Section 5.5 Springs, Pumping and Lifting 451

90 mph = 90 mi, Lhr  1min 5280 ft_ 149 ft/sec; m = 0.31251b _ 0.3125

27. 1hr 60 min 60sec 1 mi 32 ft/sec? T3 slugs;
03125 1b 2
w=(} )(32 Y )(132 ft/sec)? ¢ 85.1 ft - Ib
: _ _ __011b _ 1 w=(1 2 _
28. weight = 16 02 = 0.1 1b = m = 1L by = o slugs; W = (2)(320 slugs)(280 ft/sec)? = 122.5 ft -1b
1
29. weight =2 oz = % Ib =>m= -3% slugs = Lﬁ slugs; 124 mph = (_1(2610))((562T8)0) ~ 181.87 ft/sec;
W= (2)(256 slugs)(181 87 ft /sec)? & 64.6 ft - 1b
sy _145 145 w=(1 2,
30. weight = 14.5 01 = 142 1b = m = A0 clugs; W = (2)( i (32) slugs)(88 ft/sec)? ~ 109.7 ft -1b
c 6 65 g w (1) __6.5 2. i
31 weight = 6.5 0z = 32 b = m = S clugs; W = (2)(—(16) o slugs)(l32 fo/sec)? m 110.6 - Ib
1/4
= - —[ox?] M = ] 2_1 9
32. F=(181b/ft)x = W = 18x dx ={9x°], ft Ib. Now W = mv 2mv1, where W = 16 ft - 1b,
0
1
= 3i = ﬁ slugs and v; = 0 ft/sec. Thus, T5 ft-1b. = (%)(2L lugs)v = v = 124/2 ft/sec. Withv=
at the top of the bearing’s path and v = 12\/_ 2t =t = 3\8/_ sec when the bearing is at the top of its path.
The height the bearing reaches is s = 12\/5 t—16t2 = at t = 3\/— the bearing reaches a height of
33. (a) From the diagram, \

r(Y)=60—x=60_\/m y \

for 3256 <y < 375 ft.

y-325

(12v3)(22)- a0 (B2) =o-18:18 a1 HETI
o

I 0ft

=

(b) The volume of a horizontal slice of the funnel

is AV ~ 7 [r(y))? dy

= n[60— /2500 — (y - 326)% | Ay.

(c) The work required to lift the single slice of
water is AW =~ 62.4AV(375 —y)

= 62.4(375 — y)r| 60 — /2500 — (y — 325)% ] Ay.

The total work to pump out the funnel is
375

W= J 62.47(375 — y)[eo - \/2500 —(y- 325)2] dy = 6.3358 - 107 ft - Ib.
325
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34.

35.

36.

(a) From the result in Example 8, the work to pump out the throat is 1,353,869,354 ft - 1b. Therefore,
the total work required to pump out the throat and the funnel is 1,353,869,354 + 63,358,000
= 1,417,227,354 ft - 1b.

1,417,227,354
1.98-10°

= 0.7158 hours = 43 minutes.

(b) In horsepower-hours, the work required to pump out the glory hole is

_ . 715.8 hp-h
= 7158. Therefore, it would take 000 bp
We imagine the milkshake divided into thin slabs by planes perpendicular to the y-axis at the points of a

partition of the interval [0,7]. The typical slab between the planes at y and y + Ay has a volume of about

2
AV = m(radius)?(thickness) = r(y +1¢117'5) Ay in®. The force F(y) required to lift this slab is equal to its

2
weight: F(y) = % AV = %’(y +1‘117'5) Ay oz. The distance through which F(y) must act to lift this slab to

the level of 1 inch above the top is about (8 —y) in. The work done lifting the slab is about

AW = (i@) (y +17.5)°

9 e (8 —y) Ay in-oz. The work done lifting all the slabs fromy =0toy =7 is

7
approximately W = 3 5 4{’42 (v + 17.5)%(8 — y) Ay in - oz which is a Riemann sum. The work is the limit of
0 .

7
these sums as the norm of the partition goes to zero: W = J 9 4;42 (y +17.5)%(8 —y) dy

7

7
4
= 5% [ (2450 — 26.25y — 27y* —y3) dy = _4_7r_[_y_ —9y? 282042 2450y]
0

0

We fill the pipe and the tank.

To find the work required to fill the tank follow Example 6 with radius = 10 ft. Then AV == -100 Ay ft3,
The force required will be F = 62.4- AV = 62.4-100w Ay = 62407 Ay lb. The distance through which

F must act is y so the work done lifting the slab is about AW, = 62407 -y - Ay lIb-ft. The work it takes to

385 385
lift all the water into the tank is: W, &~ Y, AW, = > 62407 -y-Ay lb-ft. Taking the limit we end up
360 360

385 2 385
with W, = [ 62407y dy = 6240w[¥2—] = 82407 (3852 — 360%] ~ 182,557,949 ft - 1b
360
360

To find the work required to fill the pipe, do as in part (a), but take the radius to be % in = % ft.

Then AV =7 -B%Ay £t3 and F = 62.4-AV = 623-3" Ay. Also take different limits of summation and

360 60
360 2 2
integration: Wym Y. AW, = W, = J 624,y 4y = 62-4"[.y_£ = (M)(ﬂ) ~ 352,864 ft - 1b.
1]
0

36 36 L2 36 2

The total work is W = W, + W, ~ 182,557,949 + 352,864 ~ 182,910,813 ft -1b. The time it takes to fill the
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W 182,910813 115 855 sec a 31 hr

tank and the pipe is Time = 650 ~ 1650
35,780,000 35,780,000 35,780,000
37. Work = 1000 MG 4, — 1000 MG & = 1000 MG[-}]
. T 6,370,000
6,370,000 6,370,000

— L1024 L1p-11 1 _ 1 ~ 10
= (1000)(5.975 - 1024)(6.672 - 10 )(6’370,000 35,780’000)~5>.144><10 J

0
38. (a) Let p be the x-coordinate of the second electron. Then 1= (p—1)* = W = I F(p) dp
-1
t ~29) ~297°
.[ (28x10%9) —[-M] =(23x107%°)(1-4) =115 x 107
(p- 1)2 p-1 1

(b) W =W, + W, where W, is the work done against the field of the first electron and W), is the work done
against the field of the second electron. Let p be the x-coordinate of the third electron. Then rf = (p —1)2

' 5 5
—29 —29 5
andri=(p+1)2 =W, = J 2.3_i.1L_dp_ I Ex—m—dp=-23x10'29[ﬁ]
3 3

i (p-1)*
5 5
( 23x10-29)(;_;) 23.10-2° and W =J 23x10-29dp=J‘ 28x10°% 4
4 2 r3 (p+1)

5 29
] =(—23x10"29)(% %) X1V (3 9) = Z8x107%. Therefore

5.6 FLUID FORCES

1. To find the width of the plate at a typical depth y, we first find an equation for the line of the plate’s
right-hand edge: y = x—5. If we let x denote the width of the right-hand half of the triangle at depth y, then
x =5+ and the total width is L(y) = 2x = 2(5 +y). The depth of the strip is (—y). The force exerted by the

-2 -2
water against one side of the plate is therefore F = J w(-y)-L(y) dy = I 62.4-(-y)-2(5+y) dy
=5 5

-2
=124.8 L (-5y —y2)dy = 124.8[—gy2—%y3]_: = 124.8[(—%-4+%—-8) ( 25+§-125)]
= (124.8)(%&——31) (124.8) (315—234) = 1684.8 Ib
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2. An equation for the line of the plate’s right-hand edge isy =x—3 = x =y + 3. Thus the total width is
L(y) = 2x = 2(y + 3). The depth of the strip is (2 —y). The force exerted by the water is

0 0 0 0
2 3
F= J w(2 - y)L(y) dy = I 62.4-(2—y)-2(3+y) dy = 124.8 J (6—y—y2)dy=124.8[6y—%-—%]
-3
-3 -3 -3

= (-1248)(~18 -3 +9) = (-124.8)( - L) = 16848 1o

3. Using the coordinate system of Exercise 2, we find the equation for the line of the plate’s right-hand edge is
y=x-3 = x =y+3. Thus the total width is L(y) = 2x = 2(y + 3). The depth of the strip changes to (4 —y)

0 0 ]
=>F= [ w(4 —y)L(y) dy = f 62.4-(4—y)-2(y +3) dy = 124.8 J (124y-y?)dy
-3 -3 -3
3° 9 45
=124. 8[12y+———] =(~124.8)(-36 +2+9 )= (—~124.8)( - 52 ) = 2808 Ib
273, ( 2 ) ( 2)

4. Using the coordinate system of Exercise 2, we see that the equation for the line of the plate’s right-hand edge
remains the same: y =x—3 = x =3 +y and L(y) = 2x = 2(y + 3). The depth of the strip changes to (—y)

0 0 0 1]
3
=F= J w(—y)L(y) dy = J 62.4-(~y)-2(y +3) dy = 124.8 J (—y*-3y)dy = 124.8[-%-%%]
-3
-3 -3 -3

= (-1248) (¥ -4)= (1248)(27)(2 3 _ 5616 1b

5. Using the coordinate system of Exercise 2, we find the equation for the line of the plate’s right-hand edge to be

y=2x—-4= x—y+ and L(y) = 2x = y + 4. The depth of the strip is (1 —y).

0 0 4] 2 3 0
(a) F= J w(l —y)L(y) dy = J 62.4-(1 —y)(y +4) dy = 62.4 J (4—3y—y2)dy=62.4[4y—:%—1’3-]_4
—4 —4 -4

=(- 624)[( )-8, ]_( ~62.4)(—16-24+84) = CE2ACI20+64) _ 11648 1b

(b) F= (—64-0)[(—4)(4) -39 +§34] - COLOEINH6D) | 1194716

6. Using the coordinate system given, we find an equation for y(®
the line of the plate’s right-hand edge to be y = —2x + 4

=>x=4;yand L(y) =2x =4 —y. The depth of the

1
stripis (1—-y) = F = J w(l—y)(4-vy)dy
0

1 1
5y? -
J (y? -5y +4)dy = 62. 4[T—%+4y]0=(62.4)(%_g+4)=(62,4)(____2 1g+24)

- w —11441b
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7. Using the coordinate system given in the accompanying figure,
we see that the total width is L(y) = 63 and the depth of the y (in)
33.5| surfa

33
strip is (33.5—y) = F = I w(33.5 —y)L(y) dy
0

33 33 x({in)
= —6—5 .(33.5—y)-63 dy = (%%)(63) J (33.5—y) dy -31.5 31.5
0 0
= (54 (63)[33_5y _ﬁrs =(64:63 [(33 5)(33) — 332] (64)(63)(33)(67 = 33) _ 139 1,
123 2], 128 (2)(12%)
8. (a) Use the coordinate system given in the accompanying
figure. The depth of the strip is (-%1-—— )ft y ()
11/6 p
surfa
=F= J w(%—l-—y)(width) dy ce
0
11/6 X (2L)

= (62.4)(width) I (Y-y)ay

(=]

11/6 )
= (62.4)(width) [16—1y —YT] — (62.4)(width) [(-16—1) %] = F, 4= (62. 4)(2)(—32—)(%) ~ 209.73 1b and

Feide = (62. 4)(4)(121)(2) 419.47 Ib

(b) Use the coordinate system given in the accompanying
figure. Find Y from the condition that the entire volume

of the water is conserved (no spilling): 11 -2-4=2-2-Y

=>Y= 13—1 ft. The depth of a typical strip is (% - y) ft

and the total width is L(y) = 2 ft. Thus,

11/3 11/3 9711/3 2
F= J (13—1—y)L(y) dy = J (62. 4)(——Y) r2dy= (62_4)(2)[13_13;_3'7]0 = (62‘4)(2)[(%)(13—1) ]
0 0
_(62. 4)(121)

~ 838.93 1b = the fluid force doubles.

9. Using the coordinate system given in the accompanying
. . y(®)
figure, we see that the right-hand edge is x = /1 — y2

for —1 <y < 0 so the total width is L(y) = 2x x(ft)

= 24/1 —y? and the depth of the strip is (—y). The

force exerted by the water is therefore

0

F= I w-(-y)-2¢/1-y? dy

-1
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0

j' VI d(1-y?) 62.4[%(1-—y2)3/2]0

- 2)(1-0)=
= (624)(3)1-0) =416 1b

10. Using the same coordinate system as in Exercise 9, the right-hand edge is x = v/ 32 _ y2 and the total width is
L(y) =2x = 24/9 - y’. The depth of the strip is (—y). The force exerted by the milk is therefore

F=J w-(=y)- ZWdy_645J VI—y2d(9-y?)= 645[ (9—y2)’ ] (64.5)(%)(27—0)

=3
= (64.5)(18) = 1161 1b

11. The coordinate system is given in the text. The right-hand edge is x = ,/y and the total width is L(y) = 2x

=2./5.

1
(a) The depth of the strip is (2 ~y) so the force exerted by the liquid on the gate is F = J w(2 —y)L(y) dy
0

1 1 1
1
= J 50(2 —y) -2,/7 dy = 100 J (2-y)y/¥ dy = 100 J (2y1/2—y3/2)dy= 100[§y3/2—%y5/2]
0
0 0 0

=100(§-%) (100)(20 6) = 93.33 Ib

(b) Suppose that H is the maximum height to which the container can be filled without exceeding its design
1
limitation. The depth of a typical strip is (H —y) and the force is F = J w(H —y)L(y) dy = F,,,, Where
0

1 1
Fax = 160 Ib. Therefore, F . =w J (H-y)-2,/y dy = 100 J (H—-y)\/y dy
0 0

I Hy/? _ 3/2)dy—100[3Hy3/2 2 5/2]0—100(7}1%):(—“5—)(1011 6). When
=16

F,, 0 Ib we have 160 = (100)(10}1 6)= 10H—6=24=H=3ft

15

12. Use the coordinate system given in the accompanying figure. The total width is L(y) = 1.
(a) The depth of the strip is (3 —1) —y = (2 —y) ft. The force exerted by the fluid in the window is

(62. 4)(3)

1 1 1
F= J w(2 - y)L(y) dy = 62.4 J; (2-y)-1dy = (62. 4)[2y——] = (62. 4)( ) —93.61b

0
(b) Suppose that H is the maximum height to which the

tank can be filled without exceeding its design
limitation. This means that the depth of a typical
strip is (H — 1) —y and the force is

1
F= I w[(H - 1) —y]L(y) dy = F,,, Where

0

y(ft)
1

x(ft)

bottom
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1
o =3121b. Thus, F, =w J (H-1)-y]-1dy= (62.4)[(H —1)y -2’;]: = (62.4)(H -3-)
0

2.4 .
= (Qg—) (2H —3) = —93.6 + 62.4H. Then F,p,, = —93.6 +62.4H = 312 = —93.6 + 62.4H = H = 400:5

=6.5 ft
13. (a) The equation of the ellipse for the y

penstock gate is (%‘)2 +(1y—4)2 =1lor

49x% + 16y2 = 3136 = x = Y3136 — 1657

7

where y is measured from the center of the ellipse.

(b) L(y) = 2x =2 /3136 - 16y

(c) AF = 62.4[389 — (y + 115)](2x Ay) = 124.8(274 —y) _____»31367—16)’ Ay. Therefore,
14

F= J 17.829(274 —y) /3136 — 16y? dy = 6.0159 - 106 1b = 3008 tons.
-14

14. (a) After 9 hours of filling there are V = 1000 -9 = 9000 cubic feet of water in the pool. The level of the water
ish= %aj’ where Area = 50-30 = 1500 = h = ?ggg =6 ft. The depth of the typical horizontal strip at
level y is then (6 — y) where y is measured up from the bottom of the pool. An equation for the drain

plate’s right-hand edge is y = x = total width is L(y) = 2x = 2y. Thus the force against the drain plate is
1

1 1
3
P = [ w(6-v)L0) dy =624 [ (6-3)-25 dy = (624)(2 j (6y - ) = (62.4)(2) [—- %]
0 0 ) 0 0
= (1248)(3-1)= 1248)(3) = 3328 >
(b) Suppose that h is the maximum height. Then, the depth of a typical strip is (h —y) and the force
1 1

F= J w(h —y)L(y) dy = F oy, Where F_ . =520 lb. Hence, F .. = (62.4) J (h—y)-2y dy
0 0
1 1
=124.8 j (hy —y?) dy = (124. 8)[——-——] = (1248)(3-3)= (208)30-2) = S =3n -2




458 Chapter 5 Applications of Integrals

15. (a) The pressure at level y is p(y) = w -y => the average

b b b
pressure is p = J p(y) dy = & J. w-y dy =% [—]
0 0

2
= (%)(%-) = w_2_b This is the pressure at level %, which y

is the pressure at the middle of the plate.

b b
J w(depth)(length) dy = I w-y-ady
0

{(b) The force exerted by the fluid is F =
0

f i b? b
=(w-a) J ydy=(w-a)|%5| = w(%) = (-‘%—) (ab) = P - Area, where P is the average value of the
0

0

pressure (see part (a)).

0
| G20V () a5
2

16. When the water reaches the top of the tank the force on the movable side is

4] 1]
= (62.4) J (4 -y (<2y) dy = (62.4)[%(4 —y2)f 2] = (62.4) (%)(43/ 2) = 332.8 ft -1b. The force
-2

-2
compressing the spring is F = 100x, so when the tank is full we have 332.8 = 100x => x = 3.33 ft. Therefore

the movable end does not reach the required 5 ft to allow drainage = the tank will overflow.

17. (a) An equation of the right-hand edge is y = %x =>x= %y and L(y) = 2x = %X The depth of the strip

3 3 3
8 (3-y) = F= | w@-y10) &y = | @246 -9)(§v)dy = 629-(3) [ (By-y)ay
0 0 0

3
¥
= (62.4)(%)[2y -—] = (62. 4)( )[221—?7] = (62. 4)( )( 7) 374.4 1b
(b) We want to find a new water level Y such that Fy = %(374.4) = 187.2 Ib. The new depth of the strip is
Y

(Y —y), and Y is the new upper limit of integration. Thus, Fy = J w(Y —y)L(y) dy
0

0
9Fy _ (9)(187.2) 3 [(9)(187.2)
3 3 __ Y _3
= (62. 4)( )Y Therefore Y° = g = 1arg— = ¥ = 31— = V135 ~ 2.3811 ft. So,

AY =3-Y ~ 3—2.3811 ~ 0.6189 ft ~ 7.5 in to the nearest half inch
(c) No, it does not matter how long the trough is. The fluid pressure and the resulting force depend only on

1 4 N Ny 2 ] 3 Y
4 J (Y-y)(3y) v = (624)(3) j (Yy-y?)dy = (62.4)(3-)[\!-%-%]0 = (62.4)(%)(%--‘{-3—)
0

depth of the water.
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18. (a) Using the given coordinate system we see that the total
width is L(y) = 3 and the depth of the strip is (3 —y).

y(®)

3 3
Thus, F = I w(3—y)L(y) dy = I (62.4)(3 - y) -3 dy
0 0

3 2 3
= @243 | 3-v) dy= 620033 'Z‘T]o
0

= 624)3)(9-3) = 620(3)(3) = 84241

b) Find a new water level Y such that F 0.75)(842.4 Ib) = 631.8 Ib. The new depth of the strip is
Y= P
Y
(Y —y) and Y is the new upper limit of integration. Thus, Fy = J w(Y —y)L(y) dy
0

Il

D

N

NS
o=

Y 21Y .
(Y —y)-3 dy = (62.4)(3) J (Y-y)dy= (62.4)(3)[Yy _y7 . = (62.4)(3) (Y2 —%)
0

2
= (62.4)(3)(%—). Therefore, Y = 1/(62 43((3) = \/11%-7“ =+/6.75 = 2.598 ft. So, AY =3-Y

~3—-2598 ~0.402 ft ~ 4.8 in

19. Use the same coordinate system as in Exercise 20 with L(y) = 3.75 and the depth of a typical strip being

7.75 645 7.75 645 y2 7.75
(7.75—y). Then F = ([ w(7.75 = y)L(y) dy =( )(3 75) l (7.75 - y) dy = (F)(3.75)[7.75y - 7]0

_ (645 (1.75)°

20. The force against the base is Fy .. = pA = whA = w -h - (length)(width) = (%%)(10)(5.75)(3.5) ~ 6.64 1b.

To find the fluid force against each side, use the coordinate system described in Exercise 10 with the depth of a
10 2 10

typical strip being (10 —y): F = J w(10 - y) (Vtvﬁgtslid‘f) dy = (%)(?ﬁ‘:tgd‘;f)[loy - y?]o
0

57 \(width of}{100 _ (57 - (51 -
(123)( the side )( 2 ) = Fena = (123)(50)(3.5) ~ 5.773 1b and F4, = (123)(50)(5.75) ~ 9.484 1b

21. Suppose that h is the maximum height. Using the coordinate system given in the text, we find an equation for

the line of the end plate’s right-hand edge is y = %x = x= %y. The total width is L(y) = 2x = %y and the

h
depth of the typical horizontal strip at level y is (h —y). Then the force is F = I w(h —y)L(y) dy = F .,
0
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h h
where Fy,, = 6667 Ib. Hence, F,_, = J (h-y)-3y dy = (62.4)(}) J (hy —y?) dy
0 0

(5], =0 (OF-5)- 2@ - onat -l Cer)

=3 (%)(%—6"{) ~ 9.288 ft. The volume of water which the tank can hold is V = %(Base)(Height) - 30, where

Height = h and 1 (Base) =2h = V = (%hZ)(BO) = 12h? ~ 12(9.288)2 ~ 1035 3.

MOMENTS AND CENTERS OF MASS

Because the children are balanced, the moment of the system about the origin must be equal to zero:
5-80 =x-100 = x = 4 ft, the distance of the 100-1b child from the fulcrum.

Suppose the log has length 2a. Align the log along the x-axis so the 100-1b end is placed at x = —a and the
100(—a) + 200(a)

200-1b end at x = a. Then the center of mass X satisfies X = — 00— = X= g'. That is, X is located
at a distance a —% = (2a) which i is 3 L of the length of the log from the 200-1b (heavier) end (see figure)
or % of the way from the lighter end toward the heavier end.
3(2a)
et i,
100 lbs. e~ . 7 e 200 lbs

. The center of mass of each rod is in its center (see Example 1). The rod system is equivalent to two point

m
masses located at the centers of the rods at coordinates (%, 0) and ( 0,%). Therefore X = —r'n!

L
XMy +xpm, 3 m+0
m1+m2 T m+4m

— = % = (% ali) is the center of
mass location.

Let the rods have lengths x = L and y = 2L. The center of mass of each rod is in its center (see Example 1).

The rod system is equivalent to two point masses located at the centers of the rods at coordinates (%,0) and
L

‘m+0-2m
(0,L). Therefore X = ZW 16‘ and ¥ gﬁ—i%% 231' (%,%) is the center of mass location.

2 2 2
2 M
M, = J x-4dx=[4x—] =4-%=8;M: J 4dx=[4x]g=4-2=8=>izﬁq=l
0 0

3 3 3
2 _ M
M, = J x-4dx=[4)—(2——]1=%(9—-1)=16;M= J 4dx=[4x]:1;:12—4=8:>x=m9=%§=2
1 1




4 4
2 3/2
o Mo= [ x(1vg)in= | (oo ax=[g o3 - (o) (b)) - o= 042
1 |
1 1

4
M=J
1

1 1 1
10. My = J x-3(x32 4x5?)dx =3 J (x'1/2+x_3/2)dx=3[2x1/2—-li/5] =3[(2—2)—(2 %—
1/4 1/4 X1y
1
1
M — -3/2 , ~5/2 —_a|l =2 __2 — 0 2Y_(_4._16Y]_
—34-1)=9;M=3 J (x~3/2 4 x /)dx_S[x1/2 3x3/2] =3[(-2-%)-(-4-1)|=3(2+
1/4 1/4
M
=6+14=20=>§=ﬁ0=i0
1 2 1 2 22 31 32 ) 8 1
11. My = I x(2-x) dx+ J x-xdx = J (2x —x2) ax + J x? dx=[%—%]o+[x?]l=(1—§)+(§—§)
0 1 0 1
1 2 1 2
9 _3 M= o 2| 42| =(2-1)+(4-1)=3>x=No_
=§_3,M_J(2—x)dx+Jxdx—-[2x—2]0+[2]1_(2 2)+(2 2)_3=>x_M_1
0 1
. i f f 2 f 2 2] e (1.1
12. My = J x(x+1) dx+J 9% dx = J (x +x)dx+j adx=X4+5| 4[] = (3+1)+@-1)
0 1 0 1 0
1 2 2 1
=3+%=23'M=I(x+1)dx+J 2dx=[x7+x] +[2x]2=(%+1)+(4—2)=2+%=%
0 1
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-

VX

73
M 13
(1+x_1/2)dx=[x+2x1/2]:=(4+4)-—(1+2)=5ﬂi:ﬁ:%—:?—

0

461
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13. Since the plate is symmetric about the y-axis and its density is
constant, the distribution of mass is symmetric about the y-axis

and the center of mass lies on the y-axis. This means that X = 0.
M ,
It remains to find ¥ = ——MK We model the distribution of mass

with vertical strips. The typical strip has center of mass:

&.9)=(x3

dA = (4 —-X ) dx, mass: dm =6 dA = 6(4 x2) dx. The moment

) length: 4 —x?%, width: dx, area:

of the strip about the x-axis is ¥ dm = (x ; 4) (4 xz) dx = (16 x4) dx. The moment of the plate about

2 2
5 5
the x-axis is M, = J ¥dm = J £(16-x*) dx = [16x—-——] =%[(16-2—%)—(—16-2+25—5)]
-2

2
——2—2(32—%—2)=%é. The mass of the plate is M = j 6(4—-x2) dx:&[élx—%s] =26(8—§)=326.

Therefore 7 = Mx =( 5

14. Applying the symmetry argument analogous to the one in
M
Exercise 13, we find X=0. To find ¥ = TVI’K’ we use the

vertical strips technique. The typical strip has center of

2
ass: (X,¥)= (x,25 Ex ), length: 25 —x?, width: dx,

area: dA = (25 - x2) dx, mass: dm =46 dA = 6(25 —x2) dx.

-5 5

The moment of the strip about the x-axis is

2 2
Ydm = (&'21)6(25 - x2) dx = %(25 —-x2) dx. The moment of the plate about the x-axis is

5 5 5
2
M, = J?’dm: J $(25-x?) dx =1 J (625—50x2+x4)dx——[625x—50x3+ 5]
5 5 =5

5
=2-%(625-5—%0-53+%)=6-625(5 Wy ):6-625-(%). The mass of the plate is
3 5 5 4 M
M= J dm:I 6(25—x2)dx=6[25x—%] =26 53— T):gé 53, Thereforey:—M-’—‘
-5
6-54-( )

=5-53-(

)

= 10. The plate’s center of mass is the point (%,¥) = (0, 10).

ol [ wofoo
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15. Intersection points: x —x?=—x=>2%-x*=0

= x(2—-x) =0 = x=0or x =2. The typical vertical

x—x2)+(—x))

strip has center of mass: (X,¥) = (x,( 5

2
= (x, _XT)’ length: (x —x2)— (—x) = 2x — x%, width: dx,
area: dA = (2x —x2) dx, mass: dm =6 dA = 6(2x —x2) dx.

2
The moment of the strip about the x-axis is ¥ dm = <—x7)6(2x - x2) dx; about the y-axis it is
. 2 2
')‘c’dm:x-&(?x—xZ)dx. Thus, M, = J J 2x x2) dx:—% J (2x3—x4)dx
0 0

]2 6(4 %) -@-. Therefore, X = E/[M—y =(%6)(%) =landy= %
= (—-%é)(%) = —g (%y) = (1, —%) is the center of mass.

16. Intersection points: x2-3= f—2x2 =3x?-3=0
= 3(x—1)(x+1)=0=x=—-1orx=1. Applying the
symmetry argument analogous to the one in Exercise 13, we find

X = 0. The typical vertical strip has center of mass:

. y=x2-3
length: —2x2 —(x?—3) = 3(1 —x2), width: dx,
area: dA = 3(1 - x2) dx, mass: dm = 6 dA = 36 (1 - x2) dx. The moment of the strip about the x-axis is

¥ dm =g6(—x2—3)(1 —x2)dx =%6(x4+3x2—-x2—~3) dx =%6(x4+2x2—3)dx; M, = J ¥ dm

1 1
_3 4, 9.2 _ _3s|x° 28 3. 5.0(1,2_ 3+10-45)_ _ 326,
_56 J (x + 2x 3)dx—26[5 3 3x]_1—-2 ) 2(5+3 3)— ( 15 ) 5’
-1
1 a2k M §-32 _ _8
= = - X = X0 =-<
= J dm = 36 I (1-x2 36[x 3]_1 36 - 2( 3) 46. Therefore, ¥ = M= "5.6.4- 5
-1

= (x¥,y) = (0, —%) is the center of mass.
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17. The typical horizontal strip has center of mass:

y—y°
(2,9)= 7Y Js length: y —y3, width: dy,

area: dA = (y - y3) dy, mass: dm =6dA = 6(y - y3) dy.

The moment of the strip about the y-axis is
3
Xdm = 6(y—2—y—)(y —y)dy=8(y-v*) day

= %(y2 -2yt + y6) dy; the moment about the x-axis is ¥ dm = 6y(y - y3) dy = ¢$(y2 - y4) dy. Thus,

3 57!
Mx_Jydm—éJ.(y —y)dy—fs[?-:r;‘] =5(5-5)=%;
0

E

1
y = Jidm=%j (v2-2y* +y%) dy
0

3 5 71 1
_8ly 20y | _é(1_2,1\_6(35—-42+15\_ 46 M = 3
—i[‘”g‘ +7] =§(3-3+7)=3(%5%53 )—105'M“Jdm‘6j(y"y)dy

18. Intersection points: y =y2—y = y> -2y =0 = y(y —2)
=0=>y=0o0ry=2. The typical horizontal strip has

2 _ 2
center of mass: (¥,¥) = ((_y___zyii-_}:’y) = (%—,y),

length: y —(y2 - y) =2y —y?, width: dy,

area: dA =(2y —y?)dy, mass: dm =6 dA = 6(’2y —y?)dy.

The moment about the y-axis is ¥ dm = é y2(2y - v2) dy
g(2y —y*) dy; the moment about the x-axis is Y dm = 6y(2y y3)dy = §(2y? —y%)dy. Thus,

B
|
—
=Y
~
I
p—
|2
S
~
N
|
o
N
|
|rh
>
=
Il
—_—
w2
(oW
g8

2 9 3 412
M, = Jydm= [6(2y2-y3)dy=5[%-y?] =5(3
0
0




19.

20.

21.
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Applying the symmetry argument analogous to the one used

in Exercise 13, we find X = 0. The typical vertical strip has

center of mass: (¥,¥) = (x, co; x), length: cos x, width: dx,
area: dA = cos x dx, mass: dm = é dA = 6 cos x dx. The

-cos x dx

moment of the strip about the x-axis is ¥ dm = § -99-%—’-‘—

= % cos?x dx = %(1—1'—%9&}5) dx = %(1 + cos 2x) dx; thus,
w/2 ‘ /2
I _ 8 _é sin 2x]" _o(n _(_m\]_ b7, nr —
M, = J Ydm = J' 4(1 + cos 2x) dx_4[x+ 5 ]_”/2 = 4[(2 +0) ( 7)]"T’ M= |dm
-%/2
w/2
. 2 -_M - o .
=4 J cos x dx = §[sin x]’_rfr/2 = 28. Therefore, ¥ = Wx = 4‘?756 = % = (%,5) = (0,285) is the center of mass.
/2
Applying the symmetry argument analogous to the one used y "
Yy =se
in Exercise 13, we find X = 0. The typical vertical strip has x
2
center of mass: (¥X,¥) =\ x, sec2 X ), length: sec?x, width: dx,

area: dA =sec?x dx, mass: dm = & dA = 6 sec?x dx. The

moment about the x-axis is ¥ dm = (%)(6 sec?x) dx ~x/4 x/4
w/4 w/4 w/4

=%sec4xdx. M, = I ')‘f'dm:% J sec4xdx=% I (tan2x+1)(sec2x)dx

-7 /4 - /4 —n/4
w/4 w/4 w4
=¢ (tan x)? (sec?x) dx + ] sec?x dx = é[(tan x)3] +4 [tan x]"'/4
2 2 2 3 —n/4 2 -n/4
-n/4 —-m/4
n/4
4
=8 (-D]+dn - =§+s=im= J dm =6 J sec? x dx = dltan x|7/4,
—-m/4
M .
= 6[1 — (-1)] = 26. Therefore, 7 = ﬁx = (%6)(21_6) = % = (X,¥) = (0,%—) is the center of mass.
Since the plate is symmetric about the line x = 1 and its y
density is constant, the distribution of mass is symmetric a
about this line and the center of mass lies on it. This means y =2z — g3

that X = 1. The typical vertical strip has center of mass:
2 2 _ 2
(z,y)=(x,(2" )+ (2x 4X))=(x,x 52"),

length: (2x -x2) - (2x2 - 4x) =-3x2+6x = 3(2x — xz),
width: dx, area: dA = 3(2x - x2) dx, mass: dm =§ dA
= 36(2x - x2) dx. The moment about the x-axis is

¥ dm =%¢$(x2 —2x)(2x —x2?) dx = —%6(x2 —2x)2 dx = —%6(x4—4x3+4x2) dx. Thus, M, = J ¥ dm

)i Ym=22 -4z




466 Chapter 5 Applications of Integrals

[\

Oy

-3
2

Therefore, ¥ = % = (—-

88
5

6(x4—4x3+4x2)dx =-

35

X _
) xt+

[55

3X

2

0

—%=> x7y) =(

4.3

2

0

|

4( ‘15‘”0) -8 = Idm=J35(2x—x2)dx=35[x2-

)(ds)=

22. (a) Since the plate is symmetric about the line x =y and

-2
1,-%

its density is constant, the distribution of mass is

symmetric about this line. This means that X =¥. The

typical vertical strip has center of mass:

,Y) 5

( = (x,

area: dA

3
=%(9—x2)dx. Thus, M, = J.'Sr'dmz I %(9__}(2) dx
0

\/9—)(2

), length: v9— x?, width: dx,
=19 —x2 dx, mass: dm =6 dA = 6v/9 — x? dx.
</ 2
The moment about the x-axis is ¥ dm = 6(-—-—92_—)() V9 —x? dx

_3:(25 04,4 93\ _35.04(2 9
26(5 24432 )_ 35-2 (3_1753.)
2
3

X _ 8\ _
X }0_36(4—3-)_46.

) is the center of mass.

=g[

y

3
3
9x—x—] =8(27-9)=9;
0

3
M= I dm = f §dA =6 J = 6(Area of a quarter of a circle of radius 3) = 6(%) = % Therefore,
M,
Y=31= (96)(916) % (x,5) = (%,%) is the center of mass.

(b)

used in Exercise 13, we find that ¥ = 0. The typical

vertical strip has the same parameters as in part (a). Thus,

3
M, = J?‘dm: I $(9-x?) dx =
=3

=2(96)=186;M=J'dm=J6dA=6 JdA

|

%(9 x) dx

Applying the symmetry argument analogous to the one

-3

M
= §(Area of a semi-circle of radius 3) = 6(9%) = 978 Therefore, 7 = ﬁ"

as in part (a) = (X,5) = (0,%) is the center of mass.

23. Since the plate is symmetric about the line x = y and its density
is constant, the distribution of mass is symmetric about this
line. This means that X =¥. The typical vertical strip has

()
] 2 Y

center of mass: (¥X,¥) =

length: 3 —v9 - x?, width: dx, area: dA = (3 -V9- x2) dx,

mass: dm =6 dA = 6(3 -9 - xz) dx. The moment about the

x-axis is Ydm = 6

(3+\/§—x2)2(3—

V9 -x*) dx

= (189) (9%5) = %, the same §




24.
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3
2 2 3
= %[9 —(9 —xz)] dx = % dx. Thus, M, = J %— dx = —g:[x3]0 = % The area equals the area of a square
0
with side length 3 minus one quarter the area of a disk with radius 3 = A = 32 —%9 = %(4 —-7m)=>M=46A

-_M — .
— 21_6(4 — ). Therefore, ¥ = W" = (92_5) [96(44— ﬂ_)] =7 E - = (X,9) = (ﬁ%—?—_;) is the center of mass.

Applying the symmetry argument analogous to the one used in
Exercise 13, we find that ¥ = 0. The typical vertical strip has

1_1
373
center of mass: (¥,¥)=\x,% 2x = (x,0),

length: %—(— ) = ;23—, width: dx, area: dA = ;23 dx,

Mol

mass: dm =6 dA = 2—3 dx. The moment about the y-axis is
X

i

a
a
idm:x-i—ﬁdx:i—gdx. Thus, M, = J'im:] ’2(—2 dx 26[—§]l=26(—%+ 1):2‘5(_1_12;

X

& a 2 M _. 2
M= Jdm: J 2—gdx=6[—%] =6(—$+1)=&az__1_). Therefore, i:mZZ[z&(aa 1)][ a ]
1

,0). Also, lim X =2.
a0

-]
-+
]

center of mass.
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26. We use the vertical strip approach:

0
1 1
— 3_ .5 _alxt_x8| _afl1_1\_6 _1 x
=6 J (®—x )dx_S[-[—E-L_G(Z—g)—Z—I_7,
0
1 1 1 P!
M, = J'i’dm: J x(x—xz)-é dx = J (x2—x3)-l2x dx =12 I (xs—x4)dx= 12[%—%] = 12(211-—%)
0 0 0 0
1 1 3 41
=12_3.m= = —x2).6dx = 2_ ) dx=12|X X | —19(l-_1)=12_
_20_5,M_Jdm—J(x x)édx-12j(x x)dx_12[3 4]0_12(3 4)_—12_1 So
0 0
M
i:ﬁ:%aud?:%‘:%#(%%)isthecenterofmass.

27. (a) We use the shell method:
4

b
V= J 21r( shell )( shell )dx: J 21rx[L_(__4_>] dx
dius/\ height
IRy el e v Y

4 4
4
=167 ‘1[ ﬁ dx = 167 I X% ax = 16w[§x3/2]

= 16w(§-8—%—)=§ﬂ(8_ 1) = 22347r

(b) Since the plate is symmetric about the x-axis and its density §(x) = 51{— is a function of x alone, the

distribution of its mass is symmetric about the x-axis. This means that ¥ = 0. We use the vertical strip

4 4
approach to find X: My = Iidm: J x-[L—(—i)]-é dx = J X-
1 1

4
= X ]4= «2 - = 16; = m =
8l2x'/?] =8(2-2-2) = 16; M Jd “

S
"
|
Ve
|
Sk
N’
—
N
[=%)
»
il
Qo
(RS
N
S
™
N’
—~
=
~—
[=9
»
I
(e ]
o ey
NI
w
~
~
Q.
™

—

-1/2 4 = My 6 - = .
=8[-2x ]1 =8[-1-(-2)]=8. Sox= M=B= 2 = (%,5) = (2,0) is the center of mass.

()
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28. (a) We use the disk method:
b 4 4
V= J 7RY(x) dx = J w(%) dx = 4r J x~2dx
x
1 1

a

= 4%[—%]: = 41r[:41— (—1)] =n[-1+4] =3r

(3)

2
X

N

(2)-sax= T 2V dx
1

4
(b) We model the distribution of mass with vertical strips: M, = J Yydm = J
1

4 4 4
4

=2 J x~3/2 dx=2[:\7%] =91 (-2 =% M, = I?{'dm:J x-2.5dx=2 J' /2 dx

1 1 1 1

3/2 4 ’ 4 4 - 4 "

2 16 2]_28. o _ (2.4 P

=2[XTL=2[T—§]“”3" M = Jdm_ J 2.5dx=2 J Y dx=2 J x71/2 4x = 2[2x1/?];
1
28
My (T) Mx

() y

4

N

29. The mass of a horizontal strip is dm = é dA = 6L, where L is the width of the triangle at a distance of y above

its base on the x-axis as shown in the figure in the text. Also, by similar triangles we have % = ll—'l—:—y
T sb by? )"
= L=P(h-y). Thus, M= jvdm = j ay(R)h-yv ay =8 [ (hy-y)) ey =%?[%-%L
0

2 M ~\" 6 J\ébh/ "3
triangle one-third of the way toward the opposite vertex. Similarly the other two sides of the triangle can be
placed on the x-axis and the same results will occur. Therefore the centroid does lie at the intersection of the

medians, as claimed.

2 M 2
= %(hz —%—-) =6bh g, F=x£= <M>(L) =1 5 the center of mass lies above the base of the
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30.

31.

32.

33.

34.

35.

36.

From the symmetry about the y-axis it follows that X = 0.
It also follows that the line through the points (0,0) and

(0,3) is a median = y=$(3-0) =1 = (%) = (0,1).

From the symmetry about the line x =y it follows that
% =9. It also follows that the line through the points (0,0)

and (%,%—) is a median = ¥ =i=%-(%—0)=%

= &y =(53)-
From the symmetry about the line x =y it follows that

X =

. It also follows that the line through the point (0,0)
a a); i vy=x=2(2-0)=1
and(i,f)lsamedxan:y—x—:,,( 0)_—3a

)
= &9 =(33)

The point of intersection of the median from the vertex (0,b)

to the opposite side has coordinates (0,%) =y=(b-0) -:1;

=§andx=(3-0)-4=3= @9 =(33)

From the symmetry about the line x = % it follows that

X= %. It also follows that the line through the poinﬁs

§s

~~

%,0 and (a, b) is a median = Y:%(b—O) =]§°

1
2
y=x3 = dy = 3x° dx=>dx=\/(dx)2+(3x2 dx) =vV1+0tdx; M, =6 J x3/1 + 9x* dx;
0

[u=1+9x4=>du=36x3dx=>—1—du=x3dx;x=0=>u=1,x=1=>u=10]

36
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10

1,172 gy = 8[2,8/2]"° _ 6 (103/2 _
=6 | 3" bR ]1 =4 (10°2 1)

l
E

1
w Ky 2 w
37. From Example 6 we have M, = J a(a sin )(k sin ) df = aZk J sin?6 df = 92—1‘ J (1 —cos 26) do
0 0 0
N mw
=2 k[o—ﬂ—gﬁ] =atkm p = J a(a cos 0)(k sin 8) df = a%k J sin 6 cos 9 df = 2:k[sin?¢] | = o;
0 0

7 0= 2

Ky

M M 2
_ ; . T _ = _ Y _ =_x_{a“knw 1 \_ar am
M= J ak sin 6 df = ak[~ cos 6]} = 2ak. Therefore, x = 1 =0 and 7 = & _(—_2 )(_2ak)___4 (0, 4)
0

is the center of mass.

w
38. M, = J“y*dmz J (asin 6)-6-adf = | (a?sin 6)(1+k|cos 0]) df
0

Ne————md oy

/2
=a’ J (sin 6)(1 +k cos §) df + a®> | (sin 6)(1—k cos 6) df
0 w/2
/2 w/2 - .
= a? [ sin 0 d6 + a’k J sin 6 cos § df + a’ J sin 6 df — a’k I sin 6 cos 9 df
0 0 /2 /2
2 w/2 .t
2 i .

w/2
=a.2[0—(—1)]+azk(%—0) +az[—(—1)—0]—a2k(0—%) a +a2k+a +32k—2a2+a2k=a2(2+k);

T
M, = J?dm: J (acosf)-6-adf= | (a?cos8)(1+k|cos 61) dg
0

e} Oy

n/2
= a? I (cos 8)(1 +k cos 6) df + aZ (cos 8)(1 —k cos 6) dd
0 /2
/2 /2 T T
=a? I cos 0 df + a’k J (-1—+CZL20)d0 + a? J cos § df — a%k J (1—*%2—0)d0
0 0 /2 x/2

/2
_az[SlH 0]1\'/2 a k[o_l_sm 26]0 +a2[sm 9] /2 k[6+81n220]#/2
2 2 2 2
=a2(1—0)+a—23[(§—0)—(0+0)]+a2(0-1)_-a2—k[(w+0)—(g+o)]=a2+a—iﬂ—a2_w=o;
/2 1r
(1+klcosf|df=a J (1+kcosf)df+a J (1 -k cos 6) d
0

T
M'—‘J&-&d@:
0 w/2

[+
Oty
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= afg +k sin 0]7/% +alf —k sin 6]] , = a[(g“)_o]ﬂ[(ﬂo) —(g-—k)]

_a%(2+k) _a(2+k)
Ta(r+2k) T 7+2k

M
:3—2"1+ak+a(%+k)=a7r+2ak=a(7r+2k). Sox=-2=0andy

M
M ™M

_ 2a+ka\.
= (0, 0k ) is the center of mass.

39. Consider the curve as an infinite number of line segments joined together. From the derivation of arc

length we have that the length of a particular segment is ds = 4/ (dx)? + (dy)?. This implies that
M J x ds J x ds
— — = i i AN S —
M, = I by ds, My = J 6xdsand M = [ § ds. If § is constant, then X = M - I - = fongih and

__M _jyds_[yds
Y“T\T—Jr = Tength *
ds

40. Applying the symmetry argument analogous to the one used in Exercise 13, we find that X = 0. The typical

a+i 2
vertical strip has center of mass: (¥X,¥) = (x, 24 ) length: a—%-, width: dx, area: dA = (a ———) dx,

4p’
2, /pa
~ 1 x> x2
mass: dm =6 dA =6 a———— dx. Thus, M, = | ¥dm = [ §a+5 a—-[-ﬁ; 6 dx
_2\/!_);
2,./pa
2 a 2 a 5
4 5 \/p_ 5 \/I—’_ 2 a
=9 J a? - X dx = &|a2x - X =2 §a2x—-5—§ = 6| 2a%, /pa— 2p
2 16p 2 80p°]_; /om 2 80p*], 80p
-2./pa
2,/pa
8a%6., /pa 2
= 2a%6, /pa( ) 92a2§ /pa( )— 2a28, /pa(%) = 5 M J dm = ¢ J‘ (a. - z——p) dx
_2‘/;;
2./pa 2\/p_a
— x _ x> _ 2’pa < paypa 4\ _ 12—-4
_6[ax—12p i pa—2-6 X — o5 . = 26| 2a,/p —Top = 4ab, /pa( 12)_4a6,/pa( )
8aé,/pa M (8a26, /pa) 3
= . Soy=%= ( ) 2a, as claimed.
3 M 5 8ad, /pa ’
24+ a
4]. A generalization of Example 6 yields M, = ‘[ Y dm = J a2 sin 0 df = a%[—cos 9]:72 i’g
w/2-a

24+ a
= az[——cos("—2"+ a)+ cos(—725— a)] = a2(sin & +sin @) = 2a® sin o; M = J dm = J adf = a[H]:ﬁtz

wf2—o

M .

= a[(%+a)—(%—a>]= 2aa. Thus, ¥ = —I\T 23‘2:16? @_-aSma Nows=a(2a)and asin a =%
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a(2asin @) 5

= c=2asina Theny= Ty = 5%, as claimed.

42. (a) First, we note that §¥ = (distance from origin to AB) +d = g_s_ioy =acosa+d=>d= a(sin a —aa cos O‘)_

d_a.(sma—acosa)_sin a— ¢ Cos &

Moreover, h=a—acos o = ¢ = ala_acosa) — o-acwsa - The graphs below suggest that

sin @« —a cos & . 2

01334_ a—acosa 3 f .
1 0.7
fa) = U0 - acosa 06

200M 0.5 f@)= sina — a cosa

VIEW 0.4, « — acosa
03
02
01
¥ = 3 T ’ ¢

(b) Equation (9): % = —Sncl, g(_x %o%ogt @

a 0.2 0.4 0.6 0.8 1.0
f(e) | 0.666222 | 0.664879 | 0.662615 | 0.659389 | 0.655145

CHAPTER 5 PRACTICE EXERCISES

2
1. A(x):%(diameter)r":%(\/;(-—xz) :i’—(x——2\/§-x2+x4); LY
b 1 y=/x
a=0,b=1:>V=J A(x)dx:%J (x—2x%/2 4 x*) dx 7= x?
a 0
2 5] 1 4,1
=5[5-4+%] =164 +1) = s e 10 e
0
=97
— 280

o

(2yx-x)'= 7@(4)(—4;(\/;“2);

32v3(, 8, 2)_8V3 _83
== (1-§+3) =5 s -0 =55
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3. A =12 (dlameter)2 z (2 sin x — 2 cos x)*
y=2sinx
=T.4(sin®x — 2 si 2)=n(1- - Y
=7 4(sin?x — 2 sin x cos x + cos®x) = m(1 —sin 2x); =7 2 A
yay,

b 5m/4 ra
Y N /

—2// 4 \j ym=2008%

b:%:}V:J‘ Ax)dx =7 J (1 —sin 2x) dx
n/4

5T T
5m/4 coS 5 cos &
™ =7r[(57r+ 2)_(%_ 22)]212

w/4 K3 2

s‘lg

\
*®

a

+c’°sz_2&] 4

=[x

):: V6~ \/_ =36 — 24/6 /X + 36x — 4/6 532 + x2;

4. A(x) = (edge)’ = ((
6
J 36 — 24/6 /X + 36x — 4v/6x*/2 4 x2 ) dx

a=0,b=6 =>V= IA(x)dx_

[36:{ 241/6 -2 3/2+18x2—4\/§-%x5/2+%] =216-16-1/6/6-6+18-62-§ /61662 +5
0

=216 — 576 + 648 — 17528 +72 = 360 — 17528 — 1800 = 1728 _ 72

2
) 2 4
5. A(x)=%(d1ameter)2=-}(2\/§—x?> =%(4x—x5/2+)1{—6-); .y
b 4
Y= dx
a=0,b=4=>V=J A(x) dx:%J (4x—x5/2+§)dx
a 0 X3-4y
2_2.7/2, x5 !
7 & X =T
_4[2)( 2x +5_16] =2(32-32-8+2.32) Pt
=i”?T’f(1-§+%)=f:i)—f,)!(:as—zuH-14)=132T7r
6. A(x)= (edge)2 sm( ) \/_[2\/_ (- 2\/_)]
:@(4\/)_:)2:4\/§x;a=0,b=1 yi= dx
L *

b 1
= V= J A(x) dx = J 4 3xdx=[2\/§xz];
(o

a

=23
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7. (a) disk method:

b 1 1
2
V=I 7TR%(x) dx = J w(3x4) dx = J 9x® dx
a -1 -1

= 7r[x9]1_1 =27

(b) shell method:

b 1 1
_ shell \( shell _ 4) 3y — 0. 5 a4y x5
V= J 2”(radius)<height) dx = J 97x(3x1) dx = 27 -3 J x dx—21r-3[—
a 0 0

Note: The lower limit of integration is 0 rather than —1.

(c) shell method:
b

1 1
— shell shell —_ 3x° _x8
V= J 2 (radius)(height) J (1-x) (3x dx = 2”[ 5 -?—]

a -1

o)
| S |
o -
Il

3

(d) washer method:

b 1
R(x) =3, r(x)=3—3x4=3(1—x4)=>V=J 7[R2(x) —r?(x)] dx = J W[Q—Q(l—xf‘)z]dx
a -1

=9r | [1-(1-2x*+x8)]dx = 9

1
5 9
x4—x8)dx=91r[2%—%-]

L%r—n
L%H
—

(3]

8. (a) washer method:

b 2
R(x) = %, r(x) = -21-=> V= J [R?(x) —r?(x)] dx = { r[(%)z —(%)2] dx = ,r[_lsﬁx—5 —i—‘]z

a

1
_ [(5 16 _1)_ (_15_6_%)]=,,(_116_%+15_6+}i) 75(—2—10+64+5) =37
(b) shell method:

(c) shell method:
b 2 2
_ shell shell _ _ 4 1 _ 8 _4 X
V=27 I (radius)(height) dx =27 I (2 x)(;g 2) dx =27 J ( 53— 5 1+2)dx
a 1

=2w[-%+§-x+’§]j=27r[(—1+2-2+1)—(—4+4-1+l)]=3_7r

(d) disk method:
b

V= J [R¥(x) -r¥(x)]dx == jj [(%)2—(4—}%)2] dx:gﬁ—’r—lﬁ

a

(1 —2x~3 4 x'G) dx

3
o S N
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y

y=4
2 4
49T _ —2_x°| 497 $1_ 13 _1
=7 16”[’“’" 5]1 4 —t6n](2+—575) (1 +1-3)) d
_ 497 _qenp(l_ 1 1\ _497 167 40 9 _Tm _ 1037
=47 s6n(f gt 5) = - Tep (0 -1+32) = -2 3 y =4/
9. (a) disk method: y=1/2
5 5 9 5
=1rJ (\/x—l)2 dx=I (x-1) dx:r[%—x] iy Wb
1 1 1
_-|(25 1 _ (24 _4) =
= o[(B-5)-(4-1)] -~ (3-4) =
(b) washer method:
d 2
2
R(y) =5, r(y)=y2+1=>V=J m[R¥(y) —r(y)]dy =7 J [25—(y2+1) ]dy
c -2
° 32 _2

y

2 2 2
=7 I (25-y*—2y2—1)dy=n J (24—y4—2y2)dy=7r[24y——5——%-y3] =21r(
-2
-2 -2

_ 1\_32r 1088
=32n(3-2-3)=%3L(45-6-5)=

(S

(c) disk method:
d 2 2
Ry =5-(P+1)=t-y? o V= | @ dy= | -y  ay=r |
c -2 -2

= 7r[16y—8y

y

X=y2+1

10. (a) shell method:
d

4
2
_ shell shell — ¥y
V= J 2W(radius)(height) dy = J 27ry(y 4 ) dy
0

2
5
_ 64 32 2 1\_ 64m qs _
3+5]_2—27r(32 44+ 32) = ean(1-2+1) =815 -1043) =

5

(16 — 8y +y*) dy
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_27r 64=327l'

127 3
(b) shell method:
b

4 4 4
— hell hell _ _ 3 3
V= J 2”(rid?us)(hii§ht) dx = J 9mx(2y/% —x) dx = 27 J (2632 _x?) dx = 2#[%x5/2—%]0
a 0 0

=2n(3-02- ) =145

(c) shell method:

b 4 4
- hell \(" shell \ g, —
V= I 2w(rsad‘;us)<hii§ht) dx = J 2m(4 —x)(2/x —x) dx = 2 J (8x1/2 — 4x — 2x3/% 4 x2) dx
a 0 0

4
_ o |16 3/2 _o.2_4.5/2, x5 _ 4\ _ 64r
2”[3 S R 3] )=6en(1-3) =28

(d) shell method:
d 4 4 3
— shell shell — 2_,2.7Y
V= J 2”(radius)(height) J 2m(4 - Y)(y )dy =27 J (4y‘y -y +T) dy
c 0 0

4 4 -
4
= - 2_2,8,Y | = _2. - _8 — 327
=or J(4y 2y? +¥_ )dy 27r[2y 2y 16]0—27r(32 ? 64+16)_327r(2 3+1)_
0

=2r(1-8-32-2.304 8= 6an(f-1-4+

WD

0

11.

[—1,2]by [-1,2)

Use washer cross sections. A washer has inner radius r = 1, outer radius R = e/ 2, and area 7r(R2 —r2)
In3
=7(e*—1). The volume is J m(e*—1)dx = w[ex—x](l)n - 7(3—In3-1)=n(2—1n 3).
)

12. disk method:

w T iy
V=m J (2-sinx)?dx =7 J (4—4sin x+sin’x)dx =7 J (4—4sinx+l—_c§—82x)dx
0 0 0

...1r[4x+4cosx+2 %]” [(41r 4+——0> (0+4+0—0)]=7r(977r— )=%(97r—16)
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13. (a) disk method:
2 ) 2 5 2
V=7x (x2—2x) dx=m (x4—4x3+4x2)dx=1r x——x4+§x3 =7r(§2—16+g)
» 5 3 o [} 3
0 0

—16m 6 = 167
=107 (615 +10) = ¥

(b) disk method:

V=2r—n T [1+(2—20)f dx =277 J [1+2(x2—2x)+(x2—2x)2]dx

2
=27 - I (x4—4x3+6x2—4x+1)dx
0

(1+2¢2 —x+x*—4x®+4x?) dx =27 — 7

Oy

2

_ x5 .4 3 2 — 32 _ — s _ 27 _ 87
_27r—7r[?—x +2x° —-2x*+x _21r—7r(?—16+16 8+2)—27r—§(32—30)—27r——§——5—

0

(c) shell method:
2

b 2
V= J 2w(ri*é§gs)(hse};§gt)dx=2w J 2 —x)[—(x? - 2x)] dx = 2 J (2-x)(2x —x2) dx -
0 0

2 2 2
4
=27 J (4x-—2x2-—2x2+x3) dx =27 J (x3—4x2+4x) dx:2ﬂ'[%——%x3+2x2] =2w(4—§g2—+8)
0 0 0

— 2T a6 39y — 8T
=5 (36 —32) = 3
(d) disk method:

V=rn T [2—(:(2—2x)]2 dx— j 22dx == T [4—4(x2—2x)+(x2—2x)2]dx—81r

0

2 2
=7 J (4—4x2+8x+x4—4x3+4x2)dx—87r=7r I (x4—4x3+8x+4)dx—81r
] 0

2
27 40w __ 327

5
:w[%—x4+4x2+4x]0—87r=W(%g—16+16+8)—81r=%(32+40)—87r=—5————5—=—5—

14. disk method:
w/4 n/4 .
V=2r J 4 tan?x dx = 87 J (sec?x —1) dx = 8r[tan x — x]z)"/4 =2n(4—m)

0 0
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15. The volume cut out is equivalent to the volume of the solid
generated by revolving the region shown here about the
x-axis. Using the shell method:

] Vi

v= [ e (o) & = | om VAT (VA= ay
V3 V3
|

=27

2yv/4—y2 dy = -2 J Va-—y2d(4-y?)

0

=(—2vr)(§)[(4—y2)3’2];/5 =-41(1-8) =21

2
16. We rotate the region enclosed by the curve y = 12(1 - ‘llxl) and the x-axis around the x-axis. To find the

b 11/2 2 11/2
volume we use the disk method: V = 7rR2(x) dx = T 121 1 _4x? dx=m 12{ 1 - 4x dx
T - 121 - 121
& -11/2 -11/2

11/2
=121 .[ (1 )dx_127r[ 4x ]11/2 =24w[1—1—(—4—)(ll)3]=132r[1—(—‘-1—)(ll—2)]
363)_y, 2 363\ 2 363\ 1
-11/2
- 1321(1 -5) 264” = 887 ~ 276 in3

2 4

3/2

17, y=x1/2—xT=>g—§=%x_1/2—%xl/2:>(g—)}:) :%(,1—(-—2+x)=>L=J 1+1(1-2+4x) ax
1

4 4 4
/ 2 4
= L=J %(%_*_2_“{) dx=J %(x—1/2+x1/2) dx:J %(x_llz+x1/2)dx=%[2x1/2+%x3/2]
1

1
1

-

8 8
2 —2/3
—y2/3 L dx __2_-1/3 dx) _ 4x - dx
18. x=y = dy = 3% =><y) =H5— =>L..I 1+<dy) dy—J 1+—— 2/3dy
1

8  [0.2/3
9x"""+4 1 [ /og2/3 -1/3 — 0.2/3 _ao=1/3 _
=1Wd §J 9x2/3 + 4 (x )dx[u X" +4=du=6y" "dy; x=1=>u=13,
1 1
40 40
= = -1 1/2 3, - 1[2 3/2]" _ 1[ 3/2 3/2]~
x=8 = u=40] L_—Ju du = =35{%u = 551407/ - 13 ~ 7.634
—HT1s8 18[3 ]3 27

13
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2
_5 .6/5_ 5 A5 o4y _1.1/5 1 <~1/5 dy 1(.2/5 _ -2/5
19. y=q3% dx X =>( ) (x 2+x )

X
32 3
% P2 ex ) ax= | /354 ax
1

32
=I \/1+ 2/5 24x" 2/5)dx$
1

Hh—,s

w
g|~ g
DO|—
~~~
-
~
ot
+
]
I
Ll
~
o
N’
[
—
ot
(2]
~
ot
+
ot
'S
&
o
-
[y
il
DO
—_—
~
[=1 [
()
(=2
+
ot
[\\]

r'S
~—
—
[=21{w2

+
| Ot
o
Phasee

il
o=
—~

{JL)
—
ot

+

-3
ot
~—

(1260 + 450) = 1110 = 285

2
2
. m=—5smt+5 sin 5t andé—*Scost—5 cos 5t = (((ii)tt) +(‘i¥)

= \/(5 sin 5t — 5 sin t)2 + (5 cos t — 5 cos 5t)>

= 54/sin?5t — 2 sin t sin 5t +sin?t + cos?t — 2 cos t cos 5t + cos® 5t = 5/2 — 2(sin t sin 5t + cos t cos 5t)

= 5/Z(1 = cos 4t) = 5, /4(%)(1 _ cos 4t) = 10v/5in? 2t = 10]sin 2t|= 10 sin 2t (since 0 < t < 7/2)
w/2

= Length = J 10 sin 2t dt = (=5 cos 20)[/2 = (=5)(=1) = (~5)(1) = 10
0

d dy dx 2 _ V)
22 E=gtand F=2= (dt) ( ) Jen?2- 22 =21

1
=> Length = j 2v/ 2+1dt= \/5 + ln(\/i +1)~2.29559 (Integral evaluated on TI-92 Plus calculator.)
0

23. Since 3= dL =3z 1, f(x) must equal 1/1 + (f(x))?, 1+ (f(x))? = 2 +2 £f/(x) + (f(x))% and f'(x) = —x - % Then

f(x) = %x2 —% In x + C, and the requirement to pass through (1,1) means that C = ?—1 The function is
1
4

3_x2—2lnx+3
4~ 4 ’
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V3
2
24, x = t2 andy-—~3——t —-/3<t< \/—ﬁdx—ﬁ and j{—tz——l = Length = J \/(2t)2+(t2—1) dt
v V5 Vi g
3 ) 3 3 \/g
3
= J Vit+2t2+1dt = J \/(t2+1)2 dt = J (t2+1)dt :[%+t] =43
V5 Vs R e
25. The equipment alone: the force required to lift the equipment is equal to its weight =F;(x) = 100 N.
b 40
The work done is W, = J Fy(x) dx = J 100 dx = [100x]g0 = 4000 J; the rope alone: the force required
a 0

to lift the rope is equal to the weight of the rope paid out at elevation x => F,(x) = 0.8(40 — x). The work

i 0 2\ (0.8)(1600
] _08(402 40) LL =640 J;

b
2
done is W, = J F,(x) dx = J 0.8(40 —x) dx = 0.8[40}(—’—(——
a 0

21,

the total work is W = W, + W, = 4000 + 640 = 4640 J

26. The force required to lift the water is equal to the water’s weight, which varies steadily from 8 -800 lb to
8-400 1b over the 4750 ft elevation. When the truck is x ft off the base of Mt. Washington, the water weight is

b
F(x) = 8 -800 (2—2-4145705—3")= (6400)(1 — g255) 1b- The work done is W = J F(x) dx
a
e I 4750 3
—_— — X — —= -4
= J 6400(1 500)dx-—6400[ 2.9500]0 _6400<4750 & 4750>_( 3)(6400)(4750)
0

= 22,800,000 ft -1b

27. Force constant: F =kx = 20 =k-1 = k = 20 1b/ft; the work to stretch the spring 1 ft is

1

kxdx=k | xdx= [20 XT] =10 ft - 1b; the work to stretch the spring an additional foot is
0

w

L I = L

2
- = | —90(4_L1)=90(3)= .
W= | kxdx=k xdx_QO[z] =20(3-1)=20()=s0 -1
28. Force constant: F = kx => 200 = k(0.8) = k = 250 N/m; the 300 N force stretches the spring x =£
1.2 1.2
= % = 1.2 m; the work required to stretch the spring that far is then W = J F(x) dx = J 250x dx

= [125x%)3% = 125(1.2)* = 180 J
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29.

30.

31.

32.

We imagine the water divided into thin slabs by planes y
perpendicular to the y-axis at the points of a partition of the
interval [0,8]. The typical slab between the planes at y and

¥y + Ay has a volume of about AV = w(radius)?(thickness)
2
- r(g—y) =27 y2 Ay ft®. The force F(y) required to lift

this slab is equal to its weight: F(y) = 62.4 AV ";:’“mln Cross & ccﬂé‘lo
(62 4)(25)

16 y% Ay 1b. The distance through which F(y)

must act to lift this slab to the level 6 ft above the top is about (6 + 8 —y) ft, so the work done lifting the slab
(62. 4) (25)

is about AW = 7y2(14 —y) Ay ft -1b. The work done lifting all the slabs from y = 0 to y = 8 to the

. . 8 (62.4)(25)
level 6 ft above the top is approximately W ~ ) 1 ™ (14 — y) Ay ft -1b so the work to pump the
0

water is the limit of these Riemann sums as the norm of the partition goes to zero:

8 8 8
W= J —(62("1*23()25) ry?(14 - y) dy = 22080 J (1452 - ) dy = (62.4) (-2-1%1)[134 ¥ -{1—4]0
0 0

= (62. 4)(25”)(134 -8 ) 418,208.81 ft -1b

The same as in Exercise 29, but change the distance through which F(y) must act to (8 —y) rather than
(6 +8 —y). Also change the upper limit of integration from 8 to 5. The integral is:

5

W= l (G2 25 ) ay = (62.4) (2) l (8y2 — y®) dy = (62. 4)(257r)[%y3_§’£_]0

5

= (62.4) (215—6")(2 53 —5—) ~ 54,241.56 ft - 1b

The tank’s cross section looks like the figure in Exercise 29 with right edge given by x = 10y }’_' A typical
horizontal slab has volume AV = 7(radius)?(thickness) = 7r(2) Ay = i Ty2Ay. The force requ1red to lift this

slab is its weight: F(y) = 60 -Zy 2 Ay. The distance through which F(y) must act is (2 + 10 —y) ft, so the
10 10
T 12y3 y4 .
work to pump the liquid is W =60 | w(12— y) dy = 157 = -7 = 22,5007 ft -1b; the time needed
0
0

22,500 ft -1b

375 ft -Tb/sec ~~ 201 €

to empty the tank is

A typical horizontal slab has volume about AV = (20)(2x)Ay = (20) (24/16 — yg)Ay and the force required to
lift this slab is its weight F(y) = (57)(20)(2\/ 16 — y2) Ay. The distance through which F(y) must act is

(6 +4 —y) ft, so the work to pump the olive oil from the half-full tank is

W =57 J (10 — y)(20) (2/16 —y?) dy = 2880 J 101/16 —y2 dy + 1140 J(lG—y2)1/2(—-2y) dy

-4
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0
= 22,800 - (area of a quarter circle having radius 4) +%(1140)[ 16—y2)"%] " = (22,800)(4r) + 48,640

= 334,153.25 ft - 1b
b . 2 2
strip
33. F= J w -(depth)-L(y) dy = F=2 J (62.4)(2 — y)(2y) dy = 249.6 j (2y—y?)dy = 249.6[y2 -4
a 0 0

(249.6)(4-8) = (249.6) (3)=33281

N

b . 5/6 5/6
34. F= J W-(;:;&)-L(y) dy=>F= J 75( )(2y+4) dy =175 I (%y+%g-—2y —4y)d
a 0 0
5/6
1 [ ($-Fs-a)ov =iyt B <ol (B)- () -
_(75)(29—5—%-2——32_3‘{6) (9 216)(25 216 — 175-9 — 250 -3) = (73).(3%5)%118.63 Ib.

] 4 JF 4
St“p) L(y) dy=>F=62.4J (9—y)(2-7)dy=62.4j yi/2 - 3/2 dy
0

b
35. F=J. W‘(depth :
a
(6—2‘31(@ = 2196.48 Ib

—624[6y3/2 2 5/2] = (62.4)(6-8-2- 32) (6—5—)(48 5 —64) =

5)|ay
1.8) (7.6)
y = 6x N

36. F = 62.4 T 0-y[(s-%)-(
0

y =—6x + 48

6
=62T-4J (240 — 34y +y?) dy
[0}
—824(0400 17,2 LY -y 1440 — 612 4+ 72 X
=3 y—17y"+5 0——3'"( - +172) (6,0) { (8,0)
= 18,720 lb. 7.2)
37. g—izxzﬁ:dy—x2yl/2dx=>y 1/2 dy =x*dx = Jy_llz dy = sz.dx:~2y1/2 %34-.(3

N’IOI

1/2 x2 ’
= 2y —gx =C=>y= 6+C where C =

Y= e2X+3Y o dy = e2%e¥ dx = e dy = XX dx = J ¥ dy = J 2x dx

d
38- E —
X +C, = 3¢?* +2e73% = C, where C = —6C,

_le-3y 1.2
= 3e __2
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39.

40.

41.

42,

43.

44.

x%:ylnx:%le%{ldx: JdTyzjl%(de:In|y|=J%dx(Letu:lnxﬁdu:di’s)

2 Lon x)2+4C 1 2 1 2
=In|y|= J udu=u§-+Cl:-:1):(lnx)2+Cl =>|y|=e2( )40 _ Cr2tm %) :Cze2(1nx)

Lin x)2 Lo x)2
>y= :i:C2e2( x) =>y=Ce2( *) where Cz::eclandC= +C,

d - - . .
sir}x?d_zlz:ecosx V=% XY = ¥ dy =e“® *sinxdx = | ¢’ dy = | € *sinxdx

=>ey=Je°°s"sinxdx(Letu=cosx=>—du:sinxdx)=>ey=—J' e'du=e¥=—e"+C

= e¥ +e%*=C

2 2
ind \/}_cdx::dt: J ind ﬁdx: Idt=>2jsec2udu=Jdt=>2tanu=t+C:>2tan \/)—(=t+C,

Vx Ve

where u = \/)_( and du = %x_l/z dx

2.)dx __ _sint — | sint x2__1 2 _
(xcos t)dt_smt=>xdx_cos2tdt=>dex-l-————msztdti o) —cost+01:x =2sect+C,

where C =2C; and C > -2

Intersection points: 3 — x2=2x%=23x2-3=0

= 3(x—1)(x+1)=0=x=—-1orx=1. Applying the
symmetry argument analogous to the one used in Exercise
5.6.13, we find that X = 0. The typical vertical strip has

2 2 2
center of mass: (X,¥) = (x,w—x)) = (x,_’Est),

length: (3 —x2)—2x% = 3(1—x?), width: dx,
area: dA = 3(1 —x2) dx, and mass: dm =6-dA = 36(1 —x2) dx
= the moment about the x-axis is ¥ dm = %é(xz + 3)(1 —x2) dx = %—6(—){4 —2x% 4 3) dx

1 1
5 3
M = |Fdm=35 | (—x*—2x2+3)dx =36[-% - 2% 1 3x =35(—l-2+3)
2 2= %73 .
-1 -

. =66(1—%)=46

1 1

3

=%(_3_10+45)=§§—6;M= Jdm=36 J (1—x2)dx=36[x—x—]
-1 -1

M i e o
=>y= ﬁx = 5_2466' = % Therefore, the centroid is (%,¥) = (0,%).

Applying the symmetry argument analogous to the one used
in Exercise 5.7.13, we find that ¥ = 0. The typical vertical

2
strip has center of mass: (X,¥) = (x,%—), length: x2,
width: dx, area: dA = x? dx, mass: dm =6-dA = 6x% dx _
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= the moment about the x-axis is ¥ dm = -g—xz x? dx = x4 dx

2 2
3 M
M= J dm =46 j x2dx = 6[%—] = 26(23) =166 _, y= —M’S = 32. -6 :3 = —g Therefore, the centroid is

4+ x*
45. The typical vertical strip has: center of mass: (X,¥) =\ x, 5 4 ,
length: 4 — —, Width: dx, area: dA = (4 - ._.) dx,

2
mass: dm =46-dA = 6(4 _XT) dx = the moment about the x-axis is

(4 +X_2) 2
FYdm =6 ———2—4(4 —-3‘4—> dx = 3(16 - TB') dx; the moment about

. 4
2 3

the y-axis is i’dm=6(4—xT)-x dx=6<4x—54—) dx. Thus, M, = J?dm:-g— J
0

4 4
6T, 6411286 ~r _ o _ BY o a0z xt
5[64—T]_—5—, y—-dem _5J(4x 4)dx_6[2x —-1-]

0

x5
16x 5 16

4 4
3
_ — 166 M = _ Cx2Yan el 3] (1 64) _ 326
_6(32—16)_166,M-_Jdm_6 J (4 4)dx_6[4x 12]0_5 1 12)_ 2
o0

- -5 - M — 12
> X=g =353 =§2- and § = & =3 8326 63 ?2 Therefore, the centroid is (X,¥) = (% 15—2)
46. A typical horizontal strip has:

2
center of mass: (X,¥)= (y ;2y,y), length: 2y —y?,

width: dy, area: dA = (2y —y?)dy, mass: dm =§6-dA
=4 (2y - yz) dy; the moment about the x-axis is
Ydm=6-y-(2y - y2)dy = 6(2y2 - y3); the moment about the
2
y-axis is X dm = § (_y_-;_2y) (2y-y¥)dy = %(tly2 —y*)dy

2
4
= | ¥dm = 2_ ) gv=5/2,3_Y | =4(2.84_16)_5(16_16)_45-16 _46.
ﬁM"‘JYdeJ@y _Y)dy"s[i%y 4]0“‘5(3 2)=8(3-2)=5=%
0

485
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47.

48.

is (%,7) =(§,1).

. . o ~ o~ y2 + 2y
A typical horizontal strip has: center of mass: (X,¥)= Y 1,

2
length: 2y — y2, width: dy, area: dA = (2y - y2) dy,
ass: dm=6-dA =(1+y) (2y —y?) dy = the moment about the
x-axis is ¥ dm = y(1 +y)(2y —y?) dy = (2y? + 2y -y ~y*) dy

= (2y2 +y3— y4) dy; the moment about the y-axis is x
o 2
de=(y 5 y)(1+y)(2y y3)dy =2(4y2 - y*) (1 +y) dy
1(4,2 3_4_ 5 ~ f 2, .3_ .4 2.3, v y52
=342 +4y° -y -yP)dy > M, = | Ydm = | (2¥’+y3 -y dy=|sy*+ 5L
2 3V T F,
0
—(16 16 32\_46(1,1_2\_16 - 4. = |3
=(¥+18-2)=16(3+1-2)=f0+15-2 =L (11) =% ,My_dem
21 5 e, 4 v v _1f4:28, 00 25 28
= [ 3o ey -yt -y ay = g% 0:§(T+2 -%-%)
0 -
2 2
—4(4+2—%—%)=4(2—%)=24,M=Jd I(1+Y)(2y y?) dy I(2y+y2—y3)dy
0 0
2
3 4 M M
- ANED A 8_16)_8 s __¥y_(24)(3\-9 v=ox_(4)3\_4_11
—[Y+3 4]0‘(4+3 )=§ = x=3=(¥)(})=8 andv =57 =(15)(}) = 15 = 1§ Therefore,

A typical vertical strip has: center of mass: (%¥,¥) = (x, 3 /2) length: T?’/E’ width: dx,

area: dA = 3_ dx, mass: dm =6-dA =6- 3_ dx = the moment about the x-axis is

37 32
¥dm=—3_.-3_dx =-9_ dx; the moment about the y-axis is ¥ dm = x - —5= dx = —S— dx.
yam=o 3z 3z T3 y 37 A2
9 s 9 9
(a) M, = J%(%)dx:gz—&[—x-z—] =208,y - Jx( 3/2) dx = 36(2x1/2]] = 125;
1 T\ ! 1
9 08
M w, (%)
— 3 _dx = -1/2]7 _ =¥ 126 _ T =X 9 /_5
M_6Jx3/2dx— 66[x ] 46:>x_M_46_3andy_M =0
1
9 0 9 9
x(9 91 _ _ 2(_3 _[9e3/2]7 _ _ 3
(b) M, = I §(—3>d o-4] =4, = J x (W) dx =[2x%/2]] = 52, M = J x(w) dx
1 1 , 1
M M
=6l =125 x=gl=2=3andy=5r=1
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CHAPTER 5 ADDITIONAL EXERCISES-THEORY, EXAMPLES, APPLICATIONS

a X
1. V=7 J f(x)?dx=al+a=>7 J f(e)2dt =x*+xforall x>a = n[f(x)]2 =2x+1 = f(x) = 2X7-rl-1
0 0

b X
2. By the shell method we have 27b® = 27 J xf(x) dx = x3 = J tf(t) dt, where x > 0. By the Fundamental
0 0

Theorem of Calculus we have 3x? = xf(x) = f(x) = 3x.

3. s(x) =Cx = J VI+[E®?2 dt =Cx = 4/1+ ) =C = f'(x)
0

X .
= f(x) = J VC?2-1dt+k. Then f(0) =a=> a=0+4+k = f(x) =
0

Il

VCi-1forC>1

VC?-1dt+a = f(x) =xVC%~1+a,

O ey %

where C > 1.

.a
4. (a) The graph of f(x) = sin x traces out a path from (0,0) to (a,sin «) whose length is L = J V/1+cos?6 do.

The line segment from (0,0) to (o,sin a) has length \/(a —0)2 4 (sin a = 0)2 = V/ o® +sin®a. Since the

shortest distance between two points is the length of the straight line segment joining them, we have

immediately that J V1+cos?8df> Vo +sin?aif 0 < 5%
(b) In general, if y = f(x) is continuously differentiable and f(0) = 0, then J 1+ [f(t))? dt > \/a +12(e)

for a > 0.
1/2
5. Converting to pounds and feet, 2 1b/in = %% 11 1tn =24 Ib/ft. Thus, F =24x => W = J 24x dx
0

1/2
- 2 — : =1 .2 1 .2 W = 1 1
= [12X ]0 =3 ft-lb. Since W = §mv —imvl, where =3 ft '1b, m= (10 lb)(m)

= 3170 slugs, and v; = 0 ft/sec, we have 3 = (1)(320 Vo) = vo = 3-640. For the projectile height,

s = —16t2 +vgt (since s =0 at t = 0) = g—: =v =-32t + v, At the top of the ball’s path, v=0=t = %g—

Crl Vo2 Vo _3-640
and the height is s = —16(33) +vo(33) =2 =354 =30 1.
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6. The submerged triangular plate is depicted in the figure
at the right. The hypotenuse of the triangle has slope —1
= y—(-2) = —-(x—0) = x= —(y + 2) is an equation of

the hypotenuse. Using a typical horizontal strip, the fluid -2
" . ; . X = -(y * 2)
N [ strip \ ( strip
pressure is F = J (62.4) (depth) (length) dy
-+ + ) -6 (4,-6)
= [ oM ay=64 [ (Pra)ay
—6 —6

:62.4[%3+y2]_2=(62.4)[(—%+4)—( 208+ 36)] = (62.4) (2 - 32) = M(l—”—) ~ 2329.6 1b
-6

7. Consider a rectangular plate of length ¢ and width w.
The length is parallel with the surface of the fluid of

weight density w. The force on one side of the plate is y
0 210 5
F=w J (=y)(&) dy = —we[%—] = wl% The LI
—w -
“w .
) 9 one
average force on one side of the plate is F,, = & J (-y) dy -y side
w
-W

2
[— ——] ww . Therefore the force S"ezL = (yéw—)(éw)

= (the average pressure up and down) - (the area of the plate).

8. For y measured downward from the fluid’s surface the width of a horizontal strip is 2(y — 2) when

2<y<8anditis 12—2(y — 8) when 8 <y < 14. Using the hint given in the Exercise, the fluid force

8
on the plate is F = 2 J wiy(y—2)dy+2 | [8w; = wy(y — 8)}(14 —y) dy = (216w,) + (288w, + 72w,)
2

o —7

= 504w, + 72w,

dA=kA, A(0)=Ag=> 9 =Kkdt = ln A=kt+In Cor A=Ce
Apply the initial condition: A,y = Celor C = Ay Thus, A = Aoekt.
In

2

<>

k(24) = —0.0064.

After 24 hours, 9 remains so we can solve for k: 6A = Age implies k =

7 7

N

In &
The half-life is then obtained as follows: §Aq = Agel™*%% = ¢ = —— -2 = 251.4747 hours.

In 1
0006

To be reduced to % of original: %Ao = Aoe(—0.0064)t implies t = 7= = 108.3042 hours.
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10. ((111: =kP, P(0) =2, P(2) = 3. d?P =k dt implies In|P|=kt +C or P(t) = Clekt. P(0)=2=C, and
P(2) = 3 = 2¢% implies 3 = ¢™ or, k =1 n($) ~ 0.2027. Thus, P(t) = 2e>2°*"%. The year 1985
implies t = 6, so P(6) ~ 2°2027(®) = 9(3.3743) = 6.7487 million.

11. %_}1 = k(T - 70), T(0) = 200, T(1) = 100. %ﬁ =k dt implies In| T — 70| =kt + C, or T = 70 + C,e*.
T(0) = 200 = 70 + C, implies C, = 130. T(1) = 190 = 70 + 130e* implies 130e* = 120 or k = 1n(%) s —0.08.
Thus, T(t) = 60 + 130e %%, The 3:30 p.m. implies t = 3.5 and T(3.5) = 70 + 130e~*5(5)

~ 70 + 130(0.7557) = 168.25°F.
12. ‘31—1; = k(T — 70), T(0) = 94.6 (Set t = 0 at 11:30 p.m.), T(1) = 93.4
(Linear or separable)
j_k a o
kT =-T0k=p=ec =e K o eTHT = I —T0ke ™ dt = =0=e~** 4 C, or T = 70+ Ce**.
£ =0, T = 94.6: ‘
94.6 = 70 + Ce®, C = 24.6 = T = 70 + 24.6¢**
t=1,T=93.4:
93.4 = 70+ 24.6¢X = In 234 = In &k = k ~ —0.0500104206 = T = 70 4 24.6¢0.9500104208¢
T = 98.6, find t:
286 _ In 288
— —0.0500104206¢ —0.0500104206¢
98.6 = 70 + 24.6e = ln 546 = Ine ,ort= =0. 0500104208 ~ —3.01 hours.
Time of death = 11:30 p.m. minus 3 hours = 8:30 p.m.
n . _ _ M,
13. From the symmetry of y = 1 —x™, n even, about the y-axis for -1 <x < 1, we have Xx=0. To find y = o Ve

use the vertical strips technique. The typical strip has center of mass: (X,¥) = (x,1 _2xn), length: 1—x",

width: dx, area: dA =(1—x")dx, mass: dm =1-dA = (1=x2)dx. The moment of the strip about the

(1-x2) 1 (1-x2) 1 1 ggntl  yant1]t
x-axis is Y dm = ~—5—~dx => M, = j ————2—dx=‘2 J 5(1—2xn+x2n)dx=[x— X X ]
0

2 aFT Tl
] 0
-2 . 1 _(@+1)n+1)-22n+1)+(m+1) 2n’+3n+1—-4n—2+n+1_ on?
T " n+1"2n4+17 (n+1)(2n+1) (n+1)(2n+1) T (m+D@n+1)’

1 1 1 1
1
Also, M = J dA = J. (l—xn)dx=2 J (1—x“)dx=2[x—§l:-1]0=2(1—n_1’_1): 2n_ Therefore,
-1 -1 0

’fn_n-i-—l) is the location of the centroid. Asn — 00, ¥ — % so

«l

M g2 D n g
M " (n+1)(2n+1) 2n 2n+1 (

the limiting position of the centroid is (0,%).
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14. Align the telephone pole along the x-axis as shown in the y '8-(9 .l
accompanying figure. The slope of the top length of pole is (o h") (40 14.5)
'8x

(l“g?}é'sgr) 1.1,

f
=g ap (145 -9) = g2 = gy Thus, (o.-f-)u‘\\&r
4

(40, 145
. i a
= g%+ 87rl-180 87r(9 +80 )IS an equation of the ( ' * )
« b 40
line representing the top of the pole. Then, M, = | x-my? dx= [Lg 1,f
presenting the top of the pole. en, My = | x-my“dx=7 | x|z-(9+55% dx
0
40 ) b 40 5 40 )
=1 11 ‘M= 24x = 1 11 =1 11
=54 J x(9+80x) dx; M = J ry‘dx =7 J [8—7r(9+mx)] dx_641r I (9+80x) dx. Thus,
0 a 0 o
M
= T’Ix = 15269 2"37030 7 23.06 (using a calculator to compute the integrals). By symmetry about the x-axis, ¥ = 0

so the center of mass is about 23 ft from the top of the pole.

15. (a) Consider a single vertical strip with center of mass (X ,¥ ). If the plate lies to the right of the line, then
the moment of this strip about the line x =b is (X —b) dm = (X —b)§ dA = the plate’s first moment

about x = b is the integral I (x=Db)s dA = I 6x dA — J 6b dA = M, —bsA.
(b) If the plate lies to the left of the line, the moment of a vertical strip about the line x = b is

(b—% )dm =(b—% )6 dA = the plate’s first moment about x = b is J (b—x)6 dA = J b6 dA — [ ox dA
=béA - M,.

16. (a) By symmetry of the plate about the x-axis, ¥ = 0. A typical vertical strip has center of mass:
(%,¥) = (x,0), length: 4,/ax, width: dx, area: 4,/ax dx, mass: dm = 6§ dA = kx-4,/ax dx, for some

a
proportionality constant k. The moment of the strip about the y-axis is M, = .[?(' dm = I 4kx?, /ax dx

a a
a
= 4k,/a J x*/? dx = 4k\/5[%x7/2] = 4ka!/? -%a.”z 8_k7a__ Also, M J dm = J 4kx./ax dx
0
0 0
f 3/2 2.5/21* 1/2 2 a5/2 = : My 8ka® 5 _5
=4k\/5 I X dx=4k\/£[gx ] = 4ka 5 . Thus, X =<+ W =T-8k—3=7a
0 a
0

= (X,¥) = (Efr—a,O) is the center of mass.

y
=—+4a 2 2 2
(b) A typical horizontal strip has center of mass: (¥,¥) = (432 , ): (y -g:a ,0), length: a—E

’ 2 2
width: dy, area: (a - %;) dy, mass: dm =46 dA =|y| (a —Z—a) dy. Thus, M, = J ¥dm




17. (a)
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2a 2 0 2 2a
Toe-Ba= | o] (o)
—2a —2a 0
0 2a 0 2a
4 4 5 5
— A 2_ Yy |_as3, ¥ a3 _ Y
= J ( ' +a dy*[ ("' 4a)dy [ 3V +20a]_2a+[3y 20a]0
—2a 0
5 4 5 22 /2 4a2 2
—_8a%_ 325 8a' 325 o o _ [vam=— ¥y~ +4a” -y
-3 +2a+ 3 Oa_O’My_Jde" J ( 8a )|y[<a 4a)dy
—2a
2a 4 2a
_1 ( a —y> _ 1 J 44
= J 1y 1(v? +4a?){ ==L ) dy 7 ly|(16a% —y*) dy
—2a —-2a
. 0 1 2a 6 0 6 2a
- —164 + 5 d J 16 4_ .5 dy = 1 [-—84 2 y_] 1 [84 2__}’___]
32a2J( @Y +y)dy gy | (16 -y dy = o VT, TRl T,
~2a 0
_ 64a 2 _64a 6_328Y_ 1 2(00.6)_4_a.
~ 3242 [Sa Ha” -5 ]+32 [Sa I ] 1622 (32 3 )“ma? 3(820°) = 3"
2a 4 2a
M:Jdm: j 1Y|( a -y >dy:zla J |y|(4a.2__y2)dy
—2a —2a
1] 2a 4 0 4 2a
=115 J (—4a. y+y3 dY+7113I 4a%y —y3 dy 4a[ 2@2.4.3’_‘T _2a a[Qay —-Z-L
—2a 0

4 M
=2 -t(Qaz -4a% — 16Ta> = 21—3’(8:«14 —4a%) = 2a3. Therefore, X = T{X = (ia4)(2—i§) 23a and

M
y= Vx = 0 is the center of mass.

X+ \/az_xz)
3

V)
On [0,a] a typical vertical strip has center of mass: (X,¥) = (x, vb 5

length: Vb% —x?— /a2 - x?, width: dx, area: dA = (\/b2 —x2—+a2—x?) dx, mass: dm = § dA

=6(vVb2_x2— Vva?—x?)dx. On [a,b] a typical vertical strip has center of mass:
v he 2 . N
(X,9)= (x,—b_rx), length: v/b? —x?, width: dx, area: dA = v/b? —x? dx,

mass: dm = & dA = 6§ vb? —x? dx. Thus, M, = I?dm

b
%(\/b2—x2+\/32—x2)6(\/b2—x2—\/az—xz)dx-f- J %\/b2—x2§\/b2—x2 dx
a

il
o——p

% T [(bz—xz)—(az—xz)]dx+%T (b2 —x2) dx =

b
(b2 — a2) dx+g J (b2 —x2) dx
0 a

B
Oy
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g Sl f(7-)- (6]

a

3 3 3 3 3

3wt ) (3w +8)) =82 (22520 b, = [
b

x6(VbE—x2 — az—xz)dX+Jx6 b% —x2 dx

a

I
Oy

a a b
=6 I x(bz—xz)llz dx -6 j x(a2—x2)1/2 dx+6 J x(b2—x2 12 dx
4]

0 a
a a b
3/2 3 2
=:—[ (b —x ) / ] +é[2(a2—x2) /2] _é\:2(b2_x2 3/ ]
2 3 0o 2 3 o 2 3 a
3/2 3/2 /2 3/2 3 3 §5(p3—33
I T L N R e
M
We calculate the mass geometrically M—6A—6(7"}f2> 5(7%2):%’@2—3.2) Thus, x—my-
_s(b3-a3) 4 bl—a)_ 4 (b (b-2a)(a?+ab+b?) _4(a®+abtb?) 1o
ST (s W ¥ —a?) 31 (b—a)b+a) ~ 3m(atb) ’

yz&__4(a2+ab+b2)

M~  3n(a+b)

b? b% + b? 4 b? . e
(b) h im ;&%i:‘_.) (3%)(—+T+—b+_ (31‘_) 321 é(x,y) (Tb,2—,l!)) is the limiting

position of the centroid as a — b. This is the centroid of a circle of radius a (and we note the two circles
coincide when a = b).

18. Assume that the x and y intercepts of the triangular
corner are a and b, respectively. Then the equation
of the sloped edge of the triangle is y = b — (b/a)x.
The x-coordinate of the centroid must be greater than
6 in. because the triangular cutout will shift the
centroid to the right of the center of the square.
Therefore, we assume that X = 7 in. Usmg vertical
strips of area and noting that 2ab = 36 in.2, we
calculate X as follows:

fovy

T x(12——(b——2—x)) dx + J? 12x dx

144 — 36

[=]

2 _ba? | bal a2 2
6a ——2—+-3—a+12(72—7 _6a —( ab)a+3(2ab)a+864 6a2

—36a + 24a + 864
108 - 108 108

Solving for a and b gives a =9 in. and b = 8 in. Next we calculate ¥ using horizontal strips of area, but

first we express the equation of the sloped edge in terms of y as x =9 —(%)y.
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1

(o) ass [ ver o 2,500, ()

= = 2 3(8) 4 . .

y 8 TN e o

y 144 — 36 108 =g~ 7.11 in.
64

Therefore, the centroid is 5 in. from the bottom of the square.
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NOTES:
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TECHNOLOGY NOTES:
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