9 Special Functions

1. Hyperbolic Functions

X —X

. e*—e
sinh x =
e“+e *
cosh x =
et —e "
tanh x=——
efte™*

sinh(—x)= —sinh x
cosh( —x)=cosh x

tanh(—x)= —tanh x

cosh? x—sinh? x=1

1
sinh? x = -2—(cosh 2x—1)

csch? x ~sech? x=

csch? xsech? x
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1
csch x =
sinh x
b 1
sech x=
cosh x
1
ctnh x=
tanh x

ctnh{ —x)= —ctnh x
sech(—x)=sech x

csch(—x)= —csch x

1
cosh? x= -2—(cosh 2x+1)

ctnh? x —csch? x=1

tanh? x+sech® x=1



sinh(x +y)=sinh x cosh y + cosh x sinh y
cosh(x +y) = cosh x cosh y +sinh xsinh y
sinh(x —y) =sinh x cosh y — cosh x sinh y

cosh(x —y) = cosh x cosh y —sinh xsinh y

tanh x +tanh y

tanh(x +y)= —————
anh(x+y) 1+tanh xtanh y

tanh x — tanh y
tanh(x -y} = ———
1—tanh x tanh y

2. Gamma Function (Generalized Factorial
Function)

The gamma function, denoted I'(x), is defined by
F(x)=[ee"tar, x>0
0

® Properties

Tx+1)=xI(x), x>0
r=1
T(n+1)=nT(n)=n!, (n=1,23...)

M1 —x)=m/sinwx

1

r(5)=¢;

1
225 'F(x)F(x + 3 ) =VnTQx)
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3. Laplace Transforms

The Laplace transform of the function f(¢), denoted by
F(s) or L{f(+)}, is defined

F(s)=[0°°f(z)e'“dt

provided that the integration may be validly performed.
A sufficient condition for the existence of F(s) is that
f(t) be of exponential order as t— o and that it is
sectionally continuous over every finite interval in the
range {>0. The Laplace transform of g(t) is denoted
by L{g()} or G(s).

¢ QOperations

J10) Fis)= [ (e~ di
0
af(t) +bg(t) aF(s)+bG(s)
£ sF(s) = £(0)
IO 52F(s)—sf(0) - f'(O)
) s"F(s)—s""'f(0)
—s"- Zf'(O)
— - = fln= 1Y)
tf(1) —F'(s)
I1{0)] (= 1)"F"(s)
e"f(1) F(s—a)
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/U'f(r—ﬁ)-g(ﬁ)dﬁ F(s)-G(s)

flt—a} e T F(s)
!
f(—) aF(as)
a
' 1
[e(prap ~G(s)
0 s
fu—-c)s(t—c) e"F(s),c>0
where

8(t—c)=0if0<t<c

=1lift=c

fwe“”f('r) dr
0

“Sw

) =fU+ w)
(periodic)

1-¢

* Table of Laplace Transforms

() F(s)
1 1/s
! 1/5?
In—l
(n——l)_' 1/s" (n=1,2,3,...)
1 T
d WV
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Imac5



1 T
7 5
eal 1
s—a
” L
(s—a)
tn—leul 1 ( 123 )
—_— — n=123,..
(n—1)! (s—a)
t* 1 )
—_— y > —
T(x+1) PR
a
sin at —
s‘+a
s
cos at —
s“+a
a
sinh ar 3
5st-a?
s
cosh at 3
st-a?
a-b
ear_ebl S +b
GoaGop) @*P
ae® — be® M, (a+b)
(s—a)(s—b)
2as
tsinat —
(s?+a?)
s2—g?
tcos at S
(s2+a?)
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e sin bt —_—
(s—a)*+b*
s—a
e? cos bt —
(s—a) +b
sin at a
Arc tan—
t s
sinh at 1 (s+a )
Zlop | ——
! 2 Be s—a
4. Z-Transform

For the real-valued sequence {f{(k)} and complex vari-
able z, the z-transform, F(2)=Z{f(k)} is defined by

Z{f(k)}=F(z)= Y f(k)z™*
k=0

For example, the sequence f(k)=1, k=0,1,2,..., has
the z-transform

F(2)=1+z" 4z 24273 427F 4+ ..

® z-Transform and the Laplace Transform
For function U(¢) the output of the ideal sampler

U*(t) is a set of values U(kT), k=0,1,2,..., that is,

U*(e)= Y U(t) 8(t—kT)
k=0
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The Laplace transform of the output is

A1) =f:e'“U*(t)dt=f:e"” Y U(t)8(: KT dt
k=0

£

= Y, e TU(kT)
k=0

Defining z=e"" gives
PUD)}= Y, UkT)z™*
k=0

which is the z-transform of the sampled signal (k7).

o Properties

Linearity: Z{af (k) + bfo(k)) = aZ{ f,()} + bZ{ £,k )}
=aF\(2)+bFy(2)

Right-shifting property: Z{f(k —n)}=z""F(z)
Left-shifting property: Z{f(k + ]n)} =z"F(z}

- ) k)"

k=0

Time scaling: Z{a*f(k}=F(z/a}
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Mudtiplication by k: Z{kf(k)}= —zdF(2)/dz

Initial value: f(0)= lim (1 -z 1)F(z) = Flw)

Final value: lim f(k)= lim (1—-z"")F(2)
k—= z—1

Convolution: Z{f(k)*f,(k)}=F(2)F(z)

® z-Transforms of Sampled Functions

k)

1atk;else0

KT

(kT)?

sin wkT

cos wl

-akT

kTe—akT
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Z{f(kT)} =F(z)

(z—1)
T22(z+1)
(z~1)°

zsin @T
z2—=2zcos wT+1

z{z—cos wT)

22 —2zcos wT+1




T? e"“Tz(z+e"’T)

(kT)> e~ kT 3
(z—e""T)

ze TsinwT

22-2z2eTcoswT+e 277

e %7 sin wkT

2(z—e " TcoswT)

—akT

e "1 cos wkT
22-2z2e TcoswT+e 297

‘s azsin T

a®sin wkT = 3
z*—=2azcos wT+a

. z(z—acos wT)

a”* cos wkT

22 —2azcos wT+a?

5. Fourier Series

The periodic function f(¢t), with period 27 may be
represented by the trigonometric series

o
a;+ E (a,cosnt+b,sinnt)
1

where the coefficients are determined from
1 .=
=— t)dt
a=5- [ 1)
1 .7
ay=— f_ f(tycos nedr

1 =
w=— [ f(tsinmdt  (n=1,2,3,...)
KRR
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Such a trigonometric series is called the Fourier series
corresponding to f(¢) and the coefficients are termed
Fourier coefficients of f(z). If the function is piecewise
continuous in the interval —w<ft<, and has left-
and right-hand derivatives at each point in that inter-
val, then the series is convergent with sum f(z) except
at points ¢, at which f(¢) is discontinuous. At such
points of discontinuity, the sum of the series is the
arithmetic mean of the right- and left-hand limits of
f(1) at ;. The integrals in the formulas for the Fourier
coefficients can have limits of integration that span a
length of 2ar, for example, 0 to 27 (because of the
periodicity of the integrands).

6. Functions with Period Other Than 2w

If f(¢+) has period P the Fourier series is

i 2mn b s 2mn
1y ~ay+ —t —t,
f(t)~ay ] a, cos 3 ,, Sin 3
where
1
ag=— " ftyat
PJ_pss
2 P/2 2mn
=— t —tdt
a, P —P/2f( ) cos 7
2 P/2 2mn
b,=~— t)sin——1dt.
=5 ), SO

Again, the interval of integration in these formulas may
be replaced by an interval of length P, for example, 0
to P.
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Figure 9.1. Square wave:

2a 2wt 6wt | 107
C0s —— — 3€0s —— + $COS
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a
f(t)~ E+

w

£(e)

FIGURE 9.2. Sawtooth wave:
2wt 41t 6t

n 2a (| . '
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f sin—~ — 3sin P 3sin—
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£(t)

eld

FIGURE 9.3. Haif-wave rectifier:
A A

fl)~ —+ — sin wt—
T 2

2A 1 1
—(m cos 2wt + m cos 4wt + )

7. Bessel Functions

Bessel functions, also called cylindrical functions, arise
in many physical problems as solutions of the differen-
tial equation

X2y +ay (2 -n?)y=0

which is known as Bessel’s equation. Certain solutions
of the above, known as Bessel functions of the first kind
of order n, are given by

= (__1)" x \n+2k
S Zk'r(n+k+1)( )

~ x (—l)k x\-n+2k
In(x)= § k(- n+k+1)( )

© 1999 by CRC Press LLC



In the above it is noteworthy that the gamma function
must be defined for the negative argument g: I'(q) =
I'(q+ 1)/q, provided that ¢ is not a negative integer.
When ¢ is a negative integer, 1/I'(q) is defined to be
zero. The functions J_,(x) and J,(x) are solutions of
Bessel's equation for all real n. It is seen, for n=
1,2,3,... that

J_a(x)=(=1)"J,(x)

and, therefore, these are not independent; hence, a
linear combination of these is not a general solution.
When, however, n is not a positive integer, a negative
integer, nor zero, the linear combination with arbitrary
constants ¢, and c,

y=C|J,|(X) +C2]_"(X)

is the general solution of the Bessel differential equa-
tion.

The zero order function is especially important as it
arises in the solution of the heat equation (for a “long”
cylinder):

x?2  xt x®
WO=1= 52+ g " g T

while the following relations show a connection to the
trigonometric functions:

2 172
Ji(x)=]— i
1(x) [n'x] sin x
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2
J_i(x)= [;;] cos x

The following recursion formula gives J,, (x) for any
order in terms of lower order functions:

2n
_—;"{n(‘x) ="‘n— 1(.{) +Jn+ I(x)
8. Legendre Polynomials

If Laplace’s equation, V2V =0, is expressed in spherical
coordinates, it is

8 8V 8 1%
rlsin @ + 2r sin 84— +sin 86— +cos §—
srl 8r 86° 86
1 8%V
+ - =
sin § &¢°

and any of its solutions, V(r, 8, ¢), are known as spheri-
cal harmonics. The solution as a product

V(r,8,¢)=R(r)0(8)
which is independent of ¢, leads to
sin® BO®" +sin 6 cos 8 + [n(n+ 1)sin? 1O =0

Rearrangement and substitution of x=cos 8 leads to
1-x? 2 49 1)©=0
- - - + + =
( ) x——tn(n+1)

known as Legendre’s equation. Important special cases
are those in which » is zero or a positive integer, and,
for such cases, Legendre’s equation is satisfied by poly-
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nomials called Legendre polynomials, P,(x). A short
list of Legendre polynomials, expressed in terms of x
and cos 8, is given below. These are given by the
following general formula:

Loo(-1y@n-2j)

P - -
0= L St hit 2!

n—2j

where L=n/2if nis even and L=(n—1)/2 if n is
add. Some are given below:

Pylx}=1

Px)=x
P L
2(X)= 5(31‘ - 1)
1
Py(x)= E(Sx3 —~3x)
1
Pi(x)= £ (35x* ~30x7 +3)

1
P(x)= §(63x5 —70x> +15x)

Pylcos 8)=1

Pcos 8)=cos

1
P,(cos 8) = Z(3cos20+ 1

1
Py(cos 8) = §(5c0530+3cos 6)
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1
Py(cos 8) = 5(35 cos40+20cos26+9)

Additional Legendre polynomials may be determined
from the recursion formula

(n+ 1P, (x)—(2n+1)xP,(x)
FRP_(£)=0  (n=12,...)
or the Rodrigues formula

n
n

= —— 2_
P =i (7D
9. Laguerre Polynomials

Laguerre polynomials, denoted L,(x), are solutions of
the differential equation

' +(1-x)y' +ny=0
and are given by
no(-1y .
L"(x)z_zo——j!—cw)x! (n=0,1,2,...)
i=

Thus,
Ly(x)=1

Li(x)=1-x
1
Ly{x)=1-2x+ Exz

3.1,
L3(x)=1——3x+5x i
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Additional Laguerre polynomials may be obtained from
the recursion formula

(n+ DL, (x)-Rn+1-x)L,(x)
+nL,_ (x)=0
10. Hermite Polynomials
The Hermite polynomials, denoted H,(x), are given by

n,-x?

Ho=1, Hy(n=(-1) e
dr"
(n=1,2,...)
and are solutions of the differential equation
Yy =2xy'+2ny=0 (n=0,1,2,...)
The first few Hermite polynomials are
Hy=1 H(x)=2x

Hy(x)=4x1-2 Hy(x)=8x*—12x
H(x)=16x*-48x2+12

Additional Hermite polynomials may be obtained from
the relation

H, ((x)=2xH,(x) — Hy(x),

where prime denotes differentiation with respect to x.

© 1999 by CRC Press LLC



11. Orthogonality
A set of functions {f,(x)} (n=1,2,...) is orthogonal in

an interval (a,b) with respect to a given weight func-
tion w(x) if

[ W) fu()fo(x)de=0  when mn

The following polynomials are orthogonal on the given
interval for the given w(x):

Legendre polynomials: P(x) w(x)=1
a=-1,b=1

Laguerre polynomials: L (x) w(x)=exp (—x)
a=0,b=w»

Hermite polynomials:  H.(x) w(x)=exp (~x?)
a=—o ph=x

The Bessel functions of order n, J (A x), J,(Ay%),...,
are orthogonal with respect to w(x)=x over the inter-
val (0,c) provided that the A; are the positive roots of
J(Ac)=0:

j:x],,(/\jx)J,,(Akx)dx=0 (j#k)

where n is fixed and n>0.
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