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Eigenvalue Problem and Spectral
Decomposition of Second-Order Tensors

4.1 Complexification

So far we have considered solely real vectors and real vector spaces. For the
purposes of this chapter an introduction of complex vectors is, however, nec-
essary. Indeed, in the following we will see that the existence of a solution of
an eigenvalue problem even for real second-order tensors can be guaranteed
only within a complex vector space. In order to define the complex vector
space let us consider ordered pairs 〈x, y〉 of real vectors x and y ∈ E

n. The
sum of two such pairs is defined by [14]

〈x1, y1〉 + 〈x2, y2〉 = 〈x1 + x2, y1 + y2〉 . (4.1)

Further, we define the product of a pair 〈x, y〉 by a complex number α + iβ
by

(α + iβ) 〈x, y〉 = 〈αx − βy, βx + αy〉 , (4.2)

where α, β ∈ R and i =
√−1. These formulas can easily be recovered assuming

that

〈x, y〉 = x + iy. (4.3)

The definitions (4.1) and (4.2) enriched by the zero pair 〈0 ,0 〉 are sufficient to
ensure that the axioms (A.1-A.4) and (B.1-B.4) of Chap. 1 are valid. Thus, the
set of all pairs z = 〈x, y〉 characterized by the above properties forms a vector
space referred to as complex vector space. Every basis G = {g1, g2, . . . , gn}
of the underlying Euclidean space En represents simultaneously a basis of the
corresponding complexified space. Indeed, for every complex vector within
this space

z = x + iy, (4.4)

where x, y ∈ En and consequently
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x = xigi, y = yigi, (4.5)

we can write

z =
(
xi + iyi

)
gi. (4.6)

Thus, the dimension of the complexified space coincides with the dimension
of the original real vector space. Using this fact we will denote the complex
vector space based on En by Cn. Clearly, En represents a subset of Cn.

For every vector z ∈ Cn given by (4.4) one defines a complex conjugate
counterpart by

z = x − iy. (4.7)

Of special interest is the scalar product of two complex vectors, say z1 =
x1 + iy1 and z2 = x2 + iy2, which we define by (see also [4])

(x1 + iy1) · (x2 + iy2) = x1 · x2 − y1 · y2 + i (x1 · y2 + y1 · x2) . (4.8)

This scalar product is commutative (C.1), distributive (C.2) and linear in
each factor (C.3). Thus, it differs from the classical scalar product of complex
vectors given in terms of the complex conjugate (see, e.g., [14]). As a result,
the axiom (C.4) does not generally hold. For instance, one can easily imagine a
non-zero complex vector whose scalar product with itself is zero. For complex
vectors with the scalar product (4.8) the notions of length, orthogonality or
parallelity can hardly be interpreted geometrically.

However, for complex vectors the axiom (C.4) can be reformulated by

z · z ≥ 0, z · z = 0 if and only if z = 0 . (4.9)

Indeed, using (4.4), (4.7) and (4.8) we obtain z · z = x · x + y · y. Bearing in
mind that the vectors x and y belong to the Euclidean space this immediately
implies (4.9).

As we learned in Chap. 1, the Euclidean space E
n is characterized by

the existence of an orthonormal basis (1.8). This can now be postulated for
the complex vector space Cn as well, because Cn includes En by the very
definition. Also Theorem 1.6 remains valid since it has been proved without
making use of the property (C.4). Thus, we may state that for every basis in
C

n there exists a unique dual basis.
The last step of the complexification is a generalization of a linear mapping

on complex vectors. This can be achieved by setting for every tensor A ∈ Linn

A (x + iy) = Ax + i (Ay) . (4.10)

4.2 Eigenvalue Problem, Eigenvalues and Eigenvectors

Let A ∈ Linn be a second-order tensor. The equation
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Aa = λa, a �= 0 (4.11)

is referred to as the eigenvalue problem of the tensor A. The non-zero vector
a ∈ C

n satisfying this equation is called an eigenvector of A; λ is called an
eigenvalue of A. It is clear that any product of an eigenvector with any (real
or complex) scalar is again an eigenvector.

The eigenvalue problem (4.11) and the corresponding eigenvector a can
be regarded as the right eigenvalue problem and the right eigenvector, respec-
tively. In contrast, one can define the left eigenvalue problem by

bA = λb, b �= 0 , (4.12)

where b ∈ Cn is the left eigenvector. In view of (1.110), every right eigenvector
of A represents the left eigenvector of AT and vice versa. In the following,
unless indicated otherwise, we will mean the right eigenvalue problem and the
right eigenvector.

Mapping (4.11) by A several times we obtain

Aka = λka, k = 1, 2, . . . (4.13)

This leads to the following (spectral mapping) theorem.

Theorem 4.1. Let λ be an eigenvalue of the tensor A and let g (A) =∑m
k=0 akAk be a polynomial of A. Then g (λ) =

∑m
k=0 akλk is the eigenvalue

of g (A).

Proof. Let a be an eigenvector of A associated with λ. Then, in view of (4.13)

g (A) a =
m∑

k=0

akAka =
m∑

k=0

akλka =

(
m∑

k=0

akλk

)
a = g (λ) a.

In order to find the eigenvalues of the tensor A we consider the following
representations:

A = Ai
·jgi ⊗ gj , a = aigi, b = big

i, (4.14)

where G = {g1, g2, . . . , gn} and G′ =
{
g1, g2, . . . , gn

}
are two arbitrary mu-

tually dual bases in En and consequently also in Cn. Note that we prefer here
the mixed variant representation of the tensor A. Inserting (4.14) into (4.11)
and (4.12) further yields

Ai
·ja

jgi = λaigi, Ai
·jbig

j = λbjg
j ,

and therefore(
Ai

·ja
j − λai

)
gi = 0 ,

(
Ai

·jbi − λbj

)
gj = 0 . (4.15)
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Since the vectors gi on the one side and gi (i = 1, 2, . . . , n) on the other side
are linearly independent the associated scalar coefficients in (4.15) must be
zero. This results in the following two linear homogeneous equation systems(

Ai
·j − λδi

j

)
aj = 0,

(
Aj

·i − λδj
i

)
bj = 0, i = 1, 2, . . . , n (4.16)

with respect to the components of the right eigenvector a and the left eigen-
vector b, respectively. A non-trivial solution of these equation systems exists
if and only if∣∣Ai

·j − λδi
j

∣∣ = 0, (4.17)

where |•| denotes the determinant of a matrix. Eq. (4.17) is called the char-
acteristic equation of the tensor A. Writing out the determinant on the left
hand side of this equation one obtains a polynomial of degree n with respect
to the powers of λ

pA (λ) = λn − λn−1I(1)A + . . . + (−1)k
λn−kI(k)

A + . . . + (−1)n I(n)
A , (4.18)

referred to as the characteristic polynomial of the tensor A. Thereby, it can
easily be seen that

I(1)A = Ai
·i = trA, I(n)

A =
∣∣Ai

·j
∣∣ . (4.19)

The characteristic equation (4.17) can briefly be written as

pA (λi) = 0. (4.20)

According to the fundamental theorem of algebra, a polynomial of degree n
has n complex roots which may be multiple. These roots are the eigenvalues
λi (i = 1, 2, . . . , n) of the tensor A.

Factorizing the characteristic polynomial (4.18) yields

pA (λ) =
n∏

i=1

(λ − λi) . (4.21)

Collecting multiple eigenvalues the polynomial (4.21) can further be rewritten
as

pA (λ) =
s∏

i=1

(λ − λi)
ri , (4.22)

where s (1 ≤ s ≤ n) denotes the number of distinct eigenvalues, while ri is
referred to as an algebraic multiplicity of the eigenvalue λi (i = 1, 2, . . . , s). It
should formally be distinguished from the so-called geometric multiplicity ti,
which represents the number of linearly independent eigenvectors associated
with this eigenvalue.
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Example. Eigenvalues and eigenvectors of the deformation gradi-
ent in the case of simple shear. In simple shear, the deformation gradient
can be given by F = Fi

·jei ⊗ ej , where

[
Fi
·j
]

=

⎡⎣ 1 γ 0
0 1 0
0 0 1

⎤⎦ (4.23)

and γ denotes the amount of shear. The characteristic equation (4.17) for the
tensor F takes thus the form∣∣∣∣∣∣

1 − λ γ 0
0 1 − λ 0
0 0 1 − λ

∣∣∣∣∣∣ = 0.

Writing out this determinant we obtain

(1 − λ)3 = 0,

which yields one triple eigenvalue

λ1 = λ2 = λ3 = 1.

The associated (right) eigenvectors a = aiei can be obtained from the equa-
tion system (4.16)1 i.e.(

Fi
·j − λδi

j

)
aj = 0, i = 1, 2, 3.

In view of (4.23) it reduces to the only non-trivial equation

a2γ = 0.

Hence, all eigenvectors of F can be given by a = a1e1 + a3e3. They are linear
combinations of the only two linearly independent eigenvectors e1 and e3.
Accordingly, the geometric and algebraic multiplicities of the eigenvalue 1 are
t1 = 2 and r1 = 3, respectively.

4.3 Characteristic Polynomial

By the very definition of the eigenvalue problem (4.11) the eigenvalues are
independent of the choice of the basis. This is also the case for the coeffi-
cients I(i)A (i = 1, 2, . . . , n) of the characteristic polynomial (4.18) because they
uniquely define the eigenvalues and vice versa. These coefficients are called
principal invariants of A. Comparing (4.18) with (4.21) and applying the Vi-
eta theorem we obtain the following relations between the principal invariants
and eigenvalues:
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I(1)A = λ1 + λ2 + . . . + λn,

I(2)A = λ1λ2 + λ1λ3 + . . . + λn−1λn,
...

I(k)
A =

n∑
o1<o2<...<ok

λo1λo2 . . . λok
,

...

I(n)
A = λ1λ2 . . . λn. (4.24)

The principal invariants can also be expressed in terms of the so-called princi-
pal traces trAk (k = 1, 2, . . . , n). Indeed, by use of (4.13), (4.19)1 and (4.24)1
we first write

trAk = λk
1 + λk

2 + . . . + λk
n, k = 1, 2, . . . , n. (4.25)

Then, we apply Newton’s formula (see e.g. [9]) relating coefficients of a poly-
nomial to its roots represented by the sum of the powers in the form of the
right hand side of (4.25). Taking (4.25) into account, Newton’s formula can
thus be written as

I(1)A = trA,

I(2)A =
1
2

(
I(1)A trA− trA2

)
,

I(3)A =
1
3

(
I(2)A trA− I(1)A trA2 + trA3

)
,

...

I(k)
A =

1
k

(
I(k−1)
A trA − I(k−2)

A trA2 + . . . + (−1)k−1 trAk
)

=
1
k

k∑
i=1

(−1)i−1 I(k−i)
A trAi,

...

I(n)
A = detA, (4.26)

where we set I(0)A = 1 and

detA =
∣∣Ai

·j
∣∣ =

∣∣A i
j·
∣∣ (4.27)

is called the determinant of the tensor A.

Example. Three-dimensional space. For illustration, we consider a
second-order tensor A in three-dimensional space. In this case, the character-
istic polynomial (4.18) takes the form

pA (λ) = λ3 − IAλ2 + IIAλ − IIIA, (4.28)
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where

IA = I(1)A = trA,

IIA = I(2)A =
1
2

[
(trA)2 − trA2

]
,

IIIA = I(3)A =
1
3

[
trA3 − 3

2
trA2trA +

1
2

(trA)3
]

= detA (4.29)

are the principal invariants (4.24) of the tensor A. They can alternatively be
expressed in terms of the eigenvalues as follows

IA = λ1 + λ2 + λ3, IIA = λ1λ2 + λ2λ3 + λ3λ1, IIIA = λ1λ2λ3. (4.30)

The roots of the cubic polynomial (4.28) can be obtained in a closed form by
means of the Cardano formula (see, e.g. [5]) as

λk =
1
3

{
IA + 2

√
I2A − 3IIA cos

1
3

[ϑ + 2π (k − 1)]
}

, k = 1, 2, 3, (4.31)

where

ϑ = arccos

[
2I3A − 9IAIIA + 27IIIA

2
(
I2A − 3IIA

)3/2

]
, I2A − 3IIA �= 0. (4.32)

In the case I2A − 3IIA = 0, the eigenvalues of A take another form

λk =
1
3
IA +

1
3
(
27IIIA − I3A

)1/3 [
cos

(
2
3πk

)
+ i sin

(
2
3πk

)]
, (4.33)

where k = 1, 2, 3.

4.4 Spectral Decomposition and Eigenprojections

The spectral decomposition is a powerful tool for the tensor analysis and
tensor algebra. It enables to gain a deeper insight into the properties of second-
order tensors and to represent various useful tensor operations in a relatively
simple form. In the spectral decomposition, eigenvectors represent one of the
most important ingredients.

Theorem 4.2. The eigenvectors of a second-order tensor corresponding to
pairwise distinct eigenvalues are linearly independent.

Proof. Suppose that these eigenvectors are linearly dependent. Among all pos-
sible nontrivial linear relations connecting them we can choose one involving
the minimal number, say r, of eigenvectors ai �= 0 (i = 1, 2, . . . , r). Obviously,
1 < r ≤ n. Thus,
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r∑
i=1

αiai = 0 , (4.34)

where all αi (i = 1, 2, . . . , r) are non-zero. We can also write

Aai = λiai, i = 1, 2, . . . , r, (4.35)

where λi �= λj , (i �= j = 1, 2, . . . , r). Mapping both sides of (4.34) by A and
taking (4.35) into account we obtain

r∑
i=1

αiAai =
r∑

i=1

αiλiai = 0 . (4.36)

Multiplying (4.34) by λr and subtracting from (4.36) yield

0 =
r∑

i=1

αi (λi − λr)ai =
r−1∑
i=1

αi (λi − λr)ai.

In the latter linear combination none of the coefficients is zero. Thus, we have
a linear relation involving only r − 1 eigenvectors. This contradicts, however,
the earlier assumption that r is the smallest number of eigenvectors satisfying
such a relation.

Theorem 4.3. Let bi be a left and aj a right eigenvector associated with
distinct eigenvalues λi �= λj of a tensor A. Then,

bi · aj = 0. (4.37)

Proof. With the aid of (1.73) and taking (4.11) into account we can write

biAaj = bi · (Aaj) = bi · (λjaj) = λjbi · aj.

On the other hand, in view of (4.12)

biAaj = (biA) · aj = (biλi) · aj = λibi · aj .

Subtracting one equation from another one we obtain

(λi − λj) bi · aj = 0.

Since λi �= λj this immediately implies (4.37).

Now, we proceed with the spectral decomposition of a second-order tensor
A. First, we consider the case of n simple eigenvalues. Solving the equa-
tion systems (4.16) one obtains for every simple eigenvalue λi the compo-
nents of the right eigenvector ai and the components of the left eigenvector
bi (i = 1, 2, . . . , n). n right eigenvectors on the one hand and n left eigen-
vectors on the other hand are linearly independent and form bases of Cn.
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Obviously, bi · ai �= 0 (i = 1, 2, . . . , n) because otherwise it would contradict
(4.37) (see Exercise 1.8). Normalizing the eigenvectors we can thus write

bi · aj = δij , i, j = 1, 2, . . . , n. (4.38)

Accordingly, the bases ai and bi are dual to each other such that ai = bi

and bi = ai (i = 1, 2, . . . , n). Now, representing A with respect to the basis
ai ⊗ bj (i, j = 1, 2, . . . , n) as A = Aijai ⊗ bj we obtain with the aid of (1.83),
(4.11) and (4.38)

Aij = aiAbj = biAaj = bi · (Aaj) = bi · (λjaj) = λjδij ,

where i, j = 1, 2, . . . , n. Thus,

A =
n∑

i=1

λiai ⊗ bi. (4.39)

Next, we consider second-order tensors with multiple eigenvalues. We assume,
however, that the algebraic multiplicity ri of every eigenvalue λi coincides with
its geometric multiplicity ti. In this case we again have n linearly independent
right eigenvectors forming a basis of Cn (Exercise 4.3). We will denote these
eigenvectors by a

(k)
i (i = 1, 2, . . . , s; k = 1, 2, . . . , ri) where s is the number of

pairwise distinct eigenvalues. Constructing the basis b
(l)
j dual to a

(k)
i such

that

a
(k)
i · b(l)

j = δijδ
kl, i, j = 1, 2, . . . , s; k = 1, 2, . . . , ri; l = 1, 2, . . . , rj (4.40)

we can write similarly to (4.39)

A =
s∑

i=1

λi

ri∑
k=1

a
(k)
i ⊗ b

(k)
i . (4.41)

The representations of the form (4.39) or (4.41) are called spectral decompo-
sition in diagonal form or, briefly, spectral decomposition. Note that not every
second-order tensor A ∈ Linn permits the spectral decomposition. The tensors
which can be represented by (4.39) or (4.41) are referred to as diagonalizable
tensors. For instance, we will show in the next sections that symmetric, skew-
symmetric and orthogonal tensors are always diagonalizable. If, however, the
algebraic multiplicity of at least one eigenvalue exceeds its geometric multi-
plicity, the spectral representation is not possible. Such eigenvalues (for which
ri > ti) are called defective eigenvalues. A tensor that has one or more defec-
tive eigenvalues is called defective tensor. In Sect. 4.2 we have seen, for ex-
ample, that the deformation gradient F represents in the case of simple shear
a defective tensor since its triple eigenvalue 1 is defective. Clearly, a simple
eigenvalue (ri = 1) cannot be defective. For this reason, a tensor whose all
eigenvalues are simple is diagonalizable.
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Now, we look again at the spectral decompositions (4.39) and (4.41). With
the aid of the abbreviation

Pi =
ri∑

k=1

a
(k)
i ⊗ b

(k)
i , i = 1, 2, . . . , s (4.42)

they can be given in a unified form by

A =
s∑

i=1

λiPi. (4.43)

The generally complex tensors Pi (i = 1, 2, . . . , s) defined by (4.42) are called
eigenprojections. It follows from (4.40) and (4.42) that (Exercise 4.4)

PiPj = δijPi, i, j = 1, 2, . . . , s (4.44)

and consequently

PiA = APi = λiPi, i = 1, 2, . . . , s. (4.45)

Bearing in mind that the eigenvectors a
(k)
i (i = 1, 2, . . . , s; k = 1, 2, . . . , ri)

form a basis of Cn and taking (4.40) into account we also obtain (Exercise
4.5)

s∑
i=1

Pi = I. (4.46)

Due to these properties of eigenprojections (4.42) the spectral representation
(4.43) is very suitable for calculating tensor powers, polynomials and other
tensor functions defined in terms of power series. Indeed, in view of (4.44)
powers of A can be expressed by

Ak =
s∑

i=1

λk
i Pi, k = 0, 1, 2, . . . (4.47)

For a tensor polynomial it further yields

g (A) =
s∑

i=1

g (λi)Pi. (4.48)

For example, the exponential tensor function (1.109) can thus be represented
by

exp (A) =
s∑

i=1

exp (λi)Pi. (4.49)
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With the aid of (4.44) and (4.46) the eigenprojections can be obtained without
solving the eigenvalue problem in the general form (4.11). To this end, we first
consider s polynomial functions pi (λ) (i = 1, 2, . . . , s) satisfying the following
conditions

pi (λj) = δij , i, j = 1, 2, . . . , s. (4.50)

Thus, by use of (4.48) we obtain

pi (A) =
s∑

j=1

pi (λj)Pj =
s∑

j=1

δijPj = Pi, i = 1, 2, . . . , s. (4.51)

Using Lagrange’s interpolation formula (see, e.g., [5]) and assuming that s �= 1
one can represent the functions pi (λ) (4.50) by the following polynomials of
degree s − 1:

pi (λ) =
s∏

j=1
j �=i

λ − λj

λi − λj
, i = 1, 2, . . . , s > 1. (4.52)

Considering these expressions in (4.51) we obtain the so-called Sylvester for-
mula as

Pi =
s∏

j=1
j �=i

A− λjI
λi − λj

, i = 1, 2, . . . , s > 1. (4.53)

Note that according to (4.46), P1 = I in the the case of s = 1. With this
result in hand the above representation can be generalized by

Pi = δ1sI +
s∏

j=1
j �=i

A − λjI
λi − λj

, i = 1, 2, . . . , s. (4.54)

Writing out the product on the right hand side of (4.54) also delivers (see,
e.g., [47])

Pi =
1

Di

s−1∑
p=0

ιi s−p−1Ap, i = 1, 2, . . . , s, (4.55)

where ιi0 = 1,

ιip = (−1)p
∑

1≤o1≤···≤op≤s

λo1 · · ·λop (1 − δio1) · · ·
(
1 − δiop

)
,

Di = δ1s +
s∏

j=1
j �=i

(λi − λj) , p = 1, 2, . . . , s − 1, i = 1, 2, . . . , s. (4.56)
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4.5 Spectral Decomposition of Symmetric Second-Order
Tensors

We begin with some useful theorems concerning eigenvalues and eigenvectors
of symmetric tensors.

Theorem 4.4. The eigenvalues of a symmetric second-order tensor M ∈
Symn are real, the eigenvectors belong to En.

Proof. Let λ be an eigenvalue of M and a a corresponding eigenvector such
that according to (4.11)

Ma = λa.

The complex conjugate counterpart of this equation is

M a = λ a.

Taking into account that M is real and symmetric such that M = M and
MT = M we obtain in view of (1.110)

a M = λ a.

Hence, one can write

0 = aMa − aMa = a · (Ma) − (aM) · a
= λ (a · a) − λ (a · a) =

(
λ − λ

)
(a · a) .

Bearing in mind that a �= 0 and taking (4.9) into account we conclude that
a · a > 0. Hence, λ = λ. The components of a with respect to a basis G =
{g1, g2, . . . , gn} in En are real since they represent a solution of the linear
equation system (4.16)1 with real coefficients. Therefore, a ∈ En.

Theorem 4.5. Eigenvectors of a symmetric second-order tensor correspond-
ing to distinct eigenvalues are mutually orthogonal.

Proof. According to Theorem 4.3 right and left eigenvectors associated with
distinct eigenvalues are mutually orthogonal. However, for a symmetric tensor
every right eigenvector represents the left eigenvector associated with the same
eigenvalue and vice versa. For this reason, right (left) eigenvectors associated
with distinct eigenvalues are mutually orthogonal.

Theorem 4.6. Let λi be an eigenvalue of a symmetric second order tensor
M. Then, the algebraic and geometric multiplicity of λi coincide.

Proof. Let ak ∈ E
n (k = 1, 2, . . . , ti) be all linearly independent eigenvectors

associated with λi, while ti and ri denote its geometric and algebraic multi-
plicity, respectively. Every linear combination of ak is again an eigenvector
associated with λi. Indeed,
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M
ti∑

k=1

αkak =
ti∑

k=1

αk (Mak) =
ti∑

k=1

αkλiak = λi

ti∑
k=1

αkak. (4.57)

According to Theorem 1.4 the set of vectors ak (k = 1, 2, . . . , ti) can be
completed to a basis of En. With the aid of the Gram-Schmidt procedure
described in Chap. 1 (Sect. 1.4) this basis can be transformed to an or-
thonormal basis el (l = 1, 2, . . . , n). Since the vectors ej (j = 1, 2, . . . , ti) are
linear combinations of ak (k = 1, 2, . . . , ti) they likewise represent eigenvec-
tors of M associated with λi. Further, we represent the tensor M with
respect to the basis el ⊗ em (l, m = 1, 2, . . . , n). In view of the identities
Mek = λiek (k = 1, 2, . . . , ti) and keeping in mind the symmetry of M we
can write:

M = λi

ti∑
k=1

ek ⊗ ek +
n∑

l,m=ti+1

M′
lmel ⊗ em. (4.58)

Thus, the characteristic polynomial of M can be given as

pM (λ) =
∣∣M′

lm − λδlm

∣∣ (λi − λ)ti , (4.59)

which implies that ri ≥ ti.
Now, we consider the vector space En−ti of all linear combinations of the

vectors el (l = ti + 1, . . . , n). The tensor

M′ =
n∑

l,m=ti+1

M′
lmel ⊗ em

represents a linear mapping of this space into itself. The eigenvectors of M′

are linear combinations of el (l = ti + 1, . . . , n) and therefore are linearly in-
dependent of ek (k = 1, 2, . . . , ti). Consequently, λi is not an eigenvalue of
M′. Otherwise, the eigenvector corresponding to this eigenvalue λi would be
linearly independent of ek (k = 1, 2, . . . , ti) which contradicts the previous as-
sumption. Thus, all the roots of the characteristic polynomial of this tensor

pM′ (λ) =
∣∣M′

lm − λδlm

∣∣
differ from λi. In view of (4.59) this implies that ri = ti .

As a result of this theorem, the spectral decomposition of a symmetric second-
order tensor can be given by

M =
s∑

i=1

λi

ri∑
k=1

a
(k)
i ⊗ a

(k)
i =

s∑
i=1

λiPi, M ∈ Symn, (4.60)

in terms of the real symmetric eigenprojections
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Pi =
ri∑

k=1

a
(k)
i ⊗ a

(k)
i , (4.61)

where the eigenvectors a
(k)
i form an orthonormal basis in En so that

a
(k)
i · a(l)

j = δijδ
kl, (4.62)

where i, j = 1, 2, . . . , s; k = 1, 2, . . . , ri; l = 1, 2, . . . , rj .

4.6 Spectral Decomposition of Orthogonal
and Skew-Symmetric Second-Order Tensors

We begin with the orthogonal tensors Q ∈ Orthn defined by the condition
(1.129). For every eigenvector a and the corresponding eigenvalue λ we can
write

Qa = λa, Qa = λ a, (4.63)

because Q is by definition a real tensor such that Q = Q. Mapping both sides
of these vector equations by QT and taking (1.110) into account we have

aQ = λ−1a, aQ = λ
−1

a. (4.64)

Thus, every right eigenvector of an orthogonal tensor represents its left eigen-
vector associated with the inverse eigenvalue. Hence, if λ �= λ−1 or, in other
words, λ is neither +1 nor −1, Theorem 4.3 immediately implies the relations

a · a = 0, a · a = 0, λ �= λ−1 (4.65)

indicating that a and consequently a are complex (definitely not real) vectors.
Using the representation

a =
1√
2

(p + iq) , p, q ∈ E
n (4.66)

and applying (4.8) one can write

‖p‖ = ‖q‖ = 1, p · q = 0. (4.67)

Now, we consider the product aQa. With the aid of (4.63)1 and (4.64)2 we
obtain

aQa = λ (a · a) = λ
−1

(a · a) . (4.68)

Since, however, a · a = 1/2 (p · p + q · q) = 1 we infer that
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λλ = 1. (4.69)

Thus, all eigenvalues of an orthogonal tensor have absolute value 1 so that we
can write

λ = eωi = cosω + i sin ω. (4.70)

By virtue of (4.69) one can further rewrite (4.64) as

aQ = λa, aQ = λa. (4.71)

Summarizing these results we conclude that every complex (definitely not real)
eigenvalue λ of an orthogonal tensor comes in pair with its complex conjugate
counterpart λ = λ−1. If a is a right eigenvector associated with λ, then a is
its left eigenvector. For λ, a is, vice versa, the left eigenvector and a the right
one.

Next, we show that the algebraic and geometric multiplicities of ev-
ery eigenvalue of an orthogonal tensor Q coincide. Let ãk (k = 1, 2, . . . , ti)
be all linearly independent right eigenvectors associated with an eigenvalue
λi. According to Theorem 1.4 these vectors can be completed to a basis
of Cn. With the aid of the Gram-Schmidt procedure (see Exercise 4.11)
a linear combination of this basis can be constructed in such a way that
ak · al = δkl (k, l = 1, 2, . . . , n). Since the vectors ak (k = 1, 2, . . . , ti) are
linear combinations of ãk (k = 1, 2, . . . , ti) they likewise represent eigenvec-
tors of Q associated with λi. Thus, representing Q with respect to the basis
ak ⊗ al (k, l = 1, 2, . . . , n) we can write

Q = λi

ti∑
k=1

ak ⊗ ak +
n∑

l,m=ti+1

Q′
lmal ⊗ am.

Comparing this representation with (4.58) and using the same reasoning as
applied for the proof of Theorem 4.6 we infer that λi cannot be an eigenvalue of
Q′ =

∑n
l,m=ti+1 Q′

lmal ⊗am. This means that the algebraic multiplicity ri of
λi coincides with its geometric multiplicity ti. Thus, every orthogonal tensor
Q ∈ Orthn is characterized by exactly n linearly independent eigenvectors
forming a basis of C

n. Using this fact the spectral decomposition of Q can be
given by

Q =
r+1∑
k=1

a
(k)
+1 ⊗ a

(k)
+1 −

r−1∑
l=1

a
(l)
−1 ⊗ a

(l)
−1

+
s∑

i=1

{
λi

ri∑
k=1

a
(k)
i ⊗ a

(k)
i + λi

ri∑
k=1

a
(k)
i ⊗ a

(k)
i

}
, (4.72)

where r+1 and r−1 denote the algebraic multiplicities of real eigenvalues +1
and −1, respectively, while a

(k)
+1 (k = 1, 2, . . . , r+1) and a

(l)
−1 (l = 1, 2, . . . , r−1)



94 4 Eigenvalue Problem and Spectral Decomposition of Second-Order Tensors

are the corresponding orthonormal real eigenvectors. s is the number of com-
plex conjugate pairs of eigenvalues λi = cosωi±i sinωi with distinct arguments
ωi and the multiplicities ri. The associated eigenvectors a

(k)
i and a

(k)
i obey

the following relations (see also Exercise 4.12)

a
(k)
i ·a(o)

+1 = 0, a
(k)
i ·a(p)

−1 = 0, a
(k)
i ·a(l)

j = δijδ
kl, a

(k)
i ·a(m)

i = 0, (4.73)

where i, j = 1, 2, . . . , s; k, m = 1, 2, . . . , ri; l = 1, 2, . . . , rj ; o = 1, 2, . . . , r+1;
p = 1, 2, . . . , r−1. Using the representations (4.66) and (4.70) the spectral
decomposition (4.72) can alternatively be written as

Q =
r+1∑
k=1

a
(k)
+1 ⊗ a

(k)
+1 +

s∑
i=1

cosωi

ri∑
k=1

(
p

(k)
i ⊗ p

(k)
i + q

(k)
i ⊗ q

(k)
i

)
−

r−1∑
l=1

a
(l)
−1 ⊗ a

(l)
−1 +

s∑
i=1

sin ωi

ri∑
k=1

(
p

(k)
i ⊗ q

(k)
i − q

(k)
i ⊗ p

(k)
i

)
. (4.74)

Now, we turn our attention to skew-symmetric tensors W ∈ Skewn as defined
in (1.148). Instead of (4.64) and (4.68) we have in this case

aW = −λa, aW = −λa, (4.75)

aWa = λ (a · a) = −λ (a · a) (4.76)

and consequently

λ = −λ. (4.77)

Thus, the eigenvalues of W are either zero or imaginary. The latter ones come
in pairs with the complex conjugate like in the case of orthogonal tensors.
Similarly to (4.72) and (4.74) we thus obtain

W =
s∑

i=1

ωii
ri∑

k=1

(
a

(k)
i ⊗ a

(k)
i − a

(k)
i ⊗ a

(k)
i

)
=

s∑
i=1

ωi

ri∑
k=1

(
p

(k)
i ⊗ q

(k)
i − q

(k)
i ⊗ p

(k)
i

)
, (4.78)

where s denotes the number of pairwise distinct imaginary eigenvalues ωii
while the associated eigenvectors a

(k)
i and a

(k)
i are subject to the restrictions

(4.73)3,4.

Orthogonal tensors in three-dimensional space. In the three-dimen-
sional case Q ∈ Orth3, at least one of the eigenvalues is real, since complex
eigenvalues of orthogonal tensors appear in pairs with the complex conjugate.
Hence, we can write

λ1 = ±1, λ2 = eiω = cosω + i sinω, λ3 = e−iω = cosω − i sinω. (4.79)
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In the case sin ω = 0 all three eigenvalues become real. The principal invariants
(4.30) take thus the form

IQ = λ1 + 2 cosω = ±1 + 2 cosω,

IIQ = 2λ1 cosω + 1 = λ1IQ = ±IQ,

IIIQ = λ1 = ±1. (4.80)

The spectral representation (4.72) takes the form

Q = ±a1 ⊗ a1 + (cosω + i sin ω)a ⊗ a + (cosω − i sin ω)a ⊗ a, (4.81)

where a1 ∈ E3 and a ∈ C3 is given by (4.66) and (4.67). Taking into account
that by (4.73)

a1 · a = a1 · p = a1 · q = 0 (4.82)

we can set

a1 = q × p. (4.83)

Substituting (4.66) into (4.81) we also obtain

Q = ±a1 ⊗ a1 + cosω (p ⊗ p + q ⊗ q) + sin ω (p ⊗ q − q ⊗ p) . (4.84)

By means of the vector identity (1.130) and considering (1.65) and (4.83) it
finally leads to

Q = cosωI + sin ωâ1 + (±1 − cosω)a1 ⊗ a1. (4.85)

Comparing this representation with (1.71) we observe that any orthogonal
tensor Q ∈ Orth3 describes a rotation in three-dimensional space if IIIQ =
λ1 = 1. The eigenvector a1 corresponding to the eigenvalue 1 specifies the
rotation axis. In this case, Q is referred to as a proper orthogonal tensor.

Skew-symmetric tensors in three-dimensional space. For a skew-
symmetric tensor W ∈ Skew3 we can write in view of (4.77)

λ1 = 0, λ2 = ωi, λ3 = −ωi. (4.86)

Similarly to (4.80) we further obtain (see Exercise 4.13)

IW = 0, IIW =
1
2
‖W‖2 = ω2, IIIW = 0. (4.87)

The spectral representation (4.78) takes the form

W = ωi (a ⊗ a − a ⊗ a) = ω (p ⊗ q − q ⊗ p) , (4.88)

where a, p and q are again related by (4.66) and (4.67). With the aid of the
abbreviation
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w = ωa1 = ωq × p (4.89)

and bearing (1.130) in mind we finally arrive at the representation (1.64)

W = ŵ. (4.90)

Thus, every skew-symmetric tensor in three-dimensional space describes a
cross product by its eigenvector w (4.89) corresponding to the zero eigenvalue.
The vector w is called in this case the axial vector of the skew-symmetric
tensor W.

4.7 Cayley-Hamilton Theorem

Theorem 4.7. Let pA (λ) be the characteristic polynomial of a second-order
tensor A ∈ Linn. Then,

pA (A) =
n∑

k=0

(−1)k I(k)
A An−k = 0. (4.91)

Proof. As a proof (see, e.g., [11]) we show that

pA (A)x = 0 , ∀x ∈ E
n. (4.92)

For x = 0 it is trivial, so we suppose that x �= 0 . Consider the vectors

yi = Ai−1x, i = 1, 2, . . . . (4.93)

Obviously, there is an integer number k such that the vectors y1, y2, . . . ,yk

are linearly independent, but

a1y1 + a2y2 + . . . + akyk + Akx = 0 . (4.94)

Note that 1 ≤ k ≤ n. If k �= n we can complete the vectors yi (i = 1, 2, . . . , k)
to a basis yi (i = 1, 2, . . . , n) of En. Let A = Ai

·jyi ⊗yj , where the vectors yi

form the basis dual to yi (i = 1, 2, . . . , n). By virtue of (4.93) and (4.94) we
can write

Ayi =

⎧⎪⎨⎪⎩
yi+1 if i < k,

−
k∑

j=1

ajyj if i = k.
(4.95)

The components of A can thus be given by

[
Ai

·j
]

=
[
yiAyj

]
=

⎡⎢⎢⎢⎢⎢⎣
0 0 . . . 0 −a1

1 0 . . . 0 −a2

...
...

...
... A′

0 0 . . . 1 −ak

0 A′′

⎤⎥⎥⎥⎥⎥⎦ , (4.96)
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where A′ and A′′ denote some submatrices. Therefore, the characteristic poly-
nomial of A takes the form

pA (λ) = pA′′ (λ)

∣∣∣∣∣∣∣∣∣
−λ 0 . . . 0 −a1

1 −λ . . . 0 −a2

...
...

...
...

0 0 . . . 1 −ak − λ

∣∣∣∣∣∣∣∣∣ , (4.97)

where pA′′ (λ) = det (A′′ − λI). By means of the Laplace expansion rule (see,
e.g., [5]) we expand the determinant in (4.97) along the last column, which
yields

pA (λ) = pA′′ (λ) (−1)k (
a1 + a2λ + . . . + akλk−1 + λk

)
. (4.98)

Bearing (4.93) and (4.94) in mind we finally prove (4.92) by

pA (A)x = (−1)k pA′′ (A)
(
a1I + a2A + . . . + akAk−1 + Ak

)
x

= (−1)k pA′′ (A)
(
a1x + a2Ax + . . . + akAk−1x + Akx

)
= (−1)k pA′′ (A) (a1y1 + a2y2 + . . . + akyk + yk+1) = 0 .

Exercises

4.1. Evaluate eigenvalues and eigenvectors of the right Cauchy-Green tensor
C = FTF in the case of simple shear, where F is defined by (4.23).

4.2. Prove identity (4.29)3 using Newton’s formula (4.26).

4.3. Prove that eigenvectors a
(k)
i (i = 1, 2, . . . , s; k = 1, 2, . . . , ti) of a second

order tensor A ∈ Linn are linearly independent and form a basis of C
n if for

every eigenvalue the algebraic and geometric multiplicities coincide so that
ri = ti (i = 1, 2, . . . , s).

4.4. Prove identity (4.44) using (4.40) and (4.42).

4.5. Prove identity (4.46) taking (4.40) and (4.42) into account and using the
results of Exercise 4.3.

4.6. Prove the identity det [exp (A)] = exp (trA).

4.7. Verify the Sylvester formula for s = 3 by inserting (4.43) and (4.46) into
(4.54).
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4.8. Calculate eigenvalues and eigenprojections of the tensor A = Ai
jei ⊗ ej ,

where

[
Ai

j

]
=

⎡⎣−2 2 2
2 1 4
2 4 1

⎤⎦ .

Apply the Cardano formula (4.31) and Sylvester formula (4.54).

4.9. Calculate the exponential of the tensor A given in Exercise 4.8 using the
spectral representation in terms of eigenprojections (4.43).

4.10. Calculate eigenvectors of the tensor A defined in Exercise 4.8. Express
eigenprojections by (4.42) and compare the results with those obtained by the
Sylvester formula (Exercise 4.8).

4.11. Let ci (i = 1, 2, . . . , m) ∈ C
n be a set of linearly independent complex

vectors. Using the (Gram-Schmidt) procedure described in Chap. 1 (Sect. 1.4),
construct linear combinations of these vectors, say ai (i = 1, 2, . . . , m), again
linearly independent, in such a way that ai · aj = δij (i, j = 1, 2, . . . , m).

4.12. Let a
(k)
i (k = 1, 2, . . . , ti) be all linearly independent right eigenvectors

of an orthogonal tensor associated with a complex (definitely not real) eigen-
value λi. Show that a

(k)
i · a(l)

i = 0 (k, l = 1, 2, . . . , ti).

4.13. Evaluate principal invariants of a skew-symmetric tensor in three-
dimensional space using (4.29).

4.14. Evaluate eigenvalues, eigenvectors and eigenprojections of the tensor
describing the rotation by the angle α about the axis e3 (see Exercise 1.22).

4.15. Verify the Cayley-Hamilton theorem for the tensor A defined in Exercise
4.8.

4.16. Verify the Cayley-Hamilton theorem for the deformation gradient in the
case of simple shear (4.23).




