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Analysis of Tensor Functions

6.1 Scalar-Valued Isotropic Tensor Functions

Let us consider a real scalar-valued function f (A1,A2, . . . ,Al) of second-
order tensors Ak ∈ Linn (k = 1, 2, . . . , l). The function f is said to be isotropic
if

f
(
QA1QT,QA2QT, . . . ,QAlQT

)
= f (A1,A2, . . . ,Al) , ∀Q ∈ Orthn. (6.1)

Example. Consider the function f (A,B) = tr (AB). Since in view of
(1.129) and (1.144)

f
(
QAQT,QBQT

)
= tr

(
QAQTQBQT

)
= tr

(
QABQT

)
= tr

(
ABQTQ

)
= tr (AB) = f (A,B) , ∀Q ∈ Orthn,

this function is isotropic according to the definition (6.1). In contrast, the func-
tion f (A) = tr (AL), where L denotes a second-order tensor, is not isotropic.
Indeed,

f
(
QAQT

)
= tr

(
QAQTL

)
�= tr (AL) .

Scalar-valued isotropic tensor functions are also called isotropic invariants
of the tensors Ak (k = 1, 2, . . . , l). For such a tensor system one can construct,
in principle, an unlimited number of isotropic invariants. However, for every
finite system of tensors one can find a finite number of isotropic invariants
in terms of which all other isotropic invariants can be expressed (Hilbert’s
theorem). This system of invariants is called functional basis of the tensors
Ak (k = 1, 2, . . . , l). For one and the same system of tensors there exist many
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functional bases. A functional basis is called irreducible if none of its elements
can be expressed in a unique form in terms of the remaining invariants.

First, we focus on isotropic functions of one second-order tensor

f
(
QAQT

)
= f (A) , ∀Q ∈ Orthn, A ∈ Linn. (6.2)

One can show that the principal traces trAk, principal invariants I(k)
A and

eigenvalues λk, (k = 1, 2, . . . , n) of the tensor A represent its isotropic tensor
functions. Indeed, for the principal traces we can write by virtue of (1.144)

tr
(
QAQT

)k

= tr

⎛⎝QAQTQAQT . . .QAQT︸ ︷︷ ︸
k times

⎞⎠ = tr
(
QAkQT

)
= tr

(
AkQTQ

)
= trAk, ∀Q ∈ Orthn. (6.3)

The principal invariants are uniquely expressed in terms of the principal traces
by means of Newton’s formula (4.26), while the eigenvalues are, in turn, de-
fined by the principal invariants as solutions of the characteristic equation
(4.20) with the characteristic polynomial given by (4.18).

Further, we prove that both the eigenvalues λk, principal invariants I(k)
M

and principal traces trMk (k = 1, 2, . . . , n) of one symmetric tensor M ∈
Symn form its functional bases (see also [45]). To this end, we consider two
arbitrary symmetric second-order tensors M1,M2 ∈ Symn with the same
eigenvalues. Then, the spectral representation (4.60) takes the form

M1 =
n∑

i=1

λini ⊗ ni, M2 =
n∑

i=1

λimi ⊗ mi, (6.4)

where according to (4.62) both the eigenvectors ni and mi form orthonormal
bases such that ni · nj = δij and mi · mj = δij (i, j = 1, 2, . . . , n). Now, we
consider the orthogonal tensor

Q =
n∑

i=1

mi ⊗ ni. (6.5)

Indeed,

QQT =

(
n∑

i=1

mi ⊗ ni

)⎛⎝ n∑
j=1

nj ⊗ mj

⎞⎠
=

n∑
i,j=1

δijmi ⊗ mj =
n∑

i=1

mi ⊗ mi = I.

By use of (1.116), (6.4) and (6.5) we further obtain
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QM1Q
T =

(
n∑

i=1

mi ⊗ ni

)⎛⎝ n∑
j=1

λjnj ⊗ nj

⎞⎠(
n∑

k=1

nk ⊗ mk

)

=
n∑

i,j,k=1

δijδjkλjmi ⊗ mk =
n∑

i=1

λimi ⊗ mi = M2. (6.6)

Hence,

f (M1) = f
(
QM1Q

T
)

= f (M2) . (6.7)

Thus, f takes the same value for all symmetric tensors with pairwise equal
eigenvalues. This means that an isotropic tensor function of a symmetric
tensor is uniquely defined in terms of its eigenvalues, principal invariants or
principal traces because the latter ones are, in turn, uniquely defined by the
eigenvalues according to (4.24) and (4.25). This implies the following repre-
sentations

f (M) =
�

f
(
I(1)M , I(2)M , . . . , I(n)

M

)
= f̂ (λ1, λ2, . . . , λn)

= f̃
(
trM, trM2, . . . , trMn

)
, M ∈ Symn. (6.8)

Example. Strain energy function of an isotropic hyperelastic ma-
terial. A material is said to be hyperelastic if it is characterized by the ex-
istence of a strain energy ψ defined as a function, for example, of the right
Cauchy-Green tensor C. For isotropic materials this strain energy function
obeys the condition

ψ
(
QCQT

)
= ψ (C) , ∀Q ∈ Orth3. (6.9)

By means of (6.8) this function can be expressed by

ψ (C) =
�

ψ (IC, IIC, IIIC) = ψ̂ (λ1, λ2, λ3) = ψ̃
(
trC, trC2, trC3

)
, (6.10)

where λi denote the so-called principal stretches. They are expressed in
terms of the eigenvalues Λi (i = 1, 2, 3) of the right Cauchy-Green tensor
C =

∑3
i=1 ΛiPi as λi =

√
Λi. For example, the strain energy function of

the so-called Mooney-Rivlin material is given in terms of the first and second
principal invariants by

ψ (C) = c1 (IC − 3) + c2 (IIC − 3) , (6.11)

where c1 and c2 represent material constants. In contrast, the strain energy
function of the Ogden material [29] is defined in terms of the principal stretches
by

ψ (C) =
m∑

r=1

μr

αr
(λαr

1 + λαr
2 + λαr

3 − 3) , (6.12)
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where μr, αr (r = 1, 2, . . . , m) denote material constants.

For isotropic functions (6.1) of a finite number l of arbitrary second-order
tensors the functional basis is obtained only for three-dimensional space. In or-
der to represent this basis, the tensor arguments are split according to (1.145)
into a symmetric and a skew-symmetric part respectively as follows:

Mi = symAi =
1
2
(
Ai + AT

i

)
, Wi = skewAi =

1
2
(
Ai − AT

i

)
. (6.13)

In this manner, every isotropic tensor function can be given in terms of a
finite number of symmetric tensors Mi ∈ Sym3 (i = 1, 2, . . . , m) and skew-
symmetric tensors Wi ∈ Skew3 (i = 1, 2, . . . , w) as

f = f̂ (M1,M2, . . . ,Mm,W1,W2, . . . ,Ww) . (6.14)

An irreducible functional basis of such a system of tensors is proved to be
given by (see [2], [32], [40])

trMi, trM2
i , trM3

i ,

tr (MiMj) , tr
(
M2

i Mj

)
, tr

(
MiM2

j

)
, tr

(
M2

i M
2
j

)
, tr (MiMjMk) ,

trW2
p, tr (WpWq) , tr (WpWqWr) ,

tr
(
MiW2

p

)
, tr

(
M2

i W
2
p

)
, tr

(
M2

i W
2
pMiWp

)
, tr (MiWpWq) ,

tr
(
MiW2

pWq

)
, tr

(
MiWpW2

q

)
, tr (MiMjWp) ,

tr
(
MiW2

pMjWp

)
, tr

(
M2

i MjWp

)
, tr

(
MiM2

jWp

)
,

i < j < k = 1, 2, . . . , m, p < q < r = 1, 2, . . . , w. (6.15)

For illustration of this result we consider some examples.

Example 1. Functional basis of one skew-symmetric second-order tensor
W ∈ Skew3. With the aid of (6.15) and (4.87) we obtain the basis consisting
of only one invariant

trW2 = −2IIW = −‖W‖2
. (6.16)

Example 2. Functional basis of an arbitrary second-order tensor A ∈
Lin3. By means of (6.15) one can write the following functional basis of A

trM, trM2, trM3,

trW2, tr
(
MW2

)
, tr

(
M2W2

)
, tr

(
M2W2MW

)
, (6.17)

where M = symA and W = skewA. Inserting representations (6.13) into
(6.17) the functional basis of A can be rewritten as (see Exercise 6.2)
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trA, trA2, trA3, tr
(
AAT

)
, tr

(
AAT

)2
, tr

(
A2AT

)
,

tr
[(

AT
)2

A2ATA − A2
(
AT

)2
AAT

]
. (6.18)

Example 3. Functional basis of two symmetric second-order tensors
M1,M2 ∈ Sym3. According to (6.15) the functional basis includes in this
case the following ten invariants

trM1, trM2
1, trM3

1, trM2, trM2
2, trM3

2,

tr (M1M2) , tr
(
M2

1M2

)
, tr

(
M1M2

2

)
, tr

(
M2

1M
2
2

)
. (6.19)

6.2 Scalar-Valued Anisotropic Tensor Functions

A real scalar-valued function f (A1,A2, . . . ,Al) of second-order tensors Ak ∈
Linn (k = 1, 2, . . . , l) is said to be anisotropic if it is invariant only with respect
to a subset of all orthogonal transformations:

f
(
QA1QT,QA2QT, . . . ,QAlQT

)
= f (A1,A2, . . . ,Al) , ∀Q ∈ Sorthn ⊂ Orthn. (6.20)

The subset Sorthn represents a group called symmetry group. In continuum
mechanics, anisotropic properties of materials are characterized by their sym-
metry group. The largest symmetry group Orth3 (in three-dimensional space)
includes all orthogonal transformations and is referred to as isotropic. In con-
trast, the smallest symmetry group consists of only two elements I and −I
and is called triclinic.

Example. Transversely isotropic material symmetry. In this case
the material is characterized by symmetry with respect to one selected direc-
tion referred to as principal material direction. Properties of a transversely
isotropic material remain unchanged by rotations about, and reflections from
the planes orthogonal or parallel to, this direction. Introducing a unit vector
l in the principal direction we can write

Ql = ±l, ∀Q ∈ gt, (6.21)

where gt ⊂ Orth3 denotes the transversely isotropic symmetry group. With
the aid of a special tensor

L = l ⊗ l, (6.22)

called structural tensor, condition (6.21) can be represented as

QLQT = L, ∀Q ∈ gt. (6.23)
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Hence, the transversely isotropic symmetry group can be defined by

gt =
{
Q ∈ Orth3 : QLQT = L

}
. (6.24)

A strain energy function ψ of a transversely isotropic material is invariant with
respect to all orthogonal transformations within gt. Using a representation in
terms of the right Cauchy-Green tensor C this leads to the following condition:

ψ
(
QCQT

)
= ψ (C) , ∀Q ∈ gt. (6.25)

It can be shown that this condition is a priori satisfied if the strain energy
function can be represented as an isotropic function of both C and L so that

ψ̂
(
QCQT,QLQT

)
= ψ̂ (C,L) , ∀Q ∈ Orth3. (6.26)

Indeed,

ψ̂ (C,L) = ψ̂
(
QCQT,QLQT

)
= ψ̂

(
QCQT,L

)
, ∀Q ∈ gt. (6.27)

With the aid of the functional basis (6.19) and taking into account the iden-
tities

Lk = L, trLk = 1, k = 1, 2, . . . (6.28)

resulting from (6.22) we can thus represent the transversely isotropic function
in terms of the five invariants by (see also [42])

ψ = ψ̂ (C,L) = ψ̃
[
trC, trC2, trC3, tr (CL) , tr

(
C2L

)]
. (6.29)

The above procedure can be generalized for an arbitrary anisotropic sym-
metry group g. Let Li (i = 1, 2, . . . , m) be a set of second-order tensors which
uniquely define g by

g =
{
Q ∈ Orthn : QLiQT = Li, i = 1, 2, . . . , m

}
. (6.30)

In continuum mechanics the tensors Li are called structural tensors since they
lay down the material or structural symmetry.

It is seen that the isotropic tensor function

f
(
QAiQ

T,QLjQ
T
)

= f (Ai,Lj) , ∀Q ∈ Orthn, (6.31)

where we use the abbreviated notation

f (Ai,Lj) = f (A1,A2, . . . ,Al,L1,L2, . . . ,Lm) , (6.32)

is anisotropic with respect to the arguments Ai (i = 1, 2, . . . , l) so that
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f
(
QAiQ

T
)

= f (Ai) , ∀Q ∈ g. (6.33)

Indeed, by virtue of (6.30) and (6.31) we have

f (Ai,Lj) = f
(
QAiQ

T,QLjQ
T
)

= f
(
QAiQ

T,Lj

)
, ∀Q ∈ g. (6.34)

Thus, every isotropic invariant of the tensor system Ai (i = 1, 2, . . . , l), Lj

(j = 1, 2, . . . , m) represents an anisotropic invariant of the tensors Ai (i =
1, 2, . . . , l) in the sense of definition (6.20). Conversely, one can show that
for every anisotropic function (6.33) there exists an equivalent isotropic func-
tion of the tensor system Ai (i = 1, 2, . . . , l) , Lj (j = 1, 2, . . . , m). In order to
prove this statement we consider a new tensor function defined by

f̂ (Ai,Xj) = f
(
Q′AiQ

′T
)

, (6.35)

where the tensor Q′ ∈ Orthn results from the condition:

Q′XjQ′T = Lj , j = 1, 2, . . . , m. (6.36)

Thus, the function f̂ is defined only over such tensors Xj that can be obtained
from the structural tensors Lj (j = 1, 2, . . . , m) by the transformation

Xj = Q′TLjQ′, j = 1, 2, . . . , m, (6.37)

where Q′ is an arbitrary orthogonal tensor.
Further, one can show that the so-defined function (6.35) is isotropic.

Indeed,

f̂
(
QAiQ

T,QXjQ
T
)

= f
(
Q′′QAiQ

TQ′′T) , ∀Q ∈ Orthn, (6.38)

where according to (6.36)

Q′′QXjQ
TQ′′T = Lj , Q′′ ∈ Orthn. (6.39)

Inserting (6.37) into (6.39) yields

Q′′QQ′TLjQ′QTQ′′T = Lj , (6.40)

so that

Q∗ = Q′′QQ′T ∈ g. (6.41)

Hence, we can write

f
(
Q′′QAiQ

TQ′′T) = f
(
Q∗Q′AiQ′TQ∗T)

= f
(
Q′AiQ′T) = f̂ (Ai,Xj)

and consequently in view of (6.38)

f̂
(
QAiQ

T,QXjQ
T
)

= f̂ (Ai,Xj) , ∀Q ∈ Orthn. (6.42)

Thus, we have proved the following theorem [49].
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Theorem 6.1. A scalar-valued function f (Ai) is invariant within the sym-
metry group g defined by (6.30) if and only if there exists an isotropic function
f̂ (Ai,Lj) such that

f (Ai) = f̂ (Ai,Lj) . (6.43)

6.3 Derivatives of Scalar-Valued Tensor Functions

Let us again consider a scalar-valued tensor function f (A) : Linn 
→ R. This
function is said to be differentiable in a neighborhood of A if there exists a
tensor f (A) ,A ∈ Linn, such that

d
dt

f (A + tX)
∣∣∣∣
t=0

= f (A) ,A : X, ∀X ∈ Linn. (6.44)

This definition implies that the directional derivative (also called Gateaux

derivative)
d
dt

f (A + tX)
∣∣∣∣
t=0

exists and is continuous at A. The tensor

f (A) ,A is referred to as the derivative or the gradient of the tensor func-
tion f (A).

In order to obtain a direct expression for f (A) ,A we represent the
tensors A and X in (6.44) with respect to an arbitrary basis, say gi ⊗
gj (i, j = 1, 2, . . . , n). Then, using the chain rule one can write

d
dt

f (A + tX)
∣∣∣∣
t=0

=
d
dt

f
[(

Ai
·j + tXi

·j
)
gi ⊗ gj

]∣∣∣∣
t=0

=
∂f

∂Ai
·j

Xi
·j .

Comparing this result with (6.44) yields

f (A) ,A =
∂f

∂Ai
·j

gi⊗gj =
∂f

∂Aij
gi⊗gj =

∂f

∂Aij gi⊗gj =
∂f

∂A j
i·

gi⊗gj . (6.45)

If the function f (A) is defined not on all linear transformations but only
on a subset Slinn ⊂ Linn, the directional derivative (6.44) does not, however,
yield a unique result for f (A) ,A. In this context, let us consider for example
scalar-valued functions of symmetric tensors: f (M) : Symn 
→ R. In this case,
the directional derivative (6.44) defines f (M) ,M only up to an arbitrary skew-
symmetric component W. Indeed,

f (M) ,M : X = [f (M) ,M +W] : X, ∀W ∈ Skewn, ∀X ∈ Symn. (6.46)

In this relation, X is restricted to symmetric tensors because the tensor M+tX
appearing in the directional derivative (6.44) must belong to the definition
domain of the function f for all real values of t.
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To avoid this non-uniqueness we will assume that the derivative f (A) ,A
belongs to the same subset Slinn ⊂ Linn as its argument A ∈ Slinn. In
particular, for symmetric tensor functions it implies that

f (M) ,M ∈ Symn for M ∈ Symn. (6.47)

In order to calculate the derivative of a symmetric tensor function satisfy-
ing the condition (6.47) one can apply the following procedure. First, the
definition domain of the function f is notionally extended to all linear trans-
formations Linn. Applying then the directional derivative (6.44) one obtains a
unique result for the tensor f,M which is finally symmetrized. For the deriva-
tive with respect to a symmetric part (1.146) of a tensor argument this pro-
cedure can be written by

f (A) ,symA = sym [f (A) ,A ] , A ∈ Linn. (6.48)

The problem with the non-uniqueness appears likewise by using the com-
ponent representation (6.45) for the gradient of symmetric tensor functions.
Indeed, in this case Mij = Mji (i �= j = 1, 2, . . . , n), so that only n (n + 1) /2
among all n2 components of the tensor argument M ∈ Symn are independent.
Thus, according to (1.149)

M =
n∑

i=1

Miigi ⊗ gi +
n∑

i,j=1
j<i

Mij (gi ⊗ gj + gj ⊗ gi) , M ∈ Symn. (6.49)

Hence, instead of (6.45) we obtain

f (M) ,M =
1
2

n∑
i,j=1
j≤i

∂f

∂Mij

(
gi ⊗ gj + gj ⊗ gi

)

=
1
2

n∑
i,j=1
j≤i

∂f

∂Mij
(gi ⊗ gj + gj ⊗ gi) , M ∈ Symn. (6.50)

It is seen that the derivative is taken here only with respect to the independent
components of the symmetric tensor argument; the resulting tensor is then
symmetrized.

Example 1. Derivative of the quadratic norm ‖A‖ =
√

A : A:

d
dt

[(A + tX) : (A + tX)]1/2

∣∣∣∣
t=0

=
d
dt

[
A : A + 2tA : X + t2X : X

]1/2
∣∣∣∣
t=0

=
2A : X + 2tX : X

2 [A : A + 2tA : X + t2X : X]1/2

∣∣∣∣∣
t=0

=
A

‖A‖ : X.
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Thus,

‖A‖ ,A =
A
‖A‖ . (6.51)

The same result can also be obtained using (6.45). Indeed, let A = Aijg
i⊗gj .

Then,

‖A‖ =
√

A : A =
√

(Aijgi ⊗ gj) : (Aklgk ⊗ gl) =
√

AijAklgikgjl.

Utilizing the identity

∂Aij

∂Apq
= δp

i δq
j , i, j, p, q = 1, 2, . . . , n

we further write

‖A‖ ,A =
∂
√

AijAklgikgjl

∂Apq
gp ⊗ gq

=
1

2 ‖A‖
(
Aklg

ikgjlgi ⊗ gj + Aijg
ikgjlgk ⊗ gl

)
=

1
2 ‖A‖2Aklg

ikgjlgi ⊗ gj =
1

‖A‖Aklg
k ⊗ gl =

A
‖A‖ .

Example 2. Derivatives of the principal traces trAk (k = 1, 2, . . .):

d
dt

[
tr (A + tX)k

]∣∣∣∣
t=0

=
d
dt

[
(A + tX)k : I

]∣∣∣∣
t=0

=
d
dt

[
(A + tX)k

]∣∣∣∣
t=0

: I

=
d
dt

⎡⎣(A + tX) (A + tX) . . . (A + tX)︸ ︷︷ ︸
k times

⎤⎦∣∣∣∣∣∣
t=0

: I

=
d
dt

[
Ak + t

k−1∑
i=0

AiXAk−1−i + t2 . . .

]∣∣∣∣∣
t=0

: I

=
k−1∑
i=0

AiXAk−1−i : I = k
(
Ak−1

)T
: X.

Thus,(
trAk

)
,A = k

(
Ak−1

)T
. (6.52)

In the special case k = 1 we obtain

(trA) ,A = I. (6.53)
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Example 3. Derivatives of tr
(
AkL

)
(k = 1, 2, . . .) with respect to A:

d
dt

[
(A + tX)k : LT

]∣∣∣∣
t=0

=
d
dt

[
(A + tX)k

]∣∣∣∣
t=0

: LT

=
k−1∑
i=0

AiXAk−1−i : LT =
k−1∑
i=0

(
AT

)i
LT

(
AT

)k−1−i
: X.

Hence,

tr
(
AkL

)
,A =

k−1∑
i=0

(
AiLAk−1−i

)T

. (6.54)

In the special case k = 1 we have

tr (AL) ,A = LT. (6.55)

It is seen that the derivative of tr
(
AkL

)
is not in general symmetric even if

the tensor argument A is. Applying (6.48) we can write in this case

tr
(
MkL

)
,M = sym

[
k−1∑
i=0

(
MiLMk−1−i

)T
]

=
k−1∑
i=0

Mi (symL)Mk−1−i,

(6.56)

where M ∈ Symn.

Example 4. Derivatives of the principal invariants I(k)
A (k = 1, 2,

. . . , n) of a second-order tensor A ∈ Linn. By virtue of the representations
(4.26) and using (6.52) we obtain

I(1)A ,A = (trA) ,A = I,

I(2)A ,A =
1
2

(
I(1)A trA − trA2

)
,A = I(1)A I− AT,

I(3)A ,A =
1
3

(
I(2)A trA − I(1)A trA2 + trA3

)
,A

=
1
3

[
trA

(
I(1)A I− AT

)
+ I(2)A I − (

trA2
)
I − 2I(1)A AT + 3

(
AT

)2]
=
[
A2 − I(1)A A + I(2)A I

]T
, . . . (6.57)

Herein, one can observe the following regularity

I(k)
A ,A =

k−1∑
i=0

(−1)i I(k−1−i)
A

(
AT

)i
= −I(k−1)

A ,A AT + I(k−1)
A I, (6.58)
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where we again set I(0)A = 1. The above identity can be proved by mathematical
induction (see also [7]). Indeed, according to (4.26) and (6.52)

I(k)
A ,A =

1
k

[
k∑

i=1

(−1)i−1 I(k−i)
A trAi

]
,A

=
1
k

k∑
i=1

(−1)i−1
iI(k−i)

A

(
AT

)i−1
+

1
k

k−1∑
i=1

(−1)i−1 I(k−i)
A ,A trAi. (6.59)

Now, let

Yk+1 =
k∑

i=0

(−1)i I(k−i)
A

(
AT

)i
= −I(k)

A ,A AT + I(k)
A I. (6.60)

Inserting (4.26) and (6.59) into the latter expression (6.60) delivers

Yk+1 = − 1
k

k∑
i=1

(−1)i−1
iI(k−i)

A

(
AT

)i −
[

k−1∑
i=1

(−1)i−1 I(k−i)
A ,A trAi

]
AT

k

+
I
k

[
k∑

i=1

(−1)i−1 I(k−i)
A trAi

]
.

Adding Yk+1/k to both sides of this equality and using for Yk+1 the first
expression in (6.60) we further obtain

k + 1
k

Yk+1 =
1
k

k∑
i=1

(−1)i
iI(k−i)

A

(
AT

)i
+

1
k

k∑
i=0

(−1)i I(k−i)
A

(
AT

)i

+
1
k

[
k∑

i=1

(−1)i−1
(
−I(k−i)

A ,A AT + I(k−i)
A I

)
trAi

]
.

Now, let us assume that representation (6.58) holds at least until the number
k. Then, taking (6.59) again into account we can write

k + 1
k

Yk+1 =
1
k

k∑
i=0

(−1)i (i + 1) I(k−i)
A

(
AT

)i

+
1
k

[
k∑

i=1

(−1)i−1 I(k+1−i)
A ,A trAi

]
=

k + 1
k

I(k+1)
A ,A .

Hence,

Yk+1 = I(k+1)
A ,A ,

which immediately implies that (6.58) holds for k +1 as well. Thereby, repre-
sentation (6.58) is proved.
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For invertible tensors one can get a simpler representation for the deriva-
tive of the last invariant I(n)

A . This representation results from the Cayley-
Hamilton theorem (4.91) as follows

I(n)
A ,A AT =

[
n−1∑
i=0

(−1)i I(n−1−i)
A

(
AT

)i]
AT =

n∑
i=1

(−1)i−1 I(n−i)
A

(
AT

)i

=
n∑

i=0

(−1)i−1 I(n−i)
A

(
AT

)i
+ I(n)

A I = I(n)
A I.

Thus,

I(n)
A ,A = I(n)

A A−T, A ∈ Invn. (6.61)

Example 5. Derivatives of the eigenvalues λi. First, we show that
simple eigenvalues of a second-order tensor A are differentiable. To this end,
we consider the directional derivative (6.44) of an eigenvalue λ:

d
dt

λ (A + tX)
∣∣∣∣
t=0

. (6.62)

Herein, λ (t) represents an implicit function defined through the characteristic
equation

det (A + tX− λI) = p (λ, t) = 0. (6.63)

This equation can be written out in the polynomial form (4.18) with respect
to powers of λ. The coefficients of this polynomial are principal invariants of
the tensor A + tX. According to the results of the previous example these
invariants are differentiable with respect to A + tX and therefore also with
respect to t. For this reason, the function p (λ, t) is differentiable both with
respect to λ and t. For a simple eigenvalue λ0 = λ (0) we can further write
(see also [26])

p (λ0, 0) = 0,
∂p (λ, 0)

∂λ

∣∣∣∣
λ=λ0

�= 0. (6.64)

According to the implicit function theorem (see, e.g., [5]), the above condition
ensures the differentiability of the function λ (t) at t = 0. Thus, the directional
derivative (6.62) exists and is continuous at A.

In order to represent the derivative λi,A we first consider the spectral
representation (4.43) of the tensor A with pairwise distinct eigenvalues

A =
n∑

i=1

λiPi, (6.65)
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where Pi (i = 1, 2, . . . , n) denote the eigenprojections. They can uniquely be
determined from the equation system

Ak =
n∑

i=1

λk
i Pi, k = 0, 1, . . . , n − 1 (6.66)

resulting from (4.47). Applying the Vieta theorem to the tensor Al (l =
1, 2, . . . , n) we further obtain relation (4.25) written as

trAl =
n∑

i=1

λl
i, l = 1, 2, . . . , n. (6.67)

The derivative of (6.67) with respect to A further yields by virtue of (6.52)

l
(
AT

)l−1
= l

n∑
i=1

λl−1
i λi,A , l = 1, 2, . . . , n

and consequently

Ak =
n∑

i=1

λk
i (λi,A )T , k = 0, 1, . . . , n − 1. (6.68)

Comparing the linear equation systems (6.66) and (6.68) we notice that

λi,A = PT
i . (6.69)

Finally, the Sylvester formula (4.54) results in the expression

λi,A = δ1nI +
n∏

j=1
j �=i

AT − λjI
λi − λj

. (6.70)

It is seen that the solution (6.70) holds even if the remainder eigenvalues
λj (j = 1, 2, . . . , i − 1, i + 1, . . . , n) of the tensor A are not simple. In this case
(6.70) transforms to

λi,A = δ1nI +
s∏

j=1
j �=i

AT − λjI
λi − λj

, (6.71)

where s denotes the number of pairwise distinct eigenvalues λi (i = 1, 2, . . . , s).

6.4 Tensor-Valued Isotropic and Anisotropic Tensor
Functions

A tensor-valued function g (A1,A2, . . . ,Al) ∈ Linn of a tensor system Ak ∈
Linn (k = 1, 2, . . . , l) is called anisotropic if
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g
(
QA1Q

T,QA2Q
T, . . . ,QAlQ

T
)

= Qg (A1,A2, . . . ,Al)QT, ∀Q ∈ Sorthn ⊂ Orthn. (6.72)

For isotropic tensor-valued tensor functions the above identity holds for all
orthogonal transformations so that Sorthn = Orthn.

As a starting point for the discussion of tensor-valued tensor functions we
again consider isotropic functions of one argument. In this case,

g
(
QAQT

)
= Qg (A)QT, ∀Q ∈ Orthn. (6.73)

For example, one can easily show that the polynomial function (1.108) and
the exponential function (1.109) introduced in Chap. 1 are isotropic. Indeed,
for a tensor polynomial g (A) =

∑m
k=0 akAk we have (see also Exercise 1.32)

g
(
QAQT

)
=

m∑
k=0

ak

(
QAQT

)k

=
m∑

k=0

ak

⎛⎝QAQTQAQT . . .QAQT︸ ︷︷ ︸
k times

⎞⎠
=

m∑
k=0

ak

(
QAkQT

)
= Q

(
m∑

k=0

akAk

)
QT

= Qg (A)QT, ∀Q ∈ Orthn. (6.74)

Of special interest are isotropic functions of a symmetric tensor. First, we
prove that the tensors g (M) and M ∈ Symn are coaxial i.e. have the eigen-
vectors in common. To this end, we represent M in the spectral form (4.60)
by

M =
n∑

i=1

λibi ⊗ bi, (6.75)

where bi · bj = δij (i, j = 1, 2, . . . , n). Further, we choose an arbitrary eigen-
vector, say bk, and show that it simultaneously represents an eigenvector of
g (M). Indeed, let

Q = 2bk ⊗ bk − I = bk ⊗ bk +
n∑

i=1
i�=k

(−1)bi ⊗ bi (6.76)

bearing in mind that I =
∑n

i=1 bi ⊗ bi in accordance with (1.87). The tensor
Q (6.76) is orthogonal since

QQT = (2bk ⊗ bk − I) (2bk ⊗ bk − I) = 4bk⊗bk−2bk⊗bk−2bk⊗bk+I = I

and symmetric as well. One of its eigenvalues is equal to 1 while all the other
ones are −1. Thus, we can write
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QM = (2bk ⊗ bk − I)M = 2λkbk ⊗ bk − M = M (2bk ⊗ bk − I) = MQ

and consequently

QMQT = M. (6.77)

Since the function g (M) is isotropic

g (M) = g
(
QMQT

)
= Qg (M)QT

and therefore

Qg (M) = g (M)Q. (6.78)

Mapping the vector bk by both sides of this identity yields in view of (6.76)

Qg (M) bk = g (M) bk. (6.79)

It is seen that the vector g (M) bk is an eigenvector of Q (6.76) associated
with the eigenvalue 1. Since it is the simple eigenvalue

g (M) bk = γkbk, (6.80)

where γk is some real number. Hence, bk represents the right eigenvector of
g (M). Forming the left mapping of bk by (6.78) one can similarly show that
bk is also the left eigenvector of g (M), which implies the symmetry of the
tensor g (M).

Now, we are in a position to prove the following representation theorem
[35], [45].

Theorem 6.2. A tensor-valued tensor function g (M), M ∈ Symn is isotropic
if and only if it allows the following representation

g (M) = ϕ0I + ϕ1M + ϕ2M2 + . . . + ϕn−1Mn−1 =
n−1∑
i=0

ϕiMi, (6.81)

where ϕi are isotropic invariants (isotropic scalar functions) of M and can
therefore be expressed as functions of its principal invariants by

ϕi =
�
ϕi

(
I(1)M , I(2)M , . . . , I(n)

M

)
, i = 0, 1, . . . , n − 1. (6.82)

Proof. We have already proved that the tensors g (M) and M have eigenvec-
tors in common. Thus, according to (6.75)

g (M) =
n∑

i=1

γibi ⊗ bi, (6.83)
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where γi = γi (M). Hence (see Exercise 6.1(e)),

g
(
QMQT

)
=

n∑
i=1

γi

(
QMQT

)
Q (bi ⊗ bi)QT. (6.84)

Since the function g (M) is isotropic we have

g
(
QMQT

)
= Qg (M)QT

=
n∑

i=1

γi (M)Q (bi ⊗ bi)QT, ∀Q ∈ Orthn. (6.85)

Comparing (6.84) with (6.85) we conclude that

γi

(
QMQT

)
= γi (M) , i = 1, . . . , n, ∀Q ∈ Orthn. (6.86)

Thus, the eigenvalues of the tensor g (M) represent isotropic (scalar-valued)
functions of M. Collecting repeated eigenvalues of g (M) we can further
rewrite (6.83) in terms of the eigenprojections Pi (i = 1, 2, . . . , s) by

g (M) =
s∑

i=1

γiPi, (6.87)

where s (1 ≤ s ≤ n) denotes the number of pairwise distinct eigenvalues of
g (M). Using the representation of the eigenprojections (4.55) based on the
Sylvester formula (4.54) we can write

Pi =
s−1∑
r=0

α
(r)
i (λ1, λ2, . . . , λs)Mr, i = 1, 2, . . . , s. (6.88)

Inserting this result into (6.87) yields the representation (sufficiency):

g (M) =
s−1∑
i=0

ϕiMi, (6.89)

where the functions ϕi (i = 0, 1, 2, . . . , s − 1) are given according to (6.8)
and (6.86) by (6.82). The necessity is evident. Indeed, the function (6.81)
is isotropic since in view of (6.74)

g
(
QMQT

)
=

n−1∑
i=0

ϕi

(
QMQT

)
QMiQT

= Q

[
n−1∑
i=0

ϕi (M)Mi

]
QT = Qg (M)QT, ∀Q ∈ Orthn.(6.90)
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Example. Constitutive relations for isotropic materials. For iso-
tropic materials the second Piola-Kirchhoff stress tensor S represents an
isotropic function of the right Cauchy-Green tensor C so that

S
(
QCQT

)
= QS (C)QT, ∀Q ∈ Orth3. (6.91)

Thus, according to the representation theorem

S (C) = α0I + α1C + α2C2, (6.92)

where αi = αi (C) (i = 0, 1, 2) are some scalar-valued isotropic functions of C.
The same result can be obtained for isotropic hyperelastic materials by con-
sidering the representation of the strain energy function (6.10) in the relation
(see, e.g., [29])

S = 2
∂ψ

∂C
. (6.93)

Indeed, using the chain rule of differentiation and keeping in mind that the
tensor C is symmetric we obtain by means of (6.52)

S = 2
3∑

k=1

∂ψ̃

∂trCk

∂trCk

∂C
= 2

3∑
k=1

k
∂ψ̃

∂trCk
Ck−1, (6.94)

so that αi (C) = 2 (i + 1) ∂ψ̃/∂trCi+1 (i = 0, 1, 2).
Let us further consider a linearly elastic material characterized by a linear

stress-strain response. In this case, the relation (6.92) reduces to

S (C) = ϕ (C) I + cC, (6.95)

where c is a material constant and ϕ (C) represents an isotropic scalar-valued
function linear in C. In view of (6.15) this function can be expressed by

ϕ (C) = a + btrC, (6.96)

where a and b are again material constants. Assuming that the reference con-
figuration, in which C = I, is stress free, yields a+3b+c = 0 and consequently

S (C) = (−c − 3b + btrC) I + cC = b (trC− 3) I + c (C− I) .

Introducing further the so-called Green-Lagrange strain tensor defined by

Ẽ =
1
2

(C− I) (6.97)

we finally obtain

S
(
Ẽ
)

= 2b
(
trẼ

)
I + 2cẼ. (6.98)
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The material described by the linear constitutive relation (6.98) is referred
to as St.Venant-Kirchhoff material. The corresponding material constants 2b
and 2c are called Lamé constants. The strain energy function resulting in the
constitutive law (6.98) by (6.93) or equivalently by S = ∂ψ/∂Ẽ is of the form

ψ
(
Ẽ
)

= btr2Ẽ + ctrẼ2. (6.99)

For isotropic functions of an arbitrary tensor system Ak ∈ Linn (k =
1, 2, . . . , l) the representations are obtained only for the three-dimensional
space. One again splits tensor arguments into symmetric Mi ∈ Sym3 (i =
1, 2, . . . , m) and skew-symmetric tensors Wj ∈ Skew3 (j = 1, 2, . . . , w) ac-
cording to (6.13). Then, all isotropic tensor-valued functions of these tensors
can be represented as linear combinations of the following terms (see [32],
[40]), where the coefficients represent scalar-valued isotropic functions of the
same tensor arguments.
Symmetric generators:

I,

Mi, M2
i , MiMj + MjMi, M2

i Mj + MjM2
i , MiM2

j + M2
jMi,

W2
p, WpWq + WqWp, W2

pWq − WqW2
p, WpW2

q − W2
qWp,

MiWp − WpMi, WpMiWp, M2
i Wp − WpM2

i ,

WpMiW2
p − W2

pMiWp. (6.100)

Skew-symmetric generators:

Wp, WpWq − WqWp,

MiMj − MjMi, M2
i Mj − MjM2

i , MiM2
j − M2

jMi,

MiMjM2
i − M2

i MjMi, MjMiM2
j − M2

jMiMj,

MiMjMk +MjMkMi+MkMiMj−MjMiMk−MkMjMi−MiMkMj ,

MiWp + WpMi, MiW2
p − W2

pMi,

i < j = 1, 2, . . . , m, p < q = 1, 2, . . . , w. (6.101)

For anisotropic tensor-valued tensor functions one utilizes the procedure
applied for scalar-valued functions. It is based on the following theorem [49]
(cf. Theorem 6.1).

Theorem 6.3. (Rychlewski’s theorem) A tensor-valued function g (Ai) is
anisotropic with the symmetry group Sorthn = g defined by (6.30) if and
only if there exists an isotropic tensor-valued function ĝ (Ai,Lj) such that

g (Ai) = ĝ (Ai,Lj) . (6.102)
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Proof. Let us define a new tensor-valued function by

ĝ (Ai,Xj) = Q′Tg
(
Q′AiQ

′T
)

Q′, (6.103)

where the tensor Q′ ∈ Orthn results from the condition (6.36). The further
proof is similar to Theorem 6.1 (Exercise 6.12).

Example. Constitutive relations for a transversely isotropic elas-
tic material. For illustration of the above results we construct a general
constitutive equation for an elastic transversely isotropic material. The trans-
versely isotropic material symmetry is defined by one structural tensor L
(6.22) according to (6.24). The second Piola-Kirchhoff stress tensor S is a
transversely isotropic function of the right Cauchy-Green tensor C. According
to Rychlewski’s theorem S can be represented as an isotropic tensor function
of C and L by

S = S (C,L) , (6.104)

such that

S
(
QCQT,QLQT

)
= QS (C,L)QT, ∀Q ∈ Orth3. (6.105)

This ensures that the condition of the material symmetry is fulfilled a priori
since

S
(
QCQT,L

)
= S

(
QCQT,QLQT

)
= QS (C,L)QT, ∀Q ∈ gt. (6.106)

Keeping in mind that S, C and L are symmetric tensors we can write by
virtue of (6.28)1 and (6.100)

S (C,L) = α0I + α1L + α2C

+ α3C2 + α4 (CL + LC) + α5

(
C2L + LC2

)
. (6.107)

The coefficients αi (i = 0, 1, . . . , 5) represent scalar-valued isotropic tensor
functions of C and L so that similar to (6.29)

αi (C,L) = α̂i

[
trC, trC2, trC3, tr (CL) , tr

(
C2L

)]
. (6.108)

For comparison we derive the constitutive equations for a hyperelastic trans-
versely isotropic material. To this end, we utilize the general representation
for the transversely isotropic strain energy function (6.29). By the chain rule
of differentiation and with the aid of (6.52) and (6.54) we obtain

S = 2
∂ψ̃

∂trC
I + 4

∂ψ̃

∂trC2
C + 6

∂ψ̃

∂trC3
C2

+2
∂ψ̃

∂tr (CL)
L + 2

∂ψ̃

∂tr (C2L)
(CL + LC) (6.109)
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and finally

S = α0I + α1L + α2C + α3C2 + α4 (CL + LC) . (6.110)

Comparing (6.107) and (6.110) we observe that the representation for the
hyperelastic transversely isotropic material does not include the last term in
(6.107) with C2L+LC2. Thus, the constitutive equations containing this term
correspond to an elastic but not hyperelastic transversely isotropic material.
The latter material cannot be described by a strain energy function.

6.5 Derivatives of Tensor-Valued Tensor Functions

The derivative of a tensor-valued tensor function can be defined in a similar
fashion to (6.44). A function g (A) : Linn 
→ Linn is said to be differentiable
in a neighborhood of A if there exists a fourth-order tensor g (A) ,A ∈ Linn

(called the derivative), such that

d
dt

g (A + tX)
∣∣∣∣
t=0

= g (A) ,A : X, ∀X ∈ Linn. (6.111)

The above definition implies that the directional derivative
d
dt

g (A + tX)
∣∣∣∣
t=0

exists and is continuous at A.
Similarly to (6.45) we can obtain a direct relation for the fourth-order

tensor g (A) ,A. To this end, we represent the tensors A, X and G = g (A)
with respect to an arbitrary basis in Linn, say gi ⊗ gj (i, j = 1, 2, . . . , n).
Applying the chain rule of differentiation we can write

d
dt

g (A + tX)
∣∣∣∣
t=0

=
d
dt

{
Gi

·j
[(

Ak
·l + tXk

·l
)

gk ⊗ gl
]
gi ⊗ gj

}∣∣∣∣
t=0

=
∂Gi

·j
∂Ak

·l
Xk

·lgi ⊗ gj . (6.112)

In view of (5.30)1 and (6.111) this results in the following representations

g,A =
∂Gi

·j
∂Ak

·l
gi ⊗ gk ⊗ gl ⊗ gj =

∂Gi
·j

∂A l
k·

gi ⊗ gk ⊗ gl ⊗ gj

=
∂Gi

·j
∂Akl

gi ⊗ gk ⊗ gl ⊗ gj =
∂Gi

·j
∂Akl

gi ⊗ gk ⊗ gl ⊗ gj . (6.113)

For functions defined only on a subset Slinn ⊂ Linn the directional deriva-
tive (6.111) again does not deliver a unique result. Similarly to scalar-valued
functions this problem can be avoided defining the fourth-order tensor g (A) ,A
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as a linear mapping on Slinn. Of special interest in this context are symmet-
ric tensor functions. In this case, using (5.47) and applying the procedure
described in Sect. 6.3 we can write

g (A) ,symA = [g (A) ,A ]s , A ∈ Linn. (6.114)

The component representation (6.113) can be given for symmetric tensor func-
tions by

g (M) ,M =
1
2

n∑
k,l=1
l≤k

∂Gi
·j

∂Mkl
gi ⊗

(
gk ⊗ gl + gl ⊗ gk

)⊗ gj

=
1
2

n∑
k,l=1
l≤k

∂Gi
·j

∂Mkl
gi ⊗ (gk ⊗ gl + gl ⊗ gk) ⊗ gj , (6.115)

where M ∈ Symn.

Example 1. Derivative of the power function Ak (k = 1, 2, . . .). The di-
rectional derivative (6.111) of the power function yields

d
dt

(A + tX)k

∣∣∣∣
t=0

=
d
dt

(
Ak + t

k−1∑
i=0

AiXAk−1−i + t2 . . .

)∣∣∣∣∣
t=0

=
k−1∑
i=0

AiXAk−1−i. (6.116)

Bearing (5.17)1 and (6.111) in mind we finally obtain

Ak,A =
k−1∑
i=0

Ai ⊗ Ak−1−i, A ∈ Linn. (6.117)

In the special case k = 1 it leads to the identity

A,A = I, A ∈ Linn. (6.118)

For power functions of symmetric tensors application of (6.114) yields

Mk,M =
k−1∑
i=0

(
Mi ⊗ Mk−1−i

)s
, M ∈ Symn (6.119)

and consequently

M,M = Is, M ∈ Symn. (6.120)

Example 2. Derivative of the transposed tensor AT. In this case, we can
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write

d
dt

(A + tX)T
∣∣∣∣
t=0

=
d
dt

(
AT + tXT

)∣∣∣∣
t=0

= XT.

On use of (5.79) this yields

AT,A = T. (6.121)

Example 3. Derivative of the inverse tensor A−1, where A ∈ Invn. Con-
sider the directional derivative of the identity A−1A = I. It delivers:

d
dt

(A + tX)−1 (A + tX)
∣∣∣∣
t=0

= 0.

Applying the product rule of differentiation (2.9) and using (6.116) we further
write

d
dt

(A + tX)−1

∣∣∣∣
t=0

A + A−1X = 0

and finally

d
dt

(A + tX)−1

∣∣∣∣
t=0

= −A−1XA−1.

Hence, in view of (5.17)1

A−1,A = −A−1 ⊗ A−1. (6.122)

The calculation of the derivative of tensor functions can be simplified by
means of differentiation rules. One of them is the following composition rule.
Let G = g (A) and H = h (A) be two arbitrary differentiable tensor-valued
functions of A. Then,

(GH) ,A = G,A H + GH,A . (6.123)

For the proof we again apply the directional derivative (6.111) taking (2.9)
and (5.40) into account

(GH) ,A : X =
d
dt

[g (A + tX)h (A + tX)]
∣∣∣∣
t=0

=
d
dt

g (A + tX)
∣∣∣∣
t=0

H + G
d
dt

h (A + tX)
∣∣∣∣
t=0

= (G,A : X)H + G (H,A : X)

= (G,A H + GH,A ) : X, ∀X ∈ Linn.
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Example 4. The right and left Cauchy-Green tensors are given in terms
of the deformation gradient F respectively by

C = FTF, b = FFT. (6.124)

Of special interest in continuum mechanics is the derivative of these tensors
with respect to F. With the aid of the product rule (6.123) and using (5.42),
(5.77), (5.82), (5.83)1, (6.118) and (6.121) we obtain

C,F = FT,F F + FTF,F = TF + FTI = (I ⊗ F)t + FT ⊗ I, (6.125)

b,F = F,F FT + FFT,F = IFT + FT = I ⊗ FT + (F⊗ I)t . (6.126)

Further product rules of differentiation of tensor functions can be written
as

(fG) ,A = G� f,A +fG,A , (6.127)

(G : H) ,A = H : G,A +G : H,A , (6.128)

where f = f̂ (A), G = g (A) and H = h (A) are again a scalar-valued and two
tensor-valued differentiable tensor functions, respectively. The proof is similar
to (6.123) (see Exercise 6.14).

Example 5. With the aid of the above differentiation rules we can eas-
ily express the derivatives of the spherical and deviatoric parts (1.153) of a
second-order tensor by

sphA,A =
[

1
n

tr (A) I
]

,A =
1
n
I � I = Psph, (6.129)

devA,A =
[
A − 1

n
tr (A) I

]
,A = I − 1

n
I� I = Pdev. (6.130)

Example 6. Tangent moduli of hyperelastic isotropic and trans-
versely isotropic materials. The tangent moduli are defined by (see, e.g.,
[29])

C =
∂S
∂Ẽ

= 2
∂S
∂C

, (6.131)

where Ẽ denotes the Green-Lagrange strain tensor defined in (6.97). For hy-
perelastic materials this definition implies in view of (6.93) the representation

C =
∂2ψ

∂Ẽ∂Ẽ
= 4

∂2ψ

∂C∂C
. (6.132)

For a hyperelastic isotropic material we thus obtain by virtue of (6.119),
(6.127), (6.10) or (6.94)
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C = 4
3∑

k,l=1

kl
∂2ψ̃

∂trCk∂trCl
Ck−1 � Cl−1

+8
∂ψ̃

∂trC2
Is + 12

∂ψ̃

∂trC3
(C ⊗ I + I ⊗ C)s . (6.133)

For a hyperelastic transversely isotropic material the above procedure yields
with the aid of (6.109)

C = 4
3∑

k,l=1

kl
∂2ψ̃

∂trCk∂trCl
Ck−1 � Cl−1 + 4

∂2ψ̃

∂tr (CL) ∂tr (CL)
L � L

+ 4
∂2ψ̃

∂tr (C2L) ∂tr (C2L)
(CL + LC) � (CL + LC)

+ 4
3∑
k

k
∂2ψ̃

∂trCk∂tr (CL)
(
Ck−1 � L + L � Ck−1

)

+ 4
3∑
k

k
∂2ψ̃

∂trCk∂tr (C2L)
[
Ck−1 � (CL + LC) + (CL + LC) � Ck−1

]

+ 4
∂2ψ̃

∂tr (CL) ∂tr (C2L)
[L � (CL + LC) + (CL + LC) � L] + 8

∂ψ̃

∂trC2
Is

+ 12
∂ψ̃

∂trC3
(C ⊗ I + I ⊗ C)s + 4

∂ψ̃

∂tr (C2L)
(L ⊗ I + I⊗ L)s . (6.134)

6.6 Generalized Rivlin’s Identities

The Cayley-Hamilton equation (4.91)

An − I(1)A An−1 + I(2)A An−2 + . . . + (−1)n I(n)
A I = 0 (6.135)

represents a universal relation connecting powers of a second-order tensor
A with its principal invariants. Similar universal relations connecting several
second-order tensors might also be useful for example for the representation of
isotropic tensor functions or for the solution of tensor equations. Such relations
are generally called Rivlin’s identities.

In order to formulate the Rivlin identities we first differentiate the Cayley-
Hamilton equation (6.135) with respect to A. With the aid of (6.58), (6.117)
and (6.127) we can write
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O =

[
n∑

k=0

(−1)k I(k)
A An−k

]
,A

=
n∑

k=1

(−1)k An−k �
[

k∑
i=1

(−1)i−1 I(k−i)
A

(
AT

)i−1

]

+
n−1∑
k=0

(−1)k I(k)
A

[
n−k∑
i=1

An−k−i ⊗ Ai−1

]
.

Substituting in the last row the summation index k + i by k and using (5.42)
and (5.43) we further obtain

n∑
k=1

An−k
k∑

i=1

(−1)k−i I(k−i)
A

[
I� (

AT
)i−1 − I ⊗ Ai−1

]
= O. (6.136)

Mapping an arbitrary second-order tensor B by both sides of this equation
yields an identity written in terms of second-order tensors [10]

n∑
k=1

An−k
k∑

i=1

(−1)k−i I(k−i)
A

[
tr
(
Ai−1B

)
I − BAi−1

]
= 0. (6.137)

This relation is referred to as the generalized Rivlin’s identity. Indeed, in the
special case of three-dimensional space (n = 3) it takes the form

ABA + A2B + BA2 − tr (A) (AB + BA) − tr (B)A2

− [tr (AB) − trAtrB]A +
1
2
[
tr2A − trA2

]
B

−
{

tr
(
A2B

)− trAtr (AB) +
1
2
trB

[
tr2A − trA2

]}
I = 0, (6.138)

originally obtained by Rivlin [34] by means of matrix calculations.
Differentiating (6.137) again with respect to A delivers

O =
n−1∑
k=1

n−k∑
j=1

(
An−k−j ⊗ Aj−1

) k∑
i=1

(−1)k−i I(k−i)
A

[
tr
(
Ai−1B

)
I − BAi−1

]

+
n∑

k=2

k−1∑
i=1

(−1)k−i An−k
[
tr
(
Ai−1B

)
I − BAi−1

]
�
⎡⎣k−i∑

j=1

(−1)j−1 I(k−i−j)
A

(
AT

)j−1

⎤⎦
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+
n∑

k=2

k∑
i=2

(−1)k−i I(k−i)
A An−k �

⎡⎣i−1∑
j=1

(
Aj−1BAi−1−j

)T⎤⎦

−
n∑

k=2

k∑
i=2

(−1)k−i I(k−i)
A An−kB

⎡⎣i−1∑
j=1

(
Ai−j−1 ⊗ Aj−1

)⎤⎦ .

Changing the summation indices and summation order we obtain
n−1∑
i=1

n∑
k=i+1

k−i∑
j=1

(−1)k−i−j I(k−i−j)
A An−k

{
I⊗ [

tr
(
Aj−1B

)
Ai−1

− Ai−1BAj−1
]− [

tr
(
Ai−1B

)
I − BAi−1

]� (
AT

)j−1

+ I � (
Ai−1BAj−1

)T − BAj−1 ⊗ Ai−1
}

= O. (6.139)

The second-order counterpart of this relation can be obtained by mapping
another arbitrary second-order tensor C ∈ Linn as [10]

n−1∑
i=1

n∑
k=i+1

k−i∑
j=1

(−1)k−i−j I(k−i−j)
A An−k

{
tr
(
Aj−1B

)
CAi−1

−CAi−1BAj−1 − [
tr
(
Ai−1B

)
I− BAi−1

]
tr
(
Aj−1C

)
+tr

(
Ai−1BAj−1C

)
I − BAj−1CAi−1

}
= 0. (6.140)

In the special case of three-dimensional space (n = 3) equation (6.140) leads
to the well-known identity (see [27], [34], [36])

ABC + ACB + BCA + BAC + CAB + CBA− tr (A) (BC + CB)

−tr (B) (CA + AC) − tr (C) (AB + BA) + [tr (B) tr (C) − tr (BC)]A

+ [tr (C) tr (A) − tr (CA)]B + [tr (A) tr (B) − tr (AB)]C

− [tr (A) tr (B) tr (C) − tr (A) tr (BC) − tr (B) tr (CA)

−tr (C) tr (AB) + tr (ABC) + tr (ACB)] I = 0. (6.141)

Exercises

6.1. Check isotropy of the following tensor functions:
(a) f (A) = aAb, where a, b ∈ En,
(b) f (A) = A11 + A22 + A33,
(c) f (A) = A11 +A12 +A13, where Aij represent the components of A ∈ Lin3
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with respect to an orthonormal basis ei (i = 1, 2, 3), so that A = Aijei ⊗ ej ,
(d) f (A) = detA,
(e) f (A) = λmax, where λmax denotes the maximal (in the sense of the norm√

λλ) eigenvalue of A ∈ Linn.

6.2. Prove the alternative representation (6.18) for the functional basis of an
arbitrary second-order tensor A.

6.3. An orthotropic symmetry group go is described in terms of three struc-
tural tensors defined by Li = li ⊗ li, where li · lj = δij (i, j = 1, 2, 3) are unit
vectors along mutually orthogonal principal material directions. Represent the
general orthotropic strain energy function

ψ
(
QCQT

)
= ψ (C) , ∀Q ∈ go (6.142)

in terms of the orthotropic invariants.

6.4. Using the results of Exercise 6.3, derive the constitutive relation for the
second Piola-Kirchhoff stress tensor S (6.93) and the tangent moduli C (6.131)
for the general hyperelastic orthotropic material.

6.5. Represent the general constitutive relation for an orthotropic elastic ma-
terial as a function S (C).

6.6. A symmetry group gf of a fiber reinforced material with an isotropic
matrix is described in terms of structural tensors defined by Li = li ⊗ li,
where the unit vectors li (i = 1, 2, . . . , k) define the directions of fiber families
and are not necessarily orthogonal to each other. Represent the strain energy
function

ψ
(
QCQT

)
= ψ (C) , ∀Q ∈ gf (6.143)

of a fiber reinforced material with two families of fibers (k = 2).

6.7. Derive the constitutive relation S = 2∂ψ/∂C + pC−1 and the tangent
moduli C = 2∂S/∂C for the Mooney-Rivlin material represented by the strain
energy function (6.11).

6.8. Derive the constitutive relation for the Ogden model (6.12) in terms of
the second Piola-Kirchhoff stress tensor using expression (6.93).

6.9. Show that tr (CLiCLj), where Li (i = 1, 2, 3) are structural tensors de-
fined in Exercise 6.3, represents an orthotropic tensor function (orthotropic
invariant) of C. Express this function in terms of the orthotropic functional
basis obtained in Exercise 6.3.
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6.10. The strain energy function of the orthotropic St.Venant-Kirchhoff ma-
terial is given by

ψ
(
Ẽ
)

=
1
2

3∑
i,j=1

aijtr
(
ẼLi

)
tr
(
ẼLj

)
+

3∑
i,j=1
i�=j

Gijtr
(
ẼLiẼLj

)
, (6.144)

where Ẽ denotes the Green-Lagrange strain tensor (6.97) and Li (i = 1, 2, 3)
are the structural tensors defined in Exercise 6.3. aij = aji (i, j = 1, 2, 3) and
Gij = Gji (i �= j = 1, 2, 3) represent material constants. Derive the consti-
tutive relation for the second Piola-Kirchhoff stress tensor S (6.93) and the
tangent moduli C (6.131).

6.11. Show that the function ψ(Ẽ) (6.144) becomes transversely isotropic if

a22 = a33, a12 = a13, G12 = G13, G23 =
1
2

(a22 − a23) (6.145)

and isotropic of the form (6.99) if

a12 = a13 = a23 = λ, G12 = G13 = G23 = G,

a11 = a22 = a33 = λ + 2G. (6.146)

6.12. Complete the proof of Theorem 6.3.

6.13. Express A−k,A, where k = 1, 2, . . ..

6.14. Prove the product rules of differentiation (6.127) and (6.128).

6.15. Write out Rivlin’s identity (6.137) for n = 2.




