
 

Magnitude of F 
I 

IF] = (u2  + b 2  + C2) '  

8 Vector Analysis 

1. Vectors 

Given the set of mutually perpendicular unit vectors i, 
j, and k then any vector in the space may 
be represented as F = a i + b j + c k ,  where a, b, and c 
are components. 

Magnitude of F 
I 

IFI=(a2+b2+c2) '  

Product by scalar p 
p F = p a i + p b j  tpck.  

Sum of F ,  and F, 

F, + F 2 = ( a ,  + a , ) i +  (b,  +b, ) j+  ( c ,  +c,)k 

FIGURE 8.1. The unit vectors i, j, and k. 

(Figure 8.1),
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Scalar Product 

Vector Product 

(Thus, i x i = j  Xj = k X k =  0, i x j = k, j X k=  i, and k X 

i = j.) 
Also, 

F, XF2= -F2XF: 

(F, + F2) X F3 =Fl X F3 + F2 X F, 

Fl X(F,+F,)=FI XF,+FIXF, 

F, (F2 X F3) = (F, X F2) F3 

2. Vector Difierentiation 

If V is a vector function of a scalar variable f, then 

V = a ( t ) i  + b(f)j + c(f)k 
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and 

(curl) c u r l V = V x V =  

dV da db dc 
dt dt dt dt 

i + -j + - k. _ = _  

6 6 6  - - - 
6x 6 y  6z 

For several vector functions V ,  ,Vz , .  . . ,V, 

d d V ,  dVz d V" 
- ( V ,  +v,+ ... + V n ) = -  + - + ... + -, 
dt dr dr dt 

d d V ,  d v2 ,(V, V,) = - v, + v, * -, 
dt dt 

d dV,  dV2 - (V, x V , )  = - x v, + v, x - 
dt dt dt 

For a scalar valued function g ( x ,  y ,  z )  

6g sg 6g 
6 x  6y 6z 

(gradient) gradg= Vg= -i+ -j+-k. 

For a vector valued function V ( a ,  b, c), where a, b, c 
are each a function of x ,  y ,  and z ,  

6a 6 b  6c 
divV = V V = - + - + - (divergence) 

6 x  6y 6z  

l a  b c 
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Also, 

62g 62g 62g 

6 x  6y 62 
divgradg=V2g= 7 + 7 + 7 

and 

curl grad g = 0; divcurlV = 0; 

curl curl V = grad divV - (iV2a + jV2b + kV2c).  

3. Diuergence Theorem (Gauss) 

Given a vector function F with continuous partial 
derivatives in a region R bounded by a closed surface 
S,  then 

where n is the (sectionally continuous) unit normal to S. 

4. Stokes’ Theorem 

Given a vector function with continuous gradient over 
a surface S that consists of portions that are piecewise 
smooth and bounded by regular closed curves such as 
C,  then 

/k curl FdS =$ F dr 
c 

5. Planar Motion in Polar Coordinates 

Motion in a plane may be expressed with regard to 
polar coordinates ( r ,  0). Denoting the position vector 
by r a n d  its magnitude by r ,  we have r=rR(B),  where 
R is the unit vector. Also, dR/dO=P, a unit vector 
© 1999 by CRC Press LLC



 

perpendicular to R. The velocity and acceleration are 
then 

dr d8 
v =  -R+r-P; 

dt dt 

Note that the component of acceleration in the P 
direction (transverse component) may also be written 

so that in purely radial motion it is zero and 

d8 

dt 
r 2 -  = c (constant) 

which means that the position vector sweeps out area 
at a constant rate (see Area in Polar Coordinates, 
Section 7.4). 
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