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Vectors and Tensors in a Finite-Dimensional
Space

1.1 Notion of the Vector Space

We start with the definition of the vector space over the field of real numbers
R.

Definition 1.1. A vector space is a set V of elements called vectors satisfying
the following axioms.

A. To every pair, x and y of vectors in V there corresponds a vector x + y,
called the sum of x and y, such that

(A.1) x + y = y + x (addition is commutative),

(A.2) (x + y) + z = x + (y + z) (addition is associative),

(A.3) there exists in V a unique vector zero 0 , such that 0 +x = x, ∀x ∈ V,

(A.4) to every vector x in V there corresponds a unique vector −x such that
x + (−x) = 0 .

B. To every pair α and x, where α is a scalar real number and x is a vector in
V, there corresponds a vector αx, called the product of α and x, such that

(B.1) α (βx) = (αβ) x (multiplication by scalars is associative),

(B.2) 1x = x,

(B.3) α (x + y) = αx + αy (multiplication by scalars is distributive with
respect to vector addition),

(B.4) (α + β) x = αx + βx (multiplication by scalars is distributive with
respect to scalar addition),
∀α, β ∈ R, ∀x, y ∈ V.

Examples of vector spaces.

1) The set of all real numbers R.
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Fig. 1.1. Geometric illustration of vector axioms in two dimensions

2) The set of all directional arrows in two or three dimensions. Applying the
usual definitions for summation, multiplication by a scalar, the negative
and zero vector (Fig. 1.1) one can easily see that the above axioms hold
for directional arrows.

3) The set of all n-tuples of real numbers R:

a =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a1

a2

.

.
an

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .

Indeed, the axioms (A) and (B) apply to the n-tuples if one defines addi-
tion, multiplication by a scalar and finally the zero tuple by

αa =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
αa1

αa2

.

.
αan

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ , a + b =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a1 + b1

a2 + b2

.

.
an + bn

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ , 0 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0
0
.
.
0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .

4) The set of all real-valued functions defined on a real line.
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1.2 Basis and Dimension of the Vector Space

Definition 1.2. A set of vectors x1, x2, . . . ,xn is called linearly dependent if
there exists a set of corresponding scalars α1, α2, . . . , αn ∈ R, not all zero,
such that

n∑
i=1

αixi = 0 . (1.1)

Otherwise, the vectors x1, x2, . . . ,xn are called linearly independent. In this
case, none of the vectors xi is the zero vector (Exercise 1.2).

Definition 1.3. The vector

x =
n∑

i=1

αixi (1.2)

is called linear combination of the vectors x1, x2, . . . ,xn, where αi ∈ R (i
= 1, 2, . . . , n).

Theorem 1.1. The set of n non-zero vectors x1, x2, . . . ,xn is linearly depen-
dent if and only if some vector xk (2 ≤ k ≤ n) is a linear combination of the
preceding ones xi (i = 1, . . . , k − 1).

Proof. If the vectors x1, x2, . . . ,xn are linearly dependent, then

n∑
i=1

αixi = 0 ,

where not all αi are zero. Let αk (2 ≤ k ≤ n) be the last non-zero number, so
that αi = 0 (i = k + 1, . . . , n). Then,

k∑
i=1

αixi = 0 ⇒ xk =
k−1∑
i=1

−αi

αk
xi.

Thereby, the case k = 1 is avoided because α1x1 = 0 implies that x1 = 0
(Exercise 1.1). Thus, the sufficiency is proved. The necessity is evident.

Definition 1.4. A basis of a vector space V is a set G of linearly independent
vectors such that every vector in V is a linear combination of elements of G.
A vector space V is finite-dimensional if it has a finite basis.

Within this book, we restrict our attention to finite-dimensional vector spaces.
Although one can find for a finite-dimensional vector space an infinite number
of bases, they all have the same number of vectors.
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Theorem 1.2. All the bases of a finite-dimensional vector space V contain
the same number of vectors.

Proof. Let G = {g1, g2, . . . , gn} and F = {f1, f2, . . . ,fm} be two arbitrary
bases of V with different numbers of elements, say m > n. Then, every vector
in V is a linear combination of the following vectors:

f1, g1, g2, . . . , gn. (1.3)

These vectors are non-zero and linearly dependent. Thus, according to The-
orem 1.1 we can find such a vector gk, which is a linear combination of the
preceding ones. Excluding this vector we obtain the set G′ by

f1, g1, g2, . . . , gk−1, gk+1, . . . , gn

again with the property that every vector in V is a linear combination of the
elements of G′. Now, we consider the following vectors

f1, f2, g1, g2, . . . , gk−1, gk+1, . . . , gn

and repeat the excluding procedure just as before. We see that none of the
vectors f i can be eliminated in this way because they are linearly independent.
As soon as all gi (i = 1, 2, . . . , n) are exhausted we conclude that the vectors

f1, f2, . . . ,fn+1

are linearly dependent. This contradicts, however, the previous assumption
that they belong to the basis F .

Definition 1.5. The dimension of a finite-dimensional vector space V is the
number of elements in a basis of V.

Theorem 1.3. Every set F = {f1, f2, . . . ,fn} of linearly independent vec-
tors in an n-dimensional vectors space V forms a basis of V. Every set of
more than n vectors is linearly dependent.

Proof. The proof of this theorem is similar to the preceding one. Let G =
{g1, g2, . . . , gn} be a basis of V. Then, the vectors (1.3) are linearly dependent
and non-zero. Excluding a vector gk we obtain a set of vectors, say G′, with
the property that every vector in V is a linear combination of the elements
of G′. Repeating this procedure we finally end up with the set F with the
same property. Since the vectors f i (i = 1, 2, . . . , n) are linearly independent
they form a basis of V. Any further vectors in V, say fn+1, fn+2, . . . are thus
linear combinations of F . Hence, any set of more than n vectors is linearly
dependent.

Theorem 1.4. Every set F = {f1, f2, . . . ,fm} of linearly independent vec-
tors in an n-dimensional vector space V can be extended to a basis.
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Proof. If m = n, then F is already a basis according to Theorem 1.3. If
m < n, then we try to find n − m vectors fm+1, fm+2, . . . ,fn, such that all
the vectors f i, that is, f1, f2, . . . ,fm, fm+1, . . . ,fn are linearly independent
and consequently form a basis. Let us assume, on the contrary, that only
k < n − m such vectors can be found. In this case, for all x ∈ V there exist
scalars α, α1, α2, . . . , αm+k, not all zero, such that

αx + α1f1 + α2f2 + . . . + αm+kfm+k = 0 ,

where α �= 0 since otherwise the vectors f i (i = 1, 2, . . . , m + k) would be
linearly dependent. Thus, all the vectors x of V are linear combinations of
f i (i = 1, 2, . . . , m + k). Then, the dimension of V is m + k < n, which con-
tradicts the assumption of this theorem.

1.3 Components of a Vector, Summation Convention

Let G = {g1, g2, . . . , gn} be a basis of an n-dimensional vector space V. Then,

x =
n∑

i=1

xigi, ∀x ∈ V. (1.4)

Theorem 1.5. The representation (1.4) with respect to a given basis G is
unique.

Proof. Let

x =
n∑

i=1

xigi and x =
n∑

i=1

yigi

be two different representations of a vector x, where not all scalar coefficients
xi and yi (i = 1, 2, . . . , n) are pairwise identical. Then,

0 = x + (−x) = x + (−1)x =
n∑

i=1

xigi +
n∑

i=1

(−yi
)
gi =

n∑
i=1

(
xi − yi

)
gi,

where we use the identity −x = (−1) x (Exercise 1.1). Thus, either the num-
bers xi and yi are pairwise equal xi = yi (i = 1, 2, . . . , n) or the vectors gi are
linearly dependent. The latter one is likewise impossible because these vectors
form a basis of V.

The scalar numbers xi (i = 1, 2, . . . , n) in the representation (1.4) are called
components of the vector x with respect to the basis G = {g1, g2, . . . , gn}.

The summation of the form (1.4) is often used in tensor analysis. For this
reason it is usually represented without the summation symbol in a short form
by
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x =
n∑

i=1

xigi = xigi (1.5)

referred to as Einstein’s summation convention. Accordingly, the summation is
implied if an index appears twice in a multiplicative term, once as a superscript
and once as a subscript. Such a repeated index (called dummy index) takes
the values from 1 to n (the dimension of the vector space in consideration).
The sense of the index changes (from superscript to subscript or vice versa)
if it appears under the fraction bar.

1.4 Scalar Product, Euclidean Space, Orthonormal Basis

The scalar product plays an important role in vector and tensor algebra. The
properties of the vector space essentially depend on whether and how the
scalar product is defined in this space.

Definition 1.6. The scalar (inner) product is a real-valued function x · y of
two vectors x and y in a vector space V, satisfying the following conditions.

C. (C.1) x · y = y · x (commutative rule),

(C.2) x · (y + z) = x · y + x · z (distributive rule),

(C.3) α (x · y) = (αx) · y = x · (αy) (associative rule for the multiplica-
tion by a scalar), ∀α ∈ R, ∀x, y, z ∈ V,

(C.4) x · x ≥ 0 ∀x ∈ V, x · x = 0 if and only if x = 0 .

An n-dimensional vector space furnished by the scalar product with properties
(C.1-C.4) is called Euclidean space En. On the basis of this scalar product
one defines the Euclidean length (also called norm) of a vector x by

‖x‖ =
√

x · x. (1.6)

A vector whose length is equal to 1 is referred to as unit vector.

Definition 1.7. Two vectors x and y are called orthogonal (perpendicular),
denoted by x⊥y, if

x · y = 0. (1.7)

Of special interest is the so-called orthonormal basis of the Euclidean space.

Definition 1.8. A basis E = {e1, e2, . . . ,en} of an n-dimensional Euclidean
space En is called orthonormal if

ei · ej = δij , i, j = 1, 2, . . . , n, (1.8)

where
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δij = δij = δi
j =

{
1 for i = j,

0 for i �= j
(1.9)

denotes the Kronecker delta.

Thus, the elements of an orthonormal basis represent pairwise orthog-
onal unit vectors. Of particular interest is the question of the existence of
an orthonormal basis. Now, we are going to demonstrate that every set of
m ≤ n linearly independent vectors in En can be orthogonalized and nor-
malized by means of a linear transformation (Gram-Schmidt procedure).
In other words, starting from linearly independent vectors x1, x2, . . . ,xm

one can always construct their linear combinations e1, e2, . . . ,em such that
ei · ej = δij (i, j = 1, 2, . . . , m). Indeed, since the vectors xi (i = 1, 2, . . . , m)
are linearly independent they are all non-zero (see Exercise 1.2). Thus, we can
define the first unit vector by

e1 =
x1

‖x1‖ . (1.10)

Next, we consider the vector

e′
2 = x2 − (x2 · e1)e1 (1.11)

orthogonal to e1. This holds for the unit vector e2 = e′
2/‖e′

2‖ as well. It
is also seen that ‖e′

2‖ =
√

e′
2 · e′

2 �= 0 because otherwise e′
2 = 0 and thus

x2 = (x2 · e1)e1 = (x2 · e1) ‖x1‖−1
x1. However, the latter result contradicts

the fact that the vectors x1 and x2 are linearly independent.
Further, we proceed to construct the vectors

e′
3 = x3 − (x3 · e2)e2 − (x3 · e1)e1, e3 =

e′
3

‖e′
3‖

(1.12)

orthogonal to e1 and e2. Repeating this procedure we finally obtain the set
of orthonormal vectors e1, e2, . . . ,em. Since these vectors are non-zero and
mutually orthogonal, they are linearly independent (see Exercise 1.6). In the
case m = n, this set represents, according to Theorem 1.3, the orthonormal
basis (1.8) in En.

With respect to an orthonormal basis the scalar product of two vectors
x = xiei and y = yiei in En takes the form

x · y = x1y1 + x2y2 + . . . + xnyn. (1.13)

For the length of the vector x (1.6) we thus obtain the Pythagoras formula

‖x‖ =
√

x1x1 + x2x2 + . . . + xnxn, x ∈ E
n. (1.14)
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1.5 Dual Bases

Definition 1.9. Let G = {g1, g2, . . . , gn} be a basis in the n-dimensional Eu-
clidean space E

n. Then, a basis G′ =
{
g1, g2, . . . , gn

}
of E

n is called dual to
G, if

gi · gj = δj
i , i, j = 1, 2, . . . , n. (1.15)

In the following we show that a set of vectors G′ =
{
g1, g2, . . . , gn

}
satisfying

the conditions (1.15) always exists, is unique and forms a basis in En.
Let E = {e1, e2, . . . ,en} be an orthonormal basis in En. Since G also

represents a basis, we can write

ei = αj
igj , gi = βj

i ej , i = 1, 2, . . . , n, (1.16)

where αj
i and βj

i (i = 1, 2, . . . , n) denote the components of ei and gi, respec-
tively. Inserting the first relation (1.16) into the second one yields

gi = βj
i αk

j gk, ⇒ 0 =
(
βj

i αk
j − δk

i

)
gk, i = 1, 2, . . . , n. (1.17)

Since the vectors gi are linearly independent we obtain

βj
i α

k
j = δk

i , i, k = 1, 2, . . . , n. (1.18)

Let further

gi = αi
je

j , i = 1, 2, . . . , n, (1.19)

where and henceforth we set ej = ej (j = 1, 2, . . . , n) in order to take the
advantage of Einstein’s summation convention. By virtue of (1.8), (1.16) and
(1.18) one finally finds

gi ·gj =
(
βk

i ek

)·(αj
l e

l
)

= βk
i αj

l δ
l
k = βk

i αj
k = δj

i , i, j = 1, 2, . . . , n. (1.20)

Next, we show that the vectors gi (i = 1, 2, . . . , n) (1.19) are linearly indepen-
dent and for this reason form a basis of En. Assume on the contrary that

aig
i = 0 ,

where not all scalars ai (i = 1, 2, . . . , n) are zero. The scalar product of this
relation with the vectors gj (j = 1, 2, . . . , n) leads to a contradiction. Indeed,
we obtain in this case

0 = aig
i · gj = aiδ

i
j = aj , j = 1, 2, . . . , n.

The next important question is whether the dual basis is unique. Let G′ ={
g1, g2, . . . , gn

}
and H′ =

{
h1, h2, . . . ,hn

}
be two arbitrary non-coinciding

bases in En, both dual to G = {g1, g2, . . . , gn}. Then,
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hi = hi
jg

j , i = 1, 2, . . . , n.

Forming the scalar product with the vectors gj (j = 1, 2, . . . , n) we can con-
clude that the bases G′ and H′ coincide:

δi
j = hi · gj =

(
hi

kgk
) · gj = hi

kδk
j = hi

j ⇒ hi = gi, i = 1, 2, . . . , n.

Thus, we have proved the following theorem.

Theorem 1.6. To every basis in an Euclidean space En there exists a unique
dual basis.

Relation (1.19) enables to determine the dual basis. However, it can also be
obtained without any orthonormal basis. Indeed, let gi be a basis dual to
gi (i = 1, 2, . . . , n). Then

gi = gijgj , gi = gijg
j , i = 1, 2, . . . , n. (1.21)

Inserting the second relation (1.21) into the first one yields

gi = gijgjkgk, i = 1, 2, . . . , n. (1.22)

Multiplying scalarly with the vectors gl we have by virtue of (1.15)

δi
l = gijgjkδk

l = gijgjl, i, l = 1, 2, . . . , n. (1.23)

Thus, we see that the matrices [gkj ] and
[
gkj

]
are inverse to each other such

that[
gkj

]
= [gkj ]

−1
. (1.24)

Now, multiplying scalarly the first and second relation (1.21) by the vectors
gj and gj (j = 1, 2, . . . , n), respectively, we obtain with the aid of (1.15) the
following important identities:

gij = gji = gi · gj , gij = gji = gi · gj , i, j = 1, 2, . . . , n. (1.25)

By definition (1.8) the orthonormal basis in En is self-dual, so that

ei = ei, ei · ej = δj
i , i, j = 1, 2, . . . , n. (1.26)

With the aid of the dual bases one can represent an arbitrary vector in En by

x = xigi = xig
i, ∀x ∈ E

n, (1.27)

where

xi = x · gi, xi = x · gi, i = 1, 2, . . . , n. (1.28)

Indeed, using (1.15) we can write
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x · gi =
(
xjgj

) · gi = xjδi
j = xi,

x · gi =
(
xjg

j
) · gi = xjδ

j
i = xi, i = 1, 2, . . . , n.

The components of a vector with respect to the dual bases are suitable for
calculating the scalar product. For example, for two arbitrary vectors x =
xigi = xig

i and y = yigi = yig
i we obtain

x · y = xiyjgij = xiyjg
ij = xiyi = xiy

i. (1.29)

The length of the vector x can thus be written by

‖x‖ =
√

xixjgij =
√

xixjgij =
√

xixi. (1.30)

Example. Dual basis in E3. Let G = {g1, g2, g3} be a basis of the
three-dimensional Euclidean space and

g = [g1g2g3] , (1.31)

where [• • •] denotes the mixed product of vectors. It is defined by

[abc] = (a × b) · c = (b × c) · a = (c × a) · b, (1.32)

where “×” denotes the vector (also called cross or outer) product of vectors.
Consider the following set of vectors:

g1 = g−1g2 × g3, g2 = g−1g3 × g1, g3 = g−1g1 × g2. (1.33)

It seen that the vectors (1.33) satisfy conditions (1.15), are linearly indepen-
dent (Exercise 1.11) and consequently form the basis dual to gi (i = 1, 2, 3).
Further, it can be shown that

g2 = |gij | , (1.34)

where |•| denotes the determinant of the matrix [•]. Indeed, with the aid of
(1.16)2 we obtain

g = [g1g2g3] =
[
βi

1eiβ
j
2ejβ

k
3ek

]
= βi

1β
j
2β

k
3 [eiejek] = βi

1β
j
2β

k
3 eijk =

∣∣βi
j

∣∣ , (1.35)

where eijk denotes the permutation symbol (also called Levi-Civita symbol).
It is defined by

eijk = eijk = [eiejek]

=

⎧⎪⎨⎪⎩
1 if ijk is an even permutation of 123,

−1 if ijk is an odd permutation of 123,
0 otherwise,

(1.36)
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where the orthonormal vectors e1, e2 and e3 are numerated in such a way
that they form a right-handed system. In this case, [e1e2e3] = 1.

On the other hand, we can write again using (1.16)2

gij = gi · gj =
3∑

k=1

βk
i βk

j .

The latter sum can be represented as a product of two matrices so that

[gij ] =
[
βj

i

] [
βj

i

]T
. (1.37)

Since the determinant of the matrix product is equal to the product of the
matrix determinants we finally have

|gij | =
∣∣∣βj

i

∣∣∣2 = g2. (1.38)

With the aid of the permutation symbol (1.36) one can represent the identities
(1.33) by

gi × gj = eijk g gk, i, j = 1, 2, 3, (1.39)

which also delivers

[gigjgk] = eijk g, i, j, k = 1, 2, 3. (1.40)

Similarly to (1.34) one can also show that (see Exercise 1.12)[
g1g2g3

]2
=
∣∣gij

∣∣ = g−2. (1.41)

Thus,

gi × gj =
eijk

g
gk, i, j = 1, 2, 3, (1.42)

which yields by analogy with (1.40)

[
gigjgk

]
=

eijk

g
, i, j, k = 1, 2, 3. (1.43)

Relations (1.39) and (1.42) permit a useful representation of the vector prod-
uct. Indeed, let a = aigi = aig

i and b = bjgj = bjg
j be two arbitrary vectors

in E3. Then,

a × b =
(
aigi

)× (
bjgj

)
= aibjeijkggk = g

∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

g1 g2 g3

∣∣∣∣∣∣ ,
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a × b =
(
aig

i
)× (

bjg
j
)

= aibje
ijkg−1gk =

1
g

∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

g1 g2 g3

∣∣∣∣∣∣ . (1.44)

For the orthonormal basis in E
3 relations (1.39) and (1.42) reduce to

ei × ej = eijkek = eijkek, i, j = 1, 2, 3, (1.45)

so that the vector product (1.44) can be written by

a × b =

∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

e1 e2 e3

∣∣∣∣∣∣ , (1.46)

where a = aie
i and b = bje

j .

1.6 Second-Order Tensor as a Linear Mapping

Let us consider a set Linn of all linear mappings of one vector into another
one within En. Such a mapping can be written as

y = Ax, y ∈ E
n, ∀x ∈ E

n, ∀A ∈ Linn. (1.47)

Elements of the set Linn are called second-order tensors or simply tensors.
Linearity of the mapping (1.47) is expressed by the following relations:

A (x + y) = Ax + Ay, ∀x, y ∈ E
n, ∀A ∈ Linn, (1.48)

A (αx) = α (Ax) , ∀x ∈ E
n, ∀α ∈ R, ∀A ∈ Linn. (1.49)

Further, we define the product of a tensor by a scalar number α ∈ R as

(αA) x = α (Ax) = A (αx) , ∀x ∈ E
n (1.50)

and the sum of two tensors A and B as

(A + B)x = Ax + Bx, ∀x ∈ E
n. (1.51)

Thus, properties (A.1), (A.2) and (B.1-B.4) apply to the set Linn. Setting in
(1.50) α = −1 we obtain the negative tensor by

−A = (−1)A. (1.52)

Further, we define a zero tensor 0 in the following manner

0x = 0 , ∀x ∈ E
n, (1.53)

so that the elements of the set Linn also fulfill conditions (A.3) and (A.4) and
accordingly form a vector space.
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The properties of second-order tensors can thus be summarized by

A + B = B + A, (addition is commutative), (1.54)

A + (B + C) = (A + B) + C, (addition is associative), (1.55)

0 + A = A, (1.56)

A + (−A) = 0, (1.57)

α (βA) = (αβ)A, (multiplication by scalars is associative), (1.58)

1A = A, (1.59)

α (A + B) = αA + αB, (multiplication by scalars is distributive

with respect to tensor addition), (1.60)

(α + β)A = αA + βA, (multiplication by scalars is distributive

with respect to scalar addition), ∀A,B,C ∈ Linn, ∀α, β ∈ R. (1.61)

Example. Vector product in E3. The vector product of two vectors in
E3 represents again a vector in E3

z = w × x, z ∈ E
3, ∀w, x ∈ E

3. (1.62)

According to (1.44) the mapping x → z is linear so that

w × (αx) = α (w × x) ,

w × (x + y) = w × x + w × y, ∀w, x, y ∈ E
3, ∀α ∈ R. (1.63)

Thus, it can be described by means of a tensor of the second order by

w × x = Wx, W ∈ Lin3, ∀x ∈ E
3. (1.64)

The tensor which forms the vector product by a vector w according to (1.64)
will be denoted in the following by ŵ. Thus, we write

w × x = ŵx. (1.65)

Example. Representation of a rotation by a second-order tensor.
A rotation of a vector a in E3 about an axis yields another vector r in E3. It
can be shown that the mapping a → r (a) is linear such that

r (αa) = αr (a) , r (a + b) = r (a) + r (b) , ∀α ∈ R, ∀a, b ∈ E
3. (1.66)

Thus, it can again be described by a second-order tensor as

r (a) = Ra, ∀a ∈ E
3, R ∈ Lin3. (1.67)

This tensor R is referred to as rotation tensor.
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Fig. 1.2. Finite rotation of a vector in E
3

Let us construct the rotation tensor which rotates an arbitrary vector a ∈
E3 about an axis specified by a unit vector e ∈ E3 (see Fig. 1.2). Decomposing
the vector a by a = a∗ + x in two vectors along and perpendicular to the
rotation axis we can write

ã = a∗ + x cosω + y sinω = a∗ + (a − a∗) cosω + y sin ω, (1.68)

where ω denotes the rotation angle. By virtue of the geometric identities

a∗ = (a · e)e = (e ⊗ e)a, y = e×x = e×(a − a∗) = e×a = êa, (1.69)

where “⊗” denotes the so-called tensor product (1.75) (see Sect. 1.7), we
obtain

ã = cosωa + sin ωêa + (1 − cosω) (e ⊗ e)a. (1.70)

Thus the rotation tensor can be given by

R = cosωI + sin ωê + (1 − cosω)e ⊗ e, (1.71)

where I denotes the so-called identity tensor (1.84) (see Sect. 1.7).

Example. The Cauchy stress tensor as a linear mapping of the
unit surface normal into the Cauchy stress vector. Let us consider a
body B in the current configuration at a time t. In order to define the stress
in some point P let us further imagine a smooth surface going through P and
separating B into two parts (Fig. 1.3). Then, one can define a force Δp and
a couple Δm resulting from the forces exerted by the (hidden) material on



1.6 Second-Order Tensor as a Linear Mapping 15

�

� � �

�

� � �

�

� � �

�

Fig. 1.3. Cauchy stress vector

one side of the surface ΔA and acting on the material on the other side of
this surface. Let the area ΔA tend to zero keeping P as inner point. A basic
postulate of continuum mechanics is that the limit

t = lim
ΔA→0

Δp

ΔA

exists and is final. The so-defined vector t is called Cauchy stress vector.
Cauchy’s fundamental postulate states that the vector t depends on the sur-
face only through the outward unit normal n. In other words, the Cauchy
stress vector is the same for all surfaces through P which have n as the nor-
mal in P. Further, according to Cauchy’s theorem the mapping n → t is linear
provided t is a continuous function of the position vector x at P. Hence, this
mapping can be described by a second-order tensor σ called the Cauchy stress
tensor so that

t = σn. (1.72)

On the basis of the “right” mapping (1.47) we can also define the “left”
one by the following condition

(yA) · x = y · (Ax) , ∀x ∈ E
n, A ∈ Linn. (1.73)

First, it should be shown that for all y ∈ En there exists a unique vector yA ∈
En satisfying the condition (1.73) for all x ∈ En. Let G = {g1, g2, . . . , gn}
and G′ =

{
g1, g2, . . . , gn

}
be dual bases in En. Then, we can represent two

arbitrary vectors x, y ∈ En, by x = xig
i and y = yig

i. Now, consider the
vector

yA = yi

[
gi · (Agj

)]
gj .

It holds: (yA) ·x = yixj

[
gi · (Agj

)]
. On the other hand, we obtain the same

result also by
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y · (Ax) = y · (xjAgj
)

= yixj

[
gi · (Agj

)]
.

Further, we show that the vector yA, satisfying condition (1.73) for all x ∈ En,
is unique. Conversely, let a, b ∈ En be two such vectors. Then, we have

a · x = b · x ⇒ (a − b) · x = 0, ∀x ∈ E
n ⇒ (a − b) · (a − b) = 0,

which by axiom (C.4) implies that a = b.
Since the order of mappings in (1.73) is irrelevant we can write them

without brackets and dots as follows

y · (Ax) = (yA) · x = yAx. (1.74)

1.7 Tensor Product, Representation of a Tensor with
Respect to a Basis

The tensor product plays an important role since it enables to construct a
second-order tensor from two vectors. In order to define the tensor product
we consider two vectors a, b ∈ En. An arbitrary vector x ∈ En can be mapped
into another vector a (b · x) ∈ E

n. This mapping is denoted by symbol “⊗”
as a ⊗ b. Thus,

(a ⊗ b)x = a (b · x) , a, b ∈ E
n, ∀x ∈ E

n. (1.75)

It can be shown that the mapping (1.75) fulfills the conditions (1.48-1.50) and
for this reason is linear. Indeed, by virtue of (B.1), (B.4), (C.2) and (C.3) we
can write

(a ⊗ b) (x + y) = a [b · (x + y)] = a (b · x + b · y)

= (a ⊗ b)x + (a ⊗ b)y, (1.76)

(a ⊗ b) (αx) = a [b · (αx)] = α (b · x)a

= α (a ⊗ b)x, a, b ∈ E
n, ∀x, y ∈ E

n, ∀α ∈ R. (1.77)

Thus, the tensor product of two vectors represents a second-order tensor.
Further, it holds

c ⊗ (a + b) = c ⊗ a + c ⊗ b, (a + b) ⊗ c = a ⊗ c + b ⊗ c, (1.78)

(αa) ⊗ (βb) = αβ (a ⊗ b) , a, b, c ∈ E
n, ∀α, β ∈ R. (1.79)

Indeed, mapping an arbitrary vector x ∈ En by both sides of these relations
and using (1.51) and (1.75) we obtain

c ⊗ (a + b)x = c (a · x + b · x) = c (a · x) + c (b · x)

= (c ⊗ a)x + (c ⊗ b)x = (c ⊗ a + c ⊗ b)x,
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[(a + b) ⊗ c]x = (a + b) (c · x) = a (c · x) + b (c · x)

= (a ⊗ c) x + (b ⊗ c) x = (a ⊗ c + b ⊗ c)x,

(αa) ⊗ (βb) x = (αa) (βb · x)

= αβa (b · x) = αβ (a ⊗ b)x, ∀x ∈ E
n.

For the “left” mapping by the tensor a⊗b we obtain from (1.73) (see Exercise
1.19)

y (a ⊗ b) = (y · a) b, ∀y ∈ E
n. (1.80)

We have already seen that the set of all second-order tensors Linn repre-
sents a vector space. In the following, we show that a basis of Linn can be
constructed with the aid of the tensor product (1.75).

Theorem 1.7. Let F = {f1, f2, . . . ,fn} and G = {g1, g2, . . . , gn} be two
arbitrary bases of En. Then, the tensors f i ⊗ gj (i, j = 1, 2, . . . , n) represent
a basis of Linn. The dimension of the vector space Linn is thus n2.

Proof. First, we prove that every tensor in Linn represents a linear combi-
nation of the tensors f i ⊗ gj (i, j = 1, 2, . . . , n). Indeed, let A ∈ Linn be an
arbitrary second-order tensor. Consider the following linear combination

A′ =
(
f iAgj

)
f i ⊗ gj ,

where the vectors f i and gi (i = 1, 2, . . . , n) form the bases dual to F and G,
respectively. The tensors A and A′ coincide if and only if

A′x = Ax, ∀x ∈ E
n. (1.81)

Let x = xjg
j . Then

A′x =
(
f iAgj

)
f i ⊗ gj

(
xkgk

)
=
(
f iAgj

)
f ixkδk

j = xj

(
f iAgj

)
f i.

On the other hand, Ax = xjAgj . By virtue of (1.27-1.28) we can repre-
sent the vectors Agj (j = 1, 2, . . . , n) with respect to the basis F by Agj =[
f i · (Agj

)]
f i =

(
f iAgj

)
f i (j = 1, 2, . . . , n). Hence,

Ax = xj

(
f iAgj

)
f i.

Thus, it is seen that condition (1.81) is satisfied for all x ∈ En. Finally,
we show that the tensors f i ⊗ gj (i, j = 1, 2, . . . , n) are linearly independent.
Otherwise, there would exist scalars αij (i, j = 1, 2, . . . , n), not all zero, such
that

αijf i ⊗ gj = 0.

The right mapping of gk (k = 1, 2, . . . , n) by this tensor equality yields then:
αikf i = 0 (k = 1, 2, . . . , n). This contradicts, however, the fact that the vec-
tors fk (k = 1, 2, . . . , n) form a basis and are therefore linearly independent.
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For the representation of second-order tensors we will in the following use
primarily the bases gi⊗gj , gi⊗gj , gi⊗gj or gi⊗gj (i, j = 1, 2, . . . , n). With
respect to these bases a tensor A ∈ Linn is written as

A = Aijgi ⊗ gj = Aijg
i ⊗ gj = Ai

·jgi ⊗ gj = A j
i·g

i ⊗ gj (1.82)

with the components (see Exercise 1.20)

Aij = giAgj , Aij = giAgj ,

Ai
·j = giAgj , A j

i· = giAgj , i, j = 1, 2, . . . , n. (1.83)

Note, that the subscript dot indicates the position of the above index. For
example, for the components Ai

·j , i is the first index while for the components
A i

j·, i is the second index.
Of special importance is the so-called identity tensor I. It is defined by

Ix = x, ∀x ∈ E
n. (1.84)

With the aid of (1.25), (1.82) and (1.83) the components of the identity tensor
can be expressed by

Iij = giIgj = gi · gj = gij , Iij = giIgj = gi · gj = gij ,

Ii·j = I j
i· = Iij = giIgj = giIgj = gi · gj = gi · gj = δi

j , (1.85)

where i, j = 1, 2, . . . , n. Thus,

I = gijg
i ⊗ gj = gijgi ⊗ gj = gi ⊗ gi = gi ⊗ gi. (1.86)

It is seen that the components (1.85)1,2 of the identity tensor are given by
relation (1.25). In view of (1.30) they characterize metric properties of the
Euclidean space and are referred to as metric coefficients. For this reason, the
identity tensor is frequently called metric tensor. With respect to an orthonor-
mal basis relation (1.86) reduces to

I =
n∑

i=1

ei ⊗ ei. (1.87)

1.8 Change of the Basis, Transformation Rules

Now, we are going to clarify how the vector and tensor components transform
with the change of the basis. Let x be a vector and A a second-order tensor.
According to (1.27) and (1.82)

x = xigi = xig
i, (1.88)
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A = Aijgi ⊗ gj = Aijg
i ⊗ gj = Ai

·jgi ⊗ gj = A j
i·g

i ⊗ gj . (1.89)

With the aid of (1.21) and (1.28) we can write

xi = x · gi = x · (gijgj

)
= xjg

ji, xi = x · gi = x · (gijg
j
)

= xjgji, (1.90)

where i = 1, 2, . . . , n. Similarly we obtain by virtue of (1.83)

Aij = giAgj = giA
(
gjkgk

)
=
(
gilgl

)
A
(
gjkgk

)
= Ai

·kgkj = gilAlkgkj , (1.91)

Aij = giAgj = giA
(
gjkgk

)
=
(
gilg

l
)
A
(
gjkgk

)
= A k

i· gkj = gilAlkgkj , (1.92)

where i, j = 1, 2, . . . , n. The transformation rules (1.90-1.92) hold not only for
dual bases. Indeed, let gi and ḡi (i = 1, 2, . . . , n) be two arbitrary bases in
En, so that

x = xigi = x̄iḡi, (1.93)

A = Aijgi ⊗ gj = Āij
ḡi ⊗ ḡj . (1.94)

By means of the relations

gi = aj
i ḡj , i = 1, 2, . . . , n (1.95)

one thus obtains

x = xigi = xiaj
i ḡj ⇒ x̄j = xiaj

i , j = 1, 2, . . . , n, (1.96)

A = Aijgi ⊗ gj = Aij
(
ak

i ḡk

)⊗ (
al

j ḡl

)
= Aijak

i al
j ḡk ⊗ ḡl

⇒ Ākl = Aijak
i al

j , k, l = 1, 2, . . . , n. (1.97)

1.9 Special Operations with Second-Order Tensors

In Sect. 1.6 we have seen that the set Linn represents a finite-dimensional
vector space. Its elements are second-order tensors that can be treated as
vectors in En2

with all the operations specific for vectors such as summation,
multiplication by a scalar or a scalar product (the latter one will be defined
for second-order tensors in Sect. 1.10). However, in contrast to conventional
vectors in the Euclidean space, for second-order tensors one can additionally
define some special operations as for example composition, transposition or
inversion.
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Composition (simple contraction). Let A,B ∈ Linn be two second-
order tensors. The tensor C = AB is called composition of A and B if

Cx = A (Bx) , ∀x ∈ E
n. (1.98)

For the left mapping (1.73) one can write

y (AB) = (yA)B, ∀y ∈ E
n. (1.99)

In order to prove the last relation we use again (1.73) and (1.98):

y (AB)x = y · [(AB)x] = y · [A (Bx)]

= (yA) · (Bx) = [(yA)B] · x, ∀x ∈ E
n.

The composition of tensors (1.98) is generally not commutative so that AB �=
BA. Two tensors A and B are called commutative if on the contrary AB =
BA. Besides, the composition of tensors is characterized by the following
properties (see Exercise 1.24):

A0 = 0A = 0, AI = IA = A, (1.100)

A (B + C) = AB + AC, (B + C)A = BA + CA, (1.101)

A (BC) = (AB)C. (1.102)

For example, the distributive rule (1.101)1 can be proved as follows

[A (B + C)]x = A [(B + C)x] = A (Bx + Cx) = A (Bx) + A (Cx)

= (AB)x + (AC)x = (AB + AC)x, ∀x ∈ E
n.

For the tensor product (1.75) the composition (1.98) yields

(a ⊗ b) (c ⊗ d) = (b · c)a ⊗ d, a, b, c, d ∈ E
n. (1.103)

Indeed, by virtue of (1.75), (1.77) and (1.98)

(a ⊗ b) (c ⊗ d)x = (a ⊗ b) [(c ⊗ d)x] = (d · x) (a ⊗ b) c

= (d · x) (b · c)a = (b · c) (a ⊗ d)x

= [(b · c)a ⊗ d] x, ∀x ∈ E
n.

Thus, we can write

AB = AikB j
k·gi ⊗ gj = AikBkjgi ⊗ gj

= Ai
·kBk

·jgi ⊗ gj = A k
i· Bkjg

i ⊗ gj , (1.104)

where A and B are given in the form (1.82).

Powers, polynomials and functions of second-order tensors. On
the basis of the composition (1.98) one defines by
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Am = AA . . .A︸ ︷︷ ︸
m times

, m = 1, 2, 3 . . . , A0 = I (1.105)

powers (monomials) of second-order tensors characterized by the following
evident properties

AkAl = Ak+l,
(
Ak

)l
= Akl, (1.106)

(αA)k = αkAk, k, l = 0, 1, 2 . . . (1.107)

With the aid of the tensor powers a polynomial of A can be defined by

g (A) = a0I + a1A + a2A2 + . . . + amAm =
m∑

k=0

akAk. (1.108)

g (A): Linn →Linn represents a tensor function mapping one second-order
tensor into another one within Linn. By this means one can define various
tensor functions. Of special interest is the exponential one

exp (A) =
∞∑

k=0

Ak

k!
(1.109)

given by the infinite power series.

Transposition. The transposed tensor AT is defined by:

ATx = xA, ∀x ∈ E
n, (1.110)

so that one can also write

Ay = yAT, xAy = yATx, ∀x, y ∈ E
n. (1.111)

Indeed,

x · (Ay) = (xA) · y = y · (ATx
)

= yATx = x · (yAT
)
, ∀x, y ∈ E

n.

Consequently,(
AT

)T
= A. (1.112)

Transposition represents a linear operation over a second-order tensor since

(A + B)T = AT + BT (1.113)

and

(αA)T = αAT, ∀α ∈ R. (1.114)

The composition of second-order tensors is transposed by
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(AB)T = BTAT. (1.115)

Indeed, in view of (1.99) and (1.110)

(AB)T x = x (AB) = (xA)B = BT (xA) = BTATx, ∀x ∈ E
n.

For the tensor product of two vectors a, b ∈ En we further obtain by use of
(1.75) and (1.80)

(a ⊗ b)T = b ⊗ a. (1.116)

This ensures the existence and uniqueness of the transposed tensor. Indeed,
every tensor A in Linn can be represented with respect to the tensor product
of the basis vectors in En in the form (1.82). Hence, considering (1.116) we
have

AT = Aijgj ⊗ gi = Aijg
j ⊗ gi = Ai

·jg
j ⊗ gi = A j

i·gj ⊗ gi, (1.117)

or

AT = Ajigi ⊗ gj = Ajig
i ⊗ gj = Aj

·ig
i ⊗ gj = A i

j·gi ⊗ gj . (1.118)

Comparing the latter result with the original representation (1.82) one ob-
serves that the components of the transposed tensor can be expressed by(

AT
)
ij

= Aji,
(
AT

)ij
= Aji, (1.119)

(
AT

) j

i· = Aj
·i = gjkA l

k·gli,
(
AT

)i
·j = A i

j· = gjkAk
·lg

li. (1.120)

For example, the last relation results from (1.83) and (1.111) within the fol-
lowing steps(

AT
)i
·j = giATgj = gjAgi = gj

(
Ak

·lgk ⊗ gl
)

gi = gjkAk
·lg

li.

According to (1.119) the homogeneous (covariant or contravariant) compo-
nents of the transposed tensor can simply be obtained by reflecting the matrix
of the original components from the main diagonal. It does not, however, hold
for the mixed components (1.120).

The transposition operation (1.110) gives rise to the definition of symmet-
ric MT = M and skew-symmetric second-order tensors WT = −W.

Obviously, the identity tensor is symmetric

IT = I. (1.121)

Indeed,

xIy = x · y = y · x = yIx = xITy, ∀x, y ∈ E
n.
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Inversion. Let

y = Ax. (1.122)

A tensor A ∈ Linn is referred to as invertible if there exists a tensor A−1 ∈
Linn satisfying the condition

x = A−1y, ∀x ∈ E
n. (1.123)

The tensor A−1 is called inverse of A. The set of all invertible tensors Invn ={
A ∈ Linn : ∃A−1

}
forms a subset of all second-order tensors Linn.

Inserting (1.122) into (1.123) yields

x = A−1y = A−1 (Ax) =
(
A−1A

)
x, ∀x ∈ E

n

and consequently

A−1A = I. (1.124)

Theorem 1.8. A tensor A is invertible if and only if Ax = 0 implies that
x = 0 .

Proof. First we prove the sufficiency. To this end, we map the vector equation
Ax = 0 by A−1. According to (1.124) it yields: 0 = A−1Ax = Ix = x. To
prove the necessity we consider a basis G = {g1, g2, . . . , gn} in En. It can be
shown that the vectors hi = Agi (i = 1, 2, . . . , n) form likewise a basis of En.
Conversely, let these vectors be linearly dependent so that aihi = 0 , where not
all scalars ai (i = 1, 2, . . . , n) are zero. Then, 0 = aihi = aiAgi = Aa, where
a = aigi �= 0 , which contradicts the assumption of the theorem. Now, consider
the tensor A′ = gi ⊗ hi, where the vectors hi are dual to hi (i = 1, 2, . . . , n).
One can show that this tensor is inverse to A, such that A′ = A−1. Indeed,
let x = xigi be an arbitrary vector in En. Then, y = Ax = xiAgi = xihi

and therefore A′y = gi ⊗ hi
(
xjhj

)
= gix

jδi
j = xigi = x.

Conversely, it can be shown that an invertible tensor A is inverse to A−1 and
consequently

AA−1 = I. (1.125)

For the proof we again consider the bases gi and Agi (i = 1, 2, . . . , n). Let
y = yiAgi be an arbitrary vector in En. Let further x = A−1y = yigi in
view of (1.124). Then, Ax = yiAgi = y which implies that the tensor A is
inverse to A−1.

Relation (1.125) implies the uniqueness of the inverse. Indeed, if A−1 and
Ã−1 are two distinct tensors both inverse to A then there exists at least one
vector y ∈ En such that A−1y �= Ã−1y. Mapping both sides of this vector
inequality by A and taking (1.125) into account we immediately come to the
contradiction.
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By means of (1.115), (1.121) and (1.125) we can write (see Exercise 1.37)(
A−1

)T
=
(
AT

)−1
= A−T. (1.126)

The composition of two arbitrary invertible tensors A and B is inverted by

(AB)−1 = B−1A−1. (1.127)

Indeed, let

y = ABx.

Mapping both sides of this vector identity by A−1 and then by B−1, we obtain
with the aid of (1.124)

x = B−1A−1y, ∀x ∈ E
n.

On the basis of transposition and inversion one defines the so-called orthogonal
tensors. They do not change after consecutive transposition and inversion and
form the following subset of Linn:

Orthn =
{
Q ∈ Linn : Q = Q−T

}
. (1.128)

For orthogonal tensors we can write in view of (1.124) and (1.125)

QQT = QTQ = I, ∀Q ∈ Orthn. (1.129)

For example, one can show that the rotation tensor (1.71) is orthogonal. To
this end, we complete the vector e defining the rotation axis (Fig. 1.2) to
an orthonormal basis {e, q, p} such that e = q × p. Then, using the vector
identity (see Exercise 1.15)

p (q · x) − q (p · x) = (q × p) × x, ∀x ∈ E
3 (1.130)

we can write

ê = p ⊗ q − q ⊗ p. (1.131)

The rotation tensor (1.71) takes thus the form

R = cosωI + sin ω (p ⊗ q − q ⊗ p) + (1 − cosω) (e ⊗ e) . (1.132)

Hence,

RRT = [cosωI + sin ω (p ⊗ q − q ⊗ p) + (1 − cosω) (e ⊗ e)]

[cosωI− sin ω (p ⊗ q − q ⊗ p) + (1 − cosω) (e ⊗ e)]

= cos2 ωI + sin2 ω (e ⊗ e) + sin2 ω (p ⊗ p + q ⊗ q) = I.
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It is interesting that the exponential function (1.109) of a skew-symmetric
tensors represents an orthogonal tensor. Indeed, keeping in mind that a skew-
symmetric tensor W commutes with its transposed counterpart WT = −W
and using the identities exp (A + B) = exp (A) exp (B) for commutative ten-
sors (Exercise 1.27) and

(
Ak

)T =
(
AT

)k for integer k (Exercise 1.35) we can
write

I = exp (0) = exp (W − W) = exp
(
W + WT

)
= exp (W) exp

(
WT

)
= exp (W) [exp (W)]T , ∀W ∈ Skewn. (1.133)

1.10 Scalar Product of Second-Order Tensors

Consider two second-order tensors a⊗b and c⊗d given in terms of the tensor
product (1.75). Their scalar product can be defined in the following manner:

(a ⊗ b) : (c ⊗ d) = (a · c) (b · d) , a, b, c, d ∈ E
n. (1.134)

It leads to the following identity (Exercise 1.39):

c ⊗ d : A = cAd = dATc. (1.135)

For two arbitrary tensors A and B given in the form (1.82) we thus obtain

A : B = AijBij = AijBij = Ai
·jB

j
i· = A j

i·B
i
·j . (1.136)

Similar to vectors the scalar product of tensors is a real function characterized
by the following properties (see Exercise 1.40)

D. (D.1) A : B = B : A (commutative rule),

(D.2) A : (B + C) = A : B + A : C (distributive rule),

(D.3) α (A : B) = (αA) : B = A : (αB) (associative rule for multiplica-
tion by a scalar), ∀A,B ∈ Linn, ∀α ∈ R,

(D.4) A : A ≥ 0 ∀A ∈ Linn, A : A = 0 if and only if A = 0.

We prove for example the property (D.4). To this end, we represent the tensor
A with respect to an orthonormal basis (1.8) in En as: A = Aijei ⊗ ej =
Aije

i ⊗ ej , where Aij = Aij , (i, j = 1, 2, . . . , n), since ei = ei (i = 1, 2, . . . , n).
Keeping (1.136) in mind we then obtain:

A : A = AijAij =
n∑

i,j=1

AijAij =
n∑

i,j=1

(
Aij

)2 ≥ 0.

Using this important property one can define the norm of a second-order
tensor by:



26 1 Vectors and Tensors in a Finite-Dimensional Space

‖A‖ = (A : A)1/2
, A ∈ Linn. (1.137)

For the scalar product of tensors one of which is given by a composition we
can write

A : (BC) =
(
BTA

)
: C =

(
ACT

)
: B. (1.138)

We prove this identity first for the tensor products:

(a ⊗ b) : [(c ⊗ d) (e ⊗ f )] = (d · e) [(a ⊗ b) : (c ⊗ f)]

= (d · e) (a · c) (b · f ) ,[
(c ⊗ d)T (a ⊗ b)

]
: (e ⊗ f ) = [(d ⊗ c) (a ⊗ b)] : (e ⊗ f)

= (a · c) [(d ⊗ b) : (e ⊗ f)]

= (d · e) (a · c) (b · f ) ,[
(a ⊗ b) (e ⊗ f)T

]
: (c ⊗ d) = [(a ⊗ b) (f ⊗ e)] : (c ⊗ d)

= (b · f) [(a ⊗ e) : (c ⊗ d)]

= (d · e) (a · c) (b · f ) .

For three arbitrary tensors A, B and C given in the form (1.82) we can write
in view of (1.120) and (1.136)

Ai
·j
(
B k

i· C
j
k·
)

=
(
B k

i· A
i
·j
)

C j
k· =

[(
BT

)k
·i Ai

·j
]
C j

k·,

Ai
·j
(
B k

i· C
j
k·
)

=
(
Ai

·jC
j
k·
)

B k
i· =

[
Ai

·j
(
CT

)j
·k
]
B k

i· . (1.139)

Similarly we can prove that

A : B = AT : BT. (1.140)

On the basis of the scalar product one defines the trace of second-order tensors
by:

trA = A : I. (1.141)

For the tensor product (1.75) the trace (1.141) yields in view of (1.135)

tr (a ⊗ b) = a · b. (1.142)

With the aid of the relation (1.138) we further write

tr (AB) = A : BT = AT : B. (1.143)

In view of (D.1) this also implies that

tr (AB) = tr (BA) . (1.144)
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1.11 Decompositions of Second-Order Tensors

Additive decomposition into a symmetric and a skew-symmetric
part. Every second-order tensor can be decomposed additively into a sym-
metric and a skew-symmetric part by

A = symA + skewA, (1.145)

where

symA =
1
2
(
A + AT

)
, skewA =

1
2
(
A − AT

)
. (1.146)

Symmetric and skew-symmetric tensors form subsets of Linn defined by

Symn =
{
M ∈ Linn : M = MT

}
, (1.147)

Skewn =
{
W ∈ Linn : W = −WT

}
. (1.148)

One can easily show that these subsets represent vector spaces and can be
referred to as subspaces of Linn. Indeed, the axioms (A.1-A.4) and (B.1-B.4)
including operations with the zero tensor are valid both for symmetric and
skew-symmetric tensors. The zero tensor is the only linear mapping that is
both symmetric and skew-symmetric such that Symn∩ Skewn = 0.

For every symmetric tensor M = Mijgi ⊗ gj it follows from (1.119) that
Mij = Mji (i �= j, i, j = 1, 2, . . . , n). Thus, we can write

M =
n∑

i=1

Miigi ⊗ gi +
n∑

i,j=1
i>j

Mij (gi ⊗ gj + gj ⊗ gi) , M ∈ Symn. (1.149)

Similarly we can write for a skew-symmetric tensor

W =
n∑

i,j=1
i>j

Wij (gi ⊗ gj − gj ⊗ gi) , W ∈ Skewn (1.150)

taking into account that Wii = 0 and Wij = −Wji (i �= j, i, j = 1, 2, . . . , n).
Therefore, the basis of Symn is formed by n tensors gi ⊗ gi and 1

2n (n − 1)
tensors gi⊗gj +gj⊗gi, while the basis of Skewn consists of 1

2n (n − 1) tensors
gi ⊗ gj − gj ⊗ gi, where i > j = 1, 2, . . . , n. Thus, the dimensions of Symn

and Skewn are 1
2n (n + 1) and 1

2n (n − 1), respectively. It follows from (1.145)
that any basis of Skewn complements any basis of Symn to a basis of Linn.

Obviously, symmetric and skew-symmetric tensors are mutually orthogo-
nal such that (see Exercise 1.43)

M : W = 0, ∀M ∈ Symn, ∀W ∈ Skewn. (1.151)

Spaces characterized by this property are called orthogonal.
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Additive decomposition into a spherical and a deviatoric part.
For every second-order tensor A we can write

A = sphA + devA, (1.152)

where

sphA =
1
n

tr (A) I, devA = A − 1
n

tr (A) I (1.153)

denote its spherical and deviatoric part, respectively. Thus, every spherical
tensor S can be represented by S = αI, where α is a scalar number. In turn,
every deviatoric tensor D is characterized by the condition trD = 0. Just like
symmetric and skew-symmetric tensors, spherical and deviatoric tensors form
orthogonal subspaces of Linn.

1.12 Tensors of Higher Orders

Similarly to second-order tensors we can define tensors of higher orders. For
example, a third-order tensor can be defined as a linear mapping from En to
Linn. Thus, we can write

Y = Ax, Y ∈ Linn, ∀x ∈ E
n, ∀A ∈ Linn, (1.154)

where Linn denotes the set of all linear mappings of vectors in En into second-
order tensors in Linn. The tensors of the third order can likewise be repre-
sented with respect to a basis in Linn e.g. by

A = Aijkgi ⊗ gj ⊗ gk = Aijkgi ⊗ gj ⊗ gk

= Ai
·jkgi ⊗ gj ⊗ gk = A j

i·kgi ⊗ gj ⊗ gk. (1.155)

For the components of the tensor A (1.155) we can thus write by analogy with
(1.139)

Aijk = Aij
··sg

sk = Ai
·stg

sjgtk = Arstg
rigsjgtk,

Aijk = Ar
·jkgri = Ars

··kgrigsj = Arstgrigsjgtk. (1.156)

Exercises

1.1. Prove that if x ∈ V is a vector and α ∈ R is a scalar, then the following
identities hold.
(a) −0 = 0 , (b) α0 = 0 , (c) 0x = 0 , (d) −x = (−1)x, (e) if αx = 0 ,
then either α = 0 or x = 0 or both.
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1.2. Prove that xi �= 0 (i = 1, 2, . . . , n) for linearly independent vectors
x1, x2, . . . ,xn. In other words, linearly independent vectors are all non-zero.

1.3. Prove that any non-empty subset of linearly independent vectors x1, x2,
. . . ,xn is also linearly independent.

1.4. Write out in full the following expressions for n = 3: (a) δi
ja

j , (b) δijx
ixj ,

(c) δi
i , (d)

∂fi

∂xj
dxj .

1.5. Prove that 0 · x = 0, ∀x ∈ En.

1.6. Prove that a set of mutually orthogonal non-zero vectors is always linearly
independent.

1.7. Prove the so-called parallelogram law: ‖x + y‖2 = ‖x‖2 + 2x · y + ‖y‖2.

1.8. Let G = {g1, g2, . . . , gn} be a basis in En and a ∈ En be a vector. Prove
that a · gi = 0 (i = 1, 2, . . . , n) if and only if a = 0 .

1.9. Prove that a = b if and only if a · x = b · x, ∀x ∈ En.

1.10. (a) Construct an orthonormal set of vectors orthogonalizing and nor-
malizing (with the aid of the procedure described in Sect. 1.4) the following
linearly independent vectors:

g1 =

⎧⎨⎩1
1
0

⎫⎬⎭ , g2 =

⎧⎨⎩ 2
1
−2

⎫⎬⎭ , g3 =

⎧⎨⎩ 4
2
1

⎫⎬⎭ ,

where the components are given with respect to an orthonormal basis.
(b) Construct a basis in E

3 dual to the given above by means of (1.21)1, (1.24)
and (1.25)2.
(c) Calculate again the vectors gi dual to gi (i = 1, 2, 3) by using relations
(1.33) and (1.35). Compare the result with the solution of problem (b).

1.11. Verify that the vectors (1.33) are linearly independent.

1.12. Prove identity (1.41) by means of (1.18), (1.19) and (1.36).

1.13. Prove relations (1.39) and (1.42) using (1.33), (1.36) and (1.41).

1.14. Verify the following identities involving the permutation symbol (1.36)
for n = 3: (a) δijeijk = 0, (b) eikmejkm = 2δi

j, (c) eijkeijk = 6, (d) eijmeklm =
δi
kδj

l − δi
lδ

j
k.

1.15. Prove the identity

(a × b) × c = (a · c) b − (b · c)a, ∀a, b, c ∈ E
3. (1.157)
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1.16. Prove that A0 = 0A = 0 , ∀A ∈ Linn.

1.17. Prove that 0A = 0, ∀A ∈ Linn.

1.18. Prove formula (1.57), where the negative tensor −A is defined by (1.52).

1.19. Prove relation (1.80).

1.20. Prove (1.83) using (1.82) and (1.15).

1.21. Evaluate the tensor W = ŵ = w×, where w = wigi.

1.22. Evaluate components of the tensor describing a rotation about the axis
e3 by the angle α.

1.23. Let A = Aijgi ⊗ gj , where

[
Aij

]
=

⎡⎣ 0 −1 0
0 0 0
1 0 0

⎤⎦
and the vectors gi are given in Exercise 1.10. Evaluate the components Aij ,
Ai

·j and A j
i· .

1.24. Prove identities (1.100) and (1.102).

1.25. Let A = Ai
·jgi⊗gj , B = Bi

·jgi⊗gj , C = Ci
·jgi⊗gj and D = Di

·jgi⊗gj ,
where

[
Ai

·j
]

=

⎡⎣ 0 2 0
0 0 0
0 0 0

⎤⎦ ,
[
Bi

·j
]

=

⎡⎣0 0 0
0 0 0
0 0 1

⎤⎦ ,
[
Ci

·j
]

=

⎡⎣ 1 2 3
0 0 0
0 1 0

⎤⎦ ,

[
Di

·j
]

=

⎡⎣1 0 0
0 1/2 0
0 0 10

⎤⎦ .

Find commutative pairs of tensors.

1.26. Let A and B be two commutative tensors. Write out in full (A + B)k,
where k = 2, 3, . . .

1.27. Prove that

exp (A + B) = exp (A) exp (B) , (1.158)

where A and B commute.

1.28. Prove that exp (kA) = [exp (A)]k, where k = 2, 3, . . .

1.29. Evaluate exp (0) and exp (I).
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1.30. Prove that exp (−A) exp (A) = exp (A) exp (−A) = I.

1.31. Prove that exp (A + B) = exp (A) + exp (B) if AB = BA = 0.

1.32. Prove that exp
(
QAQT

)
= Q exp (A)QT, ∀Q ∈ Orthn.

1.33. Compute the exponential of the tensors D = Di
·jgi⊗gj , E = Ei

·jgi⊗gj

and F = Fi
·jgi ⊗ gj , where

[
Di

·j
]

=

⎡⎣2 0 0
0 3 0
0 0 1

⎤⎦ ,
[
Ei
·j
]

=

⎡⎣ 0 1 0
0 0 0
0 0 0

⎤⎦ ,
[
Fi
·j
]

=

⎡⎣ 0 2 0
0 0 0
0 0 1

⎤⎦ .

1.34. Prove that (ABCD)T = DTCTBTAT.

1.35. Verify that
(
Ak

)T =
(
AT

)k, where k = 1, 2, 3, . . .

1.36. Evaluate the components Bij , Bij , Bi
·j and B j

i· of the tensor B = AT,
where A is defined in Exercise 1.23.

1.37. Prove relation (1.126).

1.38. Verify that
(
A−1

)k =
(
Ak

)−1 = A−k, where k = 1, 2, 3, . . .

1.39. Prove identity (1.135) using (1.82) and (1.134).

1.40. Prove by means of (1.134-1.136) the properties of the scalar product
(D.1-D.3).

1.41. Verify that [(a ⊗ b) (c ⊗ d)] : I = (a · d) (b · c).

1.42. Express trA in terms of the components Ai
·j , Aij , Aij .

1.43. Prove that M : W = 0, where M is a symmetric tensor and W a skew-
symmetric tensor.

1.44. Evaluate trWk, where W is a skew-symmetric tensor and k = 1, 3, 5, . . .

1.45. Verify that sym(skewA) = skew (symA) = 0, ∀A ∈ Linn.

1.46. Prove that sph (devA) = dev (sphA) = 0, ∀A ∈ Linn.




