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Fourth-Order Tensors

5.1 Fourth-Order Tensors as a Linear Mapping

Fourth-order tensors play an important role in continuum mechanics where
they appear as elasticity and compliance tensors. In this section we define
fourth-order tensors and learn some basic operations with them. To this end,
we consider a set Linn of all linear mappings of one second-order tensor into
another one within Linn. Such mappings are denoted by a colon as

Y = A : X, A ∈ Linn, Y ∈ Linn, ∀X ∈ Linn. (5.1)

The elements of Linn are called fourth-order tensors.

Example. Elasticity and compliance tensors. A constitutive law of a
linearly elastic material establishes a linear relationship between the Cauchy
stress tensor σ and Cauchy strain tensor ε. Since these tensors are of the
second-order a linear relation between them can be expressed by fourth-order
tensors like

σ = C : ε or ε = H : σ. (5.2)

The fourth-order tensors C and H describe properties of the elastic material
and are called the elasticity and compliance tensor, respectively.

Linearity of the mapping (5.1) implies that

A : (X + Y) = A : X + A : Y, (5.3)

A : (αX) = α (A : X) , ∀X,Y ∈ Linn, ∀α ∈ R, A ∈ Linn. (5.4)

Similarly to second-order tensors one defines the product of a fourth-order
tensor with a scalar

(αA) : X = α (A : X) = A : (αX) (5.5)
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and the sum of two fourth-order tensors by

(A + B) : X = A : X + B : X, ∀X ∈ Linn. (5.6)

Further, we define the zero-tensor O of the fourth-order by

O : X = 0, ∀X ∈ Linn. (5.7)

Thus, summarizing the properties of fourth-order tensors one can write simi-
larly to second-order tensors

A + B = B + A, (addition is commutative), (5.8)

A + (B + C) = (A + B) + C, (addition is associative), (5.9)

O + A = A, (5.10)

A + (−A) = O, (5.11)

α (βA) = (αβ) A, (multiplication by scalars is associative), (5.12)

1A = A, (5.13)

α (A + B) = αA + αB, (multiplication by scalars is distributive

with respect to tensor addition), (5.14)

(α + β)A = αA + βA, (multiplication by scalars is distributive

with respect to scalar addition), ∀A, B, C ∈ Linn, ∀α, β ∈ R. (5.15)

Thus, the set of fourth-order tensors Linn forms a vector space.
On the basis of the “right” mapping (5.1) and the scalar product of two

second-order tensors (1.136) we can also define the “left” mapping by

(Y : A) : X = Y : (A : X) , ∀X,Y ∈ Linn. (5.16)

5.2 Tensor Products, Representation of Fourth-Order
Tensors with Respect to a Basis

For the construction of fourth-order tensors from second-order ones we intro-
duce two tensor products as follows

A⊗B : X = AXB, A�B : X = A (B : X) , ∀A,B,X ∈ Linn. (5.17)

Note, that the tensor product “⊗” (5.17)1 applied to second-order tensors
differs from the tensor product of vectors (1.75). One can easily show that the
mappings described by (5.17) are linear and therefore represent fourth-order
tensors. Indeed, we have, for example, for the tensor product “⊗” (5.17)1
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A⊗ B : (X + Y) = A (X + Y)B

= AXB + AYB = A ⊗ B : X + A⊗ B : Y, (5.18)

A⊗ B : (αX) = A (αX)B = α (AXB)

= α (A ⊗ B : X) , ∀X,Y ∈ Linn, ∀α ∈ R. (5.19)

With definitions (5.17) in hand one can easily prove the following identities

A⊗ (B + C) = A⊗B+A⊗C, (B + C)⊗A = B⊗A+C⊗A, (5.20)

A� (B + C) = A�B+A�C, (B + C)�A = B�A+C�A. (5.21)

For the left mapping (5.16) the tensor products (5.17) yield

Y : A ⊗ B = ATYBT, Y : A� B = (Y : A)B. (5.22)

As fourth-order tensors represent vectors they can be given with respect to a
basis in Linn.

Theorem 5.1. Let F = {F1,F2, . . . ,Fn2} and G = {G1,G2, . . . ,Gn2} be two
arbitrary (not necessarily distinct) bases of Linn. Then, fourth-order tensors
Fi � Gj

(
i, j = 1, 2, . . . , n2

)
form a basis of Linn. The dimension of Linn is

thus n4.

Proof. See the proof of Theorem 1.6.

A basis in Linn can be represented in another way as by the tensors
Fi � Gj

(
i, j = 1, 2, . . . , n2

)
. To this end, we prove the following identity

(a ⊗ d) � (b ⊗ c) = a ⊗ b ⊗ c ⊗ d, (5.23)

where we set

(a ⊗ b) ⊗ (c ⊗ d) = a ⊗ b ⊗ c ⊗ d. (5.24)

Indeed, let X ∈ Linn be an arbitrary second-order tensor. Then, in view of
(1.135) and (5.17)2

(a ⊗ d) � (b ⊗ c) : X = (bXc) (a ⊗ d) . (5.25)

For the right hand side of (5.23) we obtain the same result using (5.17)1 and
(5.24)

a ⊗ b ⊗ c ⊗ d : X = (a ⊗ b) ⊗ (c ⊗ d) : X = (bXc) (a ⊗ d) . (5.26)

For the left mapping (5.16) it thus holds

Y : a ⊗ b ⊗ c ⊗ d = (aYd) (b ⊗ c) . (5.27)

Now, we are in a position to prove the following theorem.
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Theorem 5.2. Let E = {e1, e2, . . . ,en}, F = {f1, f2, . . . ,fn}, G =
{g1, g2, . . . , gn} and finally H = {h1, h2, . . . ,hn} be four arbitrary (not nec-
essarily distinct) bases of E

n. Then, fourth-order tensors ei ⊗ f j ⊗ gk ⊗ hl

(i, j, k, l = 1, 2, . . . , n) represent a basis of Linn.

Proof. In view of (5.23)

ei ⊗ f j ⊗ gk ⊗ hl = (ei ⊗ hl) � (f j ⊗ gk) .

According to Theorem 1.6 the second-order tensors ei ⊗ hl (i, l = 1, 2, . . . , n)
on the one hand and f j⊗gk (j, k = 1, 2, . . . , n) on the other hand form bases of
Linn. According to Theorem 5.1 the fourth-order tensors (ei ⊗ hl)�(f j ⊗ gk)
and consequently ei⊗f j⊗gk⊗hl (i, j, k, l = 1, 2, . . . , n) represent thus a basis
of Linn.

As a result of this Theorem any fourth-order tensor can be represented by

A = Aijklgi ⊗ gj ⊗ gk ⊗ gl = Aijklg
i ⊗ gj ⊗ gk ⊗ gl

= A
ij
· ·klgi ⊗ gj ⊗ gk ⊗ gl = . . . (5.28)

The components of A appearing in (5.28) can be expressed by

Aijkl = gi ⊗ gl : A : gj ⊗ gk, Aijkl = gi ⊗ gl : A : gj ⊗ gk,

A
ij
· ·kl = gi ⊗ gl : A : gj ⊗ gk, i, j, k, l = 1, 2, . . . , n. (5.29)

By virtue of (1.104), (5.17)1 and (5.22)1 the right and left mappings with a
second-order tensor (5.1) and (5.16) can thus be represented by

A : X =
(
Aijklgi ⊗ gj ⊗ gk ⊗ gl

)
: (Xqpg

q ⊗ gp) = AijklXjkgi ⊗ gl,

X : A = (Xqpg
q ⊗ gp) :

(
Aijklgi ⊗ gj ⊗ gk ⊗ gl

)
= AijklXilgj ⊗ gk.

(5.30)

We observe that the basis vectors of the second-order tensor are scalarly mul-
tiplied either by the “inner” (right mapping) or “outer” (left mapping) basis
vectors of the fourth-order tensor.

5.3 Special Operations with Fourth-Order Tensors

Similarly to second-order tensors one defines also for fourth-order tensors some
specific operations which are not generally applicable to conventional vectors
in the Euclidean space.

Composition. In analogy with second-order tensors we define the com-
position of two fourth-order tensors A and B denoted by A : B as
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(A : B) : X = A : (B : X) , ∀X ∈ Linn. (5.31)

For the left mapping (5.16) one can thus write

Y : (A : B) = (Y : A) : B, ∀Y ∈ Linn. (5.32)

For the tensor products (5.17) the composition (5.31) further yields

(A⊗ B) : (C ⊗ D) = (AC) ⊗ (DB) , (5.33)

(A⊗ B) : (C � D) = (ACB) � D, (5.34)

(A� B) : (C ⊗ D) = A� (
CTBDT

)
, (5.35)

(A� B) : (C � D) = (B : C)A � D, A,B,C,D ∈ Linn. (5.36)

For example, the identity (5.33) can be proved within the following steps

(A⊗ B) : (C ⊗ D) : X = (A ⊗ B) : (CXD)

= ACXDB = (AC) ⊗ (DB) : X, ∀X ∈ Linn,

where we again take into account the definition of the tensor product (5.17).
For the component representation (5.28) we further obtain

A : B =
(
Aijklgi ⊗ gj ⊗ gk ⊗ gl

)
:
(
Bpqrtg

p ⊗ gq ⊗ gr ⊗ gt
)

= AijklBjqrkgi ⊗ gq ⊗ gr ⊗ gl. (5.37)

Note that the “inner” basis vectors of the left tensor A are scalarly multiplied
with the “outer” basis vectors of the right tensor B.

The composition of fourth-order tensors also gives rise to the definition of
powers as

Ak = A : A : . . . : A︸ ︷︷ ︸
k times

, k = 1, 2, . . . , A0 = I, (5.38)

where I stands for the fourth-order identity tensor to be defined in the next
section. By means of (5.33) and (5.36) powers of tensor products (5.17) take
the following form

(A⊗ B)k = Ak⊗Bk, (A� B)k = (A : B)k−1 A�B, k = 1, 2, . . . (5.39)

Simple composition with second-order tensors. Let D be a fourth-
order tensor and A, B two second-order tensors. One defines a fourth-order
tensor ADB by

(ADB) : X = A (D : X)B, ∀X ∈ Linn. (5.40)

Thus, we can also write

ADB = (A⊗ B) : D. (5.41)
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This operation is very useful for the formulation of tensor differentiation rules
to be discussed in the next chapter.

For the tensor products (5.17) we further obtain

A (B⊗ C)D = (AB) ⊗ (CD) = (A ⊗ D) : (B⊗ C) , (5.42)

A (B� C)D = (ABD) � C = (A⊗ D) : (B � C) . (5.43)

With respect to a basis the simple composition can be given by

ADB = (Apqg
p ⊗ gq)

(
Dijklgi ⊗ gj ⊗ gk ⊗ gl

)
(Brsg

r ⊗ gs)

= ApiD
ijklBlsg

p ⊗ gj ⊗ gk ⊗ gs. (5.44)

It is seen that expressed in component form the simple composition of second-
order tensors with a fourth-order tensor represents the so-called simple con-
traction of the classical tensor algebra (see, e.g., [41]).

Transposition. In contrast to second-order tensors allowing for the
unique transposition operation one can define for fourth-order tensors various
transpositions. We confine our attention here to the following two operations
(•)T and (•)t defined by

AT : X = X : A, At : X = A : XT, ∀X ∈ Linn. (5.45)

Thus we can also write

Y : At = (Y : A)T . (5.46)

Indeed, a scalar product with an arbitrary second order tensor X yields in
view of (1.140) and (5.16)(

Y : At
)

: X = Y :
(
At : X

)
= Y :

(
A : XT

)
= (Y : A) : XT = (Y : A)T : X, ∀X ∈ Linn.

Of special importance is also the following symmetrization operation resulting
from the transposition (•)t:

Fs =
1
2
(
F + Ft) . (5.47)

In view of (1.146)1, (5.45)2 and (5.46) we thus write

Fs : X = F : symX, Y : Fs = sym (Y : F) . (5.48)

Applying the transposition operations to the tensor products (5.17) we have

(A⊗ B)T = AT ⊗ BT, (A� B)T = B� A, (5.49)

(A� B)t = A� BT, A,B ∈ Linn. (5.50)
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With the aid of (5.26) and (5.27) we further obtain

(a ⊗ b ⊗ c ⊗ d)T = b ⊗ a ⊗ d ⊗ c, (5.51)

(a ⊗ b ⊗ c ⊗ d)t = a ⊗ c ⊗ b ⊗ d. (5.52)

It can also easily be proved that

ATT = A, Att = A, ∀A ∈ Linn. (5.53)

Note, however, that the transposition operations (5.45) are not commutative
with each other so that generally DTt �= DtT.

Applied to the composition of fourth-order tensors these transposition op-
erations yield (Exercise 5.6):

(A : B)T = BT : AT, (A : B)t = A : Bt. (5.54)

For the tensor products (5.17) we also obtain the following relations (see
Exercise 5.7)

(A⊗ B)t : (C ⊗ D) =
[(

ADT
)
⊗ (

CTB
)]t

, (5.55)

(A⊗ B)t : (C � D) =
(
ACTB

)� D. (5.56)

Scalar product. Similarly to second-order tensors the scalar product of
fourth-order tensors can be defined in terms of the basis vectors or tensors.
To this end, let us consider two fourth-order tensors A�B and C�D, where
A,B,C,D ∈ Linn. Then, we set

(A� B) :: (C � D) = (A : C) (B : D) . (5.57)

As a result of this definition we also obtain in view of (1.134) and (5.23)

(a ⊗ b ⊗ c ⊗ d) :: (e ⊗ f ⊗ g ⊗ h) = (a · e) (b · f) (c · g) (d · h) . (5.58)

For the component representation of fourth-order tensors it finally yields

A :: B =
(
Aijklgi ⊗ gj ⊗ gk ⊗ gl

)
::
(
Bpqrtg

p ⊗ gq ⊗ gr ⊗ gt
)

= AijklBijkl . (5.59)

Using the latter relation one can easily prove that the properties of the scalar
product (D.1-D.4) hold for fourth-order tensors as well.

5.4 Super-Symmetric Fourth-Order Tensors

On the basis of the transposition operations one defines symmetric and super-
symmetric fourth-order tensors. Accordingly, a fourth-order tensor C is said
to be symmetric if (major symmetry)
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CT = C (5.60)

and super-symmetric if additionally (minor symmetry)

Ct = C. (5.61)

In this section we focus on the properties of super-symmetric fourth-order ten-
sors. They constitute a subspace of Linn denoted in the following by Ssymn.
First, we prove that every super-symmetric fourth-order tensor maps an ar-
bitrary (not necessarily symmetric) second-order tensor into a symmetric one
so that

(C : X)T = C : X, ∀C ∈ Ssymn, ∀X ∈ Linn. (5.62)

Indeed, in view of (5.45), (5.46), (5.60) and (5.61) we have

(C : X)T =
(
X : CT

)T

= (X : C)T = X : Ct = X : C = X : CT = C : X.

Next, we deal with representations of super-symmetric fourth-order tensors
and study the properties of their components. Let F = {F1,F2, . . . ,Fn2} be
an arbitrary basis of Linn and F ′ =

{
F1,F2, . . . ,Fn2

}
the corresponding

dual basis such that

Fp : Fq = δq
p, p, q = 1, 2, . . . , n2. (5.63)

According to Theorem 5.1 we first write

C = CpqFp � Fq. (5.64)

Taking (5.60) into account and in view of (5.49)2 we infer that

Cpq = Cqp, p �= q; p, q = 1, 2, . . . , n2. (5.65)

Mapping (5.64) with the dual tensors Fr further yields

C : Fr = (CpqFp � Fq) : Fr = CprFp, r = 1, 2, . . . , n2. (5.66)

Let now Fp = Mp (p = 1, 2, . . . , m) and Fq = Wq−m

(
q = m + 1, . . . , n2

)
be

bases of Symn and Skewn (Sect. 1.9), respectively, where m = 1
2n (n + 1). In

view of (5.45)2, (5.61), (5.62) and (5.66) we conclude that

Cpr = Crp = 0, p = 1, 2, . . . , n2; r = m + 1, . . . , n2 (5.67)

and consequently

C =
m∑

p,q=1

CpqMp � Mq, m =
1
2
n (n + 1) . (5.68)
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Keeping (5.65) in mind we can also write by analogy with (1.149)

C =
m∑

p=1

CppMp � Mp +
m∑

p,q=1
p>q

Cpq (Mp � Mq + Mq � Mp) . (5.69)

Therefore, every super-symmetric fourth-order tensor can be represented
with respect to the basis 1

2 (Mp � Mq + Mq � Mp), where Mq ∈ Symn and
p ≥ q = 1, 2, . . . , 1

2n (n + 1). Thus, we infer that the dimension of Ssymn is
1
2m (m + 1) = 1

8n2 (n + 1)2 + 1
4n (n + 1). We also observe that Ssymn can be

considered as the set of all linear mappings within Symn.
Applying Theorem 5.2 we can also represent a super-symmetric tensor by

C = Cijklgi⊗gj⊗gk⊗gl. In this case, (5.51) and (5.52) require that (Exercise
5.8)

Cijkl = Cjilk = Cikjl = Cljki = Cklij . (5.70)

Thus, we can also write

C = Cijkl (gi ⊗ gl) � (gj ⊗ gk)

=
1
4
Cijkl (gi ⊗ gl + gl ⊗ gi) � (gj ⊗ gk + gk ⊗ gj)

=
1
4
Cijkl (gj ⊗ gk + gk ⊗ gj) � (gi ⊗ gl + gl ⊗ gi) . (5.71)

Finally, we briefly consider the eigenvalue problem for super-symmetric fourth-
order tensors. It is defined as

C : M = ΛM, C ∈ Ssymn, (5.72)

where Λ and M ∈ Symn denote the eigenvalue and the corresponding eigen-
tensor, respectively. The spectral decomposition of C can be given similarly
to symmetric second-order tensors (4.60) by

C =
m∑

p=1

ΛpMp � Mp, (5.73)

where again m = 1
2n (n + 1) and

Mp : Mq = δpq, p, q = 1, 2, . . . , m. (5.74)

5.5 Special Fourth-Order Tensors

Identity tensor. The fourth-order identity tensor I is defined by

I : X = X, ∀X ∈ Linn. (5.75)
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It is seen that I is a symmetric (but not super-symmetric) fourth-order tensor
such that IT = I. Indeed,

X : I = X, ∀X ∈ Linn. (5.76)

With the aid of (1.86), (5.17)1 or alternatively by using (5.29) the fourth-order
identity tensor can be represented by

I = I ⊗ I = gi ⊗ gi ⊗ gj ⊗ gj . (5.77)

For the composition with other fourth-order tensors we can also write

I : A = A : I = A, ∀A ∈ Linn. (5.78)

Transposition tensor. The transposition of second-order tensors repre-
sents a linear mapping and can therefore be expressed in terms of a fourth-
order tensor. This tensor denoted by T is referred to as the transposition
tensor. Thus,

T : X = XT, ∀X ∈ Linn. (5.79)

One can easily show that (Exercise 5.9)

Y : T = YT, ∀Y ∈ Linn. (5.80)

Hence, the transposition tensor is symmetric such that T = TT. By virtue of
(5.45)2 and (5.75), T can further be expressed in terms of the identity tensor
by

T = It. (5.81)

Indeed,

It : X = I : XT = XT = T : X, ∀X ∈ Linn.

Considering (5.52) and (5.77) in (5.81) we thus obtain

T = (I ⊗ I)t = gi ⊗ gj ⊗ gi ⊗ gj . (5.82)

The transposition tensor can further be characterized by the following iden-
tities (see Exercise 5.10)

A : T = At, T : A = ATtT, T : T = I, ∀A ∈ Linn. (5.83)

Super-symmetric identity tensor. The identity tensor (5.77) is sym-
metric but not super-symmetric. For this reason, it is useful to define a special
identity tensor within Ssymn. This super-symmetric tensor maps every sym-
metric second-order tensor into itself like the identity tensor (5.77). It can be
expressed by
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Is =
1
2

(I + T) = (I ⊗ I)s . (5.84)

However, in contrast to the identity tensor I (5.77), the super-symmetric iden-
tity tensor Is (5.84) maps any arbitrary (not necessarily symmetric) second-
order tensor into its symmetric part so that in view of (5.48)

Is : X = X : Is = symX, ∀X ∈ Linn. (5.85)

Spherical, deviatoric and trace projection tensors. The spherical
and deviatoric part of a second-order tensor are defined as a linear mapping
(1.153) and can thus be expressed by

sphA = Psph : A, devA = Pdev : A, (5.86)

where the fourth-order tensors Psph and Pdev are called the spherical and
deviatoric projection tensors, respectively. In view of (1.153) they are given
by

Psph =
1
n
I� I, Pdev = I − 1

n
I � I, (5.87)

where I � I represents the so-called trace projection tensor. Indeed,

I� I : X = ItrX, ∀X ∈ Linn. (5.88)

According to (5.49)2 and (5.50), the spherical and trace projection tensors are
super-symmetric. The spherical and deviatoric projection tensors are further-
more characterized by the properties:

Pdev : Pdev = Pdev, Psph : Psph = Psph,

Pdev : Psph = Psph : Pdev = O. (5.89)

Example. Elasticity tensor for the generalized Hooke’s law. The
generalized Hooke’s law is written as

σ = 2Gε + λtr (ε) I = 2Gdevε +
(

λ +
2
3
G

)
tr (ε) I, (5.90)

where G and λ denote the so-called Lamé constants. The corresponding super-
symmetric elasticity tensor takes the form

C = 2GIs + λI � I = 2GPs
dev + (3λ + 2G)Psph. (5.91)

Exercises

5.1. Prove relations (5.20) and (5.21).



110 5 Fourth-Order Tensors

5.2. Prove relations (5.22).

5.3. Prove relations (5.42) and (5.43).

5.4. Prove relations (5.49-5.52).

5.5. Prove that ATt �= AtT for A = a ⊗ b ⊗ c ⊗ d.

5.6. Prove identities (5.54).

5.7. Verify relations (5.55) and (5.56).

5.8. Prove relations (5.70) for the components of a super-symmetric fourth-
order tensor using (5.51) and (5.52).

5.9. Prove relation (5.80) using (5.16) and (5.79).

5.10. Verify the properties of the transposition tensor (5.83).

5.11. Prove that the fourth-order tensor of the form

C = (M1 ⊗ M2 + M2 ⊗ M1)
s

is super-symmetric if M1,M2 ∈ Symn.

5.12. Calculate eigenvalues and eigentensors of the following super-symmetric
fourth-order tensors for n = 3: (a) Is(5.84), (b) Psph (5.87)1, (c) Ps

dev (5.87)2,
(d) C (5.91).




