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Graphical support:

L
I

[—6,6] by [-1.5, 7.5]

(a) (—o0,00) (b) None
(¢) (=00,0) (d) (0,00)
(¢) None . (0,3)

26. y' = _%x—z/s

Intervals x<0 0<x

Sign of y’ - -

Behavior of y | Decreasing | Decreasing

yll - %x—5/3

Intervals x<0 0<x

Sign of y” - +

Behavior of y | Concave down | Concave up

Graphical support:

R
N

{—8, 8) by [0, 10]

(a) None (b) (—o0,00)
(c) (0,00) (d) (—o0,0)
(e) None ® (0,5)

27. y =x1/3(x—4) =x4/3 _ 4x1/3

v 4,1/3_4.-2/3 _4x-4

y=3 3 - 352/3
Intervals x<0 0<x<l1 l1<x
Sign of y’ - - +

Behavior of y | Decreasing| Decreasing| Increasing
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28.

—45-2/3 4 8  —5/3 _ 4x+8
yll =3 X 9 5/3
Intervals x< -2 -2<x<0 0<x
Sign of y” + - +
Behavior of y | Concave up | Concave down| Concave up

Graphical support:

\

[—4,8) by (-6, 8]

(a) [1,00)

(C) (-—00, "2) and (0,00)

(¢) Local minimum: (1,-—3)

(b) (—00,1]

@ (-
-2,6%/2) ~ (—2,7.56) and (0,0)

@ (

2,0)

This problem can be solved using either graphical or analytic methods. The following is a graphical solution.
| {\ y, y”

;"l‘ ‘t‘l!'!l!? ¥=10.392305 ggtg.ﬂ‘l!'ﬂ, Y=0 %5’; 562555 |y=2.5£-8

{(—4.7.4T by (-3, L1] {—4.7, 47 by [—10, 10] [—4.7,4.7) by [—10, 10}
An analytic solution follows.
2_ 1 Jo_ 2 —3x3 + 18x _ =3x(x* —6)
=x? — e (—-2x) + V9 —x*(2x) =
2v/9 —x2 \/ —x? \/ 9 - x?

Intervals B<x<—6|-vB<x<0 |0<x<6 | VE<x<3
Sign of y’ + - + -
Behavior of y Increasing Decreasing Increasing Decreasing

"o

—x?)(-9x? X
(V9 =x2)(-9x% + 18) - (=3x® + 18x) —=2—; \/—( 2x) _ (0= x)(=9x2 +18) + (=3x® + 18x)(x)

y

(Vo -2 )

6x —81x% 4 162

9-

Find the zeros of y':

3(2x* —

—27x2 4 54)

9

_ X2)3/2

=0=2x*

—27x24+54=0=>x’=

(9 X2)3/2

27+4/27° - 4(2)(54) 27 +3./33

202) )




=>X=

£4/2=3V33 o 156
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4
Note that we do not use x = =+ y—t‘—f— V33 ~ =+ 3.33, because these values are outside of the domain.
Intervals -3<x<-156 | -1.66<x<156 | 156<x<3
Sign of y" - + -

Behavior of y

Concave down

Concave up

Concave down

(a) [-3,—1/6] and [0,1/6] or, = [—3,—2.45] and [0,2.45]
(b) [-+/86,0] and [1/6,3] or, ~ [-2.45,0] and [2.45,3]
(c) Approximately (—1.56,1.56)

(d) Approximately (—3,—1.56) and (1.56,3)

(e) Local maxima: (+ \/5,6\/5) & (+2.45,10.39);
local minima: (0,0) and (+3,0)

(f) =~ (=£1.56,6.25)
2 2 2 2( .2
29. y' = xel/*"(—2x73) + ) =/ 1-2x"2) = el/x (%)
X
Intervals x<—\/§ —\/§<x<0 0<x<\/§ \/§<x
Sign of y’ + - - +

Behavior of y Increasing Decreasing Decreasing Increasing

v = () (ax%) + (1 — 2x~2) (/XY (=2x2) = (/) (2x% 4 4x7%) = 261/ <—x2 + 2)

X
Intervals x<0 0<x

Sign of y" - +

Behavior of y | Concave down| Concave up

Graphical support:

.

#1M142136 [¥=2.33164Y
[-12, 12] by {-9,9]

(2) (—00,—+/2] and [v/2,00) (b) [-V/2,0) and (0, /2]

(c) (0,00) (d) (=00,0)

(e) Local maximum: (-—\/5,—\/2_6) ~ (—1.41,-2.33); local minimum: (v/2, v/2e) ~ (1.41,2.33)
(f) None

30. y'= # => critical point at x = e = y' = +++ | ———
X e
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y' = 2-li§;§ = inflection point at x = e3/% x 4.48169 = y'=——| +++
x

e3/2

The “maximum?” function on the TI-89 calculator gives a maximum at x = 2.71828 = e, and the “inflection”
function gives an inflection point at x = 4.48169 ~ /2,

(a) (0,¢) (b) (e,00)
(© (0,67 (d) (¢*/%,00)
(e) Local maximum at (e,%—); There is no local minima. (f) (e3/ 2,5(;%-2-) ~ (4.48,0.33)

3. y= x1/4(x+3) = x5/ 4 351/

r_5.1/4 , 3 _-3/4_5x+3

Since y' > 0 for all x > 0, y is always increasing on its domain x > 0.

n_5_-3/4_9 -7/ = 5x — 9

At (Al (e
Intervals 0<x< % % <X
Sign of y” - +
Behavior of y | Concave down| Concave up

Graphical support:

[0, 6) by (0, 12]

(a) [0,00) (b) None
© (§) @ (03)

(e) Local (and absolute) minimum: (0,0) (f) (%,25—4</%) ~ (1.8,5.56)




32. y

33.
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,_ (DO —x(2x) _ —x?41
- (XZ + 1)2 - (xz + 1)2

Intervals x< -1 -l<x<1 1<x

Sign of y’ - + -

Behavior of y | Decreasing | Increasing | Decreasing

y— 2+ 1)2(=2%) - (—x? + Q)7+ 1)(2x) _ (x* +1)(=2%) —4x(=x*+1)

y = (X2 + 1)4 (x3 + 1)3
_2x3_6x _ 2"(3‘2 —3)
- (x2 + 1)3 - (x2 + 1)3
Intervals x<—\/§ -v3<x<0 0<x<\/§ \/§<x
Sign of y"” - + - +

Behavior of y | Concave down| Concave up | Concave down| Concave up

Graphical support:

W
{13 y=5

[-4.7,4.7] by (-0.7, 0.7)

(a) ['—1)1] (b) (—OO,-—].] and [1,00)
() (=+/3,0) and (v/3,00) (d) (~00,—+/3) and (0,/3)
(e) Local maximum: (1,%); ® (0,0), (\/g,é), and (—\/—’_é)

local minimum: (— 1,- %)

Y =(x—1)>2(x-2)

Intervals x<1 l<x<?2 2<x

Sign of y’ - - +

Behavior of y | Decreasing| Decreasing| Increasing

y' ==X+ x=-2)@)(x-1) = (x— D[(x - 1) +2(x~2)] = (x— 1)(3x — 5)

Intervals x<1 1<x<% g—<x
Sign of y” + — +
Behavior of y | Concave up| Concave down| Concave up

(a) There are no local maxima. (b) There is a local (and absolute) minimum at x = 2.
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34.

35.

36.

(c) There are points of inflection at x = 1 and at x = g

y = (x—1)4(x—-2)(x—4)

Intervals x<1 1<x<2 |2<x<4 4<x
Sign of y’ + + - +

Behavior of y | Increasing | Increasing | Decreasing| Increasing

v = (f_x[(x —1)2(x? - 6x +8)] = (x = 1)%(2x — 6) + (x2 — 6x + 8)(2)(x — 1)

= (x = D)[(x — 1)(2x — 6) + 2(x? — 6x + 8)] = (x — 1)(4x? — 20x + 22)
=2(x —1)(2x? - 10x +11)
Note that the zeros of y” are x = 1 and

10 /102 — 4(2)(11)
= @ =10i4vl2=5i2\/§z1.630r3.37.

X 1

The zeros of y” can also be found graphically, as shown.

N
\

280%87w v20

[~3,71by (-8,4]

Intervals x<1 1<x<1.63 |1.63<x<3.37 3.37T<x

Sign of y” - + - +

Behavior of y | Concave down| Concave up | Concave down| Concave up

(a) Local maximum at x =2 (b) Local minimum at x = 4
(c) Points of inflection at x = 1, at x ~ 1.63, and at x ~ 3.37.

(a) Absolute maximum at (1,2); (b) None
absolute minimum at (3,-2)
(c) One possible answer

y
2}

y=flx)
l =
S N M
-1p. \
_1[.
(a) Absolute maximum at (0,2); (b) At (1,0) and (—1,0)

absolute minimum at (2,-1) and (-2,-1)




(¢) One possible answer:

37. If y = x® — 5x* — 240, then y’ = 5x3(x —4) and

38.

39.

¥ =163+ 2)

y" = 20x%*(x —3). The zeros of y’ are extrema
of y. The right-hand zero of y”/ is a point of
inflection for y. Inflection point at x = 3, local

maximum at x = 0, local minimum at x = 4.

If y = x3 — 12x?, then y’ = 3x(x — 8) and
y" = 6(x —4). The zeros of y’ and y'’ are

extrema and points of inflection, respectively.

Y = 3x(x-8)
yor®—12dt
Ify= %xs +16x2 — 25, then y’ = 4x(x® +8) and

y" =16(x®+2). The zeros of y’ and y”’ are

extrema and points of inflection, respectively.

y=dxxde8) ¥

100|
50
L L L L
237

=50f y= ‘5—‘x5+ 16x2-25

-100

Section 3.3 The Shape of a Graph

¥ = 20x%(x- 3)

E y'=5x3(x~4)

M

H J B

257
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40.

41.

42.

43.

44.

45.

46.

4 3
Ify =% —% —4x? +12x + 20, then YT k-2

y' = (x-2)%(x+3) and y"’ = (3x +4)(x —2). The

zeros of y’ and y'/ are extrema and points of

4 3
yel-Boudvixa20

inflection, respectively.

Y =2+ 3x-2) =10

The graph of f falls where f' < 0, rises where f > 0,
and has horizontal tangents where f' = 0. It has local ) r
minima at points where f' changes from negative to

positive and local maxima where f' changes from

positive to negative. The graph of f is concave down 2 9 7"
where f'/ < 0 and concave up where f'/ > 0. It has .5

points of inflection at values of x where '/ changes

sign and a tangent line exists.

The graph f is concave down where '/ < 0, and concave
up where f'/ > 0. It has an inflection point each time 1

'/ changes sign, provided a tangent line exists there.

(a) v(t) =s'(t) =2t —4 (b) a(t) =v'(t) =2
(c) It begins at position 3 moving in a negative direction. It moves to position —1 when t = 2, and then
changes direction, moving in a positive direction thereafter.

(a) v(t) =s'(t) =—-2-2t (b) a(t) =v'(t) = -2
(c) It begins at position 6 moving in the negative direction thereafter.
(a) v(t) =s'(t) =3t2 -3 (b) a(t) = v'(t) = 6t

(c) It begins at position 3 moving in a negative direction. It moves to position 1 when t = 1, and then changes
direction, moving in a positive direction thereafter.

(a) v(t) =s'(t) = 6t — 6t (b) a(t) =v'(t) =6—12t
(c) It begins at position 0. It starts moving in the positive direction under it reaches position 1 when t =1,
and then it changes direction. It moves in the negative direction thereafter.




47.

48.

49.

50.

51.
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(a) The velocity is zero when the tangent line is horizontal, at approximately t = 2.2, t =6, and t = 9.8.
(b) The acceleration is zero at the inflection points, approximately t =4, t = 8, and t = 12.

(a) The velocity is zero when the tangent line is horizontal, at approximately t = —0.2, t =4, and t = 12.
(b) The acceleration is zero at the inflection points, approximately t = 1.5, t = 5.2, t =8, t = 11, and t = 13.

No. f must have a horizontal tangent at that point, but f could be increasing (or decreasing), and there would
be no local extremum. For example, if f(x) = x3, £(0) = 0 but there is no local extremum at x = 0.

No. f"(x) could still be positive (or negative) on both sides of x = c, in which case the concavity of the function

would not change at x = c. For example, if f(x) = x*, then f(0) = 0, but f has no inflection point at x = 0.

One possible answer:

y
5 -
- 2
R y= 5!"
1 1 '] ' L 1 L L 'l 1 x
> N s
-5 E
52. One possible answer: y
st
S T T B (I A T T
- 5 X
-sF
53. One possible answer:
(y=}x*~3x+4)

- s
54. No: y = x%+ 3 sin(2x) = y’ = 2x 46 cos (2x). The graph v
of y’ does not touch the x-axis near x = —3 indicating that y'=2+Goosde 2
there is no horizontal tangent near x = —3. s *
-
»
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55.

56.

57.

58.

59.

60.

61.

62.

The graph must be concave down for x > 0 because

() = -4 <0. ;
X

y = f(x)

The second derivative, being continuous and never zero, cannot change sign. Therefore the graph will always
be concave up or concave down so it will have no inflection points.

A quadratic curve never has an inflection point. If y = ax? + bx + ¢ where a # 0, then y’ = 2ax + b and

y"' = 2a. Since 2a is a constant, it is not possible for y”’ to change signs.

A cubic curve always has exactly one inflection point. If y = ax3 + bx% 4 cx + d where a 3 0, then

y’ = 3ax? + 2bx + ¢ and y"/ = 6ax + 2b. Since —3-_:' is a solution of y”/ = 0, we have that y'’ changes its sign

b

at x = ~%a and y’ exists everywhere (so there is a tangent at x = ——3—2-). Thus the curve has an inflection

point at x = —:;%. There are no other inflection points because y'/ changes sign only at this zero.

With f(—2) = 11 > 0 and f(—1) = —1 < 0 we conclude from the Intermediate Value Theorem that
f(x) = x* + 3x + 1 has at least one zero between —2 and —1. Then —2<x<-1= -8< < -1
= -32<4x3< —4 = —29<4x3+3 < -1 = f(x) <0 for -2 < x < —1 = f(x) is decreasing on [-2, —1]

= f(x) = 0 has exactly one solution in the interval (—2,-1).

g(t) =t +tF1-4=¢'(t) :5—%+2 :+ - > 0 = g(t) is increasing for t in (0,00); g(3) = /3 -2<0

and g(15) = 1/15 > 0 = g(t) has exactly one zero in (0, c0).

r(6) = 6 +sin® (g)— 8 =>1'f)=1 +% sin(—g-) cos(%) =1 +% sin(23—o) > 0 on (—o0,00) => r(f) is

increasing on (—00,00); r(0) = —8 and r(8) = sin’ (%) > 0 = 1r(6) has exactly one zero in (—o0,00).
() = tan § —cot § — 0 = 1'(f) = sec? 0 + csc? 6 — 1 = sec?0 + cot?8 > 0 on (0,%) = 1(0) is increasing

on (0,%); r(%) = —-% < 0 and r(1.57) ~ 1254.2 = r(6) has exactly one zero in (0,%).
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63. (a) It appears to control the number and magnitude of the
local extrema. If k < 0, there is a local maximum to the
left of the origin and a local minimum to the right. The
larger the magnitude of k (k < 0), the greater the
magnitude of the extrema. If k > 0, the graph h;z,s only

positive slopes and lies entirely in the first and third
quadrants with no local extrema. The graph becomes
increasingly steep and straight as k — oo.
(b) f'(x) = 3x% +k => the discriminant 0% — 4(3)(k) = —12k is positive for k < 0, zero for k = 0, and
negative for k > 0; f’ has two zeros x = + -3 when k < 0, one zero x = 0 when k = 0 and no real zeros
when k > 0; the sign of k controls the. number of local extrema.
(c) Ask — oo, f/(x) — oo and the graph becomes
increasingly steep and straight. As k — —oo, the
crest of the graph (local maximum) in the second quadrant
becomes increasingly high and the trough (local

minimum) in the fourth quadrant becomes increasingly

deep.

64. (a) It appears to control the concavity and the number of

local extrema.

k=-10

(b) f(x) = x* + kx® +6x% = f'(x) = 4x3 4 3kx? + 12x
= f/'(x) = 12x% 4 6kx + 12 => the discriminant is
36k2 — 4(12)(12) = 36(k + 4)(k — 4), so the sign line
of the discriminant is +++ |4———‘|1+++ = the

discriminant is positive when |k |> 4, zero when
k = %4, and negative when |k| < 4; f/(x) = 0 has

two zeros when |k|> 4, one zero when k = +4, and
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no real zeros for | k| < 4; the value of k controls the

number of possible points of inflection.

(1 +2e7%)(0) — (c) (~abe~>¥) abce X abceP*
65. (a) f'(x) = = =
(=) #x) (1+ae~bx)’ (1+ae")  (eb*+a)

so the sign of f'(x) is the same as the sign of abc.”

(b) (x) = (ebx + a)2 (ab"’cebx) — (abcet’:‘)2(ebx + a)(beb") — (eb" + a)(abzcebx) - (g,bcebx)(2beb")
(ebx + a) (ebx + a) 2
_ abzceb"(el"’x — a.)
- (b +a)
Since a > 0, this changes sign when x = l_ntg_ due to the eP® — a factor in the numerator, and f(x) has a

point. of inflection at that location.

66. (a) f'(x) = 4ax® + 3bx? + 2cx +d
'(x) = 12ax? + 6bx + 2¢

Since f"'(x) is quadratic, it must have 0, 1, or 2 zeros. If f”(x) has 0 or 1 zeros, it will not change sign and

the concavity of f(x) will not change, so there is no point of inflection. If f'(x) has 2 zeros, it will change
sign twice, and f(x) will have 2 points of inflection.

(b) If f has no points of inflection, then f"(x) has 0 or 1 zeros, so the discriminant of f”(x) is < 0. This gives
(6b)% — 4(12a)(2c) < 0, or 3b? < 8ac.

If f has 2 points of inflection, then f’(x) has 2 zeros and the inequality is reversed, so 3b? > 8ac. In

summary, f has 2 points of inflection if and only if 3b2 > 8ac.

3.4 GRAPHICAL SOLUTIONS TO DIFFERENTIAL EQUATIONS

Ly =(@F+2)(y-3)
(a) y = -2 is a stable equilibrium value and y = 3 is an unstable equilibrium.
(b)) y'=Qy-1)y'=2(y+2)y - 1/2)(v - 3)

y' >0 y <0 I y' >0

o T ) 2 4 y
v <0 y'>0 ‘y//<0 y'>0

0.5
() ]




/

2. y=@+2)(-2

(a) y = —2 is a stable equilibrium value and y = 2 is an unstable equilibrium value.
(b) y"=2yy' =2(y +2)y(y -

y'>0 ' y' <0

2)

-3 ’ 2 -1
y/I <0 yu >0

()

Section 3.4 Graphical Solutions to Differential Equations

I
- y'>0, y'<0
Vg
3. y=y'-y=@+1y(y-1)
(a) y =—1 and y = 1 are unstable equilibria and y =0 is a stable equilibrium.
(b) ¥ =@y? -1y =3y +1)(y+1/v3)y(y-1/v3)y - 1)
y' <0 y' >0 l y' <0 ‘ y' >0
-135° 05" 0.5 s Y
yll < 0 yll > 0 yll < yll > ({ yII < 0 yII > 0
. 1
V3 V3
(c)
Y
1.5
4\4’/ y, >0’ y, o
= y'<0, y"<0
~— y'<0, y>0
— e ,
"_0.5 y'>0, y"<0
y'>0, y'>0
s \ y'<0, y"<0
4. y'=y(y-2)

(a) y =0 is a stable equilibrium and y =2 is an unstable equilibrium.

(b) y"' =2y =2)y' =2y(y -
y'>0

RN

1)(y-2)

y' <0 l y'>0

-1 1

yn<0 Tyu>0

yu<OT yu>0

3

y

263
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5. ¥ =/y,y>0

(a) There are no equilibrium values.
" o_ 1 I | R - l
®) v =5loy =51z 5=

y>0

0 1 2 3 ra
y//>0

6. Y =y—y,y>0

(a) y =1 is an unstable equilibrium value.
) ' =(1-505 ) = (155 o -V =(vF-3)(v5 -1)

y' <0 ' y' <0 J y' >0

yu>0
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()

7.y =@F-1)F-2)(-3)
(a) y =1 and y = 3 are unstable equilibria and y = 2 is a stable equilibrium.

(b) y' = @y*— 12y + 1)y - Dy - -3) =3 - 1) (y -8 _3\/5)(3' - 2)(y —%)(y —3)

y' <0 l y>0 y' <0 l y' >0

raii

y'<0 Iy">0 y'<0 y”>0‘y"<(1 y'>0

63 1.42 6++/3

L. S % 2.58
(c)
b4
p
4
. "3- J y>0,y°>0
B i OO £ 3 |
c—3) - 720720
_____ — — . y>0,y°<0
= JIIyEeye

x

os| \ y<0,y°<0

]
-
-
~
-

8. y=y-y'=y¥y-1)
(a) y=0and y =1 are unstable equilibria.

(b) y' =(3y2 - 2y)(y*—y?) =y’By-2)(y - 1)

y' <0 l y' <0 \ ¥'>0

\ y
yn<0 T yu>0 . ‘ yu<0r y//>0
2/3
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() ¥
3 y'>0 y">0
\ y'<0, »<0
3
\. ¥'<0, y">0
e I
K3 ™\ V<0, y"<0

2
9. 9P _ 1 _ 9P has a stable equilibrium at P = 1L dP_ _odP_ -2(1-2P)
dt 2" 442 t
P'>0 P'<0
PN < 0 PII > 0
-1 -0.5 ’ 0.5 1 1.5 2 3
18
! P'<0 P50
03 »'>0,r" <0
/k TR T Y T I
03

10. %ltz = P(1 - 2P) has an unstable equilibrium at P = 0 and a stable equilibrium at P =
2
fle; =(1-4P) £ = P(1 - 4P)(1 - 2p)
P/ <0 ‘ P'>0 [ P <0
-0.5 ¢ ol5 - 1 P
P"<0 TP">0 l P"<0 P">0

1/4

S5
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0.6 P' <0, P">0

0.4 />0, P'<0
.2
0. / P'>O, P'>0

1 2 3 4

P'<0, P"<0
-0.2

11. %It—’ = 2P(P — 3) has a stable equilibrium at P = 0 and an unstable equilibrium at P = 3.

2
%‘5 =2(2P - 3) %% = 4P(2P — 3)(P - 3)

P'>0 | P'<0 l P'>0

T=03 05 3 T P %5 S5 4
PII<0 PII>0 1 PH<0 P”>0

fnd N W a
Y

04 05 06 07
P'>0,P" <0

-1
-2

12. ‘31—1:=3P(1—P)(P-%) has stable equilibria at P = 0 and P = 1 and an unstable equilibrium at P = 1.
&P _ 3 ap2 4P _3 ( _3—\/5) _;( _3+\/§) _
e =-4ep*-op+1) F=3P(P-" (P Dlp-252 -1
P'>0 l P'<0 I P'>0 I P <0
-0.5 1.5 P

o5
P"<0 TP”>0. P”<OIP”>0\P“<01 P">0

=~ 0.21 ~ 0.79

267
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13.

14.

1 P <0, P'>0

. — i
< 525 oo
0.5 -

0.25 P'<0, P"<0

R <0, P'>0

0.25 P'>0, P'<0
-0.5

]
.
'
'
’
v
.
I

%
5

Before the catastrophe, the population exhibits logistic growth and P(t) — M, the stable equilibrium.
After the catastrophe, the population declines logistically and P(t) — M,, the new stable equilibrium.

‘ji—ft’=rP(M—P)(P—m), r,M,m>0
a b
} : i H :
i P">0 !P"<0} P'>0} P'<0 | P>0
: ! : P
' P'<0 ‘!' P'>0 : P'<0
! i }
0 m M

The model has 3 equilibrium points. The rest points P =0, P = M are asymptotically stable while
P = m is unstable. For initial populations greater than m, the model predicts P approaches M for large
t. For initial populations less than m, the model predicts extinction. Points of inflection occur at P = a

.andP=bwherea=%[M+m—\/M§—mM+m2]andb=%[M+m+\/M§—mM+m2].

(a) The model is reasonable in the sense that if P < m, then P — 0 as t — oo; if m <P <M, then P — M as
t — oo; if P> M, then P - M as t — oo.

(b) It is different if the population falls below m, for then P — 0 as t — oo (extinction). It is probably a
more realistic model for that reason because we know some populations have become extinct after the
population level became too low.




15.

16.

17.
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(c) For P> M we see that %—E = rP(M — P)(P —m) is negative. Thus the curve is everywhere decreasing.
Moreover, P = M is a solution to the differential equation. Since the equation satisfies the existence and
uniqueness conditions, solution trajectories cannot cross. Thus, P — M as t —oo0.

(d) See the initial discussion above.

(e) See the initial discussion above.

%{-:g—%vz, g, k, m >0 and v(t) >0
Equilibrium: ‘j—‘t’ = —%v2 =0=>v= \/:!%_E

: d? k,\d k k
Concavity: at—‘z’ = "2(ﬁv) d—z =-2 (mv)(g — _m_vz)
(a)

e, | E

:l"'z':<° E %)0
-

(b) y

—

(€) Vierminal = ,/0—%60% =178.9 £ = 122 mph

F=Fp_Fr
ma = mg —ky/v
dv _ k

=8 mVY v(0) = vq

2 2
Thus, %‘tl = 0 implies v = (m-E-g) , the terminal velocity. If vy < (%) , the object will fall faster and faster,

2
approaching the terminal velocity; if vy > (%) , the object will slow down to the terminal velocity.

F=F,—F,
ma = 50—5]v]|
& = L(s0-51v1)

The maximum velocity occurs when % =0 or v =10 ft/sec.
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18. (a) The model seems reasonable because the rate of spread of a piece of information, an innovation, or a
cultural fad is proportional to the product of the number of individuals who have it (X) and those who do
not (N —X). When X is small, there are only a few individuals to spread the item so the rate of spread is
slow. On the other hand, when (N — X) is small the rate of spread will be slow because there are only a
few individuals who can receive it during an interval of time. The rate of spread will be fastest when
both X and (N — X) are large because then there are a lot of individuals to spread the item and a lot of
individuals to receive it.

(b) There is a stable equilibrium at X = N and an unstable equilibrium at X = 0.

2
dX = kX (N - X) - kx 9E = KX (N - X)(N - 2X) = inflection points at X =0, X={ and X =N.

a?
l X'>0 J X'<0
» ¢ X
I X">0 X"<0 I X">0
0 N/2 N
()
X
N | -
N/2
t
N

d) The spread rate is most rapid when X = 3. Eventually all of the people will receive the item.
p)

di
19. L 5 at

e ____Ii,y_.__ ._K
Equilibrium: at = L(R 1) =0=2>i= R

Concavity: fg—zl- = —(%) d—i = —(%)2 (% - i)

+Ri=Va 8=V -Bi=&(¥_i),v,L,r>0

Phase Line:
d H di
>0 . - d—l<° ;
] lzi<o . d2
o booa?
.
lq = -R-
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If the switch is closed at t = 0, then i(0) = 0, and the graph of the solution looks like this:

-> ¢

Ast — o0, i(t) — isteady state = -YR— (In the steady state condition, the self-inductance acts like a simple

wire connector and, as a result, the current through the resistor can be calculated using the familiar version
of Ohm’s Law.)

20. (a) Free body diagram of the pearl:

W=mg
(b) Use Newton’s Second Law, summing forces in the direction of the acceleration:
mg — Pg —kv =ma = g—;’:(mT“P)g_%v_
(c) Equilibrium: ‘31—: = %(-(—IP—%%— v) =0 = Vierminal = (—-ni#
2
io. dv_ _(k)dv_ _(kY((m—Pe
Concavity: W —(ﬁ) T= _('rﬁ) (—T -v.

&%

Vieomiat = \(m — P)g
k

v <0
v’>0

- ¢
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(d) v

(m-P)g
k

(e) The terminal velocity of the pearl is (—n:ﬁ—%

3.5 MODELING AND OPTIMIZATION

1. Let £ and w represent the length and width of the rectangle, respectively. With an area of 16 in.2, we have

2(e2—16)
¢

=0 = €= —4, 4. Since € > 0 for the length of a rectangle, £ must be 4 and

that (€)(w) = 16 = w = 16¢~" = the perimeter is P = 2¢ + 2w = 2¢ + 32¢™" and P'(§) =2 — 3_3 =
2(e+4)(e—4
REDE

w = 4 = the perimeter is 16 in., a minimum since P’/(¢) = 24 > 0.

Solving P'(£) =0

2. Let x represent the length of the rectangle in meters (0 < x < 4). Then the width is 4 — x and the area is
A(x) = x(4 —x) = 4x —x?%. Since A'(x) = 4 — 2x, the critical point occurs at x = 2. Since A'(x) > 0 for
0<x<2and A'(x)<0 for 2 < x < 4, this critical point corresponds to the maximum area. The rectangle with
the largest area measures 2 m by 4 — 2 = 2m, so it is a square.

Graphical support:

/N

Haximum
¥=2

=4

[0,41by [-1.5,5]

3. (a) The line containing point P also contains the points (0,1) and (1,0) = the line containing Pisy =1-x

=> a general point on that line is (x,1 —x).
(b) The area A(x) = 2x(1 —x), where 0 <x < 1.
(c) When A(x) = 2x —2x%, then A/(x) =0 => 2 —4x=0=>x = % Since A(0) = 0 and A(1) = 0, we conclude

that A(%—) = % sq units is the largest area. The dimensions are 1 unit by % unit.
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4. The area of the rectangle is A = 2xy = 2x(12 —-X )

where 0 < x < 1/12. Solving A'(x) =0=24—6x>=0 /
= x = —2 or 2. Now —2 is not in the domain, and since
A(0) = 0 and A(1/12) = 0, we conclude that A(2) = 32 Y .
sq units is the maximum area. The dimensions are 4 units 1 11
by 8 units.

5. The volume of the box is V(x) = x(15 — 2x)(8 — 2x)
= 120x — 46x2 + 4x3, where 0 < x < 4. Solving V/(x) =0
= 120-92x +12x* = 4(6 —x)(5 —3x) =0 = x =3 or 6, T
but 6 is not in the domain. Since V(0) = V(4) =0, V(3) é g

-

= ——2%?0 ~ 91 sq units must be the maximum volume of the -—T r—

14 35,5
3X3X3

box with dimensions 5= inches.

6. The area of the triangle is A = %ba =b 1/400 — b?, where '

2
0<b<20. Thend& =1/200—b?~ —_200—b
=1 \/400 b2 /400 — b2 20

= 0 = the interior critical point is b = 104/2. When b = 0 or 20, a0
the area is zero = A(lO\/i) is the maximum area. When
a?+b% =400 and b = 10\/5, the value of a is also 10\/5 = the

maximum area occurs when a = b.

(0. %)

7. The area is A(x) = x(800 — 2x), where 0 < x < 400. Solving et

A'(x) = 800 —4x = 0 = x = 200. With A(0) = A(400) =0, the '
2

maximum area is A(200) = 80,000 m“. The dimensions are 800~ 2

200 m by 400 m.

8. The area is 2xy =216 => y = m. The perimeter is P = 4x + 3y

=4x+324x—1,where0<x,‘(iip_-4 324 _0=x2-81=0 ,
X

=> the critical points are 0 and +9, but 0 and —9 are not in the

domain. Then P"(9) > 0 = at x = 9 there is a minimum => the x x
dimensions of the outer rectangle are 18 m by 12 m => 72 meters

of fence will be needed.

9. (a) We minimize the weight =tS where S is the surface area, and t is the thickness of the steel walls of the
tank. The surface area is S = x? + 4xy where x is the length of a side of the square base of the tank, and y

is its depth. The volume of the tank must be 500 ft3 = y = Q%Q Therefore, the weight of the tank is
' x

w(x) = t(x +5= 2000 ) Treating the thickness as a constant gives w'(x) = t(2x 2000) for x > 0. The
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critical value is at x = 10. Since w"(10) = t(2 +%) > 0, there is a minimum at x = 10. Therefore, the

optimum dimensions of the tank are 10 ft on the base edges and 5 ft deep.
(b) Minimizing the surface area of the tank minimizes its weight for a given wall thickness. The thickness of
the steel walls would likely be determined by other considerations such as structural requirements.

10. (a) With the volume of the tank being 1125 ft3, we have that yx? = 1125 = y = w. The cost of
x?
33,750
x?

building the tank is ¢(x) = 5x* + 30x(1125> where 0 < x. Then ¢/(x) = 10x =0 = the

critical points are 0 and 15, but 0 is not in the domain. Thus ¢’/(15) > 0 = at x = 15 we have a minimum.
The values of x = 15 ft and y = 5 ft will minimize the cost.

(b) The cost function, ¢ = 5(x? 4 4xy) + 10xy, can be separated into two items: (1) the cost of materials and
labor to fabricate the tank, and (2) the cost for the excavation. Since the area of the sides and bottom of
the tank is (x? + 4xy), it can be deduced that the unit cost to fabricate the tank is $5/ft2. Normally,
excavation costs are per unit volume of excavated material. Consequently, the total excavation cost can be

taken as 10xy = (lx_O) (x2y). This suggests that the unit cost of excavation is $10x/ ft where x is the length

of a side of the square base of the tank in feet. For the least expensive tank, the unit cost for the

ft2 . . .
$ig/{‘t = % = % The total cost of the least expensive tank is $3375, which is the

excavation is

sum of $2625 for fabrication and $750 for the excavation.

11. The area of the printing is (y — 4)(x —8) = 50. Consequently, )
y _( 508)+4 The area of the paper is A(x) = x( 508 +4) 2 3
L]
where 8 < x. Then A’(x) = (x508 +4) ((x 508)2) [, ~ |*
M = 0 = the critical points are —2 and 18, but 4
(x-8)
Y

—2 is not in the domain. Thus A’’(18) >0 = at x = 18 we have a

minimum. Therefore the dlmensmns 18 by 9 inches minimize the amount of paper.

12. The volume of the cone is V = 3 7rr2h where r =x = /9 — y2 and h = y + 3 (from the figure in the text).
Thus, V(y) = §(9-y?) (v +3) = §(27+ 9y =3y’ =¥*) = V/(y) = (9 - 6y - 3y*) = n(1 - y)(3 + ).
The critical points are —3 and 1, but —3 is not in the domain. Thus V//(1) = %(—6 -6(1))<0=aty=1

32

we have a maximum volume of V(1) = X (8)(4) = 25X cubic units.

13. The area of the triangle is A(f) = a_,_b_s_ln_ﬁ’ where 0 < 8 < .

Solving A'(8) =0 = ab °2°S 0—0=9 212'- Since A"(6) /\
= —w = A"(—z-) < 0, there is a maximum at 6 = il

5' D)
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14. A volume V = 7r?h = 1000 = h = % The amount of material
wr

is the surface area given by the sides and bottom of the can

= S = 2ath + mr? —2000+7rr,0<r ThendS @_gﬂ+2,rr
r

3 2
=0= ﬂ-—_-z—l-QQO— = 0. The critical points are 0 and A0 but 0 is not in the domain. Since d’s = fl—o—gg+ 27
I r

T N ) dr?

A0 cm and h =

" T

> 0, we have a minimum surface area when r =

15. With a volume of 1000 cm and V. = 7r?h, then h = 1—0%9- The amount of aluminum used per can is
T

3
A =8r% 4 27rh = 8r% + 2_0rO_0 Then A'(r) = 16r —-ZQQ—Q =0= w = 0 => the critical points are 0 and 5,
r

but r = 0 results in no can. Since A”/(r) = 16 + =5~ 4000 > 0 we have a minimum at r=5 = h = 40 and hir = 8:7.

16. (a) The base measures 10 — 2x in. by in., so the volume formula is
vix) = X0 2x2)(15 —20) _ x® - 265 + T5x.

(b) We require x > 0, 2x < 10, and 2x < 15. Combining these requirements, the domain is the interval (0,5).

[N

[0, 5] by [-20, 80}

15—2x .
2

()

axirum
X=1.9618739 ¥:66.019118
[0, 5) by [—20, 80]

The maximum volume is approximately 66.02 in.3 when x ~ 1.96 in.

(d) V'(x) = 6x% —50x + 75 5
50 £ 4/(—50)* — 4(6)(75 . /
The critical point occurs when V'(x) =0, at x = \/ 3 (:5) ©)7%) 50 i 700

_ 2557

3 , that is, x & 1.96 or x =~ 6.37. We discard the larger value because it is not in the domain.

Since V”(x) = 12x — 50, which is negative when x & 1.96, the critical point corresponds to the maximum
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volume. The maximum volume occurs when x = gé—# ~ 1.96, which confirms the result in (c).

17. (a) The “sides” of the suitcase will measure 24 —2x in. by 18 — 2x in. and will be 2x in. apart, so the volume
formula is V(x) = 2x(24 — 2x)(18 — 2x) = 8x> — 168x? + 864x.
(b) We require x > 0, 2x < 18, and 2x < 24. Combining these requirements, the domain is the interval (0,9).

{0, 9] by [—400, 1600]

(C) T axisum
X=3.3944487 =1309.9547

This maximum volume is approximately 1309.95 in.3 when x = 3.39 in.

(d) V'(x) = 24x — 336x + 864 = 24(x? — 14x + 36)
The critical point is at

144 4/(-14)* - 4(1)(36) 14+ /52
_ = 2\/— =7x \/ﬁ,

x= (1)

that is, x = 3.39 or x ~ 10.61. We discard the larger value because it is not in the domain. Since
V"(x) = 24(2x — 14), which is negative when x ~ 3.39, the critical point corresponds to the maximum
volume. The maximum value occurs at x = 7 — /13 & 3.39, which confirms the results in (c).

(e) 8x3—168x2 4 864x = 1120
8(x® — 21x? + 108x — 140) = 0
8(x—2)(x—5)(x—14)=0
Since 14 is not in the domain, the possible values of x are x =2 in. or x =5 in.
(f) The dimensions of the resulting box are 2x in., (24 — 2x) in., and (18 — 2x) in. Each of these
measurements must be positive, so that gives the domain of (0,9).

18. If the upper right vertex of the rectangle is located at (x,4 cos 0.5x) for 0 < x < 7, then the rectangle has width
2x and height 4 cos 0.5, so the area is A(x) = 8x cos 0.5x. Then A’(x) = 8x(—0.5 sin 0.5x) + 8(cos 0.5x)(1)
= —4x sin 0.5x + 8 cos 0.5x. Solving A’(x) = 0 graphically for 0 < x < 7, we find that x ~ 1.72. Evaluating
9x and 4 cos 0.5x for x & 1.72, the dimensions of the rectangle are approximately 3.44 (width) by 2.61 (height),
and the maximum area is approximately 8.98.

19. Let the radius of the cylinder be r cm, 0 <r < 10. Then the height is 24/100 — r? and the volume is
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V(r) = 2mr24/100 — r? cm®. Then

—27r3 4 47r(100 —r2)  27r(200 — 3r?)
V'(r) = 272 (————1—)(—2r) +(27v/100 —£2) (2r) = =
21/100 — 12 V100 — V100 —r?

The critical point for 0 < r < 10 occurs at r = \/@ = 10\/% Since V(1) >0for 0 <r < 10@ and

V'(r) < 0 for 10\/%- < r < 10, the critical point corresponds to the maximum volume. The dimensions are

r= 10\/% ~8.16 cm and h = % ~ 11.55 cm, and the volume is 40007 -, 9418.40 cm3.

3v/3

20. (a) From the diagram we have 4x + £ = 108 and V = x2¢. The x

volume of the box is V(x) = x%(108 — 4x), where 0 < x < 27. !
Then V'(x) = 216x — 12x? = 12x(18 —x) = 0 = the critical

points are 0 and 18, but x = 0 resuits in no box. Since

V'(x) = 216 — 24x < 0 at x = 18 we have-a maximum. The
dimensions of the box are 18 x 18 x 36 in.
_ 2y _ (108 — ¢V
(b) In terms of length, V(€) = x*¢ ={==— ¢. The graph
indicates that the maximum volume occurs near ¢ = 36,

which is consistent with the result of part (a).

21. (a) From the diagram we have 3h + 2w = 108 and V = h?w
= V(n) = h?(54- 3h)=b54b2 —$h% Then V'(h) = 108h — 31’

=g—h(24—h):0=>h=00rh=24,buth:Oresultsinno h
box. Since V//(h) = 108 — 9h < 0 at h = 24, we have a maximum h
volume at h = 24 in. and w = 54 —%h =18 in. w

(b)

—

88888
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22. From the diagram the perimeter is P = 2r + 2h + 71,
where 1 is the radius of the semicircle and h is the
height of the rectangle. The amount of light transmitted
is A=2rh +%1rr2 =1(P —2r — 7r) +%ﬂ'l‘2 =P —2r? —%nrz.

dA _p 4.3 _ __2P
Then-—&—r—_P 4r 27rr_0=>r_8+37|_=>

- 4P _ oxp _ (44 7P
2h_P—8+37r—8+37r_ ST 3r Therefore,

28

Yl - gives the proportions that admit the most light since
d?A _ 3
_dr_2 =—4- §7l' <0.

23. The fixed volume is V = 7r?h +%1rr3 =>h= lz_%r_, where h is the height of the cylinder and r is the radius

T
of the hemisphere. To minimize the cost we must minimize surface area of the cylinder added to twice the

surface area of the hemisphere. Thus, we minimize C = 27rh + 4mr? = 27t (lz - 23—1') +4mr? = g + -g-ﬂ’l'z.
T

1/3
Then %(}2 = _'2'2X+1T6” =0=>V= %ﬂ”rs =1 = (?é—}r/) . From the volume equation, h = ;—:—r/-z-—%
_ a3 9.3iB.yI8 _3l/8.9.4.v13_9.31/8.v13 _(sv\'/® o d2c_4v_ 16
T gl3.32/3 3.9.,1/3 T 3.9.71/3 ~( 7,-) . Since o R +TW>0’ these

dimensions do minimize the cost.

24. The volume of the trough is maximized when the area of the cross section is maximized. From the diagram

the area of the cross section is A(6) =cos § +sin 6 cos 4,0 < 6 < % Then A’(#) = —sin 0 + cos?§ —sin? 9

=—(2sin20 +sin6—-1)= —(2 sin 6 —1)(sin § +1) so A’() =0 = sin ¢ =1 orsin6=-1=0=1 because

2 6

sin  # —1 when 0 < 6 <Z.. Also, A'(0)>0for0<0<%and A'(9) <0 for T < 6 <Z. Therefore, atG:%

2 6 2

there is a maximum.

25. (a) From the diagram we have: AP =x, RA = VL% —x?%, o ¢

PB=85-x, CH=DR=11-RA =11-vL%-x?,
B=,/x!-(85-x)?, HQ=11-CH-QB
=11 -[11 - VI =2 +4/x - (85 -x)?

=vVL2—x?—/x? - (8.5 —x)?,

2
RQ? =RH? + HQ? = (8.5)% +<\/ L2 —x%—/x*—(8.5— x)2) . It follows that
2
RP? =PQ?+RQ? = L2 =2 +(VIT - -\ — (x—8.5)?) +(85)?
= L2=x2+L2—x?-2VL2 —x? y/17x — (8.5)2 + 17x — (8.5)% + (8.5)2

2,2 3
2,2 _ L2___ 2 17x — 8-52 $L2= 2 17°x - 17x
= 175 = 4 (L2 -xT)(17x - (85)%) i Tx—(85)7] 17— (8.5)2

" eme

v~



26.

27.

28.

29.
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17x° = o 317 23
17x (127) X — (2x —8.5)

3 2(8x —
(b) I f(x) = —17 is minimized, then L? is minimized. Now f/(x) = 4?7(8%7?21—) = f/(x) <0 when x < %= 51
x —
and f'(x) > 0 when x > 581 . Thus L? is minimized when x = 581

(c) When x =51, then L %110 in.

2x3
L=\z=35

N85 10 X

L

HMNWW

(a) From the figure in the text we have P =2x 42y = y = —g —x. If P =36, then y = 18 —x. When the

cylinder is formed, x = 27r => r = 7’;—; and h =y = h =18 —x. The volume of the cylinder is V = 7r?h

2_ .3 -
= V(x) = %’i Solving V/(x) = §_x(1427r_x)

Then V/(x) = %(3 —%) = V’(12) < 0 = there is a maximum at x = 12. The values of x = 12 ¢cm and

=0 => x =0 or 12; but when x = 0, there is no cylinder.

y = 6 cm give the largest volume.
(b) In this case V(x) = 7x*(18 — x). Solving V’(x) = 3mx(12 —x)=0=>x=0 or 12; but x = 0 would result in
no cylinder. Then V/(x) = 6x(6 —x) = V'/(12) < 0 => there is a maximum at x = 12. The values of

x =12 cm and y = 6 cm give the largest volume.

Note that h% +r% = 3 and so r = v/3 —h?. Then the volume is given by V= %rzh = %(3 —h%h = 7h —§h3 for

0 <h < /3, and so %}l—/ = 7 —rh? = 7(1 —h?). The critical point (for h > 0) occurs at h = 1. Since 4V 5 0 for

dh
0<h<1and g}: <0forl<hx \/?_:, the critical point corresponds to the maximum volume. The cone of

greatest volume has radius \/_ 2 m, height 1 m, and volume 23”

(@) f(x)=x?+&=>f(x) = x~2(2x3 —a), so that f(x) = 0 when x = 2 implies a = 16

(b) f(x) =x?+& = (x) = 2x~3(x® +a), so that f(x) = 0 when x =1 implies a = —1

2 2
A=xy= xe"x2 = % = e""2 + (x)(-2x)e™™* =e7* (1-2x2). Solving 52 dA g 1-2x2=0

dx

1 .dA 1 dA 1 . 1 -1/2 1
>x= ; 5= < 0 for x > —== and 5= > 0 for 0 < x < —= = absolute maximum of —=e
BBV AR V2 oo dx V2 V2

1 : _—1/2 1 : :
X = —= units long b =e = —== units high.
\/'2- gy y \/(-'3 8
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wu — of ] 1 dA _ 1 1-1 dA_ — — o
30.A_xy_x(?(—2x)—n—x’5=>a;_;5—%- —xn—’s Solving G- 0=31-Inx=0=>x=¢;

daé‘— <O0forx>e and 44 ax A - 0 for x < e = absolute maximum of A€ ln € é at x = e units long and y = 12 units

high.

31. (a) s(t) = —16t2 496t + 112
v(t) =s'(t) = —32t + 96
At t = 0, the velocity is v(0) = 96 ft/sec.
(b) The maximum height occurs when v(t) = 0, when t = 3. The maximum height is s(3) = 256 ft and it
occurs at t = 3 sec.
(c) Note that s(t) = —16t2 + 96t + 112 = —16(t +1)(t - 7),sos =0 at t = —1 or t = 7. Choosing the
positive value of t, the velocity when s = 0 is v(7) = —128 ft/sec.

32.
p—— 6 mi ——1
f— x ——— 6-x— Village

|8
]

T
2]'.“ 1 /V4 + 22 miles

Jane

Let x be the distance from the point on the shoreline nearest Jane’s boat to the point where she lands her boat.

Then she needs to row /4 + x2 mi at 2 mph and walk 6 —x mi at 5 mph. The total amount of time to reach

AT ™ AT

Solving f'(x) = 0, we have: —x 1l usr=—9/44+x2=225x2=4(4+x%) 221’ =16 =>x = i——4—
g f'(x) W/ i % ( ) o

We discard the negative value of x because it is not in the domain. Checking the endpoints and critical point,

we have £(0) = 2.2, £ —4_) ~ 2.12, and (6) ~ 3.16. Jane should land her boat —s= = 0.87 miles down the
V21

V21

the village is f(x) = *—5— 4 +x 46-x x hours (0 < x < 6). Then f'(x) =

ol

shoreline from the point nearest her boat.

33. 8= 1127 = h =8+2L0 and L(x) = \/h? + (x +27)?

216’
= \/(8 +")’c§) + (x+27)? when x > 0. Note that L(x) L

2
is minimized when f(x) = (8 + %9'_) + (x + 27)? is minimized. 8

If £/(x) = 0, then 2(8 + 216)(—%% 2Ax+27) =0

= (x+ 27)(1 - l’%ﬁ) =0 = x = —27 (not acceptable since
x
distance is never negative) or x = 12. Then L(12) = /2197 =~ 46.87 ft.

34. (a) From the diagram we have d2 = 144 — w2, The strength of the beam is S = kwd? = kw(144 — wz)
= § = 144kw —kw® = §'(w) = 144k — 3kw? = 3k (48 —w?) s0 S'(W) = 0 = w = £4+/3;
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S”(4\/§) < 0 and —44/3 is not acceptable. Therefore S(4\/§) is the maximum strength. The dimensions

of the strongest beam are 4\/5 by 4\/6 inches.

(b) ()

60
50
40
30
20
10

$=144w-w’

T3¢ % 10 1z

Both graphs indicate the same maximum value and are consistent with each other.

RN P

o 10

Changing k does not

change the dimensions that give the strongest beam (i.e., does not change the values of w and d that

produce the strongest beam).

. : 2 2 : : 3 3 2)1/2
35. (a) From the situation we have w* = 144 —d“. The stiffness of the beam is S = kwd” = kd (144 —d ) ,

36.

37.

4kd2(108 — d2)

V144 — g2

where 0 < d < 12. Also, §'(d) =

=> critical points at 0, 12, and 6\/?:. Both d =0 and

d =12 cause S = 0. The maximum occurs at d = 6\/5. The dimensions are 6 by 6\/§ inches.

(b) ()
600
$00
400
300
200

100

600
500
4000,
3000
200
1000} s=Vigs- g2
2 4 ¢ v Toie

Both graphs indicate the same maximum value and are consistent with each other. The changing of k has

no effect. -

0= w—cot_l(%)—cot_l(g—a—%) 0<x<50= 5> dé _

32 _ 1
602 +x2  30% + (50 —x)2

100 + 20+/17 is not in the domain; % > 0 for x < 20(5 —

= x = 20(5 — 4/17) ~ 17.54 m maximizes 6

’ e T . J n T . 1.
(2) slzsz=>smt_sm(t.+§)=>smt_smtcos§+sm§cost=>smt-§smt+-2—

—T o dr
=t 3or 3

(b) The distance between the particles is s(t) =|s; —s3|=

(sm t— \/g cos t)(cos t+ \/I’; sin t)

(&)

(-30)

=6'(t) = since & x| = X =
()= 2‘smt-—\/5cost| dx X1~
are 0, X £y 5T ‘—13— % m; then s(0) =-5

V/17) and $ < 0 for 20(5 -

sin t —sin(t +

dx "] +(é‘—0)2 ) +(5035x)2

; solving dx =0 = x? —200x + 3200 = 0 => x = 100 £ 204/17, but

\/ﬁ)<x<50

V3

cost = tan t = /3

%)l:%‘sint—\/?_,cos tl

critical times and endpoints

s(%):O,s(%):l,s(%) 0,5(14)=1,s(2m) = ‘/§=>the
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greatest distance between the particles is 1
' (sm t— \/5 cos t)(cos t + /3 sin t)
(c) Since s'(t) =
2|sin t—-\/:?;cos tl
the distance between the particles is changing the fastest near these points

we can conclude that at t = -73[ and %}r’ s'(t) has cusps and

38. % = —2 sin t + 2 cos t, solving % =0=>tant=1=>t= -215+ n7 where n is a nonnegative integer (in this

Exercise t is never negative) = the peak current is 24/2 amps

39. (a) s =10 cos(mt) = v = —107 sin (nt) = speed =|10~ sin (t)|= 107|sin (7t)| = the maximum speed is
107w & 31.42 cm/sec since the maximum value of Isin () I'is 1; the cart is moving the fastest at t = 0.5 sec,
1.5 sec, 2.5 sec and 3.5 sec when |s1n (mt) | is 1. At these times the distance is s = 10 cos(z) 0 cm and
a = —1072 cos(wt) = |a|= 1072 |cos (mt)| = 1a1=0 cm/sec?
(b) lal= 1072 |cos (t) | is greatest at t = 0.0 sec, 1.0 sec, 2.0 sec, 3.0 sec and 4.0 sec, and at these times the

magnitude of the cart’s position is js|= 10 cm from the rest position and the speed is 0 cm/sec.
40. (a) 2sint =sin 2t = 2sin t —2 sin t cos t = 0 => (2 sin t)(1 —cos t) = 0 = t = kx where k is a positive
integer
. . . 2\1/2 . . \2v1/2
(b) The vertical distance between the masses is s(t) =|s) —s,|= ((Sl =) ) = ((sin 2t — 2 sin t)?)
=§'(t) = (%)((sin 2t — 2 sin t)2)_1/2(2)(sin 2t — 2 sin t)(2 cos 2t — 2 cos t)

2(cos 2t — cos t)(sin 2t — 2 sin t) 4(2 cos t + 1)(cos t — 1)(sin t)(cos t — 1)
Ism2t—2smtl |sin 2t — 2 sin t|

0, 231r’ T, 3 , 27; then s(0) =0, 3(237") s1n(437") 9 sm(%") 3\/§

s1n(8?:r) 2 sm( 3 )‘ 3\/_ , 8(2r) = 0 = the greatest distance is 3‘2/5 at t = 2T7r and 4%

=> critical times at

, 8(m) =0, 8(4;)

41. (a) s= \/(12—12t)2+(8t)2 ((12 - 12t)? + 64t2) 12

o) £=1(a2-120+ 6412) " /2[2(12 — 12t)(~12) + 128t) = ——208t 144
V(12— 126)% + 644
ds| __ ds| _
d—| = —12 knots and at .t=1 = 8 knots

(c) The graph indicates that the ships did not see

each other because s(t) > 5 for all values of t.

o-\/az-‘a)'.ux‘

s=§

) ' }\ PR
(54)




42. The distance OT + TB is minimized when OB is

43. If v = kax —kx?, then v/ =ka —2kx and v/ = -2k, so v/ =0 => x = &
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(d) The graph supports the conclusions in parts (b)
and (c).

T
e
—— *® an-m)‘osu’

144
208 — 2=
. ds , (208t — 144)? . ( t ) 2082
(e) lim &= \/hm 5 5= | lim 7 =1\/144 = /208 = 44/13
t—oo d t—oo 144(1 —t)* + 64t t—o0 144(%_1) 464 + 64

which equals the square root of the sums of the squares of the individual speeds.

a straight line. Hence Lo = Zf = 6, = 0,.

5 At x = % there is a maximum since

2
v"(%) = —2k < 0. The maximum value of v is k%.

44. (a) According to the graph, y’(0) = 0.

(b) According to the graph, y'(—L) = 0.

(c) y(0)=0,s0d =0.
Now y'(x) = 3ax? + 2bx + ¢, so y'(0) = 0 implies that ¢ = 0. Therefore, y(x) = ax® + bx? and
y'(x) = 3ax? + 2bx. Then y(~L) = —aL3+bL? = H and y’(—-L) = 3aL% — 2bL = 0, so we have two linear
equations in the two unknowns a and b. The second equation gives b = 3al, Substitutihg into the first

2
33.2L3 al3 H

equation, we have —aL3 + =H, or 5= H,soa=2 i Therefore, b = 3 % and the equation for y

isy(x)=2 %X:’ +3 %Ifx2, or y(x) = H[2(%)3 + 3(%)2}

45. The profit is p = nx —nc = n(x —¢) =[a(x —¢)™1 + b(100 — x) | (x — ) = a + b(100 — x)(x — c)

= a+ (bc + 100b)x — 100bc — bx2. Then p/(x) = be + 100b — 2bx and p’(x) = ~2b. Solving p'(x) =0 =
x= %+ 50. Atx= %-}- 50 there is a maximum profit since p”/(x) = —2b < 0 for all x.
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46.

47.

48.

49.

50.

51.

Lét x represent the number of people over 50. The profit is p(x) = (50 + x)(200 — 2x) — 32(50 + x) — 6000
= —2x2 4 68x + 2400. Then p/(x) = —4x + 68 and p”’ = —4. Solving p’(x) =0 = x = 17. At x =17 thercis a
maximum since p’/(17) < 0. It would take 67 people to maximize the profit.

h

h hq2 —2km
2 2

q, where q >0 = A’(q) = ~kmg ™2 +]% =

critical points are _‘/L_lhim’ 0, and ‘/——mhim, but only VQ_IhEm is in the domain. Then A”(\/Q—lhim) >0 = at

q= \/2__lhim there is a minimum average weekly cost.

(a) A(q) = kmq™! +cm + and A”(q) = 2kmq~>. The

k+b
(b) A(q) =(—+—qqil—+cm +%q =kmq~! + bm +cm+}2—lq, where q >0 = A'(q)=0atq= 1/—2——1}2:'“55 in (a).

Also A”(q) = 2kmq~3 > 0 so the most economical quantity to order is still q = ‘/_flhim which minimizes

the average weekly cost.

«(x)

We start with c(x) = the cost of producing x items, x > 0, and —~ = the average cost of producing x items,

assumed to be differentiable. If the average cost can be minimized, it will be at a production level at which

d_%(-(#)_) =0= &(x_)x;_-_c(_x)_ = 0 (by the quotient rule) = xc'(x) —c(x) = 0 (multiply both sides by x?)

¢(x)

= ¢/(x) = —= where ¢/(x) is the marginal cost. This concludes the proof. (Note: The theorem does not

assure a production level that will give a minimum average cost, but rather, it indicates where to look to see if
there is one. Find the production levels where the average cost equals the marginal cost, then- check to see if
any of them give a minimum.)

The profit p(x) = r(x) — c(x) = 6x — (x3 — 6x% + 15x) = —x° + 6x% — 9x, where x > 0. Then
p(x) = —3x? 4+ 12x —9 = -3(x - 3)(x — 1) and p"'(x) = —6x + 12. The critical points are 1 and 3. Thus
p'/(1) =6 > 0 = at x = 1 there is a local minimum, and p''(3) = —6 < 0 = at x = 3 there is a local maximum.

But p(3) = 0 = the best you can do is break even.

The cost is c(x) = x3 — 20x? + 20,000x, where x > 0. Since the production level at which average cost is

c(x)

smallest is a level at which the average cost equals the marginal cost, the solution of —~ = ¢(x) will minimize

3 ony?
X7 = 20x" 4+ 20,000x _ 5.2 _ 40x + 20,000 = x2 — 20x + 20,000

= 3x2 — 40x + 20,000 = 2x% — 20x = 0 = 2x(x - 10) =0 = x = 0 or x = 10 = x = 10 since x > 0.

the average cost of making x items. Now

(a) The artisan should order px units of material in order to have enough until the next delivery.

pPX

(b) The average number of units in storage until the next delivery is 5 and so the cost of storing them is
s(p2—x) per day, and the total cost for x days is (%)sx. When added to the delivery cost, the total cost for

delivery and storage for each cycle is: cost per cycle = d+ %sx.

(c) The average cost per day for storage and delivery of materials is:




52.

53.

54.

55.

56.
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(4+5)
average cost per day = "'_x2‘_ d I; x. To minimize the average cost per day, set the derivative

equal to zero. (%{(d(x)_1 +—p2—sx) = —d(x)72 +P2—S =0=>x= =+ %—‘3 Only the positive root makes sense
2d

in this context so that x* = ps: To verify that x* gives a minimum, check the second derivative
i —dx—2 E ] = E = 2d ni
[dx( dx +2) \/ﬁ Xai\/ﬁ ( 2)3>0=>am1mmum.

Ps \Vps

(d) The line and hyperbola intersect when % = %x Solving for x gives X; ;e cection = E %—s. For x > 0,

Xintersection = \/—g(s} = x*. From this result, the average cost per day is minimized when the average daily

cost of delivery is equal to the average daily cost of storage.

Average Cost: c(_x_x_)_ = @Q_*_ 96 + 4x'/2 = d—dx-(s-(,f—)) = —-2&20+ 2x~1/2 = 0 = x = 100. Check for a
b'q
a2 (C(X))

minimum: L2V X = 4000 _100-3/2 =
X

x=100 — ] 003 0.003 > 0 = a minimum at x = 100. At a production level

of 100,000 units, the average cost will be minimized at $156 per unit.

dM

maximum.

We have 48 = cM - M2 Solvmng =C- 2M—0=>M—-9 Also,dMR=—2<0=>atM—chere1sa

a) If v = cror? — cr3, then v/ = 2crgr — 3cr? = cr(2ry — 3r) and v/ = 2crg — 6cr = 2¢(rg — 3r). The solution of
0 0 0 [4] 4]
2 2 2
v’=0isr=00r—;—0, but 0 is not in the domain. Also, v’>0forr<-—§9and v’<0forr>-§g=>at

2rg . .
r=-3 there is a maximum.

(b) v

v=(0.5- r')r'2

o 0.2 0.3 o o3 T

2
If x> 0, then (x—1)220=>x2+122x:x ;:'1_>_2. In particular if a, b, ¢ and d are positive integers,
2 2 2 2
a‘t+1)b*+1)(c“+1)d*+1
then( e )( 5 )( < )( d )216.
2

ORI LRI e S R
(32 +X2) (a ix ) /2 (a2+x2 3/2

)—1 /2

(a) f(x) = ﬁ

=> f(x) is an increasing function of x
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(b) g(x) — d—x = g/(x) = _(b2+(d—x)2)1/2+(d_x)z(b2+(d_x)2)_1/2

b2 + (d —x)2 b? +(d - x)?

_=(?+@d-0)+(d-x? —b?
(b% +(d—x)2)" (b2 4 (d —x)?

dt

(c) Since ¢y, ¢y > 0, the derivative & is an increasing function of x (from part (a)) minus a decreasing

dx _
dt?

< 0 = g(x) is a decreasing function of x

372
)

function of x (from part (b)): Sli_}tc = %f(x) - % g(x) = Elif’ (x) - c1_2 g'(x) > 0 since f'(x) > 0 and

gx)<0=> % is an increasing function of x.

57. At x = ¢, the tangents to the curves are parallel. Justification: The vertical distance between the curves is
D(x) = f(x) — g(x), so D’(x) = f'(x) — g'(x). The maximum value of D will occur at a point ¢ where D’ = 0. At
such a point, f'(c) = g'(c) =0, or f/(c) = g'(c).

58. (a) f(x) =3+ 4 cos x+ cos 2x is a periodic function with period 27
(b) No, f(x) =3 +4 cos x+cos 2x =3 +4 cos x+(2 cos?x—1)=2(1 +2 cos x + cos?x) = 2(1 +cos x)2>0

= f(x) is never negative

59. (a) Ify=cotx—\/§cscxwhere 0 <x <, then y’ = (csc x)(\/§ cot x —csc x). Solving y/ =0
:#cosx::—%:&-x:%. For0<x<%wehavey’>0,andy’<0when%<x<7r. Therefore,atx:{-

there is a maximum value of y = —1.

(b)

-2
y=cotx-VZesex
-4

-6t

)

60. (a) If y = tan x + 3 cot x where 0 <x<%, then y’ = sec®x — 3 csc?x. Solving y' =0 => tan x = :I:\/§ ’
=>x= :I:%, but —%is not in the domain. Also, y"’ =2 sec?x tan x + 6 csc?x cot x > 0 for all 0 < x <%.

Therefore at x = % there is a minimum value of y = 24/3.
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(b)
80|
6
10

y-tanx«v\/sw(x
20

0.25 0.5 0.75 1 1.25 1.5

2
61. (a) The square of the distance is D(x) = (x —%) +(vx+ 0)2 =x%-2x +%, so D'(x) = 2x — 2 and the critical
point occurs at x = 1. Since D’(x) < 0 for x < 1 and D’(x) > 0 for x > 1, the critical point corresponds to

the minimum distance. The minimum distance is /D(1) = é

®) o

-4 2
28 Dix)= 2 ho-‘

15
ye NE
L )
i
ost Dpia= 2

]
]
'
.
.
.
'
L A
1

0s

1.5 2 25

The minimum distance is from the point (3/2,0) to the point (1,1) on the graph of y = \/i, and this
occurs at the value x = 1 where D(x), the distance squared, has its minimum value.

62. (a) Calculus method:
The square of the distance from the point (1, \/3 ) to (x, V16— xz) is given by

2

D(x) = (x— 1)2+(\/16—x2—\/§) =x?—2x+14+16—x?—2V48 — 3x% + 3 = ~2x + 20 — 2v/48 — 3x2.

' 2 6x : '
Then D'(x) = -2 ~ : (—6x) = =2+ ——=—=—. Solving D'(x) = 0 we have:

& 9/48 — 3x2 V48 — 3x*
6x =2v48 — 3x% = 36x? = 4(48 - 3x%) = 0x?> =48 -3x% = 12x? =48 = x = +2
We discard x = —2 as an extraneous solution, leaving x = 2. Since D'(x) < 0 for -4 <x <2 and D'(x) >0
for 2 < x < 4, the critical point corresponds to the minimum distance. The minimum distance is
\/D(Zi =2.
Geometry method:

The semicircle is centered at the origin and has radius 4. The distance from the origin to (1,1/3) is

vV 12 +(\/§ )2 = 2. The shortest distance from the point to the semicircle is the distance along the radius
containing the point (1, \/5 ) That distance is 4 —2 = 2.
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(b)

¥, D%
8

D(x)
Do =2
y= 16 - X2

The minimum distance is from the point (1, \/?:) to the point (2, 2\/5) on the graph of y = v/16 — x?%, and

this occurs at the value x = 2 where D(x), the distance squared, has its minimum value.

2
63. (a) The base radius of the cone is r = 2Z&=X and so the height is h = V/a? —1? = 4/a% — 2ma —x Y,
27 27

2 3
Therefore, V(x) = §r2h = %(2%%_'1) a? - (zlgﬂ_——x) .

(b) To simplify the calculations, we shall consider the volume as a function of r:

volume = f(r) = %rzv a?—r?, where 0 <r <a.

£() =2 L4/r¥a?-1?) = g[ﬁ o ) +(\/ﬂ)(2r)] = %[—-'*3 = 2’2(“‘2;‘2)]

a” —r

3 a2 — 12 3v/a2 — 2

— 1[2a2r - 3r3] _ nr(2a2 — 3r2)

\ 2
The critical point occurs when 1= &g—, which givesr = a\/% = a_\?’/__6. Then

[ 2 2
h=+Va?-r’= a2—%= \/%=a\3/§. Usingr:#audh:a\—fi— we may now find the values

of r and h for the given values of a.

When a = 4: r=¥§,h=é—3@;whena=5: r:%,h:%;whena:& r=2\/(_i,h=2\/§;

whena=28: r=

S
S

a a

and h = , the relationship is L = 1/2.

3 h

(c) Sincer =

3




64. (a)

(b)

()

(d)
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Let x, represent the fixed value of x at point P, so that P has coordinates (x,,a), and let m = f'(x) be the
slope of line RT. Then the equation of line RT is y = m(x —xy) +a. The y-intercept of this line is

m(0 —xg) +a = a — mXx;, and the x-intercept is the solution of m(x —xg) +a =10, or x = mxron— % LetO
designate the origin. Then

(Area of triangle RST) = 2(Area of triangle ORT) = 2 -%(x—intercept of line RT)(y-intercept of line RT)

_9. 2(mxo )(a— mxp) = _m(mx?n— a)(mx&— a) e (mxgl— a)2 - m(xg- 9

2
Substituting x for x,, f'(x) for m, and f(x) for a, we have A(x) = —f'(x) [x —%} .

2
The domain is the open interval (0,10). To graph, let y; = f(x) =5+ 5\/ 1 —ﬁ, yo = f'(x) = NDER(y,),

2
and y3 = A(x) = -y, (x - %) . The graph of the area function y; = A(x) is shown below.

N

NN

[0, 10] by [— 100, 1000)

The vertical asymptotes at x = 0 and x = 10 correspond to horizontal or vertical tangent lines, which do
not form triangles.

Using our expression for the y-intercept of the tangent line, the height of the triangle is

a—mx =f(x) - F(x) x = 5+ 3v/100 = x% - —E—x = 5+ $V/100 - x? + —E—
=16 00— T
We may use graphing methods or the analytic method in part (d) to find that the minimum value of A(x)
occurs at x = 8.66. Substituting this value into the expression above, the height of the triangle is 15.
This is 3 times the y-coordinate of the center of the ellipse.

Part (a) remains unchanged. The domain is (0,C). To graph, note that
f(x) = B+ B, /1 —C— =B+ Bv C%—x? and f'(x) = \/CT_—( —2x) = —% Therefore we have
2
2 _ .2
f(x) Bx cvVe —x
__f _ — -
R R e e

CV (2 —x?
xz)(\/C2—x2)]2

~B

__ Bx [x—-(BC +BVC2 =

CV(C2—x?
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[Bx? +(BC + BVCZ—x2)(v/CE— )

=BCXVC2——X
B chx/tﬂ —x2[BX2 +BCVC?—x" +B(C? “X"’)]z = W———ﬁ[m(c V)
_Belc+VI-—2)
x\/c2_x2
(xv/C?=x?)(2)(C+ VT =x?) - (C+V/C—2) VTI—20)
A'(x) = BC- (V ;()02_)(2) ( = )
BC(C+\/Cz—x) 2_ oy —;
2P [2x (c+VC )(\/T_l. C2 )]
BC(C+\/Cz—x) 2 ; .
C2—x [ —2x +\/——-—C\/C —x?4+x —( —x )]
Bc(c+\/c_2:)( Cx? C\/é'?_—_02>
N
_BC(C+ vV —x)[ .2 -
x2(C? - 23/2 [Cx -c(c C*VC? - ]

CZ(C+\/ —X )(2x _C?_ C/Cz__xz)

2(C?—x 23/2

To find the critical points for 0 < x < C, we solve:

22 -C?=CV(C2-x? = 4x*—4C%? + C = C* - C%x? = 4x* - 3C%? = 0 = x}(4x2 - 3C?) =0

2
The minimum value of A(x) for 0 < x < C occurs at the critical point x = 0\2/5, orx?= % The
corresponding triangle height is
o o
B./GT_ 2 Bx? B, /~2_3C? 4
a—mx = f(x) —f'(x) - x = B+& C*—x t—T5— =B+ -+
C C2 - X2 C 02 302
T4
3BC?

=B+ B(%) i =B+B+38 =38
2

This shows that the triangle has minimum area when its height is 3B.
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3.6 LINEARIZATION AND DIFFERENTIALS

L fx)=x3—2x+3 = f(x) =3x2 -2 =3 L(x) = f(2)(x~2) +£(2) = 10(x —2) + 7= L(x) = 10x — 13 at x =2

2. f(x) = VX2 +9=(x2+ 9)1/ P o) = (l)(x2 +o) 2(2x) = \/x;(_+9 = L(x) = f'(—4)(x + 4) + f(—4)

(x+4)+5=>L(x) ———x+5atx_ -4
3. f(x)=x+)1—(=>f'(x)=1—-x_2=>L(x)=f(1)+f‘(1)(x—1)=2+0(x—1) =2

4. fx)=xP=p(x) = 2 —175 = L(x) = £(-8)(x— (~8)) +£(~8) = (x +8) -2 = L®) = & -

colis

5. f(x) = tan x = f'(x) =sec?x = L(x) = f(r) + f(m)(x —7) =0+ 1(x —7) =x—7

6. (a) f(x) =sin x = f'(x) = cos x = L(x) =f(0)(x — 0) +f(0) =x = L(x) =x
(b) f(x) = cos x = f'(x) = —sin x = L(x) =f'(0)(x—0) +f(0) =1 = L(x) =1
(c) f(x) = tan x = f'(x) =sec?x = L(x) = f'(0)(x — 0) +f(0) = x = L(x) = x
d) f(x) =e* = f'(x) = e* = L(x) = f'(0)(x - 0) +f(0) =x+1 = L(x) =x+1
(e) f(x) =In(1+x) = f'(x) =1/(1 +x) = L(x) = f(0)(x — 0) + f(0) =x = L(x) =x

7. £(x) = k(1 +x)<?
We have f(0) =1 and f'(0) = k. L(x) =£(0) +f(0)(x—0) =1+k(x-0) =1+kx

8. (a) f{(x)=(1-x)°®=[14+(-x)]®~ 1 +6(—x) =1—6x
(b) £(x) = 72 = 21 + (—x)] " ~ 2L+ (-1)(-x)] =2+ 2x

() f(x) =_(1+x)‘1/2z1+(—%)x=1_§
(@ fx) = vV2+x* =\/§(1+§23)1/2z\/§(1+%x72)___\/'2'(14_%2)

(e) f(x) = (4 +3x)1/3 = 41/3(1+3") 41/3(1+%371’5)=41/3(1+§)

® f(x)=(1—§11;3z)2/3=[1+( 2+x)]2/3 1"'%( 2+x) 1- 6+3x

9. Center = —1 and f'(x) = 4x +4. We have f(—1) = —5 and f'(—1) =0. L(x) =f(-1) +f(-1)(x—(-1))
=-54+0x+1)=-5

10. Center = 8 and f'(x) = %x_z/s. We have f(8) =2 and '(8) = 11—2 L(x) = f(8) +f'(8)(x — 8)

L

=2+12(x-—8)= +

ol
cohis

) DW= -1 e e ) = band 00 =k Lx) = _
11. Center =1 and f'(x) = xt1)? =G We have f(1) = df(1) =3 L(x)=1(1)+f(1)x-1)
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12.

13.

14.

15.

16.

17.

18.

19.

1

=l+%(x—1) =%x+4

Alternate solution: Using center = %, we have f (%) = % and f’ (%) = .2‘_15. L(x) = f(%) + f'(% )(x _ _:_3_)

Center = %

f'(x) = —sin x

We have f(-’zi) =0 and f(%) =-1.

= {5+ (§)e-)=0-1(x-)=x+3

(a) (1.0002)% = (1 +0.0002)% ~ 1 +50(0.0002) = 1 +.01 = 1.01

(b) ¥/1.009 = (1 +0.009)'/3 ~ 1 +( )(0 009) =1+ 0.003 = 1.003

£x) = X+ 1 +sin x = (x+ )2 +sin x = () = (§) (x+1)7/2 4 cos x = L(x) =£(0)(x — 0) +£(0)
=3 (x 0)+1=Lix) = x + 1, the linearization of f(x); g(x) = vx+1=(x+ 1)1/2 = g/(x)
= (f) (x+ 1)"1/2 = Lg(x) =g/(0)(x~0) +g(0) = %(x -0)+1= Ls(x) = %x + 1, the linearization of g(x);

h(x) = sin x = h’(x) = cos x = L}, (x) = h’(0)(x — 0) + h(0) = (1)(x — 0) + 0 = Ly (x) = x, the linearization of

h(x). Lg(x) = Lg(x) + Ly (x) implies that the linearization of a sum is equal to the sum of the linearizations.

— 3 — 3 _a,1/2 _3,.-1/2 — 2__3_
y=x>-38/x=x>-3x/*=dy= (3x 2x )dx::>dy_(3x 2\/;(.)dx

y=x/Tm = x(1 -6 = ay [0 4 ) (§)(1-2) 20 |

(1= (1) -] ax = 1222

V1-x2

y=xlnx = % =(x2)(,1—(-)+ (In x)(2x) = 2x In x +x, dy = (2% In x + x) dx.

—1/2 1/2)) _o,1/2(3 ,-1/2
y= 2y/x 2x1/2 (3(1+x1/7) - 2x (2" ) Lo M243-3
3A+V5) 30407 9(1 4 x1/2)" 9(1 +x1/2)"
s>dy=—ob  _dx
3vx(1+ &)
2y3/2+xy—x=0=>3y1/2dy+ydx+xdy—dx=0=>(3y1/2+x)dy=(1—y)dx:ydy_ —Y  dx

3y +x




20.

21.

22.

23.

24,

25.

26.

27,

28.

29.

30.

31.

32.
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xy2—4x3/2—y=0 = y2dx+2xydy—6x1/2dx—dy=0 = (2xy-1) dy=(6x1/2—y2)dx

2
—————6\/}_( ydx

= dy = 2xy — 1

dy

y=ex = = B X ¢cos x = dy = (cos x)e"™ ¥ dx.

y= cos(x?) = dy = [——sin(xz)](Zx) dx = —2x sin(xz) dx

y =xe* = g—%:(l +x)e* = dy =g——)¥-(dx= (1 +x)e* dx

y= sec(x2 - 1) = dy = [sec(x2 — 1) t',a,n(x2 - 1)](2x) dx = 2x[sec(x2 - 1) tan(x2 - 1)] dx
(a) Af=1(0.1)—£(0) =0.21-0=0.21

(b) Since f'(x) = 2x + 2, /(0) = 2. Therefore, df = 2 dx = 2(0.1) = 0.2.

(c) |Af—df|=]0.21-0.2|=0.01

(a) Af=1(1.1)—f(1) = 0.231 -0 = 0.231

(b) Since f(x) = 3x? —1, (1) = 2. Therefore, df = 2 dx = 2(0.1) = 0.2.
(c) |Af—df|=10.231 - 0.2| = 0.031

- _ =20_o9__2
(a) Af=1(0.55)—£(0.5) =20 2= -2
(b) Since f'(x) = —x~2, /(0.5) = —4. Therefore, df = —4 dx = —4(0.05) = -0.2 = —-%
-2 . 1i_
() lat-dfl=|-&+}|=7
(a) Af =£(1.01)— £(1) = 1.04060401 — 1 = 0.04060401

(b) Since f/(x) = 4x%, (1) = 4. Therefore, df = 4 dx = 4(0.01) = 0.04.
(c) | Af — df| =10.04060401 — 0.04 | = 0.00060401

Note that %—Y = 4712, so AV = 4nr? dr. When r changes from a to a +dr the change in volume is

approximately 4ra? dr.

Note that %f— = 87r, so dS = 87r dr. When r changes from a to a + dr, the change in surface area

is approximately 8wa dr.

Note that %¥ = 3x2, so dV = 3x% dx. When x changes from a to a + dx, the change in volume is

approximately 3a? dx.

Note that % = 12x, so dS = 12x dx. When x changes from a to a +dx, the change in surface area is

approximately 12a dx.
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33.Givenr =2 m, dr=.02 m

34.

35.

36.

37.

38.

39.V

(a) A =mr? = dA =271 dr = 27(2)(.02) = .087 m?
(b) (%)(100%) = 2%

C=2rmranddC=2in. 3dC=2rdr=> dr = ,,lr = the diameter grew about 2 #in; A= mr? = dA = 27r dr
=2n(5)(1)=10in?

The volume of a cylinder is V = #12h. When h is held fixed, we have c(liV = 27rh, and so dV = 2#rh dr. For

h =30 in., r =6 in., and dr = 0.5 in., the thickness of the shell is approximately dV = 27rh dr = 27(6)(30)(0.5)
= 1807 = 565.5 in.?

Let 6 = angle of elevation and h = height of building. Then h = 30 tan 6, so = 30 sec?§ df. We want
|dh| < 0.04h, which gives:

|30 sec6 dé| < 0.04 (30 tan 6) = 120 |do| < 2045106 —, | 49| < 0.04 sin 6 cos 6
(o0 )

|dé| < 0.04 sin ?—72" cos ?72" = 0.01 radian. The angle should be measured with an error of less than 0.01 radian

(or approximately 0.57 degrees), which is a percentage error of approximately 0.76%.

3 3
V = nh® = dV = 37h? dh; recall that AV ~ dV. Then |AV|< (1%)(V) = %}1—2 =|dv|< Q)_(w_h__)

100
= |37h? dh| < (1)1((;)11 ) =|dh|< ——(1)—0 h= (%%) h. Therefore the greatest tolerated error in the measurement

of his %%.

2 2
h
WD andh=10=> V=T5D

2
D,
(a) Let D, represent the inside diameter. Then V = mr?h = 7r( ) h=

D2 2
dV = 57D, dD;. Recall that AV & dV. We want |AV|< (1%)(V) = |dV]| <( )(57r ) i
100 2 40
I = |5#D; dD, 1< 0 => IdD |< 200 ( %) D; = the measurement must have an error less than %%.

27Dh
(b) Let D, represent the exterior diameter. Then S = 27rh = ”2 £ = 7D, when h =10 = S = 107D,

= dS = 107 dD,. Recall that AS ~dS. We want | AS| < (5%)(S) = |dS| <( (107D,) = | 107 dD,|

7D,

1)

e | < % = (5%) D, = the measurement must have an error less than 5%.

= ar®h, h is constant = dV = 2xrh dr; recall that AV &~ dV. We want |AV]|<

ToggV = ldvI< I *h

s 1000 1000

= |2#rh dr|< 71r600 = |dr| € 5pa= 2000 = (.05%)r = a 0.05% variation in the radius can be tolerated.
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(200 — x/2)e /400
200xe~*/400

_ —145/400
Ax =dx =15 and %x 100% =~ (200 145/2);5 700
200(145)e 145/

40. APB x 100% =~ d?Px 100% = dx. As sales change from x = 145 to x = 150,

(5) x 100% = 2.2%

)

bdg _ dWioon _ (52)?) _ ( 32

g2 dWearth = b dg 5.2
(32)°

gravity on the moon has about 38 times the effect that a change of the same magnitude has on Earth.

2
41. W = a+]g) =a+bg l=>dW= —bg~2dg=— ) = 37.87, so a change of

1/2
42. (a) T= 27"(%) / =dT = 27r\/f(—%g"3/2) dg = —w\/fg‘3/2 dg

(b) If g increases, then dg > 0 => dT < 0. The period T decreases and the clock ticks more frequently. Both
the pendulum speed and clock speed increase.

(c) 0.001 = —m+/100 (98073/2) dg = dg ~ —0.977 cm/sec? = the new g ~ 979 cm/sec?

43. (a) Window: —0.00006 < x < 0.00006, 0.9999 <y < 1.0001

1.0001 !
1.00008 f(-\')

L

0.999975
0.99995
0.999%5
0.9999

After zooming in seven times, starting with the window —1 <x <1 and 0 <y <2 on a TI-92 Plus
calculator, the graph of f(x) shows no signs of straightening out.

(b) Window: —0.01 <x <0.01,0.98 <y <1.02

e

1.01
&(x)

0.99

0.9

After zooming in only twice, starting with the window —1 <x<1and 0<y <2 on a TI-92 Plus
calculator, the graph of g(x) already appears to be smoothing toward a horizontal straight line.

(c) After seven zooms, starting with the window —1 <x <1 and 0 <y <2 on a TI-92 Plus calculator,
the graph of g(x) looks exactly like a horizontal straight line.
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(d) Window: —1<x<1,0<y<?2

f(x) and g(x)

o.sgF
o.zs%
ey 0.5 0.5 1"
4. (a) y=x*atx=1 b)) y=efatx=1
i L —y 1P 1
p2d
a{s 088 TpE 11 /:’
/
(b) y=e*atx=0 (b) y=e*atx=-1
B s sy R
y=d A
yod o
I w1 5 oj1 A

45. E(x) = f(x) — g(x) = E(x) =f(x) —m(x —a) —c. Then E(a) =0 = f(a) ~m(a—a)—c =0 => c =f(a). Next

. E . f(x)-m(x—a)- . [f(x) =1
we calculate m:  lim x(_xi)l:O:>)l(g’r}l ) I,I:(_xa 2) c=0=>,1‘1_r*r§L [—gx})(_—a(a)--—m]=0 (since ¢ = f(a))

= f'(a) —m = 0 = m =f(a). Therefore, g(x) = m(x —a) + ¢ = f'(a)(x — a) + f(a) is the linear approximation,
as claimed.
46. (a) i. Q(a) =f(a) implies that by = f(a).
ii. Since Q'(x) =b; + 2by(x —a), Q'(a) = f'(a) implies that b, =f'(a).

iii. Since Q"(x) = 2b,, Q"(a) = f"(a) implies that b, = d éa)-
In summary, b, = f(a), b; =f'(a), and by = L ga)'

(b) f(x) = (1 — %)
P(x) = -1(1-x)X(-1) = (1-x)~?
f'(x) = -2(1 - x)_3(—1) =2(1 —x)"3

’




()
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Since f(0) = 1, f(0) = 1, and f’(0) = 2, the coefficients are by =1, by =1, by = % = 1. The quadratic

approximation is Q(x) =14x+ x2.
P

[—2.35, 2.35] by [~1.25, 3.25]

As one zooms in, the two graphs quickly become indistinguishable. They appear to be identical.

@) gx) =x"!=gx) =—x2 = g'(x) = 2x°

()

(®

Since g(1) = 1, g'(1) = —1, and g"(1) = 2, the coefficients are by = 1, b; = -1, and b, = 2

§= 1. The

quadratic approximation is Q(x) =1—(x—1) +(x— 1)%
™~

[—1.35, 3.35] by (—1.25, 3.25)

As one zooms in, the two graphs quickly become indistinguishable. They appear to be identical.
h(x) = (1+%)2 =2 K@ =21 +x7 = b"(x) = —1a+x)72

-1
Since h(0) =1, b'(0) = —%, and h"(0) = —711-, the coefficients are by =1, b; = -12-, and b, = T4 = —%. The
2
quadratic approximation is Q(x) =1+ % - )_(8—

pad

[—1.35, 3.35] by [—1.25, 3.25]

As one zooms in, the two graphs quickly become indistinguishable. They appear to be identical.
The linearization of any differentiable function u(x) at x = a is L(x) = u(a) + u'(a)(x —a) = by + b, (x —a),
where by and b, are the coefficients of the constant and linear terms of the quadratic approximation. Thus,

the linearization for f(x) at x = 0 is 1+ x; the linearization for g(x) at x = 1is 1 — (x — 1) or 2 — x; and the
.3

2

linearization for h(x) at x =01is 1 +
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47. (a) f(x) =2 = f/(x) =2 In Z L(x) =(2°In 2)x +2° = xIn 241 ~ 0.69x + 1
(b)

48. (a) f(x) =logz x = f'(x) =x—l%1_3’ and £(3) =%—§—%=> L(x) =ﬁ§(x—3)+%—g—g=-3le3—1—nl§+l
= 0.30x + 0.09

(b)
y )
yryrg(x-3)+1 .
2 /’-/
,--'/
1 _ y=loggx
. F] 4 [} | ] X

__ax o _4(1-x%) . ‘
49- f(X)—-Xz'}'l=>f(X)_(x2+1 2’ L(X) ’2(3/§--x) :2! \L(X)=4X
At x=0: L(x) =f'(0)(x —0) +£(0) = 4x;

Atx=/3: L(x) = f(V/3)(x - v/3) +1(1/3)
=(-—%)(x— V3)+/3 = L(x) =—21-(3\/§—x)

50. (a) \/1+xz1+’2—‘gives the following: \/1+1z‘1+-%-=> \/\/1+1z\/1+%
N1+%=>\/ \/1+1z\/1+% z1A+%,andsoforth. That is, 4/... 1+1 zl+%—>la.sn—»oo.

o, ot
n square roots

For successive tenth roots we obtain the approximation 1 + 10Ln — lasn — oo.
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(b) Yes, you can use any positive number in place of 2. Repeating the argument in (a) gives

v/ V1ibx & 1+% — 140 as n — oo provided that the number 1 4 x is positive.
P ———

n square roots

51-54. Example CAS commands:

Maple:
with(plots):
ar=1fi=x-> x A3+ xA2—2%x;
plot(f(x), x=—1..2);
diff(f(x),x);
fp := unapply (%,x);
L:=x -> f(a) + fp(a)*(x — a);
plot({f(x), L(x)}, x=-1..2);
err:=x -> abs(f(x) — L(x));
plot(err(x), x=—1..2, title = ‘absolute error function');
err(—1);

Mathematica:
Clear(x]
{x1,x2} = {-12};a=1; fx_] =xA3+xA2-2x
Plot[ f[x], {x,x1,x2} ]
L{x..] = f[a] + f'[a] (x —a)
Plot[ {f[x], L[x]}, {x,x1,x2} ]
err[x_] := Abs[f[x] — L{x]]
Plot[ err[x], {x,x1,x2} ]
err[x1] // N

eps = 0.5; del = 0.3;
Plot[ {err[x],eps} {x,a—del,a+del} ]

eps = 0.1; del = 0.15;
Plot[ {err[x],eps}, {x,a—del,a-+del} ]

eps = 0.01; del = 0.05;
Plot[ {err[x],eps}, {x,a—del,a+del} ]

3.7 NEWTON’S METHOD

1+41-1_2

i Xg=1=x,=1- 25T =3

4.2
F+&-1
=2_9 3 =2_446-9_2 1 _13 ‘g = — —1_1-1-1__
Sx=3-tp o= -y S T M S X =~k =1-150gl=
3
9 4-2-1_ 5, 1
= x,=—2-152=] = — 2~ 1166667
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X+t

2. y=x3+3x+1=>y’=3x2+3=>xn_’_1—_—xn 3x31+3 ,x0=0=>x1=0——31-=—%
1
L1141
:xzz_%__%f___z_%+%:H%%z—amn2
143
3
4
-3 _
3 y=x4+x—3=>y'=4x3+1ﬁxn_,_1=xn—x"+3Xn ;x0=1:x1=1—1+—13.—_§
dx, +1 4+1 [
1296 , 6
1296, 6_3
_6_ 6257575 6 _1296+750—1875 _6_ 171 _ 5763 o _ 1-1-3
=X =5~ 864 =85 43201625 5 4045 — 49045 ~ 1'1654% xo=—1 = x; = -1 -7
B +1
=-2=x,=-2-1022=3= o4 ll- M~ 164516
2%, —x2+1 -
4 y=2x—x2+1=>y'=2—2x=>xn+1=%—%"x-}—;xo=0§xl=0—0—2$%l=—%
1 25
~1-141 5-2041
_l_ - 47 1.1 _ 5 = —9_4-4+1_5 5 ""aT-
_5_20-2+4_5_1_29
=3 B8 L= x2.41667

5. One obvious root is x = 0. Graphing e and 2x + 1 shows that x = 0 is the only root. Taking a naive
approach we can use Newton’s Method to estimate the root as follows: Let f(x) =e™ —2x~1, x, =1, and

_ f(x,) _ e m— 2x, —1
T TRy T T

x; = —0.11159%4, x, = —0.00215192, x3 = —0.000000773248. You may get different results depending upon

. Performing iterations on a calculator, spreadsheet, or CAS gives

what you select for f(x) and x;, and what calculator or computer you use.

6. Graphing tan™! (x) and 1 — 2x shows that there is only one root and it is between x = 0.3 and x = 0.4. Let

fi tan~! 2x_—1
f(x) = tan~lx 4+ 2x —1, x; = 0.3, and Xp41 = Xp —F% =X, - an };“ + x; . Performing iterations on a
1+ﬁ+

calculator, spreadsheet, or CAS gives x, = 0.337205, x5 = 0.337329, x, = 0.337329. You may get different
results depending upon what you select for f(x) and x,, and what calculator or computer you use.

f
7. f(xo) =0 and f'(xp) #0 => x4 :xn—&l—)- gives X; = Xo = X, = Xg = X, = Xg for all n > 0. That is, all of

£ (%a)

the approximations in Newton’s method will be the root of f(x) = 0 as well as x,.

8. It does matter. If you start too far away from x = %, the calculated values may approach some other root.

Starting with x, = —0.5, for instance, leads to x = —% as the root, not x = 5.

vl




9.

10.

11.

12.

13.
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fxg) _ ) _ fh)
(x,) (h) y

=h_<_£h_)=h—wﬁ)wﬁ>=—h; P
2\/}‘1 " I h\ -

Ifxg=h>0=x) =x5—

o _ f(xo) _ f(-h) x20
1fx0——h<0=>x1—x0—m_—h—m "{\[__,,“0
=—h~_Lil=—h+(\/l_1)(2\/}_1)=h.

(M)

1/3 1),-2/3 x/? '

— V() — - —_x
f(x) =x :>f(x)_(-?;)x = Xpp1 =X, (l) =7
3

=2y Xp =12 % =2, x, =4, x3= -8, and 80 P’-"’;( \A
x4 = 16 and so forth. Since |Xp|= 2x,_; we may conclude /\ 7\“0) ! x
that n — 00 = |x, | — oo. '

The points of intersection of y = x3 and y =3x+1, or of y = x> — 3x and y = 1, have the same x-values as the

roots of f(x) = x3 — 3x — 1 or the solutions of g'(x) = 0.

x,—1—-0.5sinx
1-0.5 cos x,,

f(x) =x—1-05sinx = f(x) =1-0.5cos x = x, ,; =%, —
x, = 1.49870

; if x5 = 1.5, then

The following commands are for the TI-92 Plus calculator. (Be sure your calculator is in approximate mode.)
Go to the home screen and type the following:
(a) Define f(x) = x"3+3*x+1 (enter)
f(x) STO> y0 (enter)
nDeriv(f(x),x) STO> yp (enter)
(b) —0.3 STO> x (enter)
(¢) x—y0+yp STO> x (enter)(enter)(enter)
After executing the last command two times the value, x = —0.322185, does not change in the sixth
decimal place thereafter.
(d) Now try x0 = 0 by typing the following commands:
0 STO> x (enter)
x—y0+yp STO> x (enter)(enter)(enter)(enter)
After executing the last command three times the value, x = —0.322185, does not change in the sixth
decimal place thereafter.
(e) Try f(x) = sin x to estimate the zero at x = 7 by typing the following:
Define f(x) = sin(x) (enter)
3 STO> x (enter)
x—y0+yp STO> x (enter)(enter)(enter)

After executing the last command two times the value, x = 3.14159, does not change in the fifth decimal
place thereafter. The zeros (sin(x),x) command gives 3.14159 - @n1, which means any integer multiple of
3.14159. This matches the above result when @nl = 1.
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14. (a) f(x) =x®>-8x—-1=f(x) =3x>-3 = Xn41 = Xp —x?‘:;—_-—;——-—x“;l = the two negative zeros are —1.53209
and —0.34730 T
(b) The estimated solutions of x> ~3x~1=0 are y
—1.53209, —0.34730, 1.87939. 3
2

-1
-2
-3
(c) The estimated x-values where g(x) = 0.25x* — 1.5x% —x +5
has horizontal tangents are the roots of g/(x) = x> — 3x — 1 ¥
g g( ) 4 w y=lx‘—}-x’—z+s
and these are —1.53209, —0.34730, 1.87939. . 4 2
3
2
1
-2 -1 1 2 *

tan (’91) -2x,

15. f(x)=tanx—2x:f’(x)=sec2x—2ﬁxn_,_l=xn-- 2( )
sec”(x,

; Xg = 1 = x; = 1.31047803
= Xy = 1.223929097 => x4 = X, = xg = 1.165561185

x;-2x§-x§—2xn+2_

16. f(x)=x'-2x3-x?2—-2%x+2=> fx) =4x3-6x2 -2 -2 = =x —
(%) =x (x) X Xp+1 =% 4X§—6xz—2xn—-2

if x = 0.5, then x, = 0.630115396; if x; = 2.5, then x, = 2.57327196

y

17. (a) The graph of f(x) = sin 3x — 0.99 4+ x? in the window
. Y yauin(3x)-000+x2

-2 <x <2, -2 <y < 3 suggests three roots. However,

when you zoom in on the x-axis near x = 1.2, you can see 3

that the graph lies above the axis there. There are only y

two roots, one near x = —1, the other near x = 0.4. = > 5 X
(b) f(x) = sin 3x —0.99 + x> = f'(x) = 3 cos 3x + 2x _ /

sin (3x,) — 0.99 +x2
3 cos (3x,) + 2x,
are approximately 0.35003501505249 and —1.0261731615301

and the solutions

= Xp41 =X~




18.

19.

20.

21.

22.

23.
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(a) Yes, three times as indicted by the
graphs
(b) f(x) = cos 3x —x = f'(x) ~0.84
=-3sin3x~1=x,,
cos(3x,)—x, .
=Xn = Tain(ax) =1 ° T ;%
approximately —0.979367, . \
-1
—0.887726, and 0.39004 we have e e &

cos 3x = x

2x4 —4x2 41
8xg — 8x
Xg = —0.5, then x5 = —0.5411961; the roots are approximately =+ 0.5411961 and = 1.30656296 because f(x) is

an even function.

fx)=2x*—4x’+1 = f(x) =8x> - 8x > x,,, = x, — ; if Xo = —2, then xg = —1.30656296; if

2 tan (ng)
f(x) = tan x = f'(x) = sec’x => x ; =x“_sec2(xn); Xg =3 = xy = 3.13971 = x, = 3.14159 and we
approximate 7 to be 3.14159.
2
Graphing e™ and x2 — x + 1 shows that there are two places where the curves intersect, one at x = 0 and the
2
other between x = 0.5 and x = 0.6. Let f(x) =e™* —x%+x—1, X9 = 0.5, and x, ; = x,, —:,((—xx';))
e M—x +x —1 N . .
=x,- 7. Performing iterations on a calculator, spreadsheet, or CAS gives x; = 0.536981,

1-2x,—2xe ®
x, = 0.5634856, xg = 0.53485, x, = 0.53485. (You may get different results depending upon what you select for

f(x) and x,, and what calculator or computer you use.) Therefore, the two curves intersect at x = 0 and
x = 0.53485.

Graphing ln(l - x2) and x — 1 shows that there are two places where the curves intersect, one between x = —1

and x = —0.9, the other between x = 0.5 and x = 0.6. Let f(x) =In(1 —x?)—x+1, and Xp41 = xn—f,(—r—xx‘;))
ln(l—xﬁ)—xn+1

=X, -

. Performing iterations on a calculator, spreadsheet, or CAS with x, = 0.5 gives

x; = 0.590992, x, = 0.583658, x3 = 0.583597, x, = 0.583597 and with x;, = —0.9 gives x, = —0.928237,

Xy = —0.924247, x5 = —0.924119, x, = —0.924119. (You may get different results depending upon what you
select for f(x) and x4, and what calculator or computer you use.) Therefore, the two curves intersect at

x = —0.924119 and x = 0.583597.

If f(x) = x3 + 2x — 4, then f(1) = —1 < 0 and f(2) = 8 > 0 = by the Intermediate Value Theorem the equation
3 —
x3 +2x — 4 = 0 has a solution between 1 and 2. Consequently, f'(x) = 3x> + 2 and Xpp1 = X — %}:’.\24
Xn
Then xy = 1 = x; = 1.2 = x, = 1.17975 => x5 = 1.179509 = x, = 1.1795090 = the root is approximately
1.17951.
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24. We wish to solve 8x* — 14x3 — 9x? 4+ 11x—1=0. Let f(x)—8x —14x3 —9x? 4+ 11x — 1, then

8x% — 14x3 — 9x2 + 11x, — 1
£/(x) = 32x3 — 42x% — 18x + 11 = X, 1y =X, — x;2xn4’212xnxn1;’xninll :

Xg approximation of corresponding root
-1.0 —0.976823589 |

0.1 0.100363332

0.6 0.642746671

2.0 1.983713587

4_ 42 o p 3 f(x;) x—x .
25. f(x) = 4x* —4x* = f'(x) = 16x° —8x = x;,; = x; — i) = X~ 7y Iterations are performed
1 i

using the procedure in problem 13 in this section.
(a) For xy = —2or xy = —0.8, x; = —1 as i gets large.
(b) For xo = —0.5 or xy = 0.25, x; => 0 as i gets large.
(c) For x5 =0.8 or x5 =2, x; = 1 as i gets large.

(d) (If your calculator has a CAS, put it in exact mode, otherwise approximate the radicals with a decimal

value.) For x; = —————"721 or Xo = “721, Newton’s method does not converge. The values of x; alternate
v21 V21

between - and a8 1 increases.

26. (a) The distance can be represented by

Yy
3
D(x)z\/(x—2)2+(x2+—%-) , where x > 0. The 8
6
distance D(x) is minimized when
( ) 4 y-x-—zl—'
2 2,1\, . x“+1
f(x) = (x—-2) +(x +§) is minimized. If
f(x) = (x - 2) + (x +2) then P & e s
f(x) = 4(x*+x~-1) and #'(x) = 4(3x2 +1) > 0.
Nowf’(x):O=>x3+x—1=0=>x(x2+1)=1ﬁx: 21 .
x‘+1
(b) Let g(x) = L _x=(x? +1) —x=>g ) =-(x2+1)" (2x)-—1_¢—§—1
! (x*+1)

(xn1+1 x")

= X1 = Xy —(——_-2?11———); xg =1 => x, = 0.68233 to five decimal places.
—_—a-1

(x§+1 ’




27.

28.

29.

30.
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(=D 39,41
f(x) = (x —1)%° = f'(x) = 40(x - 1)¥ = Xp41 = xn—40(xn_ 1)39 = XEO . With x4 = 2, our computer
gave Xgy = Xgg = Xgg = *** = Xg0o = 1.11051, coming within 0.11051 of the root x = 1.
2

Xn\¥n 1
fix) = 4x*—4x? = f(x) = 16x° —8x = 8x(2x® — 1) = x,,, = xn-!; if x, = .65, then

2(22-1)
X19 & —.000004, if xy = .7, then x,, = —1.000004; if x5 = .8, then xg = 1.000000. NOTE: —-“21 = 654654

7

x3 +3.6x% — 36.4
Tl 4T.0x,
= Xo = 2.45418225 => x5 = 2.45238021 = x, = 2.45237921 which is 2.45 to two decimal places. Recall that
x = 104[H;0] = [H,0*] = (x) (107*) = (2.45)(10~*) = 0.000245

f(x) = x® +3.6x% - 36.4 = f(x) =3x> +7.2x = x|, =% ; Xg =2 = x; = 2.5303

Newton’s method yields the following:

the initial value 2 i \/5 +i

the approached value 1 —5.55931i —29.5815 — 17.0789i

CHAPTER 3" PRACTICE EXERCISES

1.

The global minimum value of %— occurs at x = 2.

N

(a) The values of y’ and y” are both negative where the graph is decreasing and concave down, at T.
(b) The value of y’ is negative and the value of y” is positive where the graph is decreasing and concave up, at
P.

(a) The function is increasing on the intervals [—3,—2] and [1,2].

(b) The function is decreasing on the intervals [—2,0) and (0,2].

(¢) Local maximum values occur only at x = —2 and at x = 2; local minimum values occur at x = —3 and at
x = 1 provided f is continuous at x = 0.

The 24th day

No, since f(x) = x> + 2x + tan x = f(x) = 3x% + 2 + sec?x > 0 = f(x) is always increasing on its domain.

No, since g(x) = csc x + 2 cot x = g'(x) = —csc x cot x —2 csc?x = — COS X _ 22 = —— 12 (cos x+2)<0
sin®x sinx sin®x

= g(x) is always decreasing on its domain.

No absolute minimum because lim (7 +x)(11 - 3x)1/ 3 = —c0. Next f'(x) =

C(11-3x)—-(T+x) _ 4(1-x)
Toa1-3x?® T (11-3x)?/3

11

11— 3x)1/3 — (7 +x)(11 - 3x -2/3 => x = 1 and x = 5 are critical points.
3
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10.

11.

12.

13.

14.

15.

16.

Since f' > 0if x < 1 and f <0 if x > 1, f(1) = 16 is the absolute maximum.

_ax+b , _a(x2—1)—2x(a.x+b)__ax2+2bx
f(x) =27 = f'(x) = (x2_1)2 = 1)

= -—-6%1-(9a 4 6b+a) =0. Solving simultaneously, a =6 and b = —10. These values mean

F2,£(3)=1=>L(3a+b)=1and £(3) =0

2
P(x) = — 6x2 =20 +6

® )2 =>f>0if2<x<3andf <0if 3 <x <4 = local maximum value of f(3) = 1.
x“—1

. Yes, because at each point of [0,1) except x = 0, the function’s value is a local minimum value as well as a

local maximum value. At x = 0 the function’s value, 0, is not a local minimum value because each open
interval around x = 0 on the x-axis contains points to the left of 0 where f equals —1.

(a) The first derivative of the function f(x) = x3 is zero at x = 0 even though f has no local extreme value at
x=0.

(b) Theorem 2 says only that if f is differentiable and f has a local extreme at x = c then f/(c) = 0. It does not
assert the (false) reverse implication f'(c) = 0 = f has a local extreme at x =c.

No, because the interval 0 < x < 1 fails to be closed. The Extreme Value Theorem for Continuous Functions
says that if the function is continuous throughout a finite closed interval a < x < b then the existence of
absolute extrema is guaranteed on that interval.

The absolute maximum is|—1|=1 and the absolute minimum is |0|= 0. The result is consistent because the
Extreme Value Theorem for Continuous Functions does not require the interval be closed. However, if it is not
closed, absolute extrema may not exist, as Exercise 11 shows. That the interval be closed is a sufficient
condition (together with continuity of the function), but it is not necessary for absolute extrema to exist.

(a) g(t) =sin?t —3t = g/(t) =2 sin t cos t —3 =sin (2t) — 3 = g’ < 0 => g(t) is always falling and hence must
decrease on every interval in its domain.

(b) One, since sinZt — 3t —5 = 0 and sin?t — 3t = 5 have the same solutions: f(t) = sin?t — 3t — 5 has the same

derivative as g(t) in part (a) and is always decreasing with f(—3) > 0 and f(0) < 0. The Intermediate Value
Theorem guarantees the continuous function f has a root in [—3,0].

a) y=tanf = dy =sec?d > 0 = y = tan 0 is always rising on its domain => y = tan 6 increases on every
dé

interval in its domain

(b) The interval [%, 7r] is not in the tangent’s domain because tan # is undefined at § = Z.. Thus the tangent

|

need not increase on this interval.

(a) f(x) =x*+2x? =2 = f/(x) = 43 + 4x. Since f(0) =-2<0,f(1)=1>0and f(x) >0for 0 <x <1, we

may conclude from the Intermediate Value Theorem that f(x) has exactly one solution when 0 < x < 1.

(b) x? = lz-itz— VA8 o= V3—1and x>0 = x ~ 1/.7320508076 ~ .8555996772

!

(a) y= x—i—T =y 2 >0, for all x in the domain of - X

= ____( _i - | >y= x _’f_ T is increasing in every interval in
X
its domain

(b) y= %3 +2x = y' = 3x2+2 > 0 for all x = the graph of y = x3 + 2x is always increasing and can never

have a'local maximum or minimum




17.

18.

19.

20.

21.

23.

25.
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Let V(t) represent the volume of the water in the reservoir at time t, in minutes, let V(0) = a, be the initial
amount and V(1440) = a, + (1400)(43,560)(7.48) gallons be the amount of water contained in the reservoir
after the rain, where 24 hr = 1440 min. Assume that V(t) is continuous on [0,1440] and differentiable on
(0,1440). The Mean Value Theorem séys that for some tg in (0,1440) we have V'(ty) = V(1440) - V(0)

1440 -0
1400)(43,560)(7.48) — , . .
=2 +( X T340 )(7-48) — 2 = 4561"1133 Zr’)zi()ngal = 316,778 gal/min. Therefore at t, the reservoir’s volume

was increasing at a rate in excess of 225,000 gal/min.

Yes, all differentiable functions g(x) having 3 as a derivative differ by only a constant. Consequently, the

difference 3x — g(x) is a constant K because g'(x) =3 = éi—x(Sx). Thus g(x) = 3x + K, the same form as F(x).

No, xfi(- 1= 1+ x_+11 =3 _};_ T differs from % by the constant 1. Both functions have the same derivative

dgi(x i 1) =& -('-xl_?_;)ﬁ(l) = (x _: 1)2 = i(x_&l—f}

fi(x) =g'(x) = (22—"1)2 => f(x) — g(x) = C for some constant C => the graphs differ by a vertical shift.
x“ +

y 22, y

yo-x2+6x? —9x+3

y 24.
4
‘40
* 20
20
| 10 yex’(8-x)
| T 7 & &*
y 26. y
L] 2
80
“© t ™ .
0 y;(x—3) e ypx\faTx_
» -2 -1 T2 3%
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27. (a) y' =16 —x? = y/ = ——— | +++ | ——— = the curve is rising on (—4,4), falling on (—co,—4) and (4,0)
-4 4
= a local maximum at x = 4 and a local minimum at x = —4; y"’ = —2x = y/' = +++ | ——— = the curve
‘ 0

is concave up on (—oo,0), concave down on (0,00) = a point of inflection at x =0

(b)
x=4
Loc max
x=0
w0
Loc min
¥=-4
28. (a) y' = 6x(x + 1)(x —2) = 6x° — 6x® = 12x = y’ = ——— | +++| ———| +++ = the graph is rising on (-1,0)
-1 0 2
and (2,00), falling on (—oo,—1) and (0,2) = a local maximum at x = 0, local minima at x = —1 and
x=2y"=18x2-12x-12 =6(3x2 —2x - 2) = 6(x—1_3ﬁ)(x—l%ﬁ) =
y" =444+ | ——— | +++ = the curve is concave up on (—oo, 1 _3ﬁ) and (#,oo), concave down
1-/7  144/7
3 3
on (1 —3ﬁ, 1 +3ﬁ) = points of inflection at x = ! isﬁ
(b)

X=2

29. f(x) = &V 1 forall x € (—o0,00);
4 1
(Vxi+ 1).1_X6L) x/ VA = —L=X X/ VX1
f'(x) = 2X4+1 e (Vx4+1)3
' (Vxt+1)
_Q -x2)(1 +32) /v _ g

(x4 1)3/2

= 1-—x%x2=0=x= +1 are the critical points. Consider the behavior of f as x — =+ o0;

A !
lim X/ VXl = Jim &/ VX+1 — 1 a5 suggested by the following table (14 digit precision,

12 digits displayed):




30.

31.

32.

33.
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4
x x/Vx*+1 X/ VX '+l

—00 0 1
100000 —0.0000 10000 0000 0000 0.9999 9000 0050
10000 ~0.0001 0000 0000 000 0.9999 0000 5000
1000 —0.0010 0000 0000 00 0.9990 0049 9833
100 Z0.0099 9999 9950 00 0.9900 4983 3799
~10 ~0.0999 9500 0375 0 0.0048 4194 1895
0 0 1
10 0.0999 9500 0375 0 1.1051 6539 265
100 0.0099 9999 9950 00 1.0100 5016 703
1000 0.0010 0000 0000 00 1.0010 0050 017
10000 0.0001 0000 0000 000 1.0001 0000 500
100000 0.0000 1000 0000 0000 1.0000 1000 005

0o 0 1

Therefore, y = 1 is a horizontal asymptote in both directions. Check the critical points for absolute extreme
values: f(-1) = e_\/i/2 ~ 0.4931, f(1) = e\/i/2 ~ 2.0281 => the absolute minimum value of the function

is e_\/;/ Zatx= —1, and the absolute maximum value is eﬁ/ Zatx=1.

\/ 2
g(x) =e 3-2x—~x :

The domain of g is all x such that 3 —2x —x2 > 0. The parabola y = 3 —2x — x? is concave down with
x-intercepts at x = —3 and x = 1, therefore, 3 — 2x —x2 > 0 if —=3 < x < 1, and this interval is the domain of

1+ V3-2x—x2 . - .
g; g’(x):—me 3-2x-x"— 0 = 14 x =0 = x = —1 is a critical point; g(—3) = g(1) = ® =1,

g(—1) = e? ~ 7.3891 => the absolute minimum value of the function is 1 at x = —3 and at x = 1, and the
absolute maximum value is e? at x = —1.

(a) t=0, 6, 12 (b) t=3,9 (€) 6<t<12 (d) 0<t<6, 12<t<14
(a) t=4 (b) at no time () 0<t<4 d)4<t<8

(a) v(t) =s'(t) = 4 — 6t — 3t?

(b) a(t) =v'(t) = -6 —6t

(c) The particle starts at position 3 moving in the positive direction, but decelerating. At approximately
t = 0.528, it reaches a position 4.128 and changes direction, beginning to move in the negative direction.
After that, it continues to accelerate while moving in the negative direction.
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34. s(t):%t4—4t3+6t2,t20=>v(t)=2t3—12t2+12t; vt)=0=>t(t2—6t+6)=0=>t=0,t=3—1/3
~1.268, and t = 3 + /3 ~ 4.732. For 0 <t < 3—+/3, v(t) >0, for 3 — /3 <t < 3 ++/3, v(t) <0, and for

35.

t >3+ \/5, v(t) > 0, therefore, the particle moves forward during the time intervals, (0,3 - \/?_)) and

(3 +/3,00).

Since %(—i—x_“ - e‘x) =x"% 7%, f(x) = —%x”" —e*4+C.

36. Since;%{-secx:secxta,n x, f(x) =sec x + C.
37. Sinced%z(—%+%x3+x)=%+x2+1, f(x) =—,2—(+%x3+x+0forx>0.
ince -4 243/2 1/2) _ 1 —2.3/2 1/2
38. Since dx(3x + 2x )_\/)—(+\/J_(,f(x)—3x +2x/*+C.
39. v(t) =s'(t) = 9.8t +5 => s(t) = 4.9t2 + 5t + C; 5(0) = 10 = C = 10 => s(t) = 4.9t2 + 5t + 10
40. a(t) = v'(t) = 32 = v(t) = 32t + Cy; v(0) = 20 = C; =20 = v(t) = s'(t) = 32t + 20
s(t) = 16t2 + 20t + Cy; 5(0) =5 => C, = 5 => s(t) = 16t> + 20t + 5
dy _ 2
a1, F=y2-1
d d d d
(a) d—§=y2—1=0=>y= il;y<—1=>a§>o, —1<y<1=>d—§<0,y>1=>%>0. Therefore,
y = —1 is stable and y = 1 is unstable.

d? d
() T3=2 =2("-1)

y=-1 y=1
%’>L E‘%<f z%<0 E%>0 ,
T Y Id._,
:—:z!db E %M’ :'d—;z<osﬁ>o
y=0
(c) y

at

. B M. -

At




42.

43.

44.
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(a) g-i:y—ﬁ:o:y:oorl;y<0=>3——}-{<0,0<y<1=>g§>0,y>1:g_i«).

Therefore, y = 0 is unstable and y =1 is stable.

(b) $=(1—2Y) %=(1—2y)(y-—y2)=y(142Y)(1—y)

0 1/2 1
— I S
d d
."l<0 E —}-'->0 i —}i>0 :-d—y-<0
& i dx | dx | dr
2 E a’y ! %y :dzy
]
Lol —5>0f —F<0i—5>0
&2 & i odx i dx
y
(C) 1.5 4

0.5

05T

=

Note that s = 100 — 2r and the sector area is given by A = 7r2 (ﬁ) = —%—rs = —%r(lOO —2r) = 50r —r?. To find

the domain of A(r) = 50r —r?, note that r > 0 and 0 < s < 27r, which gives 12.1 ~ 1r5_|(_) 7 <r<50. Since

A'(r) = 50 — 2r, the critical point occurs at r = 25. This value is in the domain and corresponds to the

maximum area because A”(r) = —2, which is negative for all r. The greatest area is attained when r = 25 ft
and s = 50 ft.

A(x) = %(2x)(27 —x%)for 0 <x <27
= A'(x) = 3(3 +x)(3 —x) and A”'(x) = —6x.

) ye2r-x?
The critical points are —3 and 3, but —3 is not in the
domain. Since A”/(3) = —18 < 0 and A(+/27) =0, '

the maximum occurs at x = 3 => the largest area is

A(3) = 54 sq units.
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2
45. From the diagram we have (%) +rf= (\/5)2

12 —h?
-1

=>rl= . The volume of the cylinder is

2
V=7rr2h=1r(122h )h:%(l?h—h3), where 2

0<h<2y/3. Then V/(h) =37 (2+h)(2-h)

=> the critical points are —2 and 2, but —2 is not in

the domain. At h =2 there is a maximum since
V''(2) = —37 < 0. The dimensions of the largest
cylinder are radius = \/5 and height = 2.

46. From the diagram we have y = 12 — 2x and v
V(x) = %rx2(12 —2x), where 0 <x < 6 12
= V/(x) = 27x(4 —x) and V'/(4) = —4«x. The
critical points are 0 and 4; V(0) = V(6) =0 =>x=4

gives the maximum. Thus the values of r = 4 and

h = 4 yield the largest volume for the smaller cone.

47. The profit P = 2px + py = 2px + p(1105—__1x0x), where p is the profit on grade B tires and 0 < x < 4. Thus

P'(x) = G 2p 7 (x2 — 10x + 20) => the critical points are (5 — v/5), 5, and (5 + 1/5), but only (5—/5) is in
- X

the domain. Now P’(x) > 0 for 0 <x<(5-+/5)and P/(x) < 0 for (5—/5) <x< 4 => at x =(5—1/5) there
is a local maximum. Also P(0) = 8p, P(5- \/5) =4p(5- V/5)~ 11p, and P(4) =8p => at x = (5- \/5) there

is an absolute maximum. The maximum occurs when x = (5 — \/5 ) and y = 2(5 - \/5), the units are

hundreds of tires, i.e., x & 276 tires and y ~ 553 tires.
48. (a) The distance between the particles is |f(t) | where f(t) = —cos t + cos (t + Z—{-)
— gin t — si T
Then f'(t) =sin t sm(t + 4)
Solving f'(t) = 0 graphically, we obtain t s 1.178, t & 4.320, and so on.

EN
\\&'

|§:§.°smm ¥=0
[0, 27 by {—2,2)

P
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Alternatively, f'(t) = 0 may be solved analytically as follows.
— af TN_T _si T\, T
'(t) = sm[(t + 8) 8] sm[(t + 8)+ 8]

= [sin(t +%) cos %— cos(t + -785) sin 7gr]—[sin(t +%) cos %+cos(t +7§r_) sin %]

= -2 sin%cos(t+%),

so the critical points occur when

cos(t +%) =0,ort= 3?7"+ km. At each of these values, f(t) = + 2 cos ?ETW A +0.765 units, so the

maximum distance between the particles is 0.765 units.

b) Solving cos t = cos( t + I ) graphically, we obtain t ~ 2.749, t = 5.890, and so on.
4

NS
N’

oSsaaieae ve-230798

[0, 2] by (-2, 2]

Alternatively, this problem can be solved analytically as follows.
cat=eo(14) e[+ - E]-nf(+E)

= cos(t+%) cos %+sin(t +%) sin & = cos(t-}-%) cos %—sin(t+%) cos &

=2 sin(t+§)sin§=0 =>sin(t+§)=o 2t=1kr
n

The particles collide when t = T 2.749 (plus multiples of = if they keep going.)

49. The dimensions will be x in. by 10 — 2x in. by 16 — 2x in., so V(x) = x(10 — 2x)(16 — 2x) = 4x3 — 52x? + 160x
for 0 <x < 5. Then V'(x) = 12x% — 104x + 160 = 4(x — 2)(3x — 20), so the critical point in the correct domain
is x = 2. This critical point corresponds to the maximum possible volume because V' (x) >0 for 0 <x<2and

V'(x) < 0 for 2 < x < 5. The box of largest volume has a height of 2 in. and a base measuring 6 in. by 12 in.,

and its volume is 144 in.3

Graphical support:

UM pag

[0, 5] by {-40, 160]
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50. The volume is V=xh =32 = h = -?% The
X

surface area is S(x) = x% + 4x(32) x? 128

X !

where x > 0 = S'(x) = 2x — 128 x
x2

= the critical points are 0 and 4, but 0 is not in the
domain. Now S”/(4) =2+55° 256 >0 = at x = 4 there
is a minimum. The dlmensmns 4 ft by 4 ft by 2 ft

minimize the surface area.

51. (a) If f(x) =tan x and x = -—— , then f'(x) = sec?x, {/
f(—=EZ)\= —1 and f'{ — X )=2. The linearization of I ymmax
( 4) ( ) y=2x+(x~-2)2

f(x)1sL(x)-2(x+ )+( -1)= 2x+7r_2—_2_ . / .

-%/4 =4 >

(w4, ~1) il o

(b) If f(x) = sec x and x = — 7, then f/(x) = sec x tan x,
f (_Z) V2 and ' ( ) —+/2. The linearization of
4+
4

f(6) is L) = ~V3(x+ )+\/§——fx+‘/_ (4=

y=secx

ya-V2x+V2(4-mid

I( ) — —-sec2x

52. f(x) = T+ tan 07

= ﬁ—tm . The linearization at x = 0 is L(x) = f'(0)(x — 0) +f(0) = 1 —x.

53. f(x) = €* +sin x — 0.5 = f'(x) = €* + cos x=> L(x) =£(0) + ' (0)(x — 0) = L(x) =0.5+2x

54. f(x) = 72—+ I+x—-3.1=2(1-x)7"+(1 +0)M2-30 = f(x) = —2(1 -0 "X(-1) +F(1+x)7/?

a _2x)2 + Qﬁ = = L(x) = (0)(x - 0) +1(0) = 2.5x - 0.1
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55. When the volume is V = %mjh, then dV = %—wroh dr estimates the change in the volume for fixed h.

56. (a) S=6r2 = dS = 12r dr. We want |dS|< (2%)S = |12¢ dr| <122 = |dr| <

< Jo0 . The measurement of the

o!

edge r must have an error less than 1%.

2
b) When V =12 then dV = 3: dr. The accuracy of the volume is (LY. )(100%) = ( 32,42 ) (100%
v l’

=(2)@no0m) = (2)(5) (100%) = 3%

2 3
57. C=2mr = 1=o2,S=4m? =5, and V =%7r1‘3=6%. It also follows that dr = 5 dC, dS = 42 dC and

2
dv = 22— dC. Recall that C = 10 cm and dC = 0.4 cm.

O
=!.¢>

10

(a) dr =32 =02 em = (4r) 100%) = (%2)(22) (100%) = (04)(100%) = 4%
(b) 45 =22(0.4) = & em = (L) 100%) = (§) 155 (100%) = 8%

(==

© dv = 102(0 H=Yem (dV)(loo%) = (—2)(1000)(100%) = 12%

204+a _

58. Similar triangles yleld => h = 14 ft. The same triangles imply that =2 =2 = h = 120a~1 46
h T “h T6

= dh = -120a2 da = ——20 da =( 1—29)( t)= %+ &~ £0.0444 ft = 0.53 inches.
a a

59. The graph of f(x) shows that for 1 < x <2, f(x) = 0 has one solution near x = 1.7. (Note: The exact solution

is x = 1/3 ~ 1.732051. Nonetheless, we use Newton’s method to find an estimate for this solution.)

1 f(x)=3x-x°

0.5 1 15 2

-1

-2

3

fx)=3x-x®=>f(x) =3-3x> = x,,, = xn—:))x“?’x:_,1 = Xq = 1.7, x, = 1.732981, x, = 1.732052,

x3 = 1.732051, x, = 1.732051. Solution: x =~ 1.732051.
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60. The graph of f(x) shows that for x < 0, f(x) = 0 has one solution near x = —2.

)= +ax? 47

g\_§§

S+ax?+7 X+

f(x) =x3+4x2 47 = f(x =3x’-8x3 = =X, — = X, = —2
(x) (x) T ™ e =3 Xg ,
x; = —2. This is because x = —2 is a root, the one we are looking for.

61. The domain of g(t) is (—o0,1], and the graph of g(t) shows that g(t) = 0 has one solution near t = —1.

b 4
g()=2cost =1t 7
-5

-20 -15 =10

2cost,—4/T—¢
1 = n a =>t0=—1,

1—t

gty =2cos t—/1—t = g'(t) = -2 sint+2
t, = —0.836185, t, = —0.828381, t, = —0.828361, t, = —0.828361. Solution: t ~ —0.828361.

62. The graph of g(t) shows that for t > 0, g(t) = 0 has one solution between t = 3 and t = 4.

g9(t) .
0.5 g(:)=JI+J1+:—/
t
1 2
25 4 5
-1
1.5
-2
-2.5
-3
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+\/1+t -4
(t) \/-+\/1+ —4=>g(t)—7 W:}tn_‘_l—t —\/_ Jé1=3,x'2%3.497423,

2\/‘WT

X, ~ 3.515604, x5 ~ 3.515625, x, ~ 3.515625
Solution: x ~ 3.515625

‘CHAPTER 3 ADDITIONAL EXERCISES-THEORY, EXAMPLES, APPLICATIONS

If M and m are the maximum and minimum values, respectively, then m <f(x) <M forallx€l. If m=M
then f is constant on I.

3x+6, -2<x<0

has an absolute minimum value of 0 at x = —2 and an absolute
9—x2, 0<x<?2

No, the function f(x) = {

maximum value of 9 at x = 0, but it is discontinuous at x = 0.

On an open interval the extreme values of a continuous function (if any) must occur at an interior critical
point. On a half-open interval the extreme values of a continuous function may be at a critical point or at the
closed endpoint. Extreme values occur only where f' = 0, ' does not exist, or at the endpoints of the interval.
Thus the extreme points will not be at the open ends of an open interval.

The pattern f = +++ | ————| —=———| +4++ | +++ indicates a local maximum at x = 1 and a local
1 2 3 4 )

minimum at x = 3.
(a) Ify’ = 6(x +1)(x — 2)?, then y’ < 0 for x < —1 and y’ > 0 for x > —1. The sign pattern is
f = ———| +++ | +++ = f has a local minimum at x = —~1. Also y"’ = 6(x — 2)? + 12(x + 1)(x — 2)
-1 2

= 6(x —2)(3x) = y"’ > 0 for x < 0 or x > 2, while y”’ < 0'for 0 < x < 2. Therefore f has points of inflection

,atx=0and x =2, .
() fy' =6x(x+1)(x~2), theny’ <0forx<-1land 0<x<2y' >0 for -1 <x <0 and x> 2. The sign

sign pattern is y’ = ——— | +4+| ———| +++. Therefore f has a local maximum at x = 0 and
-1 0 2

local minima at x = —1 and x = 2. Also, y"/ = 6[x - (%ﬁ)][x—(—l-%—ﬁ)], so y'' < 0 for

1-7 1+4/7 1+4/7

7 — <X<—5—and y'’ > 0 for all other x => f has points of inflection at x =

. The Mean Value Theorem indicates that %(—Q =1{'(c) < 2 for some ¢ in (0,6). Then f(6) — £(0) < 12

indicates the most that f can increase is 12.
If f is continuous on [a,c) and f'(x) < 0 on [a,c), then by the Mean Value Theorem for all x € [a,c) we have
Q:jf(i) <0 = f(c) — f(x) < 0 = f(x) > f(c). Also if f is continuous on (c,b] and f'(x) > 0 on (c,b], then for

all x € (c,b] we have ~5——= fx ) f(c) >0 = f(x) —f(c) > 0 = f(x) > f(c). Therefore f(x) > f(c) for all x € [a,b].
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8.

10.

11.

12.

13.

14.

(a) Forallx, —(x+1)2 <0< (x—1)2 = —(1+x?) < 2x < (1+x?) = L < X, <.

(b) There exists ¢ € (a,b) such that I _:cz - f(bg - i(a) N lf(bg i(a)

= |£(b) —f(a)| < 2Ib—2al.

No. Corollary 1 requires that f/(x) = 0 for all x in some interval I, not f'(x) = 0 at a single point in I.

(a) h(x) = f(x)g(x) = h'(x) = f'(x)g(x) + f(x)g'(x) which changes signs at x = a since f'(x), g'(x) > 0 when
x < a, f'(x), g'(x) <0 when x > a and f(x), g(x) > 0 for all x. Therefore h(x) does have a local maximum
at x = a.

(b) No, let f(x) = g(x) = x> which have points of inflection at x = 0, but h(x) = x® has no point of inflection

(it has a local minimum at x = 0).

1
From (ii), f(-1) = ‘1“ =0 = a = 1; from (iii), 1 = Jim f(x) = Jim -ﬁ—l—-— lim —TX

b—c+2 x=%0 hy? Fex+2 X000 bx+c+,2(

= b =0 (because b=1=> lim f(x) =0). Also,ifc=0 then hm f(x) = 00 so we must havec=1. In

summary, a=1,b=0,and c = 1.

, - Vak? -
3—1:3x2+2kx+3=0=>x=2—k:l—:—;-13—-§§=>xhas only one value when 4?-36=0=>k>=9or

k= +3.

) k 1/2
The area of the AABC iaA(x):%(2)\/1—- 2=(1-x? /, y

(eNT=E) e

- =X 2
where 0 <x < 1. ThusA’(x)—ﬁ:O‘and +1 are X2+yiat

critical points. Also A(%1)=0so A(0) =1 is the
maximum. When x = 0 the AABC is isosceles since

AC=BC=+/2.

The length of the ladder is d; +d, = 8 sec § + 6 csc 6. We
wish to maximize 1(8) = 8 sec 6+ 6 csc § = I'(9)
=8 sec 0 tan 6 — 6 csc 0 cot . Then I'() =0

V6

= 8 sin%6 — 6c0530—0=>tan0=—=>

dy =41/4+3/36 and d, = 3/36 /4 +3/36

= the length of the ladder is about

(4+3/36)/4+3/36 =(4+ W)al ? % 19 ft (rounded down so that the ladder will make the corner).

Ssoeo.d‘
Scsce.dz

%
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15. The time it would take the water to hit the ground from height y is ‘/%’, where g is the acceleration of

gravity. The product of time and exit velocity (rate) yields the distance the water travels:

D(Y)=\/%\/m—_yh%/g(hy—ﬁ)m,OSySh=>D'(y)=4\/Z(hy—y) *(h— 2y) = 0,8 and h

are critical points. Now D(0) =0, D(2) %L and D(h) = 0 = the best place to drill the hole is at y -"% .

16. From the figure in the text, tan (8 +6) = b_+ra tan(8+6) = ta.ntfn+ t?:nﬂe, and tan 6 = %. 'These eéquations

giveb+a tanﬂ+H h tan f+a
h 1-——-tan,@ “h-atan g’

. : bh
Solving for t t =
g for tan B gives tan § h2+a(b+a) or

(% + a(b +a)) tan @ = bh. Differentiating both sides with respect to h gives
2 2 dﬁ - dg - bh —
2h tan §+(h?+a(b+a)) sec? § & =b. Then S =0 2htan f=b = 2h(m)_b

= 2bh% = bh? + ab(b +a) =>h2=a(b+a) =>h=,/ala+b).

17. The surface area of the cylinder is S = 271% + 27th. From —
the diagram we have £ =H=h o p —~RH_1H .,y =
g R H R ,
H T
S(r) = 2mr(r +h) =27rr(r+H—rﬁ)=21(1—%)r2+27rHr, H [
where 0 <r <R h \
Case 1: H <R = S(r) is a quadratic equation containing the
origin and concave upward = S(r) is maximum at r = R. R

Case 2: H =R = S(r) is a linear equation containing the origin with a positive slope = S(r) is maximum at
r=R.
Case 3: H >R = S(r) is a quadratic equation containing the origin and concave downward. Then

% = 41r(1 —Bﬁ)r+21rH and ?Tf' =0= 47r(1 —%)r+21rH =0=>r= -2-(% For simplification
_RH

“IH-R)

() FR<H<2R,then0>H-2R=>H>2(H-R) = 2(1'?HR) > R which is 1mposs1ble

we let r*

2
(b) If H = 2R, then r* = 3% =R = S(r) is maximum at r = R.

(c) If H> 2R, then 2R+ H < 2H = H< 2(H - R) = s=8—

RH
E-R)’

Conclusion: If H € (0,R] or H = 2R, then the maximum surface area is at r = R. If H € (R,2R), thenr >R

which is not possible. If H € (2R,00), then the maximum is at r =1* = TIEIT‘?

<l= <R = r* < R. Therefore,

_RH__
2(}1 R)= T 2(H-R)

S(r) is a maximum at r =r* =

18. f(x)=mx—1+,1—c=>f’(x) =m——1-§and f''(x) =—2§>0 when x > 0. Then f/(x) = 0 = x = —— yields a
X X

/o
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19.

20.

21.

minimum. If f (-\71;) >0, then /m—1+4/m=2/m-1>0=>m> % Thus the smallest acceptable value
.1 ,

for m is i

ll\in(lJ f_’(c_+h)h_—£(c_)=f,,(c) & for € =%|f"(c)|> 0 there exists a § > 0 such that 0 <|h|< §

= fl(c + h) —f,(c) _ f"(c)

<3|#"(c)|. Then fi(c) =0 = - §|#"(c) | < fﬁ}:—“l)—f"(c) <3|#(0)]

f’(c+h)

= £(c) - 3|£(c) | < ——= < () +3]#(c)|. H£'(c) <0, then |f(c) | = ~£"(¢)

3f"( ) < f];"__). 1f"(c) < 0; likewise if f/(c) > 0, then 0 < 1f"(c) <= fl(c+h) %f"( ).

() If f(c) < 0, then ~§ <h <0 =f'(c+h)>0and 0 <h < §=>f(c+h) <0. Therefore, f(c) is a local
maximum. )
(b) If£’(c) >0, then ~6 <h < 0 => f'(c+h) <0 and 0 <h <& = f'(c+h) > 0. Therefore, f(c) is a local g

minimum. 4

2‘ 2 2
(a) By completing the square we have f(x) = a(x + -2) +%—b— >0. If a>0 and f(x) > 0, then ic—}l-)— >0

2
=>a.c.—b2>0=>ax:>b2. Ifa.c)bzanda>0,thenﬁ-}b—>0=>f(x)>0

b) If f(x) = (a;x + b, P +...+(ax +b %, then let g(x) = Ax? 4 2Bx + C, where A = az,
1X T Dy an n &

s =1 i=1 i=1 i=1

B= Eab andCVZb2 Part(a)=>132<ACor(S’,_“,aibi)zg(}_j )(Eb2)

AC - B?
A

Therefore f(x,) = 0 = that each axy+b; =0 = axg=-b;fori=1,2,...,n

¢) B? = AC =there is a unique x = x, such that g(xy) = A{x -B = 0, from part (b).
0 0 0 A

(a) (1) = “g; 4l o L~ 08156 £ :

47’ 272 T s

b) 2T dT =412 dL = dT =20 dL =27 dL = dLw 0.01) = 0.00613 sec.

® g Tg (2«\/' Vel (\/32.2 ;70.8156)( ) e
Ve

(c) The original clock completes 1 swing every second or (24)(60)(60) = 86,400 swings per day. The new clock
completes 1 swing every 1.00613 seconds. Therefore it takes (86,400)(1.00613) = 86,929.632 seconds for

the new clock to complete the same number of swings. Thus the new clock loses %@ ~ 8.83 min/day.
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22. (a) 4-3=0, then 153X =0 = x=1.

(b) f(x) =g—3 and F(x) =~

‘3.5\11.5 2 2.5 3
= 2x, — 3x2 = x, (2 - 3x,) _,‘ 4

2. L=ks=>L=kdt = lns=ki+C= s =55k
=> the 14th century model of free fall was exponential;
note that the motion starts too slowly at first and then

becomes too fast after about 7 seconds

24. Two views of the graph of y = 1000[1 - (.99)* +%] are shown below.

y l'zoo""

y=1000[1 - (.99)* +lx]

y =1000[1 - (.99)% +%]

(a) At about x = 11 there is a minimum

(b) There is no maximum; however, the curve is asymptotic to y = 1000. The curve is near 1000 when
x > 643.

beot§ bescf)_,dL_ besc28 b esc § cot 8
25. (a) L= k(a RE T °S°> = k( T Saiata— )solvaap'

= r*b csc2f — bR* csc 0 cot § =0 = (b csc 0)(r4 csc 6 —R* cot 0) = 0; but b csc § # 0 since
0 ;é Toricescf—Ricot 0 =0=>cosf= R4 =>0= cos"1<R ) the cntlcal value of 6

4
(b) 6 = cos™" (g) ~ cos~1(0.48225) = 61°
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NOTES.




