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Fourth-Order Tensors

5.1 Fourth-Order Tensors as a Linear Mapping

Fourth-order tensors play an important role in continuum mechanics where
they appear as elasticity and compliance tensors. In this section we define
fourth-order tensors and learn some basic operations with them. To this end,
we consider a set £in™ of all linear mappings of one second-order tensor into
another one within Lin". Such mappings are denoted by a colon as

Y=A:X, AeckLin” Y eLin", VX € Lin". (5.1)

The elements of £Lin" are called fourth-order tensors.

Example. Elasticity and compliance tensors. A constitutive law of a
linearly elastic material establishes a linear relationship between the Cauchy
stress tensor o and Cauchy strain tensor €. Since these tensors are of the
second-order a linear relation between them can be expressed by fourth-order
tensors like

c=C:¢ or e=H:o0. (5.2)

The fourth-order tensors € and JH describe properties of the elastic material
and are called the elasticity and compliance tensor, respectively.

Linearity of the mapping (5.1) implies that
A (X+Y)=A:X+A:Y, (5.3)

A:(eX)=a(A:X), VX, Y eLin”, Vo e R, A€ Lin". (5.4)

Similarly to second-order tensors one defines the product of a fourth-order
tensor with a scalar

(aA): X =a(A:X)=A: (aX) (5.5)
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and the sum of two fourth-order tensors by

A+B): X=A:X+B:X, VXeLin"™ (5.6)
Further, we define the zero-tensor O of the fourth-order by

0:X=0, VvXelLin" (5.7)

Thus, summarizing the properties of fourth-order tensors one can write simi-
larly to second-order tensors

A+B=B+ A, (addition is commutative), (5.8)
A+ (B+€C)=(A+B)+€, (addition is associative), (5.9)
O+A=A, (5.10)
A+(-A) =0, (5.11)
a(fA) = (apf) A, (multiplication by scalars is associative), (5.12)
1A =A, (5.13)
a(A+B)=aA+aB, (multiplication by scalars is distributive

with respect to tensor addition), (5.14)

(a+0)A =aA+ A, (multiplication by scalars is distributive
with respect to scalar addition), V.A,B,€C e Lin", Vo, [ € R. (5.15)

Thus, the set of fourth-order tensors L£in™ forms a vector space.
On the basis of the “right” mapping (5.1) and the scalar product of two
second-order tensors (1.136) we can also define the “left” mapping by

(Y:A):X=Y:(A:X), VX, Y €Lin". (5.16)

5.2 Tensor Products, Representation of Fourth-Order
Tensors with Respect to a Basis

For the construction of fourth-order tensors from second-order ones we intro-
duce two tensor products as follows

A®B:X=AXB, A0GB:X=A(B:X), VA B,XecLin" (517)

Note, that the tensor product “®” (5.17); applied to second-order tensors
differs from the tensor product of vectors (1.75). One can easily show that the
mappings described by (5.17) are linear and therefore represent fourth-order
tensors. Indeed, we have, for example, for the tensor product “®” (5.17);
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AB: (X+Y)=AX+Y)B
=AXB+AYB=A®B: X+A®B:Y, (5.18)
A®B:(aX)=A(aX)B=a(AXB)
=a(A®B:X), VX,Y €Lin", Va € R. (5.19)
With definitions (5.17) in hand one can easily prove the following identities
A B+C)=A®B+A®C, (B+C)A=B®A+CQRA, (5.20)
AoB+C)=A0B+A6GC, (B+C)0A=B0oOA+COA. (521)
For the left mapping (5.16) the tensor products (5.17) yield
Y:AoB=ATYBT, Y:A0B=(Y:A)B. (5.22)

As fourth-order tensors represent vectors they can be given with respect to a
basis in Lin".

Theorem 5.1. Let F = {F1,Fs,...,F 2} and G = {G1,Ga, ..., G,2} be two
arbitrary (not necessarily distinct) bases of Lin™. Then, fourth-order tensors

F,0G;j (z’,j =1,2,.. .,n2) form a basis of Lin™. The dimension of Lin" is

thus n?.

Proof. See the proof of Theorem 1.6.

A basis in £in" can be represented in another way as by the tensors
F,0G; (i,j =1,2,..., nz). To this end, we prove the following identity

(a®d)©(b®c)=a@b®cxd, (5.23)
where we set
(a®b)®(c®d) =a®@bxcxd. (5.24)

Indeed, let X € Lin™ be an arbitrary second-order tensor. Then, in view of
(1.135) and (5.17)2

(a®d)®(b®c): X=(bXc)(a®d). (5.25)

For the right hand side of (5.23) we obtain the same result using (5.17); and
(5.24)

a®b®ced: X=(a®b)®(cad): X=(bXc)(a®d). (5.26)
For the left mapping (5.16) it thus holds
Y:abc®d=(aYd) (b®c). (5.27)

Now, we are in a position to prove the following theorem.
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Theorem 5.2. Let £ = {ej,es,...,ent, F = {f1,f2,--,fn}, § =
{91,92,--.,9n} and finally H = {hq,hs,... h,} be four arbitrary (not nec-
essarily distinct) bases of E™. Then, fourth-order tensors e; ® f; @ gr ® hy
(i,4,k, 1 =1,2,...,n) represent a basis of Lin".

Proof. In view of (5.23)
eiRfi®gr@h =(e;®@h)o(f; ®gx).

According to Theorem 1.6 the second-order tensors e; @ hy (i,l =1,2,...,n)
on the one hand and f;®gs (j,k =1,2,...,n) on the other hand form bases of
Lin". According to Theorem 5.1 the fourth-order tensors (e; ® h;) ©(f; ® gi)
and consequently e;® f;®gr®h; (i,7,k,1=1,2,...,n) represent thus a basis
of Lin".

As a result of this Theorem any fourth-order tensor can be represented by

A = Aijklgi ®Qg; ¥gr Vg = -Aijklgi ®g ® gk ® gl

:‘A?]:klgi ® g; ®gk®gl =... (5.28)

The components of A appearing in (5.28) can be expressed by

Al =g wg'  A:g'®g", Aiju=9i®g:A:g;®gs,

A_i]:kl =g'®g :A:¢° g, i,j,kl=12 ... n (5.29)
By virtue of (1.104), (5.17); and (5.22); the right and left mappings with a
second-order tensor (5.1) and (5.16) can thus be represented by

A:X=(A"Mg, 0 g;@gr @ g1) : (Xgpg? ® g¥) = A" Xj1g; @ g1,

X:A=(Xpg!®g"): (AMg, 0 g9;@gr ®g)) = A" X;9; @ gr.
(5.30)

We observe that the basis vectors of the second-order tensor are scalarly mul-
tiplied either by the “inner” (right mapping) or “outer” (left mapping) basis
vectors of the fourth-order tensor.

5.3 Special Operations with Fourth-Order Tensors

Similarly to second-order tensors one defines also for fourth-order tensors some
specific operations which are not generally applicable to conventional vectors
in the Euclidean space.

Composition. In analogy with second-order tensors we define the com-
position of two fourth-order tensors A and B denoted by A : B as
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A:B): X=A:(B:X), VXeLin"™ (5.31)
For the left mapping (5.16) one can thus write

Y:(A:B)=(Y:A):B, VY eLin"™ (5.32)

For the tensor products (5.17) the composition (5.31) further yields

(A®B): (CeD)=(AC)® (DB), (5.33)
(A®B): (CoD)=(ACB)®D, (5.34)
(A®B): (Ce®D)=A0 (C'BD"), (5.35)
(A®B): (CoOD)=(B:C)A®D, A,B,C,Dc Lin" (5.36)

For example, the identity (5.33) can be proved within the following steps
(A®B): (C®D): X=(A®B): (CXD)
= ACXDB = (AC)® (DB) : X, VX € Lin",

where we again take into account the definition of the tensor product (5.17).
For the component representation (5.28) we further obtain

A:B=(A"Mg,0g9,0912g): (Bpgig” 9" ®g" ®g')

= Aijklfqurkgi ®RgI®g"®g. (5.37)

Note that the “inner” basis vectors of the left tensor A are scalarly multiplied
with the “outer” basis vectors of the right tensor B.

The composition of fourth-order tensors also gives rise to the definition of
powers as

AV=A:A:..: A k=12.. A"=3, (5.38)

~
k times

s

where J stands for the fourth-order identity tensor to be defined in the next
section. By means of (5.33) and (5.36) powers of tensor products (5.17) take
the following form

(A®B)" = A*oB*, (A®B)"=(A:B)" 'AGB, k=1,2,... (5.39)

Simple composition with second-order tensors. Let D be a fourth-
order tensor and A, B two second-order tensors. One defines a fourth-order
tensor ADB by

(ADB): X =A(D:X)B, VX eLin" (5.40)
Thus, we can also write

ADB=(A®B):D. (5.41)



104 5 Fourth-Order Tensors

This operation is very useful for the formulation of tensor differentiation rules
to be discussed in the next chapter.
For the tensor products (5.17) we further obtain

AB®C)D=(AB)®(CD)=(A®D): (B C), (5.42)

ABoC)D=(ABD)6C=(A®D): B6oC). (5.43)
With respect to a basis the simple composition can be given by
ADB = (Apg” @ g%) (DMg; © g; ® gx ® g1) (Brsg” ® g°)

= A, DVMBg" @ g; ® g @ g°. (5.44)

It is seen that expressed in component form the simple composition of second-
order tensors with a fourth-order tensor represents the so-called simple con-
traction of the classical tensor algebra (see, e.g., [41]).

Transposition. In contrast to second-order tensors allowing for the
unique transposition operation one can define for fourth-order tensors various
transpositions. We confine our attention here to the following two operations

T t
(e)” and (e)" defined by

AT X=X:A, A":X=A:XT, VvXeLn" (5.45)
Thus we can also write
Y A =(Y:A". (5.46)

Indeed, a scalar product with an arbitrary second order tensor X yields in
view of (1.140) and (5.16)

(Y:At):X:Y:(.At:X):Y:(A:XT)
—(Y:A):XT=(Y: A" : X, VvXeLin"

Of special importance is also the following symmetrization operation resulting
from the transposition (e)":

F = ; (F+7F). (5.47)
In view of (1.146)1, (5.45)2 and (5.46) we thus write

F:X=F:symX, Y:F=sym(Y:F). (5.48)
Applying the transposition operations to the tensor products (5.17) we have

(AeB)"=AT®BT, (AoB)'=BoA, (5.49)

(A®B)'=A60BT, A BcLn" (5.50)
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With the aid of (5.26) and (5.27) we further obtain
(abocod) =bavdoe, (5.51)
(abocd)'=a®cbed. (5.52)
It can also easily be proved that
A=A, A=A, VAecLin" (5.53)

Note, however, that the transposition operations (5.45) are not commutative
with each other so that generally D" £ D'

Applied to the composition of fourth-order tensors these transposition op-
erations yield (Exercise 5.6):

A:B)"'=8T:4T, (A:B)'=A:B" (5.54)

For the tensor products (5.17) we also obtain the following relations (see
Exercise 5.7)

(A@B)': (CoD) = KADT) ® (CTB)T : (5.55)

(A®B)': (CoD)=(AC'B) ©D. (5.56)

Scalar product. Similarly to second-order tensors the scalar product of
fourth-order tensors can be defined in terms of the basis vectors or tensors.
To this end, let us consider two fourth-order tensors A ®B and C® D, where
A,B,C,D € Lin". Then, we set

(A®B):(CoD)=(A:C)(B:D). (5.57)
As a result of this definition we also obtain in view of (1.134) and (5.23)

(abced):(ex fogoh)=(a-e)(b-f)(c-g)(d-h). (5.58)
For the component representation of fourth-order tensors it finally yields

A:B= (Aijklgi R9g; ¥ gk ®gl)

t (Bpgrig’ ® 97 ® g™ @ g') = A B . (5.59)

Using the latter relation one can easily prove that the properties of the scalar
product (D.1-D.4) hold for fourth-order tensors as well.

5.4 Super-Symmetric Fourth-Order Tensors

On the basis of the transposition operations one defines symmetric and super-
symmetric fourth-order tensors. Accordingly, a fourth-order tensor € is said
to be symmetric if (major symmetry)
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e'=e (5.60)
and super-symmetric if additionally (minor symmetry)

¢'=¢ (5.61)

In this section we focus on the properties of super-symmetric fourth-order ten-
sors. They constitute a subspace of L£in™ denoted in the following by Ssym™.
First, we prove that every super-symmetric fourth-order tensor maps an ar-
bitrary (not necessarily symmetric) second-order tensor into a symmetric one
so that

@:X)"=€e:X, VeeS8sym", VX eLn™ (5.62)

Indeed, in view of (5.45), (5.46), (5.60) and (5.61) we have
T T\ T ¢ T
(€:X) :(X:C) =(X:€) =X:€"=X:=X:C"=C:X.

Next, we deal with representations of super-symmetric fourth-order tensors
and study the properties of their components. Let F = {F1,Fa,...,F,2} be

an arbitrary basis of Lin"” and F' = {FI,F2, e 7F”Q} the corresponding
dual basis such that

F,:F1 =4, poqg=1,2,...,n% (5.63)
According to Theorem 5.1 we first write

C=CMF,0F,. (5.64)
Taking (5.60) into account and in view of (5.49)2 we infer that

Pl =C%® p#q pqg=12,...,n% (5.65)
Mapping (5.64) with the dual tensors F" further yields

C:F = (CPF,oF,):F" =C"F,, r=1,2...,n°% (5.66)
Let now F, =M, (p=1,2,...,m) and F; = W,_,,, ((=m+1,...,n?%) be
bases of Sym”™ and Skew™ (Sect. 1.9), respectively, where m = %n (n+1). In
view of (5.45)2, (5.61), (5.62) and (5.66) we conclude that

CFr=CP =0, p=12,....,n% r=m+1,...,n° (5.67)
and consequently

- 1
€= ) e"M,0M, m= g (n+1). (5.68)

p,q=1
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Keeping (5.65) in mind we can also write by analogy with (1.149)

€= E CPPM, © M, + E e (M,oM;+M,0M,). (5.69)
p,q=1
p>q

Therefore, every super-symmetric fourth-order tensor can be represented
with respect to the basis } (M, ® My + M, ® M,)), where M, € Sym" and
p >qg=12,... 1 n(n+ 1). Thus, we infer that the dimension of 8sym” is

am(m+1) =} 2 (n+1)*+ in(n+1). We also observe that 8sym™ can be
considered as the set of all linear mappings within Sym”.

Applying Theorem 5.2 we can also represent a super-symmetric tensor by
C = Ciklg,®g,;®@gr®g;. In this case, (5.51) and (5.52) require that (Exercise
5.8)

Gz]kl e]llk sz]l el]kz _ leij. (570)
Thus, we can also write
€=C"(g;,®g)®(g; ®gr)
1 ..
= 0929 +9:©9)©(9; 29k + 952 9))
1 ..
= 46”’“ (9 ®gr+9r®g;)O(gi®g+912gi). (5.71)

Finally, we briefly consider the eigenvalue problem for super-symmetric fourth-
order tensors. It is defined as

C:M=AM, CeS8sym", (5.72)

where A and M € Sym"™ denote the eigenvalue and the corresponding eigen-
tensor, respectively. The spectral decomposition of € can be given similarly
to symmetric second-order tensors (4.60) by

€=> AM,0M,, (5.73)
p=1

where again m = }n(n+1) and

M, M, =0y, pg=12,...,m. (5.74)

5.5 Special Fourth-Order Tensors

Identity tensor. The fourth-order identity tensor J is defined by

J:X =X, V¥XeLin™ (5.75)
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It is seen that J is a symmetric (but not super-symmetric) fourth-order tensor
such that 97 = 9. Indeed,

X:9=X, VX e€Lin" (5.76)

With the aid of (1.86), (5.17); or alternatively by using (5.29) the fourth-order
identity tensor can be represented by

I=1IrkI=g,Rg'®g;®g. (5.77)
For the composition with other fourth-order tensors we can also write

J:A=A:T=A, VYAcLin" (5.78)

Transposition tensor. The transposition of second-order tensors repre-
sents a linear mapping and can therefore be expressed in terms of a fourth-
order tensor. This tensor denoted by J is referred to as the transposition
tensor. Thus,

J:X =X VXecLin" (5.79)
One can easily show that (Exercise 5.9)
Y:T=Y" VYecLn" (5.80)

Hence, the transposition tensor is symmetric such that J = gt By virtue of
(5.45)2 and (5.75), T can further be expressed in terms of the identity tensor
by

J =17 (5.81)
Indeed,

9 X=9:XT=XT=9:X, vXeLin"
Considering (5.52) and (5.77) in (5.81) we thus obtain

T=(IeI) =g,0g;0g' ®g". (5.82)

The transposition tensor can further be characterized by the following iden-
tities (see Exercise 5.10)

A:T=A" T:A=A"" T:7=3 VAeLn" (5.83)

Super-symmetric identity tensor. The identity tensor (5.77) is sym-
metric but not super-symmetric. For this reason, it is useful to define a special
identity tensor within 8sym™. This super-symmetric tensor maps every sym-
metric second-order tensor into itself like the identity tensor (5.77). It can be
expressed by
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1 s
P = 5 J+T)=(1IxI). (5.84)

However, in contrast to the identity tensor J (5.77), the super-symmetric iden-
tity tensor J° (5.84) maps any arbitrary (not necessarily symmetric) second-
order tensor into its symmetric part so that in view of (5.48)

P°: X =X:9 =symX, VX € Lin". (5.85)

Spherical, deviatoric and trace projection tensors. The spherical
and deviatoric part of a second-order tensor are defined as a linear mapping
(1.153) and can thus be expressed by

sphA = Poop : A, devA = Pye, 1 A, (5.86)

where the fourth-order tensors Pgpn and Pgev are called the spherical and
deviatoric projection tensors, respectively. In view of (1.153) they are given
by

1 1
Pon= 101, Poev=3- 1061, (5.87)
n n
where I ® I represents the so-called trace projection tensor. Indeed,
Iol: X=ItrX, VX € Lin". (5.88)

According to (5.49)2 and (5.50), the spherical and trace projection tensors are
super-symmetric. The spherical and deviatoric projection tensors are further-
more characterized by the properties:

deev : deev = fPdeva fPsph : fpsph = fPSph7
Pdev : fpsph = fpsph : Phev = O. (589)

Example. Elasticity tensor for the generalized Hooke’s law. The
generalized Hooke’s law is written as

o =2Ge+ Mr(e) I = 2Gdeve + ()\ + ;G) tr (e) I, (5.90)

where G and A denote the so-called Lamé constants. The corresponding super-
symmetric elasticity tensor takes the form

€ =2GP + N OI=2GP, + (3\+ 2G) Pepn. (5.91)

Exercises

5.1. Prove relations (5.20) and (5.21).
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5.2. Prove relations (5.22).

5.3. Prove relations (5.42) and (5.43).

5.4. Prove relations (5.49-5.52).

5.5. Prove that AT' £ A" for A=a®b®cxd.
5.6. Prove identities (5.54).

5.7. Verify relations (5.55) and (5.56).

5.8. Prove relations (5.70) for the components of a super-symmetric fourth-
order tensor using (5.51) and (5.52).

5.9. Prove relation (5.80) using (5.16) and (5.79).

5.10. Verify the properties of the transposition tensor (5.83).

5.11. Prove that the fourth-order tensor of the form
C=(M; ®Ms+M;®M;)*

is super-symmetric if My, My € Sym".

5.12. Calculate eigenvalues and eigentensors of the following super-symmetric
fourth-order tensors for n = 3: (a) 3°(5.84), (b) Pspn (5.87)1, () Piey (5.87)2,
(d) € (5.91).





