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Preface

Although the first decades of the 20th century saw some strong debates on set
theory and the foundation of mathematics, afterwards set theory has turned
into a solid branch of mathematics, indeed, so solid, that it serves as the
foundation of the whole building of mathematics. Later generations, honest
to Hilbert’s dictum, “No one can chase us out of the paradise that Cantor
has created for us” proved countless deep and interesting theorems and also
applied the methods of set theory to various problems in algebra, topology,
infinitary combinatorics, and real analysis.

The invention of forcing produced a powerful, technically sophisticated
tool for solving unsolvable problems. Still, most results of the pre-Cohen era
can be digested with just the knowledge of a commonsense introduction to
the topic. And it is a worthy effort, here we refer not just to usefulness, but,
first and foremost, to mathematical beauty.

In this volume we offer a collection of various problems in set theory. Most
of classical set theory is covered, classical in the sense that independence
methods are not used, but classical also in the sense that most results come
from the period, say, 1920–1970. Many problems are also related to other fields
of mathematics such as algebra, combinatorics, topology, and real analysis.

We do not concentrate on the axiomatic framework, although some as-
pects, such as the axiom of foundation or the rôle of the axiom of choice, are
elaborated.

There are no drill exercises, and only a handful can be solved with just
understanding the definitions. Most problems require work, wit, and inspira-
tion. Some problems are definitely challenging, actually, several of them are
published results.

We have tried to compose the sequence of problems in a way that earlier
problems help in the solution of later ones. The same applies to the sequence
of chapters. There are a few exceptions (using transfinite methods before
their discussion)—those problems are separated at the end of the individual
chapters by a line of asterisks.

We have tried to trace the origin of the problems and then to give proper
reference at the end of the solution. However, as is the case with any other
mathematical discipline, many problems are folklore and tracing their origin
was impossible.

The reference to a problem is of the form “Problem x.y” where x denotes
the chapter number and y the problem number within Chapter x. However,
within Chapter x we omit the chapter number, so in that case the reference
is simply “Problem y”.

For the convenience of the reader we have collected into an appendix all
the basic concepts and notations used throughout the book.

Acknowledgements We thank Péter Varjú and Gergely Ambrus for their
careful reading of the manuscript and their suggestions to improve the presen-
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tation. Collecting and writing up the problems took many years, during which
the authors have been funded by various grants from the Hungarian National
Science Foundation for Basic Research and from the National Science Foun-
dation (latest grants are OTKA T046991, T049448 and NSF DMS-040650).

We hope the readers will find as much enjoyment in solving some of the
problems as we have found in writing them up.

Péter Komjáth and Vilmos Totik
Budapest and Szeged-Tampa, July 2005



Part I

Problems



1

Operations on sets

Basic operations among sets are union, intersection, and exponentiation. This
chapter contains problems related to these basic operations and their relations.

If we are given a family of sets, then (two-term) intersection acts like
multiplication. However, from many point of view, the analogue of addition
is not union, but forming divided difference: A∆B = (A \ B) ∪ (B \ A), and
several problems are on this ∆ operation.

An interesting feature is that families of sets with appropriate set opera-
tions can serve as canonical models for structures from other areas of math-
ematics. In this chapter we shall see that graphs, partially ordered sets, dis-
tributive lattices, idempotent rings, and Boolean algebras can be modelled by
(i.e., are isomorphic to) families of sets with appropriate operations on them.

1. For finite sets Ai we have

|A1 ∪ · · · ∪ An| =
∑

i

|Ai| −
∑
i<j

|Ai ∩ Aj | +
∑

i<j<k

|Ai ∩ Aj ∩ Ak| − · · · ,

and

|A1 ∩ · · · ∩ An| =
∑

i

|Ai| −
∑
i<j

|Ai ∪ Aj | +
∑

i<j<k

|Ai ∪ Aj ∪ Ak| − · · · .

2. Define the symmetric difference of the sets A and B as

A∆B = (A \ B) ∪ (B \ A).

This is a commutative and associative operation such that ∩ is distributive
with respect to ∆.

3. The set A1∆A2∆ · · ·∆An consists of those elements that belong to an
odd number of the Ai’s.
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4. For finite sets Ai we have

|A1∆A2 · · ·∆An| =
∑

i

|Ai|−2
∑
i<j

|Ai ∩Aj |+4
∑

i<j<k

|Ai ∩Aj ∩Ak|− · · · .

5. Let our sets be subsets of a ground set X, and define the complement of
A as Ac = X \ A. All the operations ∩, ∪ and \ can be expressed by the
operation A ↓ B = (A ∪ B)c. The same is also true of A | B = (A ∩ B)c.

6. For any sets
a) ⋃

i∈I

⋂
j∈Ji

Ai,j =
⋂

f∈
∏

i∈I
Ji

⋃
i∈I

Ai,f(i)

b) ⋂
i∈I

⋃
j∈Ji

Ai,j =
⋃

f∈
∏

i∈I
Ji

⋂
i∈I

Ai,f(i)

c) ∏
i∈I

⎛
⎝⋃

j∈Ji

Ai,j

⎞
⎠ =

⋃
f∈
∏

i∈I
Ji

(∏
i∈I

Ai,f(i)

)

d) ∏
i∈I

⎛
⎝⋂

j∈Ji

Ai,j

⎞
⎠ =

⋂
f∈
∏

i∈I
Ji

(∏
i∈I

Ai,f(i)

)

(general distributive laws).
7. Let X be a set and A1, A2, . . . , An ⊆ X. Using the operations ∩, ∪ and ·c

(complementation relative to X), one can construct at most 22n

different
sets from A1, A2, . . . , An.

8. Let
X = {(x1, . . . , xn) : 0 ≤ xi < 1, 1 ≤ i ≤ n}

be the unit cube of Rn, and set

Ak = {(x1, . . . , xn) ∈ X : 1/2 ≤ xk < 1}.

Using the operations ∩, ∪, and ·c (complementation with respect to X),
one can construct 22n

different sets from A1, A2, . . . , An.
9. Using the operations \, ∩ and ∪ one can construct at most 22n−1 different

sets from a given family A1, A2, . . . , An of n sets. This 22n−1 bound can
be achieved for some appropriately chosen A1, A2, . . . , An.
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10. For given Ai, Bi, i ∈ I solve the system of equations
(a) Ai ∩ X = Bi, i ∈ I,

(b) Ai ∪ X = Bi, i ∈ I,
(c) Ai \ X = Bi, i ∈ I,
(d) X \ Ai = Bi, i ∈ I.
What are the necessary and sufficient conditions for the existence and
uniqueness of the solutions?

11. If A0, A1, . . . is an arbitrary sequence of sets, then there are pairwise dis-
joint sets Bi ⊆ Ai such that ∪Ai = ∪Bi.

12. Let A0, A1, . . . and B0, B1, . . . be sequences of sets. Then the intersection
Ai ∩ Bj is finite for all i, j if and only if there are disjoint sets C and D
such that for all i the sets Ai \ C and Bi \ D are finite.

13. Let X be a ground set and A ⊆ P(X) such that for every A ∈ A the
complement X \A can be written as a countable intersection of elements
of A. Then the σ-algebra generated by A coincides with the smallest
family of sets including A and closed under countable intersection and
countable disjoint union.

14. Define

lim inf
n→∞ An :=

∞⋃
n=1

∞⋂
m=n

Am,

lim sup
n→∞

An :=
∞⋂

n=1

∞⋃
m=n

Am,

and we say that the sequence {An} is convergent if these two sets are the
same, say A, in which case we say that the limit of the sets {An} is A.
Then
a) lim infn An ⊆ lim supn An,
b) lim infn An consists of those elements that belong to all, but finitely

many of the An’s.
c) lim supn An consists of those elements that belong to infinitely many

An’s.
15. Let X be a set and for a subset A of X consider its characteristic function

χA(x) =
{

1 if x ∈ A,
0 if x ∈ X \ A.

The mapping A → χA is a bijection between P(X) and X{0, 1}. Further-
more, if B = lim infn→∞ An, then

χB = lim inf
n→∞ χAn ,

and if C = lim supn→∞ An, then



6 Chapter 1 : Operations on sets Problems

χC = lim sup
n→∞

χAn .

16. A sequence {An}∞
n=1 of sets is convergent if and only if for every sequences

{mi} and {ni} with limi→∞ mi = limi→∞ ni = ∞ we have⋂
i

(Ami∆Ani) = ∅.

17. A sequence {An}∞
n=1 of sets converges if and only if for every sequences

{mi} and {ni} with limi→∞ mi = limi→∞ ni = ∞ we have

lim
i→∞

(Ami
∆Ani

) = ∅

(if we regard ∆ as subtraction, then this says that for convergence of sets
“Cauchy’s criterion” holds).

18. If An, n = 0, 1, . . . are subsets of the set of natural numbers, then one can
select a convergent subsequence from {An}∞

n=0.
19. Construct a sequence {An}∞

n=0 of sets which does not include a convergent
subsequence.

20. If H is any family of sets, then with the inclusion relation H is a partially
ordered set. Every partially ordered set is isomorphic with a family of sets
partially ordered by inclusion.

21. Every graph is isomorphic with a graph where the set of vertices is a family
of sets, and two such vertices are connected precisely if their intersection
is not empty.

22. Let H be a set that is closed for two-term intersection, union and symmet-
ric difference. Then H is a ring with ∆ as addition and ∩ as multiplication,
in which every element is idempotent: A ∩ A = A.

23. If (A,+, ·, 0) is a ring in which every element is idempotent (a · a = a),
then (A, +, ·, 0) is isomorphic with a ring of sets defined in the preceding
problem.

24. With the notation of Problem 22 let H be the set of all subsets of an
infinite set X, and let I be the set of finite subsets of X. Then I is an
ideal in H. If a 
= 0 is any element in the quotient ring H/I, then there
is a b 
= 0, a such that b · a = b (in other words, in the quotient ring there
are no atoms).

25. If H is a family of subsets of a given ground set X which is closed for
two-term intersection and union, then H is a distributive lattice with the
operations H ∧ K = H ∩ K, H ∨ K = H ∪ K.

26. Every distributive lattice is isomorphic to one from the preceding problem.
27. If H is a family of subsets of a given ground set X which is closed under

complementation (relative to X) and under two-term union, then H is a
Boolean algebra with the operations H · K = H ∩ K, H + K = H ∪ K,
H ′ = X \ H and with 1 = X, 0 = ∅.
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28. Every Boolean algebra is isomorphic to one from the preceding problem.
29. P(X), the family of all subsets of a given set X, is a complete and com-

pletely distributive Boolean algebra with the operations H · K = H ∩ K,
H + K = H ∪ K, H ′ = X \ H and with 1 = X, 0 = ∅ (in the Boolean
algebra set a  b if a · b = a, and completeness means that for any set
K in the Boolean algebra there is a smallest upper majorant supK and
a largest lower minorant inf K, and complete distributivity means that

inf
i∈I

sup
j∈Ji

ai,j = sup
f∈
∏

i∈I
Ji

inf
i

ai,f(i)

for any elements in the algebra).
30. Every complete and completely distributive Boolean algebra is isomorphic

with one from the preceding problem.
31. Let H be a family of sets such that if H∗ ⊂ H is any subfamily, then there

is a smallest (with respect to inclusion) set in H that includes all the sets
in H∗, and there is a largest set in H that is included in all elements of
H∗. Then every mapping f : H → H that preserves the relation ⊆ (i.e.,
for which f(H) ⊆ f(K) whenever H ⊆ K) there is a fixed point, i.e., a
set F ∈ H with f(F ) = F .

* * *

32. The converse of Problem 31 is also true in the following sense. Suppose
that H is a family of sets closed for two-term union and intersection such
that for every mapping f : H → H that preserves ⊆ there is a fixed point.
Then if H∗ ⊂ H is any subfamily, then there is a smallest set in H that
includes all the sets in H∗, and there is a largest set in H that is included
in all elements of H∗.

33. With the notation of Problem 24 for each a 
= 0 there are at least contin-
uum many different b 
= 0 such that b · a = b.

34. With the notation of Problem 24 let H be the set of all subsets of a set
X of cardinality κ, and let I be the ideal of subsets of X which have
cardinality smaller than κ. Then the quotient ring H/I is of cardinality
2κ.



2

Countability

A set is called countable if its elements can be arranged into a finite or infi-
nite sequence. Otherwise it is called uncountable. This notion reflects the fact
that the set is “small” from the point of view of set theory; sometimes it is
negligible. For example, the set Q of rational numbers is countable (Problem
9) while the set R of real numbers is not (Problem 7), hence “most” reals
are irrational. On the other hand, a claim that a certain set is not countable
usually means that the set has many elements.

If in an uncountable set A a certain property holds with the exception of
elements in a countable subset B, then the property holds for “most” elements
of A (in particular A \ B is not empty). In this section many problems are
related to this principle; in particular many problems claim that a certain set
in R (or Rn) is countable. Actually, the very first “sensational” achievement
of set theory was of this sort when G. Cantor proved in 1874 that “most” real
numbers are transcendental (and hence there are transcendental numbers),
for the algebraic numbers form a countable subset of R (see Problems 6–8).
Other examples when the notion of countability appears in real analysis will
be given in Chapters 5 and 13.

The cardinality of countably infinite sets is denoted by ω or ℵ0.

1. The union of countably many countable sets is countable.
2. The (Cartesian) product of finitely many countable sets is countable.
3. The set of k element sequences formed from a countable sets is countable.
4. The set of finite sequences formed from a countable set is countable.
5. The set of polynomials with integer coefficients is countable.
6. The set of algebraic numbers is countable.
7. R is not countable.
8. There are transcendental real numbers.
9. The following sets are countable:



10 Chapter 2 : Countability Problems

a) Q;
b) set of those functions that map a finite subset of a given countable set

A into a given countable set B;
c) set of convergent sequences of natural numbers.

10. If Ai ⊆ N, i ∈ I is an arbitrary family of subsets of N, then there is
a countable subfamily Ai, i ∈ J ⊂ I such that ∩i∈JAi = ∩i∈IAi and
∪i∈JAi = ∪i∈IAi.

11. If A is an uncountable subset of the real line, then there is an a ∈ A such
that each of the sets A ∩ (−∞, a) and A ∩ (a,∞) is uncountable.

12. If k and K are positive integers and H is a family of subsets of N with
the property that the intersection of every k members of H has at most
K elements, then H is countable.

13. The set of subintervals of R with rational endpoints is countable.
14. Any disjoint collection of open intervals (open sets) on R (in Rn) is count-

able.
15. Any discrete set in R (in Rn) is countable.
16. Any open subset of R is a disjoint union of countably many open intervals.
17. The set of open disks (balls) in R2 (Rn) with rational radius and rational

center, is countable (rational center means that each coordinate of the
center is rational).

18. Any open subset of R2 (Rn) is a union of countably many open disks
(balls) with rational radius and rational center.

19. If H is a family of circles such that for every x ∈ R there is a circle in H
that touches the real line at the point x, then there are two intersecting
circles in H.

20. Is it true that if H is a family of circles such that for every x ∈ R there is
a circle containing x, then there are two intersecting circles in H?

21. Let C be a family of circles on the plane such that no two cross each
other. Then the points where two circles from C touch each other form a
countable set.

22. One can place only countably many disjoint letters of the shape T on the
plane.

23. In the plane call a union of three segments with a common endpoint a
Y -set. Any disjoint family of Y -sets is countable.

24. If A is a countable set on the plane, then it can be decomposed as A =
B ∪ C such that B, resp. C has only a finite number of points on every
vertical, resp. horizontal line.

25. A is countable if and only if A×A can be decomposed as B∪C such that
B intersects every “vertical” line {(x, y) : x = x0} in at most finitely
many points, and C intersects every “horizontal” line {(x, y) : y = y0}
in at most finitely many points.
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26. If A ⊂ R is countable, then there is a real number a such that (a+A)∩A =
∅.

27. If A ⊂ R2 is such that all the distances between the points of A are
rational, then A is countable. Is there such an infinite bounded set not
lying on a straight line?

28. Call a sequence an → ∞ faster increasing than bn → ∞ if an/bn → ∞. If
{b(i)

n }, i = 0, 1, . . . is a countable family of sequences tending to ∞, then
there is a sequence that increases faster than any {b(i)

n }.
29. If there are given countably many sequences {s(i)

n }∞
n=0, i = 0, 1, . . . of

natural numbers, then construct a sequence {sn}∞
n=0 of natural numbers

such that for every i the equality sn = s
(i)
n holds only for finitely many

n’s.
30. Construct countably many sequences {s(i)

n }∞
n=0, i = 0, 1, . . . of natural

numbers, with the property that if {sn}∞
n=0 is an arbitrary sequence of

natural numbers, then the number those n’s for which sn = s
(i)
n holds is

unbounded as i → ∞.
31. Are there countably many sequences {s(i)

n }∞
n=0, i = 0, 1, . . . of natural

numbers, with the property that if {sn}∞
n=0 is an arbitrary sequence of

natural numbers, then the number those n’s for which sn = s
(i)
n holds

tends to infinity as i → ∞?
32. Let {rk} be a 1–1 enumeration of the rational numbers. Then if {xn}

is an arbitrary sequence consisting of rational numbers, there are three
permutations πi, i = 1, 2, 3 of the natural numbers for which xn = rπ1(n)+
rπ2(n) + rπ3(n) holds for all n.

33. With the notation of the preceding problem give a sequence {xn} consist-
ing of rational numbers for which there are no permutations πi, i = 1, 2,
of the natural numbers for which xn = rπ1(n) + rπ2(n) holds for all n.

34. Any two countably infinite Boolean algebras without atoms (i.e., without
elements a 
= 0 such that a · b = a or a · b = 0 for all b) are isomorphic.

35. Let A = (A, . . .) be an arbitrary algebraic structure on the countable
set A (i.e., A may have an arbitrary number of finitary operations and
relations). Then the following are equivalent:
a) A has uncountably many automorphisms;
b) if B is a finite subset of A then there is a non-identity automorphism

of A which is the identity when restricted to B.
36. Suppose we know that a rabbit is moving along a straight line on the

lattice points of the plane by making identical jumps every minute (but
we do not know where it is and what kind of jump it is making). If we
can place a trap every hour to an arbitrary lattice point of the plane that
captures the rabbit if it is there at that moment, then we can capture the
rabbit.
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37. Let A ⊂ [0, 1] be a set, and two players I and II play the following game:
they alternatively select digits (i.e., numbers 0–9) x0, x1, . . . and y0, y1, . . .,
and I wins if the number 0.x1y1x2y2 . . . is in A, otherwise II wins. In this
game if A is countable, then II has a winning strategy.

38. Let A ⊂ [0, 1] be a set, and two players I and II play the following game:
I selects infinitely many digits x1, x2, . . . and II makes a permutation
y1, y2, . . . of them. I wins if the number 0.y1y2 . . . is in A, otherwise II
wins. For what countable closed sets A does I have a winning strategy?

39. Two players alternately choose uncountable subsets K0 ⊃ K1 ⊃ · · · of the
real line. Then no matter how the first player plays, the second one can
always achieve ∩∞

n=0Kn = ∅.

* * *

40. Let κ be an infinite cardinal. Then H is of cardinality at most κ if and
only if H × H can be decomposed as B ∪ C such that B intersects every
“vertical” line {(x, y) : x = x0} in less than κ points, and C intersects
every “horizontal” line {(x, y) : y = y0} in less than κ points.
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Equivalence

Equivalence of sets is the mathematical notion of “being of the same size”.
Two sets A and B are equivalent (in symbol A ∼ B) if there is a one-to-one
correspondence between their elements, i.e., a one-to-one mapping f : A → B
of A onto B. In this case we also say that A and B are of the same cardinality
without telling what “cardinality” means.

A finite set cannot be equivalent to its proper subset, but things change
for infinite sets: any infinite set is equivalent to one of its proper subsets. In
fact, quite often seemingly “larger” sets (like a plane) may turn out to be
equivalent to much “smaller” sets (like a line on the plane).

The notion of infinity is one of the most intriguing concepts that has been
created by mankind. It is with the aid of equivalence that in mathematics we
can distinguish between different sorts of infinity, and this makes the theory
of infinite sets extremely rich.

This chapter contains some simple exercises on equivalence of sets often
encountered in algebra, analysis, and topology. To establish the equivalence
of two sets can be quite a challenge, but things are tremendously simplified
by the equivalence theorem (Problem 2): if each of A and B is equivalent to a
subset of the other one, then they are equivalent. The reason for the efficiency
of the equivalence theorem lies in the fact that usually it is much easier to
find a one-to-one mapping of a set A into B than onto B.

1. Let f : A → B and g : B → A be 1-to-1 mappings. Then there is a
decomposition A = A1 ∪ A2 and B = B1 ∪ B2 of A and B into disjoint
sets such that f maps A1 onto B1 and g maps B2 onto A2.

2. (Equivalence theorem) If two sets are both equivalent to a subset of the
other one, then the two sets are equivalent.

3. There is a 1-to-1 mapping from A(
= ∅) to B if and only if there is a
mapping from B onto A.

4. If A is infinite and B is countable, then A ∪ B ∼ A.
5. If A is uncountable and B is countable, then A \ B ∼ A.
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6. The set of irrational numbers is equivalent to the set of real numbers.
7. The Cantor set is equivalent to the set of infinite 0–1 sequences.
8. Give a 1-to-1 mapping from the first set into the second one:

a) N × N; N
b) (−∞,∞); (0, 1)
c) R; the set of infinite 0–1 sequences
d) the set of infinite 0–1 sequences; [0, 1]
e) the infinite sequences of the natural numbers; the set of infinite 0–1

sequences
f) the set of infinite sequences of the real numbers; the set of infinite 0–1

sequences
In each of the above cases a)–f) the two sets are actually equivalent.

9. Give a mapping from the first set onto the second one:
a) N; N × N
b) N; Q
c) Cantor set; [0, 1]
d) set of infinite 0–1 sequences; [0, 1]
In each of the above cases a)–d) the two sets are actually equivalent.

10. Give a 1-to-1 correspondence between these pairs of sets:
a) (a, b); (c, d) (where a < b and c < d, and any of these numbers can be

±∞ as well)
b) N; N × N
c) P(X); X{0, 1} (X is an arbitrary set)
d) set of infinite sequences of the numbers 0, 1, 2; set of infinite 0–1 se-

quences
e) [0, 1); [0, 1) × [0, 1)

11. There is a 1-to-1 correspondence between these pairs of sets:
a) set of infinite 0–1 sequences; R
b) R; Rn

c) R; set of infinite real sequences
12. We have

a) B∪CA ∼BA ×CA provided B ∩ C = ∅,
b) C

(
BA
)
∼C×BA,

c) C(A × B) ∼CA ×CB.

13. Let X be an arbitrary set.
a) X is similar to a subset of P(X).
b) X 
∼ P(X).
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Continuum

A set is called of power continuum (c) if it is equivalent with R. Many sets
arising in mathematical analysis and topology are of power continuum, and
the present chapter lists several of them. For example, the set of Borel subsets
of Rn, the set of right continuous real functions, or a Hausdorff topological
space with countable basis are all of power continuum.

The continuum is also the cardinality of the set of subsets of N, and
there are many examples of families of power continuum (i.e., families of
maximal cardinality) of subsets of N or of a given countable set with a certain
prescribed property. In particular, several problems in this chapter deal with
almost disjoint sets and their variants: there are continuum many subsets of
N with pairwise finite intersection (cf. Problems 29–43).

The problem if there is an uncountable subset of R which is not of power
continuum arose very early during the development of set theory, and the
“NO” answer has become known as the continuum hypothesis (CH). Thus,
CH means that if A ⊆ R is infinite, then either A ∼ N or A ∼ R (other
formulations are: there is no cardinality κ with ℵ0 < κ < c; ℵ1 = 2ℵ0). This
was the very first problem on Hilbert’s famous list on the 1900 Paris congress,
and finding the solution had a profound influence on set theory as well as
on all of mathematics. Eventually it has turned out that it does not lead
to a contradiction if we assume CH (K. Gödel, 1947) and neither leads to a
contradiction if we assume CH to be false (P. Cohen, 1963). Therefore, CH is
independent of the other standard axioms of set theory.

1. The plane cannot be covered with less than continuum many lines.
2. The set of infinite 0–1 sequences is of power continuum.
3. The set of infinite real sequences is of power continuum.
4. The Cantor set is of power continuum.
5. An infinite countable set has continuum many subsets.
6. An infinite set of cardinality at most continuum has continuum many

countable subsets.
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7. There are continuum many open (closed) sets in Rn.
8. A Hausdorff topological space with countable base is of cardinality at most

continuum.
9. In an infinite Hausdorff topological space there are at least continuum

many open sets.
10. If A is countable and B is of cardinality at most continuum, then the set

of functions f : A → B is of cardinality at most continuum.
11. The set of continuous real functions is of power continuum.
12. The product of countably many sets of cardinality at most continuum is

of cardinality at most continuum.
13. The union of at most continuum many sets of cardinality at most contin-

uum is of cardinality at most continuum.
14. The following sets are of power continuum.

a) Rn, n = 1, 2, . . .

b) R∞ (which is the set of infinite real sequences)
c) the set of continuous curves on the plane
d) the set of monotone real functions
e) the set of right-continuous real functions
f) the set of those real functions that are continuous except for a countable

set
g) the set of lower semi-continuous real functions
h) the set of permutations of the natural numbers
i) the set of the (well) orderings of the natural numbers
j) the set of closed additive subgroups of R (i.e., the set of additive sub-

groups of R that are at the same time closed sets in R)
k) the set of closed subspaces of C[0, 1]
l) the set of bounded linear transformations of L2[0, 1]

15. R cannot be represented as the union of countably many sets none of
which is equivalent to R.

16. If A ⊂ R2 is such that each horizontal line intersects A in finitely many
points, then there is a vertical line that intersects the complement R2 \A
of A in continuum many points.

17. If A is a subset of the real line of power continuum, then there is an
a ∈ A such that each of the sets A ∩ (−∞, a) and A ∩ (a,∞) is of power
continuum.

18. Let A = (A, . . .) be an arbitrary algebraic structure on the countable
set A (i.e., A may have an arbitrary number of finitary operations and
relations). Then the following are equivalent:
a) A has uncountably many automorphisms,
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b) A has continuum many automorphisms.
19. A σ-algebra is either finite or of cardinality at least continuum.
20. A σ-algebra generated by a set of cardinality at most continuum is of

cardinality at most continuum.
21. There are continuum many Borel sets and Borel functions on the real line

(in Rn).
22. There are continuum many Baire functions on [0, 1].
23. The power set P(X) of X is of bigger cardinality than X.
24. If A has at least two elements, then the set XA of mappings from X to A

is of bigger cardinality than X.
25. The following sets are of cardinality bigger than continuum.

a) set of real functions
b) set of the 1-to-1 correspondences between R and R2

c) set of bases of R considered as a linear space over Q (Hamel bases)
d) set of Riemann integrable functions
e) set of Jordan measurable subsets of R

f) set of the additive subgroups of R

g) set of linear subspaces of C[0, 1]
h) set of linear functionals of L2[0, 1]

26. Which of the following sets are of power continuum?
a) the set of real functions that are continuous at every rational point
b) the set of real functions that are continuous at every irrational point
c) the set of real functions f that satisfy the Cauchy equation

f(x + y) = f(x) + f(y)

27. If A is a set of cardinality continuum, then there are countably many
functions fk : A → N, k = 0, 1, . . . such that for an arbitrary function
f : A → N and for an arbitrary finite set A′ ⊂ A there is a k such that
fk agrees with f on A′.

28. The topological product of continuum many separable spaces is separable.
29. There are continuum many sets Aγ ⊆ N such that if γ1 
= γ2, then

Aγ1 ∩ Aγ2 is a finite set (such a collection is called almost disjoint).
30. Let k be a natural number, and suppose that Aγ , γ ∈ Γ is a family of

subsets of N such that if γ1 
= γ2, then Aγ1 ∩Aγ2 has at most k elements.
Then Γ is countable.

31. To every x ∈ R one can assign a sequence {s(x)
n } of natural numbers such

that if x < y, then s
(y)
n − s

(x)
n → ∞ as n → ∞.
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32. There are continuum many sequences {sγ}∞
n=0 of natural numbers such

that if γ1 
= γ2, then |sγ1
n − sγ2

kn
| tends to infinity as n → ∞, no matter

how we choose the sequence {kn}.
33. Let k be a positive integer, and suppose that {sγ

n}∞
n=0, γ ∈ Γ is a family

of sequences of natural numbers such that if γ1 
= γ2 then sγ1
n = sγ2

n holds
for at most k indices n. Then Γ is countable.

34. There is an almost disjoint family of cardinality continuum of subsets of
N each with upper density 1.

35. Let k ≥ 2 be an integer. Then there is a family of cardinality continuum
of subsets of N such that the intersection of any k members of the family
is infinite, but the intersection of any k + 1 members is finite.

36. If H is an uncountable family of subsets of N such that the intersection of
any finitely many members of the family is infinite, then the intersection
of some infinite subfamily of H is also infinite.

37. There is a family of cardinality continuum of subsets of N such that the
intersection of any finitely many members of the family has positive upper
density, but the intersection of any infinitely many members is of density
zero.

38. If H is a family of subsets of R such that the intersection of any two sets
in H is finite, then H is of cardinality at most continuum.

39. There is a family H of cardinality bigger than continuum of subsets of R
such that the intersection of any two sets in H is of cardinality smaller
than continuum.

40. The are continuum many sets Aγ ⊂ N such that if γ1 
= γ2, then either
Aγ1 ⊂ Aγ2 or Aγ2 ⊂ Aγ1 .

41. There are continuum many sets Aγ ⊂ N such that if γ1 
= γ2, then each
of the sets Aγ1 \ Aγ2 , Aγ2 \ Aγ1 , and Aγ1 ∩ Aγ2 is infinite.

42. For every real number x give sets Ax, Bx ⊆ N such that Ax ∩Bx = ∅, but
for different x and y the set Ax ∩ By is infinite.

43. There is a family Ax, x ∈ R of subsets of the natural numbers such that
if x1, . . . , xn are different reals and ε1, . . . , εn ∈ {0, 1}, then the density of
the set Aε1

x1
∩ · · · ∩ Aεn

xn
is 2−n (here A1 = A and A0 = N \ A).

44. There is a function f : R2 → N such that f(x, y) = f(y, z) implies
x = y = z.



5

Sets of reals and real functions

This chapter contains various problems from analysis and from the topology
of Euclidean spaces that are connected with the notions of “countability” and
“continuum”. They include problems on exceptional sets (like a monotone
real function can have only countably many discontinuities), Lindelöf-type
covering theorems and their consequences, Baire properties, Borel sets, and
Peano curves.

1. If A ⊂ R is such that for every a ∈ A there is a δa > 0 such that either
(a, a + δa) ∩ A = ∅ or (a − δa, a) ∩ A = ∅, then A is countable.

2. Any uncountable subset A of the real numbers includes a strictly decreas-
ing sequence converging to a point in A.

3. Every discrete set on R (in Rn) is countable.
4. A right-continuous real function can have only countably many disconti-

nuities.
5. Let f be a real function such that at every point f is continuous either

from the right or from the left. Then f can have only countably many
discontinuities.

6. A monotone real function can have only countably many discontinuities.
7. If a real function has right and left derivatives at every point, then it is

differentiable at every point with the exception of a countable set.
8. A convex function is differentiable at every point with the exception of a

countable set.
9. The set of local maximum values of any real function is countable.

10. The set of strict local maximum points of a real function is countable.
11. If every point is a local extremal point for a continuous real function f ,

then f is constant.
12. If a collection Gγ , γ ∈ Γ of open sets in Rn covers a set E, then there is a

countable subcollection Gγi , i = 0, 1, . . ., that also covers E (this property
of subsets of Rn is called the Lindelöf property).
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It is customary to rephrase the problem by saying that in Rn every open
cover of a set includes a countable subcover.

13. If a collection Gγ , γ ∈ Γ of semi-open intervals in R covers a set E, then
there is a countable subcollection Gγi , i = 0, 1, . . ., that also covers E.
The same is true if the Gγ ’s are arbitrary nondegenerated intervals.

14. If a collection Gγ , γ ∈ Γ , nondegenerated intervals in R covers a set E,
then there is a countable subcollection Gγi , i = 0, 1, . . ., that also covers
E.

15. Let the real function f be differentiable at every point of the set H ⊂ R.
Then the set of those y for which f−1{y}∩H is uncountable is of measure
zero.

16. Call a rectangle almost closed if its sides are parallel with the coordi-
nate axes, and it is obtained from a closed rectangle by omitting the four
vertices. Show that any union of a family of almost closed rectangles is
already a union of a countable subfamily. Is the same true if the rectangles
are closed?

17. Call x an accumulation point of a set A ⊂ R (A ⊂ Rn) if every neighbor-
hood of x contains uncountably many points of A. An uncountable set A
has an accumulation point that lies in A.

18. For an uncountable A ⊂ R let A∗ be the set of those a ∈ A that are
accumulation points of both A∩ (−∞, a) and of A∩ (a,∞). Then A \A∗

is countable, and A∗ is densely ordered.
19. The set of accumulation points of any set A is either empty or perfect.
20. Any closed set in R (Rn) is the union of a perfect and a countable set.
21. A nonempty perfect set in Rn is of power continuum.
22. A closed set in R (Rn) is either countable, or of power continuum.
23. Define the distance between two real sequences {aj}∞

j=0 and {bj}∞
j=0 by

the formula

d
(
{aj}∞

j=0, {bj}∞
j=0

)
=

∞∑
j=0

1
2j

|aj − bj |
1 + |aj − bj |

.

With this R∞ becomes a complete separable metric space.
24. Every closed set in R∞ is the union of a perfect and a countable set.
25. Every closed set in R∞ is either countable or of cardinality continuum.
26. Every Borel set in Rn is a (continuous and) one-to-one image of a closed

subset of R∞.
27. In Rn every Borel set is either countable or of cardinality continuum.
28. If a < b and [a, b] = ∪∞

i=0Ai, then there is an interval I ⊂ [a, b] and an i
such that the set Ai is dense in I (Baire’s theorem).
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29. If a < b and [a, b] = ∪∞
i=0Ai, then there is an interval I ⊂ [a, b] and an

i such that for any subinterval J of I the intersection Ai ∩ J is of power
continuum.

30. If A ⊂ Rn is a set with nonempty interior, then A cannot be represented
as a countable union of nowhere dense sets (Baire’s theorem).

31. If A ⊂ Rn is a set with nonempty interior and A = ∪∞
i=0Ai, then there

is a ball B ⊂ A and an i such that for any ball B′ ⊂ B the intersection
Ai ∩ B′ is of power continuum.

32. There are pairwise disjoint sets Ax ⊂ R, x ∈ R such that for any x ∈ R
and any open interval I ⊂ R the set I ∩ Ax is of power continuum.

33. There is a real function that assumes every value in every interval contin-
uum many times.

34. There is a continuous function f : [0, 1] → [0, 1] that assumes every value
y ∈ [0, 1] continuum many times.

35. There exists a continuous mapping from [0, 1] onto [0, 1] × [0, 1] (such
“curves” are called area filling or Peano curves).

36. There are continuous functions fn : [0, 1] → [0, 1], n = 0, 1, 2, . . . with
the property that if x0, x1, . . . is an arbitrary sequence from [0, 1], then
there is a t ∈ [0, 1] such for all n we have fn(t) = xn (thus, F (t) =
(f0(t), f1(t), . . .) is a continuous mapping from [0, 1] onto the so-called
Hilbert cube [0, 1]∞ ≡ N[0, 1]).

* * *

37. If {aξ}ξ<ω1 is a transfinite sequence of real numbers which is convergent
(i.e., there is an A ∈ R such that for every ε > 0 there is a ν < ω1 for
which ξ > ν implies |aξ−A| ≤ ε), then there is a τ < ω1 such that aξ = aζ

for ξ, ζ > τ .
38. If {aξ}ξ<α is a (strictly) monotone transfinite sequence of real numbers,

then α is countable.
39. For every limit ordinal α < ω1 there is a convergent, strictly increasing

transfinite sequence {aξ}ξ<α of real numbers (convergence means that
there is an A ∈ R such that for every ε > 0 there is a ν < α for which
ξ > ν implies have |aξ − A| ≤ ε).
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Ordered sets

Now we equip our sets with a structure by telling which element is larger than
the other one. The theory of ordered sets is extremely rich, in fact, this list of
problems is the longest one in the book.

This chapter contains problems on ordered sets and mappings between
them. The types of ordered sets and arithmetic with types will be discussed
in the next chapter. Occasionally later chapters will also discuss problems on
ordered sets if the solution requires the methods of those chapters.

Particularly important are the well-ordered sets (see below), for they pro-
vide the infinite analogues of natural numbers. Well orderings offer enumera-
tion of the elements of a given set in a transfinite sequence and thereby the
possibility of proving results by transfinite induction.

Let A be a set and ≺ a binary relation on A. If a ≺ b does not hold,
then we write a 
≺ b. 〈A,≺〉 is called an ordered set (sometimes called linearly
ordered) if

• ≺ irreflexive: a 
≺ a for any a ∈ A,
• ≺ transitive: a ≺ b and b ≺ c imply a ≺ c,
• ≺ trichotomous: for every a, b ∈ A one of a ≺ b, a = b, b ≺ a holds.

With every such “smaller than” relation ≺ we associate the corresponding
“smaller than or equal” relation : a  b if either a ≺ b or a = b. This  has
the following properties:

• antisymmetric: a  b and b  a imply a = b,
• transitive: a  b and b  c imply a  c,
• dichotomous: for every a, b ∈ A either of a  b or b  a holds.

If 〈A,≺〉 is an ordered set and B ⊂ A is a subset of A, then for notational
simplicity we shall continue to denote the restriction of ≺ to B × B by ≺, so
〈B,≺〉 is the ordered set with ground set B and with the ordering inherited
from 〈A,≺〉.
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The ordered set 〈A,≺〉 is called well ordered if every nonempty subset
contains a smallest element, i.e., if for every X ⊆ A, X 
= ∅ there is an a ∈ X
such that for every b ∈ X we have a  b.

If 〈A,≺〉 is an ordered set, then X ⊆ A is an initial segment if a ∈ X and
b ≺ a imply b ∈ X (intuitively, X consists of a starting section of 〈A,≺〉), and
in a similar fashion X ⊆ A is called an end segment if a ∈ X and a ≺ b imply
b ∈ X. An initial segment that is not the whole set is called a proper initial
segment. The intervals of 〈A,≺〉 are its “convex” (or “connected”) subsets,
i.e., X ⊆ A is an interval if a, b ∈ X and a ≺ c ≺ b implies c ∈ X . The intervals
generate the so-called interval topology (also called order topology) on A. This
is also the topology that is generated by the initial and end segments of 〈A,≺〉.

Ordered sets are special algebraic structures (with no operations, and a
single binary relation). Isomorphism among ordered sets is called similarity:
〈A1,≺1〉 and 〈A2,≺2〉 are similar if there is an f : A1 → A2 1-to-1 correspon-
dence between the ground sets A1 and A2 that also preserves the ordering, i.e.,
a ≺1 b implies f(a) ≺2 f(b). In particular, similarity implies the equivalence
of the ground sets. A mapping f from 〈A1,≺1〉 into 〈A2,≺2〉 (not necessarily
onto) is called monotone if a <1 b implies f(a) <2 f(b). This is just the same
as the notion of homomorphism from 〈A1,≺1〉 into 〈A2,≺2〉.

The lexicographic product of 〈A1,≺1〉 and 〈A2,≺2〉 is the ordered set 〈A1×
A2,≺〉 where (a1, a2) ≺ (a′

1, a
′
2) precisely if a1 ≺1 a′

1 or if a1 = a′
1 and

a2 ≺2 a′
2 (i.e., in this ordering the first coordinate is decisive). On the other

hand, in antilexicographic ordering first we compare the second coordinates
and only when equality occurs compare the first coordinates. One can define
in a similar manner the lexicographic or antilexicographic product of more
than two sets. Lexicographic (antilexicographic) ordering is sometimes called
ordering according to the first (last) difference.

Let 〈Ai, <i〉, i ∈ I be ordered sets with pairwise disjoint ground sets Ai

and let the index set I be also ordered by the relation <. The ordered union
of 〈Ai, <i〉, i ∈ I with respect to the ordered set 〈I, <〉 is the ordered set
〈B,≺〉 in which B = ∪i∈IAi, and for a ∈ Ai and b ∈ Aj the relation a ≺ b
holds if and only if i < j or i = j and a <i b. The antilexicographic product
of 〈A1,≺1〉 and 〈A2,≺2〉 is nothing else than the ordered union of the sets
〈A1 × {a},≺a〉, a ∈ A2 (where (p, a) ≺a (q, a) if and only if p ≺1 q) with
respect to 〈A2,≺2〉.

Unless otherwise stated, if A is a subset of the real line, then we regard A
to be ordered with respect to the standard < relation between the reals. In
this chapter we mean strict monotonicity if we say that a real-valued function
on a subset of the reals is monotone.

An important concept related to ordered sets is their cofinality, which will
be used many times in later chapters. A theorem of Hausdorff (Problem 44)
says that in every ordered set 〈A,≺〉 there is a well-ordered cofinal subset, i.e.,
a subset B ⊆ A such that 〈B,≺〉 is well ordered and for every a ∈ A there is
a b ∈ B with a  b. Now the cofinality cf(〈A,≺〉) is defined as the smallest
possible order type of such cofinal 〈B,≺〉’s.



Problems Chapter 6 : Ordered sets 25

The solutions of some problems require the following important result of
R. Laver (see On Fräıssé’s order type conjecture, Ann. Math., 93(1971), 89–
111): If 〈Ai, <i〉, i = 0, 1, 2, . . ., are ordered sets such that neither of them
includes a densely ordered subset, then there are i < j such that 〈Ai, <i〉 is
similar to a subset of 〈Aj , <j〉. The proof is considerably more complicated
than it could be given in this book.

1. Any infinite sequence of different elements in an ordered set includes an
infinite monotone subsequence.

2. Any two open subintervals of R are similar.
3. Give an ordered set with a smallest element, in which every element has

a successor and every element but the least has a predecessor, yet the set
is not similar to N.

4. Give an ordering on the reals for which every element has a successor, as
well as a predecessor.

5. An infinite ordered set 〈A,≺〉 is similar to N if and only if for every a ∈ A
there are only finitely many elements b ∈ A with b ≺ a.

6. What are those infinite ordered sets 〈A,≺〉 for which it is true that every
infinite subset of A is similar to 〈A,≺〉?

7. An infinite ordered set 〈A,≺〉 is similar to Z if and only if it has no smallest
or largest element, and every interval {c : a ≺ c ≺ b}, a, b ∈ A is finite.

8. What are the infinite ordered sets 〈A,≺〉 for which every interval {c :
a ≺ c ≺ b}, a, b ∈ A is finite?

9. There is a countable ordered set that has continuum many initial seg-
ments.

10. There is an ordered set of cardinality continuum that has more than con-
tinuum many initial segments.

11. There are infinitely many pairwise nonsimilar ordered sets such that every
one of them is similar to an initial segment of any other one.

12. Let 〈A,≺〉 and 〈A′,≺′〉 be ordered sets such that each of them is similar
to a subset of the other one. Then there are disjoint decompositions A =
A1 ∪ A2 and A′ = A′

1 ∪ A′
2 such that 〈Ai,≺〉 is similar to 〈A′

i,≺′〉 for
i = 1, 2.

13. If 〈A, <〉 and 〈B,≺〉 are ordered sets such that 〈A, <〉 is similar to an initial
segment of 〈B,≺〉 and 〈B,≺〉 is similar to an end segment of 〈A, <〉, then
〈A, <〉 and 〈B,≺〉 are similar.

14. If 〈A, <〉 and 〈B,≺〉 are ordered sets such that 〈A, <〉 is similar to an
initial segment and to an end segment of 〈B,≺〉 and 〈B,≺〉 is similar an
interval of 〈A, <〉, then 〈A, <〉 and 〈B,≺〉 are similar.

15. There are continuum many subsets of Q no two of them similar.
16. How many subsets A does R have for which A is similar to R?
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17. There are continuum many pairwise disjoint subsets of R each similar to
R.

18. If A ⊆ R, A 
= ∅, then R has continuum many subsets similar to A.
19. R has 2c subsets of cardinality continuum no two of which are similar.
20. If we omit a countable set from the set of irrational numbers, then the set

obtained is similar to the set of the irrational numbers.
21. If 〈A,≺〉 has a countable subset B that is dense in A (i.e., for every

a1, a2 ∈ A, a1 ≺ a2 there is b ∈ B such that a1  b  a2), then 〈A,≺〉 is
similar to a subset of R.

22. Suppose A, B ⊆ R are two similar subsets of R. Is it true that then their
complements R \ A and R \ B are also similar? What if A and B are
countable dense subsets of R?

23. Let M be a set of open subsets of R ordered with respect to inclusion
“⊂”. Then 〈M,⊂〉 is similar to a subset of the reals.

24. There is a family F of closed and measure zero subsets of R such that
〈F ,⊂〉 is similar to R.

25. There is a family of cardinality bigger than continuum of subsets of R
that is ordered with respect to inclusion.

26. Any countable ordered set is similar to a subset of Q ∩ (0, 1).
27. Any countable densely ordered set without smallest and largest elements

is similar to Q.
28. Any countable densely ordered set is similar to one of the sets Q ∩ (0, 1),

Q∩ [0, 1), Q∩ (0, 1], Q∩ [0, 1] (depending if it has a first or last element).
29. There is an uncountable ordered set such that all of its proper initial

segments are similar to Q or to Q ∩ (0, 1].
30. There is an uncountable ordered set which is similar to each of its un-

countable subsets.
31. The antilexicographically ordered set of infinite 0–1 sequences that contain

only a finite number of 1’s is similar to N.
32. The lexicographically ordered set of infinite 0–1 sequences that contain

only a finite number of 1’s is similar to Q ∩ [0, 1).
33. The lexicographically ordered set of infinite 0–1 sequences is similar to

the Cantor set.
34. The lexicographically ordered set of sequences of natural numbers is sim-

ilar to [0, 1).
35. Consider the set A of all sequences n0,−n1, n2,−n3, . . . where ni are nat-

ural numbers. Then A, with the lexicographic ordering, is similar to the
set of irrational numbers.

36. An ordered set is well ordered if and only if it does not include an infinite
decreasing sequence.
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37. If A ⊆ R is well ordered, then it is countable.
38. If U is a family of open (closed) subsets of R that is well ordered with

respect to inclusion, then U is countable.
39. If 〈A,≺〉 is well ordered, then for any f : A → A monotone mapping and

for any a ∈ A we have a  f(a).
40. There is at most one similarity mapping between two well-ordered sets.
41. A well-ordered set cannot be similar to a subset of one of its proper initial

segments.
42. Given two well-ordered sets, one of them is similar to an initial segment

of the other.
43. Two well-ordered sets, each of which is similar to a subset of the other

one, are similar.
44. (Hausdorff’s theorem) For every ordered set 〈A,≺〉 there is a subset B ⊆ A

such that 〈B,≺〉 is well ordered and cofinal (if a ∈ A is arbitrary, then
there is a b ∈ B with a  b). Furthermore, B ⊆ A can also be selected in
such a way that the order type of 〈B,≺〉 does not exceed |A| (the ordinal,
with which the cardinal |A| is identified).

45. If every proper initial segment of an ordered set is the union of countably
many well-ordered sets, then so is the whole set itself.

46. If 〈A,≺〉 is a nonempty countable well-ordered set, then A × [1, 0) with
the lexicographic ordering is similar to [0, 1).

47. There is an ordered set that is not similar to a subset of R, but all of its
proper initial segments are similar to (0, 1) or to (0, 1]. Furthermore, this
set is unique up to similarity.

48. Call a point x ∈ A in an ordered set 〈A,≺〉 a fixed point if f(x) = x
holds for every monotone f : A → A. A point x ∈ A is not a fixed point
of 〈A,≺〉 if and only if there is a monotone mapping from 〈A,≺〉 into
〈A \ {x},≺〉.

49. If x 
= y are fixed points of 〈A,≺〉, then y is a fixed point of 〈A \ {x},≺〉.
50. Every countable ordered set has only finitely many fixed points.
51. For each n < ∞ give a countably infinite ordered set with exactly n fixed

points.
52. If 〈A,≺〉 has infinitely many fixed points, then it includes a subset similar

to Q.
53. Every ordered set is similar to a set of sets ordered with respect to inclu-

sion.
54. Let M be a family of subsets of a set X that is ordered with respect to

inclusion and which is a maximal family with this property. Define ≺ on
X as follows: let x ≺ y be exactly if there is an E ∈ M, such that x ∈ E
but y 
∈ E. Then 〈X,≺〉 is an ordered set. What are the initial segments
in this ordered set?
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55. Every ordered set is similar to some 〈X,≺〉 constructed in the preceding
problem.

56. If 〈A,≺〉 is an ordered set, then there is an ordered set 〈A∗,≺∗〉 such that
if A∗ = B ∪C is an arbitrary decomposition, then either B or C includes
a subset similar to 〈A,≺〉.

57. To every infinite ordered set there is another such that neither one is
similar to a subset of the other.

58. To every countably infinite ordered set 〈A,≺〉 there is another countably
infinite ordered set that does not include a subset similar to 〈A,≺〉.

59. For every n show n countable ordered sets such that neither of them is
similar to a subset of another one.

60. If 〈Ai,≺i〉, i = 0, 1, . . ., are countable ordered sets, then there are i < j
such that 〈Ai,≺i〉 is similar to a subset of 〈Aj ,≺j〉.

61. Every countably infinite ordered set is similar to one of its proper subsets.
62. There is an infinite ordered set that is not similar to any one of its proper

subsets.
63. In every infinite ordered set the position of one element can be changed

in such a way that we get an ordered set that is not similar to the original
one.

64. One can add to any ordered set one element so that the ordered set so
obtained is not similar to the original one. Is the same true for removing
one element?

65. Every ordered set is a subset of a densely ordered set.
66. Every densely ordered set is a dense subset of a continuously ordered set.
67. Any two continuously ordered sets without smallest and largest elements

that include similar dense sets are similar.
68. A continuously ordered set containing at least two points includes a subset

similar to R.
69. If 〈A,≺〉 is continuously ordered and An = {c : an  c  bn} is a

sequence of nested closed intervals, i.e., An+1 ⊆ An for all n = 0, 1, . . .,
then ∩∞

n=0An 
= ∅.
70. There is an infinite ordered set 〈A,≺〉 that is not continuously ordered

but for every sequence {An}∞
n=0 of nested closed intervals ∩∞

n=0An 
= ∅.
71. Call a subset of an ordered set scattered, if it does not include a subset

that is densely ordered. The union of finitely many scattered subsets of
an ordered set is scattered.

72. A subset of the real line is scattered if and only if it has a countable
closure.

73. A bounded subset A of the real line is scattered if and only if for any
sequence ε0, ε1, . . . of positive numbers there exists a natural number N



Problems Chapter 6 : Ordered sets 29

such that A can be covered with some intervals I0, I1, . . . , IN of length
|Ii| = εi.

74. If α is an ordinal then let H(α) be the set of all functions f : α → {−1, 0, 1}
for which D(f) = {β < α : f(β) 
= 0} is finite. Order H(α) according to
last difference, i.e., for f, g ∈ H(α) set f ≺ g if f(β) ≺ g(β) holds for the
largest β < α with f(β) 
= g(β). Then 〈H(α),≺〉 is scattered.

75. The product of two scattered ordered sets is scattered.
76. The ordered union of scattered ordered sets with respect to a scattered

ordered set is scattered.
77. Every nonempty ordered set is either scattered, or is similar to the ordered

union of nonempty scattered sets with respect to a densely ordered set.
78. Let F be a family of ordered sets with the following properties:

• if 〈S,≺〉 ∈ F and 〈S′,≺′〉 is similar to 〈S,≺〉, then 〈S′,≺′〉 ∈ F ,
• if 〈S,≺〉 ∈ F and S′ is a subset of S then 〈S′,≺〉 ∈ F ,
• F is closed for well-ordered and reversely well-ordered unions,
• there is a nonempty 〈S,≺〉 in F .
Then every ordered set is either in F , or it is similar to an ordered union
of nonempty sets in F with respect to a densely ordered set.

79. Let O be the smallest family of ordered sets that contains ∅, 1 and is
closed for well-ordered and reversely well-ordered unions as well as for
similarity. Then O is precisely the family of scattered sets.

80. An ordered set is scattered if and only it can be embedded into one of the
〈H(α),≺〉 defined in Problem 74.

81. We say that an ordered set 〈A,≺〉 has countable intervals if for every
a, b ∈ A, a ≺ b the set {c ∈ A : a ≺ c ≺ b} is countable. There is
a maximal ordered set 〈A,≺〉 with countable intervals in the sense that
every ordered set with countable intervals is similar to a subset of 〈A,≺〉.

82. Pick a natural number n1, and for each i = 1, 2, . . . perform the following
two operations to define n2i and n2i+1:
(i) write n2i−1 in base i + 1, and while keeping the coefficients, replace

the base by i + 2. This gives a number that we call n2i;
(ii) set n2i+1 = n2i − 1.
If n2i+1 = 0 then we stop, otherwise repeat this process. For example, if
n1 = 23 = 24 + 22 + 21 + 1, then n2 = 34 + 32 + 31 + 1 = 94, n3 = 93,
n4 = 44 + 42 + 41 = 276, n5 = 275, then, since 275 = 44 + 42 + 3, we have
n6 = 54 + 52 + 3 = 3253, etc.
(a) No matter what n1 is, there is an i such that ni = 0.
(b) The same conclusion holds if in (i) the actual base is changed to any

larger base (i.e., when the bases are not 2, 3, . . . but some numbers
b1 < b2 < . . .).
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* * *

83. In every densely ordered set there are two disjoint dense subsets.
84. The elements of any ordered set can be colored by two colors in such a

way that in between any two elements of the same color there is another
one with a different color.

85. There is an ordered set which is not well ordered, yet no two different
initial segments of it are similar.

86. There exists an ordered set that cannot be represented as a countable
union of its well-ordered subsets, but in which every uncountable subset
includes an uncountable well-ordered subset.

87. There are two subsets A, B ⊂ R of power continuum such that any sub-
set of A that is similar to a subset of B is of cardinality smaller than
continuum.

88. There is an infinite subset X of R such that if f : X → X is any monotone
mapping, then f is the identity.

89. To every ordered set 〈A,≺〉 of cardinality κ ≥ ℵ0 there is another ordered
set of cardinality κ that does not include a subset similar to 〈A,≺〉.

90. For every infinite cardinal κ there is an ordered set of cardinality κ that
has more than κ initial segments.

91. In a set of cardinality κ there is a family of subsets of cardinality bigger
than κ that is ordered with respect to inclusion.

92. If H is a family of subsets of an infinite set of cardinality κ that is well
ordered with respect to inclusion, then H is of cardinality at most κ.

93. If κ is an infinite cardinal, then in the lexicographically ordered set κκ
(which is the set of transfinite sequences of type κ of ordinals smaller
than κ ordered with respect to first difference) every well-ordered subset
is of cardinality at most κ.

94. Let κ be an infinite cardinal and let T be the set κ{0, 1} of 0–1 sequences
of type κ ordered with the lexicographic ordering. Then
a) every nonempty subset of T has a least upper bound,
b) every subset of T has cofinality at most κ,
c) every well-ordered subset of T is of cardinality at most κ.

95. Every ordered set of cardinality κ is similar to a subset of the lexicograph-
ically ordered κ{0, 1}.

96. Let κ be an infinite cardinal and Fκ the set of those f : κ → {0, 1} for
which there is a last 1, i.e., there is an α < κ such that f(α) = 1 but for
all α < β < κ we have f(β) = 0. Every ordered set of cardinality κ is
similar to a subset of the lexicographically ordered Fκ.
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97. If 〈A,≺〉 is an ordered set and κ is a cardinal, then there is an ordered
set 〈B, <〉 such that if B = ∪ξ<κBξ is an arbitrary decomposition of B
into at most κ subsets, then there is a ξ < κ such that 〈Bξ, <〉 includes a
subset similar to 〈A,≺〉.
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Partially ordered sets

Let A be a set and ≺ a binary relation on A. 〈A,≺〉 is called a partially ordered
set if

• ≺ irreflexive: a 
≺ a for any a ∈ A,
• ≺ transitive: a ≺ b and b ≺ c imply a ≺ c.

Thus, the difference with ordered sets is that here we do not assume tri-
chotomy (comparability of elements).

In a partially ordered set 〈A,≺〉 two elements a, b are called comparable if
(exactly) one of a = b, a ≺ b or b ≺ a holds, otherwise they are incomparable.
An ordered subset of a partially ordered set is called a chain and a set of
pairwise incomparable elements an antichain.

The main problem that we treat in this chapter is how information on
the size of chains and antichains can be related to the structure of the set in
question.

1. In an infinite partially ordered set there is an infinite chain or an infinite
antichain.

2. If in a partially ordered set all chains have at most l < ∞ elements and
all antichains have at most k < ∞ elements, where k, l are finite numbers,
then the set has at most kl elements.

3. If in a partially ordered set all chains have at most k < ∞ elements, then
the set is the union of k antichains.

4. If in a partially ordered set all antichains have at most k < ∞ elements,
then the set is the union of k chains.

5. There is a partially ordered set in which all chains are finite, still the set
is not the union of countably many antichains.

6. There is a partially ordered set in which all antichains are finite, still the
set is not the union of countably many chains.
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7. If in a partially ordered set all chains are finite and all antichains are
countable, then the set is countable.

8. If in a partially ordered set all antichains are finite and all chains are
countable, then the set is countable.

9. There is a partially ordered set of cardinality continuum in which all chains
and all antichains are countable.

10. If in a partially ordered set all chains and all antichains have at most κ
elements, then the set is of cardinality at most 2κ.

11. If κ is an infinite cardinal, then there is a partially ordered set of cardi-
nality 2κ in which all chains and all antichains have at most κ elements.

12. For every cardinal κ there is a partially ordered set 〈P,≺〉 in which every
interval [x, y] = {z : x  z  y} is finite, yet P is not the union of κ
antichains.

13. If 〈P,≺〉 is a partially ordered set, call two elements strongly incompatible
if they have no common lower bound. Let c(P,≺) be the supremum of |S|
where S ⊆ P is a strong antichain, that is, a set of pairwise strongly
incompatible elements.
(a) If c(P,≺) is an infinite cardinal that is not weakly inaccessible, i.e., it

is not a regular limit cardinal, then c(P,≺) is actually a maximum.
(b) If κ is a regular limit cardinal, then there is a partially ordered set

〈P,≺〉 such that c(P,≺) = κ yet there is no strong antichain of cardi-
nality κ.

14. If 〈A,≺〉 is a partially ordered set, then there exists a cofinal subset B ⊆ A
such that 〈B,≺〉 is well founded (i.e., in every nonempty subset there is
a minimal element).

15. If there is no maximal element in the partially ordered set 〈P,≺〉, then
there are two disjoint cofinal subsets of 〈P,≺〉.

16. There is a partially ordered set 〈P,≺〉 which is the union of countably
many centered sets but not the union of countably many filters. (A subset
Q ⊆ P is centered if for any p1, . . . , pn ∈ Q there is some q  p1, . . . , pn

in P . A subset F ⊆ P is a filter, if for any p1, . . . , pn ∈ F there is some
q  p1, . . . , pn with q ∈ F .)

17. For two real functions f 
= g let f ≺ g if f(x) ≤ g(x) for all x ∈ R. In this
partially ordered set there is an ordered subset of cardinality bigger than
continuum. No such subset can be well ordered by ≺.

The following problems use two orderings on the set ωω of all functions
f : ω → ω: let f � g if f(n) < g(n) for all large n, and f ≺ g if
g(n) − f(n) → ∞ as n → ∞.

18. Each of 〈ωω,�〉 and 〈ωω,≺〉 has an order-preserving mapping into the
other, but they are not isomorphic.
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19. For any countable subset {fk}k of ωω there is an f larger than any fk

with respect to ≺.
20. 〈ωω,≺〉 includes a subset of order type ω1.
21. 〈ωω,≺〉 includes a subset of order type λm for each m = 1, 2, . . ..
22. If θ is an order type and 〈ωω,≺〉 includes a subset similar to θ, then it

includes such a subset consisting of functions that are smaller than the
identity function.

23. If θ1, θ2 are order types and 〈ωω,≺〉 includes subsets similar to θ1 and
θ2, respectively, then it includes subsets similar to θ1 + θ2 and θ1 · θ2,
respectively. It also includes a subset similar to θ∗

1 , where θ∗
1 is the reverse

type to θ1.
24. If θi, i ∈ I are order types where 〈I, <〉 is an ordered set, and 〈ωω,≺〉

includes subsets similar θi and also a subset similar to 〈I, <〉, then it
includes subsets similar to

∑
i∈I(<) θi. In particular, 〈ωω,≺〉 includes a

set of order type α for every α < ω2.
25. If ϕ < ω1 is a limit ordinal and

f0 ≺ f1 ≺ · · · ≺ fα ≺ · · · ≺ gα ≺ · · · g1 ≺ g0, α < ϕ,

then there is an f with fα ≺ f ≺ gα for every α < ϕ.
26. There exist functions

f0 ≺ f1 ≺ · · · ≺ fα ≺ · · · ≺ gα ≺ · · · g1 ≺ g0, α < ω1,

such that there is no function f with fα ≺ f ≺ gα for every α < ω1.
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Ordinals

Ordinals are the order types of well-ordered sets. They are the infinite ana-
logues of the natural numbers, and in many respect they behave like the latter
ones. In fact, the finite ordinals are the natural numbers, and hence the trans-
finite class of ordinals can be considered as an endless continuation of the
sequence of natural numbers.

This chapter contains various problems on ordinals and on operations on
them. The problems specifically related to ordinal arithmetic will be the con-
tent of the next chapter.

The von Neumann definition of ordinals is as follows (see below): a set α
is called an ordinal if it is transitive and well ordered with respect to ∈. When
we talk about such an α we shall always assume that it is equipped with the ∈
relation. It can be shown that every well-ordered set 〈A,≺〉 is similar to such
a unique α. Therefore, we can set α as the order type of 〈A,≺〉. In particular,
the order type of α is α.

We set β < α if β ∈ α. It follows that

α is the set of ordinals smaller than α, and among ordinals the
relation β < α is the same as β ∈ α, and β ≤ α is the same as β ⊆ α.

We shall not explicitly use von Neumann’s definition, but we shall use the
just-listed boldfaced convention.

In this chapter α, β, . . . always denote ordinals. As always, ω, the smallest
infinite ordinal, is the set of natural numbers, i.e., the set of finite ordinals.
An ordinal α is called a successor ordinal if it is of the form β+1. The positive
ordinals that are not successors are called limit ordinals. Thus, α is a limit
ordinal if and only if β < α implies β + 1 < α. The first ordinal 0 is neither
limit, nor successor.

The first problem deals with the von Neumann definition of ordinals. A
set x is called transitive if y ∈ x and z ∈ y imply z ∈ x (or equivalently
y ∈ x =⇒ y ⊂ x). We say that ∈ is a well-ordering on the set x if its
restriction to x is a well-ordering on x. Call a set N-set (N for Neumann) if
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it is transitive and well ordered by ∈. We always consider an N-set with the
well-ordering ∈, and for notational convenience sometimes we write <∈ for
∈. Part (h) shows that for a well-ordered set 〈A,≺〉 we could define its order
type as the unique N-set similar to it, and this is exactly the von Neumann
definition of ordinals.

1. (a) Every element of an N-set is an N-set.
(b) If x is an N-set, then y = x ∪ {x} is an N-set, and if z is an N-set

containing x, then y ⊂ z.
(c) If x is an N-set, y ∈ x, then y is an initial segment of x.
(d) If x is an N-set and Y ⊂ x is one of its initial segments, then Y is an

N-set, and either Y = x or Y ∈ x.
(e) If x, y are N-sets, then x = y or x ∈ y or y ∈ x.
(f) For N-sets x, y define x < y if x ∈ y. Then this is irreflexive, transitive

and trichotomous. Furthermore, if B is a nonempty set of N-sets, then
there is a smallest element of B with respect to < (“well order”).

(g) If x, y are different N-sets, then they are not similar.
(h) Every well-ordered set is similar to a unique N-set.

2. There is no infinite decreasing sequence of ordinals.
3. Arbitrary infinite sequence of ordinals includes an infinite nondecreasing

subsequence.
4. The following relations are true:

a) 1 + ω = ω, ω + 1 
= ω,
b) 2 · ω = ω, ω · 2 
= ω.

5. If a and b are natural numbers, then what is (ω + a) · (ω + b)?
6. Solve the following equations for the ordinals ξ and ζ:

(a) ω + ξ = ω

(b) ξ + ω = ω

(c) ξ · ω = ω

(d) ω · ξ = ω

(e) ξ + ζ = ω

(f) ξ · ζ = ω

7. Solve the equation ξ + ζ = ω2 + 1 for the ordinals ξ and ζ.
8. Which one is bigger?

a) ω + k or k + ω (k is a positive integer)
b) k · ω or ω · k (k ≥ is an integer)
c) ω + ω1 or ω1 + ω

d) P (ω) = ωn · an + · · ·+ ω · a1 + a0 or ωn+1, where n ≥ 1 and a0, . . . , an

are natural numbers
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e) P (ω) = ωn · an + · · ·+ ω · a1 + a0 or Q(ω) = ωm · a′
m + · · ·+ ω · a′

1 + a′
0,

where n, m, a0, a
′
0 . . . , an, a′

n are natural numbers
9. Addition among ordinals is monotonic in both arguments, and strictly

monotonic in the second argument. The same is true of multiplication
provided the first factor is nonzero.

10. a) γ + α = γ + β implies α = β,
b) α + γ = β + γ does not imply α = β,
c) γ · α = γ · β, γ > 0 imply α = β,
d) α · γ = β · γ, γ > 0 do not imply α = β.
Does the answer change in b) or d) if γ is a natural number?

11. If α · γ = β · γ and γ is a successor ordinal, then α = β.
12. If k is a positive integer and αk = βk, then α = β.
13. If ξ is a limit ordinal, then

a) supη<ξ(α + η) = α + ξ,
b) supη<ξ(α · η) = α · ξ.
Are the analogous relations true if we change the order of the terms in
the sums and products?

14. If α ≤ β, then the equation α + ξ = β is uniquely solvable for ξ. Is the
same true for the equation ξ + α = β?

15. If 0 < α, then for any β there are unique ζ and ξ < α such that β = α·ζ+ξ.
16. If α > 0 is an arbitrary ordinal and β is sufficiently large, then α+β = β.
17. If α + β = β + α for all ordinals β, then α = 0.
18. Every ordinal can be written in a unique manner in the form β +n where

β is a limit ordinal or zero and n is a natural number.
19. The limit ordinals are the ones that have the form ω · β, β ≥ 1.
20. A positive ordinal α is a limit ordinal if and only if n·α = α for all positive

integer n.
21. Let n be finite and α a limit ordinal. Then (α + n) · β = α · β + n if β is

a successor ordinal, and (α + n) · β = α · β if β is 0 or a limit ordinal.
22. If k ≥ 1, n are natural numbers and α is a limit ordinal, then (α · n)k =

αk · n.
23. Given α > 0, what are those natural numbers n such that α can be written

as α = n · β for some ordinal β?
24. In each case find all ordinals α that satisfy the given equation.

a) α + 1 = 1 + α

b) α + ω = ω + α

c) α · ω = ω · α
d) α + (ω + 1) = (ω + 1) + α
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e) α · (ω + 1) = (ω + 1) · α
25. If n is a positive integer, then

∑
ξ<ωn ξ = ω2n−1.

26. For every α there are only finitely many distinct γ such that α = ξ+γ with
some ξ. Is the analogous statement true for the representation α = γ + ξ?

27. For every α 
= 0 there are only finitely many γ such that α = ξ · γ with
some ξ. Is the analogous statement true for the representation α = γ · ξ?

28. Let m be a positive integer. A successor ordinal can be represented as a
product with m factors only in finitely many ways.

29. The equation ξ2 + ω = ζ2 has no solution for ξ and ζ.
30. Give infinitely many ξ and ζ such that ξ is infinite, and ξ2 + ω2 = ζ2.
31. Solve α2 · 2 = β2 for α and β.
32. For every natural number k there is an infinite sequence of ordinals that

form an arithmetic progression and in which each term is a kth power.
33. Give ordinals α and β with the property that for no n = 2, 3, . . . is αn ·βn

or βn · αn an nth power.
34. The sum ω +1+2+ · · · does not change if we alter the position of finitely

many terms in it.
35. One can get infinitely many different ordinals from the sum 1+2+3+· · ·+ω

by changing the position of finitely many terms in it.
36. For every n ≥ 1 give a sum α0 + α1 + · · · of positive ordinals from which

one can get exactly n different sums by taking a permutation of the terms
(possibly infinitely many) in the sum.

37. The sum of the n + 1 ordinals 1, 2, . . . , 2n−1, ω in all possible orders take
2n different values.

38. Let g(n) be the maximum number of different ordinals that can be ob-
tained from n ordinals by taking their sums in all possible n! different
orders. Then

lim
n→∞ g(n)/n! = 0.

39. For every n give n ordinals such that all products of them taken in all
possible n! orders are different.

40. Let α be a limit ordinal, and call a set A ⊆ α of ordinals closed in α if the
least upper bound of any increasing transfinite subsequence of A is in A
or is equal to α. Then A is closed in α if and only if it is a closed subset
of the topological space (α, T ), where the topology T is generated by the
intervals {ξ : ξ < τ}, {ξ : τ < ξ < α}, τ < α (this topology is called
the interval topology on α).
It is also true that A is closed in α if and only if the supremum of every
subset B ⊂ A is in A or is equal to α.
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41. With the notation of the preceding problem a function f : α → α is
continuous in the interval topology if and only if f(supA) = supξ∈A f(ξ)
for any set A ⊂ α with supA < α.

42. If A ⊆ α is of cardinality κ, then its closure in the interval topology is
also of cardinality κ.

43. If {aξ}ξ<ω1 is a transfinite sequence of countable ordinals converging in
the topology on ω1 to a σ ∈ ω1, then there is a ν < ω1 such that aξ = aζ

for all ξ, ζ > ν.
44. Assume that f : ω1 × ω1 → ω has the property that for α < ω1, n < ω

the set {β < α : f(β, α) ≤ n} is finite. Then all the sets

Zf (α, n) =
{
β < α : there are β = β0 < β1 < · · · < βk = α,

with f(βi, βi+1) ≤ n
}

are also finite.
45. There is a function f : ω1 × ω1 → ω such that for α < ω1, n < ω the

set {β < α : f(β, α) ≤ n} is finite and for any α0 < α1 < · · · we have
supk<ω f(αk, αk+1) = ω.

46. Two players, I and II, play the following game of length ω. At round i first
I chooses a countable ordinal αi at least as large as the previous ordinal
chosen by him, then II selects a finite subset Si of αi. After ω many steps
II wins if S0 ∪ S1 ∪ · · · = sup

(
{αi : i < ω}

)
.

(a) II has a winning strategy.
(b) II even has a winning strategy that chooses Si only depending on

i, αi−1, and αi.

47. Two players, I and II, alternatively select countable ordinals. After ω steps
they consider the set of all selected ordinals, and II wins if it is an initial
segment, otherwise I wins.
(a) There is a winning strategy for II.
(b) There is no such winning strategy if the choice of II depends only on

the set of ordinals selected before (by the two players).
(c) Even such a strategy exists if II is allowed to select finitely many

ordinals in every step.

* * *

48. Let κ be an infinite cardinal and let two players alternately choose sets
K0 ⊃ K1 ⊃ · · · of cardinality κ. Then no matter how the first player plays,
the second one can always achieve ∩∞

n=0Kn = ∅.
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Ordinal arithmetic

This chapter can be regarded as the “infinite analogue” of classical number
theory. It contains problems on the arithmetic properties of ordinals such as
divisibility, representation in a base, decomposition, primeness, etc.

A special role is played by the so-called normal representation (Problem
16) which is representation in base ω. In fact, many problems simplify con-
siderably if the ordinals are written in normal form.

In this chapter α, β, . . . always denote ordinals.
If α · β = γ, then we say that α (β) is a left (right) divisor of γ, and also

that γ is a right (left) multiple of α (β).

1. If A is any set of nonzero ordinals, then there is a largest ordinal γ that
divides every element of A from the left (this γ is called the greatest
common left divisor of A). Every ordinal that divides every element of A
from the left also divides γ from the left.

2. α is a limit ordinal if and only if ω divides α from the left.
3. α is divisible from the left by ω+2 and by ω+3 if and only if it is divisible

from the left by ω2.
4. α is divisible from the right by 2 and 3 if and only if it is divisible from

the right by 6. Is the same true for divisibility from the left?
5. α is divisible from the right by ω + 2 and by ω + 3 if and only if it is

divisible from the right by ω + 6.
6. Every ordinal α has only a finite number of right divisors. Is the same

true of left divisors? What if α is a successor ordinal?
7. If α and β are right divisors of γ ≥ 1, then either

a) α divides β from the right, or
b) β divides α from the right, or
c) α = ξ+p, β = ξ+q, where ξ is a limit ordinal or 0, and p, q are positive

natural numbers.
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In case c) if [p, q] is the smallest common multiple of p and q, then ξ+[p, q]
is the smallest common left multiple of α and β, and ξ +[p, q] also divides
γ from the right.

8. Any set of positive ordinals has a greatest common right divisor, and this
greatest common right divisor is divisible from the right by any common
right divisor.

9. Any set of positive ordinals has a least common (positive) right multiple,
and this least common right multiple divides every common right multiple
from the left.

10. Exhibit two ordinals that do not have a common (nonzero) left multiple.
11. Define ordinal exponentiation by transfinite recursion in the following way:

γ0 = 1, γα+1 = γα · γ, and for limit ordinal α let γα be the supremum of
the ordinals γη, η < α. For γ > 1 the following are true:
(i) γα · γβ = γα+β ,

(ii) (γα)β = γα·β ,
(iii) if α < β then γα < γβ ,
(iv) α ≤ γα.

12. Consider the set Φα,γ of all mappings f : α → γ for which all but finitely
many elements are mapped to 0, and for f, g ∈ Φα,γ , f 
= g let f ≺ g if
f(ξ) < g(ξ) for the largest ξ < α for which f(ξ) 
= g(ξ). Then 〈Φα,γ ,≺〉 is
well ordered, and its order type is γα.

13. For any integer n > 1 we have
a) nωω

= ωωω

,
b) (ω + n)ω = ωω.

14. If α is a limit ordinal, then 1α + 2α = 3α.
15. The following are true:

a) 2ω = ω,
b) if α is countable, then so is 2α,
c) for any cardinal κ = ωσ we have 2ωσ = κ,
d) if α is infinite, then the cardinality of 2α is equal to the cardinality of

α,
e) every ordinal can be written in a unique manner in the form

2ξn + 2ξn−1 + · · · + 2ξ0 , (9.1)

where ξ0 < ξ1 . . . < ξn.
What is the form (9.1) of the ordinal ω4 · 6 + ω2 · 7 + ω + 9?

16. If γ ≥ 2, then every ordinal can be written in a unique way in the form

γξn · ηn + · · · + γξ0 · η0,
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where ξ0 < ξ1 < . . . < ξn, and 1 ≤ ηj < γ for all 1 ≤ j ≤ n.
This form is called the representation of the given ordinal in base γ. The
representation of an ordinal α in base ω is called the normal form of α.

17. If
α = ωξn · an + · · · + ωξ0 · a0, (9.2)

ξ0 < ξ1 < · · · < ξn, a0, a1. . . . , an ∈ N is the normal expansion of α, then
α < ωξn+1, and for any ωξn+1 ≤ β we have α + β = β.

18. Find the normal form of the sum and product of two ordinals given in
normal form.

19. If the normal form (9.2) of α has (n+1) components, then for m = 1, 2, . . .
the normal form of αm has (n + 1) components if α is a limit ordinal and
it has mn + 1 components if α is a successor ordinal.

20. If the normal form of α is (9.2), then every 0 < β < ωξ0 is a left divisor
of α, and besides these there are only finitely many left divisors of α.

21. Given α > 0, what are those natural numbers k such that α can be written
as α = β · k for some ordinal β?

22. Given an ordinal α, what is
∑

β<ωα β?
23. If ωα = A ∪ B, then either A or B is of order type ωα.
24. For every α there is a natural number N such that if α is decomposed as

α = A0 ∪ · · · ∪ AN into N + 1 disjoint sets, then there is a j such that
∪i�=jAi has order type α.

25. If κ is an infinite cardinal, then every ordinal α of cardinality at most κ
can be decomposed as α = A0 ∪ A1 ∪ · · · such that every An is of order
type smaller than κω.

26. Call an ordinal α > 0 (additively) indecomposable if it cannot be written
as a sum of two smaller ordinals. Give the first three infinite indecompos-
able ordinals.

27. For every ordinal there is a bigger indecomposable ordinal. Also, for every
countable ordinal there is a bigger indecomposable countable ordinal.

28. If α is arbitrary, and γ is the smallest ordinal for which there is a β such
that α = β + γ, then γ is indecomposable.

29. α is indecomposable if and only if it does not have a right divisor that is
a successor ordinal bigger than 1.

30. α is indecomposable if and only if ξ + α = α for every ξ < α.
31. The supremum of indecomposable ordinals is indecomposable.
32. If α is indecomposable, then so is every β · α, β > 0.
33. If α is indecomposable, then α is divisible from the left by all 1 ≤ β < α.
34. The smallest indecomposable ordinal bigger than α ≥ 1 is α · ω.
35. Every positive ordinal can be represented in a unique manner as a sum of

a finite sequence of nonincreasing indecomposable ordinals.
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36. Let α = β1 + β2 + · · ·+ βn be the decomposition of α from the preceding
problem. Then α = β + γ for some β, γ 
= 0 if and only if there are a 1 ≤
m ≤ n such that γ = βm+βm+1+· · ·+βn and β = β1+β2+· · ·+βm−1+δ,
where δ is an arbitrary ordinal smaller than βm.

37. The indecomposable ordinals are precisely the ordinals of the form ωα.
38. Call an ordinal α > 1 prime if it cannot be written as the product of two

smaller ordinals. Give the first three infinite prime ordinals.
39. α > 1 is prime if and only if α = β · γ, γ > 1 imply γ = α.
40. If α is an indecomposable ordinal, then α + 1 is prime.
41. An infinite successor ordinal is prime if and only if it is of the form ωξ +1.

42. A limit ordinal is prime if and only if it is of the form ωωξ

.
43. Every ordinal has at most one infinite right divisor that is prime.
44. Every successor ordinal has at most one infinite left divisor that is prime.

However, a limit ordinal may have infinitely many infinite left prime di-
visors.

45. Every ordinal α > 1 is the product of finitely many prime ordinals. In
general, this representation is not unique even if we require that no factor
can be omitted without changing the product.

46. Every α > 1 has a unique representation

α = a1 · · · am · b1 · c1 · b2 · · · bs · cs · bs+1,

where a1 ≥ . . . ≥ am are limit primes, c1, . . . , cs are infinite successor
primes, and b1, . . . , bs+1 > 1 are natural numbers (some of the terms may
be missing).

47. Call two positive ordinals α and β additively commutative if α+β = β+α.
If α is additively commutative with both β and γ, then β and γ are also
additively commutative.

48. For every positive ordinal α there are only countably many ordinals with
which α is additively commutative.

49. Let n, m be given positive integers. Two ordinals α and β are additively
commutative if and only if α · n and β · m are additively commutative.

50. Two ordinals α and β are additively commutative if and only if there are
positive integers n, m such that α · n = β · m.

51. Two ordinals α and β are additively commutative if and only if there are
natural numbers n, m and an ordinal ξ such that α = ξ · n, β = ξ · m.

52. For any α the ordinals that additively commute with α are of the form
β ·n, n = 1, 2, . . ., where β is the smallest ordinal additively commutative
with α.



Problems Chapter 9 : Ordinal arithmetic 47

53. If the normal form of α > 0 is (9.2), then the ordinals additively commu-
tative with α are the ones with normal form

ωξn · c + ωξn−1 · an−1 · · · + ωξ0 · a0

where c is an arbitrary positive natural number.
54. The sum of n nonzero ordinals α1, . . . , αn is independent of their order if

and only if there are positive integers m1, . . . , mn and an ordinal ξ such
that α1 = ξ · m1, α2 = ξ · m2, . . ., αn = ξ · mn.

55. Let g(n) be the maximum number of different ordinals that can be ob-
tained from n ordinals by taking their sums in all possible n! different
orders.
(a) For each n

g(n) = max
1≤k≤n−1

(k2k−1 + 1)g(n − k).

(b) g(1) = 1, g(2) = 2, g(3) = 5, g(4) = 13, g(5) = 33, g(6) = 81,
g(7) = 193, g(8) = 449, g(9) = 332, g(10) = 33 · 81, g(11) = 812,
g(12) = 81 · 193, g(13) = 1932, g(14) = 332 · 81, g(15) = 33 · 812.

(c) For m ≥ 3 we have g(5m) = 33 ·81m−1 g(5m+1) = 81m, g(5m+2) =
193 · 81m−1, g(5m + 3) = 1932 · 81m−2 and g(5m + 4) = 1933 · 81m−3.

(d) For n ≥ 21 we have g(n) = 81g(n − 5).
56. Call two ordinals α > 1 and β > 1 multiplicatively commutative if α ·β =

β · α. If γ > 1 is multiplicatively commutative with the ordinals β and γ,
then β and γ are also multiplicatively commutative.

57. No successor ordinal bigger than 1 is multiplicatively commutative with
any limit ordinal, and no finite ordinal bigger than 1 is multiplicatively
commutative with any infinite ordinal.

58. For every ordinal α > 1 there are only countably many ordinals that are
multiplicatively commutative with α.

59. Let m, n be positive integers. Two ordinals α and β are multiplicatively
commutative if and only if αn and βm are multiplicatively commutative.

60. Two infinite ordinals α, β are multiplicatively commutative if and only if
there are natural numbers n, m such that αn = βm.

61. Two limit ordinals α < β are multiplicatively commutative if and only
if there is a θ and positive integers p, r such that β = ωθ·r · α, and the
highest power of ω in the normal representations of α is ωθ·p.

62. If α is an infinite successor ordinal and ξ > 1 is the smallest ordinal multi-
plicatively commutative with α, then every ordinal that is multiplicatively
commutative with α is of the form ξn with n = 0, 1 . . ..

63. Two infinite successor ordinals α and β are multiplicatively commutative
if and only if there is an ordinal ξ and natural numbers n, m with which
α = ξn and β = ξm.
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64. The ordinals ω2 + ω and ω3 + ω2 are multiplicatively commutative, but
there is no ordinal ξ and natural numbers n, m with which α = ξn and
β = ξm would be true.

65. The product of n ordinals α1, . . . , αn, αi ≥ 2 is independent of their order
if and only if there are positive integers m1, . . . , mn for which αm1

1 =
αm2

2 = · · · = αmn
n .

66. For every n give n ordinals such that all products of them taken in all
possible n! orders are different.

67. There are no different infinite ordinals that are simultaneously additively
and multiplicatively commutative.

68. For infinite α the following statements are pairwise equivalent:
a) if ξ < α and θ < α, then ξ · θ < α,
b) if 1 ≤ ξ < α then ξ · α = α,

c) α = ωωβ

for some β.
69. Call an ordinal α epsilon-ordinal, if ωα = α. Find the smallest epsilon-

ordinal.
70. For every ordinal there is a larger epsilon-ordinal and for every countable

ordinal there is a larger countable epsilon-ordinal.
71. If α is an epsilon-ordinal, then

(i) ξ + α = α for ξ < α,
(ii) ξ · α = α for 1 ≤ ξ < α,
(iii) ξα = α for 2 ≤ ξ < α.

72. If β ≥ ω and βα = α, then α is an epsilon-ordinal.
73. α is an epsilon-ordinal if and only if ω < α and βγ < α whenever β, γ < α.
74. For infinite ordinals α < β we have αβ = βα if and only if α is a limit

ordinal and β = γ · α, where γ > α is an epsilon ordinal.
75. Define the product

∏
ξ<θ αξ of a transfinite sequence {αξ}ξ<θ of ordinals,

and discuss its properties!
76. If α0 +α1 + · · · is a sum of a sequence of ordinals of type ω, then by taking

a permutation of (possibly infinitely many of) the terms in the sum, one
can get only finitely many different ordinals.

77. If α0+α1+· · · is a sum of a sequence of ordinals of type ω, then by deleting
finitely many terms and taking a permutation of (possibly infinitely many
of) the remaining terms in the sum, one can get only finitely many different
ordinals.

78. Given a positive integer n give a sum α0 + α1 + · · · of a sequence of
infinite ordinals of type ω such that one can get exactly n different values
by taking a permutation of the terms in the sum.
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79. If α0 ·α1 · · · is a product of a sequence of ordinals of type ω, then by taking
a permutation of (possibly infinitely many of) the terms in the product,
one can get only finitely many different ordinals.

80. If α0·α1 · · · is a product of a sequence of ordinals of type ω, then by deleting
finitely many terms and taking a permutation of (possibly infinitely many
of) the remaining terms in the product, one can get only finitely many
different ordinals.

81. Given a positive integer n give a product α0 · α1 · · · of a sequence of
infinite ordinals of type ω such that one can get exactly n different values
by taking a permutation of the terms in the product.

82. Permuting finitely many terms in a sum
∑

β≤ω αβ (but keeping the per-
muted sum of type ω + 1), one may get infinitely many different ordinals.

83. If γ is a countable ordinal and {αβ}β<γ is a sequence of ordinals, then
there are only countably many different sums of the form

∑
β<γ απ(β),

where π : γ → γ is any mapping.
84. Permuting finitely many terms in a product

∏
β≤ω αβ (but keeping the

permuted sum of type ω + 1), one may get infinitely many different ordi-
nals.

85. If γ is a countable ordinal and {αβ}β<γ is a sequence of ordinals, then
there are only countably many different products of the form

∏
β<γ απ(β),

where π : γ → γ is any mapping.
86. Write Γ (α) =

∏
ξ<α ξ. Calculate Γ (ω), Γ (ω + 1), Γ (ω · 2), and Γ (ω2).

87. Find all operations F from the ordinals to the ordinals that are continuous
in the interval topology and that satisfy the equation F(α + β) = F(α) +
F(β) for all α and β.

88. Is there a not identically zero operation F from the ordinals to the ordinals
that is continuous in the interval topology and that satisfies the equation
F(α + β) = F(β) + F(α) for all α and β?

89. Find all operations F from the ordinals to the ordinals that are continuous
in the interval topology and that satisfy the equation F(α + β) = F(α) ·
F(β) for all α and β.

90. Is there a not identically zero and not identically 1 operation F from the
ordinals to the ordinals that is continuous in the interval topology and
that satisfies the equation F(α + β) = F(β) · F(α) for all α and β?

91. Define the Hessenberg sum (or natural sum) α ⊕ β of ordinals α, β with
normal form

α = ωδn · an + · · · + ωδ0 · a0, β = ωδn · bn + · · · + ωδ0 · b0 (9.3)

(with possibly ai = 0 or bi = 0) as

α ⊕ β = ωδn · (an + bn) + · · ·ωδ0 · (a0 + b0).



50 Chapter 9 : Ordinal arithmetic Problems

(a) ⊕ is an associative and commutative operation.
(b) If β < γ, then α ⊕ β < α ⊕ γ.
(c) For a given α how many solutions does the equation x⊕ y = α have?
(d) Is Fα(x) = α ⊕ x continuous?
(e) α1 + · · · + αn ≤ α1 ⊕ · · · ⊕ αn. When does the equality hold?
(f) α1 ⊕ · · · ⊕ αn ≤ max{α1, . . . , αn} · (n + 1).

92. α1 ⊕ · · · ⊕ αn is the largest ordinal that occurs as the order type of A1 ∪
· · · ∪An, where A1, . . . , An are subsets of some ordered set of order types
α1, . . . , αn, respectively.

93. If F(α, β) is a commutative operation on the ordinals which is strictly
increasing in either variable, then F(α, β) ≥ α ⊕ β holds for all α, β.

The “superbase” form of a natural number in base b is obtained by writing
the number in base b, and all exponents and exponents of exponents,
etc., in base b. For example, if b = 2, then 141 = 27 + 23 + 22 + 1 =
222+2+1 + 22+1 + 22 + 1, and the latter form is its “superbase” 2 form.

94. Pick a natural number n1, and for each i = 1, 2, . . . perform the following
two operations to define the numbers n2i and n2i−1:
(i) write n2i−1 in “superbase” form in base i + 1, and while keeping all

coefficients, replace the base by i+2. This gives a number that we call
n2i.

(ii) set n2i+1 = n2i − 1.
If n2i+1 = 0, then we stop, otherwise repeat these operations. For example,
if n1 = 23, then its “superbase” 2 form is 23 = 222

+ 22 + 2 + 1, so
n2 = 333

+ 33 + 3 + 1 = 7625597485018, n3 = 7625597485017. Since
n3 = 333

+ 33 + 3, and here we change the base 3 to base 4, we have
n4 = 444

+ 44 + 4, which is the following 155-digit number:

1340780792994259709957402499820584612747936582059239
3377723561443721764030073546976801874298166903427690
031858186486050853753882811946569946433649006084356.

(a) No matter what n1 is, there is an i such that ni = 0.
(b) The same conclusion holds if in (i) the actual base is changed to any

larger base (i.e., when the bases are not 2, 3, . . . but some numbers
b1 < b2 < . . .).
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Cardinals

Cardinals express the size of sets. Saying that two sets are equivalent (are
of equal size) is the same as saying that their cardinality is the same. The
cardinality of the set A is denoted by |A|, and it can be defined as the smallest
ordinal equivalent to A: |A| = min{α : α ∼ A}.

We set |A| < |B| if A is equivalent to a subset of B but not vice versa. It is
easy to see that this is the same as |A| being smaller than |B| in the “smaller”
relation (i.e., in ∈) among ordinals. If κi, i ∈ I are cardinals, then their sum∑

i∈I κi is defined as the cardinality of ∪i∈IAi, where Ai are disjoint sets of
cardinality κi, and their product

∏
i∈I κi is defined as the cardinality of the

product set
∏

i∈I Ai (recall that this is the same as the set of choice functions
f : I → ∪i∈IAi, f(i) ∈ Ai for all i). Finally, we set |A||B| as the cardinality
of the set BA (which is the set of functions f : B → A from B into A).

This chapter contains problems related to cardinal operations. The fun-
damental theorem of cardinal arithmetic (Problem 2) says that for infinite
cardinals κ, λ we have κ + λ = κλ = max{κ, λ}. Quite often this makes ques-
tions on cardinal addition and multiplication trivial. The situation is com-
pletely different with cardinal exponentiation; it is not trivial at all, and is
one of the subtlest question of set theory with problems leading quite often
to independence results. For this reason we shall barely touch upon cardinal
exponentiation in this book.

An important property of some cardinals is their regularity: κ = cf(κ). It
is equivalent to the fact that κ cannot be reached by (i.e., not the supremum
of) less than κ smaller ordinals. Another equivalent formulation is that a set
of cardinality κ is not the union of fewer than κ sets of cardinality smaller
than κ (see Problems 9, 10). Some properties hold only for regular cardinals,
and quite frequently proofs are simpler for regular cardinals than for singular
(=nonregular) ones.

The finite cardinals are just the natural numbers. Infinite cardinals are
listed in an endless “transfinite sequence” ω0, ω1, . . . , ωα, . . ., numbered by
ordinals α. Here ω0 = ω is the smallest infinite cardinal, and this numbering
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is done so that β < α implies ωβ < ωα. If κ = ωα, then ωα+1 is the successor
cardinal to κ (i.e., the smallest cardinal larger than κ), and is denoted by κ+.
It is always a regular cardinal.

For historical reasons we also write ℵα instead of ωa (note that ωα has
two faces; it is an ordinal and also a cardinal, and we use the aleph notation
when we emphasize the cardinal aspect).

CH, the continuum hypothesis (i.e., that there is no cardinal between ω
and c) can be expressed as c = ℵ1 or as 2ℵ0 = ℵ1. The generalized continuum
hypothesis (GCH) stipulates that for all α we have 2ℵα = ℵα+1. This is also
independent of the axioms of set theory (cf. the introduction to Chapter 4).

1. What is the cardinal a0 · a1 · · · if the ai’s are positive integers?
2. (Fundamental theorem of cardinal arithmetic) For every infinite cardinal

κ we have κ2 = κ.
3. If at least one of κ > 0 and λ > 0 is infinite, then

κ + λ = κλ = max{κ, λ}.

4. If X is of cardinality κ ≥ ℵ0, then the following sets are of cardinality κ:
a) set of finite sequences of elements of X,
b) set of those functions that map a finite subset of X into X.

5. Let X be a set of infinite cardinality κ, and call a set Y ⊂ X “small” if
there is a decomposition of X into subsets of cardinality κ each of which
intersects Y in at most one point. Then X is the union of two of its “small”
subsets.

6. The supremum of any set of cardinals (considered as a set of ordinals) is
again a cardinal.

7. If ρ1 + ρ2 =
∑

ξ<α λξ, then there are cardinals λ
(i)
ξ , i = 1, 2, ξ < α such

that ρi =
∑

ξ<α λ
(i)
ξ , i = 1, 2, and for all ξ we have λξ = λ

(1)
ξ + λ

(2)
ξ .

8. If α is the cofinality of an ordered set, then α is a regular cardinal.
9. If κ is an infinite cardinal, then cf(κ) coincides with the smallest ordinal

α for which there is a transfinite sequence {κξ}ξ<α of cardinals smaller
than κ with the property κ =

∑
ξ<α κξ.

10. An infinite cardinal is regular if and only if κ is not the sum of fewer than
κ cardinals each of which is less than κ.

11. A successor cardinal is regular.
12. Which are the smallest three singular (i.e., not regular) infinite cardinals?
13. cf(ℵα) = ℵα if α is a successor ordinal, and cf(ℵα) = cf(α) if α is a limit

ordinal.
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14. Let n be a natural number. The cardinality of a set H is at most ℵn if
and only if n+2H(≡ Hn+2) can be represented in the form A1 ∪ · · · ∪
An+2, where Ak is finite “in the direction of the kth coordinate”, i.e., if
h1, . . . , hk−1, hk+1, . . . hn+2 are arbitrary elements from H, then there are
only finitely many h ∈ H such that (h1, . . . , hk−1, h, hk+1, . . . hn+2) ∈ Ak.

15. The cardinality of a set H is at most ℵα+n if and only if n+2H(≡ Hn+2)
can be represented in the form A1 ∪ · · · ∪ An+2, where the cardinality
of Ak “in the direction of the kth coordinate” is smaller than ℵα, i.e., if
h1, . . . , hk−1, hk+1, . . . hn+2 are arbitrary elements from H, then there are
fewer than ℵα elements h ∈ H such that

(h1, . . . , hk−1, h, hk+1, . . . hn+2) ∈ Hk.

16. (Cantor’s inequality) For any κ we have 2κ > κ.
17. (König’s inequality) If ρi < κi for all i ∈ I, then∑

i∈I

ρi <
∏
i∈I

κi.

18. If the set of cardinals {κξ}ξ<θ, 0 < κξ < κ is cofinal with κ, then∏
ξ<θ κξ > κ.

19. If κ is infinite, κ =
∑

ξ<cf(κ) κξ where κ > κξ > 1, then∏
ξ<cf(κ)

κξ = κcf(κ).

20. If κ is infinite, then κcf(κ) > κ.
21. If λ ≥ 2 and κ is infinite, then cf(λκ) > κ.
22. (Bernstein–Hausdorff–Tarski equality) Let κ be an infinite cardinal and λ

a cardinal with 0 < λ < cf(κ). Then

κλ =

(∑
ρ<κ

ρλ

)
κ.

23. If α is a limit ordinal, {κξ}ξ<α is a strictly increasing sequence of cardinals
and κ =

∑
ξ<α κξ, then for all 0 < λ < cf(α) we have κλ =

∑
ξ<α κλ

ξ .

24. If λ is singular and there is a cardinal κ such that for some µ < λ for
every cardinal τ between µ and λ we have 2τ = κ, then 2λ = κ, as well.

25. If there is an ordinal γ such that 2ℵα = ℵα+γ holds for every infinite
cardinal ℵα, then γ is finite.

26. The operation κ �→ κcf(κ) on cardinals determines
(a) the operation κ �→ 2κ,
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(b) the operation (κ, λ) �→ κλ.
27. If n is finite, then for λ ≥ 1

(a) ℵλ
α+n = ℵλ

α ℵα+n.
(b) ℵλ

n = 2λℵn.
28. When does ∏

n<ω

ℵn = 2ℵ0

hold?
29. ∏

n<ω

ℵn = ℵℵ0
ω .

30. If for all n < ω we have 2ℵn < ℵω, then 2ℵω = ℵℵ0
ω .

31. If ρ ≥ ω is a given cardinal, then there are infinitely many cardinals κ for
which κρ = κ, and there are infinitely many for which κρ > κ.

32. There are arbitrarily large cardinals λ with λℵ0 < λℵ1 .
33. For an infinite cardinal κ let µ be the minimal cardinal with 2µ > κ. Then

{κλ : λ < µ} is finite.
34. For an infinite cardinal κ let ρ = ρκ be the smallest cardinal such that

κρ > κ. Then ρκ is a regular cardinal. What is ρω? And ρωω?
35. The smallest κ for which 2κ > c holds is regular.
36. Let κ0 = ℵ0, and for every natural number n let κn+1 = ℵκn . Then

κ = supn κn is the smallest cardinal with the property κ = ℵκ.
37. There are infinitely many cardinals κ such that the set of cardinals smaller

than κ is of cardinality κ (i.e., κ = ℵκ). If we call such cardinals κ ”large”,
then are there cardinals κ such that the set of ”large” cardinals smaller
than κ is of cardinality κ?

38. Under GCH (generalized continuum hypothesis) find all cardinals κ for
which κℵ0 < κℵ1 < κℵ2 hold.

39. Assuming GCH evaluate
∏

β<α ℵβ .

40. Under GCH determine κλ.



11

Partially ordered sets

Let A be a set and ≺ a binary relation on A. 〈A,≺〉 is called a partially ordered
set if

• ≺ irreflexive: a 
≺ a for any a ∈ A,
• ≺ transitive: a ≺ b and b ≺ c imply a ≺ c.

Thus, the difference with ordered sets is that here we do not assume tri-
chotomy (comparability of elements).

In a partially ordered set 〈A,≺〉 two elements a, b are called comparable if
(exactly) one of a = b, a ≺ b or b ≺ a holds, otherwise they are incomparable.
An ordered subset of a partially ordered set is called a chain and a set of
pairwise incomparable elements an antichain.

The main problem that we treat in this chapter is how information on
the size of chains and antichains can be related to the structure of the set in
question.

1. In an infinite partially ordered set there is an infinite chain or an infinite
antichain.

2. If in a partially ordered set all chains have at most l < ∞ elements and
all antichains have at most k < ∞ elements, where k, l are finite numbers,
then the set has at most kl elements.

3. If in a partially ordered set all chains have at most k < ∞ elements, then
the set is the union of k antichains.

4. If in a partially ordered set all antichains have at most k < ∞ elements,
then the set is the union of k chains.

5. There is a partially ordered set in which all chains are finite, still the set
is not the union of countably many antichains.

6. There is a partially ordered set in which all antichains are finite, still the
set is not the union of countably many chains.
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7. If in a partially ordered set all chains are finite and all antichains are
countable, then the set is countable.

8. If in a partially ordered set all antichains are finite and all chains are
countable, then the set is countable.

9. There is a partially ordered set of cardinality continuum in which all chains
and all antichains are countable.

10. If in a partially ordered set all chains and all antichains have at most κ
elements, then the set is of cardinality at most 2κ.

11. If κ is an infinite cardinal, then there is a partially ordered set of cardi-
nality 2κ in which all chains and all antichains have at most κ elements.

12. For every cardinal κ there is a partially ordered set 〈P,≺〉 in which every
interval [x, y] = {z : x  z  y} is finite, yet P is not the union of κ
antichains.

13. If 〈P,≺〉 is a partially ordered set, call two elements strongly incompatible
if they have no common lower bound. Let c(P,≺) be the supremum of |S|
where S ⊆ P is a strong antichain, that is, a set of pairwise strongly
incompatible elements.
(a) If c(P,≺) is an infinite cardinal that is not weakly inaccessible, i.e., it

is not a regular limit cardinal, then c(P,≺) is actually a maximum.
(b) If κ is a regular limit cardinal, then there is a partially ordered set

〈P,≺〉 such that c(P,≺) = κ yet there is no strong antichain of cardi-
nality κ.

14. If 〈A,≺〉 is a partially ordered set, then there exists a cofinal subset B ⊆ A
such that 〈B,≺〉 is well founded (i.e., in every nonempty subset there is
a minimal element).

15. If there is no maximal element in the partially ordered set 〈P,≺〉, then
there are two disjoint cofinal subsets of 〈P,≺〉.

16. There is a partially ordered set 〈P,≺〉 which is the union of countably
many centered sets but not the union of countably many filters. (A subset
Q ⊆ P is centered if for any p1, . . . , pn ∈ Q there is some q  p1, . . . , pn

in P . A subset F ⊆ P is a filter, if for any p1, . . . , pn ∈ F there is some
q  p1, . . . , pn with q ∈ F .)

17. For two real functions f 
= g let f ≺ g if f(x) ≤ g(x) for all x ∈ R. In this
partially ordered set there is an ordered subset of cardinality bigger than
continuum. No such subset can be well ordered by ≺.

The following problems use two orderings on the set ωω of all functions
f : ω → ω: let f � g if f(n) < g(n) for all large n, and f ≺ g if
g(n) − f(n) → ∞ as n → ∞.

18. Each of 〈ωω,�〉 and 〈ωω,≺〉 has an order-preserving mapping into the
other, but they are not isomorphic.
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19. For any countable subset {fk}k of ωω there is an f larger than any fk

with respect to ≺.
20. 〈ωω,≺〉 includes a subset of order type ω1.
21. 〈ωω,≺〉 includes a subset of order type λm for each m = 1, 2, . . ..
22. If θ is an order type and 〈ωω,≺〉 includes a subset similar to θ, then it

includes such a subset consisting of functions that are smaller than the
identity function.

23. If θ1, θ2 are order types and 〈ωω,≺〉 includes subsets similar to θ1 and
θ2, respectively, then it includes subsets similar to θ1 + θ2 and θ1 · θ2,
respectively. It also includes a subset similar to θ∗

1 , where θ∗
1 is the reverse

type to θ1.
24. If θi, i ∈ I are order types where 〈I, <〉 is an ordered set, and 〈ωω,≺〉

includes subsets similar θi and also a subset similar to 〈I, <〉, then it
includes subsets similar to

∑
i∈I(<) θi. In particular, 〈ωω,≺〉 includes a

set of order type α for every α < ω2.
25. If ϕ < ω1 is a limit ordinal and

f0 ≺ f1 ≺ · · · ≺ fα ≺ · · · ≺ gα ≺ · · · g1 ≺ g0, α < ϕ,

then there is an f with fα ≺ f ≺ gα for every α < ϕ.
26. There exist functions

f0 ≺ f1 ≺ · · · ≺ fα ≺ · · · ≺ gα ≺ · · · g1 ≺ g0, α < ω1,

such that there is no function f with fα ≺ f ≺ gα for every α < ω1.
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Transfinite enumeration

This chapter deals with a fundamental technique based on the well-ordering
theorem. Most of the problems in this chapter require the construction of some
objects sometimes with quite surprising properties (like Problem 7: there is a
set A ⊂ R2 intersecting every line in exactly two points). The objects cannot
be given at once, but are obtained by a transfinite recursive process. The idea
is to have a well ordering of the underlying structure (in the aforementioned
example a well-ordering of the lines on R2 into a transfinite sequence {�α}α<c

of type c) and based on that the object is constructed one by one (in the
example constructing an increasing sequence {Aα}α<c of sets such that Aα

has at most two points on any line, and it has exactly two points on �α).
Of similar spirit is the transfinite construction of some closure sets such

as the set of Borel sets, the set of Baire functions, or the algebraic closures of
fields.

This transfinite enumeration technique will be routinely used in later chap-
ters.

1. If Ai, i ∈ I is an arbitrary family of sets, then there are pairwise disjoint
sets Bi ⊂ Ai such that ∪i∈IBi = ∪i∈IAi.

2. If there are given κ ≥ ℵ0 sets Xξ each of cardinality κ, then there are
pairwise disjoint subsets Yξ ⊆ Xξ each of cardinality κ. Further, we can
even have |Xξ \ Yξ| = κ for all ξ < κ.

3. If there are given κ ≥ ℵ0 sets Xξ, ξ < κ each of cardinality κ, then
there are pairwise disjoint sets Yα, α < κ such that for all α, ξ < κ the
intersection Yα ∩ Xξ is of cardinality κ.

4. Let κ be an infinite cardinal, X a set of cardinality κ, and F a family of
cardinality at most κ of mappings with domain X. Then there is a family
H of cardinality 2κ of subsets of X with the property that if H1, H2 ∈ H
are two different sets and f ∈ F is arbitrary, then f [H1] 
= H2.

5. If X is an infinite set of cardinality κ, then there is an almost disjoint
family H of cardinality bigger than κ of subsets of X each of cardinality
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κ (the intersection of any two members of H is of cardinality smaller than
κ).

6. There is a family {Nα}α<ω1 of subsets of N such that for α < β < ω1 the
set Nβ \ Nα is finite, but the set Nα \ Nβ is infinite.

7. There is a subset A of R2, that has exactly two points on every line.
8. Suppose that to every line � on the plane a cardinal 2 ≤ m� ≤ c is assigned.

Then there is a subset A of the plane such that |A ∩ �| = m� holds for
every �.

9. If L1 and L2 are two disjoint sets of lines lying on the plane, then the
plane can be divided into two sets A1∪A2 in such a way that every line in
L1 resp. L2 intersects A1 resp. A2 in fewer than continuum many points.

10. R can be decomposed into continuum many pairwise disjoint sets of power
continuum, such that each of these sets intersects every nonempty perfect
set.

11. R can be decomposed into continuum many pairwise disjoint and non-
measurable sets.

12. R can be decomposed into continuum many pairwise disjoint sets each of
the second category.

13. There is a subset A of R2 that has at most two points on every line,
but A is not of measure zero (with respect to two-dimensional Lebesgue
measure).

14. There is a second category subset A of R2 that has at most two points on
every line.

15. There is a set A ⊂ R such that every x ∈ R has exactly one representation
x = a + b with a, b ∈ A.

16. If A ⊂ R is an arbitrary set, then there is a function f : A → A that
assumes every value only countably many times and for which f(a) < a
for all a ∈ A, except for the smallest element of A (if there is one).

17. Every real function is the sum of two 1-to-1 functions.
18. There is a real function that is not monotone on any set of cardinality

continuum.
19. There is a real function F such that for all continuous real functions f

the sum F + f assumes all values y ∈ R in every interval.
20. There is a real function f such that if {xn}∞

n=0 is an arbitrary sequence
of distinct real numbers and {yn}∞

n=0 is an arbitrary real sequence, then
there is an x ∈ R such that for all n we have f(x + xn) = yn.

21. For X ⊆ Rn let XL be the set of all limit points of X, and starting from
X0 = X form the sets

Xα =
{

XL
β if α = β + 1,

∩ξ<αXξ if α is a limit ordinal.
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Then there is a countable ordinal θ such that Xα = Xθ for all α > θ, and
the set X \ Xθ is countable. Furthermore Xθ is empty or it is perfect.

22. Every closed set in Rn is the union of a perfect set and a countable set.
23. Starting from an arbitrary set X and a family H of subsets of X form

the families Hα of sets in the following way: H0 = H; for every ordinal α
let Hα+1 be the family of sets that can be obtained as a countable union
of sets in Hα or that are the complements (with respect to X) of some
sets in Hα; and for a limit ordinal α set Hα = ∪β<αHβ . Then Hω1 = Hα

for every α > ω1, and Hω1 is the σ-algebra generated by H (this is the
intersection of all σ-algebras including H, and is the smallest σ-algebra
including H).

24. The σ-algebra generated by at most continuum many sets is of power at
most continuum.

25. The family of Borel sets in Rn is the smallest family of sets containing the
open sets and closed under countable intersection and countable disjoint
union.

26. Starting from the set C[0, 1] of continuous functions on the interval [0, 1]
form the following families Bα of functions: B0 = C[0, 1]; for every α
let Bα+1 be the set of those functions that can be obtained as pointwise
limits of a sequence of functions from Bα; and for a limit ordinal α let
Bα = ∪β<αBβ . Then Bω1 = Bα for all α > ω1, and Bω1 is the smallest set
of functions that is closed for pointwise limits and that includes C[0, 1]
(this is the set of so-called Baire functions on [0, 1]).

27. Let 〈A, · · ·〉 be an algebraic structure with at most ρ finitary operations.
Then the subalgebra in A generated by a subset of κ(
= 0) elements has
cardinality at most max{κ, ρ,ℵ0} (the subalgebra generated by a set X
of elements is the intersection of all subalgebras that include X).

28. If F is any field of cardinality κ, then there is an algebraically closed field
F ⊂ F∗ of cardinality at most max{κ,ℵ0} (a field

F∗ = 〈F ∗,+, ·, 0, 1〉

is called algebraically closed if for any polynomial an ·xn + · · ·+a1 ·x+a0
with ai ∈ F ∗ there is an a ∈ F ∗ such that an · an + · · · + a1 · a + a0 = 0).

29. Every ordered set of cardinality κ is similar to a subset of the lexicograph-
ically ordered set κ{0, 1}.

30. Every ordered set is a subset of an ordered set no two different initial
segments of which are similar.
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Euclidean spaces

The problems in this section exhibit some interesting sets or interesting prop-
erties of sets in Euclidean n space or in their Hilbert space generalizations.
Sometimes the set is given by an explicit construction, at other times by the
transfinite enumeration technique of the preceding chapter.

1. If U is a family of open subsets of Rn that is well ordered with respect to
inclusion, then U is countable.

2. Call a set A ⊂ Rn an algebraic variety if there is a non-identically zero
polynomial P (x1, . . . , xn) of n variables such that A is its zero set: A =
{(a1, . . . , an) : P (a1, . . . , an) = 0}. Then Rn cannot be covered by less
than continuum many algebraic varieties.

3. There is a set A ⊂ R3 of power continuum such that if we connect the
different points of A by a segment, then all these segments are disjoint
(except perhaps for their endpoints).

4. From any uncountable subset of Rn (n = 1, 2, . . .) one can select uncount-
ably many points such that all the distances between these points are
different.

5. In �2 there are continuum many points such that all distances between
them are rational (hence from this set one cannot select uncountably many
points such that all the distances between the selected points are different).

6. If all the distances between the points of a set H ⊂ �2 are the same, then
H is countable.

7. If �2 is decomposed into countably many sets, then one of them includes
an infinite subset A such that all the distances between the points in A
are the same.

8. There are continuum many points in �2 of which every triangle is acute.
9. The plane can be colored with countably many colors such that no two

points in rational distance get the same color.
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10. Rn can be colored with countably many colors such that no two points in
rational distance get the same color.

11. The plane can be decomposed into countably many pieces none containing
the three nodes of an equilateral triangle.

12. Call a set A ⊂ R2 a “circle” if there is a point P ∈ R2 such that each
half-line emanating from P intersects A in one point. The plane can be
written as a countable union of “circles”.

13. R3 can be decomposed into a disjoint union of circles of radius 1.
14. R3 can be decomposed into a disjoint union of lines no two of which are

parallel.
15. If A, B are any two intervals on the real line (of positive length), then

there are disjoint decompositions A =
⋃
{Ai : i = 0, 1, . . .} and B =⋃

{Bi : i = 0, 1, . . .} such that Bi is a translated copy of Ai.
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Zorn’s lemma

In this chapter we investigate Zorn’s lemma, a powerful tool to prove results
for infinite structures. Assume (P,≤) is a partially ordered set. A chain L ⊆ P
is a subset in which any two elements are comparable, i.e., for x, y ∈ L either
x ≤ y or y ≤ x holds. Zorn’s lemma states that, if in a partially ordered set
(P,≤) every chain L has an upper bound (an element p ∈ P such that x ≤ p
holds for x ∈ L), then (P,≤) has a maximal element, that is, some element
p ∈ P with the property that for no x ∈ P does p < x hold.

Zorn’s lemma is equivalent to the axiom of choice as well as to the well-
ordering theorem (see Problem 5), in particular it is independent of the other
standard axioms of set theory. Still, as is the case with the axiom of choice,
in everyday mathematics it is accepted, and it provides a convenient way to
establish certain maximal objects. This chapter contains ample examples for
that.

1. Deduce Zorn’s lemma from the well-ordering theorem.
2. Prove that Zorn’s lemma implies the axiom of choice.
3. Give a direct deduction of the well-ordering theorem from Zorn’s lemma.
4. Give a direct deduction of Zorn’s lemma from the axiom of choice.
5. The axiom of choice, the well-ordering theorem, and Zorn’s lemma are

pairwise equivalent.
6. With the help of Zorn’s lemma, prove the following.

(a) The set R+ of positive real numbers is the disjoint union of two
nonempty sets, each closed under addition.

(b) In a ring with unity, every proper ideal can be extended to a maximal
ideal.

(c) Every filter can be extended to an ultrafilter.
(d) Every vector space has a basis. In fact, every linearly independent

system of vectors can be extended to a basis.
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(e) Every vector space has a basis. In fact, every generating system of
vectors includes a basis.

(f) For Abelian groups the group D ⊇ A is called the divisible hull of A if
it is divisible and for every x ∈ D there is some natural number n that
nx ∈ A. If D1, D2 are divisible hulls of A, then they are isomorphic
over A: there is an isomorphism ϕ : D1 → D2 which is the identity on
A.

(g) Every field can be embedded into an algebraically closed field.
(h) Every algebraically closed field has a transcendence basis.
(i) Assume F is a field in which 0 is not the sum of nonzero square

elements. Then F is orderable, that is, there is an ordering < on F in
which x < y implies that x + z < y + z holds for every z, and x < y,
z > 0 imply that xz < yz.

(k) If G is an Abelian group and A is a divisible subgroup, then A is a
direct summand of G.

(l) Every connected graph includes a spanning tree.
(m) If (V,X) is a graph with chromatic number κ then there is a decom-

position of V into κ independent (=edgeless) sets such that between
any two there goes an edge.

(n) If X is a compact topological space and + is an associative operation
on X which is right semi-continuous (i.e., the mapping x �→ p + x is
continuous for every p ∈ X), then + has a fixed point, that is, an
element p ∈ X, that p + p = p.

7. Let S be a set, F ⊆ P(S) a family of subsets such that every x ∈ S is
contained in only finitely many elements of F and for every finite X ⊆ S
some G ⊆ F constitutes an exact cover of X (i.e., every x ∈ X is contained
in one and only one element of G). Then there is an exact cover G ⊆ F of
S.

8. (a) For any partially ordered set (P, <) there is an ordered set (P, <′) on
the same ground set that extends (P, <), i.e., x < y implies x <′ y.

(b) Prove that actually x < y holds if and only if x <′ y for every such
extension.

(c) If, in part (a), (P, <) is well-founded, then (P, <′) can be made well
ordered.

(d) Why does part (b) imply part (a) ?
9. (Alexander subbase theorem) Assume that X is a topological space with

a subbase S with the finite cover property, i.e., if the union of some sub-
family S ′ ⊆ S covers X, then some finitely many members of S ′ cover X,
as well. Then X is compact.

10. (Tychonoff’s theorem) The topological product of compact spaces is com-
pact.
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Hamel bases

In this chapter we consider Hamel bases, i.e., bases of the vector space of the
reals (R) over the field of the rationals (Q). To elaborate, such a basis is a set
B = {bi : i ∈ I} such that every real x can be uniquely written in the form
x = λ0b0 + · · · + λnbn where λ0, . . . , λn are nonzero rationals and b0, . . . , bn

are distinct elements of B.
Hamel bases can be used in many intriguing constructions involving the

reals. This chapter lists some problems on Hamel bases, as well as on their
applications.

Let us call a set H ⊂ R rationally independent if it is an independent set
in the vector space R over the field Q, and let us call H a generating subset
if the linear hull of H (over Q) is the whole R.

1. If H ⊂ R is rationally independent, then there is a Hamel basis including
H.

2. If H ⊂ R is a generating set, then it includes a Hamel basis.
3. Every Hamel basis has cardinality c.
4. There are 2c distinct Hamel bases.
5. There is an everywhere-dense Hamel basis.
6. There is a nowhere-dense, measure zero Hamel basis.
7. There is a Hamel basis of full outer measure.
8. A Hamel basis, if measurable, is of measure zero.
9. A Hamel basis cannot be an analytic set.

10. If the continuum hypothesis is true, then R\{0} is the union of countably
many Hamel bases.

11. (Cont’d) If R \ {0} is the union of countably many Hamel bases, then the
continuum hypothesis holds.
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12. If the continuum hypothesis is true, then there is a Hamel basis B =
{bi : i ∈ I} such that the set B+ of real numbers x written in the form
x =

∑
{λibi : i ∈ I} with nonnegative coefficients is a measure zero set.

13. Describe, in terms of Hamel bases, all solutions of the functional equations
(a) f(x + y) = f(x) + f(y) (additive functions, Cauchy functions);
(b) f(x + y) = f(x)f(y);
(c) f(xy) = f(x)f(y);

(d) f(x+y
2 ) = f(x)+f(y)

2 ;
(e) f(x + y) = f(x) + f(y) + c with some fixed constant c;
(f) f(x + y) = g(x) + h(y);
(g) f(x + y) = af(x) + bf(y) with some fixed constants a, b.

14. If the real numbers α, β are not commensurable, then for any A, B ∈ R
there is a function f : R → R for which f(x + y) = f(x) + f(y) always
holds and f(α) = A, f(β) = B.

15. The function F (x) = x (for x ∈ R) is the sum of two periodic functions.
16. (Cont’d) The function F (x) = x2 (for x ∈ R) is the sum of three periodic

functions but not of two.
17. (Cont’d) Let k ≥ 1 be a natural number. The function F (x) = xk (for

x ∈ R) is the sum of (k + 1) periodic functions but not the sum of k
periodic functions.

18. There exists A ⊂ R such that there are countably infinitely many subsets
of R congruent to A.

19. There is a set A ⊂ R different from ∅ and R such that for all x ∈ R only
finitely many of the sets A, A + x, A + 2x, A + 3x, . . . are different.

20. There exists a set A ⊂ R with both A, R \ A everywhere dense, which
has the property that if a is a real number, then either A ⊆ A + a or
A + a ⊆ A.

21. There exists a partition of the set R \ Q of irrational numbers into two
sets, both closed under addition.

22. There exists a partition of the set R+ = {x ∈ R : x > 0} of positive real
numbers into two nonempty sets, both closed under addition.

23. We are given 17 real numbers with the property that if we remove any
one of them then the remaining 16 numbers can be rearranged into two
8-element groups with equal sums. Prove that the numbers are equal.

24. R is the union of countably many sets, none of which including a (non-
trivial) 3-element arithmetic progression.

25. If a rectangle can be decomposed into the union of finitely many rectangles
each having commeasurable sides, then the original rectangle also has
commeasurable sides.
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26. The set of reals carries an ordering ≺ such that there are no elements
x ≺ y ≺ z, forming a 3-element arithmetic progression (that is, y = x+z

2 ).
27. There is an addition preserving bijection between R and C.
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The continuum hypothesis

The continuum hypothesis (CH) claims that every infinite subset of the reals
is equivalent either to N or to R. It is independent of the standard axioms
of set theory (see the introduction to Chapter 4), and in general it is not
assumed when one deals with set theory or problems related to set theory.

Since the continuum hypothesis says something about the set of the reals, it
is no wonder that it has many equivalent formulations involving real functions
or sets in Euclidean spaces. This chapter lists several of these reformulations.
Also, in the presence of CH the set of reals “looks differently” than otherwise,
and this is reflected in the existence of sets (such as Lusin sets or Sierpinski
sets) with various properties. The problems below contain several examples of
this phenomenon. CH coupled with the enumeration technique of Chapter 12
is particularly powerful, for in a construction only countably many previously
constructed objects have to be taken care of.

1. (Sierpinski’s decomposition) CH is equivalent to the statement that the
plane is the union of two sets, A and B, such that A intersects every
horizontal line and B intersects every vertical line in a countable set.

2. CH holds if and only if the plane is the union of the graphs of countably
many x �→ y and y �→ x functions.

3. CH is equivalent to the existence of a decomposition R3 = A1 ∪ A2 ∪ A3
such that if L is a line in the direction of the xi-axis then Ai ∩L is finite.

4. For no natural number m exists a decomposition R3 = A1 ∪A2 ∪A3 such
that if L is a line in the direction of the xi-axis then |Ai ∩ L| ≤ m.

5. c ≤ ℵn if and only if there is a decomposition Rn+2 = A1∪A2∪· · ·∪An+2
such that if L is a line in the direction of the xi-axis then Ai ∩L is finite.

6. CH holds if and only if there is a surjection from R onto R × R of the
form x �→ (f1(x), f2(x)) with the property that for every x ∈ R either
f ′
1(x) or f ′

2(x) exists.
7. CH holds if and only if R is the union of an increasing chain of countable

sets.
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8. CH holds if and only if there is a function f : R → P(R) with f(x) count-
able for every x ∈ R and such that f [X] = R holds for every uncountable
set X ⊆ R.

9. CH holds if and only if there exist functions f0, f1, . . . : R → R such that
if a ∈ R then for all but countably many x ∈ R the set Ax,a = {n < ω :
fn(x) = a} is infinite.

10. CH holds if and only if there exist functions f0, f1, . . . : R → R such that
if a = {a0, a1, . . .} is an arbitrary real sequence then for all but countably
many x ∈ R the set Ax,a = {n < ω : fn(x) = an} is infinite.

11. CH holds if and only if there exist an uncountable family F of real se-
quences with the property that if {a0, a1, . . .} is an arbitrary real sequence
then for all but countably many {yn} ∈ F there are infinitely many n with
yn = an.

12. CH holds if and only if there exist functions f0, f1, . . . : R → R with the
property that if X ⊆ R is uncountable then fn[X] = R holds for all but
finitely many n < ω.

13. CH holds if and only if there is a family {Aα : α < ω1} of infinite subsets
of ω such that if X ⊆ ω is infinite then there is some α < ω1 with Aα \X
finite.

14. CH holds if and only if there is a family H = {Ai : i ∈ I} of subsets of
R with |I| = c, |Ai| = ℵ0 such that if B ⊆ R is infinite then for all but
countably many i we have Ai ∩ B 
= ∅.

15. CH holds if and only if R can be decomposed as R = A∪B into uncount-
able sets in such a way that for every real a the intersection (A + a) ∩ B
is countable.

16. CH holds if and only if the plane can be decomposed into countably many
parts none containing 4 distinct points a, b, c, and d such that dist(a, b) =
dist(c, d) (“dist” is the Euclidean distance).

17. CH holds if and only if R can be colored by countably many colors such
that the equation x + y = u + v has no solution with different x, y, u, v of
the same color.

18. If the continuum hypothesis holds then there is a function f : R → R
such that for every x ∈ R we have

lim
h→0

max (f(x − h), f(x + h)) = ∞.

19. CH holds if and only if there exists an uncountable family F of entire
functions (on the complex plane C) such that for every a ∈ C the set
{f(a) : f ∈ F} is countable.

20. (a) If CH holds, then there is a set A of reals of cardinality continuum
such that A intersects every set of first category in a countable set
(such a set is called a Lusin set).



Problems Chapter 16 : The continuum hypothesis 73

(b) Every Lusin set is of measure zero.
21. CH is equivalent to the statement that there is a Lusin set and every

subset of R of cardinality < c is of first category.

22. (a) If CH holds, then there is a set A of reals of cardinality continuum
such that A intersects every set of measure zero in a countable set
(such a set is called a Sierpinski set).

(b) Every Sierpinski set is of first category.
23. CH is equivalent to the statement that there is a Sierpinski set and every

subset of R of cardinality < c is of measure zero.
24. If CH holds and A ⊆ [0, 1]2 is a measurable set of measure one, then there

exist sets B, C ⊆ [0, 1] of outer measure one with B × C ⊆ A. (Note
that there is an A ⊆ [0, 1]2 of measure one such that if B, C ⊆ [0, 1] are
measurable sets with B × C ⊆ A, then they are of measure zero.)

25. If CH holds, then there is an uncountable set A ⊆ R such that if G ⊇ Q
is an open set then A \ G is countable (A is concentrated around Q).

26. If CH holds, then there is an uncountable A ⊂ R such that any uncount-
able B ⊂ A is dense in some open interval.

27. If CH holds, then there is an uncountable densely ordered set 〈A,≺〉 such
that any nowhere dense set (in the interval topology) in 〈A,≺〉 is count-
able.

28. If CH holds, then there is an uncountable set A ⊆ R such that if ε0, ε1, . . .
are arbitrary positive reals then there is a cover I0 ∪ I1 ∪ · · · of A such
that In is an interval of length εn.

29. If CH holds, then there is a permutation π : R → R of the reals such that
A ⊆ R is of first category if and only if π[A] is of measure zero.
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Ultrafilters on ω

If X is a ground set, then a family F of subsets of X is called a filter if

• ∅ 
∈ F ,
• A, B ∈ F implies A ∩ B ∈ F ,
• A ∈ F and A ⊆ B imply B ∈ F .

A filter F is called principal or trivial if F = {A ⊂ X : A0 ⊂ A} for some
A0 ⊂ X.

A filter that is not a proper subset of another filter is called an ultrafilter.
The elements of an ultrafilter F can be considered as “large” subsets of

X, and if the set of elements of X for which a property holds belongs to F ,
then we consider the property to hold for almost all elements of X.

Ultrafilters play important roles in algebra and logic; in particular, the
ultraproduct construction is based on them. They also appear in several so-
lutions in this book.

A dual concept to filter is the concept of an ideal. If X is a ground set,
then a family I of subsets of X is called an ideal if

• X 
∈ I,
• A, B ∈ I implies A ∪ B ∈ I
• A ∈ I and B ⊆ A imply B ∈ I.

An ideal that is not a proper subset of another ideal is called a prime ideal.
It is clear that F is a filter (ultrafilter) if and only if {X \ F : F ∈ F} is

an ideal (prime ideal).
This chapter contains various problems on, and properties of ultrafilters

on the set of natural numbers. Problem 19 gives an application in analysis,
it verifies the existence of Banach limits—a limit concept that extends the
standard notion of limit to all real sequences.

1. A filter F on ω is an ultrafilter if and only if for every A ⊂ ω exactly one
of A or X \ A belongs to F .
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2. Every filter on ω is included in an ultrafilter.
3. There are 2c ultrafilters on ω.
4. If U1, . . . ,Un are nonprincipal ultrafilters on ω, then there is some infinite,

co-infinite A ∈ U1 ∩ . . . ∩ Un.
5. If U is an ultrafilter on ω and 0 = n0 < n1 < · · · are arbitrary natural

numbers, then there exists an A ∈ U with A ∩ [ni, ni+1) = ∅ for infinitely
many i < ω.

6. If U is an ultrafilter on ω, then U contains a set A ⊂ ω of lower density
zero.

7. There is an ultrafilter U on ω such that every A ∈ U has positive upper
density.

8. Is there a translation invariant ultrafilter on ω? Is there a translation
invariant ultrafilter on Q?

9. Let U be a nonprincipal ultrafilter on ω. Two players consecutively say
natural numbers 0 < n0 < n1 < · · · with player I beginning. Player I wins
if and only if the set [0, n0)∪ [n1, n2)∪· · · is in U . Show that neither player
has a winning strategy.

10. (CH) There is nonprincipal ultrafilter U on ω such that if A0 ⊇ A1 ⊇
A2 ⊇ · · · are elements of U , then there is an element B of U such that
B \ An is finite for every n. (Such an ultrafilter is called a p-point.)

11. (CH) There is a nonprincipal ultrafilter U on ω such that if f : [ω]r →
{1, 2, . . . , n} is a coloring of all r-element subsets of ω with finitely many
colors, then there is a monochromatic element of U . (Such an ultrafilter
is called Ramsey ultrafilter).

12. Assume that (A,≺) is a countable ordered set and U is a Ramsey ultrafilter
on A. Then there is an element B ∈ U which is a set of type either ω or
ω∗.

13. Let U be a Ramsey ultrafilter on ω and let f : ω → ω be arbitrary. Then
either f is essentially constant (i.e., {n < ω : f(n) = k} ∈ U for some
k < ω), or f is essentially one-to-one (i.e., f A is one-to-one on a set
A ∈ U).

14. Let U be a Ramsey ultrafilter on ω and n0 < n1 < · · · arbitrary numbers.
Then there is a set A ∈ U with |A ∩ [ni, ni+1)| = 1 for all i = 0, 1, . . ..

15. Let U be a Ramsey ultrafilter on ω, {an} a positive sequence converging
to 0 and ε > 0 arbitrary. Then there is an A ∈ U with∑

n∈A

an < ε.

16. There are an ultrafilter U on ω and a positive sequence {an} converging
to 0, such that if A ∈ U then

∑
n∈A an = ∞.
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17. There is an ultrafilter U on ω that is not generated by less than continuum
many elements, i.e., if F is a family of subsets of U of cardinality smaller
than continuum, then there is an element A ∈ U such that F 
⊂ A for
F ∈ F .

18. Associate with every A ⊆ ω the real number xA = 0, α0α1 . . . where αi = 1
if and only if i ∈ A. This way to every subset U of P(ω) we associate a
subset XU of [0, 1]. Show that if U is a nonprincipal ultrafilter on ω, then
XU cannot be a Lebesgue measurable set.

19. If D is a nonprincipal ultrafilter and {xn : n < ω} is a sequence of reals,
then set limD xn = r if and only if {n : p < xn < q} ∈ D holds whenever
p < r < q. If this is the case we say that {xn} has a D-limit.
(a) Every bounded sequence has a unique D-limit.
(b) The D-limit of a convergent sequence coincides with its ordinary limit.
(c) limD cxn = c limD xn.
(d) limD(xn + yn) = limD xn + limD yn.
(e) | lim supD xn| ≤ supn |xn|.
(f) If the sequences {xn} and {yn} have the property that xn − yn → 0,

then limD xn = limD yn.
(g) If limD xn = a and f is a real function continuous at the point a, then

limD f(xn) = f(a).
(h) If r ∈ R is a limit point of the set {xn : n < ω} then there exists a

nonprincipal ultrafilter D such that limD xn = r.
(i) Set limD xn = ∞ if and only if {n : p < xn} ∈ D holds whenever p <

∞, and define limD xn = −∞ analogously. Then every real sequence
has a (possibly infinite) D-limit.

20. Show that there is a function f : P(N) → [0, 1] such that f(A) = d(A)
whenever the set A ⊆ N has density d(A), and f is finitely additive, i.e.,
f(A ∪ B) = f(A) + f(B) when A, B are disjoint.

21. Let there be an infinite sequence of switches, S0, S1, . . . each having three
positions {0, 1, 2}, and a light also with three states {L0, L1, L2}. They
are connected in such a way that if the positions of all switches are si-
multaneously changed then the state of the light also changes. Let us also
suppose that if all the switches are in the ith position then the light is
also in the Li state. Show that there is a (possibly principal) ultrafilter U
that determines the state of the light in the sense that it is Li precisely
when

{j : Sj is in the ith position} ∈ U .

22. Suppose that in an election there are n ≥ 3 candidates and a set of voters
I, each of whom makes a ranking of the candidates. There are two rules
for the outcome:
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• if all the voters enter the same ranking, then this is the outcome,
• if a candidate a precedes candidate b in the outcome depends only on

their order on the different ranking lists of the individual voters (and
it does not depend on where a and b are on those lists, i.e., on how
the voters ranked other candidates).

Then there is an ultrafilter F on I such that the outcome is an order π if
and only if the set Fπ of those voters i ∈ I whose ranking is π belongs to
F . In particular, if I is finite, then in every such voting scheme there is a
dictator whose ranking gives the outcome.
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Families of sets

The problems in this chapter discuss various combinatorial properties of fam-
ilies of sets and functions.

1. For every cardinal κ ≥ ω there is a family Aξ,η, ξ < κ, η < κ+ of subsets
of κ+ such that for fixed ξ the sets Aξ,η, η < κ+ are disjoint, and for each
η < κ+ the set κ+ \ ∪ξ<κAξ,η is of cardinality < κ+. (Such a family is
called an Ulam matrix. The matrix is of size κ × κ+, the κ+ elements in
a row are disjoint, and yet the union of the κ elements in every column is
κ+ save a set of size < κ+).

2. For every cardinal κ ≥ ω there is a family F of κ+ almost disjoint subsets
of κ of cardinality κ, that is, for A, B ∈ F , A 
= B we have |A| = |B| = κ
but |A ∩ B| < κ.

3. If X is an infinite set of cardinality κ, then there are 2κ subsets Aγ ⊂ X
such that if γ1 
= γ2, then each of the sets Aγ1 \ Aγ2 , Aγ2 \ Aγ1 , and
Aγ1 ∩ Aγ2 is of cardinality κ.

4. For every cardinal κ ≥ ω there are κ+ subsets of κ so that selecting any
two of them, one includes the other.

5. If X is an infinite set of cardinality κ, then there is a family F of cardinality
2κ of subsets of A such that no member of F is a proper subset of another
member of F (such a family is called an antichain).

6. Let κ ≥ ω be a cardinal. For every S, the set [S]κ is the union of 2κ

antichains.
7. If κ is an infinite cardinal, then there are 2κ sets Aα, Bα, α < 2κ of

cardinality κ such that Aα ∩ Bβ 
= ∅ if and only if α 
= β.
8. Let κ be an infinite cardinal and Ai, Bi, i ∈ I a family of sets with the

property |Ai|, |Bi| ≤ κ and Ai∩Bj 
= ∅ if and only if i 
= j. Then |I| ≤ 2κ.
9. There are two disjoint families F ,G ⊂ P(N) of subsets of N such that

every infinite subset A ⊆ N includes an element of F and of G.
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10. For any infinite set X there are two disjoint families F ,G ⊂ P(X) of
countably infinite subsets of X such that every infinite subset A ⊆ X
includes an element of F and of G.
Call a family F of subsets of a set S independent if the following statement
is true: if X1, . . . , Xn are different members of F , ε1, . . . , εn < 2, then

Xε1
1 ∩ · · · ∩ Xεn

n 
= ∅

where for a set X we put X1 = X, X0 = S \ X.
11. For every κ ≥ ω there is an independent family of cardinality 2κ of subsets

of κ.
12. For every κ ≥ ω there are 22κ

ultrafilters on κ.
13. Let A be an infinite set of cardinality κ. Then there is a family F of

cardinality 2κ of functions f : A → ω with the property that if f1, . . . , fn ∈
F are finitely many different functions from F , then there is an a ∈ A
where the functions f1, . . . , fn take different values: fi(a) 
= fj(a) if 1 ≤
i < j ≤ n.

14. Let A be an infinite set of cardinality 2κ. Then there is a family G of
cardinality κ of functions fk : A → κ such that for an arbitrary function
f : A → κ and for an arbitrary finite set A′ ⊂ A there is a g ∈ G such
that g agrees with f on A′.

15. Let κ be infinite. If Ti, i < 2κ are 2κ topological spaces each of which
has a dense subset of cardinality at most κ, then the same is true of their
product.

16. Let F be a countable family of infinite sets with |A∩B| = 1 for A, B ∈ F ,
A 
= B. Then there is a set X with 1 ≤ |X ∩ A| ≤ 2 for every A ∈ F .

17. Let F be a countable family of infinite sets with |A∩B| ≤ 2 for A, B ∈ F ,
A 
= B. Then there are two sets X, Y such that for every A ∈ F either
|A ∩ X| = 1 or |A ∩ Y | = 1.

18. Prove that for every ℵ1 ≤ κ < ℵω there is a family F ⊆ [κ]ℵ0 of cardinality
κ such that for every X ∈ [κ]ℵ0 there is some Y ∈ F with X ⊆ Y . Prove
that no such family exists for κ = ℵω.

19. If κ, µ are infinite cardinals, then there is an almost disjoint family of µ-
element sets which is not κ-colorable. That is, there is H ⊆ [V ]µ for some
set V with |H ∩ H ′| < µ for H,H ′ ∈ H, H 
= H ′, such that if F : V → κ
is a coloring then some member of H is monocolored.
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The Banach–Tarski paradox

This chapter deals with a surprising consequence of the axiom of choice,
namely the so-called Banach–Tarski paradox claiming that any two balls
(with possibly different radii) in the space can be decomposed into each
other, i.e., if B1 and B2 are such balls then there are disjoint decomposi-
tions B1 = E1 ∪ · · · ∪ En, B2 = F1 ∪ · · · ∪ Fn such that each Ei is congruent
to Fi. Actually, any two bounded sets in R3 with nonempty interior can be
decomposed into each other.

A “common sense” argument against such a decomposition runs as follows:
take a nontrivial finitely additive and isometry invariant measure µ on all
subsets of R3 (think of µ as a “volume” associated with each set). Then the µ-
measure of B1 is different from the µ-measure of B2 if their radii are different,
hence the aforementioned decomposition of B1 into B2 is impossible, since
measure is preserved under isometry. Of course, this argument fails if there is
no such measure, and the Banach–Tarski paradox shows precisely that such
a measure does not exist in R3. Hidden behind the Banach–Tarski paradox is
the axiom of choice appearing, for example, in the solution of Problem 17,(c).

Let us also note that in R and R2 there are finitely additive isometry
invariant measures (see Chapter 28), so in R and R2 a Banach–Tarski type
paradox cannot be established. The difference between R,R2, and R3 (and
of course every Rn with n ≥ 3) is that the isometry groups of R and R2 are
relatively simple, while that of R3 includes a free subgroup generated by two
appropriate rotations.

This chapter contains various problems regarding decompositions (via dif-
ferent kinds of transformations on the parts) culminating in Problem 17 con-
taining the Banach–Tarski paradox. We consider the equidecomposability of
subsets of some set X, where sets are decomposed into the union of finitely
many subsets and are transformed by the elements of Φ, a family of X → X
bijections, containing the identity, closed under composition and taking in-
verse (i.e., Φ is a group with respect to composition). If A, B ⊆ X, then A
is equidecomposable to B via Φ, in symbol A ∼Φ B, if there are partitions
A = A1 ∪ · · · ∪An, B = B1 ∪ · · · ∪Bn, such that Bi = fi[Ai] for some fi ∈ Φ.
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If there is no danger of confusion we simply write A ∼ B instead of A ∼Φ B.
A  B if A ∼ B′ holds for some B′ ⊆ B. {A1, . . . , At} is a p-cover of A (is
a ≤ p-cover of A) if A1, . . . , At ⊆ A and every element of A is in exactly p
of the Ai’s (and every element of A is in ≤ p of the Ai’s). If A, B ⊆ X, then
pA ∼ qB denotes that there is a p-cover {A1, . . . , At} of A such that for ap-
propriate f1, . . . , ft ∈ Φ, the sets f1[A1], . . . , ft[At] constitute a q-cover of B.
If, on the other hand, f1[A1], . . . , ft[At] is just a ≤ q-cover of B, then we write
pA  qB. A ⊆ X is paradoxical if A ∼ 2A. Usually it is “obvious” what Φ is,
still, in most cases, we indicate it. If X = Sn (the n-dimensional unit sphere)
then Φ is the set of rotations around its center; if X = Rn, then Φ is the set
of the congruences; if X is a group, then Φ is the set of left multiplications:
Φ = {fx : x ∈ X} where fx(y) = xy.

1. ∼ is an equivalence relation.
2. If A  B and B  A, then A ∼ B.
3. If pA  qB and qB  rC, then pA  rC holds as well (p, q, r are nonzero

natural numbers).
4. If pA  qB, qB  pA hold for some natural numbers p, q, then pA ∼ qB.
5. If pA ∼ qB and qB ∼ rC, then pA ∼ rC holds as well (p, q, r are nonzero

natural numbers).
6. If kpA  kqB holds for some natural numbers k, p, q, k ≥ 1, then pA  qB.

Therefore, kpA ∼ kqB implies pA ∼ qB.
7. The following are equivalent.

(a) (n + 1)A  nA for some natural number n;
(b) A is paradoxical;
(c) A can be decomposed as A = A′ ∪ A′′ with A′ ∼ A′′ ∼ A;
(d) For every k ≥ 2, A can be decomposed as A = A1 ∪ · · · ∪ Ak with
A1 ∼ A2 ∼ · · · ∼ Ak ∼ A;
(e) pA ∼ qA holds whenever p, q are positive natural numbers.

8. If A is paradoxical and A  B  nA holds for some natural number n,
then B is paradoxical as well.

9. (a) There exists a countable, paradoxical planar set.
(b) There exists a bounded paradoxical set on the plane.

10. If A ⊆ S2, |A| < c then S2 ∼ S2 \ A (via rotations).
11. [0, 1] ∼ (0, 1] (with translations).
12. Q ∼ Q \ I, where Q is the unit square, I is one of its (closed) sides (via

translations).
13. If P is a (closed) planar polygon, F is its boundary, then P ∼ P \ F (via

translations).
14. If P , Q are planar polygons, equidecomposable in the geometrical sense,

then they are equidecomposable (via planar congruences).



Problems Chapter 19 : The Banach–Tarski paradox 83

15. Assume that E ∼ Z holds (via translations) for some E ⊆ Z. What is E?
16. (a) No nonempty subset of Zn is paradoxical (via translations).

(b) No nonempty subset of an Abelian group is paradoxical (via multipli-
cation by group elements).
(c) No nonempty subset of R is paradoxical (via congruences).

17. (a) For some A ⊆ F2, natural number n, ℵ0A  F2 = nA. (F2 is the free
group generated by 2 elements.) Notice that this gives that A, therefore
F2 is paradoxical.
(b) There are two independent rotations around the center of S2.
(c) S2 is paradoxical (via rotations).
(d) If A, B ⊆ S2 both have inner points, then A ∼ B (via rotations).
(e) B3, the unit ball of R3 is paradoxical (via congruences).
(f) (Banach–Tarski paradox) If A, B ⊆ R3 are bounded sets with inner
points, then A ∼ B (via congruences).

18. If A, B ⊆ R2 are bounded sets with inner points and ε > 0, then A is
equidecomposable into B via ε-contractions, that is, there are partitions
A = A1 ∪ · · · ∪ An and B = B1 ∪ · · · ∪ Bn and bijections fi : Ai → Bi

such that for x, y ∈ Ai one has d (fi(x), fi(y)) ≤ εd(x, y) (d(x, y) is the
distance of x and y).
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Stationary sets in ω1

This chapter deals with two basic notions of infinite combinatorics, namely
with the club (closed and unbounded) sets and with stationary sets in ω1.

First some definitions. We say that a sequence {αn}∞
n=0 of ordinals from

ω1 converges to α if αn ≤ α for all n and for every β < α there is an N such
that αn > β for n > N . Note that then necessarily α < ω1. It is easy to see
that this is the same as convergence in the order topology on ω1 (generated by
sets of the form {α : α < β} and {α : α > β}). A subset A ⊆ ω1 is called

• closed if αn → α and each αn is in A then α ∈ A,
• unbounded if given any β < ω1 there is a β < α ∈ A,
• club set if it is closed and unbounded.

A set is closed precisely if it is closed in the order topology, and a closed set
is unbounded precisely if it is not compact in this topology.

A set S ⊆ ω1 is stationary if it has a nonempty intersection with every
club set. Otherwise, it is a nonstationary set.

Closed sets play the role of “full measure” sets among subsets of ω1, while
stationary sets play the role of “sets of positive measure”. Club sets are very
“thick”, the intersection of any countable family of club sets is still a club
set, while stationary sets are still sufficiently “thick” in the sense that if some
property holds for the elements of a stationary set then we consider it to hold
for many elements (like elements in a set of positive measure). The analogy
with measure theory stops here: there is an uncountable family of disjoint
stationary sets.

A function f : A → ω1 is a regressive function if f(x) < x holds for every
x ∈ A \ {0}. The basic connection between stationary sets and regressive
functions is Fodor’s theorem (Problem 9): if f is regressive function on a
stationary set, then it is constant on a stationary subset.

1. When is a cofinite subset of ω1 a club?
2. Assume that A ⊆ B ⊆ ω1.



86 Chapter 20 : Stationary sets in ω1 Problems

(a) Does the stationarity of A imply the stationarity of B?
(b) Does the clubness of A imply the clubness of B?
(c) Does the nonstationarity of B imply the nonstationarity of A?

3. The intersection of countably many club sets is a club set again.
4. The union of countably many nonstationary sets is nonstationary.
5. If S is stationary, C is closed, unbounded, then S ∩ C is stationary.
6. If Cα are club sets for α < ω1, then their diagonal intersection

�{Cα : α < ω1} = {α < ω1 : β < α −→ α ∈ Cβ}

is also a club set.
7. If f : [ω1]<ω → ω1 is a function, then the set

C(f) = {α < ω1 : if β1, . . . , βn < α then f(β1, . . . , βn) < α}

is a closed, unbounded set.
8. If C ⊆ ω1 is a club set, then there is a function f : [ω1]<ω → ω1 such that

C(f) \ {0} ⊆ C.
9. A set is closed, unbounded if and only if it is the range of a strictly

increasing, continuous ω1 → ω1 function.
10. If f, g : ω1 → ω1 are strictly increasing continuous functions, then for club

many α < ω1, f(α) = g(α) holds.
11. The set of countable epsilon numbers, i.e.,

{ε < ω1 : ε = ωε}

is a club set.
12. Assume that f : ω1 → ω1 is a regressive function. Then some value is

assumed uncountably many times.
13. Assume S ⊆ ω1 is a stationary set and f : S → ω1 is a regressive function.

Then some value is assumed uncountably many times.
14. If N ⊆ ω1 is nonstationary, then there is a regressive function f : N → ω1

that assumes every value countably many times.
15. If N ⊆ ω1 is nonstationary, then there is a regressive function f : N → ω1

that assumes every value at most twice.
16. (Fodor’s theorem) If S ⊆ ω1 is a stationary set and f : S → ω1 is a

regressive function, then some value is assumed on a stationary set.
17. If S ⊆ ω1 is a stationary set and F (α) ⊆ α is a finite set for α ∈ S, then

for some finite set s the set {α ∈ S : F (α) = s} is stationary.
18. A slot machine returns ℵ0 quarters when a quarter is inserted. Still, no

matter what strategy she follows, if somebody starts with a single coin
(and plays through a transfinite series of steps), after countably many
steps she loses all her money.
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19. There are two disjoint stationary sets.
20. If f : ω1 → R is monotonic, then it is constant from a point onward.
21. If f : ω1 → R is continuous, then it is constant from a point onward.
22. ω1, endowed with the order topology, is not metrizable.

23. (a) If α < ω1, then α × ω1 is a normal topological space.
(b) ω1 × ω1 is a normal topological space.

24. (ω1 + 1) × ω1 is not a normal topological space.
25. Assume that we are given ℵ1 disjoint nonstationary sets. Prove that there

are ℵ1 of them with nonstationary union.
26. Two players, I and II, play by alternatively selecting elements of a de-

creasing sequence A0 ⊇ A1 ⊇ · · · of stationary subsets of ω1. Player II
wins if and only if

⋂
{Ai : i < ω} has at most one element. Show that II

has a winning strategy.
27. Assume that there are ℵ2 stationary sets with pairwise nonstationary in-

tersection. Show that there are ℵ2 stationary sets with pairwise countable
intersection.

28. (CH) Assume that we are given ℵ2 closed, unbounded subsets of ω1. Prove
that the intersection of some ℵ1 of them is a closed, unbounded set.

29. If there are ℵ2 functions from ω1 into ω such that any two differ on a
closed, unbounded set then there are ℵ2 such functions such that any two
are eventually different.

30. There exists a regressive function f : ω1 → ω1 such that for every limit
ordinal α < ω1 there is an increasing sequence αn, n < ω, converging to
α with f(αn+1) = αn for all n.
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Stationary sets in larger cardinals

Now we consider the analogues of questions discussed in the preceding chapter
but for larger cardinals. In general, the discussion will be given in a regular
cardinal (instead of ω1), but we shall also indicate how everything works in
any ordinal of cofinality larger then ω. We shall copy the treatment for ω1
only to the extent that is necessary; several new features will emerge in the
problems. For example, Problem 20 proves the deep result of Solovay: any
stationary set in κ can be decomposed into κ disjoint stationary sets.

In this chapter, unless otherwise stated, κ is always an uncountable regular
cardinal.

We say that a transfinite sequence {ατ : τ < µ} of elements of κ converges
to some α < κ if ατ ≤ α for all τ < µ and for every β < α there is a ν < µ
such that ατ > β whenever τ > ν. A set C ⊆ κ is called

• closed if whenever a transfinite sequence {ατ : τ < µ} of elements of C
converges to some α < κ then α ∈ C,

• unbounded if for any β < κ there is an α ∈ C with β < α < κ,
• a club set if it is closed and unbounded.

It is true again that a set C ⊂ κ is closed if and only if it is closed in the order
topology on κ, and a closed set is unbounded precisely if it is not compact in
this topology.

If something holds for every element of a club set, we sometimes use the
lingo almost everywhere, or for almost every, in short, a.e.

A set S ⊆ κ is stationary if it has a nonempty intersection with every
closed, unbounded set. Otherwise, it is nonstationary. For A ⊆ κ a function
f : A → κ is regressive if f(x) < x holds for every x ∈ A, x 
= 0.

1. The intersection of less than κ many club sets is a club set again.
2. If C ⊆ κ is a club set, then for a.e. α the intersection C ∩ α is a cofinal

set in α of order type α
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3. If f : [κ]<ω → [κ]<κ is a function then the set

C(f) = {α < κ : if β1, . . . , βn < α then f(β1, . . . , βn) ⊆ α}

is a closed, unbounded set. In the other direction, if C ⊆ κ is a club set
then there is a function f : κ → κ such that C(f) \ {0} ⊆ C.

4. Let A be an algebraic structure on the set A of cardinality κ, with fewer
than κ finitary operations, and let {aγ : γ < κ} be an enumeration of A.
Then for almost all α < κ the set {aγ : γ < α} is a substructure of A.

5. If Cα are club sets for α < κ then their diagonal intersection

�{Cα : α < κ} = {α < κ : β < α −→ α ∈ Cβ}

is also a club set.
6. The union of less than κ many nonstationary sets is nonstationary.
7. If S is stationary, C is closed, unbounded, then S ∩ C is stationary.
8. If µ < κ is regular, then S =

{
α < κ : cf (α) = µ

}
is stationary. Is it a

club set? What if the condition cf (α) = µ is relaxed to cf (α) ≤ µ or to
cf (α) ≥ µ?

9. (Fodor’s theorem, pressing down lemma) If S ⊆ κ is a stationary set
and f : S → κ is a regressive function, then some value is assumed on a
stationary set.

10. Assume that µ < κ is such that if τ < κ then τµ < κ (for example, if κ =
(2µ)+). Let S ⊆

{
κ : cf (α) = µ+

}
be a stationary set and f(α) ∈ [α]≤µ

for α ∈ S. Then f is constant on a stationary set.
11. If Aα (α < κ) are nonstationary, then so is

⋃{
Aα \ (α + 1) : α < κ

}
.

12. Let {Aα : α < κ} be disjoint nonstationary sets in κ. Then A =
⋃
{Aα :

α < κ} is stationary if and only if B = {min(Aα) : α < κ} is.
13. Out of κ disjoint nonstationary sets the union of some κ is nonstationary.
14. If A, B are subsets of κ define A ≤ B if A\B is nonstationary. Set A < B

if A ≤ B but B ≤ A is not true. (This gives a Boolean algebra if we
identify two sets when their symmetric difference is nonstationary.) Prove
that every family of at most κ sets has a least upper bound.

In Problems 15–19 we extend these notions to subsets of limit ordinals.
If α is a limit ordinal, X ⊆ α is unbounded if it contains arbitrarily large
elements below α. It is closed if it contains its limit points smaller than α.
For cf (α) > ω, S ⊆ α is stationary if it intersects every closed, unbounded
subset of α. If cf (α) = ω, then we declare α (and all subsets thereof)
nonstationary.

15. (a) Every stationary set is unbounded.
(b) cf (α) is the minimal cardinality/ordinal of the closed, unbounded sets

in α.
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(c) If cf (α) = ω then there are two disjoint closed, unbounded sets in α.
(d) If cf (α) > ω then the intersection of less than cf (α) closed, unbounded

sets is a closed, unbounded set.
(e) If cf (α) = ω then X ⊆ α intersects every closed, unbounded set if

and only if X includes some end segment of α.
16. Assume that κ = cf (α) > ω. Let C ⊆ α be a closed, unbounded set of

order type κ with increasing enumeration C = {cγ : γ < κ}.
(a) If D is closed, unbounded in κ then {cγ : γ ∈ D} is closed, unbounded

in α.
(b) If D is closed, unbounded in α then {γ : cγ ∈ D} is closed, unbounded

in κ.
(c) X ⊆ α is stationary if and only if {γ : cγ ∈ X} is stationary in κ.

17. (a) If cf (α) < α, then there exists a regressive f : α \ {0} → α such that
f−1(ξ) is bounded for every ξ < α.

(b) If S ⊆ α is stationary, f : S → α is regressive, then there is a station-
ary S′ ⊆ S such that f is bounded on S′.

18. If C ⊆ κ is closed, unbounded, then for a.e. α < κ the set C ∩ α is a club
set in α.

19. If S, T ⊆ κ are stationary sets, define S < T if for almost every α ∈ T ,
S ∩ α is stationary in α. Then

(a) S < S never holds;
(b) < is transitive;
(c) < is well founded.

20. (Solovay’s theorem) If S ⊆ κ is a stationary set, then it is the union of κ
disjoint stationary sets. Prove this theorem through the following steps.
Assume that S is a counterexample.

(a) Every stationary subset of S is also a counterexample.
(b) If f : S → κ is regressive, then it is essentially bounded, i.e., there

are an ordinal γ < κ and a closed, unbounded set C ⊆ κ such that
f(α) < γ holds for α ∈ C ∩ S.

(c) Almost every element of S is a regular cardinal.
(d) There is a closed, unbounded set D ⊆ κ such that if α ∈ D ∩ S then

α is an uncountable, regular cardinal and S ∩ α is stationary in α.
(e) Conclude by showing that no set D as in (d) exists.

21. There is a function f : κ → κ such that if X ⊆ κ has a club subset, then
f [X] = κ.

22. If S ⊆ κ is stationary, then there is a family F of 2κ stationary subsets of
S such that A \ B, B \ A are stationary if A, B are distinct elements of
F .
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23. Assume that κ, µ are regular cardinals, κ > µ+, µ > ω. There exists a
family {Cα : α < κ, cf (α) = µ} such that Cα is closed, unbounded in α
and for every closed unbounded subset E ⊆ κ, there is some Cα ⊆ E.

24. Assume that κ ≥ ω2 is a regular cardinal. Then there exists a family
{Cα : α < κ, cf (α) = ω} such that Cα is a cofinal subset of α of type ω
and for every closed, unbounded subset E of κ, there is some Cα ⊆ E.
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Canonical functions

In this chapter for a regular uncountable cardinal κ we introduce a family of
κ+ functions that possess various canonicity properties. In some sense they
are the first κ+ functions from κ into the ordinals, this makes it possible to
use them for various diverse results in set theory.

For κ > ω regular we construct the canonical functions hα : κ → κ for
α < κ+ as follows. h0(γ) = 0 for γ < κ. hα+1(γ) = hα(γ) + 1 (γ < κ).
If α < κ+ is limit with µ = cf (α) < κ then fix a sequence {ατ : τ < µ}
converging to α and set

hα(γ) = sup {hατ
(γ) : τ < µ}

for γ < κ.
Finally, if cf (α) = κ and {ατ : τ < κ} converges to α, then let

hα(γ) = sup {hατ
(γ) : τ < γ} .

Notice that the values of the functions hα(γ) depend on the above se-
quences converging to α, as well.

1. Describe hα for α ≤ κ · 2.
2. If β < α < κ+, then hβ(γ) < hα(γ) holds for a.e. γ.
3. If {fα : α < κ+} is a system of κ → κ functions such that for β < α < κ+,

fβ(γ) < fα(γ) holds for a.e. γ, then for every α < κ+, fα(γ) ≥ hα(γ)
holds almost everywhere.

4. If f(γ) < hα(γ) holds on a stationary set for some function f : κ → κ,
then there is a β < α such that f(γ) ≤ hβ(γ) holds for stationary many
γ.

5. If f(γ) < hα(γ) holds on a stationary set, then f(γ) = hβ(γ) holds on a
stationary set for some β < α.
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6. Assume that {fα : α < κ+} is a family of κ → κ functions that

a) f0(γ) = 0 a.e.;
b) fβ(γ) < fα(γ) for a.e. γ (β < α < κ+);
c) if f(γ) < fα(γ) for stationarily many γ then f(γ) ≤ fβ(γ) for station-

arily many γ, for some β < α.
Then fα(γ) = hα(γ) holds for a.e. γ.

7. For every α < κ+, hα(γ) < |γ|+ holds for a.e. γ. (Here |γ|+ is the cardinal
successor of |γ|.)

In Problems 8–13 we describe an alternative construction of canonical
functions. Fix, for every 0 < α < κ+, a surjection gα : κ → α. Let fα(γ)
be the order type of the set gα[γ] (a subset of α). For α = 0 set f0(γ) = 0
(γ < κ).

8. If gα, g′
α : κ → α are surjections, then the above derived functions fα, f ′

α

agree almost everywhere.
9. If 0 < β < α < κ+ then for a.e. γ < κ, gβ [γ] = gα[γ] ∩ β holds.

10. If β < α then fβ(γ) < fα(γ) holds a.e.
11. If f(γ) < fα(γ) holds on a stationary set for some function f : κ → κ,

then there is a β < α such that f(γ) = fβ(γ) holds for stationary many
γ.

12. fα(γ) = hα(γ) almost everywhere.
13. fα(γ) < |γ|+ holds for every γ.
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Infinite graphs

It frequently occurs in mathematics that a relation is visualized by drawing a
graph. If the underlying set is infinite, then we get an infinite graph. Formally,
a graph is a pair G = (V,X) where V is a set (the vertex set) and X ⊆ [V ]2,
i.e., it is a subset of the two element sets of V (the edge set). Sometimes we
just speak of X, therefore identifying the graph with its edge set. We say that
x and y are joined if {x, y} ∈ X. The complement (V, X) of a graph (V,X)
is
(
V, [V ]2 \ X

)
, that is, it has the same set of vertices and two vertices are

joined in (V, X) if and only if they are not joined in (V,X). The degree of a
vertex v is the number of edges emanating from v.

We call (V ′, X ′) a subgraph of (V,X) if V ′ ⊆ V and X ′ ⊆ X. It is an
induced subgraph if

X ′ = {{x, y} : x, y ∈ V ′, {x, y} ∈ X},

i.e., if two elements in V ′ are connected precisely if they are connected in
(V,X).

A subset A ⊆ V is independent if it contains no edges: X ∩ [A]2 = ∅.
A subset X ′ ⊆ X is a matching if every vertex is an endpoint of precisely

one edge in X ′.
A path in a graph is a (finite, one-way or two-way infinite) sequence

{. . . , vn, vn+1, . . .} of consecutively joined points (i.e., {vn, vn+1} ∈ V for all
n). A circuit is such a finite sequence with the same starting and ending point.

A forest is a graph with no circuits.
If (V,X), (W, Y ) are graphs, a topological (V,X) is given by an injection

f : V → W and a function g that sends every edge e = {x, y} in X into a path
in (W, Y ) connecting f(x) and f(y), the paths {g(e) : e ∈ X} being vertex
disjoint except at their extremities.

A good coloring or sometimes a coloring of a graph (V,X) with a color set C
is a mapping f : V → C such that f(x) 
= f(y) for {x, y} ∈ X (i.e., the vertices
are colored in such a way that vertices that are joined get different colors).
The chromatic number Chr(X) of a graph (V,X) is the smallest cardinal κ
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for which the graph can be colored by κ colors. Therefore, a graph (V,X) has
a good coloring with κ colors if and only if Chr(X) ≤ κ.

More generally, if F is a set system over a ground set S, then a good
coloring of F is a coloring of S in such a way that for no F ∈ F get all points
of F the same color (there is no monochromatic F ).

One would expect that the chromatic number of a graph is large only if the
graph includes a large complete subgraph. Problem 24 shows it otherwise: the
chromatic number can be arbitrarily large even if the graph does not contain
three pairwise connected points. Still, a large chromatic number does imply
the existence of certain types of subgraphs, e.g., every uncountably chromatic
graph must include an infinite path, all circuits of even length and all odd
circuits of sufficiently large length (Problems 29, 30).

Let Kκ denote the complete graph (i.e., any two different points are joined)
on a vertex set of cardinality κ. A graph (V,X) is called bipartite if the vertex
set can be decomposed as V = V1 ∪ V2 such that all edges go between V1 and
V2 (in this case V1 and V2 are called the bipartition classes). Kκ,λ denotes
the complete bipartite graph with bipartition classes of cardinality κ and λ,
respectively.

We also make the following definition. Given a class F of graphs, a univer-
sal graph in F is a graph X0 ∈ F such that every graph X ∈ F is (isomorphic
to) a subgraph of X0. If X0 ∈ F is such that every X ∈ F appears as an
induced subgraph in X0 then it is a strongly universal graph.

Many problems from this section are used elsewhere in the book. Problem
8 is particularly useful if one wants to deduce a conclusion for infinite sets
provided one knows it for all finite subsets. It states the compactness property
for graph coloring.

There are some more problems on infinite graphs in Chapter 24.

1. An infinite graph or its complement includes an infinite complete sub-
graph.

2. The pairs of ω are colored with k < ω colors. Then there is a partition of
ω into k parts such that the ith part is a finite or one-way infinite path
in color i.

3. If X is a graph on κ ≥ ω vertices then either X or its complement includes
a topological Kκ.

4. If the degree of every vertex in a graph is at most n < ω, then the graph
can be colored with n + 1 colors.

5. If the degree of every vertex in a graph is at most κ ≥ ω, then the graph
can be colored with κ colors.

6. If the vertex set of a graph has a well-ordering in which every vertex is
joined to fewer than κ smaller vertices, then the graph is κ-colorable.

7. Let κ ≥ ω. If the vertex set of a graph has an ordering in which every
vertex is joined to fewer than κ smaller vertices, then the graph is κ-
colorable.
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8. (de Bruijn–Erdős theorem) If, for some n < ω, every finite subgraph of
a graph X is n-colorable, then so is X.

9. A graph is finitely chromatic if and only if every countable subgraph is
finitely chromatic.

10. Let X be a graph on some well-ordered set. Then X is finitely chromatic
if and only if every subset of order type ω is finitely chromatic.

11. Construct a graph X on ω2
1 such that every subgraph of order type ω1 is

countably chromatic yet X is uncountably chromatic.
12. Given the graphs (V,X) and (W, Y ) form their product X ×Y as follows.

The vertex set is V × W , and 〈x, y〉 is joined to 〈x′, y′〉 if and only if
{x, x′} ∈ X and {y, y′} ∈ Y . If the chromatic number of (V,X) is the
finite k and the chromatic number of (W, Y ) is infinite, then the chromatic
number of (V × W, X × Y ) is k.

13. (a) If the vertices of a graph (V,X) are partitioned as {Vi : i ∈ I} and Xi

is the subgraph induced by Vi then Chr(X) ≤
∑

Chr(Xi).
(b) If the edges of a graph (V,X) are decomposed into the subgraphs

{Xi : i ∈ I}, then Chr(X) ≤
∏

Chr(Xi).
14. Assume that X is a bipartite graph with bipartition classes A and B and

for every x ∈ A the set Γ (x) of the neighbors of x is finite. Then there is a
matching of A into B in X if and only if for any finite subset {x1, . . . , xk}
of A the set Γ (x1) ∪ · · · ∪ Γ (xk) has at least k elements.

15. Assume that p, q ≥ 1 are natural numbers and X is a graph as in the
preceding problem. There is a function f : E → {0, 1, . . . , p} on the edge
set E such that ∑

e: x∈e

f(e) = p (x ∈ A),

∑
e: y∈e

f(e) ≤ q (y ∈ B)

if and only if the following condition holds: for any k-element finite subset
{x1, . . . , xk} of A, the set Γ (x1) ∪ · · · ∪ Γ (xk) has at least pk/q elements.

16. A graph X is planar if and only if

(a) X includes no topological K5 or K3,3;
(b) X has only countably many vertices with degree at least 3;
(c) X has at most continuum many vertices.
(A graph is planar if it can be drawn in the plane where the vertices are
represented by distinct points, the edges by noncrossing Jordan curves.)

17. A graph is spatial (it can be represented as in the previous problem but
in the 3-space) if and only if it has at most continuum many vertices.

18. For an infinite cardinal κ the complete graph on κ+ vertices is the union
of κ forests but the complete graph on (κ+)+ vertices is not.
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19. The edge set of a graph can be decomposed into countably many bipartite
graphs if and only if the chromatic number of the graph is at most c.

20. There exists a strongly universal countable graph.
21. There is no universal countable Kω-free graph.
22. There is no universal countable locally finite graph (that is, in which every

degree is finite).
23. There is no universal Kℵ1-free graph of cardinality c.
24. For every infinite cardinal κ there is a κ-chromatic, triangle-free graph.
25. Define a graph (ω3

1 , X) on the set ω3
1 in such a way that (α, β, γ) and

(α′, β′, γ′) are connected if and only if α < β < α′ < γ < β′ < γ′ or
α′ < β′ < α < γ′ < β < γ. Then A ⊆ ω3

1 spans a countable chromatic
subgraph if and only if its order type (in the lexicographic ordering) is
< ω3

1 .
26. If (V,X) is a graph on the ordered set (V,<) we define the following graph

(V ′, X ′). The vertex set is V ′ = X. We create the edges X ′ as follows.
The edge {x, y} with x < y is joined to the edge {z, t} with z < t if and
only if either y = z or x = t holds.

(a) Chr(X ′) ≤ κ if and only if Chr(X) ≤ 2κ.
(b) If (V,X) does not include odd circuits of length 3, 5, . . . , 2n − 1 then

(V ′, X ′) does not include odd circuits of length 3, 5, . . . , 2n + 1.
(c) For every natural number n and cardinal κ there is a graph with

chromatic number greater than κ, and not including odd circuits of
length 3, . . . , 2n + 1.

27. There is an uncountably chromatic graph all whose subgraphs of cardi-
nality at most c are countably chromatic.

28. If 2ℵ0 = 2ℵ1 = ℵ2, 2ℵ2 = ℵ3, then there is a graph with chromatic number
ℵ2 with no induced subgraph of chromatic number ℵ1.

29. Every uncountably chromatic graph includes Kn,ℵ1 for all finite n, the
complete bipartite graph with bipartition classes of size n, ℵ1, respectively.
In particular, it includes circuits of length 4, 6, . . ..

30. Every uncountably chromatic graph includes every sufficiently long odd
circuit.

31. Every uncountably chromatic graph includes an infinite path.
32. Assume that X is an ℵ1-chromatic graph on the vertex set V . Then V

can be decomposed into the union of ℵ1 disjoint subsets each spanning a
subgraph of chromatic number ℵ1.

33. Assume that X is an uncountably chromatic graph on the vertex set V .
Then V can be decomposed into the union of two (or even ℵ0) disjoint
subsets each spanning a subgraph of uncountable chromatic number.
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34. The following graph (V,X) is uncountably chromatic. The vertex set is

V =
{
f : α → ω injective, α < ω1

}
,

and two functions are joined if one of them extends the other.
35. If the set system H consists of finite sets with at least two elements and

|A ∩ B| 
= 1 holds for A, B ∈ H then H is 2-chromatic.
36. Assume that the set system H consists of countably infinite sets such that

|A∩B| 
= 1 holds for A, B ∈ H. Then H is ω-chromatic but not necessarily
finitely chromatic.

37. Assume that H is a system of ℵ1 three-element sets no two intersecting
in two elements. Then H is ω-colorable.

38. Consider the graph Gn,α with vertex set Sn (the unit sphere of Rn+1)
and two points are connected if their distance is bigger than α. Then
Chr(Gn,α) ≥ n + 2 for all α < 2, and Chr(Gn,α) = n + 2 for α < 2
sufficiently close to 2.

39. For α < 1/2 let the vertices of the graph G be those measurable subsets
E ⊂ [0, 1] which have measure α, and let two such subsets be connected
if they are disjoint. Then the chromatic number of G is ℵ0.
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Partition relations

In partition calculus transfinite generalizations are obtained for the (infinite)
Ramsey theorem: if 2 ≤ k, r < ω and the r-tuples of some infinite set are
colored with k colors, then there is an infinite subset, all whose r-element
subsets get the same color (Problem 2).

If X is a set and f : [X]r → I is a coloring (partition) of its r-tuples, then
Y ⊆ X is called homogeneous or monochromatic with respect to f if there is
an i ∈ I such that f

(
{y1, . . . , yr}

)
= i holds for all {y1, . . . , yr} ∈ [Y ]r. We

usually contract the notation f
(
{y1, . . . , yr}

)
to f(y1, . . . , yr). The partition

relation κ → (λ)r
ρ expresses that if the r-tuples of a set of cardinality κ are

colored with ρ colors then there is a monochromatic subset of cardinality λ
(Rado’s notation). If this statement fails, then we write κ 
→ (λ)r

ρ. With this
notation the infinite Ramsey theorem reads as ω → (ω)r

k for r, k finite.
This branch of combinatorial set theory investigates how large homoge-

neous set can be guaranteed for a given coloring. The most important result
is the Erdős–Rado theorem stating that expr(κ)+ → (κ+)r+1

κ holds when κ
is an infinite cardinal and 1 ≤ r < ω (Problem 25). Here expr denotes the r-
fold iterated exponential function, i.e., exp0(κ) = κ, exp1(κ) = 2κ, exp2(κ) =
22κ

, . . ., etc. These values are sharp.
In this chapter we consider this basic result and various generalizations

and variants. We present applications to point set topology, some problems of
this chapter will also be used elsewhere in the book.

A tournament is a directed graph in which between any two vertices there
is an edge in one and only one direction.

1. If 2 ≤ k < ω, then ω → (ω)2k; i.e., if we color the edges of an infi-
nite complete graph with finitely many colors, then there is an infinite
monochromatic subgraph.

2. (Ramsey’s theorem) If 1 ≤ r < ω, 2 ≤ k < ω, then ω → (ω)r
k. That is, if

we color the r-tuples of an infinite set by finitely many colors, then there
is an infinite monochromatic set.
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3. Every infinite partially ordered set includes either an infinite chain or an
infinite antichain (i.e., either an infinite ordered set or an infinite set of
pairwise incomparable elements).

4. Every infinite ordered set includes either an infinite increasing or infinite
decreasing sequence.

5. If X is an infinite planar set, then there is an infinite convex subset Y ⊆ X,
that is, no point in Y lies in the interior of a triangle formed by three other
elements of Y .

6. Every infinite tournament includes an infinite transitive subtournament.
7. If X is an infinite directed graph with at most one edge between any two

vertices, then either there is an infinite independent set, or there is an
infinite, transitively directed subgraph.

8. The edges of a complete directed graph of cardinality continuum can be
colored by ω colors so that there are no connected edges of the same color
(two edges are connected if the endpoint of one is the starting point of
the other).

9. If f : [ω]2 → ω is a coloring such that for every i < ω there is a finite set
Ai with f(i, j) ∈ Ai (i < j < ω), then there is an infinite set A ⊆ ω which
is endhomogeneous, that is, in A, f(i, j) only depends on i.

10. If f is a coloring of [ω]2 with no restriction on the colors, then there is an
infinite H ⊆ such that either
(a) H is homogeneous for f , or
(b) if x < y, x′ < y′ are from H, then f(x, y) = f(x′, y′) if and only if

x = x′, or
(c) if x < y, x′ < y′ are from H, then f(x, y) = f(x′, y′) if and only if

y = y′, or
(d) the values

{
f(x, y) : {x, y} ∈ [H]2

}
are different.

11. Let f : ω → ω be a function with f(r) → ∞ (r → ∞). Assume that for
every 1 ≤ r < ∞ Hr colors [ω]r with finitely many colors. Then there is
an infinite X ⊆ ω such that Hr on [X]r assumes at most f(r) values. The
statement fails if f(r) 
→ ∞.

12. There is a constant c with the following property. If f : [ω]2 → 3 is a
coloring, then there is an infinite sequence a0 < a1 < · · · with an < cn for
infinitely many n such that f assumes only two values on this sequence.

13. If κ is an uncountable cardinal, then κ → (κ,ℵ0)2. That is, if f : [κ]2 →
{0, 1}, then either there is a set of cardinality κ monochromatic in color 0
or else there is an infinite set monochromatic in color 1. Show this when
κ is
(a) regular,
(b) singular.
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14. For cardinals λ ≥ 2, κ ≥ ω order the κ → λ functions lexicographically.
There is no decreasing sequence of length κ+. There is no increasing se-
quence of length max(κ, λ)+.

15. If 〈A, <〉 is an ordered set, |A| ≤ 2κ, then there is some f : [A]2 → κ with
no x < y < z such that f(x, y) = f(y, z).

16. There is an uncountable tournament with no uncountable transitive sub-
tournament.

17. (Todorcevic) There is a function F : [ω1]2 → ω1 such that for every
uncountable X ⊆ ω1 F assumes every element of ω1 on [X]2.

18. If κ ≥ ℵ0 is a cardinal, r ≥ 1 a natural number and f is a coloring of the
(r +1)-tuples of (2κ)+ with κ colors, then there is a set X ⊆ (2κ)+, |X| =
κ+ on which f is endhomogeneous, that is, for x1 < · · · < xr < y < y′

from X, f(x1, . . . , xr, y) = f(x1, . . . , xr, y
′) holds.

19. If κ ≥ ℵ0 is a cardinal, then (2κ)+ → (κ+)2κ. That is, if the pairs of
(2κ)+ are colored with κ colors, then there is a homogeneous subset of
cardinality κ+.

20. If κ ≥ ℵ0 is a cardinal, then (2κ)+ →
(
(2κ)+ , (κ+)κ

)2
. That is, if

f : (2κ)+ → κ, then either there is a homogeneous subset in color 0
of cardinality (2κ)+ or else there is a homogeneous subset in some color
0 < α < κ of cardinality κ+.

21. If κ is an infinite cardinal and
{
fα : α <

(
2κ
)+} is a sequence of ordinal-

valued functions defined on κ, then there is a pointwise increasing subse-
quence of cardinality

(
2κ
)+, that is, there is a set Z ⊆

(
2κ
)+, |Z| =

(
2κ
)+,

such that fα(ξ) ≤ fβ(ξ) holds for α < β, α, β ∈ Z, ξ < κ.
22. If X is a set then |X| ≤ c if and only if there is an “antimetric” on X, i.e.,

a function d : X × X → [0,∞) which is symmetric, d(x, y) = 0 exactly
when x = y, and for distinct x, y, z ∈ X for some permutation x′, y′, z′ of
them d(x′, z′) > d(x′, y′) + d(y′, z′) holds.

23. 2κ 
→ (κ+)22. That is, if |S| = 2κ, then there is f : [S]2 → {0, 1} with no
monochromatic set of size κ+.

24. 2κ 
→ (3)2κ. That is, if |S| = 2κ, then there is f : [S]2 → κ with no
monochromatic triangle.

25. (Erdős–Rado theorem) If κ is an infinite cardinal, set exp0(κ) = κ and
then by induction expr+1(κ) = 2expr(κ). If κ ≥ ℵ0 is a cardinal, then
expr(κ)+ → (κ+)r+1

κ . That is, if the (r+1)-tuples of expr(κ)+ are colored
with κ colors, then there is a homogeneous subset of cardinality κ+.

26. If κ is an infinite cardinal, r < ω, there is a function f :
[
expr(κ)

]r+1 → κ
such that if x0 < x1 < · · · < xr+1, then f(x0, . . . , xr+1) 
= f(x1, . . . , xr+2),
specifically, expr(κ) 
→ (r + 2)r+1

κ .
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27. Let κ be an infinite cardinal, |A| = κ+, |B| = (κ+)+, and k finite. If
f : A × B → κ, then there exist A′ ⊆ A, B′ ⊆ B, |A′| = |B′| = k such
that A′ × B′ is monochromatic.

28. If |A| = ℵ1, |B| = ℵ0, k is finite, f : A × B → k, then there exist A′ ⊆ A,
B′ ⊆ B, |A′| = |B′| = ℵ0 such that A′ × B′ is monochromatic.

29. (Canonization) Assume λ is a strong limit singular cardinal and S, a set
of cardinality λ is partitioned as S =

⋃
{Sα : α < µ} where µ = cf (λ)

and each Sα is of cardinality < λ. Assume that f : [S]2 → κ with κ < λ.
Then there is a set X ⊆ S, |X| = λ, on which f is canonical in the sense
that if x, y ∈ X then f(x, y) is fully determined by α, β where α, β < µ
are those ordinals with x ∈ Sα, y ∈ Sβ .

30. If λ is a strong limit singular cardinal with cf (λ) = ω, 3 ≤ k < ω, then
λ → [λ]2k holds, that is, if f : [λ]2 → k then on some subset of cardinality
λ f assumes at most two values.

31. For a set I of indices let the sets {Ai, Bi : i ∈ I} be given with |Ai|,
|Bi| ≤ κ and Ai ∩ Bj = ∅ if and only if i = j. Then |I| ≤ 2κ.

32. If κ > ω is regular, then κ → (κ, ω + 1)2. That is, if f : [κ]2 → {0, 1},
then either there is a set of order type κ monochromatic in color 0 or else
there is a set of order type ω + 1 monochromatic in color 1.

33. For k < ω, ω1 → (ω + 1)2k. That is, if we color [ω1]2 with k colors, then
there is a monochromatic set of order type ω + 1.

34. If k < ω and λ denotes the order type of the reals, then λ → (ω + 1)2k
holds. That is, if f : [R]2 → k, then there is a monochromatic set of order
type ω + 1.

35. Assume that κ > ω is a cardinal for which κ → (κ)22 holds. Then κ is
(a) regular,
(b) strong limit (i.e., if λ < κ then 2λ < κ),
(c) not the least cardinal with (a) and (b).

36. Define, for k < ω, by transfinite recursion on α < ω1, the notion of
semihomogeneous coloring f : [S]2 → k for every 〈S, <〉 of order type ωα.
For α = 0, no condition is imposed. For α = β+1, f is semihomogeneous if
and only if there is a decomposition S = S0 ∪S1 ∪ · · · with S0 < S1 < · · ·,
each Si having order type ωβ , f is semihomogeneous on every Si, and
gets the same value on all pairs between distinct Si’s. For α limit, f is
semihomogeneous if and only if there is a decomposition S = S0 ∪S1 ∪ · · ·
where S0 < S1 < · · ·, with Si of order type ωαi where α0 < α1 < · · ·
converges to α, f is semihomogeneous on every Si, and gets the same
value on all pairs between distinct Si’s. Then given β < ω1, k < ω, there
exists α < ω1, such that every semihomogeneous coloring of [ωα]2 with k
colors includes a homogeneous set of type β.
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37. If V , a vector space over Q with |V | ≥ ℵ2, is colored with countably
many colors, then there is a monochromatic solution of x+y = z +u with
pairwise distinct x, y, z, u.

38. If V , a vector space over Q with |V | ≥ c+ is colored with countably many
colors, then there is a monochromatic solution of x + y = z with x, y, z
different from zero and each other. This is not true for |V | ≤ c.

39. If 〈X, T 〉 is a Hausdorff topological space with a dense set of cardinality
κ, then |X| ≤ 22κ

.
40. If 〈X, T 〉 is a Hausdorff topological space with |X| > 22κ

, then there is a
discrete subspace of cardinality κ+.

41. If 〈X, T 〉 is a hereditarily Lindelöf Hausdorff topological space, then |X| ≤
c (“hereditarily Lindelöf” means that every open cover of any subspace
includes a countable subcover).

42. If 〈X, T 〉 is a first countable Hausdorff topological space with no uncount-
able system of pairwise disjoint, nonempty open sets, then |X| ≤ c (“first
countable” means that for every point in the space there is a countable
family {Ui}i<ω of neighborhoods of x such that every neighborhood of x
includes a Ui).

43. If the elements of P(ω) are colored with countably many colors, then there
is a monocolored nontrivial solution of X ∪ Y = Z.

44. There is a set S such that if the elements of P(S) are colored with
countably many colors, then there is a monocolored nontrivial solution
of X ∪ Y = Z with X, Y disjoint.

45. For every set S there is a coloring of P(S) with countably many colors
such that there do not exist pairwise disjoint X0, X1, . . . ⊆ S with all
nonempty, finite subunions in the same color class.

46. For every infinite set S there is a coloring f : [S]ℵ0 → {0, 1} of the
countably infinite subsets of S with two colors that admits no infinite
homogeneous subset, i.e., κ 
→ (ℵ0)ℵ0

2 holds for any κ.
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∆-systems

Regarding the inclusion relation the simplest possible family is a family of
pairwise disjoint sets. Often, from a family of sets one would like to select
a subfamily with such a simple structure, however, with pairwise disjoint
sets this is not always possible. A possible remedy is the selection of a ∆-
system, where {Ai : i ∈ I} is called a ∆-system (or a ∆-family) if the pairwise
intersections of the members is the same; Ai∩Aj = S for some set S (for i 
= j
in I). Thus, a ∆-system has a simple structure: all sets in it have a common
core, and outside this common core the sets are disjoint.

In this chapter we consider the problem how large ∆-systems can be se-
lected from a given family of sets. As an application we shall obtain in Prob-
lem 5 that in no power of R (regarded as a topological space) can one find an
uncountable system of pairwise disjoint open sets.

1. An infinite family of n-element sets (n < ω) includes an infinite ∆-
subfamily.

2. An uncountable family of finite sets includes an uncountable ∆-subfamily.
3. Let F be a family of finite sets, κ = |F| a regular cardinal. Then F has a

∆-subfamily of cardinality κ. This is not true if κ is singular.
4. Is it true that every family F of finite sets with |F| = ℵ1 is the union of

countably many ∆-subfamilies ?
5. Let A, B be arbitrary sets, let B be countable, and let F (A, B) be the set

of all functions from a finite subset of A into B. Then among uncount-
ably many elements of F (A, B) there are two which possess a common
extension.

6. Consider the topological product of an arbitrary number of copies of R,
regarded as a topological space. In this space there are no uncountably
many pairwise disjoint nonempty open subsets.

7. If {Aα : α < ω1} is a family of finite sets, then {Aα : α ∈ S} is a
∆-subsystem for some stationary set S.
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8. (a) Let F be a family of countable sets, |F| = c+. Then F has a ∆-
subfamily F ′ ⊆ F with |F ′| = c+.

(b) Let F be a family of sets of cardinality ≤ µ, with λ = |F| regular and
with the property that κ < λ implies κµ < λ (for example, λ = (2µ)+).
Then F has a ∆-subfamily of cardinality λ.

9. For µ infinite, there is a set system of cardinality 2µ, consisting of sets of
cardinality µ, with no 3-element ∆-subsystem.

10. For a set I of indices the sets {Ai, Bi : i ∈ I} are given with |Ai|, |Bi| ≤ µ
and Ai ∩ Bj = ∅ holds if and only if i = j. Then |I| ≤ 2µ.

11. Assume that λ > κ ≥ ω and F is a family of cardinality λ of sets of
cardinality < κ. Then there is a subfamily F ′ ⊆ F of cardinality λ such
that ∣∣∣∣∣∣

⋃
A�=B∈F ′

(A ∩ B)

∣∣∣∣∣∣ < λ

assuming that either
(a) λ is regular or
(b) GCH holds.
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Set mappings

In the following problems a set mapping is a function f : S → P(S) for some
set S (or, in some cases, f : [S]n → P(S) for some set S and some finite
n ≥ 2) usually with some restriction on the images. We shall always assume,
even if we do not explicitly mention it, that x /∈ f(x) (or, in the other case,
x1, . . . , xn /∈ f(x1, . . . , xn)). Given a set mapping f : S → P(S) a free set is
some set X ⊆ S with x /∈ f(y) for x, y ∈ X. (If f : [S]n → P(S) then the
condition is that y /∈ f(x1, . . . , xn) for y, x1, . . . , xn ∈ X).

A basic problem for set mappings is how large free set can be guaranteed
under a set mapping. In what follows we shall consider both positive and
negative results on this problem.

1. Assume that f : R → P(R) is a set mapping with x /∈ f(x). Then there
is a free set that is

(a) of the second category,
(b) of cardinality continuum.

2. There is a set mapping f : R → P(R) with f(x) bounded, but with no
2-element free set.

3. There is a set mapping f : R → P(R) with |f(x)| < c and with no
2-element free sets.

4. If f : R → P(R) is a set mapping with f(x) nowhere dense, then there is
always an everywhere dense free set.

5. Assume that f : R → P(R) is a set mapping such that |f(x)| < c, f(x)
not everywhere dense in R. Then there is a 2-element free set. Is there a
3-element free set?

6. Assume that f : R → P(R) is a set mapping such that f(x) is always a
bounded set with outer measure at most 1. Then for every finite n there
is an n-element free set.
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7. (CH) There is a set mapping f : R → P(R) such that for every real
number x ∈ R the image f(x) is a sequence converging to x, yet there is
no uncountable free set.

8. Assume µ < κ are infinite cardinals with κ regular. Let f : κ → [κ]<µ be
a set mapping. There is a free set of cardinality κ if κ is
(a) regular (S. Piccard),
(b) singular (A. Hajnal).

9. Assume that f : S → P(S) is a set mapping with |f(x)| ≤ k for some
natural number k. Then S is the union of at most 2k + 1 free sets.

10. Assume that f : S → P(S) is a set mapping with |f(x)| < µ for some
infinite cardinal µ. Then S is the union of at most µ free sets.

11. Assume that f : ω1 → P(ω1) is a set mapping such that f(x) ∩ f(y) is
finite for x 
= y. Then for every α < ω1 there is a free subset of type α.

12. Assume that f : [S]k → [S]<ω is a set mapping for some set S where k is
finite. If |S| ≥ ℵk then there is a free set of size k + 1, but this is not true
if |S| < ℵk.

13. If f : [S]2 → [S]<ω is a set mapping on a set S of cardinality ℵ2, then for
every n < ω there is a free set of size n.
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Trees

In this chapter we consider the somewhat technical but important notion of
tree. We start with König’s lemma, whose easy yet powerful statement can
be formulated as: if there will be infinitely many generations, then there is an
infinite dynasty. Then we proceed to higher equivalents, that is, to Aronszajn
trees and variants.

A tree 〈T,≺〉 is a partially ordered set in which the set T<x = {y : y ≺ x}
of the elements smaller than x is well ordered for every x ∈ T . The order type
o(x) of T<x denotes how high the element x is in the tree: those elements with
o(x) = α form the αth level Tα of T . In order to be reader-friendly, we will
occasionally use the nonstandard but self-explanatory notation T>x = {y :
x ≺ y}, T<α =

⋃
{Tβ : β < α}, T>α =

⋃
{Tβ : α < β}, etc. The height, h(T )

of T , is the least α with Tα = ∅. An α-branch of a tree 〈T,≺〉 is an ordered
subset b ⊆ T<α that intersects every level Tβ (β < α) (in exactly one point).

A tree 〈T,≺〉 is normal if
(A) for every x ∈ T , T>x contains elements arbitrary high below h(T );
(B) if x ∈ T , then there exist distinct y, y′ with x ≺ y, x ≺ y′, o(y) =

o(y′) = o(x) + 1;
(C) if α < h(T ) is a limit ordinal, x 
= x′ ∈ Tα, then T<x 
= T<x′ .
If s ≺ t, then we call t a successor of s, s a predecessor of t. If s ≺ t or

t ≺ s holds, then we call s, t comparable. If neither s ≺ t nor t ≺ s holds, then
s, t are incomparable. If s ≺ t and there are no further elements between s
and t (i.e., they are on consecutive levels of the tree), then t is an immediate
successor of s, s is an immediate predecessor of t.

If κ is a cardinal, a tree 〈T,≺〉 is a κ-tree if h(T ) = κ and |Tα| < κ holds
for every α < κ.

An Aronszajn tree is an ω1-tree with no ω1-branches, and in general, a κ-
Aronszajn tree is a κ-tree with no κ-branches. If every κ-tree has a κ-branch,
that is, there are no κ-Aronszajn trees, then κ is said to have the tree property.

In a tree 〈T,≺〉 a subset A ⊆ T is an antichain if it consists of pairwise
incomparable elements. An ω1-tree is special if it is the union of countably
many antichains.
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A subset D ⊆ T of a tree is dense if for every x ∈ T there is a y ∈ D with
x  y. A subset D ⊆ T of a tree is open if x ≺ y, x ∈ D imply that y ∈ D.

An ω1-tree is a Suslin tree if there is no ω1-branch or uncountable antichain
in it.

Squashing a tree: if 〈T,≺〉 is a tree, then we can transform it into an ordered
set as follows. Let <α be an ordering on Tα. If x, y are distinct elements of
T , then set x <lex y if and only if either x ≺ y or T≤x is “lexicographically
smaller” than T≤y. That is, if T≤x = {pα(x) : α ≤ o(x)} where pα(x) is the
only element of T≤x on Tα, and T≤y = {pα(y) : α ≤ o(y)} is the corresponding
set for y, then pα(x) <α pα(y) holds for the least α where pα(x) 
= pα(y).
Notice that if 〈T,≺〉 is normal then it suffices to define <α on T0 and for
every element s of T on the set of immediate successors of s.

A Specker type is the order type of an ordered set that does not embed ω1,
ω∗

1 , or an uncountable subset of the reals.
A Countryman type is the order type of an ordered set 〈S,≺〉 if S × S is

the union of countably many chains under the partial order 〈x, y〉  〈x′, y′〉 if
and only if x  x′ and y  y′.

A Suslin line is a nonseparable ordered set that is ccc, that is, it does
not include a countable dense subset and every family of pairwise disjoint
nonempty open intervals is countable.

There are two more notions of trees: in Chapter 31 what we call trees
are certain trees of height ω and of course in graph theory the connected,
circuitless graphs are called trees.

1. (König’s lemma) ω has the tree property, that is, if every level of an infinite
tree is finite, then there is an infinite branch.

2. There is a tree T of height ω, with |Tn| = ℵ0 for every n < ω such that T
has no infinite branch.

3. If an infinite connected graph is locally finite (every vertex has finite
degree), then it includes an infinite path.

4. Suppose that H is an infinite set of finite 0–1 sequences closed under
restriction, that is, if a1 · · · an ∈ H, then a1 · · · am ∈ H holds for every
m < n. Then there is an infinite 0–1 sequence all whose (finite) initial
segments belong to H.

5. Let Ai, i < ω be finite sets and let fk ∈
∏

i<k Ai for k = 0, 1, . . .. Then
there is an f ∈

∏
i<ω Ai such that on any finite set S ⊆ ω the function f

agrees with one of the fk’s (i.e., f S = fk S).
6. An infinite bounded set of reals has a limit point.
7. Given the natural numbers r, k, and s there is a natural number n such

that if all r-tuples of {0, 1, . . . , n−1} are colored with k colors, then there is
a homogeneous subset increasingly enumerated as {a1, . . . , ap} with p ≥ s
and also with p ≥ a1.
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8. A domino is a one-by-one square, where the four sides are colored. Given
a collection D of dominoes with finitely many different color types, we
want to tile the plane with them, i.e., to place a domino on each lattice
point with its center on the lattice point, in a horizontal-vertical position
such that the common sides of neighboring dominoes have the same color.
(a) If for every n < ω an n × n square has a tiling from D, then so has

the plane.
(b) If the plane has a tiling from D, then it has from D′, where D′ is

obtained from D by omitting those types that contain only finitely
many pieces.

9. The vertex set of a locally finite graph can be partitioned into two sets,
A and B such that if for v, a vertex, dA(v), dB(v) denote the number of
vertices joined to v in A, B, respectively, then dA(v) ≤ dB(v) if v ∈ A
and dA(v) ≥ dB(v) if v ∈ B.

10. (a) If a1 + · · · + an is a sum of positive reals, then there are indices 0 =
k(0) < k(1) < · · · < k(r) = n such that S1 ≥ · · · ≥ Sr holds for the
subsums Si = ak(i−1)+1 + · · · + ak(i) and S1 < 2

√
a2
1 + · · · + a2

n.
(b) If

∑∞
1 ai is a divergent series of positive terms and

∑
a2

i < ∞, then
there are indices 0 = k(0) < k(1) < · · · such that S1 ≥ · · · ≥ Sr holds
for the subsums Si = ak(i−1)+1 + · · · + ak(i).

11. There is an Aronszajn-tree.
12. There is a special Aronszajn-tree.
13. Every special ω1-tree is Aronszajn.
14. If 〈T,≺〉 is a tree, then 〈T, <lex〉 is an ordered set.
15. If 〈T,≺〉 is an Aronszajn-tree, then the order type of 〈T, <lex〉 is a Specker

type.
16. There exist functions {eα : α < ω1} such that each eα : α → ω is injective

and for β < α the functions eβ and eα β are identical at all but finitely
many points.

17. The tree T = {eα β : β ≤ α < ω1} (with the functions of the previous
problem) is an Aronszajn-tree, where g ≺ g′ if and only if g′ properly
extends g.

18. Let eα from Problem 16, and set S = {eα : α < ω1}, where ≺ is the
lexicographic ordering. Then the order type of S is a Countryman type.

19. Every Countryman type is a Specker type.
20. An ω1-tree 〈T,≺〉 is special if and only if there is an order preserving

f : 〈T,≺〉 → 〈Q, <〉.
21. Assume that 〈T,≺〉 is an ω1-tree with a function f : T \T0 → T such that

f(t) ≺ t and for every t and for every element s ∈ T the set f−1(s) is the
union of countably many antichains. Then 〈T,≺〉 is special.
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22. If a normal ω1-tree 〈T,≺〉 has no uncountable antichain, then it is a Suslin
tree.

23. If 〈T,≺〉 is a Suslin tree then for all but countably many x ∈ T , the set
T≥x is uncountable.

24. If there is a Suslin tree, then there is a normal Suslin tree.
25. There is a Suslin tree if and only if there is a Suslin line.
26. If 〈T,≺〉 is a Suslin tree, D ⊆ T is dense, open then D is co-countable in

T .
27. If 〈T,≺〉 is a normal Suslin tree, D0, D1, . . . ⊆ T are dense, open sets,

then D0 ∩ D1 ∩ · · · is also a dense, open set.
28. If 〈T,≺〉 is a Suslin tree, A ⊆ T is uncountable then A is somewhere dense,

i.e., there is some t ∈ T such that for every x � t there is y � x, y ∈ A.
29. If 〈T,≺〉 is a normal Suslin tree, f : T → R preserves , then f has

countable range. There is no such f that preserves ≺.

In Problems 30–31 we consider the topology of the tree 〈T,≺〉 generated by
the open intervals, i.e., of the sets of the form (p, q) = {t ∈ T : p ≺ t ≺ q}.
This amounts to declaring t ∈ Tα isolated if α = 0 or successor, and if α
is limit then the sets of the form (s, t] (s ≺ t) give a neighborhood base of
t.

30. If 〈T,≺〉 is a normal Suslin tree, f : T → R is continuous, then f has
countable range.

31. If 〈T,≺〉 is a normal Suslin tree, then it is a normal topological space.
32. On a normal ω1-tree 〈T,≺〉 two players, I and II alternatively pick the

successive elements of the sequence t0 ≺ t1 ≺ · · · with I choosing t0. I
wins if and only if there is an element of T above all of t0, t1, . . ..

(a) I has no winning strategy.
(b) If 〈T,≺〉 is special, II has winning strategy.
(c) If 〈T,≺〉 is Suslin, II has no winning strategy.

33. If κ is regular, λ < κ, 〈T,≺〉 is a κ-tree with |Tα| < λ for α < κ then
〈T,≺〉 has a κ-branch. This is not true if κ is singular.

34. If, for some regular κ ≥ ω, there is a κ-Aronszajn tree, then there is a
normal one.

35. If 〈T,≺〉 is a κ-tree for some regular cardinal κ, then the following are
equivalent.

(a) 〈T,≺〉 has a κ-branch.
(b) 〈T, <lex〉 includes a subset of order type κ or κ∗.
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36. There exists a κ+-Aronszajn tree if κ holds, that is, for every limit
α < κ+ there is a closed, unbounded subset Cα ⊆ α of order type ≤ κ
such that if β < α is a limit point of Cα, then Cβ = Cα ∩ β.

37. There exists a κ+-Aronszajn tree if κ is regular and 2µ ≤ κ holds for
µ < κ.

38. κ has the tree property if κ is real measurable (see Chapter 28).
39. Assume that κ is a singular cardinal such that for every λ < κ there is an

ultrafilter Dλ on the subsets of κ+ such that if A ∈ Dλ then |A| = κ+ and
if Aα ∈ Dλ (α < λ) then

⋂
α<λ Aα ∈ Dλ. Then κ+ has the tree property.

40. If κ → (κ)22 then every ordered set of cardinality κ includes either a well-
ordered or a reversely well-ordered subset of cardinality κ.

41. If every ordered set of cardinality κ includes either a subset of order type
κ or a subset of order type κ∗, then κ is strongly inaccessible.

42. If κ has the tree property, then κ is regular.
43. If κ is the smallest strong limit regular cardinal bigger than ω, then κ

does not have the tree property.
44. For an infinite cardinal κ the following are equivalent.

(a) κ → (κ)22,
(b) κ → (κ)n

σ for any σ < κ and n < ω,
(c) κ is strongly inaccessible and has the tree property,
(d) in any ordered set of cardinality κ there is either a well-ordered or a

reversely well-ordered subset of cardinality κ.
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The measure problem

It has always been an important problem to measure length, area, volume,
etc. In the 19th and 20th centuries various measure and integral concepts
(like Riemann and Lebesgue measures and integrals) were developed for these
purposes and they have proved adequate in most situations. However, it is
natural to ask what their limitations are, e.g., to what larger classes of sets
can the notion of Lebesgue measure be extended by preserving its well-known
properties. The standard proof for the existence of not Lebesgue measurable
set in R (using the axiom of choice!) shows that there is no nontrivial trans-
lation invariant σ-additive measure on all subsets of R. It was S. Banach
who proved that in R and R2 there is a finitely additive nontrivial isometry
invariant measure. If we go to R3, then the situation changes: by the Banach–
Tarski paradox (Chapter 19) a ball can be decomposed into two balls of the
same size; therefore, there is no nontrivial finitely additive isometry invariant
measure on all subsets of Rn with n ≥ 3.

In this chapter we discuss the problem when we do not care for translation
invariance, but want to keep σ-additivity or some kind of higher-order addi-
tivity. Let X be an infinite set. By the phrase “µ is a measure on X” we mean
a measure µ : P(X) → [0, 1] on all subsets of X. Such a measure is called
nontrivial if µ(X) = 1 and µ({x}) = 0 for each x ∈ X. Since we shall only be
interested in nontrivial measures, in what follows we shall always assume that
the measures in question are nontrivial (hence we exclude discrete measures,
which are completely additive). µ is called κ-additive if for any disjoint family
Yi, i ∈ I of fewer than κ sets (i.e., |I| < κ) we have µ(∪i∈IYi) =

∑
i∈I µ(Yi).

The right-hand side is defined as the supremum of its finite partial sums, and,
as a consequence, on the right-hand side only countably many µ(Yi) can be
positive. Instead of ω-additivity we shall keep saying “finite additivity” and
instead of ω1-additivity we say “σ-additivity”.

It turns out (see Problems 8, 9) that the first cardinal κ on which there is a
σ-additive measure has also the stronger property that it carries a κ-additive
measure as well. A cardinal κ > ω is called real measurable if there is a κ-
additive [0, 1]-valued measure on κ. It is called measurable if there is such a
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measure taking only the values 0 and 1. Real measurable but not measurable
cardinals are at most as large as the continuum (Problem 7), but measurable
cardinals are very large, their existence cannot be proven in ZFC (Zermelo–
Fraenkel axiom system with the axiom of choice). On the other hand, R.
Solovay proved in 1966 that if ZFC is consistent with the existence of a real
measurable cardinal, then

• ZFC is consistent with the existence of a measurable cardinal,
• ZFC is consistent with c being real measurable,
• ZF is consistent with the statement that all subsets of R are Lebesgue-

measurable.

In the present chapter we discuss a few properties of measurable cardinals.
One of the main results in this subject is the existence of a normal ultrafilter
on any measurable cardinal (Problem 14), which has the easy consequence
that all measurable cardinals are weakly compact, that is, κ → (κ)22 holds for
them. A stronger Ramsey property will be established in Problem 16.

In analogy with κ-additivity of measures let us call an ideal κ-complete
if it is closed for < κ unions and a filter κ-complete if it is closed for < κ
intersections. Recall that an ideal/filter on a ground set X is called a prime
ideal/ultrafilter if for all Y ⊂ X either Y or X \ Y belongs to it (and this
is equivalent to the maximality of the ideal/filter). A prime ideal I ⊂ P(X)
is called nontrivial if it contains all singletons {x}, x ∈ X, and an ultrafilter
F ⊂ P(X) is called nontrivial if it does not contain any of the {x}, x ∈ X.

In the problems below all measures, prime ideals, and ultrafilters
will be assumed to be nontrivial.

1. On any infinite set there is a finitely additive nontrivial 0–1-valued mea-
sure.

2. Let X be an infinite set and κ ≥ ω a cardinal. The following are equivalent:

• there is a κ-additive 0–1-valued measure on X;
• there is a κ-complete prime ideal on X;
• there is a κ-complete ultrafilter on X.

3. There is no σ-additive [0, 1]-valued measure on ω1 (i.e., ℵ1 is not real
measurable).

4. If R is decomposed into a disjoint union of ℵ1 sets of Lebesgue measure
zero, then some of these sets have nonmeasurable union.

5. If κ is real measurable, then it is a regular limit cardinal.
6. If there is a [0, 1]-valued σ-additive measure µ on [0, 1] then there is such

a µ extending the Lebesgue measure. Furthermore, if µ is κ-additive for
some κ, then so is µ.
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7. If κ > c is real measurable, then it is measurable.
8. If κ is the smallest cardinal on which there is a σ-additive [0, 1]-valued

measure, then κ is real measurable.
9. If κ is the smallest cardinal on which there is a σ-additive 0–1-valued

measure, then κ is measurable.
10. There is no σ-additive 0–1-valued measure on R.
11. If κ is measurable, then it is a strong limit regular cardinal.

If κ > 0 is a regular cardinal, then a filter F on κ is called a normal filter
if for every F ∈ F and every f : F → κ regressive function f there is an
α < κ such that f−1(α) ∈ F .

12. Let κ be regular. An ultrafilter F on κ is normal if and only if it is closed
for diagonal intersection (see Problem 21.5).

13. Let κ be regular and F a normal ultrafilter on κ. Then F is κ-complete
if and only if no element of F is of cardinality smaller than κ.

14. If κ is measurable, then on κ there is a κ-complete normal ultrafilter.
Prove this via the following outline.
(a) Let µ be a κ-additive measure on κ, and for f, g ∈ κκ set f ≡ g if

f(α) = g(α) for a.e. α (i.e., the µ-measure of the set of the excep-
tional α is 0). Then this is an equivalence relation, and between the
equivalence classes f and g of f and g set f ≺ g if f(α) < g(α) a.e.
This is a well-ordering on the set of equivalence classes κκ/≡.

(b) Let Y be the set of those functions f ∈ κκ for which f−1(α) is of
measure 0 for all α ∈ κ, and let f0 ∈ Y be such that its equivalence
class is minimal in Y/≡. Then F = {F : f−1

0 [F ] is of measure 1} is

a κ-complete normal ultrafilter on κ.
15. If κ is measurable, then κ → (κ)r

σ for any r < ω and σ < κ.
16. If κ is measurable, then κ → (κ)<ω

σ for any σ < κ, i.e., if we color the
finite subsets of κ by σ < κ colors then there is a set A of cardinality
κ that is homogeneous in the sense that for every fixed r < ω all the r
tuples of A have the same color (cardinals with the property κ → (κ)<ω

σ

for σ < κ are called Ramsey cardinals).

The following problems lead to the existence of finitely additive isometry
invariant measures on all subsets of R and R2. First we deal with the case
when the whole space has measure 1, and then with the case that extends
Jordan measure (in this case the measure necessarily is extended-valued,
i.e., it is infinite on the whole space). Such measures are called Banach
measures. Note that by the Banach–Tarski paradox (see Chapter 19) in
R3 (and in Rn with n ≥ 3) there is no such measure.
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The construction of finitely additive isometry invariant measures on all
subsets runs parallel with the construction of additive positive linear func-
tionals on the space of bounded functions, which is the analogue of inte-
gration. We shall also construct these so-called Banach integrals in R
and R2 both in the normalized case (when the identically 1 function has
integral 1) and also in the case which extends the Riemann integral. Ac-
tually, Banach measures are obtained by taking the Banach integral of
characteristic functions.
Let BA denote the set of all bounded real-valued functions on the set
A equipped with the supremum norm ‖f‖ = supa∈A |f(a)|. We call a
function I : BA → R

• linear if for any f1, f2 ∈ BA, c1, c2 ∈ R we have I(c1f1 + c2f2) =
c1I(f1) + c2I(f2),

• nontrivial if I(1) = 1, where 1 denotes the identically 1 function,
• normed if it is nontrivial and |I(f)| ≤ ‖f‖ for all f ∈ BA,
• positive if it is nonnegative for nonnegative functions: I(f) ≥ 0 if f ≥ 0.
Positivity is clearly equivalent to monotonicity: if f ≤ g, then I(f) ≤ I(g).
In what follows in statements (a)–(k) the adjective “normed” can be
replaced everywhere by “positive”, since a linear functional I for which
I(1) = 1 is positive if and only if |I(f)| ≤ ‖f‖.
If Φ is a family of automorphisms of A, then we say that I is Φ-invariant
if I(f) = I(fϕ) for all f ∈ BA and ϕ ∈ Φ, where fϕ(x) = f(ϕ(x)).

17. (a) There is a normed linear functional on BN.
(b) There is a translation invariant normed linear functional I on BN,

i.e., if g(n) = f(n + 1), n ∈ N, then I(f) = I(g) (such a functional is
called a Banach limit).

(c) There is a translation invariant normed linear functional on BZ.
(d) For any finite n there is a translation invariant normed linear func-

tional on BZn .
(e) If A is an Abelian group and s1, . . . , sn ∈ A are finitely many elements,

then there is a normed linear functional I on BA that is invariant for
translation with any sj (i.e., if fj(x) = f(sj + x), then I(fj) = I(f)
for all 1 ≤ j ≤ n).

(f) If A is an Abelian group, then there is a translation invariant normed
linear functional on BA.

(g) If A is an Abelian group, then there is a finitely additive translation
invariant measure µ on all subsets of A such that µ(A) = 1. In par-
ticular, there is a finitely additive translation invariant measure µ on
all subsets of Rn such that µ(Rn) = 1.

(h) There is an isometry invariant normed linear functional on BR.
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(i) There is a finitely additive isometry invariant measure µ on all subsets
of R such that µ(R) = 1.

(j) There is an isometry invariant normed linear functional on BR2 .
(k) There is a finitely additive isometry invariant measure µ on all subsets

of R2 such that µ(R2) = 1.

In statements (l)–(p) we allow the measure to take infinite values, and in
these statements Bb

Rn denotes the set of bounded functions on Rn with
bounded support.

(l) There is a translation invariant positive linear functional on Bb
R that

extends the Riemann integral.
(m) For every n there is a translation invariant positive linear functional

on Bb
Rn that extends the Riemann integral.

(n) There is a translation invariant finitely additive measure on all subsets
of Rn that extends the Jordan measure.

(o) For n = 1, 2 there is an isometry invariant positive linear functional
on Bb

Rn that extends the Riemann integral (Banach integral).
(p) For n = 1, 2 there is a finitely additive isometry invariant measure on

all subsets of Rn that extends the Jordan measure (Banach measure).
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Stationary sets in [λ]<κ

In this chapter we consider subsets of [λ]<κ where κ > ω is regular and λ > κ.
X ⊆ [λ]<κ is called

• unbounded if for every P ∈ [λ]<κ there exists some Q ∈ X with P ⊆ Q,
• closed if whenever α < κ and {Pβ : β < α} is an increasing transfinite

sequence of elements of X then
⋃
{Pβ : β < α} ∈ X,

• a club set when it is both closed and unbounded.

If something is true for the elements of a closed, unbounded set, then we
say that it holds for almost every P ∈ [λ]<κ (a.e. P ). Similarly, if X ⊆
[λ]<κ, then some property holds for almost every element of X if there is
a closed, unbounded set C such that it holds for the elements of C ∩ X.
S ⊆ [λ]<κ is stationary if it intersects every closed, unbounded set. Otherwise,
it is nonstationary.

As we shall see these notions extend the classical notion of club sets and
stationary sets. Most of the classical results from Chapters 20–21 have an
analogue in this setting, and the present generalization opens space for some
other questions as well.

We define κ(P ) = P ∩ κ whenever it is < κ, i.e., when P intersects κ in
an initial segment.

1. [λ]<κ is the union of κ bounded sets.
2. The union of < κ bounded sets is bounded again.
3. For every α < λ the cone {P ∈ [λ]<κ : α ∈ P} is a closed, unbounded set.

In general, if Q ∈ [λ]<κ, then {P ∈ [λ]<κ : Q ⊆ P} is a closed, unbounded
set.

4. Every stationary set is unbounded.
5. As all ordinals, specifically all ordinals < κ, are identified with the initial

segment determined by them, κ ⊆ [κ]<κ holds. A set A ⊆ κ is stationary,
(or closed, unbounded) in the sense of κ exactly if it is in the sense of
[κ]<κ.
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6. X ⊆ [λ]<κ is closed if and only if for every directed set Y ⊆ X of car-
dinality < κ,

⋃
Y ∈ X holds (Y is called directed if for any P1, P2 ∈ Y

there is a P ∈ Y such that P1 ∪ P2 ⊆ P ).
7. If f : [λ]<ω → [λ]<κ, then define C(f) = {P ∈ [λ]<κ : P is closed under f}.

(a) C(f) is a closed, unbounded set.
(b) If C is a closed, unbounded set, then C(f) \ {∅} ⊆ C holds for an

appropriate f .
8. The intersection of < κ closed, unbounded sets is a closed, unbounded set

again.
9. For a.e. P , κ ∩ P < κ holds (that is, P intersects the interval κ in an

initial segment).
10. Given an algebraic structure with countably many operations (group, ring,

etc.) on λ, a.e. P ∈ [λ]<κ is a substructure.
11. Almost every P ∈ [λ]<κ is the disjoint union of intervals of the type

[κ · α, κ · α + β) with β = κ(P ).
12. If {Cα : α < λ} are closed, unbounded sets, then so is their diagonal

intersection

∇α<λCα = {P ∈ [λ]<κ : α ∈ P −→ P ∈ Cα}.

13. Assume that S ⊆ [λ]<κ is stationary, f(P ) ∈ P holds for every P ∈ S,
P 
= ∅. Then for some α < λ, f−1(α) is stationary.

14. Assume that S ⊆ [λ]<κ is stationary, f(P ) ∈ [P ]<ω holds for every P ∈ S.
Then for some s, f−1(s) is stationary.

15. If X ⊆ [λ]<κ is a nonstationary set, then there exists a function f with
f(P ) ∈ [P ]<ω for every P ∈ X such that f−1(s) is bounded for every
finite set s.

16. If C ⊆ κ is a closed, unbounded set, then so is {P ∈ [λ]<κ : κ(P ) ∈ C}.
17. If λ is regular, C ⊆ λ is a closed, unbounded set, then

A =
{
P ∈ [λ]<κ : sup(P ) ∈ C

}
is again a closed, unbounded set.

18. If S ⊆ κ is a stationary set, then so is {P ∈ [λ]<κ : κ(P ) ∈ S}.
19. There is a stationary set in [ω2]<ℵ1 of cardinality ℵ2.
20. Every closed, unbounded set in [ω2]<ℵ1 is of maximal cardinality ℵℵ0

2 .
21. Set Z = {P ∈ [λ]<κ : κ(P ) = |P |}. (Remember the identification of

cardinals with ordinals!)
(a) Z is stationary.
(b) If S ⊆ Z is a stationary set, then it is the disjoint union of λ stationary

sets.
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22. Every stationary set in [λ]<κ is the union of κ disjoint stationary sets.
Prove this via the following steps. Let S be a counterexample.

(a) Every stationary S′ ⊆ S is also a counterexample.
(b) For almost every P ∈ S, κ(P ) < |P | holds.
(c) Assume that f(P ) ∈ P holds for every P ∈ S, P 
= ∅. Then there is

some Q ∈ [λ]<κ such that f(P ) ∈ Q holds for a. e. P ∈ S.
(d) κ is weakly inaccessible (a regular limit cardinal).
(e) If S′ ⊆ S is stationary, f(P ) ⊆ P , |f(P )| < κ(P ) holds for P ∈ S′

then there is some Q ∈ [λ]<κ such that f(P ) ∈ Q holds for a. e.
P ∈ S′.

(f) For a. e. P ∈ S, κ(P ) is weakly inaccessible.
(g) For a. e. P ∈ S, S ∩ [P ]<κ(P ) is stationary in [P ]<κ(P ).
(h) Get the desired contradiction.

23. (GCH) Set λ = ℵω, κ = ℵ2. There is a stationary set S ⊆ [λ]<κ such that
every unbounded subset of S is stationary.

24. For any nonempty set A call S ⊆ P(A) A-stationary if for every function
f : [A]<ω → [A]≤ℵ0 there is some B ∈ S, B 
= ∅ which is closed under f .

(a) S = {A} is A-stationary on A.
(b) If S is A-stationary on A, then A =

⋃
S.

(c) If A = λ ≥ ω1 is a cardinal, S ⊆ [λ]<ℵ1 then S is λ-stationary on λ if
and only if it is stationary.

(d) If S is A-stationary, ∅ 
= B ⊆ A, then T = {P ∩ B : P ∈ S} is
B-stationary.

(e) If S is A-stationary, B ⊇ A, then T = {P ⊆ B : P ∩ A ∈ S} is
B-stationary.

(f) If S is A-stationary, F (P ) ∈ P holds for every P ∈ S, P 
= ∅, then for
some x, the set F−1(x) is A-stationary.
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The axiom of choice

In this chapter we do not assume the axiom of choice.
We now enter a strange and interesting world. Strange, as our everyday

tools cannot be used; we no longer have the trivial rule for addition and
multiplication of two cardinals, and as some sets may not be well orderable,
we cannot always apply transfinite induction or recursion. Interesting, as we
are still able to prove some statements similar to the corresponding statements
under the axiom of choice, only it requires delicate arguments, and in some
cases we discover phenomena that can only hold if AC fails.

We can use the notion of a cardinal, in the naive sense, that is, without
the von Neumann identification of cardinals with ordinals. That is, we can
speak of the equality, sum, etc., of two cardinals.

ACω is the axiom of choice for countably many nonempty sets.

1. For no cardinal κ does 2κ = ℵ0 hold.
2. If ϕ is an ordinal, then there is a sequence 〈fα : ω ≤ α < ϕ〉 such that

fα : α × α → α is an injection.
3. If 0 < α < ω2, then there is a surjection R → α.
4. There is a mapping from the set of reals onto a set of cardinality greater

than continuum if either
(a) every uncountable set of reals has a perfect subset, or
(b) every set of reals is measurable, or else
(c) (ACω) there are no two disjoint stationary subsets of ω1.

5. Let Cn denote the axiom of choice for n-element sets. Then Cm implies
Cn if m is a multiple of n.

6. C2 implies C4.
7. C2 and C3 imply C6.
8. If every set carries an ordering then C<ω (the axiom of choice for families

of finite sets) holds.



128 Chapter 30 : The axiom of choice Problems

9. Let κ, λ be cardinals, n a natural number, and assume that κ+n = λ+n
holds. Then κ = λ.

10. If κ ≥ ℵ0, then κ + ℵ0 = κ.
11. If κ > 1, then κ + 1 < 2κ.
12. If κ ≥ ℵ0, then κ + 2κ = 2κ.
13. Set κ � λ if and only if κ + λ = λ. This � is transitive. Furthermore,

κ � λ holds if and only if ℵ0κ ≤ λ.
14. If κ is of the form either κ = ℵ0λ for some cardinal λ or κ = 2λ for some

cardinal λ ≥ ℵ0, then κ + κ = κ.
15. If a, b are cardinals and 2a = 2b, then a = b.
16. If κ is an infinite cardinal then ℵ0 ≤ 22κ

.
17. ℵ1 ≤ 22ℵ0 .
18. κ · κ ≤ 22κ

holds for every cardinal κ.
19. (Hartogs’ lemma) If κ is a cardinal then there is an ordinal H(κ) with

|H(κ)| ≤ 222κ

such that |H(κ)| 
≤ κ.
20. If κ2 = κ holds for every infinite cardinal κ then the axiom of choice is

true.
21. The generalized continuum hypothesis implies the axiom of choice. That

is, if for no infinite κ exists a cardinal λ with κ < λ < 2κ then the AC
holds.

22. AC is implied by the following statement: if {Ai : i ∈ I} is a set of
nonempty sets, then there is a function that selects a nonempty finite
subset of each.

23. If every vector space has a basis, then the axiom of choice holds.

In the following problem, the chromatic number of graph G = (V,E) is
the minimal cardinality (if it exists) of the form |A| for which there is a
surjection f :V → A which is a good coloring, i.e., if x, y ∈ V are joined,
then f(x) 
= f(y).

24. The axiom of choice is equivalent to the statement that every graph has
a chromatic number.

25. Hajnal’s set mapping theorem (Problem 26.8) implies the axiom of choice.
26. If R is the union of countably many countable sets, then so is ω1 and

cf (ω1) = ω.
27. ω2 is not the union of countably many countable sets.



31

Well-founded sets and the axiom of foundation

In this chapter we investigate well-founded sets. These are partially ordered
sets where every nonempty subset has a least element (one with no predecessor
in the subset). These sets share many properties with the well-ordered sets.
We can, therefore, use some techniques developed for well-ordered sets, as
transfinite induction. In applications, e.g., in descriptive set theory, important
facts can be transformed into the existence (or nonexistence) of an infinite
decreasing chain in some specific partially ordered sets, which we call trees.
That these two properties are equivalent for any given partially ordered set
follows from the axiom of dependent choice (a weakening of the axiom of
choice), which says that if A is a nonempty set, R is a binary relation on A
with the property that for every element x ∈ A there is some y ∈ A such that
R(x, y) holds, then there is an infinite sequence x0, x1, . . . of elements of A
such that R(x0, x1), R(x1, x2), . . . hold.

The axiom of foundation (or regularity) says that if A is a nonempty
set, then there is some element x of it with x ∩ A = ∅. This claims that the
universe is well founded under ∈ and that implies that it is possible to create
every set from the empty set by iterating the power set operation (cumulative
hierarchy).

In this chapter, we assume the axioms of choice and regularity, unless
indicated otherwise.

A class is a defined part of the universe which is not necessarily a set. If
a class is indeed not a set, then we call it a proper class. An operation is a
well-defined mapping on some part of the universe which is possibly not a
function, that is, it does not necessarily go between sets.

1. The following statements are equivalent:
(a) DC, the axiom of dependent choice;
(b) If the nonempty partially ordered set 〈P, <〉 has no minimal element,

then there is an infinite descending chain in 〈P, <〉,
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(c) A partially ordered set is well founded iff there is no infinite descending
chain in it.

2. If 〈P, <〉 is a partially ordered set, then there is an order-preserving
ordinal-valued function f on P , that is, x < y implies f(x) < f(y) if
and only if 〈P, <〉 is well founded.

3. If 〈P, <〉 is a partially ordered set, then there exists a cofinal subset Q ⊆ P
such that 〈Q, <〉 is well founded.

4. Let 〈P, <〉 be a partially ordered set that does not include an infinite in-
creasing or decreasing sequence. Is it true that P is the union of countably
many antichains (an antichain is a set of pairwise incomparable elements)?

5. If 〈P, <〉 is a well-founded set, then there is a unique ordinal-valued func-
tion r (the rank function of 〈P, <〉) with the properties
(a) if x < y, then r(x) < r(y),
(b) if α = r(x) and β < α, then there exists some y < x with r(y) = β.

For κ a cardinal let FS(κ) be the set of all finite strings of ordinals less than
κ. We think the elements of FS(κ) as finite functions from n to κ for some
n < ω and simply write s = s(0)s(1) · · · s(n − 1) (rather than using e.g.,
the ordered sequence notation). If s, t ∈ FS(κ) we set s < t if t properly
extends s, and s � t if t is a one-step extension of s. ŝ t is the juxtaposition
of s and t; that is, if s = s(0)s(1) · · · s(n−1) t = t(0)t(1) · · · t(m−1), then
ŝ t = s(0)s(1) · · · s(n − 1)t(0)t(1) · · · t(m − 1).

For Problems 6–10 we define a set T ⊆ FS(κ) a tree if it is closed under
restriction, i.e., s < t ∈ T implies that s ∈ T . The nth level of T is
formed by those elements of length n. T is well founded if it does not
include an infinite branch, that is, if (T, >) is well founded in the original
sense. In this case, let R(T ) be the ordinal assigned to the root (the empty
sequence) by Problem 5. (Notice that these trees are trees in the sense of
Chapter 27, only turned upside down.)

6. If T ⊆ FS(κ) is a well-founded tree, then R(T ) < κ+. For every ordinal
α < κ+ there is a well-founded tree T ⊆ FS(κ) with R(T ) = α.

7. If T, T ′ are well-founded trees and R(T ) ≤ R(T ′) then T  T ′, i.e., there
is a level and extension preserving (but not necessaily one–one) map from
T into T ′.

8. For any two trees, T and T ′ either T  T ′ or T ′  T holds.
9. Define the Kleene–Brouwer ordering <KB on FS(κ) as follows. If s =

s(0)s(1) · · · s(n) and t = t(0) · · · t(m), then s <KB t if and only if either
s properly extends t or s(i) < t(i) holds for the least i where they differ.
This is an ordering on FS(κ). A tree T ⊆ FS(κ) is well founded if and
only if it is well ordered by <KB.
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10. (Galvin’s tree game) Two players, W and B, play the following game.
They play on the isomorphic well-founded trees, TW and TB . At the be-
ginning both players have a pawn at the root of his/her own tree. At every
round first W makes a move with either pawn, i.e., moves it to one of the
immediate extensions of its current position, then B does the same with
one of the pawns. B may pass but W may not. The winner is whose pawn
first reaches a leaf (that is, queens).
(a) One of the players has a winning strategy.
(b) W has a winning strategy.

11. Exhibit two well-founded sets such that neither has an order-preserving
(not necessarily injective) mapping into the other.
A set (or possibly a class) A is transitive if x ∈ A, y ∈ x imply that y ∈ A.

12. There is no set x with x ∈ x.
13. There are no sets x, y with x ∈ y and y ∈ x.
14. For every natural number n, there is an n-element set A with the following

properties: if x, y ∈ A, then either x ∈ y, or x = y, or y ∈ x, and if x ∈ A,
y ∈ x, then y ∈ A. For a given n, can there be more than one such sets?

15. What are the transitive singletons?
16. The intersection and union of transitive sets are transitive.
17. Let A be a set. Define A0 = {A}, An+1 =

⋃
An for n = 0, 1, . . ., TC(A) =

A0∪A1∪· · · (the transitive closure of A). TC(A) is transitive and if A ∈ B,
B is transitive, then TC(A) ⊆ B.

18. (Cumulative hierarchy) Construct, by transfinite recursion, the following
sets. V0 = ∅. Vα+1 = P(Vα). If α is a limit ordinal, then Vα =

⋃
{Vβ : β <

α}.
If a set x is an element of some Vα then x is a ranked set, and rk(x) (the
rank of x) is the least α with x ∈ Vα.

(a) Every Vα is a transitive set.
(b) Vβ ⊆ Vα holds for β < α.
(c) rk(x) is always a successor ordinal.
(d) If x is ranked and y ∈ x, then y is also ranked and rk(y) < rk(x).
(e) If every element of x is ranked, then so is x.
(f) The axiom of foundation holds if and only if every set is ranked.

19. Solve the equation X × Y = X in sets X, Y .
20. If C is a proper class, then there is a surjection from C onto the class of

ordinals such that the inverse image of every ordinal is a

(a) set,
(b) proper class.
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21. Assume that C is a class, ∼ is an equivalence relation on it. Then there
is an operation F defined on C such that F(x) = F(y) holds iff x ∼ y is
true.

22. The axiom of choice is equivalent to the statement that every set can be
embedded into every proper class.

23. The following are equivalent.

(a) (The axiom of global choice) There is an operation F defined on all
nonempty sets, such that F(X) ∈ X holds for every such set X.

(b) The universe has a well-ordering, that is, a relation < such that every
nonempty class has a <-least minimal element.

(c) Moreover, < is set-like, that is, the predecessors of every set form a
set.

(d) If A, B are proper classes, then there is an injection of A into B.
(e) If A, B are proper classes, then there is a bijection between A and B.

24. If κ is an infinite cardinal, then Hκ = {x : |TC(x)| < κ} is a set (here
TC(x) is the transitive closure of x; see Problem 17).

25. (Mostowski’s collapsing lemma) Assume that M is a class, E is a binary
relation on M which is
(a) irreflexive, that is, xEx holds for no x ∈ M ;
(b) extensional: if {z : zEx} = {z : zEy}, then x = y;
(c) well founded: there is no infinite E-decreasing chain, i.e., a sequence

{xn : n < ω} with xn+1Exn for n = 0, 1, . . ..
(d) set-like: for every x ∈ M , {y : yEx} is a set.
Then there are a unique transitive class N , and a unique isomorphism
π : (M,E) → (N,∈).



Part II

Solutions




