = \frac{adjA}{\det A}$$

Thus, to form the inverse of the nonsingular matrix A, form the adjoint of A and divide each element of the adjoint by det A. For example,

$$\begin{bmatrix} 1 & 0 & 2 \\ 3 & -1 & 1 \\ 4 & 5 & 6 \end{bmatrix}$$
 has matrix of cofactors
$$\begin{bmatrix} -11 & -14 & 19 \\ 10 & -2 & -5 \\ 2 & 5 & -1 \end{bmatrix}$$
,

adjoint =
$$\begin{bmatrix} -11 & 10 & 2\\ -14 & -2 & 5\\ 19 & -5 & -1 \end{bmatrix}$$
 and determinant 27.

Therefore,

$$\mathcal{A}^{-1} = \begin{bmatrix} \frac{-11}{27} & \frac{10}{27} & \frac{2}{27} \\ \frac{-14}{27} & \frac{-2}{27} & \frac{5}{27} \\ \frac{19}{27} & \frac{-5}{27} & \frac{-1}{27} \end{bmatrix}$$

11. Systems of Linear Equations

Given the system

			+ +			
$a_{2 }x_{1}$	1	<i>u</i> ₂₂ <i>x</i> ₂	+…+	$u_{2n} x_n$	_	$\frac{D_2}{\cdot}$
:		:	: :	:		
$a_{n1}x_{1}$	+-	$a_{n2}x_{2}$	+ … +	$a_{nn}x_n$	=	b_n

a unique solution exists if det $A \neq 0$, where A is the $n \times n$ matrix of coefficients $[a_{ij}]$.

• Solution by Determinants (Cramer's Rule)

$$x_{1} = \begin{vmatrix} b_{1} & a_{12} & \cdots & a_{1n} \\ b_{2} & a_{22} & & \\ \vdots & \vdots & & \vdots \\ b_{n} & a_{n2} & & a_{nn} \end{vmatrix} \div \det A$$

$$x_{2} = \begin{vmatrix} a_{11} & b_{1} & a_{13} & \cdots & a_{1n} \\ a_{21} & b_{2} & \cdots & \cdots \\ \vdots & \vdots & & \\ a_{n1} & b_{n} & a_{n3} & & a_{nn} \end{vmatrix} \div \det A$$

$$\vdots$$

$$x_{k} = \frac{\det A_{k}}{\det A},$$

where A_k is the matrix obtained from A by replacing the kth column of A by the column of b's.

12. Matrix Solution

The linear system may be written in matrix form AX = B where A is the matrix of coefficients $[a_{ij}]$ and X and B are

$$X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \qquad B = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

If a unique solution exists, det $A \neq 0$; hence A^{-1} exists and

$$X = A^{-1}B.$$