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Curves and Surfaces in Three-Dimensional
Euclidean Space

3.1 Curves in Three-Dimensional Euclidean Space

A curve in three-dimensional space is defined by a vector function

r = r (t) , r ∈ E
3, (3.1)

where the real variable t belongs to some interval: t1 ≤ t ≤ t2. Henceforth, we
assume that the function r (t) is sufficiently differentiable and

dr

dt
�= 0 (3.2)

over the whole definition domain. Specifying an arbitrary coordinate system
(2.15) as

θi = θi (r) , i = 1, 2, 3, (3.3)

the curve (3.1) can alternatively be defined by

θi = θi (t) , i = 1, 2, 3. (3.4)

Example. Straight line. A straight line can be defined by

r (t) = a + bt, a, b ∈ E
3. (3.5)

With respect to linear coordinates related to a basis H = {h1, h2, h3} it is
equivalent to

ri (t) = ai + bit, i = 1, 2, 3, (3.6)

where r = rihi, a = aihi and b = bihi.

Example. Circular helix. The circular helix (Fig. 3.1) is defined by



58 3 Curves and Surfaces in Three-Dimensional Euclidean Space

x3

2πc

e1

e2 x2

x1

r

t

e3

R

Fig. 3.1. Circular helix

r (t) = R cos (t)e1 + R sin (t)e2 + cte3, c �= 0, (3.7)

where ei (i = 1, 2, 3) form an orthonormal basis in E3. For the definition of
the circular helix the cylindrical coordinates (2.16) appear to be very suitable.
Indeed, alternatively to (3.7) we can write

r = R, ϕ = t, z = ct. (3.8)

In the previous chapter we defined tangent vectors to the coordinate lines. By
analogy one can also define a vector tangent to the curve (3.1) as

gt =
dr

dt
. (3.9)

It is advantageous to parametrize the curve (3.1) in terms of the so-called arc
length. To this end, we first calculate the length of a curve segment between
the points corresponding to parameters t1 and t as

s (t) =

r(t)∫
r(t1)

√
dr · dr. (3.10)
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With the aid of (3.9) we can write dr = gtdt and consequently

s (t) =

t∫
t1

√
gt · gtdt =

t∫
t1

‖gt‖ dt =

t∫
t1

√
gtt (t)dt. (3.11)

Using this equation and keeping in mind assumption (3.2) we have

ds

dt
=
√

gtt (t) �= 0. (3.12)

This implies that the function s = s (t) is invertible and

t (s) =

s∫
s(t1)

‖gt‖−1 ds =

s∫
s(t1)

ds√
gtt (t)

. (3.13)

Thus, the curve (3.1) can be redefined in terms of the arc length s as

r = r (t (s)) = �
r (s) . (3.14)

In analogy with (3.9) one defines the vector tangent to the curve �
r (s) (3.14)

as

a1 =
d�

r

ds
=

dr

dt

dt

ds
=

gt

‖gt‖ (3.15)

being a unit vector: ‖a1‖ = 1. Differentiation of this vector with respect to s
further yields

a1,s =
da1

ds
=

d2 �
r

ds2
. (3.16)

It can be shown that the tangent vector a1 is orthogonal to a1,s provided
the latter one is not zero. Indeed, differentiating the identity a1 · a1 = 1 with
respect to s we have

a1 · a1,s = 0. (3.17)

The length of the vector a1,s

κ (s) = ‖a1,s ‖ (3.18)

plays an important role in the theory of curves and is called curvature. The
inverse value

ρ (s) =
1

κ (s)
(3.19)
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is referred to as the radius of curvature of the curve at the point �
r (s). Hence-

forth, we focus on curves with non-zero curvature. The case of zero curvature
corresponds to a straight line (see Exercise 3.1) and is trivial.

Next, we define the unit vector in the direction of a1,s

a2 =
a1,s

‖a1,s ‖ =
a1,s
κ (s)

(3.20)

called the principal normal vector to the curve. The orthogonal vectors a1

and a2 can further be completed to an orthonormal basis in E3 by the vector

a3 = a1 × a2 (3.21)

called the unit binormal vector. The triplet of vectors a1, a2 and a3 is referred
to as the moving trihedron of the curve.

In order to study the rotation of the trihedron along the curve we again
consider the arc length s as a coordinate. In this case, we can write similarly
to (2.66)

ai,s = Γk
isak, i = 1, 2, 3, (3.22)

where Γk
is = ai,s ·ak (i, k = 1, 2, 3). From (3.17), (3.20) and (3.21) we imme-

diately observe that Γ2
1s = κ and Γ1

1s = Γ3
1s = 0. Further, differentiating the

identities

a3 · a3 = 1, a1 · a3 = 0 (3.23)

with respect to s yields

a3 · a3,s = 0, a1,s ·a3 + a1 · a3,s = 0. (3.24)

Taking into account (3.20) this results in the following identity

a1 · a3,s = −a1,s ·a3 = −κa2 · a3 = 0. (3.25)

Relations (3.24) and (3.25) suggest that

a3,s = −τ (s)a2, (3.26)

where the function

τ (s) = −a3,s ·a2 (3.27)

is called torsion of the curve at the point �
r(s). Thus, Γ2

3s = −τ and
Γ1

3s = Γ3
3s = 0. The sign of the torsion (3.27) has a geometric meaning and

remains unaffected by the change of the positive sense of the curve, i.e. by
the transformation s = −s′ (see Exercise 3.2). Accordingly, one distinguishes
right-handed curves with a positive torsion and left-handed curves with a neg-
ative torsion. In the case of zero torsion the curve is referred to as a plane
curve.
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Finally, differentiating the identities

a2 · a1 = 0, a2 · a2 = 1, a2 · a3 = 0

with respect to s and using (3.20) and (3.27) we get

a2,s ·a1 = −a2 · a1,s = −κa2 · a2 = −κ, (3.28)

a2 · a2,s = 0, a2,s ·a3 = −a2 · a3,s = τ, (3.29)

so that Γ1
2s = −κ, Γ2

2s = 0 and Γ3
2s = τ . Summarizing the above results we

can write

[
Γj

is

]
=

⎡⎣ 0 κ 0
−κ 0 τ

0 −τ 0

⎤⎦ (3.30)

and

a1,s =
a2,s =
a3,s =

κa2,
−κa1 +τa3,

−τa2.
(3.31)

Relations (3.31) are known as the Frenet formulas.

�
r (s)

a1(s)

a1(s0)

a2(s)
a3(s)

Q
a2(s0)

�
r(s0)

a3(s0)

Fig. 3.2. Rotation of the moving trihedron

A useful illustration of the Frenet formulas can be gained with the aid of a
skew-symmetric tensor. To this end, we consider the rotation of the trihedron
from some initial position at s0 to the actual state at s. This rotation can be
described by an orthogonal tensor Q (s) as (Fig. 3.2)
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ai (s) = Q (s)ai (s0) , i = 1, 2, 3. (3.32)

Differentiating this relation with respect to s yields

ai,s (s) = Q,s (s)ai (s0) , i = 1, 2, 3. (3.33)

Mapping both sides of (3.32) by QT (s) and inserting the result into (3.33)
we further obtain

ai,s (s) = Q,s (s)QT (s)ai (s) , i = 1, 2, 3. (3.34)

Differentiating the identity (1.129) Q (s)QT (s) = I with respect to s we have
Q,s (s)QT (s) + Q (s)QT,s (s) = 0, which implies that the tensor W (s) =
Q,s (s)QT (s) is skew-symmetric. Hence, eq. (3.34) can be rewritten as (see
also [3])

ai,s (s) = W (s) ai (s) , W ∈ Skew3, i = 1, 2, 3, (3.35)

where according to (3.31)

W (s) = τ (s) (a3 ⊗ a2 − a2 ⊗ a3) + κ (s) (a2 ⊗ a1 − a1 ⊗ a2) . (3.36)

By virtue of (1.130) and (1.131) we further obtain

W = τ â1 + κâ3 (3.37)

and consequently

ai,s = d × ai = d̂ai, i = 1, 2, 3, (3.38)

where

d = τa1 + κa3 (3.39)

is referred to as the Darboux vector.

Example. Curvature, torsion, moving trihedron and Darboux
vector for a circular helix. Inserting (3.7) into (3.9) delivers

gt =
dr

dt
= −R sin (t)e1 + R cos (t)e2 + ce3, (3.40)

so that

gtt = gt · gt = R2 + c2 = const. (3.41)

Thus, using (3.13) we may set

t (s) =
s√

R2 + c2
. (3.42)
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Using this result, the circular helix (3.7) can be parametrized in terms of the
arc length s by

�
r(s) = R cos

(
s√

R2 + c2

)
e1 + R sin

(
s√

R2 + c2

)
e2 +

cs√
R2 + c2

e3.

(3.43)

With the aid of (3.15) we further write

a1 =
d�

r

ds
=

1√
R2 + c2

[
−R sin

(
s√

R2 + c2

)
e1

+ R cos
(

s√
R2 + c2

)
e2 + ce3

]
, (3.44)

a1,s = − R

R2 + c2

[
cos

(
s√

R2 + c2

)
e1 + sin

(
s√

R2 + c2

)
e2

]
. (3.45)

According to (3.18) the curvature of the helix is thus

κ =
R

R2 + c2
. (3.46)

By virtue of (3.20), (3.21) and (3.27) we have

a2 =
a1,s
κ

= − cos
(

s√
R2 + c2

)
e1 − sin

(
s√

R2 + c2

)
e2, (3.47)

a3 = a1 × a2 =
1√

R2 + c2

[
c sin

(
s√

R2 + c2

)
e1

−c cos
(

s√
R2 + c2

)
e2 + Re3

]
. (3.48)

a3,s =
c

R2 + c2

[
cos

(
s√

R2 + c2

)
e1 + sin

(
s√

R2 + c2

)
e2

]
, (3.49)

τ =
c

R2 + c2
. (3.50)

It is seen that the circular helix is right-handed for c > 0, left-handed for
c < 0 and becomes a circle for c = 0. For the Darboux vector (3.39) we finally
obtain

d = τa1 + κa3 =
1√

R2 + c2
e3. (3.51)
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3.2 Surfaces in Three-Dimensional Euclidean Space

A surface in three-dimensional Euclidean space is defined by a vector function

r = r
(
t1, t2

)
, r ∈ E

3, (3.52)

of two real variables t1 and t2 referred to as Gauss coordinates. With the aid
of the coordinate system (3.3) one can alternatively write

θi = θi
(
t1, t2

)
, i = 1, 2, 3. (3.53)

In the following, we assume that the function r
(
t1, t2

)
is sufficiently differen-

tiable with respect to both arguments and

dr

dtα
�= 0 , α = 1, 2 (3.54)

over the whole definition domain.

Example 1. Plane. Let us consider three linearly independent vectors
xi (i = 0, 1, 2) specifying three points in three-dimensional space. The plane
going through these points can be defined by

r
(
t1, t2

)
= x0 + t1 (x1 − x0) + t2 (x2 − x0) . (3.55)

Example 2. Cylinder. A cylinder of radius R with the axis parallel to
e3 is defined by

r
(
t1, t2

)
= R cos t1e1 + R sin t1e2 + t2e3, (3.56)

where ei (i = 1, 2, 3) again form an orthonormal basis in E3. With the aid of
the cylindrical coordinates (2.16) we can alternatively write

ϕ = t1, z = t2, r = R. (3.57)

Example 3. Sphere. A sphere of radius R with the center at r = 0 is
defined by

r
(
t1, t2

)
= R sin t1 sin t2e1 + R cos t2e2 + R cos t1 sin t2e3, (3.58)

or by means of spherical coordinates (2.144) as

ϕ = t1, φ = t2, r = R. (3.59)

Using a parametric representation (see, e.g., [25])

t1 = t1 (t) , t2 = t2 (t) (3.60)
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Fig. 3.3. Coordinate lines on the surface, normal section and tangent vectors

one defines a curve on the surface (3.52). In particular, the curves t1 = const
and t2 = const are called t2 and t1 coordinate lines, respectively (Fig. 3.3).
The vector tangent to the curve (3.60) can be expressed by

gt =
dr

dt
=

∂r

∂t1
dt1

dt
+

∂r

∂t2
dt2

dt
= g1

dt1

dt
+ g2

dt2

dt
, (3.61)

where

gα =
∂r

∂tα
= r,α , α = 1, 2 (3.62)

represent tangent vectors to the coordinate lines. For the length of an in-
finitesimal element of the curve (3.60) we thus write

(ds)2 = dr·dr = (gtdt)·(gtdt) =
(
g1dt1 + g2dt2

)·(g1dt1 + g2dt2
)
. (3.63)

With the aid of the abbreviation

gαβ = gβα = gα · gβ , α, β = 1, 2, (3.64)

it delivers the quadratic form

(ds)2 = g11

(
dt1

)2
+ 2g12dt1dt2 + g22

(
dt2

)2
(3.65)

referred to as the first fundamental form of the surface. The latter result can
briefly be written as

(ds)2 = gαβdtαdtβ , (3.66)

where and henceforth within this chapter the summation convention is implied
for repeated Greek indices taking the values from 1 to 2. Similar to the metric
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coefficients (1.85)1,2 in n-dimensional Euclidean space gαβ (3.64) describe the
metric on a surface. Generally, the metric described by a differential quadratic
form like (3.66) is referred to as Riemannian metric.

The tangent vectors (3.62) can be completed to a basis in E3 by the unit
vector

g3 =
g1 × g2

‖g1 × g2‖ (3.67)

called principal normal vector to the surface.
In the following, we focus on a special class of surface curves called normal

sections. These are curves passing through a point of the surface r
(
t1, t2

)
and

obtained by intersection of this surface with a plane involving the principal
normal vector. Such a plane is referred to as the normal plane.

In order to study curvature properties of normal sections we first express
the derivatives of the basis vectors gi (i = 1, 2, 3) with respect to the surface
coordinates. Using the formalism of Christoffel symbols we can write

gi,α =
∂gi

∂tα
= Γiαkgk = Γk

iαgk, i = 1, 2, 3, (3.68)

where

Γiαk = gi,α ·gk, Γk
iα = gi,α ·gk, i = 1, 2, 3, α = 1, 2. (3.69)

Taking into account the identity g3 = g3 resulting from (3.67) we immediately
observe that

Γiα3 = Γ3
iα, i = 1, 2, 3, α = 1, 2. (3.70)

Differentiating the relations

gα · g3 = 0, g3 · g3 = 1 (3.71)

with respect to the Gauss coordinates we further obtain

gα,β ·g3 = −gα · g3,β , g3,α ·g3 = 0, α, β = 1, 2 (3.72)

and consequently

Γ3
αβ = −Γ3βα, Γ3

3α = 0, α, β = 1, 2. (3.73)

Using in (3.68) the abbreviation

bαβ = bβα = Γ3
αβ = −Γ3αβ = gα,β ·g3, α, β = 1, 2, (3.74)

we arrive at the relations

gα,β = Γρ
αβgρ + bαβg3, α, β = 1, 2 (3.75)
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called the Gauss formulas.
Similarly to a coordinate system one can notionally define the covariant

derivative also on the surface. To this end, relations (2.84), (2.86) and (2.87)
are specified to the two-dimensional space in a straight forward manner as

fα|β= fα,β +fρΓα
ρβ , fα|β= fα,β −fρΓ

ρ
αβ , (3.76)

Fαβ|γ= Fαβ ,γ +FρβΓα
ργ + FαρΓβ

ργ , Fαβ |γ= Fαβ ,γ −FρβΓρ
αγ − FαρΓ

ρ
βγ ,

Fα
·β|γ= Fα

·β,γ +Fρ
·βΓα

ργ − Fα
·ρΓ

ρ
βγ , α, β, γ = 1, 2. (3.77)

Thereby, with the aid of (3.76)2 the Gauss formulas (3.75) can alternatively
be given by (cf. (2.89))

gα|β= bαβg3, α, β = 1, 2. (3.78)

Further, we can write

bβ
α = bαρg

ρβ = −Γ3αρg
ρβ = −Γβ

3α, α, β = 1, 2. (3.79)

Inserting the latter relation into (3.68) and considering (3.73)2, this yields the
identities

g3,α = g3|α= −bρ
αgρ, α = 1, 2 (3.80)

referred to as the Weingarten formulas.
Now, we are in a position to express the curvature of a normal section. It

is called normal curvature and denoted in the following by κn. At first, we
observe that the principal normals of the surface and of the normal section
coincide in the sense that a2 = ±g3. Using (3.13), (3.28), (3.61), (3.72)1 and
(3.74) and assuming for the moment that a2 = g3 we get

κn = −a2,s ·a1 = −g3,s · gt

‖gt‖ = −
(

g3,t
dt

ds

)
· gt

‖gt‖ = −g3,t · gt

‖gt‖2

= −
(

g3,α
dtα

dt

)
·
(

gβ
dtβ

dt

)
‖gt‖−2 = bαβ

dtα

dt

dtβ

dt
‖gt‖−2

.

By virtue of (3.63) and (3.66) this leads to the following result

κn =
bαβdtαdtβ

gαβdtαdtβ
, (3.81)

where the quadratic form

bαβdtαdtβ = −dr · dg3 (3.82)

is referred to as the second fundamental form of the surface. In the case
a2 = −g3 the sign of the expression for κn (3.81) must be changed. Instead of
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that, we assume that the normal curvature can, in contrast to the curvature
of space curves (3.18), be negative. However, the sign of κn (3.81) has no
geometrical meaning. Indeed, it depends on the orientation of g3 with respect
to a2 which is immaterial. For example, g3 changes the sign in coordinate
transformations like t̄1 = t2, t̄2 = t1.

Of special interest is the dependence of the normal curvature κn on the
direction of the normal section. For example, for the normal sections passing
through the coordinate lines we have

κn|t2=const =
b11

g11
, κn|t1=const =

b22

g22
. (3.83)

In the following, we are going to find the directions of the maximal and mini-
mal curvature. Necessary conditions for the extremum of the normal curvature
(3.81) are given by

∂κn

∂tα
= 0, α = 1, 2. (3.84)

Rewriting (3.81) as

(bαβ − κngαβ) dtαdtβ = 0 (3.85)

and differentiating with respect to tα we obtain

(bαβ − κngαβ) dtβ = 0, α = 1, 2. (3.86)

Multiplying both sides of this equation system by gαρ and summing up over
α we have with the aid of (3.79)(

bρ
β − κnδρ

β

)
dtβ = 0, ρ = 1, 2. (3.87)

A nontrivial solution of this homogeneous equation system exists if and only
if ∣∣∣∣ b1

1 − κn b1
2

b2
1 b2

2 − κn

∣∣∣∣ = 0. (3.88)

Writing out the above determinant we can also write

κ
2
n − bα

ακn +
∣∣bα

β

∣∣ = 0. (3.89)

The maximal and minimal curvatures κ1 and κ2 resulting from this quadratic
equation are called the principal curvatures. One can show that directions of
principal curvatures are mutually orthogonal (see Theorem 4.5, Sect. 4). These
directions are called principal directions of normal curvature or curvature
directions (see also [25]).

According to the Vieta theorem the product of principal curvatures can
be expressed by
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K = κ1κ2 =
∣∣bα

β

∣∣ =
b

g2
, (3.90)

where

b = |bαβ | =
∣∣∣∣ b11 b12

b21 b22

∣∣∣∣ = b11b22 − (b12)
2 , (3.91)

g2 = [g1g2g3]
2 =

∣∣∣∣∣∣
g11 g12 0
g21 g22 0
0 0 1

∣∣∣∣∣∣ = g11g22 − (g12)
2
. (3.92)

For the arithmetic mean of the principal curvatures we further obtain

H =
1
2

(κ1 + κ2) =
1
2
bα
α. (3.93)

The values K (3.90) and H (3.93) do not depend on the direction of the
normal section and are called the Gaussian and mean curvatures, respectively.
In terms of K and H the solutions of the quadratic equation (3.89) can simply
be given by

κ1,2 = H ±
√

H2 − K. (3.94)

One recognizes that the sign of the Gaussian curvature K (3.90) is defined
by the sign of b (3.91). For positive b both κ1 and κ2 are positive or negative so
that κn has the same sign for all directions of the normal sections at r

(
t1, t2

)
.

In other words, the orientation of a2 with respect to g3 remains constant. Such
a point of the surface is called elliptic.

For b < 0, principal curvatures are of different signs so that different normal
sections are characterized by different orientations of a2 with respect to g3.
There are two directions of the normal sections with zero curvature. Such
normal sections are referred to as asymptotic directions. The corresponding
point of the surface is called hyperbolic or saddle point.

In the intermediate case b = 0, κn does not change sign. There is only one
asymptotic direction which coincides with one of the principal directions (of
κ1 or κ2). The corresponding point of the surface is called parabolic point.

Example. Torus. A torus is a surface obtained by rotating a circle about
a coplanar axis (see Fig. 3.4). Additionally we assume that the rotation axis
lies outside of the circle. Accordingly, the torus can be defined by

r
(
t1, t2

)
=
(
R0 + R cos t2

)
cos t1e1

+
(
R0 + R cos t2

)
sin t1e2 + R sin t2e3, (3.95)

where R0 is the radius of the circle and R is the distance between its center
and the rotation axis. By means of (3.62) and (3.67) we obtain

g1 = − (R0 + R cos t2
)
sin t1e1 +

(
R0 + R cos t2

)
cos t1e2,
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Fig. 3.4. Torus

g2 = −R cos t1 sin t2e1 − R sin t1 sin t2e2 + R cos t2e3,

g3 = cos t1 cos t2e1 + sin t1 cos t2e2 + sin t2e3. (3.96)

Thus, the coefficients (3.64) of the first fundamental form (3.65) are given by

g11 =
(
R0 + R cos t2

)2
, g12 = 0, g22 = R2. (3.97)

In order to express coefficients (3.74) of the second fundamental form (3.82)
we first calculate derivatives of the tangent vectors (3.96)1,2

g1,1 = − (R0 + R cos t2
)
cos t1e1 −

(
R0 + R cos t2

)
sin t1e2,

g1,2 = g2,1 = R sin t1 sin t2e1 − R cos t1 sin t2e2,

g2,2 = −R cos t1 cos t2e1 − R sin t1 cos t2e2 − R sin t2e3. (3.98)

Inserting these expressions as well as (3.96)3 into (3.74) we obtain

b11 = − (R0 + R cos t2
)
cos t2, b12 = b21 = 0, b22 = −R. (3.99)

In view of (3.79) and (3.97) b2
1 = b1

2 = 0. Thus, the solution of the equation
system (3.88) delivers

κ1 = b1
1 =

b11

g11
= − cos t2

R0 + R cos t2
, κ2 = b2

2 =
b22

g22
= −R−1. (3.100)

Comparing this result with (3.83) we see that the coordinate lines of the torus
(3.95) coincide with the principal directions of the normal curvature. Hence,
by (3.90)
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K = κ1κ2 =
cos t2

R (R0 + R cos t2)
. (3.101)

Thus, points of the torus for which −π/2 < t2 < π/2 are elliptic while points
for which π/2 < t2 < 3π/2 are hyperbolic. Points of the coordinates lines
t2 = −π/2 and t2 = π/2 are parabolic.

3.3 Application to Shell Theory

Geometry of the shell continuum. Let us consider a surface in the three-
dimensional Euclidean space defined by (3.52) as

r = r
(
t1, t2

)
, r ∈ E

3 (3.102)

and bounded by a closed curve C (Fig. 3.5). The shell continuum can then be
described by a vector function

r∗ = r∗ (t1, t2, t3) = r
(
t1, t2

)
+ g3t

3, (3.103)

where the unit vector g3 is defined by (3.62) and (3.67) while −h/2 ≤ t3 ≤
h/2. The surface (3.102) is referred to as the middle surface of the shell.
The thickness of the shell h is assumed to be small in comparison to its other
dimensions as for example the minimal curvature radius of the middle surface.

Every fixed value of the thickness coordinate t3 defines a surface r∗ (t1, t2)
whose geometrical variables are obtained according to (1.40), (3.62), (3.64),
(3.79), (3.80), (3.90), (3.93) and (3.103) as follows.

g∗
α = r∗,α = gα + t3g3,α =

(
δρ
α − t3bρ

α

)
gρ, α = 1, 2, (3.104)

g∗
3 =

g∗
1 × g∗

2

‖g∗
1 × g∗

2‖
= r∗,3 = g3, (3.105)

g∗αβ = g∗
α · g∗

β = gαβ − 2t3bαβ +
(
t3
)2

bαρb
ρ
β, α, β = 1, 2, (3.106)

g∗ = [g∗
1g

∗
2g

∗
3] =

[(
δρ
1 − t3bρ

1

)
gρ

(
δγ
2 − t3bγ

2

)
gγg3

]
=
(
δρ
1 − t3bρ

1

) (
δγ
2 − t3bγ

2

)
geργ3 = g

∣∣δα
β − t3bα

β

∣∣
= g

[
1 − 2t3H +

(
t3
)2

K
]
. (3.107)

The factor in brackets in the latter expression

μ =
g∗

g
= 1 − 2t3H +

(
t3
)2

K (3.108)

is called the shell shifter.
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g∗
2

g ∗
3 = g 3

g∗
1

h/2

h/2

A(2)
A(1)

r ∗(t1, t2, t3)

g3

t2-line

t3-line

t1-line

g 1

middle surface

boundary
curve C

r(t1, t2)

g2

Fig. 3.5. Geometry of the shell continuum

Internal force variables. Let us consider an element of the shell contin-
uum (see Fig. 3.6) bounded by the coordinate lines tα and tα+Δtα (α = 1, 2).
One defines the force vector fα and the couple vector mα relative to the mid-
dle surface of the shell, respectively, by

fα =

h/2∫
−h/2

μσg∗αdt3, mα =

h/2∫
−h/2

μr∗ × (σg∗α) dt3, α = 1, 2, (3.109)
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m1(t1 + Δt1)

p

c

−m2(t2)

−f 2(t2)

f 1(t1 + Δt1)

f 2(t2 + Δt2)

−m1(t1)

−f 1(t1)

t1

Δt1

Δt2

r

m2(t2 + Δt2)

t3

t2

Fig. 3.6. Force variables related to the middle surface of the shell

where σ denotes the Cauchy stress tensor on the boundary surface A(α)

spanned on the coordinate lines t3 and tβ (β �= α). The unit normal to this
boundary surface is given by

n(α) =
g∗α

‖g∗α‖ =
g∗α

√
g∗αα

=
g∗√
g∗ββ

g∗α, β �= α = 1, 2, (3.110)

where we keep in mind that g∗α · g∗
β = g∗α · g3 = 0 and (see Exercise 3.7)

g∗αα =
g∗ββ

g∗2
, β �= α = 1, 2. (3.111)

Applying the Cauchy theorem (1.72) and bearing (3.108) in mind we obtain

fα =
1
g

h/2∫
−h/2

√
g∗ββtdt3, mα =

1
g

h/2∫
−h/2

√
g∗ββ (r∗ × t) dt3, (3.112)

where again β �= α = 1, 2 and t denotes the Cauchy stress vector. The force
and couple resulting on the whole boundary surface can thus be expressed
respectively by∫

A(α)

tdA(α) =

tβ+Δtβ∫
tβ

h/2∫
−h/2

t
√

g∗ββdt3dtβ =

tβ+Δtβ∫
tβ

gfαdtβ , (3.113)
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∫
A(α)

(r∗ × t) dA(α) =

tβ+Δtβ∫
tβ

h/2∫
−h/2

(r∗ × t)
√

g∗ββdt3dtβ

=

tβ+Δtβ∫
tβ

gmαdtβ , β �= α = 1, 2, (3.114)

where we make use of the relation

dA(α) = g∗
√

g∗ααdtβdt3 =
√

g∗ββdtβdt3, β �= α = 1, 2 (3.115)

following immediately from (2.96) and (3.111).
The force and couple vectors (3.109) are usually represented with respect

to the basis related to the middle surface as (see also [1])

fα = fαβgβ + qαg3, mα = mαβg3 × gβ = g e3βρm
αβgρ. (3.116)

In shell theory, their components are denoted as follows.

fαβ - components of the stress resultant tensor,

qα - components of the transverse shear stress vector,

mαβ - components of the moment tensor.

External force variables. One defines the load force vector and the load
moment vector related to a unit area of the middle surface, respectively by

p = pigi, c = cρg3 × gρ. (3.117)

The load moment vector c is thus assumed to be tangential to the middle
surface. The resulting force and couple can be expressed respectively by

t2+Δt2∫
t2

t1+Δt1∫
t1

pgdt1dt2,

t2+Δt2∫
t2

t1+Δt1∫
t1

cgdt1dt2. (3.118)

Equilibrium conditions. Taking (3.113) and (3.118)1 into account the
force equilibrium condition of the shell element can be expressed as

2∑
α,β=1
α�=β

tβ+Δtβ∫
tβ

[g (tα + Δtα)fα (tα + Δtα) − g (tα)fα (tα)] dtβ
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+

t2+Δt2∫
t2

t1+Δt1∫
t1

pgdt1dt2 = 0 . (3.119)

Rewriting the first integral in (3.119) we further obtain

t2+Δt2∫
t2

t1+Δt1∫
t1

[(gfα) ,α +gp] dt1dt2 = 0 . (3.120)

Since the latter condition holds for all shell elements we infer that

(gfα) ,α +gp = 0 , (3.121)

which leads by virtue of (2.98) and (3.73)2 to

fα|α +p = 0 , (3.122)

where the covariant derivative is formally applied to the vectors fα according
to (3.76)1.

In a similar fashion we can treat the moment equilibrium. In this case, we
obtain instead of (3.121) the following condition

[g (mα + r × fα)] ,α +gr × p + gc = 0 . (3.123)

With the aid of (3.62) and keeping (3.122) in mind, it finally delivers

mα|α +gα × fα + c = 0 . (3.124)

In order to rewrite the equilibrium conditions (3.122) and (3.124) in compo-
nent form we further utilize representations (3.116), (3.117) and apply the
product rule of differentiation for the covariant derivative (see, e.g., (2.92-
2.94)). By virtue of (3.78) and (3.80) it delivers

(fαρ|α −bρ
αqα + pρ) gρ +

(
fαβbαβ + qα|α +p3

)
g3 = 0 , (3.125)

(mαρ|α −qρ + cρ) g3 × gρ + g eαβ3f̃
αβg3 = 0 (3.126)

with a new variable

f̃αβ = fαβ + bβ
γmγα, α, β = 1, 2 (3.127)

called pseudo-stress resultant. Keeping in mind that the vectors gi (i = 1, 2, 3)
are linearly independent we thus obtain the following scalar force equilibrium
conditions

fαρ|α −bρ
αqα + pρ = 0, ρ = 1, 2, (3.128)

bαβfαβ + qα|α +p3 = 0 (3.129)
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and moment equilibrium conditions

mαρ|α −qρ + cρ = 0, ρ = 1, 2, (3.130)

f̃αβ = f̃βα, α, β = 1, 2, α �= β. (3.131)

With the aid of (3.127) one can finally eliminate the components of the stress
resultant tensor fαβ from (3.128) and (3.129). This leads to the following
equation system

f̃αρ|α − (bρ
γmγα

)|α −bρ
αqα + pρ = 0, ρ = 1, 2, (3.132)

bαβ f̃αβ − bαβbβ
γmγα + qα|α +p3 = 0, (3.133)

mαρ|α −qρ + cρ = 0, ρ = 1, 2, (3.134)

where the latter relation is repeated from (3.130) for completeness.

Example. Equilibrium equations of plate theory. In this case, the
middle surface of the shell is a plane (3.55) for which

bαβ = bα
β = 0, α, β = 1, 2. (3.135)

Thus, the equilibrium equations (3.132-3.134) simplify to

fαρ,α +pρ = 0, ρ = 1, 2, (3.136)

qα,α +p3 = 0, (3.137)

mαρ,α −qρ + cρ = 0, ρ = 1, 2, (3.138)

where in view of (3.127) and (3.131) fαβ = fβα (α �= β = 1, 2).

Example. Equilibrium equations of membrane theory. The mem-
brane theory assumes that the shell is moment free so that

mαβ = 0, cβ = 0, α, β = 1, 2. (3.139)

In this case, the equilibrium equations (3.132-3.134) reduce to

fαρ|α +pρ = 0, ρ = 1, 2, (3.140)

bαβfαβ + p3 = 0, (3.141)

qρ = 0, ρ = 1, 2, (3.142)

where again fαβ = fβα (α �= β = 1, 2).
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Exercises

3.1. Show that a curve r (s) is a straight line if κ (s) ≡ 0 for any s .

3.2. Show that the curves r (s) and r′ (s) = r (−s) have the same curvature
and torsion.

3.3. Show that a curve r (s) characterized by zero torsion τ (s) ≡ 0 for any s
lies in a plane.

3.4. Evaluate the Christoffel symbols of the second kind, the coefficients of
the first and second fundamental forms, the Gaussian and mean curvatures
for the cylinder (3.56).

3.5. Evaluate the Christoffel symbols of the second kind, the coefficients of
the first and second fundamental forms, the Gaussian and mean curvatures
for the sphere (3.58).

3.6. For the so-called hyperbolic paraboloidal surface defined by

r
(
t1, t2

)
= t1e1 + t2e2 +

t1t2

c
e3, c > 0, (3.143)

evaluate the tangent vectors to the coordinate lines, the coefficients of the
first and second fundamental forms, the Gaussian and mean curvatures.

3.7. Verify relation (3.111).

3.8. Write out equilibrium equations (3.140-3.141) of the membrane theory
for a cylindrical shell and a spherical shell.




