7 Integral Calculus

1. Indefinite Integral

If F(x) is differentiable for all values of x in the interval (a, b) and satisfies the equation dy/dx = f(x), then F(x) is an integral of f(x) with respect to x. The notation is $F(x) = \int f(x) dx$ or, in differential form, dF(x) = f(x) dx.

For any function F(x) that is an integral of f(x) it follows that F(x)+C is also an integral. We thus write

$$\int f(x) \, dx = F(x) + C.$$

(See Table of Integrals.)

2. Definite Integral

Let f(x) be defined on the interval [a,b] which is partitioned by points $x_1, x_2, ..., x_j, ..., x_{n-1}$ between $a = x_0$ and $b = x_n$. The *j*th interval has length $\Delta x_j = x_j$ $-x_{j-1}$, which may vary with *j*. The sum $\sum_{j=1}^{n} f(v_j)\Delta x_j$, where v_j is arbitrarily chosen in the *j*th subinterval, depends on the numbers $x_0, ..., x_n$ and the choice of the v as well as f; but if such sums approach a common value as all Δx approach zero, then this value is the definite integral of f over the interval (a, b) and is denoted $\int_a^b f(x) dx$. The fundamental theorem of integral calculus states that

$$\int_a^b f(x) \, dx = F(b) - F(a),$$

where F is any continuous indefinite integral of f in the interval (a, b).

3. Properties

 $\int_{a}^{b} [f_{1}(x) + f_{2}(x) + \dots + f_{j}(x)] dx = \int_{a}^{b} f_{1}(x) dx + \int_{a}^{b} f_{2}(x) dx + \dots + \int_{a}^{b} f_{j}(x) dx.$ $\int_{a}^{b} cf(x) dx = c \int_{a}^{b} f(x) dx, \text{ if } c \text{ is a constant.}$ $\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx.$ $\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx.$

- 4. Common Applications of the Definite Integral
- Area (Rectangular Coordinates)

Given the function y = f(x) such that y > 0 for all x between a and b, the area bounded by the curve

y = f(x), the x-axis, and the vertical lines x = a and x = b is

$$A = \int_{a}^{b} f(x) \, dx$$

• Length of Arc (Rectangular Coordinates)

Given the smooth curve f(x, y) = 0 from point (x_1, y_1) to point (x_2, y_2) , the length between these points is

$$L = \int_{x_1}^{x_2} \sqrt{1 + (dy/dx)^2} \, dx,$$
$$L = \int_{y_1}^{y_2} \sqrt{1 + (dx/dy)^2} \, dy.$$

• Mean Value of a Function

The mean value of a function f(x) continuous on [a, b] is

$$\frac{1}{(b-a)}\int_a^b f(x)\,dx.$$

• Area (Polar Coordinates)

Given the curve $r = f(\theta)$, continuous and non-negative for $\theta_1 \le \theta \le \theta_2$, the area enclosed by this curve and the radial lines $\theta = \theta_1$ and $\theta = \theta_2$ is given by

$$A = \int_{\theta_1}^{\theta_2} \frac{1}{2} [f(\theta)]^2 d\theta.$$

• Length of Arc (Polar Coordinates)

Given the curve $r=f(\theta)$ with continuous derivative $f'(\theta)$ on $\theta_1 \le \theta \le \theta_2$, the length of arc from $\theta = \theta_1$ to $\theta = \theta_2$ is

$$L = \int_{\theta_1}^{\theta_2} \sqrt{\left[f(\theta)\right]^2 + \left[f'(\theta)\right]^2} \, d\theta.$$

Volume of Revolution

Given a function y = f(x) continuous and non-negative on the interval (a, b), when the region bounded by f(x)between a and b is revolved about the x-axis the volume of revolution is

$$V = \pi \int_a^b [f(x)]^2 \, dx.$$

• Surface Area of Revolution (revolution about the x-axis, between a and b)

If the portion of the curve y = f(x) between x = a and x = b is revolved about the x-axis, the area A of the surface generated is given by the following:

$$A = \int_{a}^{b} 2\pi f(x) \{1 + [f'(x)]^2\}^{1/2} dx$$

• Work

If a variable force f(x) is applied to an object in the direction of motion along the x-axis between x = a and x = b, the work done is

$$W = \int_{a}^{b} f(x) \, dx.$$

5. Cylindrical and Spherical Coordinates

a. Cylindrical coordinates (Figure 7.1)

 $x = r \cos \theta$ $y = r \sin \theta$

element of volume $dV = r dr d\theta dz$.

b. Spherical coordinates (Figure 7.2)

 $x = \rho \sin \phi \cos \theta$ $y = \rho \sin \phi \sin \theta$ $z = \rho \cos \phi$

element of volume $dV = \rho^2 \sin \phi \, d\rho, d\phi \, d\theta$.

FIGURE 7.1. Cylindrical coordinates.

FIGURE 7.2. Spherical coordinates.

6. Double Integration

The evaluation of a double integral of f(x, y) over a plane region R

$$\iint_R f(x,y) \, dA$$

is practically accomplished by iterated (repeated) integration. For example, suppose that a vertical straight line meets the boundary of R in at most two points so that there is an upper boundary, $y = y_2(x)$, and a lower boundary, $y = y_1(x)$. Also, it is assumed that these functions are continuous from a to b. (See Fig. 7.3). Then

$$\iint_{R} f(x, y) \, dA = \int_{a}^{b} \left(\int_{y_{1}(x)}^{y_{2}(x)} f(x, y) \, dy \right) dx$$

FIGURE 7.3. Region R bounded by $y_2(x)$ and $y_1(x)$.

If R has left-hand boundary, $x = x_1(y)$, and a right-hand boundary, $x = x_2(y)$, which are continuous from c to d (the extreme values of y in R) then

$$\iint_R f(x, y) \, dA = \int_c^d \left(\int_{x_1(y)}^{x_2(y)} f(x, y) \, dx \right) dy$$

Such integrations are sometimes more convenient in polar coordinates, $x = r \cos \theta$, $y = r \sin \theta$; $dA = r dr d\theta$.

7. Surface Area and Volume by Double Integration

For the surface given by z = f(x, y), which projects onto the closed region R of the x-y-plane, one may calculate the volume V bounded above by the surface and below by R, and the surface area S by the following:

$$V = \iint_{R} z \, dA = \iint_{R} f(x, y) \, dx \, dy$$
$$S = \iint_{R} \left[1 + \left(\frac{\delta z}{\delta x} \right)^{2} + \left(\frac{\delta z}{\delta y} \right)^{2} \right]^{1/2} \, dx \, dy$$

[In polar coordinates, (r, θ) , we replace dA by $rdrd\theta$].

8. Centroid

The centroid of a region R of the x-y-plane is a point (x', y') where

$$x' = \frac{1}{A} \iint_R x dA; \qquad y' = \frac{1}{A} \iint_R y dA$$

and A is the area of the region.

Example

For the circular sector of angle 2α and radius *R*, the area *A* is αR^2 ; the integral needed for *x'*, expressed in polar coordinates is

$$\iint x dA = \int_{-\alpha}^{\alpha} \int_{0}^{R} (r \cos \theta) r dr d\theta$$
$$= \left[\frac{R^3}{3} \sin \theta \right]_{-\alpha}^{+\alpha} = \frac{2}{3} R^3 \sin \alpha$$

and thus,

$$x' = \frac{\frac{2}{3}R^3 \sin \alpha}{\alpha R^2} = \frac{2}{3}R\frac{\sin \alpha}{\alpha}.$$

Centroids of some common regions are shown below:

y' = h/3 for any triangle of altitude h.

FIGURE 7.4.