10 Differential Equations

I. First Order-First Degree Equations

$$
M(x, y) dx + N(x, y) dy = 0
$$

- a. If the equation can be put in the form $A(x) dx$ $+ B(y) dy = 0$, it is *separable* and the solution follows by integration: $\int A(x) dx + \int B(y) dy = C$; thus, $x(1 + y^2) dx + y dy = 0$ is separable since it is equivalent to $xdx+ydy/(1+y^2) = 0$, and integration yields $x^2/2 + \frac{1}{2} \log (1 + y^2) + C = 0$.
- b. If $M(x, y)$ and $N(x, y)$ are *homogeneous* and of the *same degree* in *x* and *y,* then substitution of *ux* for *y* (thus, $dy = v dx + x dv$) will yield a separable equation in the variables *x* and *y.* **[A** function such as $M(x, y)$ is homogeneous of degree *n* in *x* and *y* if $M(cx, cy) = cⁿM(x, y).$ For example, $(y-2x)dx + (2y+x)dy$ has *M* and *N* each homogeneous and of degree one *so* that substitution of $y = vx$ yields the separable equation

$$
\frac{2}{x} dx + \frac{2v+1}{v^2 + v - 1} dv = 0.
$$

c. If $M(x, y) dx + N(x, y) dy$ is the differential of some function $F(x, y)$, then the given equation is said to be *exact*. A necessary and sufficient condition for exactness is $\partial M/\partial y = \partial N/\partial x$. When the equation is exact, *F* is found from the relations $\partial F / \partial x = M$ and $\partial F / \partial y = N$, and the solution is $F(x, y) = C$ (constant). For example, $(x^2 + y) dy + (2xy - 3x^2) dx$ is exact since $\partial M/\partial y = 2x$ and $\partial N/\partial x = 2x$. *F* is found from $\partial F/\partial x = 2xy - 3x^2$ and $\partial F/\partial y = x^2 + y$. From the first of these, $F=x^2y-x^3+\phi(y)$; from the second, $F = x^2y + y^2/2 + \Psi(x)$. It follows that $F = x^2y - x^3 + y^2/2$, and $F = C$ is the solution.

d. Linear, order one in *y:* Such an equation has the form $dv + P(x)v dx = O(x) dx$. Multiplication by exp[$\int P(x) dx$] yields

$$
d\bigg[\,y\exp\bigg(\int Pdx\bigg)\bigg]=Q(x)\exp\bigg(\int Pdx\bigg)\,dx.
$$

For example, $dy + (2/x)y dx = x^2 dx$ is linear in *y.* $P(x) = 2/x$, so $\left(P dx = 2 \ln x = \ln x^2\right)$, and $\exp(\int P dx) = x^2$. Multiplication by x^2 yields $d(x^2y) = x^4 dx$, and integration gives the solution $x^2y = x^5/5 + C$.

2. Second Order Linear Equations (With Constant Coefficients)

$$
(b_0 D^2 + b_1 D + b_2) y = f(x), \qquad D = \frac{d}{dx}.
$$

a. Right-hand side $= 0$ (homogeneous case)

$$
(b_0 D^2 + b_1 D + b_2) y = 0.
$$

The *auxiliary equation* associated with the above is

$$
b_0 m^2 + b_1 m + b_2 = 0.
$$

If the roots of the auxiliary equation are *real and distinct,* say m_1 and m_2 , then the solution is

$$
y = C_1 e^{m_1 x} + C_2 e^{m_2 x}
$$

where the **C's** are arbitrary constants.

If the roots of the auxiliary equation are *real and repeated,* say $m_1 = m_2 = p$, then the solution is

$$
y = C_1 e^{px} + C_2 x e^{px}.
$$

If the roots of the auxiliary equation are *compler* $a + ib$ and $a - ib$, then the solution is

$$
y = C_1 e^{ax} \cos bx + C_2 e^{ax} \sin bx.
$$

b. Right-hand side $\neq 0$ (nonhomogeneous case)

$$
(b_0D^2+b_1D+b_2)y=f(x)
$$

The general solution is $y = C_1 y_1(x) + C_2 y_2(x) + C_1 y_1(x)$ $y_p(x)$ where y_1 and y_2 are solutions of the corresponding homogeneous equation and y_p is a solution of the given nonhomogeneous differential equation. y_p has the form $y_p(x) = A(x)y_1(x) +$ $B(x)y_2(x)$ and *A* and *B* are found from simultaneous solution of $A'y_1 + B'y_2 = 0$ and $A'y'_1 + B'y'_2 = 0$ $f(x)/b_0$. A solution exists if the determinant

$$
\begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix}
$$

does not equal zero. The simultaneous equations yield A' and B' from which A and B follow by integration. For example,

$$
(D^2 + D - 2)y = e^{-3x}.
$$

The auxiliary equation has the distinct roots 1 and -2; hence $y_1 = e^x$ and $y_2 = e^{-2x}$, so that $y_p = Ae^x$ + Be^{-2x} . The simultaneous equations are

$$
A' e^{x} - 2B' e^{-2x} = e^{-3x}
$$

$$
A' e^{x} + B' e^{-2x} = 0
$$

and give $A' = (1/3)e^{-4x}$ and $B' = (-1/3)e^{-x}$. Thus, $A = (-1/12)e^{-4x}$ and $B = (1/3)e^{-x}$ so that

$$
y_p = (-1/12)e^{-3x} + (1/3)e^{-3x}
$$

= $\frac{1}{4}e^{-3x}$.
∴ $y = C_1e^x + C_2e^{-2x} + \frac{1}{4}e^{-3x}$.