CHAPTER 3 APPLICATIONS OF DERIVATIVES

3.1 EXTREME VALUES OF FUNCTIONS s

1.

10.

11.

12.

13.

14.

15.

An absolute minimum at X = c,, an absolute maximum at x =b. Theorem 1 guarantees the existence of such

extreme values because h is continuous on [a,b].

An absolute minimum at x = b, an absolute maximum at x = ¢. Theorem 1 guarantees the existence of such
extreme values because f is continuous on {a, b].

No absolute minimum. An absolute maximum at x = c. .Since the function’s domain is an open interval, the
function does not satisfy the hypotheses of Theorem 1 and need not have absolute extreme values.

No absolute extrema. The function is neither continuous nor defined on a closed interval, so it need not fulfill
the conclusions of Theorem 1.

An absolute minimum at x = a and an absolute maximum at x = c. Note that y = g(x) is not continuous but
still has extrema. When the hypothesis of Theorem 1 is satisfied then extrema are guaranteed, but when the
hypothesis is not satisfied, absolute extrema may or may not occur. '

. Absolute minimum at x = ¢ and an absolute maximum at x = a. Note that y = g(x) is not continuous but still
has absolute extrema. When the hypothesis of Theorem 1 is satisfied then extrema are guaranteed, but when
the hypothesis is not satisfied, absolute extrema may or may not occur.

Local minimum at (—1,0), local maximum at (1,0)
Minima at (—2,0) and (2,0), maximum at (0,2)
Maximum at (0,5). Note that there is no minimum since the endpoint (2,0) is excluded from the graph.
Local maximum at (—3,0), local minimum at (2,0), maximum at (1,2), minimum at (0,-1)
Graph (c), since this is the only graph that has positive slope at c.
Graph (b), since this is the only graph that represents a differentiable function at a and b and has negative
slope at c.
Graph (d), since this is the only graph representing a function that is differentiable at b but not at a.
Graph (a), since this is the only graph that represents a function that is not differentiable at a or b.
2 2 s . y
f(x) = gX— 5= f'(x) = g =mno critical points;
19 -2 -19% 1 2 3 *
f(-2) = -3 (3) = —3 = the absolute maximum T
, Sk
is —3 at x = 3 and the absolute minimum is -—% at Sl 3=
= -2 —4r :::
_5 2
(-1-19/3%_ y=3x-5
Abs -2<x<3
min -7F
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16. f(x) = x? —6x +9 => f'(x) = 2x — 6 = a critical point at x = 3; f(0) =9, f(3) = 0, and f(5) =4
= the absolute maximum is 9 at x = 0 and the absolute minimum is 0 at x = 3.

IOY
(0.9)
8 f(x)=x*-6x+9
6
(5.4
1
: 3, 0/
X
-1 1 2 3 4 5 6
17. f(x) =4 - x2 = f(x) = —2x/ => a critical point at F0e) = 4 - x2 m)
x = 0; f(=3) = -5, f(0) = 4, f(1) = 3 = the absolute
maximum is 4 at x = 0 and the absolute minimum is —5 N ' : (1.3)
]
at x=-3 X
k2
(‘3|'5)
18.
y y
g(x)=3+2x-x* 251 (1,2)
f(x)=v3+2x-x*
/ .
1 ] (3,0
« -1 1 2 3 "
-1 1 2 3 4 0.5
-1 1

The extreme values of f(x) = /3 +2x — x2 occur at the extreme values of g(x) = 3 + 2x —x2. Therefore,
g'(x) = 2 —2x = x = 1 is a critical value; f(—0.5) = 1/1.75 ~ 1.32288, (1) = 2, (3) = 0 = the absolute

maximum is 2 at x = 1 and the absolute minimum is 0 at x = 3.

19. The first derivative of f'(x) = cos(x +%), has zeros at x = i’-, X = %zr_ 1Y (=/4,1)

Critical point values: x =% f(x) =1 05
X = 5‘-17-': f(x) = -1
L 3 3 x 5pn 3nm
Endpoint val 0 f(x) = L e T
ndpoint values: x= X) = -
p % 0.5
X = 77175 f(x)=0 11




20.

21.

22.
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Maximum value is 1 at x = ﬁ-;
minimum value is —1 at x = §41;

local minimum at (O,L);

V2

local maximum at (77175,0)

The first derivative g'(x) = sec x tan x has zeros
T

b4
at x =0 and x = 7 and is undefined at x = 5 Since 10
g(x) = sec x is also undefined at x = %, the critical 3 ] ) 8(x) =secx
points occur only at x =0 and x = .

n 3 3 X
-— s
- . 2 2 (r,-1)
Critical point values: x =10 gx)=1 -5 ’
x=m g(x) =-1 -10

Since the range of g(x) is (—oo0,—1] U[1,00), these
values must be a local minimum and local maximum, respectively. Local minimum at (0,1); local maximum

at (m,~1). There are no absolute extrema on the interval (—%,3—2‘”—)
F(x) = —-15 =x?aFix)=22%3= —25, however y
b x
x = 0 is not a critical point since 0 is not in the domain; R - x
2,~025)
Abs max

F(0.5) = —4, F(2) = —0.25 => the absolute maximum is r

1
—0.25 at x = 2 and the absolute minimum is —4 at y=-7,035x82

x =05 -4[ 8 (05,-4)
Abs min

h(x) =3/x= x? = h'(x) = %x-z/s =+ a critical point y

' 2
at x = 0; h(—1) = —1, h(0) = 0, h(8) = 2 = the absolute ll/——;?)
maximum is 2 at x = 8 and the absolute minimum is —1 X

1 3 5 7%
atx=-1 (-l’-ﬂ h(x) = Y%
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23. The first derivative f'(x) = ——1§+% has a zero at x = 1. ¥ A"'"""”(‘» %*lﬂ“)
X 1.5
Critical point value: f(1)=1+In1=1 L3 /(x)=£+1.. ,
T
Endpoint values: £(0.5) =2 +1In 0.5 ~ 1.307; - - o | AR 8t (1)
0.5
f(4) =% +1n 4 ~ 1.636 -
Absolute maximum value is -‘%+ In 4 at x = 4; : 2 3 ‘4 h

absolute minimum value is 1 at x = 1; local maximum at (-%—,2 —1In 2)

24. The first derivative g'(x) = —e™™ has no zeros,
so we need only consider the endpoints.
g(-1) = (-1 = e; g(1) = el ___% Abs max at (~1,¢) ‘3
Maximum value is e at x = —1;
1

minimum value is z at x = 1.

25. The first derivative h'(x) = x—l-f-—l' has no zeros,

so we need only consider the endpoints. s Abs max at (3,in 4)

0.5 J()=In(x+1)
Maximum value is In 4 at x = 3; .
-1 .
minimum value is 0 at x = 0. 5| Absminke (0,0) 2 3

x

-
2
26. The first derivative k'(x) = —2xe™ has a zero
at x = 0. Since the domain has no endpoints, any extreme
2
value must occur at x = 0. Since k(0) =e % =1 and

lim k(x) =0, the maximum value is 1 at x = 0.
x— o0

Y

R

{~2. 6] by [~2, 4]

y' = 4x — 8 = 0 = critical value at x = 2 and y” =4 = minimum value is 1 at x = 2.
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28.

Y gx)=3+2x-x o J@)=|3+2c-5
2, : 1
-2 2 4 x 8
2.5 8
s 4
-1.5
-10 i x
-2 2 4
The minimum values of f(x) occur wherever g(x) =3 + 2x — x*=0= x=-1and x = 3. There is a relative
maximum at the point where g(x) has a relative maximum => g'(x) = 2 — 2x => there is a critical value at
x = 1. There is no absolute maximum value of f(x), the absolute minimum value is 0 at x = —1 and x = 3.
There is a relative maximum of 4 at x = 1. Note that f'(x) is undefined at x = ~1 and x = 3, and so these are
critical points of f.
29.
i T
{~1.5, 1.5] by (0.5, 3]
X “gs " 2X2 + 1 " o e .
y = — 7 = critical value at x =0; y"’ = =7 at x =0, y” =1 = minimum value is 1 at x = 0.
(1-x%) (1-x2)
30. J L
agginum ya-1
[-4.7,4.71 by [-3.1,3.1]
—2
To confirm that there are no “hidden” extrema, note that y’ = —(x2 —1) (2x) = —=2X __ which is zero only

(-1)
at x = 0 and is undefined only where y is undefined. There is a local maximum at (0,-1).

1
X —Inx
31. y= lnTx = g—i = (i) 5 =1 ——12n X = there is a critical point where In x =1 = x =e. The graph of the
X x

function shows a relative and absolute maximum near x = e and the “maximum” function on the TI-89

calculator gives a maximum of y = 0.36789 = % at x = 2.71828 ~ e. There is no absolute minimum.
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. inx

0.4 =——
r== )
0.2
x
s 10 15 20

-0.2
0.4

2 2 2
32. y=4+ex?—e* = %% =2ex+2xe™* = 2x(e +e7* ) => the only critical point is at x = 0, since e +e™* >0

for all real x. The graph of the function shows an absolute minimum value at x = 0, and the “minimum”
function on the TI-89 calculator gives a minimum of y = 3 at x = 0, as expected. There is no absolute

maximum.

Y y=dsexi-e

E 8 8 8

33.
[-S5, 5) by [-0.7,0.7}
2 2 _
y' = —l-:’-s—g = critical values at x = £ 1; y” =2_>£(_x___?%_)_; at x = —1, y" =—%~and atx=1,y" = _%
(x®+1)

(x2 + 1)
=> maximum value is % at x = 1; minimum value is —% at x = —1.

34.

/

X3°2 ¥z -8
[-5. 5] by [~0.8, 0.6)




35.

36.

37.
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— 2 —
! ~-——M—2 = critical values at x =0 and x = —-2; y"' = Ax+ 1)(x +2x 2); a

T (x®+2x+2) (x2+2x+2)

1"

tx=0,y =—%andat

x=-2,y"'= % => maximum value is % at x = 0; minimum value is —% at x = -2,

S Thaa3 Iv=-.e00sa8
(—6, 61 by [—5, 20]

To find the exact values, note that y’ = 3x? + 2x — 8 = (3x — 4)(x + 2), which is zero when x = —2 or
x= %— Local maximum at (—2,17); local minimum at (%, —%)

y =xe?X = % = (14 2x)e?® => the only critical point is at x = —-%—, since €2 > 0 for all real x. The graph of
the function shows an absolute minimum value near x = —--%—, and the “minimum” function on the TI-89
calculator gives a minimum of y = —0.18394 ~ %— at x = —0.5, as expected. There is no absolute maximum.
y
0.8
0.6
0.4 y': e

0.2

.W %5 1
2

v =) + 5 ) = Bt
N
crit. pt. | derivative | extremuml value #"5(" -
x= ‘% 0 local max %101/3 =1.034 e

[—4; 4] by [-3v 3]
x=0 undefined local min 0 :
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2
38. y' = x*/3(2x) + 2x7H/3(x2 —4) = 8 =8
y =50 + 0 - ) = B T T
crit. pt. | derivative | extremuml value \/\/
x=-1 0 minimum -3 [-4, 4] by [~3. 3]
x=0 undefined | local max 0
x=1 0 minimum | -3

39. y'=x -7—41___—;(—2;() +(1)V4a—x2

X2+ (A—x%) 492
V4 —x? Vi —x2 T

[~2.35, 2.35]) by [~3.5, 3.5]

crit. pt. derivative | extremum | value
x=-2 undefined | local max 0
X=—-v2 0 minimum | —2
X= \/5 0 maximum | 2
x=2 undefined | local min 0

40, y =x2-— L (~1)+2x/3—
Y= A Vo

_ —x% 4+ (4x)(3 — %) _ —5x2 +12x
24/3 —x 24/3—x i revus16768 |
[-4.7,471by [-L 5]

dul )
)

crit. pt. | derivative l extremum| value

x=0 0 minimum 0

—12 144 1¢1/2
x=% 0 local max 198 15°“ ~ 4.462
x=3 undefined minimum 0

41.

, -2, x<1

y =
1, x>1

crit. pt. I derivative | extremum‘ value

x=1 | undefined I minimum | 2 (=47, 471ty 0,6.2)




42,

43.

44,
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-1, x<0 \
y'=
2-92x, x>0 ’\

crit. pt. \ derivative I extremum\ value Al
3 [-4,4]1by [-1, 6]

4

undefined local min

0

x=0

x=1 local max

, {—2x—2, x<1
y:

—2x+6, x>1 /\\/\

crit. pt. | derivative | extremum | value f X
x=-1 0 maximum | 5 [—4, 6] by [-2, 6]
x=1 undefined | local min 1
x=3 0 maximum 5

We begin by determining whether f'(x) is defined
at x = 1, where

1.2 1 15 -
—2x“—sx+=7 x<1

=t & T /“\ }
B —6x2+8x, x>1

Ninimum
Left-hand derivative: (20 va-sormon
[—4.6) by [~5. 5]

i TR~ 1)
h—0 h
1 2_1 15
—(1+h)*—5(1+h)+-3 2
T\ 3 4% . _hl_d4h_ . 1.y _
= jim_ h =lim ==t = lim_ g (-h-4)

Right-hand derivative
f(1+h)—£(1) _

lim lim
h—0 h h—ot h h-¢0+
=-1
- %x - —%—, x<1
Thus f'(x) =

3x2—-12x+8, x>1

=-1

(1+h)3—6(1+h)2+8(1+h)—3=lim h3—3h?—h

4h

= lim
h—0

L1 \ 12 +4/12% - 4(3)(8)
Note that —5X—5= 0 when x = —1, and 3x* —12x+ 8 = 0 when x =

2

2(3)

2— —
, (B =3h—1)

231
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= -1-2—:|:6— V48 =2 i23£. But 2 — 23£ ~ 0.845 < 1, so the only critical points occur at x = —1

and x = 2+¥% 3.155.

crit. pt. | derivative l extremum| value
x=-1 0 local max 4
x ~ 3.155 0 local max |~ —3.079

45. (a) No, since f'(x) = %(x - 2)_1/3, which is undefined at x = 2.
(b) The derivative is defined and nonzero for all x # 2. Also, f(2) = 0 and f(x) > 0 for all x # 2.

(¢) No, f(x) need not have a global maximum because its domain is all real numbers. Any restriction
of f to a closed interval of the form [a,b] would have both a maximum value and a minimum value
on the interval.

(d) The answers are the same as (a) and (b) with 2 replaced by a.

~x349x, x<-30r0<x<3
46. Note that f(x) =

x3—-9x, -3<x<0orx>3
—3x2+9, x<-3or0<x<3

Therefore, f'(x) = )
3x°-9, -3<x<0orx>3

(a) No, since the left- and right-hand derivatives at x = 0 are —9 and 9, respectively.

(b) No, since the left- and right-hand derivatives at x = 3 are —18 and 18, respectively.

(c) No, since the left- and right-hand derivatives at x = —3 are —18 énd 18, respectively.

(d) The critical points occur when f'(x) = 0 (at x = =+ +/3) and when f'(x) is undefined (at x = 0
and x = +3). The minimum value is 0 at x = —3, at x = 0, and at x = 3; local maxima occur at
(-v/3,6/3) and (v/3,6./3).

47.

(a) The construction cost is C(x) == 0.34/16 + x% + 0.2(9 — x) million dollars, where 0 < x < 9 miles.
The following is a graph of C(x).
3
298
29
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: 0.3x . 85 . o
Solving C'(x) = \/——%— 0.2 =0 gives x = +—f— ~ = 3.58 miles, but only x = 3.58 miles is a critical
16 +x o

point in the specified domain. Evaluating the costs at the critical and endpoints gives C(0) = $3 million,

C(8+/5/5) ~ $2.694 million, and C(9) ~ $2.955 million. Therefore, to minimize the cost of construction,
the pipeline should be placed from the docking facility to point B, 3.58 miles along the shore from point A,
and then along the shore from B to the refinery.

(b) If the per mile cost of underwater construction is p, then C(x) =pv'16 + x% 4+0.2(9 — x) and
C'x)=—2—-02=0 gives x_, = —-Q-'-S—, which minimizes the construction cost provided
®) Vi6+x2 ¢ Vp?-0.04 P

x. < 9. The value of p that gives x, = 9 miles is 0.218864. Consequently, if the underwater construction
costs $218,864 per mile or less, then running the pipeline along a straight line directly from the docking
facility to the refinery will minimize the cost of construction.

In theory, p would have to be infinite to justify running the pipe directly from the docking facility to
point A (i.e., for x, to be zero). For all values of p > 0.218864 there is always an x, ¢ (0,9) that will give

a minimum value for C. This is proved by looking at C"'(x.) = —%—2— which is always positive for
16 + x?

p>0.

48. There are two options to consider. The first is to build a new road straight from Village A to Village B. The
second is to build a new highway segment from Village A to the Old Road, reconstruct a segment of Old Road,
and build a new highway segment from Old Road to Village B, as shown in the figure. The cost of the first
option is C; = 0.5(150) = $75 million.

»B

A /New Construction \
\ 2500+ x? 2500+ x* 50

50|

\_ Upgrade i Old Road
x 150- 2x x

The construction cost for the second option is Cy(x) = 0.5(2\/ 2500 + x2) + 0.3(150 — 2x) million dollars
for 0 < x < 75 miles. The following is a graph of C,(x).

(] 51015202530354045505500657075
x {miles)

Solving Ci(x) = %Z{()-}——x.— 0.6 = 0 gives x = = 37.5 miles, but only x = 37.5 miles is in the specified

domain. In summary, C; = $75 million, C,(0) = $95 million, C»(37.5) = $85 million, and C,(75) = $90.139
million. Consequently, a new road straight from Village A to Village B is the least expensive option.
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49.

50.

C X P 10—x D
- g

mi| - |
e 4+ x2 . ‘Smi

A * S |

25+(10-x)° |

~®

B

The length of pipeline is L(x) = v/4 +x2 4+ 1/25 + (10 — x)? for 0 < x < 10. The following is a graph of L(x).

o
~
>
L]
o
°

(10 —x)

—E — ————_ = (. Note that
Va+x® 254 (10-x)2
X 10 —x

—==—=cos 0, and = cos O, therefore, L'(x) = 0 when cos 8, = cos g, or
5 A B A B
Vé+x 25 — (10 —x)?

Setting the derivative of L(x) equal to zero gives L'(x) =

6, = 6g and AACP is similar to ABDP. Use simple proportions to determine x as follows:

}2—{2 IOT——X >xX= 270 2 2.857 miles along the coast from town A to town B.

If the two towns were on opposite sides of the river, the obvious solution would be to place the pump station
on a straight line (the shortest distance) between the two towns, again forcing 8, = 5. The shortest length
of pipe is the same regardless of whether the towns are on the same or opposite sides of the river.

B

.

42500+ (150 x)?

| C
50 ft | ~

i 900+x*

f’ . / ‘!

; O ™ -8, | 0R

D 150-x A x E

(a) The length of guy wire is L(x) = v/900 + x2 + /2500 + (150 — x)? for 0 < x < 150. The following

is a graph of L(x):
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2051
200 -
195 1
_ 190
§ 185 1
180 1
175 1
170
165

x ()

X (150-x)
V900 +x7 /2500 + (150 — x)?

= cos fg. Therefore, L'(x) = 0 when cos 6 = cos 0,

Setting L'(x) equal to zero gives L'(x) = = 0. Note that

150 — x

—_x
V900 + x? /2500 - (150 - x)°

or § = 6y and AACE is similar to AABD. Use simple proportions to determine x: 31(6 = 1520_ X

=cos 8 and

=>x= % = 56.25 feet.

(b) If the heights of the towers are hg and hg, and the horizontal distance between them is s, then

L(X)=ﬁ"é+x2+\/h,23+(s—x)2andL'(x)= x ____(s-%)

However, ——2—— = cos 0
hZ + x? \/h]23+(s—x)2 \/h% +x?

= cos 0. Therefore, L'(x) = 0 when cos 6 = cos fg, or §; = fp, and AACE is similar

(s —x)

to AABD. Simple proportions can again be used to determine the optimum x: BL = §_}-1—_X
) C B
hg
& x= (hg +hc)s.

51. (a) V(x)= 160x —52x° + 4x>
V'(x) = 160 — 104x + 12x? = 4(x — 2)(3x — 20)

and

The only critical point in the interval (0,5) is at x = 2. The maximum value of V(x) is 144 at x = 2.

(b) The largest possible volume of the box is 144 cubic units, and it occurs when x = 2.

52. (a) P'(x) =2 —200x~2
The only critical point in the interval (0,00) is at x = 10. The minimum value of P(x) is 40 at x = 10.

(b) The smallest possible perimeter of the rectangle is 40 units and it occurs at x = 10, which makes the
rectangle a 10 by 10 square.

53. Let x represent the length of the base and /25 — x? the height of the triangle. The area of the triangle is
2
represented by A(x) = 229 v/25 — x* where 0 < x < 5. Consequently, solving A’'(x) =0 = 252 g

24/25 — x?

=S X= . The largest possible area is

A(%

. Since A(0) = A(5) =0, A(x) is maximized at x =

S

24—5 cm?,

|
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54.

55. s

56.

57.

58.

59.

60.

61.

(a) From the diagram the perimeter P = 2x + 27r = 400

= x = 200 — rr. We wish to maximize the area A = 2rx

= A(r) = 400r — 27r? r
(b) A’(r) = 400 — 47t and A”(r) = —4m. The critical

point is r = 100 and A//(lOO) —4r < 0. There

is a maximum at r = 19,.—0 The values x = 100 m and

r= l% ~ 31.83 m maximize the area of the rectangle.

Vo 2
=—%g'c2+v01;+s0=>§t —gt+v0—0=>t———— Thens(?o)z—%g(—g-) +v0(g0)+s0
v2
= §E+ 8o is the maximum height since ==

ds
=-g<0.
) g

% =-2sint+2cos t, solvmg di g tant=1=t= Z + n7 where n is a nonnegative integer (in this

exercise t is never negative) = the peak current is 2\/-2_ amps

1/2 -1/2
Yes, since f(x) = x| = 1 /32 = (xz) = f/(x) = %(xz) / (2x) = (_);T Ix! is not defined at x = 0. Thus it
2
X
is not required that f' be zero at a local extreme point since f' may be undefined there.

If f(c) is a local maximum value of f, then f(x) < f(c) for all x in some open interval (a,b) containing c. Since
f is even, f(—x) = f(x) < f(c) = f(—c) for all —x in the open interval (—b, —a) containing —c. That is, f assumes
a local maximum at the point —c. This is also clear from the graph of f because the graph of an even function
is symmetric about the y-axis.

If g(c) is a local minimum value of g, then g(x) > g(c) for all x in some open interval (a,b) containing c. Since
g is odd, g(—x) = —g(x) < —g(c) = g(—c) for all —x in the open interval (—b, —a) containing —c. That is, g
assumes a local maximum at the point —c. This is also clear from the graph of g because the graph of an odd
function is symmetric about the origin.

If there are no boundary points or critical points the function will have no extreme values in its domain. Such
functions do indeed exist, for example f(x) = x for —~co0 < x < 0. (Any other linear function f(x) = mx+b
with m # 0 will do as well.)

(a) f'(x) = 3ax? + 2bx + ¢ is a quadratic, so it can have 0, 1, or 2 zeros, which would be the critical points of f.
Examples:

y
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.

The function f(x) = x> — 3x has two critical points at x = —1 and x = 1.

y

b )
/v

The function f(x) = x> — 1 has one critical point at x = 0.
y

’-t‘bx

The function f(x) = x3 4 x has no critical points.

(b) The function can have either two local extreme values or no extreme values. (If there is only one critical
point, the cubic function has no extreme values.)

62. (a)

{—0.1, 0.6] by [~ 1.5, 1.5]

£(0) = 0 is not a local extreme value because in any open interval containing x = 0, there are infinitely
many points where f(x) =1 and where f(x) = —1.

(b) One possible answer, on the interval [0, 1]:

1
(l—x)cosl_x, 0<x<l1
f(x) =
0, x=1

This function has no local extreme value at x = 1. Note that it is continuous on [0, 1}.
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\\_/

[—6.6] by [0, 12]

63.

Maximum value is 11 at x = 5; minimum value is 5 on the interval [—3, 2]; local maximum is at (=5,9)

Ya
U/

[-3,8]by [-5,5]

64.

Maximum value is 4 on the interval [5,7]); minimum value is —4 on the interval [-2,1].

65.
___/’
(=6, 6] by [6, 6]
Maximum value is 5 on the interval [3,c0); minimum value is —5 on the interval (—oo,—2].
66.

N/

[—6. 6] by [0, 9]

Minimum value is 4 on the interval [—1, 3]

67-74. Example CAS commands:

Maple: _
fi=x -> 2+ 2xx — 3x(x A 2) A (1/3);
plot(f(x), x=-1..10/3);
fp:=diff(f(x),x);
solve(fp=0,x);
simplify(fp);
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den:=denom(%);
solve(denom(fp)=0,x);
evalf([f(—1),£(0),£(1),£(10/3)]);
Mathematica:
Note: Here, use (x A 2) A (1/3) instead of x A (2/3), to avoid complex roots for negative x
a=-1;b=10/3;flx_] =2+2x—-3 (xA2)A(1/3)
£'[x]
Plot{ {f[x], f'[x]}, {x,a,b} ]
NSolve[f'[x]==0]
Note: include critical point x=0

{fla], (0], f[x] /. %, fb]} // N

3.2 THE MEAN VALUE THEOREM AND DIFFERENTIAL EQUATIONS

1. (a) fis continuous on [0,1] and differentiable on (0, 1).

(b) fl( )_f(l) f(O) _5—1)

= 2% +2= =>2%=1=c=

1
2
2. (a) fis continuous on [0,1] and differentiable on (0,1).

o) 0 =IO L2120 S s oo () me=f

3. (a) fis continuous on [—~1,1] and differentiable on (-1,1).

i

o 10 =P A=t ) e RS S T |

Se=,/1-4 8 20771
™

4. (a) fis continuous on [2,4] and differentiable on (2,4).

= 1 —ln3"ln1=>c—1=-l-=>c=1+%3-z2.820

c—17 2 In

5. Since f(x) is not continuous on 0 < x < 1, Rolle’s Theorem does not apply because lim f(x) = liI{l_ x=1
x—1

# 0 = f(1) and f(x) is not continuous at x = 1.

6. Since f(x) must be continuous at x =0 and x = 1 we have hm f(x) =a=1(0) => a=3 and

11[{1_ f(x) = hm f(x) > -1+3+a=m+b=>5=m+ b. Smce f(x) must also be differentiable at
x= x—1t N

x =1 we have lim_f(x) = lim f(x) = —2x+3 =m
x—1 x-1F

et = 1 =m. Therefore,a=3, m=1and b=4.

x=1

7. By Corollary 1, f/(x) = 0 for all x = f(x) = C, where C is a constant. Since f(—1) =3 we have C =3
= f(x) = 3 for all x.

8. g(t)=2t+5=>¢g/(t)=2= f'(t) for all t. By Corollary 2, f(t) = g(t) + C for some constant C. Then
£(0) =g(0)+C=>5=5+C=>C=0=1(t) =g(t) =2t +5 for all t.
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9.

10.

11.

12.

13.

14,

15.

16.

17.

18.

19.

20.

2L

22.

23.

2 3 4
(&) y=%+C (b) y=%+C © y=%+C
(a) y=x2+C (b) y=x2-x+C () y=x34+x2-x+C

(a) y=In0+Cif6>0andy=In(-6)+C if § <0, where C is a constant. (These functions can be combined
asy =1Inl8|+C.)

(b) y=0-In6+Cif§>0andy=0-In(—0)+Cif 6 <0, where C is a constant. (These functions can be
combined as y =6 —1In|8|+ C.)

(¢) y=50+In8+Cif§>0andy=>50+In(—6)+Cif § <0, where C is a constant. (These functions can be
combined as y = 50 +1nl8|+ C.)

(a) y'=%t_1/2¢y=t1/2+0=>y=\/g+c (b) y =24/t+C

(c) y=2t2-2y/t+C
f(x) =x2—x+C; 0=1(0) =02~ 0+C = C=0= f(x) =x*—x

2+lnx+C ifx>0
g(x) =

) =x2+ln|x|+C;g(1)=—1=>12+ln1+C=-—1=>C=—2
x*+In(-x)+C ifx<0

= g(x)=x2+ln|x|—2

2 2(0 2
f(X)=§+C; f(0)=%=>e—-é—2+C=%=>C=1=>f(x)=1+9§f

r(t) =sect—t+C; 0=r1(0) =sec(0) -0+ C=>C=-1=>1(t) =sect —t—1

v=08=081+5=>5=49t2+5t+Cjats=10and t =0 we have C =10 = s = 4.9t* + 5t + 10
v=%=32t—2:>s=16t2—2t+0; ats=4andt=%weha.veC=l=>s=16t2——2t+1

ds . 1 ) _ 1 1 —cos (mt)
v=(—ﬁ=sm(7rt)=>s=—fcos(7rt)+C, ats=0and t =0 we have C =% => 8 = —5———+

v=§%=t+L2=>s=ln(t+2)+C; ats:%andt:—l weha.veC:%:}s:—%—+ln(t+2)
a=3—¥=e‘=>v=et+0; at v=20andt =0 we have C=19 = v=e®+19

v=%=et+19=>s=e"+19t+0; ats=5andt=0wehave C=4=>s=e"+19t+4

a=98=>v=98t+C,; at v=—3 and t =0 we have Cl=—3:v=9.8t—3=>s=4.9t2—3t+C2; ats=0
and t = 0 we have 02=0=>s=4.9t2—3t

a=—4sin(2t) = v=2cos(2t) + Cy; at v=2and t =0 we have C; =0 = v =2 cos (2t) .
= 8 =sin (2t) + C,; at s = —3 and t = 0 we have C; = —3 => s =sin(2t) — 3




24.

25.

26.

27.

28.

29.

30.

31.

32.
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a:f2 cos(3t)=> vzg’rsm(?’ )+Cl, atv=0and t =0 we have C; =0 = V_1rsm(37)
=>s= —cos(3t)+02, ats=-landt=0wehave C; =0 =>s= —cos(?’t)

a(t) = v/(t) = 1.6 = v(t) = 1.6t + C; at (0,0) we have C =0 = v(t) = 1.6t. When t = 30, then
v(30) = 48 m/sec.

a(t) = v/(t) = 20 = v(t) = 20t + C; at (0,0) we have C = 0 = v(t) = 20t. When t = 60, then v(60) = 20(60)
= 1200 m/sec.

a(t) = v/(t) = 9.8 = v(t) = 9.8t + Cy; at (0,0) we have C; = 0 = s'(t) = v(t) = 9.8t => s(t) = 4.9t% + C,; at

(0,0) we have C, = 0 = s(t) = 4.9t2. Then s(t) = 10 = t2 = 49=>t—\/%,andv(\/}g)=9.s\/%
% (2) /4.9 /10 = 14 m/sec.

a(t) = v/(t) = —3.72 = v(t) = =3.72t + Cy; at (0,93) we have C; = 93 = §'(t) = v(t) = —3.72t + 93
= s(t) = —1.86% + 93¢ + Cy; at (0,0) we have Gy = 0 => s(t) = —1.86t? + 93t. Then v(t) =0 = t = 5235 = 25
so the maximum height of the rock is s(25) = 1162.5 m.

(a) v= J adt= J (156172 — 34=1/2) gt = 10t%/2 — 6t1/2 + C; %(1) =4=4=101)*2-6(1)/2+C=>C=0
= v =10t3/% —6t1/2
(b) s = J vdt= I(10t3/2—6t1/2) dt =432 432 1 C; s(1) = 0 = 0 = 4(1)%/2 - 4(1)32 4+ C = C =0

=5 =at3/2 _4t3/?

() £=98t-3=>5=4.9-3t+C;{) ats =5 and t =0 we have C=5 = s = 4.9t — 3t + 5;
dlsplacement =5(3) —s(1) = [(4.9)(9) —9 + 5] — (4.9 — 3 + 5) = 33.2 units; ii) at s = —2 and t = 0 we have
C = -2 = s = 4.9t> — 3t — 2; displacement = s(3) —s(1) = ((4.9)(9) — 9 — 2) — (4.9 — 3 — 2) = 33.2 units;
iii) at s = s, and t = 0 we have C = sy = s = 4.9t? — 3t +s,; displacement = s(3) —s(1)
= ((4.9)(9) — 9 +55) — (4.9 — 3 +5p) = 33.2 units

(b) True. Given an antiderivative f(t) of the velocity function, we know that the body’s position function is
s = f(t) + C for some constant C. Therefore, the displacement from t = a to t = b is (f(b) + C) — (f(a) + C)
=f(b) —f(a). Thus we can find the displacement from any antiderivative f as the numerical difference

f(b) — f(a) without knowing the exact values of C and s.

If T(t) is the temperature of the thermometer at time t, then T(0) = —19° C and T(14) = 100° C. From the

%0—) = 8.5° C/sec = T'(ty), the rate at which

the temperature was changing at t = t; as measured by the rising mercury on the thermometer.

Mean Value Theorem there exists a 0 < t; < 14 such that

Because the trucker’s average speed was 79.5 mph, and by the Mean Value Theorem, the trucker must have
been going that speed at least once during the trip.
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33.

34.

35.

36.

37.

38.

39.

40.

41.

Because its average speed was approximately 7.667 knots, and by the Mean Value Theorem, it must have been
going that speed at least once during the trip.

The runner’s average speed for the marathon was approximately 11.909 mph. Therefore, by the Mean Value
Theorem, the runner must have been going that speed at least once during the marathon. Since the initial
speed and final speed are both 0 mph and the runner’s speed is continuous, by the Intermediate Value
Theorem, the runner’s speed must have been 11 mph at least twice.

1_1

The conclusion of the Mean Value Theorem yields b 8__1 = c2(a — b) =a—b=c=+/ab.
b—a c? ab
b% —a? a+b

The conclusion of the Mean Value Theorem yields 5= = 2c=>c= 5

f/(x) = [cos x sin (x + 2) + sin x cos (x + 2)] — 2 sin (x + 1) cos (x + 1) =sin (x +x +2) —sin 2(x + 1)
= sin (2x + 2) —sin (2x + 2) = 0. Therefore, the function has the constant value f(0) = —sin%1 ~ —0.7081

which explains why the graph is a horizontal line.

Example CAS commands:

Maple:
(% + 2)%(x + 1)xx*(x — 1)*(x — 2);
expand(%);
f:=unapply(%,x);
plot({f(x),diff(f(x),x)},x=-2..2);

Mathematica:
(x+2) (x+ Dx(x—1) (x—2)
Expand[%]
fix_] = %
Plot[ {f[x],[x]}, {x,~2,2} ]

f(x) must be zero at least once between a and b by the Intermediate Value Theorem. Now suppose that f(x) is
zero twice between a and b. Then by the Mean Value Theorem, f'(x) would have to be zero at least once
between the two zeros of f(x), but this can’t be true since we are given that f'(x) # 0 on this interval.
Therefore, f(x) is zero once and only once between a and b.

Consider the function k(x) = f(x) — g(x).

k(x) is continuous and differentiable on [a, b],
and since k(a) = f(a) — g(a) = 0 and k(b) 7 ;
= f(b) — g(b) = 0, by the Mean Value Theorem, /
there must be a point c in (a,b) where k’(c) = 0. 9/

But since k'(c) = f'(c) — g'(c), this means that
f'(c) = g'(c), and c is a point where the graphs

of f and g have parallel or identical tangent lines.

(-1, 1]by[-2,2]

Yes. By Corollary 2 we have f(x) = g(x) + C since f'(x) = g'(x). If the graphs start at the same point x = a,
then f(a) = g(a) = C =0 = f(x) = g(x).




42.

43.

44.

45.

46.

Section 3.2 The Mean Value Theorem and Differential Equations

Let f(x) = sin x for a <x < b. From the Mean Value Theorem there exists a ¢ between a and b such that

sin b —sin a

—cosc=> —1<8inbosina =>|Mm|51 = |sinb—sin al<|b—al
b—a - b—a b—a =

By the Mean Value Theorem, f—(E%—:i—@) = f'(c) for some point ¢ between a and b. Since b—a > 0 and
f(b) < f(a), we have f(b) —f(a) < 0 = f'(c) < 0.

The condition is that f should be continuous over [a,b]. The Mean Value Theorem then guarantees the

b) — fi
existence of a point c in (a,b) such that t-(—g-:—égf'—z =f'(c). Iff’ is continuous, then it has a minimum and

maximum value on [a,b], and min f' < f'(c) < max ', as required.

f(x) = (1 +x* cos x)_l = f'(x) = = (1 + x* cos x)_2(4x3 cos x — x* sin x)

-2
= —x3(1+x* cos x) (4 cos x —x sin x) < 0 for 0 < x < 0.1 = '(x) is decreasing when 0 < x < 0.1

= min f' ~ 0.9999 and max f = 1. Now we have 0.9999 < %—1 <1=0.09999 <f(0.1)-1<0.1
= 1.09999 < £(0.1) < 1.1.
— -2 3
f(x) =(1-x*) o f'(x) = ~(1-x1) (-4x3) = Lz >0 for 0 < x < 0.1 = f/(x) is increasing when
1-x
. ’ (0.1) -2
0 <x<0.1 = minf' =1 and max f = 1.0001. Now we have 1 < < 1.0001

01
= 0.1 <£(0.1) — 2 < 0.10001 = 2.1 < £(0.1) < 2.10001.

47-50. Example CAS commands

Maple:

with(plots): with(DEtools):

a:=0;b:=1;

eq:= D(y) (x)=x*sqrt(1—x);

sol:= dsolve({eq},y(x));
tograph:={seq(subs(_Cl=i,s0l),i={-2,-1,—-,1,2})};

plot1:= implicitplot(tograph,x=a..b,y=—6..6):
display({plot1});

partsol:=dsolve({eq,y(1/2)=1},y(x));
implicitplot(partsol,x=a..b,y=—6..6,scaling=CONSTRAINED);

Mathematica:

a=0;b=1;

eq=D[y[x],x] = x*Sqrt[1—x]
sol=Flatten[DSolve[eq,y[x],x]]

cvals={-2,-1,1,2};

tograph=Table[y[x] /. (sol /. C[1] — cvals([i]]), {i,1,4}]
Plot[Evaluate[tograph],{x,a,b}];

partsol = DSolve[{eq,y[1/2]=1},y{x],x]//Flatten
Plot[y[x] /. partsol,{x,a,b}]

243
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3.3 THE SHAPE OF A GRAPH

1. The graph of y = f/(x) => the graph of y = f(x) is concave up
on (0,00), concave down on (—o0,0) = a point of inflection at
x = 0; the graph of y = f'(x) = y/ = +++ | ——— | +++ =

the graph y = f(x) has both a local maximum and a local minimum

2. The graph of y = f"/(x) = y"’ = +++ | ——— = the graph of
y = f(x) has a point of inflection, the graph of y = f'(x)
=y’ = ———| +4+ | ——— = the graph of y = f(x) has

both a local maximum and a local minimum

3. The graph of y =f"(x) = y"' = ——— | +++ | ——— = the
graph of y = f(x) has two points of inflection, the graph of
y =f(x) = y' = ———| +++ = the graph of y = f(x)

has a local minimum

4. The graph of y = f"'(x) = y" = +++ | —— = the graph
of y = f(x) has a point of inflection; the graph of y = f'(x)
= y' = ———| ++4+ | ——— = the graph of y = f(x) has

both a local maximum and a local minimum

Loc max

Inft

Infl

-<

g%




11.

12.

13.

14.

15.

16.

Section 3.3 The Shape of a Graph

6.
(a) Zero: x= £1; 8. (a) Zero: x =0, +1.25;
positive: (—oo,—1) and (1,00); positive: (—1.25,0) and (1.25,c0);
negative: (—1,1) negative: (—oo,—1.25) and (0,1.25)
(b) Zero: x =0; (b) Zero: x = £0.7;
positive: (0,00); positive: (—o00,—0.7) and (0.7, 00);
negative: (—o0,0) negative: (—0.7,0.7)
(a) (—o0,-2] and [0,2] 10. (a) [-2,2]
(b) [-2,0] and [2,00) (b) (—o0,—2] and [2,00)
(c) Local maxima: x = —2 and x = 2; (¢) Local maximum: x = 2;
local minimum: x =0 local minimum: x = —2
(a) [0,1], [3,4], and [5.5,6]

(b) [1,3] and [4,5.5]
(c) Local maxima: x =1, x =4 (if f is continuous at x = 4), and x = 6;
local minima: x=0,x=3, and x =5.5

If f is continuous on the interval [0, 3];
(a) [0,3]
(b) Nowhere
(c) Local maximum: x = 3;
local minimum: x =0
(a) f'(x) = (x —1)(x +2) = critical points at —2 and 1
(b) ' =+++ | — | +++ => increasing on (—o0,—2] and [1,00), decreasing on [—2,1]

(¢) Local ma.x1mum a.t x = —2 and a local minimum at x =1

(a) f'(x) = (x — 1)%(x +2) = critical points at —2 and 1
(b) f = ———| +++ | +++ = increasing on [-2,1] and [1,00), decreasing on (—o0,—2]
-2 1

(c) No local maximum and a local minimum at x = —2

(a) f'(x) = (x —1)e™™ = critical point at x =1
(b) f = ———~| ++++ = decreasing on (—o0, 1], increasing on [1, cc)
1 ,

(c) Local (and absolute) minimum at x =1

(a) f'(x) = x1/3(x + 2) = critical points at —2 and 0
(b) ' = +++ | ——=)(+++ = increasing on (—oo,—2] and [0,00), decreasing on [—2,0]
-2 0 ‘
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17.

18.

(¢) Local maximum at x = -2, local minimum at x = 0
y=2x-1
1 1
Intervals x<j X>35
Sign of y’ — +
Behavior of y | Decreasing| Increasing

y" = 2 (always positive: concave up)

Graphical support:

N,

¥z -1.28
[—4,4] by [-3, 3]

Ninipim
X3,

@ [3) ®) (~o03]
(¢) (—o0,00) (d) Nowhere
(e) Local (and absolute) minimum at (%, —%) (f) None

y' = —6x? +12x = —6x(x — 2)

Intervals x<0 0<x<?2 2<x
Sign of y’ - + -
Behavior of y Decreasing Increasing | Decreasing

y' = —12x+12 = —-12(x — 1)

Intervals x<1 x>1

Sign of y” + -

Behavior of y Concave up | Concave down

Graphical support:

WA
e Ve |

[—4,4) by [—6, 6)

(a) [0,2] (b) (—o0,0] and [2,00)
() (=o0,1) (d) (1,00)
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(e) Local maximum: (2,5); (f) At (1,1)
local minimum: (0,-3)

.y =8x3 - 8x = 8x(x — 1)(x + 1)

Intervals x< -1 -1<x<0 |0<x<1 ' 1<x
Sign of y’ — + - +
Behavior of y | Decreasing Increasing | Decreasing | Increasing
y" =24x? -8 = 8(v/3x - 1)(v/3x+1)
1 1 1 1
Intervals XL == | ——=<x<—= —=<X
il A

Sign of y" + - +
Behavior of y | Concave up| Concave down Concave up
Graphical support:

LAl

ALY
zu:n‘.mm ¥3-4

[—4.4]by [-3,3)

(a) [-1,0] and [1,00) (b) (—o0,1] and [0,1]

@ ()5 o (35
) Loeal (and bsotutey i (—1,-1) and (1,1

o (<35}

Ly = xel/x(—x"z) +el/x= el/x(l —%)

Intervals x<0 0<x<l1 l<x
Sign of y' + - +
Behavior of y Increasing Decreasing | Increasing
1/

y' = el/X(x—2) +(l _ %)el/x(_x—-Z) — e__s_x_

: X
Intervals x<0 x>0
Sign of y” - +

Behavior of y Concave down| Concaye down
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Graphical support:

w:“’i.nnn y=2.2402040

[—8, 8] by [—6. 6]

(8) (~o0,0) and [1,00) (b) (0,1]
(c) (0,00) (d) (—o0,0)
(e) Local minimum: (1,e) (f) None
) 1 2 8 —2x?
21,y =x — (=2x) +(V8 -x2)(1) = S22
2v/8 —x? ) M V8 —x?
Intervals —/8<x<-2|-2<x<2 2<x<\/§
Sign of y’ -~ + -
Behavior of y Decreasing Increasing Decreasing

. 2 2 __1___—)(
(V8 —x )(—4x)—(8—2x)2ﬂ( 2 )_ 23 _o4x _ 2x(x2—12)

yll = ot =

( /_——8—)(2)2 (8_x2)3/2 (8_x2)3/2
Intervals —\/§<x<0 0<x<+/8
Sign of y’ + -

Behavior of y Concave up | Concave down

Graphical support:

[ =

[—3.02, 3.02] by [—6.5, 6.5]

(@) [-2,2] (b) [-/8,~2] and [2,v/8]
() (-v/3,0) ) (0,v/8)
(¢) Local maxima: (—+/8,0) and (2,4); ) (0,0)

local minima: (—2,—4) and (\/5,0)

Note that the local extrema at x = + 2 are also absolute extrema
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99, v {-—2x, x<0

2x, x>0
Intervals x<0 x>0
Sign of y' + +

Behavior of y | Increasing | Increasing
-2, x<0
yII _
2, x>0

Intervals x<0 x>0

Sign of y" — +

Behavior of y | Concave down| Concave up

Graphical support:

///

[—4, 4] by [~3, 6]

(a) (—o0,00) (b) None

(c) (0,00) (d) (00,0

(e) Local minimum: (0,1)

(f) Note that (0,1) is not an inflection point because the graph has no tangent line at this point. There are no
inflection points.

23. y' = 12x% + 42x + 36 = 6(x + 2)(2x + 3)

Intervals x< =2 ‘—2<x<-—% -—%<x
Sign of y’ + - +
Behavior of y | Increasing | Decreasing Increasing

y'=24x+42 =6(4x+7)

7 7
Intervals x<-—z —z7<X
Sign of y" - +
Behavior of y | Concave down| Concave up

Graphical support:

/
/

Ninimum
X=-1.§ s -40.28

[—4, 4] by [—-80, 20)




250 Chapter 3 Applications of Derivatives

(a) (—o0,—2] and [—%,oo) (b) [_2,_%}
© (=) (@ (~o0=1)
1

(e) Local maximum: (—2,-40); local minimum: (—%,——gl)

2. y' = —4x> +12x%* — 4

Using grapher techniques, the zeros of y’ are x &~ —0.53, x ~ 0.65, and x ~ 2.88.

Intervals x<—053| -0.53<x<0.65 |0656<x<288 |288<x
Sign of y’' + - + -
Behavior of y | Increasing Decreasing Increasing Decreasing

y" = —12x% 4 24x = —12x(x — 2)
Intervals x<0 0<x<2 2<x

Sign of y" - + -

Behavior of y | Concave down| Concave up | Concave down

Graphical support:

A

A=2.8793036 Y=16.234422
[—2, 4] by {—20, 20]

(a) (—o0,—0.53] and [0.65,2.88] (b) [-0.53,0.65] and {2.88,c0)

(¢) (0,2) (d) (—o0,0) and (2,00)

(e) Local maxima: (—0.53,2.45) and (2.88,16.23); local minimum: (0.65,—0.68)
Note that the local maximum at x &~ 2.88 is also an absolute maximum.

(® (0,1) and (2,9)
25. y' = %x—4/5

Intervals x<0 0<x

Sign of y' + +

Behavior of y | Increasing | Increasing

"o _i -9/5
Y ="25%
Intervals x<0 0<x
Sign of y" + -

Behavior of y | Concave up | Concave down




