Special Functions

1. Hyperbolic Functions

 $\operatorname{csch} x = \frac{1}{\sinh x}$ csch $x = \frac{1}{\sinh x}$
sech $x = \frac{1}{\cosh x}$ 1 $\sinh x = \frac{e^x - e^{-x}}{2}$ $\cosh x = \frac{e^{x} + e^{-x}}{2}$ 1 cosh *x* $\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ $\operatorname{ctnh} x = \frac{1}{\tanh x}$ $sinh(-x) = -sinh x$ $\operatorname{ctnh}(-x) = -\operatorname{ctnh} x$ $\cosh(-x) = \cosh x$ $sech(-x) = sech x$ $tanh(-x) = -tanh x$ $csch(-x) = -csch x$ $\coth x = \frac{\cosh x}{\sinh x}$ $\tanh x = \frac{\sinh x}{\cosh x}$ $\mathbf{1}$ $\cosh^2 x - \sinh^2 x = 1$ $\cosh^2 x = \frac{1}{2}(\cosh 2x + 1)$ $\sinh^2 x = \frac{1}{2}(\cosh 2x - 1)$ $\coth^2 x - \text{csch}^2 x = 1$ **1** $\operatorname{csch}^{2} x - \operatorname{sech}^{2} x =$ $\tanh^2 x + \operatorname{sech}^2 x = 1$ $\operatorname{csch}^2 x \operatorname{sech}^2 x$

 $sinh(x+y) = sinh x cosh y + cosh x sinh y$ $\cosh(x + y) = \cosh x \cosh y + \sinh x \sinh y$ $sinh(x - y) = sinh x cosh y - cosh x sinh y$ $\cosh(x - y) = \cosh x \cosh y - \sinh x \sinh y$ $tanh(x+y) = \frac{\tanh x + \tanh y}{1 + \tanh x \tanh y}$ $\tanh x - \tanh y$ $tanh(x-y) = \frac{\tanh x - \tanh y}{1 - \tanh x \tanh y}$

2. Gamma Function (Generalized Factorial Function)

The gamma function, denoted $\Gamma(x)$, is defined by

$$
\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt, \qquad x > 0
$$

• Properties

$$
\Gamma(x+1) = x\Gamma(x), \qquad x > 0
$$

\n
$$
\Gamma(1) = 1
$$

\n
$$
\Gamma(n+1) = n\Gamma(n) = n!, \qquad (n = 1, 2, 3, ...)
$$

\n
$$
\Gamma(x)\Gamma(1-x) = \pi/\sin \pi x
$$

\n
$$
\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}
$$

\n
$$
2^{2x-1}\Gamma(x)\Gamma\left(x + \frac{1}{2}\right) = \sqrt{\pi}\Gamma(2x)
$$

3. Laplace Transforms

The Laplace transform of the function $f(t)$, denoted by $F(s)$ or $L\{f(t)\}\)$, is defined

$$
F(s) = \int_0^\infty f(t) e^{-st} dt
$$

provided that the integration may be validly performed. **A** sufficient condition for the existence of *F(s)* is that *f(t)* be of exponential order as $t \rightarrow \infty$ and that it is sectionally continuous over every finite interval in the range $t \ge 0$. The Laplace transform of $g(t)$ is denoted by $L(g(t))$ or $G(s)$.

Operations

$$
\delta(t-c) = 0 \text{ if } 0 \le t < c
$$

$$
= 1 \text{ if } t \ge c
$$

$$
f(t) = f(t + \omega)
$$

\n
$$
\frac{\int_0^{\omega} e^{-s\tau} f(\tau) d\tau}{1 - e^{-s\omega}}
$$

\n
$$
(periodic)
$$

• Table of Laplace Transforms

4. 2- Transform

For the real-valued sequence $\{f(k)\}\$ and complex variable z, the z-transform, $F(z) = Z{f(k)}$ is defined by

$$
Z\{f(k)\}=F(z)=\sum_{k=0}^{\infty}f(k)z^{-k}
$$

For example, the sequence $f(k) = 1$, $k = 0, 1, 2, \ldots$, has the z-transform

$$
F(z) = 1 + z^{-1} + z^{-2} + z^{-3} \dots + z^{-k} + \dots
$$

r-Transform and the Laplace Transform

For function $U(t)$ the output of the ideal sampler $U^*(t)$ is a set of values $U(kT)$, $k = 0, 1, 2, ...$, that is,

$$
U^*(t) = \sum_{k=0}^{\infty} U(t) \, \delta(t - kT)
$$

The Laplace transform of the output is

$$
\mathcal{L}\lbrace U^*(t)\rbrace = \int_0^\infty e^{-st} U^*(t) dt = \int_0^\infty e^{-st} \sum_{k=0}^\infty U(t) \delta(t - kT) dt
$$

$$
= \sum_{k=0}^\infty e^{-skT} U(kT)
$$

Defining $z = e^{iT}$ gives

$$
\mathscr{L}\{U^*(t)\}=\sum_{k=0}^{\infty}U(kT)z^{-k}
$$

which is the z-transform of the sampled signal $U(kT)$.

• Properties

Linearity:
$$
Z\{af_1(k) + bf_2(k)\}=aZ\{f_1(k)\} + bZ\{f_2(k)\}
$$

= $aF_1(z) + bF_2(z)$

Right-shifting property: $Z\{f(k-n)\} = z^{-n}F(z)$

Left-shifting property: $Z\{f(k+n)\}=z^nF(z)$
 $n-1$ \sum f(k)z^{n-k}

Time scaling: $Z{a^k f(k)} = F(z/a)$

Multiplication by k: $Z{kf(k)} = -z dF(z)/dz$ *Initial value:* $f(0) = \lim_{z \to \infty} (1 - z^{-1}) F(z) = F(\infty)$ Final value: $\lim_{k \to \infty} f(k) = \lim_{z \to 1} (1 - z^{-1}) F(z)$ Convolution: $Z{f_1(k)*f_2(k)} = F_1(z)F_2(z)$

• z-Transforms of Sampled Functions

5. Fourier Series

The periodic function $f(t)$, with period 2π may be **represented** by **the trigonometric series**

$$
a_0+\sum_1^{\infty}(a_n\cos nt+b_n\sin nt)
$$

where the coefficients are **determined from**

$$
a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) dt
$$

\n
$$
a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos nt dt
$$

\n
$$
b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin nt dt \qquad (n = 1, 2, 3, ...)
$$

Such a trigonometric series is called the Fourier series corresponding to $f(t)$ and the coefficients are termed Fourier coefficients of *f(t).* **If** the function is piecewise continuous in the interval $-\pi \le t \le \pi$, and has leftand right-hand derivatives at each point in that interval, then the series is convergent with sum $f(t)$ except at points t_i at which $f(t)$ is discontinuous. At such points of discontinuity, the sum of the series is the arithmetic mean of the right- and left-hand limits of $f(t)$ at t_i . The integrals in the formulas for the Fourier coefficients can have limits of integration that span a length of 2π , for example, 0 to 2π (because of the periodicity of the integrands).

6. *Functions with Period Other Than 2rr*

If $f(t)$ has period P the Fourier series is

$$
f(t) \sim a_0 + \sum_{1}^{\infty} \left(a_n \cos \frac{2\pi n}{P} t + b_n \sin \frac{2\pi n}{P} t \right),
$$

where

$$
a_0 = \frac{1}{P} \int_{-P/2}^{P/2} f(t) dt
$$

\n
$$
a_n = \frac{2}{P} \int_{-P/2}^{P/2} f(t) \cos \frac{2\pi n}{P} t dt
$$

\n
$$
b_n = \frac{2}{P} \int_{-P/2}^{P/2} f(t) \sin \frac{2\pi n}{P} t dt.
$$

Again, the interval of integration in these formulas may be replaced by an interval of length *P,* for example, 0 to *P.*

FIGURE 9.2. Sawtooth wave:

$$
f(t) \sim \frac{2a}{\pi} \left(\sin \frac{2\pi t}{P} - \frac{1}{2} \sin \frac{4\pi t}{P} + \frac{1}{3} \sin \frac{6\pi t}{P} - \dots \right).
$$

FIGURE 9.3. Half-wave rectifier:

FIGURE 9.3. Half-wave rectifier:
\n
$$
f(t) \sim \frac{A}{\pi} + \frac{A}{2} \sin \omega t -
$$
\n
$$
\frac{2A}{\pi} \left(\frac{1}{(1)(3)} \cos 2\omega t + \frac{1}{(3)(5)} \cos 4\omega t + ... \right).
$$

7. Bessel Functions

Bessel functions, also called cylindrical functions, arise in many physical problems as solutions of the differential equation

$$
x^2y'' + xy' + (x^2 - n^2)y = 0
$$

which is known as Bessel's equation. Certain solutions of the above, known as *Bessel functions of the first kind of order n,* **are given by**

$$
J_n(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!\Gamma(n+k+1)} \left(\frac{x}{2}\right)^{n+2k}
$$

$$
J_{-n}(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!\Gamma(-n+k+1)} \left(\frac{x}{2}\right)^{-n+2k}
$$

In the above it is noteworthy that the gamma function must be defined for the negative argument $q: \Gamma(q)$ = $\Gamma(q + 1)/q$, provided that *q* is not a negative integer. When q is a negative integer, $1/\Gamma(q)$ is defined to be zero. The functions $J_{-n}(x)$ and $J_n(x)$ are solutions of Bessel's equation for all real *n*. It is seen, for $n=$ **1,2,3,.** . . that

$$
J_{-n}(x) = (-1)^n J_n(x)
$$

and, therefore, these are not independent; hence, a linear combination of these is not a general solution. When, however, *n* is not a positive integer, a negative integer, nor zero, the linear combination with arbitrary constants c_1 and c_2

$$
y = c_1 J_n(x) + c_2 J_{-n}(x)
$$

is the general solution of the Bessel differential equation.

The zero order function is especially important as it arises in the solution of the heat equation (for a ''long'' cylinder):

$$
J_0(x) = 1 - \frac{x^2}{2^2} + \frac{x^4}{2^2 4^2} - \frac{x^6}{2^2 4^2 6^2} + \dots
$$

while the following relations show a connection to the trigonometric functions:

$$
J_{\frac{1}{2}}(x) = \left[\frac{2}{\pi x}\right]^{1/2} \sin x
$$

$$
J_{-\frac{1}{2}}(x) = \left[\frac{2}{\pi x}\right]^{1/2} \cos x
$$

The following recursion formula gives $J_{n+1}(x)$ for any order in terms of lower order functions:

$$
\frac{2n}{x}J_n(x) = J_{n-1}(x) + J_{n+1}(x)
$$

8. Legendre Polynomials

If Laplace's equation, $\nabla^2 V = 0$, is expressed in spherical coordinates, it is

$$
r^{2} \sin \theta \frac{\delta^{2} V}{\delta r^{2}} + 2r \sin \theta \frac{\delta V}{\delta r} + \sin \theta \frac{\delta^{2} V}{\delta \theta^{2}} + \cos \theta \frac{\delta V}{\delta \theta}
$$

$$
+ \frac{1}{\sin \theta} \frac{\delta^{2} V}{\delta \phi^{2}} = 0
$$

and any of its solutions, $V(r, \theta, \phi)$, are known as *spherical harmonics.* The solution as a product

$$
V(r, \theta, \phi) = R(r) \Theta(\theta)
$$

which is independent of ϕ , leads to

$$
\sin^2 \theta \Theta'' + \sin \theta \cos \theta \Theta' + [n(n+1)\sin^2 \theta] \Theta = 0
$$

Rearrangement and substitution of $x = \cos \theta$ leads to

$$
(1-x^2)\frac{d^2\Theta}{dx^2}-2x\frac{d\Theta}{dx}+n(n+1)\Theta=0
$$

known **as** *Legendre's equalion.* Important special cases are those in which *n* is zero or a positive integer, and, for such cases, Legendre's equation is satisfied by polynomials called Legendre polynomials, $P_n(x)$. A short list of Legendre polynomials, expressed in terms of x and $\cos \theta$, is given below. These are given by the following general formula:

$$
P_n(x) = \sum_{j=0}^{L} \frac{(-1)^j (2n-2j)!}{2^n j! (n-j)! (n-2j)!} x^{n-2j}
$$

where $L = n/2$ if *n* is even and $L = (n - 1)/2$ if *n* is odd. Some are given below:

$$
P_0(x) = 1
$$

\n
$$
P_1(x) = x
$$

\n
$$
P_2(x) = \frac{1}{2}(3x^2 - 1)
$$

\n
$$
P_3(x) = \frac{1}{2}(5x^3 - 3x)
$$

\n
$$
P_4(x) = \frac{1}{8}(35x^4 - 30x^2 + 3)
$$

\n
$$
P_5(x) = \frac{1}{8}(63x^5 - 70x^3 + 15x)
$$

\n
$$
P_0(\cos \theta) = 1
$$

\n
$$
P_1(\cos \theta) = \cos \theta
$$

\n
$$
P_2(\cos \theta) = \frac{1}{4}(3\cos 2\theta + 1)
$$

\n
$$
P_3(\cos \theta) = \frac{1}{8}(5\cos 3\theta + 3\cos \theta)
$$

$$
P_4(\cos \theta) = \frac{1}{64} (35 \cos 4\theta + 20 \cos 2\theta + 9)
$$

Additional Legendre polynomials may be determined from the *recursion formuln*

$$
(n+1)P_{n+1}(x) - (2n+1)xP_n(x)
$$

+ $nP_{n-1}(x) = 0$ (*n*=1,2,...)

or the *Rodrigues formula*

$$
P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n
$$

9. Laguerre Polynomials

Laguerre polynomials, denoted $L_n(x)$, are solutions of **the differential equation**

$$
xy'' + (1-x)y' + ny = 0
$$

and are given by

$$
L_n(x) = \sum_{j=0}^n \frac{(-1)^j}{j!} C_{(n,j)} x^j \qquad (n = 0, 1, 2, ...)
$$

Thus,

$$
L_0(x) = 1
$$

\n
$$
L_1(x) = 1 - x
$$

\n
$$
L_2(x) = 1 - 2x + \frac{1}{2}x^2
$$

\n
$$
L_3(x) = 1 - 3x + \frac{3}{2}x^2 - \frac{1}{6}x^3
$$

Additional Laguerre polynomials may be obtained from the recursion formula

$$
(n+1)L_{n+1}(x) - (2n+1-x)L_n(x) + nL_{n-1}(x) = 0
$$

10. Hermite Po[ynornials

The Hermite polynomials, denoted $H_n(x)$, are given by

$$
H_0 = 1, \quad H_n(x) = (-1)^n e^{x^2} \frac{d^n e^{-x^2}}{dx^n},
$$
\n
$$
(n = 1, 2, ...)
$$

and are solutions of the differential equation

$$
y'' - 2xy' + 2ny = 0 \qquad (n = 0, 1, 2, ...)
$$

The first few Hermite polynomials are

$$
H_0 = 1
$$

\n
$$
H_2(x) = 4x^2 - 2
$$

\n
$$
H_3(x) = 8x^3 - 12x
$$

\n
$$
H_4(x) = 16x^4 - 48x^2 + 12
$$

Additional Hermite polynomials may be obtained from the relation

$$
H_{n+1}(x) = 2xH_n(x) - H'_n(x),
$$

where prime denotes differentiation with respect to *x.*

11. Orthogonality

A set of functions ${f_n(x)}$ $(n = 1, 2, ...)$ is orthogonal in an interval (a, b) with respect to a given weight function $w(x)$ if

$$
\int_a^b w(x) f_m(x) f_n(x) dx = 0 \quad \text{when } m \neq n
$$

The following polynomials are orthogonal on the given interval for the given $w(x)$:

Legendre polynomials:
$$
P_n(x)
$$
 $w(x) = 1$
 $a = -1, b = 1$

Laguerre polynomials: $L_n(x)$ $w(x) = \exp(-x)$ $a=0, b=\infty$

Hermite polynomials:
$$
H_n(x) \quad w(x) = \exp(-x^2)
$$

 $a = -\infty, b = \infty$

The Bessel functions of order *n*, $J_n(\lambda_1 x)$, $J_n(\lambda_2 x)$,..., are orthogonal with respect to $w(x) = x$ over the interval $(0, c)$ provided that the λ_i are the positive roots of $J_n(\lambda c) = 0$:

$$
\int_0^c x J_n(\lambda_j x) J_n(\lambda_k x) dx = 0 \qquad (j \neq k)
$$

where *n* is fixed and $n \geq 0$.