7 Integral Calculus

1. Indefinite Integral

If $F(x)$ is differentiable for all values of x in the interval (a, b) and satisfies the equation $dy/dx = f(x)$, then $F(x)$ is an integral of $f(x)$ with respect to x. The notation is $F(x) = f(x) dx$ or, in differential form, $dF(x) = f(x) dx$.

For any function $F(x)$ that is an integral of $f(x)$ it follows that $F(x) + C$ is also an integral. We thus write

$$
\int f(x) dx = F(x) + C.
$$

(See Table of Integrals.)

2. Definite Integral

Let $f(x)$ be defined on the interval $[a, b]$ which is partitioned by points $x_1, x_2, \ldots, x_i, \ldots, x_{n-1}$ between $a=x_0$ and $b=x_n$. The *j*th interval has length $\Delta x_i=x_i$ $-x_{j-1}$, which may vary with *j*. The sum $\sum_{j=1}^{n} f(v_j) \Delta x_j$, where v_i is arbitrarily chosen in the *j*th subinterval, depends on the numbers x_0, \ldots, x_n and the choice of the *u* as well as *f;* but if such sums approach a common value as all Δx approach zero, then this value is the definite integral of *f* over the interval *(a, b)* and is denoted $\int_{a}^{b} f(x) dx$. The *fundamental theorem of integral calculus* states that

$$
\int_a^b f(x) dx = F(b) - F(a),
$$

where F is any continuous indefinite integral of f in the interval *(a, b).*

3. Properties

 $\int_{a}^{b} [f_1(x) + f_2(x) + \cdots + f_j(x)] dx = \int_{a}^{b} f_1(x) dx +$ $\int_{-}^{b} f_2(x) dx + \cdots + \int_{-}^{b} f_j(x) dx.$ $\int_{a}^{b} cf(x) dx = c \int_{a}^{b} f(x) dx$, if c is a constant. $\int_{a}^{b} f(x) dx = - \int_{a}^{a} f(x) dx.$ $\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{a}^{b} f(x) dx.$

- *4. Common Applications of the Definite Integral*
- *Area (Rectangular Coordinates)*

Given the function $y = f(x)$ such that $y > 0$ for all x between *a* and *b,* the area bounded **by** the curve

 $y = f(x)$, the x-axis, and the vertical lines $x = a$ and $x = b$ is

$$
A=\int_a^b f(x)\,dx.
$$

Length of *Arc (Rectangular Coordinates)*

Given the smooth curve $f(x, y) = 0$ from point (x_1, y_1) to point (x_2, y_2) , the length between these points is

$$
L = \int_{x_1}^{x_2} \sqrt{1 + (dy/dx)^2} \, dx,
$$

$$
L = \int_{y_1}^{y_2} \sqrt{1 + (dx/dy)^2} \, dy.
$$

Mean Value of a Function

The mean value of a function $f(x)$ continuous on $[a, b]$ is

$$
\frac{1}{(b-a)}\int_a^b f(x)\,dx.
$$

Area (Poiar Coordinates)

Given the curve $r = f(\theta)$, continuous and non-negative Given the curve $r = f(\theta)$, continuous and non-negative
for $\theta_1 \le \theta \le \theta_2$, the area enclosed by this curve and the radial lines $\theta = \theta_1$ and $\theta = \theta_2$ is given by

$$
A = \int_{\theta_1}^{\theta_2} \frac{1}{2} [f(\theta)]^2 d\theta.
$$

Length of Arc (Polar Coordinates)

Given the curve $r = f(\theta)$ with continuous derivative $f'(\theta)$ on $\theta_1 \le \theta \le \theta_2$, the length of arc from $\theta = \theta_1$ to $\theta = \theta$, is

$$
L = \int_{\theta_1}^{\theta_2} \sqrt{\left[f(\theta)\right]^2 + \left[f'(\theta)\right]^2} \, d\theta.
$$

Volume of Revolution

Given a function $y = f(x)$ continuous and non-negative on the interval (a, b) , when the region bounded by $f(x)$ between *a* and *b* is revolved about the x-axis the volume of revolution is

$$
V = \pi \int_a^b [f(x)]^2 dx.
$$

Suflace Area of Revolution (revolution about the x-axis, between a and *b)*

If the portion of the curve $y = f(x)$ between $x = a$ and $x = b$ is revolved about the x-axis, the area *A* of the surface generated is given by the following:

$$
A = \int_a^b 2\pi f(x) \{1 + [f'(x)]^2\}^{1/2} dx
$$

Work

If a variable force $f(x)$ is applied to an object in the direction of motion along the x-axis between $x = a$ and $x = b$, the work done is

$$
W = \int_a^b f(x) \, dx.
$$

5. Cylindrical and Spherical Coordinates

a. Cylindrical coordinates (Figure 7.1)

```
x = r \cos \thetay = r \sin \theta
```
element of volume $dV = r dr d\theta dz$.

b. Spherical coordinates ([Figure 7.2](#page-5-0))

 $x = \rho \sin \phi \cos \theta$ $y = \rho \sin \phi \sin \theta$ $z = \rho \cos \phi$

element of volume $dV = \rho^2 \sin \phi \, d\rho$, $d\phi$

FIGURE 7.1. Cylindrical coordinates.

FIGURE 7.2. Spherical coordinates.

6. Double Integration

The evaluation of a double integral of $f(x, y)$ over a plane region *R*

$$
\iint_R f(x,y) \, dA
$$

is practically accomplished by iterated (repeated) integration. For example, suppose that a vertical straight line meets the boundary of *R* **in** at most two points so that there is an upper boundary, $y = y_2(x)$, and a lower boundary, $y = y_1(x)$. Also, it is assumed that these functions are continuous from a to b . (See [Fig. 7.3](#page-6-0)). Then

$$
\iint_R f(x, y) dA = \int_a^b \left(\int_{y_1(x)}^{y_2(x)} f(x, y) dy \right) dx
$$

FIGURE 7.3. Region *R* bounded by $y_2(x)$ and $y_1(x)$.

If *R* has left-hand boundary, $x = x_1(y)$, and a right-hand boundary, $x = x_2(y)$, which are continuous from c to d (the extreme values of y in *R)* then

$$
\iint_R f(x, y) dA = \int_c^d \left(\int_{x_1(y)}^{x_2(y)} f(x, y) dx \right) dy
$$

Such integrations are sometimes more convenient in polar coordinates, $x = r \cos \theta$, $y = r \sin \theta$; $dA = r dr d\theta$.

7. *Surface Area and Volume by Double Integration*

For the surface given by $z = f(x, y)$, which projects onto the closed region R of the $x-y$ -plane, one may calculate the volume *V* bounded above by the surface and below by *R,* and the surface area *S* by the following:

$$
V = \iint_{R} z dA = \iint_{R} f(x, y) dx dy
$$

$$
S = \iint_{R} [1 + (\delta z / \delta x)^{2} + (\delta z / \delta y)^{2}]^{1/2} dx dy
$$

[In polar coordinates, (r, θ) , we replace dA by $r dr d\theta$].

8. Centroid

The centroid of a region R of the $x-y$ -plane is a point (x', y') where

$$
x' = \frac{1}{A} \iint_{R} x dA; \qquad y' = \frac{1}{A} \iint_{R} y dA
$$

and *A* is the area of the region.

Example

For the circular sector of angle 2α and radius R, the area *A* is αR^2 ; the integral needed for *x'*, expressed in polar coordinates is

$$
\iint x dA = \int_{-\alpha}^{\alpha} \int_{0}^{R} (r \cos \theta) r dr d\theta
$$

$$
= \left[\frac{R^3}{3} \sin \theta \right]_{-\alpha}^{+\alpha} = \frac{2}{3} R^3 \sin \alpha
$$

and thus.

$$
x' = \frac{\frac{2}{3}R^3 \sin \alpha}{\alpha R^2} = \frac{2}{3}R\frac{\sin \alpha}{\alpha}.
$$

Centroids of some common regions are shown below:

 $y' = h/3$ for any triangle of altitude h.

FIGURE 7.4.