
 

7 Integral Calculus 

1. Indefinite Integral 

If F ( x )  is differentiable for all values of x in the 
interval (a,  b)  and satisfies the equation dy /dr=f (x ) ,  
then F ( x )  is an integral of f ( x )  with respect to x .  The 
notation is F ( x )  = / f ( x ) d u  or, in differential form, 
dF(x)  = f ( x )  du. 

For any function F ( x )  that is an integral of f ( x )  i t  
follows that F ( x )  + C is also an integral. We thus write 

lf( x )  dr = F( x )  + C .  

(See Table of Integrals.) 

2. Definite Integral 

Let f ( x )  be defined on the interval [ a , b ]  which is 
partitioned by points xl, x2 , . .  . , x i , .  .., x,  - I between 
a=xo and b=x , .  The jth interval has length A x j = x j  
-xi- ,, which may vary with j. The sum Ey= I f ( u j ) A x j ,  
where uj is arbitrarily chosen in the j th  subinterval, 
depends on the numbers xO,  ... , x n  and the choicy of 
the u as well as f; but if such sums approach a 
common value as all A x  approach zero, then this value 
is the definite integral of f over the interval (a, b )  and 
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is denoted /," f ( x ) d r .  The fundamental theorem of 
integral calculus states that 

where F is any continuous indefinite integral of f in 
the interval (a ,  b). 

3. Properties 

4. Common Applications of the Definite Integral 

Area (Rectangular Coordinates) 

Given the function y = f ( x )  such that y > 0 for all x 
between a and b, the area bounded by the curve 
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y=f(x), the x-axis, and the vertical lines x = a  and 
x = b  is 

A = 16f(x) dx. 
U 

Length of Arc (Rectangular Coordinates) 

Given the smooth curve f(x,y)=O from point ( x , , ~ , )
to point ( x 2 , y 2 ) ,  the length between these points is 

Mean Value of a Function 

The mean value of a functionf(x) continuous on [ a ,  b] is 

Area (Poiar Coordinates) 

Given the curve r=f(6), continuous and non-negative 
for 6 ,  I 6 s  e2, the area enclosed by this curve and the 
radial lines 6= 6, and 8= O2 is given by 
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Length of Arc (Polar Coordinates) 

Given the curve r =f (O)  with continuous derivative 
f'(6) on 6 ,  s 6s 0 2 ,  the length of arc from 6 =  6 ,  to 
6 = 6 ,  is 

Volume of Revolution 

Given a function y = f ( x )  continuous and non-negative 
on the interval ( a ,  b),  when the region bounded by f ( x )  
between a and b is revolved about the x-axis the 
volume of revolution is 

Suflace Area of Revolution 
(revolution about the x-axis, between a and b )  

If the portion of the curve y = f ( x )  between x = a  and 
x = b  is revolved about the x-axis, the area A of the 
surface generated is given by the following: 

A = Ib27Tf( x ) (  1 + [ f '( x)]2)1'2 dr 
a 

Work 

If a variable force f ( x )  is applied to an object in the 
direction of motion along the x-axis between x = a and 
x = b, the work done is 
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5. Cylindrical and Spherical Coordinates 

a. Cylindrical coordinates ( ) 

x=rcosB 

y  = r sin f3 

element of volume dV= rdrd0 dz. 

b. Spherical coordinates ( ) 

x=psin &cosB 

y=psindsin 0 

z=pcos4 

element of volume dV= p* sin 4 dp, 

2 

,ddd& 

FIGURE 7.1. Cylindrical coordinates. 

Figure 7.1

Figure 7.2
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FIGURE 7.2. Spherical coordinates. 

6. Double Integration 

The evaluation of a double integral of f ( x , y )  over a 
plane region R 

is practically accomplished by iterated (repeated) inte- 
gration. For example, suppose that a vertical straight 
line meets the boundary of R in at most two points so 
that there is an upper boundary, y =y,(x) ,  and a lower 
boundary, y = y , ( x ) .  Also, it is assumed that these 
functions are continuous from a to b. (See 1. 
Then 

Fig. 7.3
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FIGURE 7.3. Region R bounded by y , ( x )  and y , ( x ) .  

If R has left-hand boundary, r = x , ( y ) ,  and a right-hand 
boundary, x = x , ( y ) ,  which are continuous from c to d 
(the extreme values of y in R )  then 

Such integrations are sometimes more convenient in 
polar coordinates, x = r  cos 9, y = r sin 8; 02 = rdrdf l .  

Surface Area and Volume by Double Integration 

For the surface given by z = f ( x ,  y ) ,  which projects onto 
the closed region R of the x-y-plane, one may calcu- 
late the volume V bounded above by the surface and 
below by R, and the surface area S by the following: 

S = /jR[1 + (Sz/6x)* + ( 6 1 / 6 y ) ~ ] ” ~  drdy 
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[In polar coordinates, ( r ,  0).  we replace dA by rdrdel .  

8. Centroid 

The centroid of a region R of the x-y-plane is a point 
( x ' , y ' )  where 

1 1 

A R  A R  
X I  = - // X d A  ; y ' = - // y dA 

and A is the area of the region. 

Example 
For the circular sector of angle 2a and radius R, the 
area A is a R 2 ;  the integral needed for x ' ,  expressed in 
polar coordinates is 

//xdA =/:,(UR(rcos 0)rdrde 

2 

- a  

and thus. 
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Centroids of some common regions are shown below: 
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FIGURE 7.4. 
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