
2

Vector and Tensor Analysis in Euclidean Space

2.1 Vector- and Tensor-Valued Functions, Differential
Calculus

In the following we consider a vector-valued function x (t) and a tensor-valued
function A (t) of a real variable t. Henceforth, we assume that these functions
are continuous such that

lim
t→t0

[x (t) − x (t0)] = 0 , lim
t→t0

[A (t) − A (t0)] = 0 (2.1)

for all t0 within the definition domain. The functions x (t) and A (t) are called
differentiable if the following limits

dx

dt
= lim

s→0

x (t + s) − x (t)
s

,
dA
dt

= lim
s→0

A (t + s) − A (t)
s

(2.2)

exist and are finite. They are referred to as the derivatives of the vector- and
tensor-valued functions x (t) and A (t), respectively.

For differentiable vector- and tensor-valued functions the usual rules of
differentiation hold.

1) Product of a scalar function with a vector- or tensor-valued function:

d
dt

[u (t) x (t)] =
du

dt
x (t) + u (t)

dx

dt
, (2.3)

d
dt

[u (t)A (t)] =
du

dt
A (t) + u (t)

dA
dt

. (2.4)

2) Mapping of a vector-valued function by a tensor-valued function:

d
dt

[A (t)x (t)] =
dA
dt

x (t) + A (t)
dx

dt
. (2.5)
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3) Scalar product of two vector- or tensor-valued functions:

d
dt

[x (t) · y (t)] =
dx

dt
· y (t) + x (t) · dy

dt
, (2.6)

d
dt

[A (t) : B (t)] =
dA
dt

: B (t) + A (t) :
dB
dt

. (2.7)

4) Tensor product of two vector-valued functions:

d
dt

[x (t) ⊗ y (t)] =
dx

dt
⊗ y (t) + x (t) ⊗ dy

dt
. (2.8)

5) Composition of two tensor-valued functions:

d
dt

[A (t)B (t)] =
dA
dt

B (t) + A (t)
dB
dt

. (2.9)

6) Chain rule:

d
dt

x [u (t)] =
dx

du

du

dt
,

d
dt

A [u (t)] =
dA
du

du

dt
. (2.10)

7) Chain rule for functions of several arguments:

d
dt

x [u (t) ,v (t)] =
∂x

∂u

du

dt
+

∂x

∂v

dv

dt
, (2.11)

d
dt

A [u (t) ,v (t)] =
∂A
∂u

du

dt
+

∂A
∂v

dv

dt
, (2.12)

where ∂/∂u denotes the partial derivative. It is defined for vector and
tensor valued functions in the standard manner by

∂x (u,v)
∂u

= lim
s→0

x (u + s,v) − x (u,v)
s

, (2.13)

∂A (u,v)
∂u

= lim
s→0

A (u + s,v) − A (u,v)
s

. (2.14)

The above differentiation rules can be verified with the aid of elementary
differential calculus. For example, for the derivative of the composition of two
second-order tensors (2.9) we proceed as follows. Let us define two tensor-
valued functions by

O1 (s) =
A (t + s) − A (t)

s
− dA

dt
, O2 (s) =

B (t + s) − B (t)
s

− dB
dt

.

Bearing the definition of the derivative (2.2) in mind we have

lim
s→0

O1 (s) = 0, lim
s→0

O2 (s) = 0.
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Then,

d
dt

[A (t)B (t)] = lim
s→0

A (t + s)B (t + s) − A (t)B (t)
s

= lim
s→0

1
s

{[
A (t) + s

dA
dt

+ sO1 (s)
] [

B (t) + s
dB
dt

+ sO2 (s)
]

− A (t)B (t)
}

= lim
s→0

{[
dA
dt

+ O1 (s)
]
B (t) + A (t)

[
dB
dt

+ O2 (s)
]}

+ lim
s→0

s

[
dA
dt

+ O1 (s)
] [

dB
dt

+ O2 (s)
]

=
dA
dt

B (t) + A (t)
dB
dt

.

2.2 Coordinates in Euclidean Space, Tangent Vectors

Definition 2.1. A coordinate system is a one to one correspondence between
vectors in the n-dimensional Euclidean space E

n and a set of n real numbers
(x1, x2, . . . , xn). These numbers are called coordinates of the corresponding
vectors.

Thus, we can write

xi = xi (r) ⇔ r = r
(
x1, x2, . . . , xn

)
, (2.15)

where r ∈ E
n and xi ∈ R (i = 1, 2, . . . , n). Henceforth, we assume that the

functions xi = xi (r) and r = r
(
x1, x2, . . . , xn

)
are sufficiently differentiable.

Example. Cylindrical coordinates in E3. The cylindrical coordinates
(Fig. 2.1) are defined by

r = r (ϕ, z, r) = r cosϕe1 + r sin ϕe2 + ze3 (2.16)

and

r =
√

(r · e1)
2 + (r · e2)

2, z = r · e3,

ϕ =

⎧⎨⎩arccos
r · e1

r
if r · e2 ≥ 0,

2π − arccos
r · e1

r
if r · e2 < 0,

(2.17)

where ei (i = 1, 2, 3) form an orthonormal basis in E3.
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ϕ

e1

r

x1

e2 x2

x3 = z

g3

g1

g2

e3

r

Fig. 2.1. Cylindrical coordinates in three-dimensional space

The vector components with respect to a fixed basis, say H = {h1, h2, . . . ,
hn}, obviously represent its coordinates. Indeed, according to Theorem 1.5 of
the previous chapter the following correspondence is one to one

r = xihi ⇔ xi = r · hi, i = 1, 2, . . . , n, (2.18)

where r ∈ En and H′ =
{
h1, h2, . . . ,hn

}
is the basis dual to H. The compo-

nents xi (2.18)2 are referred to as the linear coordinates of the vector r.
Let xi = xi (r) and yi = yi (r) (i = 1, 2, . . . , n) be two arbitrary coordinate

systems in En. Since their correspondences are one to one, the functions

xi = x̂i
(
y1, y2, . . . , yn

) ⇔ yi = ŷi
(
x1, x2, . . . , xn

)
, i = 1, 2, . . . , n (2.19)

are invertible. These functions describe the transformation of the coordinate
systems. Inserting one relation (2.19) into another one yields

yi = ŷi
(
x̂1
(
y1, y2, . . . , yn

)
,

x̂2
(
y1, y2, . . . , yn

)
, . . . , x̂n

(
y1, y2, . . . , yn

))
. (2.20)
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The further differentiation with respect to yj delivers with the aid of the chain
rule

∂yi

∂yj
= δij =

∂yi

∂xk

∂xk

∂yj
, i, j = 1, 2, . . . , n. (2.21)

The determinant of the matrix (2.21) takes the form

|δij | = 1 =
∣∣∣∣ ∂yi

∂xk

∂xk

∂yj

∣∣∣∣ =
∣∣∣∣ ∂yi

∂xk

∣∣∣∣ ∣∣∣∣∂xk

∂yj

∣∣∣∣ . (2.22)

The determinant
∣∣∂yi/∂xk

∣∣ on the right hand side of (2.22) is referred to as Ja-
cobian determinant of the coordinate transformation yi = ŷi

(
x1, x2, . . . , xn

)
(i = 1, 2, . . . , n). Thus, we have proved the following theorem.

Theorem 2.1. If the transformation of the coordinates yi = ŷi
(
x1, x2, . . . , xn

)
admits an inverse form xi = x̂i

(
y1, y2, . . . , yn

)
(i = 1, 2, . . . , n) and if J and

K are the Jacobians of these transformations then JK = 1.

One of the important consequences of this theorem is that

J =
∣∣∣∣ ∂yi

∂xk

∣∣∣∣ �= 0. (2.23)

Now, we consider an arbitrary curvilinear coordinate system

θi = θi (r) ⇔ r = r
(
θ1, θ2, . . . , θn

)
, (2.24)

where r ∈ En and θi ∈ R (i = 1, 2, . . . , n). The equations

θi = const, i = 1, 2, . . . , k − 1, k + 1, . . . , n (2.25)

define a curve in En called θk-coordinate line. The vectors

gk =
∂r

∂θk
, k = 1, 2, . . . , n (2.26)

are called the tangent vectors to the corresponding θk-coordinate lines (2.25).
One can verify that the tangent vectors are linearly independent and form thus
a basis of E

n. Conversely, let the vectors (2.26) be linearly dependent. Then,
there are scalars αi ∈ R (i = 1, 2, . . . , n), not all zero, such that αigi = 0 . Let
further xi = xi (r) (i = 1, 2, . . . , n) be linear coordinates in En with respect
to a basis H = {h1, h2, . . . ,hn}. Then,

0 = αigi = αi ∂r

∂θi
= αi ∂r

∂xj

∂xj

∂θi
= αi ∂xj

∂θi
hj .

Since the basis vectors hj (j = 1, 2, . . . , n) are linearly independent

αi ∂xj

∂θi
= 0, j = 1, 2, . . . , n.
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This is a homogeneous linear equation system with a non-trivial solution
αi (i = 1, 2, . . . , n). Hence,

∣∣∂xj/∂θi
∣∣ = 0, which obviously contradicts re-

lation (2.23).

Example. Tangent vectors and metric coefficients of cylindrical
coordinates in E3. By means of (2.16) and (2.26) we obtain

g1 =
∂r

∂ϕ
= −r sin ϕe1 + r cosϕe2,

g2 =
∂r

∂z
= e3,

g3 =
∂r

∂r
= cosϕe1 + sin ϕe2. (2.27)

The metric coefficients take by virtue of (1.24) and (1.25)2 the form

[gij ] = [gi · gj ] =

⎡⎣ r2 0 0
0 1 0
0 0 1

⎤⎦ ,
[
gij
]

= [gij ]
−1 =

⎡⎣ r−2 0 0
0 1 0
0 0 1

⎤⎦ . (2.28)

The dual basis results from (1.21)1 by

g1 =
1
r2

g1 = −1
r

sinϕe1 +
1
r

cosϕe2,

g2 = g2 = e3,

g3 = g3 = cosϕe1 + sin ϕe2. (2.29)

2.3 Coordinate Transformation. Co-, Contra- and Mixed
Variant Components

Let θi = θi (r) and θ̄i = θ̄i (r) (i = 1, 2, . . . , n) be two arbitrary coordinate
systems in En. It holds

ḡi =
∂r

∂θ̄i
=

∂r

∂θj

∂θj

∂θ̄i
= gj

∂θj

∂θ̄i
, i = 1, 2, . . . , n. (2.30)

If gi is the dual basis to gi (i = 1, 2, . . . , n), then we can write

ḡi = gj ∂θ̄i

∂θj
, i = 1, 2, . . . , n. (2.31)

Indeed,

ḡi · ḡj =
(

gk ∂θ̄i

∂θk

)
·
(

gl
∂θl

∂θ̄j

)
= gk · gl

(
∂θ̄i

∂θk

∂θl

∂θ̄j

)

= δk
l

(
∂θ̄i

∂θk

∂θl

∂θ̄j

)
=

∂θ̄i

∂θk

∂θk

∂θ̄j
=

∂θ̄i

∂θ̄j
= δi

j , i, j = 1, 2, . . . , n. (2.32)
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One can observe the difference in the transformation of the dual vectors (2.30)
and (2.31) which results from the change of the coordinate system. The trans-
formation rules of the form (2.30) and (2.31) and the corresponding variables
are referred to as covariant and contravariant, respectively. Covariant and
contravariant variables are denoted by lower and upper indices, respectively.

The co- and contravariant rules can also be recognized in the transforma-
tion of the components of vectors and tensors if they are related to tangent
vectors. Indeed, let

x = xig
i = xigi = x̄iḡ

i = x̄iḡi, (2.33)

A = Aijg
i ⊗ gj = Aijgi ⊗ gj = Ai

·jgi ⊗ gj

= Āij ḡ
i ⊗ ḡj = Āij

ḡi ⊗ ḡj = Āi
·jḡi ⊗ ḡj . (2.34)

Then, by means of (1.28), (1.83), (2.30) and (2.31) we obtain

x̄i = x · ḡi = x ·
(

gj
∂θj

∂θ̄i

)
= xj

∂θj

∂θ̄i
, (2.35)

x̄i = x · ḡi = x ·
(

gj ∂θ̄i

∂θj

)
= xj ∂θ̄i

∂θj
, (2.36)

Āij = ḡiAḡj =
(

gk
∂θk

∂θ̄i

)
A
(

gl
∂θl

∂θ̄j

)
=

∂θk

∂θ̄i

∂θl

∂θ̄j
Akl, (2.37)

Āij = ḡiAḡj =
(

gk ∂θ̄i

∂θk

)
A
(

gl ∂θ̄j

∂θl

)
=

∂θ̄i

∂θk

∂θ̄j

∂θl
Akl, (2.38)

Āi
·j = ḡiAḡj =

(
gk ∂θ̄i

∂θk

)
A
(

gl
∂θl

∂θ̄j

)
=

∂θ̄i

∂θk

∂θl

∂θ̄j
Ak

·l. (2.39)

Accordingly, the vector and tensor components xi, Aij and xi, Aij are called
covariant and contravariant, respectively. The tensor components Ai

·j are re-
ferred to as mixed variant. The transformation rules (2.35-2.39) can similarly
be written for tensors of higher orders as well. For example, one obtains for
third-order tensors

Āijk =
∂θr

∂θ̄i

∂θs

∂θ̄j

∂θt

∂θ̄k
Arst, Āijk =

∂θ̄i

∂θr

∂θ̄j

∂θs

∂θ̄k

∂θt
Arst, . . . (2.40)

From the very beginning we have supplied coordinates with upper indices
which imply the contravariant transformation rule. Indeed, let us consider
the transformation of a coordinate system θ̄i = θ̄i

(
θ1, θ2, . . . , θn

)
(i = 1, 2,

. . . , n). It holds:

dθ̄i =
∂θ̄i

∂θk
dθk, i = 1, 2, . . . , n. (2.41)
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Thus, the differentials of the coordinates really transform according to the
contravariant law (2.31).

Example. Transformation of linear coordinates into cylindrical
ones (2.16). Let xi = xi (r) be linear coordinates with respect to an or-
thonormal basis ei (i = 1, 2, 3) in E3:

xi = r · ei ⇔ r = xiei. (2.42)

By means of (2.16) one can write

x1 = r cosϕ, x2 = r sin ϕ, x3 = z (2.43)

and consequently

∂x1

∂ϕ
= −r sin ϕ = −x2,

∂x1

∂z
= 0,

∂x1

∂r
= cosϕ =

x1

r
,

∂x2

∂ϕ
= r cosϕ = x1,

∂x2

∂z
= 0,

∂x2

∂r
= sin ϕ =

x2

r
,

∂x3

∂ϕ
= 0,

∂x3

∂z
= 1,

∂x3

∂r
= 0.

(2.44)

The reciprocal derivatives can easily be obtained from (2.22) by inverting the
matrix

[
∂xi

∂ϕ
∂xi

∂z
∂xi

∂r

]
according to Theorem 2.1. This yields:

∂ϕ

∂x1
= −1

r
sin ϕ = −x2

r2
,

∂ϕ

∂x2
=

1
r

cosϕ =
x1

r2
,

∂ϕ

∂x3
= 0,

∂z

∂x1
= 0,

∂z

∂x2
= 0,

∂z

∂x3
= 1,

∂r

∂x1
= cosϕ =

x1

r
,

∂r

∂x2
= sin ϕ =

x2

r
,

∂r

∂x3
= 0.

(2.45)

2.4 Gradient, Covariant and Contravariant Derivatives

Let Φ = Φ
(
θ1, θ2, . . . , θn

)
, x = x

(
θ1, θ2, . . . , θn

)
and A = A

(
θ1, θ2, . . . , θn

)
be, respectively, a scalar-, a vector- and a tensor-valued differentiable function
of the coordinates θi ∈ R (i = 1, 2, . . . , n). Such functions of coordinates are
generally referred to as fields, as for example, the scalar field, the vector field
or the tensor field. Due to the one to one correspondence (2.24) these fields
can alternatively be represented by

Φ = Φ (r) , x = x (r) , A = A (r) . (2.46)
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In the following we assume that the so-called directional derivatives of the
functions (2.46)

d
ds

Φ (r + sa)
∣∣∣∣
s=0

= lim
s→0

Φ (r + sa) − Φ (r)
s

,

d
ds

x (r + sa)
∣∣∣∣
s=0

= lim
s→0

x (r + sa) − x (r)
s

,

d
ds

A (r + sa)
∣∣∣∣
s=0

= lim
s→0

A (r + sa) − A (r)
s

(2.47)

exist for all a ∈ En. Further, one can show that the mappings a →
d
dsΦ (r + sa)

∣∣
s=0

, a → d
dsx (r + sa)

∣∣
s=0

and a → d
dsA (r + sa)

∣∣
s=0

are lin-
ear with respect to the vector a. For example, we can write for the directional
derivative of the scalar function Φ = Φ (r)

d
ds

Φ [r + s (a + b)]
∣∣∣∣
s=0

=
d
ds

Φ [r + s1a + s2b]
∣∣∣∣
s=0

, (2.48)

where s1 and s2 are assumed to be functions of s such that s1 = s and s2 = s.
With the aid of the chain rule this delivers

d
ds

Φ [r + s1a + s2b]
∣∣∣∣
s=0

=
{

∂

∂s1
Φ [r + s1a + s2b]

ds1

ds
+

∂

∂s2
Φ [r + s1a + s2b]

ds2

ds

}∣∣∣∣
s=0

=
∂

∂s1
Φ (r + s1a + s2b)

∣∣∣∣
s1=0,s2=0

+
∂

∂s2
Φ (r + s1a + s2b)

∣∣∣∣
s1=0,s2=0

=
d
ds

Φ (r + sa)
∣∣∣∣
s=0

+
d
ds

Φ (r + sb)
∣∣∣∣
s=0

and finally

d
ds

Φ [r + s (a + b)]
∣∣∣∣
s=0

=
d
ds

Φ (r + sa)
∣∣∣∣
s=0

+
d
ds

Φ (r + sb)
∣∣∣∣
s=0

(2.49)

for all a, b ∈ En. In a similar fashion we can write

d
ds

Φ (r + sαa)
∣∣∣∣
s=0

=
d

d (αs)
Φ (r + sαa)

d (αs)
ds

∣∣∣∣
s=0

= α
d
ds

Φ (r + sa)
∣∣∣∣
s=0

, ∀a ∈ E
n, ∀α ∈ R. (2.50)

Thus, comparing (2.49) and (2.50) with the properties of the scalar product
(C.2) and (C.3) we can represent the directional derivative by
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d
ds

Φ (r + sa)
∣∣∣∣
s=0

= gradΦ · a, ∀a ∈ E
n, (2.51)

where the vector gradΦ ∈ E
n is referred to as gradient of the function Φ =

Φ (r).

Example. Gradient of the scalar function ‖r‖. Using the definition
of the directional derivative (2.47) we can write

d
ds

‖r + sa‖
∣∣∣∣
s=0

=
d
ds

√
(r + sa) · (r + sa)

∣∣∣∣
s=0

=
d
ds

√
r · r + 2s (r · a) + s2 (a · a)

∣∣∣∣
s=0

=
1
2

2 (r · a) + 2s (a · a)√
r · r + 2s (r · a) + s2 (a · a)

∣∣∣∣∣
s=0

=
r · a
‖r‖ .

Comparing this result with (2.51) delivers

grad‖r‖ =
r

‖r‖ . (2.52)

Similarly to (2.51) one defines the gradient of the vector function x = x (r)
and the gradient of the tensor function A = A (r):

d
ds

x (r + sa)
∣∣∣∣
s=0

= (gradx)a, ∀a ∈ E
n, (2.53)

d
ds

A (r + sa)
∣∣∣∣
s=0

= (gradA) a, ∀a ∈ E
n. (2.54)

Herein, gradx and gradA represent tensors of second and third order, respec-
tively.

In order to evaluate the above gradients (2.51), (2.53) and (2.54) we rep-
resent the vectors r and a with respect to the linear coordinates (2.18) as

r = xihi, a = aihi. (2.55)

With the aid of the chain rule we can further write for the directional deriva-
tive of the function Φ = Φ (r):

d
ds

Φ (r + sa)
∣∣∣∣
s=0

=
d
ds

Φ
[(

xi + sai
)
hi

]∣∣∣∣
s=0

=
∂Φ

∂ (xi + sai)
d
(
xi + sai

)
ds

∣∣∣∣∣
s=0

=
∂Φ

∂xi
ai

=
(

∂Φ

∂xi
hi

)
· (ajhj

)
=
(

∂Φ

∂xi
hi

)
· a, ∀a ∈ E

n.
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Comparing this result with (2.51) and bearing in mind that it holds for all
vectors a we obtain

gradΦ =
∂Φ

∂xi
hi. (2.56)

The representation (2.56) can be rewritten in terms of arbitrary curvilinear co-
ordinates r = r

(
θ1, θ2, . . . , θn

)
and the corresponding tangent vectors (2.26).

Indeed, in view of (2.31) and (2.56)

gradΦ =
∂Φ

∂xi
hi =

∂Φ

∂θk

∂θk

∂xi
hi =

∂Φ

∂θi
gi. (2.57)

According to the definition (2.51) the gradient is independent of the choice
of the coordinate system. This can also be seen from relation (2.57). Indeed,
taking (2.31) into account we can write for an arbitrary coordinate system
θ̄i = θ̄i

(
θ1, θ2, . . . , θn

)
(i = 1, 2, . . . , n):

gradΦ =
∂Φ

∂θi
gi =

∂Φ

∂θ̄j

∂θ̄j

∂θi
gi =

∂Φ

∂θ̄j
ḡj . (2.58)

Similarly to relation (2.57) one can express the gradients of the vector-valued
function x = x (r) and the tensor-valued function A = A (r) by

gradx =
∂x

∂θi
⊗ gi, gradA =

∂A
∂θi

⊗ gi. (2.59)

Henceforth, the derivatives of the functions Φ = Φ
(
θ1, θ2, . . . , θn

)
, x =

x
(
θ1, θ2, . . . , θn

)
and A = A

(
θ1, θ2, . . . , θn

)
with respect to curvilinear coor-

dinates θi will be denoted shortly by

Φ,i =
∂Φ

∂θi
, x,i =

∂x

∂θi
, A,i =

∂A
∂θi

. (2.60)

They obey the covariant transformation rule (2.30) with respect to the index
i since

∂Φ

∂θi
=

∂Φ

∂θ̄k

∂θ̄k

∂θi
,

∂x

∂θi
=

∂x

∂θ̄k

∂θ̄k

∂θi
,

∂A
∂θi

=
∂A
∂θ̄k

∂θ̄k

∂θi
(2.61)

and represent again a scalar, a vector and a second-order tensor, respectively.
The latter ones can be represented with respect to a basis as

x,i = xj |i gj = xj |i gj ,

A,i = Akl|i gk ⊗ gl = Akl|i gk ⊗ gl = Ak
· l|i gk ⊗ gl, (2.62)

where (•)|i denotes some differential operator on the components of the vector
x or the tensor A. In view of (2.61) and (2.62) this operator transforms with
respect to the index i according to the covariant rule and is called covariant
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derivative. The covariant type of the derivative is accentuated by the lower
position of the coordinate index.

On the basis of the covariant derivative we can also define the contravariant
one. To this end, we formally apply the rule of component transformation
(1.90)1 as (•)|i= gij (•)|j . Accordingly,

xj|i= gikxj |k, xj |i= gikxj|k,

Akl|i= gimAkl|m, Akl|i= gimAkl|m, Ak
· l|i= gimAk

· l|m . (2.63)

For scalar functions the covariant and the contravariant derivatives identically
coincide with the partial one:

Φ,i = Φ|i= Φ|i . (2.64)

In view of (2.58-2.60), (2.62) and (2.64) the gradients of the functions Φ =
Φ
(
θ1, θ2, . . . , θn

)
, x = x

(
θ1, θ2, . . . , θn

)
and A = A

(
θ1, θ2, . . . , θn

)
take the

form

gradΦ = Φ|i gi = Φ|i gi,

gradx = xj |i gj ⊗ gi = xj |i gj ⊗ gi = xj |i gj ⊗ gi = xj |i gj ⊗ gi,

gradA = Akl|i gk ⊗ gl ⊗ gi = Akl|i gk ⊗ gl ⊗ gi = Ak
· l|i gk ⊗ gl ⊗ gi

= Akl|i gk ⊗ gl ⊗ gi = Akl|i gk ⊗ gl ⊗ gi = Ak
· l|i gk ⊗ gl ⊗ gi.

(2.65)

2.5 Christoffel Symbols, Representation of the Covariant
Derivative

In the previous section we have introduced the notion of the covariant deriva-
tive but have not so far discussed how it can be taken. Now, we are going to
formulate a procedure constructing the differential operator of the covariant
derivative. In other words, we would like to express the covariant derivative in
terms of the vector or tensor components. To this end, the partial derivatives
of the tangent vectors (2.26) with respect to the coordinates are first needed.
Since these derivatives again represent vectors in E

n, they can be expressed
in terms of the tangent vectors gi or dual vectors gi (i = 1, 2, . . . , n) both
forming bases of E

n. Thus, one can write

gi,j = Γijkgk = Γk
ijgk, i, j = 1, 2, . . . , n, (2.66)

where the components Γijk and Γk
ij (i, j, k = 1, 2, . . . , n) are referred to as the

Christoffel symbols of the first and second kind, respectively. In view of the
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relation gk = gklgl (k = 1, 2, . . . , n) (1.21) these symbols are connected with
each other by

Γk
ij = gklΓijl, i, j, k = 1, 2, . . . , n. (2.67)

Keeping the definition of tangent vectors (2.26) in mind we further obtain

gi,j = r,ij = r,ji = gj ,i , i, j = 1, 2, . . . , n. (2.68)

With the aid of (1.28) the Christoffel symbols can thus be expressed by

Γijk = Γjik = gi,j ·gk = gj ,i ·gk, (2.69)

Γk
ij = Γk

ji = gi,j ·gk = gj ,i ·gk, i, j, k = 1, 2, . . . , n. (2.70)

For the dual basis gi (i = 1, 2, . . . , n) one further gets by differentiating the
identities gi · gj = δi

j (1.15):

0 =
(
δi
j

)
,k =

(
gi · gj

)
,k = gi,k ·gj + gi · gj ,k

= gi,k ·gj + gi · (Γl
jkgl

)
= gi,k ·gj + Γi

jk, i, j, k = 1, 2, . . . , n.

Hence,

Γi
jk = Γi

kj = −gi,k ·gj = −gi,j ·gk, i, j, k = 1, 2, . . . , n (2.71)

and consequently

gi,k = −Γi
jkgj = −Γi

kjg
j , i, k = 1, 2, . . . , n. (2.72)

By means of the identity

gij ,k = (gi · gj) ,k = gi,k ·gj + gi · gj ,k , i, j, k = 1, 2, . . . , n (2.73)

and in view of (2.67-2.69) we finally obtain

Γijk =
1
2

(gki,j +gkj ,i −gij ,k ) , (2.74)

Γk
ij =

1
2
gkl (gli,j +glj ,i −gij ,l ) , i, j, k = 1, 2, . . . , n. (2.75)

It is seen from (2.74) and (2.75) that all Christoffel symbols identically vanish
in the Cartesian coordinates defined with respect to an orthonormal basis as

r = xiei. (2.76)

Indeed, in this case

gij = ei · ej = δij , i, j = 1, 2, . . . , n (2.77)

and hence
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Γijk = Γk
ij = 0, i, j, k = 1, 2, . . . , n. (2.78)

Example. Christoffel symbols for cylindrical coordinates in E3

(2.16). By virtue of relation (2.28)1 we realize that g11,3 = 2r, while all other
derivatives gik,j (i, j, k = 1, 2, 3) (2.73) are zero. Thus, eq. (2.74) delivers

Γ131 = Γ311 = r, Γ113 = −r, (2.79)

while all other Christoffel symbols of the first kind Γijk (i, j, k = 1, 2, 3) are
likewise zero. With the aid of (2.67) and (2.28)2 we further obtain

Γ1
ij = g11Γij1 = r−2Γij1, Γ2

ij = g22Γij2 = Γij2,

Γ3
ij = g33Γij3 = Γij3, i, j = 1, 2, 3. (2.80)

By virtue of (2.79) we can further write

Γ1
13 = Γ1

31 =
1
r
, Γ3

11 = −r, (2.81)

while all remaining Christoffel symbols of the second kind Γk
ij (i, j, k = 1, 2, 3)

(2.75) vanish.

Now, we are in a position to express the covariant derivative in terms of
the vector or tensor components by means of the Christoffel symbols. For the
vector-valued function x = x

(
θ1, θ2, . . . , θn

)
we can write using (2.66)

x,j =
(
xigi

)
,j = xi,j gi + xigi,j

= xi,j gi + xiΓk
ijgk =

(
xi,j +xkΓi

kj

)
gi, (2.82)

or alternatively using (2.72)

x,j =
(
xig

i
)
,j = xi,j gi + xig

i,j

= xi,j gi − xiΓi
kjg

k =
(
xi,j −xkΓk

ij

)
gi. (2.83)

Comparing these results with (2.62) yields

xi|j= xi,j +xkΓi
kj , xi|j= xi,j −xkΓk

ij , i, j = 1, 2, . . . , n. (2.84)

Similarly, we treat the tensor-valued function A = A
(
θ1, θ2, . . . , θn

)
:

A,k =
(
Aijgi ⊗ gj

)
,k

= Aij ,k gi ⊗ gj + Aijgi,k ⊗gj + Aijgi ⊗ gj ,k

= Aij ,k gi ⊗ gj + Aij
(
Γl

ikgl

)⊗ gj + Aijgi ⊗
(
Γl

jkgl

)
=
(
Aij ,k +AljΓi

lk + AilΓj
lk

)
gi ⊗ gj . (2.85)
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Thus,

Aij |k= Aij ,k +AljΓi
lk + AilΓj

lk, i, j, k = 1, 2, . . . , n. (2.86)

By analogy, we further obtain

Aij |k= Aij ,k −AljΓl
ik − AilΓl

jk,

Ai
·j|k= Ai

·j,k +Al
·jΓ

i
lk − Ai

·lΓ
l
jk, i, j, k = 1, 2, . . . , n. (2.87)

Similar expressions for the covariant derivative can also be formulated for
tensors of higher orders.

From (2.78), (2.84), (2.86) and (2.87) it is seen that the covariant derivative
taken in Cartesian coordinates (2.76) coincides with the partial derivative:

xi|j= xi,j , xi|j= xi,j ,

Aij |k= Aij ,k , Aij |k= Aij ,k , Ai
·j|k= Ai

·j ,k , i, j, k = 1, 2, . . . , n. (2.88)

Formal application of the covariant derivative (2.84) and (2.86-2.87) to the
tangent vectors (2.26) and metric coefficients (1.85)1,2 yields by virtue of
(2.66), (2.67), (2.72) and (2.74) the following identities referred to as Ricci’s
Theorem:

gi|j= gi,j −glΓl
ij = 0 , gi|j= gi,j +glΓi

lj = 0 , (2.89)

gij|k= gij ,k −gljΓl
ik − gilΓl

jk = gij ,k −Γikj − Γjki = 0, (2.90)

gij|k= gij ,k +gljΓi
lk + gilΓj

lk = gilgjm (−glm,k +Γmkl + Γlkm) = 0, (2.91)

where i, j, k = 1, 2, . . . , n. The latter two identities can alternatively be proved
by taking (1.25) into account and using the product rules of differentiation
for the covariant derivative which can be written as (Exercise 2.6)

Aij |k= ai|k bj + aibj|k for Aij = aibj , (2.92)

Aij |k= ai|k bj + aibj|k for Aij = aibj , (2.93)

Ai
j|k = ai|k bj + aibj|k for Ai

j = aibj , i, j, k = 1, 2, . . . , n. (2.94)

2.6 Applications in Three-Dimensional Space:
Divergence and Curl

Divergence of a tensor field. One defines the divergence of a tensor field
S (r) by

divS = lim
V →0

1
V

∫
A

SndA, (2.95)
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P

A(1)

Δθ3

s1(θ1)

s1(θ1 + Δθ1)

A(2)

dA(1)(θ1)
A(3)

θ3

g3

g2

g1

Δθ1

Δθ2

dA(1)(θ1 + Δθ1)

θ1

θ2

Fig. 2.2. Derivation of the divergence in three-dimensional space

where the integration is carried out over a closed surface area A with the
volume V and the outer unit normal vector n.

For the integration we consider a curvilinear parallelepiped with the edges
formed by the coordinate lines θ1, θ2, θ3 and θ1 +Δθ1, θ2 +Δθ2, θ3 +Δθ3 (Fig.
2.2). The infinitesimal surface elements of the parallelepiped can be defined
in a vector form by

dA(i) = ± (dθjgj

)× (
dθkgk

)
= ±ggidθjθk, i = 1, 2, 3, (2.96)

where g = [g1g2g3] (1.31) and i, j, k is an even permutation of 1,2,3. The cor-
responding infinitesimal volume element can thus be given by (no summation
over i)

dV = dA(i) · (dθigi

)
=
[
dθ1g1 dθ2g2 dθ3g3

]
= [g1g2g3] dθ1dθ2dθ3 = gdθ1dθ2dθ3. (2.97)

We also need the following identities

g,k = [g1g2g3] ,k = Γl
1k [glg2g3] + Γl

2k [g1glg3] + Γl
3k [g1g2gl]

= Γl
lk [g1g2g3] = Γl

lkg, (2.98)(
ggi

)
,i = g,i gi + ggi,i = Γl

liggi − Γi
liggl = 0 . (2.99)

With these results in hand, one can express the divergence (2.95) as follows
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divS = lim
V →0

1
V

∫
A

SndA

= lim
V →0

1
V

3∑
i=1

∫
A(i)

[
S
(
θi + Δθi

)
dA(i)

(
θi + Δθi

)
+ S

(
θi
)
dA(i)

(
θi
)]

.

Using the abbreviation

si
(
θi
)

= S
(
θi
)
g
(
θi
)
gi
(
θi
)
, i = 1, 2, 3 (2.100)

we can thus write

divS = lim
V →0

1
V

3∑
i=1

θk+Δθk∫
θk

θj+Δθj∫
θj

[
si
(
θi + Δθi

)− si
(
θi
)]

dθjdθk

= lim
V →0

1
V

3∑
i=1

θk+Δθk∫
θk

θj+Δθj∫
θj

θi+Δθi∫
θi

∂si

∂θi
dθidθjdθk

= lim
V →0

1
V

3∑
i=1

∫
V

si,i
g

dV, (2.101)

where i, j, k is again an even permutation of 1,2,3. Assuming continuity of the
integrand in (2.101) and applying (2.99) and (2.100) we obtain

divS =
1
g
si,i =

1
g

[
Sggi

]
,i =

1
g

[
S,i ggi + S

(
ggi

)
,i
]

= S,i gi, (2.102)

which finally yields by virtue of (2.62)2

divS = S,i gi = S i
j·|i gj = Sji|i gj . (2.103)

Example. The momentum balance in Cartesian and cylindrical
coordinates. Let us consider a material body or a part of it with a mass
m, volume V and outer surface A. According to the Euler law of motion the
vector sum of external volume forces fdV and surface tractions tdA results in
the vector sum of inertia forces ẍdm, where x stands for the position vector
of a material element dm and the superposed dot denotes the material time
derivative. Hence,∫

m

ẍdm =
∫
A

tdA +
∫
V

fdV. (2.104)

Applying the Cauchy theorem (1.72) to the first integral on the right hand
side it further delivers
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m

ẍdm =
∫
A

σndA +
∫
V

fdV. (2.105)

Dividing this equation by V and considering the limit case V → 0 we obtain
by virtue of (2.95)

ρẍ = divσ + f , (2.106)

where ρ denotes the density of the material. This vector equation is referred
to as the momentum balance.

Representing vector and tensor variables with respect to the tangent vec-
tors gi (i = 1, 2, 3) of an arbitrary curvilinear coordinate system as

ẍ = ẍigi, σ = σijgi ⊗ gj , f = f igi

and expressing the divergence of the Cauchy stress tensor by (2.103) we obtain
the component form of the momentum balance (2.106) by

ρẍi = σij |j +f i, i = 1, 2, 3. (2.107)

With the aid of (2.86) the covariant derivative of the Cauchy stress tensor can
further be written by

σij |k= σij ,k +σljΓi
lk + σilΓj

lk, i, j, k = 1, 2, 3 (2.108)

and thus,

σij |j= σij ,j +σljΓi
lj + σilΓj

lj , i = 1, 2, 3. (2.109)

By virtue of the expressions for the Christoffel symbols (2.81) and keeping in
mind the symmetry of the Cauchy stress tensors σij = σji (i �= j = 1, 2, 3) we
thus obtain for cylindrical coordinates:

σ1j |j = σ11,ϕ +σ12,z +σ13,r +
3σ31

r
,

σ2j |j = σ21,ϕ +σ22,z +σ23,r +
σ32

r
,

σ3j |j = σ31,ϕ +σ32,z +σ33,r −rσ11 +
σ33

r
. (2.110)

The balance equations finally take the form

ρẍ1 = σ11,ϕ +σ12,z +σ13,r +
3σ31

r
+ f1,

ρẍ2 = σ21,ϕ +σ22,z +σ23,r +
σ32

r
+ f2,

ρẍ3 = σ31,ϕ +σ32,z +σ33,r −rσ11 +
σ33

r
+ f3. (2.111)
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In Cartesian coordinates, where gi = ei (i = 1, 2, 3), the covariant derivative
coincides with the partial one, so that

σij |j= σij ,j = σij ,j . (2.112)

Thus, the balance equations reduce to

ρẍ1 = σ11,1 +σ12,2 +σ13,3 +f1,

ρẍ2 = σ21,1 +σ22,2 +σ23,3 +f2,

ρẍ3 = σ31,1 +σ32,2 +σ33,3 +f3. (2.113)

Divergence and curl of a vector field. Now, we consider a differ-
entiable vector field t

(
θ1, θ2, θ3

)
. One defines the divergence and curl of

t
(
θ1, θ2, θ3

)
respectively by

divt = lim
V →0

1
V

∫
A

(t · n) dA, (2.114)

curlt = lim
V →0

1
V

∫
A

(n × t) dA = − lim
V →0

1
V

∫
A

(t × n) dA, (2.115)

where the integration is again carried out over a closed surface area A with
the volume V and the outer unit normal vector n. Considering (1.65) and
(2.95), the curl can also be represented by

curlt = − lim
V →0

1
V

∫
A

t̂ndA = −divt̂. (2.116)

Treating the vector field in the same manner as the tensor field we can write

divt = t,i ·gi = ti|i (2.117)

and in view of (2.65)2

divt = tr (gradt) . (2.118)

The same procedure applied to the curl (2.115) leads to

curlt = gi × t,i . (2.119)

By virtue of (2.62) and (1.42) we further obtain (see also Exercise 2.7)

curlt = ti|j gj × gi = ejik 1
g
ti|j gk. (2.120)

With respect to Cartesian coordinates with gi = ei (i = 1, 2, 3) the divergence
(2.117) and curl (2.120) simplify to
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divt = ti,i = t1,1 +t2,2 +t3,3 = t1,1 +t2,2 +t3,3 , (2.121)

curlt = ejikti,j ek

= (t3,2 −t2,3 )e1 + (t1,3 −t3,1 )e2 + (t2,1 −t1,2 ) e3. (2.122)

Now, we are going to discuss some combined operations with a gradient, diver-
gence, curl, tensor mapping and products of various types (see also Exercise
2.11).

1) Curl of a gradient:

curl gradΦ = 0 . (2.123)

2) Divergence of a curl:

div curlt = 0. (2.124)

3) Divergence of a vector product:

div (u × v) = v · curlu − u · curlv. (2.125)

4) Gradient of a divergence:

graddivt = curl curlt + div gradt, (2.126)

graddivt = div (gradt)T . (2.127)

The combined operator div gradt appearing in (2.126) is known as the
Laplacian and is also denoted by Δt.

5) Divergence of a (left) mapping

div (tA) = A : gradt + t · divA. (2.128)

6) Divergence of a product of a scalar-valued function and a vector-valued
function

div (Φt) = t · gradΦ + Φdivt. (2.129)

7) Divergence of a product of a scalar-valued function and a tensor-valued
function

div (ΦA) = AgradΦ + ΦdivA. (2.130)

We prove, for example, identity (2.123). To this end, we apply (2.65)1, (2.72)
and (2.119). Thus, we write

curl gradΦ = gj × (
Φ|i gi

)
,j = Φ,ij gj × gi + Φ,i gj × gi,j

= Φ,ij gj × gi − Φ,i Γi
kjg

j × gk = 0 (2.131)



2.6 Applications in Three-Dimensional Space: Divergence and Curl 53

taking into account that Φ,ij = Φ,ji, Γl
ij = Γl

ji and gi × gj = −gj × gi

(i �= j, i, j = 1, 2, 3).

Example. Balance of mechanical energy as an integral form of
the momentum balance. Using the above identities we are now able to
formulate the balance of mechanical energy on the basis of the momentum
balance (2.106). To this end, we multiply this vector relation scalarly by the
velocity vector v = ẋ

v · (ρẍ) = v · divσ + v · f .

Using (2.128) we can further write

v · (ρẍ) + σ : gradv = div (vσ) + v · f .

Integrating this relation over the volume of the body V yields

d
dt

∫
m

(
1
2
v · v

)
dm +

∫
V

σ : gradvdV =
∫
V

div (vσ) dV +
∫
V

v · fdV,

where dm = ρdV and m denotes the mass of the body. Keeping in mind the
definition of the divergence (2.95) and applying the Cauchy theorem (1.72)
according to which the Cauchy stress vector is given by t = σn, we finally
obtain the relation

d
dt

∫
m

(
1
2
v · v

)
dm +

∫
V

σ : gradvdV =
∫
A

v · tdA +
∫
V

v · fdV (2.132)

expressing the balance of mechanical energy. Indeed, the first and the second
integrals on the left hand side of (2.132) represent the time rate of the kinetic
energy and the stress power, respectively. The right hand side of (2.132) ex-
presses the power of external forces i.e. external tractions t on the boundary
of the body A and external volume forces f inside of it.

Example. Navier-Stokes equations for a linear-viscous fluid in
Cartesian and cylindrical coordinates. A linear-viscous fluid (also called
Newton fluid or Navier-Poisson fluid) is defined by a constitutive equation

σ = −pI + 2ηD + λ (trD) I, (2.133)

where

D =
1
2

[
gradv + (gradv)T

]
(2.134)

denotes the spatial strain rate tensor, p is the hydrostatic pressure while η
and λ represent material constants referred to as shear viscosity and second
viscosity coefficient, respectively. Inserting (2.134) into (2.133) and taking
(2.118) into account delivers
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σ = −pI + η
[
gradv + (gradv)T

]
+ λ (divv) I. (2.135)

Substituting this expression into the momentum balance (2.106) and using
(2.127) and (2.130) we obtain the relation

ρv̇ = −gradp + ηdiv gradv + (η + λ) graddivv + f (2.136)

referred to as the Navier-Stokes equation. By means of (2.126) it can be rewrit-
ten as

ρv̇ = −gradp + (2η + λ) graddivv − ηcurl curlv + f . (2.137)

For an incompressible fluid characterized by the kinematic condition trD =
divv = 0, the latter two equations simplify to

ρv̇ = −gradp + ηΔv + f , (2.138)

ρv̇ = −gradp − ηcurl curlv + f . (2.139)

With the aid of the identity Δv = v,i|i (see Exercise 2.13) we thus can write

ρv̇ = −gradp + ηv,i|i +f . (2.140)

In Cartesian coordinates this relation is thus written out as

ρv̇i = −p,i +η (vi,11 +vi,22 +vi,33 ) + fi, i = 1, 2, 3. (2.141)

For arbitrary curvilinear coordinates we use the following representation for
the vector Laplacian (see Exercise 2.15)

Δv = gij
(
vk,ij +2Γk

liv
l,j −Γm

ij vk,m +Γk
li,j vl + Γk

mjΓ
m
li vl − Γm

ij Γk
lmvl

)
gk.

(2.142)

For the cylindrical coordinates it takes by virtue of (2.28) and (2.81) the
following form

Δv =
(
r−2v1,11 +v1,22 +v1,33 +3r−1v1,3 +2r−3v3,1

)
g1

+
(
r−2v2,11 +v2,22 +v2,33 +r−1v2,3

)
g2

+
(
r−2v3,11 +v3,22 +v3,33 −2r−1v1,1 +r−1v3,3 −r−2v3

)
g3.

Inserting this result into (2.138) and using the representations v̇ = v̇igi and
f = f igi we finally obtain

ρv̇1 = f1 − ∂p

∂ϕ
+ η

(
1
r2

∂2v1

∂ϕ2
+

∂2v1

∂z2
+

∂2v1

∂r2
+

3
r

∂v1

∂r
+

2
r3

∂v3

∂ϕ

)
,

ρv̇2 = f2 − ∂p

∂z
+ η

(
1
r2

∂2v2

∂ϕ2
+

∂2v2

∂z2
+

∂2v2

∂r2
+

1
r

∂v2

∂r

)
,

ρv̇3 = f3 − ∂p

∂r
+ η

(
1
r2

∂2v3

∂ϕ2
+

∂2v3

∂z2
+

∂2v3

∂r2
− 2

r

∂v1

∂ϕ
+

1
r

∂v3

∂r
− v3

r2

)
.

(2.143)
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Exercises

2.1. Evaluate tangent vectors and metric coefficients of spherical coordinates
in E3 defined by

r (ϕ, φ, r) = r sin ϕ sin φe1 + r cosφe2 + r cosϕ sin φe3. (2.144)

2.2. Evaluate the coefficients
∂θ̄i

∂θk
(2.41) for the transformation of linear co-

ordinates in the spherical ones and vice versa.

2.3. Evaluate gradients of the following functions of r:

(a)
1

‖r‖ , (b) r · w, (c) rAr, (d) Ar, (e) w × r,

where w and A are some vector and tensor, respectively.

2.4. Evaluate the Christoffel symbols of the first and second kind for spherical
coordinates (2.144).

2.5. Verify relations (2.87).

2.6. Prove the product rules of differentiation for the covariant derivative
(2.92-2.94).

2.7. Verify relation (2.120) applying (2.103), (2.116) and using the results of
Exercise 1.21.

2.8. Write out the balance equations (2.107) in spherical coordinates (2.144).

2.9. Evaluate tangent vectors, metric coefficients and Christoffel symbols for
cylindrical surface coordinates defined by

r (r, s, z) = r cos
s

r
e1 + r sin

s

r
e2 + ze3. (2.145)

2.10. Write out the balance equations (2.107) in cylindrical surface coordi-
nates (2.145).

2.11. Prove identities (2.124-2.130).

2.12. Write out the gradient, divergence and curl of a vector field t (r) in
cylindrical and spherical coordinates (2.16) and (2.144), respectively.

2.13. Prove that the Laplacian of a vector-valued function t (r) can be given
by Δt = t,i|i. Specify this identity for Cartesian coordinates.

2.14. Write out the Laplacian ΔΦ of a scalar field Φ (r) in cylindrical and
spherical coordinates (2.16) and (2.144), respectively.

2.15. Write out the Laplacian of a vector field t (r) in component form in
an arbitrary curvilinear coordinate system. Specify the result for spherical
coordinates (2.144).




