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Applications to Continuum Mechanics

8.1 Polar Decomposition of the Deformation Gradient

The deformation gradient F represents an invertible second-order tensor gen-
erally permitting a unique polar decomposition by

F = RU = vR, (8.1)

where R is an orthogonal tensor while U and v are symmetric tensors. In
continuum mechanics, R is called rotation tensor while U and v are referred to
as the right and left stretch tensor, respectively. The latter ones have already
been introduced in Sect. 7.1 in the context of generalized strain measures.

In order to show that the polar decomposition (8.1) always exists and
is unique we first consider the so-called right and left Cauchy-Green tensors
respectively by

C = FTF, b = FFT. (8.2)

These tensors are symmetric and have principal traces in common. Indeed, in
view of (1.144)

tr
(
Ck
)

= tr
(
FTF . . .FTF

)︸ ︷︷ ︸
k times

= tr
(
FFT . . .FFT

)︸ ︷︷ ︸
k times

= tr
(
bk
)
. (8.3)

For this reason, all scalar-valued isotropic functions of C and b such as prin-
cipal invariants or eigenvalues coincide. Thus, we can write

C =
s∑

i=1

ΛiPi, b =
s∑

i=1

Λipi, (8.4)

where eigenvalues Λi are positive. Indeed, let ai be a unit eigenvector asso-
ciated with the eigenvalue Λi. Then, in view of (1.73), (1.99), (1.110) and by
Theorem 1.8 one can write
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Λi = ai · (Λiai) = ai · (Cai) = ai ·
(
FTFai

)
=
(
aiFT

) · (Fai) = (Fai) · (Fai) > 0.

Thus, square roots of C and b are unique tensors defined by

U =
√

C =
s∑

i=1

√
ΛiPi, v =

√
b =

s∑
i=1

√
Λipi. (8.5)

Further, one can show that

R = FU−1 (8.6)

represents an orthogonal tensor. Indeed,

RRT = FU−1U−1FT = FU−2FT = FC−1FT

= F
(
FTF

)−1
FT = FF−1F−TFT = I.

Thus, we can write taking (8.6) into account

F = RU =
(
RURT

)
R. (8.7)

The tensor

RURT = FRT (8.8)

in (8.7) is symmetric due to symmetry of U (8.5)1. Thus, one can write(
RURT

)2

=
(
RURT

)(
RURT

)T

=
(
FRT

)(
FRT

)T

= FRTRFT = FFT = b. (8.9)

In view of (8.5)2 there exists only one real symmetric tensor whose square is
b. Hence,

RURT = v, (8.10)

which by virtue of (8.7) results in the polar decomposition (8.1).

8.2 Basis-Free Representations for the Stretch and
Rotation Tensor

With the aid of the closed-form representations for analytic tensor functions
discussed in Chap. 7 the stretch and rotation tensors can be expressed directly
in terms of the deformation gradient and Cauchy-Green tensors without any
reference to their eigenprojections. First, we deal with the stretch tensors
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(8.5). Inserting in (7.61) g (Λi) =
√

Λi = λi and keeping in mind (7.31) we
write

U = ϕ0I + ϕ1C + ϕ2C2, v = ϕ0I + ϕ1b + ϕ2b2, (8.11)

where [44]

ϕ0 =
λ1λ2λ3 (λ1 + λ2 + λ3)

(λ1 + λ2) (λ2 + λ3) (λ3 + λ1)
,

ϕ1 =
λ2

1 + λ2
2 + λ2

3 + λ1λ2 + λ2λ3 + λ3λ1

(λ1 + λ2) (λ2 + λ3) (λ3 + λ1)
,

ϕ2 = − 1
(λ1 + λ2) (λ2 + λ3) (λ3 + λ1)

. (8.12)

These representations for ϕi are free of singularities and are therefore generally
valid for the case of simple as well as repeated eigenvalues of C and b.

The rotation tensor results from (8.6) where we can again write

U−1 = ς0I + ς1C + ς2C2. (8.13)

The representations for ςp (p = 0, 1, 2) can be obtained either again by (7.61)
where g (Λi) = Λ−1/2

i = λ−1
i or by applying the Cayley-Hamilton equation

(4.91) leading to

U−1 = III−1
U

(
U2 − IUU + IIUI

)
= III−1

U

[
(IIU − ϕ0IU) I + (1 − ϕ1IU)C − ϕ2IUC2

]
, (8.14)

where

IU = λ1 + λ2 + λ3, IIU = λ1λ2 + λ2λ3 + λ3λ1, IIIU = λ1λ2λ3. (8.15)

Both procedures yield the same representation (8.13) where

ς0 =
λ1λ2 + λ2λ3 + λ3λ1

λ1λ2λ3
− (λ1 + λ2 + λ3)

2

(λ1 + λ2) (λ2 + λ3) (λ3 + λ1)
,

ς1 =
1

λ1λ2λ3
−
(
λ2

1 + λ2
2 + λ2

3 + λ1λ2 + λ2λ3 + λ3λ1

)
(λ1 + λ2 + λ3)

λ1λ2λ3 (λ1 + λ2) (λ2 + λ3) (λ3 + λ1)
,

ς2 =
λ1 + λ2 + λ3

λ1λ2λ3 (λ1 + λ2) (λ2 + λ3) (λ3 + λ1)
. (8.16)

Thus, the rotation tensor (8.6) can be given by

R = F
(
ς0I + ς1C + ς2C2

)
, (8.17)

where the functions ςi (i = 0, 1, 2) are given by (8.16) in terms of the principal
stretches λi =

√
Λi, while Λi (i = 1, 2, 3) denote the eigenvalues of the right

Cauchy-Green tensor C (8.2).
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Example. Stretch and rotation tensor in the case of simple shear.
In this loading case the right and left Cauchy-Green tensors take the form (see
Exercise 4.1)

C = Ci
jei ⊗ ej ,

[
Ci

j

]
=

⎡⎣ 1 γ 0
γ 1 + γ2 0
0 0 1

⎤⎦ , (8.18)

b = bi
jei ⊗ ej ,

[
bi

j

]
=

⎡⎣ 1 + γ2 γ 0
γ 1 0
0 0 1

⎤⎦ (8.19)

with the eigenvalues

Λ1/2 = 1 +
γ2 ±

√
4γ2 + γ4

2
=

(
γ ±

√
4 + γ2

2

)2

, Λ3 = 1. (8.20)

For the principal stretches we thus obtain

λ1/2 =
√

Λ1/2 =

√
4 + γ2 ± γ

2
, λ3 =

√
Λ3 = 1. (8.21)

The stretch tensors result from (8.11) where

ϕ0 =
1 +

√
γ2 + 4

2
√

γ2 + 4 + γ2 + 4
,

ϕ1 =
1 +

√
γ2 + 4

2 +
√

γ2 + 4
,

ϕ2 = − 1
2
√

γ2 + 4 + γ2 + 4
. (8.22)

This yields the following result (cf. Exercise 7.2)

U = Ui
jei ⊗ ej ,

[
Ui

j

]
=

⎡⎢⎢⎢⎢⎢⎢⎣

2√
γ2 + 4

γ√
γ2 + 4

0

γ√
γ2 + 4

γ2 + 2√
γ2 + 4

0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ , (8.23)

v = vi
jei ⊗ ej ,

[
vi

j

]
=

⎡⎢⎢⎢⎢⎢⎢⎣

γ2 + 2√
γ2 + 4

γ√
γ2 + 4

0

γ√
γ2 + 4

2√
γ2 + 4

0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ . (8.24)
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The rotation tensor can be calculated by (8.17) where

ς0 =
√

γ2 + 4 − 1
2
√

γ2 + 4 + γ2 + 4
,

ς1 = −3 +
√

γ2 + 4 + γ2

2 +
√

γ2 + 4
,

ς2 =
1 +

√
γ2 + 4

2
√

γ2 + 4 + γ2 + 4
. (8.25)

By this means we obtain

R = Ri
·jei ⊗ ej ,

[
Ri

·j
]

=

⎡⎢⎢⎢⎢⎢⎢⎣

2√
γ2 + 4

γ√
γ2 + 4

0

− γ√
γ2 + 4

2√
γ2 + 4

0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ . (8.26)

8.3 The Derivative of the Stretch and Rotation Tensor
with Respect to the Deformation Gradient

In continuum mechanics these derivatives are used for the evaluation of the
rate of the stretch and rotation tensor. We begin with a very simple represen-
tation in terms of eigenprojections of the right and left Cauchy-Green tensors
(8.2). Applying the chain rule of differentiation and using (6.125) we first write

U,F = C1/2,C : C,F = C1/2,C :
[
(I ⊗ F)t + FT ⊗ I

]
. (8.27)

Further, taking into account the spectral representation of C (8.4)1 and keep-
ing its symmetry in mind we obtain by virtue of (7.49-7.50)

C1/2,C =
s∑

i,j=1

(λi + λj)
−1 (Pi ⊗ Pj)

s
. (8.28)

Inserting this result into (8.27) delivers by means of (5.33), (5.47), (5.54)2 and
(5.55)

U,F =
s∑

i,j=1

(λi + λj)
−1
[
(Pi ⊗ FPj)

t + PiFT ⊗ Pj

]
. (8.29)

The same procedure applied to the left stretch tensor yields by virtue of
(6.126)



166 8 Applications to Continuum Mechanics

v,F =
s∑

i,j=1

(λi + λj)
−1
[
pi ⊗ FTpj + (piF⊗ pj)

t
]
. (8.30)

Now, applying the product rule of differentiation (6.123) to (8.6) and taking
(6.122) into account we write

R,F =
(
FU−1

)
,F = I ⊗ U−1 + FU−1,U : U,F

= I ⊗ U−1 − F
(
U−1 ⊗ U−1

)s
: U,F . (8.31)

With the aid of (7.2) and (8.29) this finally leads to

R,F = I⊗
(

s∑
i=1

λ−1
i Pi

)

− F
s∑

i,j=1

[(λi + λj)λiλj ]
−1
[
(Pi ⊗ FPj)

t + PiFT ⊗ Pj

]
. (8.32)

Note that the eigenprojections Pi and pi (i = 1, 2, . . . , s) are uniquely defined
by the Sylvester formula (4.54) or its alternative form (7.43) in terms of C and
b, respectively. The functions ρip appearing in (7.43) are, in turn, expressed
in the unique form by (7.81), (7.83) and (7.85) in terms of the eigenvalues
Λi = λ2

i (i = 1, 2, . . . , s).
In order to avoid the direct reference to the eigenprojections one can obtain

the so-called basis-free solutions for U,F, v,F and R,F (see, e.g., [8], [13],
[17], [37], [46], [48]). As a rule, they are given in terms of the stretch and
rotation tensors themselves and require therefore either the explicit polar
decomposition of the deformation gradient or a closed-form representation for
U, v and R like (8.11) and (8.17). In the following we present the basis-free
solutions for U,F, v,F and R,F in terms of the Cauchy-Green tensors C and
b (8.2) and the principal stretches λi =

√
Λi (i = 1, 2, . . . , s). To this end, we

apply the representation (7.38) for the derivative of the square root. Thus, we
obtain instead of (8.28)

C1/2,C =
2∑

p,q=0

ηpq (Cp ⊗ Cq)s , b1/2,b =
2∑

p,q=0

ηpq (bp ⊗ bq)s , (8.33)

where the functions ηpq result from (7.62) by setting again g (Λi) =
√

Λi = λi.
This leads to the following expressions (cf. [17])

η00 = Δ−1
[
I5UIII2U − I4UII2UIIIU + I3UII4U

−I2UIIIU
(
3II3U − 2III2U

)
+ 3IUII2UIII2U − IIUIII3U

]
,

η01 = η10 = Δ−1
[
I6UIIIU − I5UII2U − I4UIIUIIIU

+2I3U
(
II3U + III2U

)− 4I2UII2UIIIU + 2IUIIUIII2U − III3U
]
,
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η02 = η20 = Δ−1
[−I4UIIIU + I3UII2U − I2UIIUIIIU − IUIII2U

]
,

η11 = Δ−1
[
I7U − 4I5UIIU + 3I4UIIIU

+4I3UII2U − 6I2UIIUIIIU + IUIII2U + II2UIIIU
]
,

η12 = η21 = Δ−1
[−I5U + 2I3UIIU − 2I2UIIIU + IIUIIIU

]
,

η22 = Δ−1
[
I3U + IIIU

]
, (8.34)

where

Δ = 2 (IUIIU − IIIU)3 IIIU (8.35)

and the principal invariants IU, IIU and IIIU are given by (8.15).
Finally, substitution of (8.33) into (8.27) yields

U,F =
2∑

p,q=0

ηpq

[
(Cp ⊗ FCq)t + CpFT ⊗ Cq

]
. (8.36)

Similar we can also write

v,F =
2∑

p,q=0

ηpq

[
bp ⊗ FTbq + (bpF⊗ bq)t

]
. (8.37)

Inserting further (8.13) and (8.36) into (8.31) we get

R,F = I⊗
2∑

p=0

ςpCp

− F
2∑

p,q,r,t=0

ςrςtηpq

[(
Cp+r ⊗ FCq+t

)t + Cp+rFT ⊗ Cq+t
]
, (8.38)

where ςp and ηpq (p, q = 0, 1, 2) are given by (8.16) and (8.34), respectively.
The third and fourth powers of C in (8.38) can be expressed by means of the
Cayley-Hamilton equation (4.91):

C3 − ICC2 + IICC− IIICI = 0. (8.39)

Composing both sides with C we can also write

C4 − ICC3 + IICC2 − IIICC = 0. (8.40)

Thus,

C3 = ICC2 − IICC + IIICI,
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C4 =
(
I2C − IIC

)
C2 + (IIIC − ICIIC)C + ICIIICI. (8.41)

Considering these expressions in (8.38) and taking into account that (see, e.g.,
[43])

IC = I2U − 2IIU, IIC = II2U − 2IUIIIU, IIIC = III2U (8.42)

we finally obtain

R,F = I ⊗
2∑

p=0

ςpCp + F
2∑

p,q=0

μpq

[
(Cp ⊗ FCq)t + CpFT ⊗ Cq

]
, (8.43)

where

μ00 = Υ−1
[
I6UIII3U + 2I5UII2UIII2U − 3I4UII4UIIIU − 7I4UIIUIII3U

+I3UII6U + 8I3UII3UIII2U + 6I3UIII4U − 3I2UII5UIIIU

−6I2UII2UIII3U + 3IUII4UIII2U − II3UIII3U + III5U
]
,

μ01 = μ10 = Υ−1
[
I7UIII2U + I6UII2UIIIU − I5UII4U − 6I5UIIUIII2U + I4UII3UIIIU

+5I4UIII3U + 2I3UII5U + 4I3UII2UIII2U − 6I2UII4UIIIU

−6I2UIIUIII3U + 6IUII3UIII2U + IUIII4U − 2II2UIII3U
]
,

μ02 = μ20 = −Υ−1
[
I5UIII2U + I4UII2UIIIU − I3UII4U − 4I3UIIUIII2U

+3I2UII3UIIIU + 4I2UIII3U − 3IUII2UIII2U + IIUIII3U
]
,

μ11 = Υ−1
[
I8UIIIU + I7UII2U − 7I6UIIUIIIU − 4I5UII3U

+5I5UIII2U + 16I4UII2UIIIU + 4I3UII4U − 16I3UIIUIII2U

−12I2UII3UIIIU + 3I2UIII3U + 12IUII2UIII2U − 3IIUIII3U
]
,

μ12 = μ21 = −Υ−1
[
I6UIIIU + I5UII2U − 5I4UIIUIIIU − 2I3UII3U

+4I3UIII2U + 6I2UII2UIIIU − 6IUIIUIII2U + III3U
]
,

μ22 = Υ−1IU
[
I3UIIIU + I2UII2U − 3IUIIUIIIU + 3III2U

]
(8.44)

and

Υ = −2 (IUIIU − IIIU)3 III3U, (8.45)

while the principal invariants IU, IIU and IIIU are given by (8.15).
The same result for R,F also follows from

R,F =
(
FU−1

)
,F = I ⊗ U−1 + FU−1,C : C,F (8.46)
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by applying for U−1,C (7.38) and (7.62) where we set g (Λi) = (Λi)
−1/2 = λ−1

i .
Indeed, this yields

C−1/2,C = U−1,C =
2∑

p,q=0

μpq (Cp ⊗ Cq)s , (8.47)

where μpq (p, q = 0, 1, 2) are given by (8.44).

8.4 Time Rate of Generalized Strains

Applying the chain rule of differentiation we first write

Ė = E,C : Ċ, (8.48)

where the superposed dot denotes the material time derivative. The derivative
E,C can be expressed in a simple form in terms of the eigenprojections of E
and C. To this end, we apply (7.49-7.50) taking (7.18) and (8.5) into account
which yields

E,C =
s∑

i,j=1

fij (Pi ⊗ Pj)
s
, (8.49)

where

fij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f ′ (λi)
2λi

if i = j,

f (λi) − f (λj)
λ2

i − λ2
j

if i �= j.

(8.50)

A basis-free representation for E,C can be obtained either from (8.49) by
expressing the eigenprojections by (7.43) with (7.81), (7.83) and (7.85) or
directly by using the closed-form solution (7.38) with (7.62), (7.78) and (7.80).
Both procedures lead to the same result as follows (cf. [21], [47]).

E,C =
2∑

p,q=0

ηpq (Cp ⊗ Cq)s . (8.51)

Distinct eigenvalues: λ1 �= λ2 �= λ3 �= λ1,

η00 =
3∑

i=1

λ4
jλ

4
kf ′ (λi)

2λiΔ2
i

−
3∑

i,j=1
i�=j

λ2
i λ

2
jλ

4
k [f (λi) − f (λj)](
λ2

i − λ2
j

)3 Δk

,
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η01 = η10 = −
3∑

i=1

(
λ2

j + λ2
k

)
λ2

jλ
2
kf ′ (λi)

2λiΔ2
i

+
3∑

i,j=1
i�=j

(
λ2

j + λ2
k

)
λ2

i λ
2
k [f (λi) − f (λj)](

λ2
i − λ2

j

)3 Δk

,

η02 = η20 =
3∑

i=1

λ2
jλ

2
kf ′ (λi)

2λiΔ2
i

−
3∑

i,j=1
i�=j

λ2
i λ

2
k [f (λi) − f (λj)](
λ2

i − λ2
j

)3 Δk

,

η11 =
3∑

i=1

(
λ2

j + λ2
k

)2
f ′ (λi)

2λiΔ2
i

−
3∑

i,j=1
i�=j

(
λ2

j + λ2
k

) (
λ2

i + λ2
k

)
[f (λi) − f (λj)](

λ2
i − λ2

j

)3 Δk

,

η12 = η21 = −
3∑

i=1

(
λ2

j + λ2
k

)
f ′ (λi)

2λiΔ2
i

+
3∑

i,j=1
i�=j

(
λ2

i + λ2
k

)
[f (λi) − f (λj)](

λ2
i − λ2

j

)3 Δk

,

η22 =
3∑

i=1

f ′ (λi)
2λiΔ2

i

−
3∑

i,j=1
i�=j

f (λi) − f (λj)(
λ2

i − λ2
j

)3 Δk

, i �= j �= k �= i, (8.52)

with

Δi =
(
λ2

i − λ2
j

) (
λ2

i − λ2
k

)
, i �= j �= k �= i = 1, 2, 3. (8.53)

Double coalescence of eigenvalues: λi �= λj = λk = λ,

η00 = −2λ2
i λ

2 f (λi) − f (λ)

(λ2
i − λ2)3

+
λ5f ′ (λi) + λ5

i f
′ (λ)

2λiλ (λ2
i − λ2)2

,

η01 = η10 =
(
λ2

i + λ2
) f (λi) − f (λ)

(λ2
i − λ2)3

− λ3f ′ (λi) + λ3
i f

′ (λ)

2λiλ (λ2
i − λ2)2

,

η11 = −2
f (λi) − f (λ)

(λ2
i − λ2)3

+
λf ′ (λi) + λif

′ (λ)

2λiλ (λ2
i − λ2)2

,

η02 = η20 = η12 = η21 = η22 = 0. (8.54)

Triple coalescence of eigenvalues: λ1 = λ2 = λ3 = λ,

η00 =
f ′ (λ)
2λ

, η01 = η10 = η11 = η02 = η20 = η12 = η21 = η22 = 0. (8.55)
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8.5 Stress Conjugate to a Generalized Strain

Let E be an arbitrary Lagrangian strain (7.6)1. Assume existence of the so-
called strain energy function ψ (E) differentiable with respect to E. The sym-
metric tensor

T = ψ (E) ,E (8.56)

is referred to as stress conjugate to E. With the aid of the chain rule it can
be represented by

T = ψ (E) ,C : C,E =
1
2
S : C,E , (8.57)

where S = 2ψ (E) ,C denotes the second Piola-Kirchhoff stress tensor. The
latter one is defined in terms of the Cauchy stress σ by (see, e.g., [45])

S = det (F)F−1σF−T. (8.58)

Using (8.56) and (7.7) one can also write

ψ̇ = T : Ė = S :
1
2
Ċ = S : Ė(2). (8.59)

The fourth-order tensor C,E appearing in (8.57) can be expressed in terms of
the right Cauchy-Green tensor C by means of the relation

Is = E,E = E,C : C,E , (8.60)

where the derivative E,C is given by (8.49-8.50). The basis tensors of the latter
representation are

Pij =

{
(Pi ⊗ Pi)

s if i = j,

(Pi ⊗ Pj + Pj ⊗ Pi)
s if i �= j.

(8.61)

In view of (4.44), (5.33) and (5.55) they are pairwise orthogonal (see Exercise
8.2) such that (cf. [47])

Pij : Pkl =

{
Pij if i = k and j = l or i = l and j = k,

O otherwise.
(8.62)

By means of (4.46) and (5.84) we can also write

s∑
i,j=1
j≥i

Pij =

⎡⎣( s∑
i=1

Pi

)
⊗
⎛⎝ s∑

j=1

Pj

⎞⎠⎤⎦s

= (I⊗ I)s = Is. (8.63)

Using these properties we thus obtain



172 8 Applications to Continuum Mechanics

C,E =
s∑

i,j=1

f−1
ij (Pi ⊗ Pj)

s , (8.64)

where fij (i, j = 1, 2, . . . , s) are given by (8.50). Substituting this result into
(8.57) and taking (5.22)1, (5.46) and (5.47) into account yields [18]

T =
1
2

s∑
i,j=1

f−1
ij PiSPj . (8.65)

In order to avoid any reference to eigenprojections we can again express them
by (7.43) with (7.81), (7.83) and (7.85) or alternatively use the closed-form
solution (7.38) with (7.62), (7.78) and (7.80). Both procedures lead to the
following result (cf. [47]).

T =
2∑

p,q=0

ηpqCpSCq. (8.66)

Distinct eigenvalues: λ1 �= λ2 �= λ3 �= λ1,

η00 =
3∑

i=1

λ4
jλ

4
kλi

f ′ (λi)Δ2
i

−
3∑

i,j=1
i�=j

λ2
i λ

2
jλ

4
k

2
(
λ2

i − λ2
j

)
[f (λi) − f (λj)] Δk

,

η01 = η10 = −
3∑

i=1

(
λ2

j + λ2
k

)
λ2

jλ
2
kλi

f ′ (λi)Δ2
i

+
3∑

i,j=1
i�=j

(
λ2

j + λ2
k

)
λ2

i λ
2
k

2
(
λ2

i − λ2
j

)
[f (λi) − f (λj)] Δk

,

η02 = η20 =
3∑

i=1

λ2
jλ

2
kλi

f ′ (λi)Δ2
i

−
3∑

i,j=1
i�=j

λ2
i λ

2
k

2
(
λ2

i − λ2
j

)
[f (λi) − f (λj)] Δk

,

η11 =
3∑

i=1

(
λ2

j + λ2
k

)2
λi

f ′ (λi)Δ2
i

−
3∑

i,j=1
i�=j

(
λ2

j + λ2
k

) (
λ2

i + λ2
k

)
2
(
λ2

i − λ2
j

)
[f (λi) − f (λj)] Δk

,

η12 = η21 = −
3∑

i=1

(
λ2

j + λ2
k

)
λi

f ′ (λi)Δ2
i

+
3∑

i,j=1
i�=j

λ2
i + λ2

k

2
(
λ2

i − λ2
j

)
[f (λi) − f (λj)] Δk

,

η22 =
3∑

i=1

λi

f ′ (λi)Δ2
i

−
3∑

i,j=1
i�=j

1
2
(
λ2

i − λ2
j

)
[f (λi) − f (λj)] Δk

, (8.67)



8.6 Finite Plasticity Based on Generalized Strains 173

where i �= j �= k �= i and Δi are given by (8.53).

Double coalescence of eigenvalues: λi �= λj = λk = λ,

η00 = − λ2
i λ

2

(λ2
i − λ2) [f (λi) − f (λ)]

+
λiλ

(λ2
i − λ2)2

[
λ3

f ′ (λi)
+

λ3
i

f ′ (λ)

]
,

η01 = η10 =
λ2

i + λ2

2 (λ2
i − λ2) [f (λi) − f (λ)]

− λiλ

(λ2
i − λ2)2

[
λ

f ′ (λi)
+

λi

f ′ (λ)

]
,

η11 = − 1
(λ2

i − λ2) [f (λi) − f (λ)]
+

1

(λ2
i − λ2)2

[
λi

f ′ (λi)
+

λ

f ′ (λ)

]
,

η02 = η20 = η12 = η21 = η22 = 0. (8.68)

Triple coalescence of eigenvalues: λ1 = λ2 = λ3 = λ,

η00 =
λ

f ′ (λ)
, η01 = η10 = η11 = η02 = η20 = η12 = η21 = η22 = 0. (8.69)

8.6 Finite Plasticity Based on the Additive
Decomposition of Generalized Strains

Keeping in mind the above results regarding generalized strains we are con-
cerned in this section with a thermodynamically based plasticity theory. The
basic kinematic assumption of this theory is the additive decomposition of
generalized strains (7.6) into an elastic part Ee and a plastic part Ep as

E = Ee + Ep. (8.70)

The derivation of evolution equations for the plastic strain is based on the
second law of thermodynamics and the principle of maximum plastic dissipa-
tion. The second law of thermodynamics can be written in the Clausius-Planck
form as (see, e.g. [45])

D = T : Ė− ψ̇ ≥ 0, (8.71)

where D denotes the dissipation and T is again the stress tensor work conju-
gate to E. Inserting (8.70) into (8.71) we further write

D =
(
T − ∂ψ

∂Ee

)
: Ėe + T : Ėp ≥ 0, (8.72)

where the strain energy is assumed to be a function of the elastic strain as
ψ = ψ̂ (Ee). The first term in the expression of the dissipation (8.72) depends
solely on the elastic strain rate Ėe, while the second one on the plastic strain



174 8 Applications to Continuum Mechanics

rate Ėp. Since the elastic and plastic strain rates are independent of each other
the dissipation inequality (8.72) requires that

T =
∂ψ

∂Ee
. (8.73)

This leads to the so-called reduced dissipation inequality

D = T : Ėp ≥ 0. (8.74)

Among all admissible processes the real one maximizes the dissipation (8.74).
This statement is based on the postulate of maximum plastic dissipation (see,
e.g., [28]). According to the converse Kuhn-Tucker theorem (see, e.g., [6]) the
sufficient conditions of this maximum are written as

Ėp = ζ̇
∂Φ

∂T
, ζ̇ ≥ 0, ζ̇Φ = 0, Φ ≤ 0, (8.75)

where Φ represents a convex yield function and ζ̇ denotes a consistency pa-
rameter. In the following, we will deal with an ideal-plastic isotropic material
described by a von Mises-type yield criterion. Written in terms of the stress
tensor T the von Mises yield function takes the form [31]

Φ = ‖devT‖ −
√

2
3
σY , (8.76)

where σY denotes the normal yield stress. With the aid of (6.51) and (6.130)
the evolution equation (8.75)1 can thus be given by

Ėp = ζ̇ ‖devT‖ ,T

= ζ̇ ‖devT‖ ,devT : devT,T = ζ̇
devT

‖devT‖ : Pdev = ζ̇
devT

‖devT‖ . (8.77)

Taking the quadratic norm on both the right and left hand side of this identity
delivers the consistency parameter as ζ̇ = ||Ėp||. In view of the yield condition
Φ = 0 we thus obtain

devT =

√
2
3
σY

Ėp∥∥∥Ėp

∥∥∥ , (8.78)

which immediately requires that (see Exercise 1.46)

trĖp = 0. (8.79)

In the following, we assume small elastic but large plastic strains and spec-
ify the above plasticity model for finite simple shear. In this case all three
principal stretches (8.21) are distinct so that we can write by virtue of (7.6)
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Ėp = Ė =
3∑

i=1

f ′ (λi) λ̇iPi +
3∑

i=1

f (λi) Ṗi. (8.80)

By means of the identities trPi = 1 and trṖi = 0 following from (4.61) and
(4.62) where ri = 1 (i = 1, 2, 3) the condition (8.79) requires that

3∑
i=1

f ′ (λi) λ̇i = 0. (8.81)

In view of (8.21) it leads to the equation

f ′ (λ) − f ′ (λ−1
)
λ−2 = 0, ∀λ > 0, (8.82)

where we set λ1 = λ and consequently λ2 = λ−1. Solutions of this equations
can be given by [21]

fa (λ) =

⎧⎪⎨⎪⎩
1
2a

(λa − λ−a) for a �= 0,

lnλ for a = 0.

(8.83)

By means of (7.6)1 or (7.18)1 the functions fa (8.83) yield a set of new gen-
eralized strain measures

E〈a〉 =

⎧⎪⎨⎪⎩
1
2a

(Ua − U−a) =
1
2a

(
Ca/2 − C−a/2

)
for a �= 0,

lnU =
1
2

lnC for a = 0,

(8.84)

among which only the logarithmic one (a = 0) belongs to Seth’s family (7.7).
Henceforth, we will deal only with the generalized strains (8.84) as able to
provide the traceless deformation rate (8.79). For these strains eq. (8.78) takes
the form

devT〈a〉 =

√
2
3
σY

Ė〈a〉∥∥∥Ė〈a〉
∥∥∥ , (8.85)

where T〈a〉 denotes the stress tensor work conjugate to E〈a〉. T〈a〉 itself has
no physical meaning and should be transformed to the Cauchy stresses. With
the aid of (8.57), (8.58) and (8.60) we can write

σ =
1

detF
FSFT =

1
detF

F
(
T〈a〉 : Pa

)
FT, (8.86)

where

Pa = 2E〈a〉,C (8.87)
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can be expressed either by (8.49-8.50) or by (8.51-8.55). It is seen that this
fourth-order tensor is super-symmetric (see Exercise 5.11), so that T〈a〉 : Pa =
Pa : T〈a〉. Thus, by virtue of (1.152) and (1.153) representation (8.86) can be
rewritten as

σ =
1

detF
F
(
Pa : T〈a〉

)
FT

=
1

detF
F
[
Pa : devT〈a〉 +

1
3
trT〈a〉 (Pa : I)

]
FT. (8.88)

With the aid of the relation

Pa : I = 2
d
dt

E〈a〉 (C + tI)
∣∣∣∣
t=0

= 2
d
dt

3∑
i=1

fa

(√
λ2

i + t

)
Pi

∣∣∣∣∣
t=0

=
3∑

i=1

f ′
a (λi)λ−1

i Pi (8.89)

following from (6.111) and taking (8.83) into account one obtains

F (Pa : I)FT =
1
2
F
(
Ca/2−1 + C−a/2−1

)
FT =

1
2

(
ba/2 + b−a/2

)
.

Inserting this result into (8.88) yields

σ =
1

detF
F
(
Pa : devT〈a〉

)
FT + σ̂ (8.90)

with the abbreviation

σ̂ =
trT〈a〉

6 detF

(
ba/2 + b−a/2

)
. (8.91)

Using the spectral decomposition of b by (8.4) and taking into account that
in the case of simple shear detF = 1 we can further write

σ̂ =
1
6
trT〈a〉 [(λa + λ−a

)
(p1 + p2) + 2p3

]
, (8.92)

where λ is given by (8.21). Thus, in the 1-2 shear plane the stress tensor σ̂
has the double eigenvalue 1

6 trT〈a〉 (λa + λ−a) and causes equibiaxial tension
or compression. Hence, in this plane the component σ̂ (8.91) is shear free and
does not influence the shear stress response. Inserting (8.85) into (8.90) and
taking (8.18) and (8.48) into account we finally obtain

σ =

√
2
3
σY F

[
Pa : Pa : A
‖Pa : A‖

]
FT + σ̂, (8.93)

where
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Fig. 8.1. Simple shear of an ideal-plastic material: shear stress responses based on
the additive decomposition of generalized strains

A =
1
2γ̇

Ċ =

⎡⎣ 0 1/2 0
1/2 γ 0
0 0 0

⎤⎦ei ⊗ ej . (8.94)

Of particular interest is the shear stress σ12 as a function of the amount
of shear γ. Inserting (8.51-8.52) and (8.87) into (8.93) we obtain after some
algebraic manipulations

σ12

τY
=

2
√

(4 + γ2)Γ 2f ′
a
2 (Γ ) + 4f2

a (Γ )

4 + γ2
, (8.95)

where

Γ =
γ

2
+

√
4 + γ2

2
(8.96)

and τY = σY /
√

3 denotes the shear yield stress. Equation (8.95) is illustrated
graphically in Fig. 8.1 for several values of the parameter a. Since the presented
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plasticity model considers neither softening nor hardening and is restricted to
small elastic strains a constant shear stress response even at large plastic
deformations is expected. It is also predicted by a plasticity model based on
the multiplicative decomposition of the deformation gradient (see, e.g., [21]
for more details). The plasticity model based on the additive decomposition
of generalized strains exhibits, however, a non-constant shear stress for all
examined values of a. This restricts the applicability of this model to moderate
plastic shears. Indeed, in the vicinity of the point γ = 0 the power series
expansion of (8.95) takes the form

σ12

τY
= 1 +

1
4
a2γ2 +

(
1
16

a4 − 3
4
a2 − 1

)
γ4 + O

(
γ6
)
. (8.97)

Thus, in the case of simple shear the amount of shear is limited for the log-
arithmic strain (a = 0) by γ4 � 1 and for other generalized strain measures
by γ2 � 1.

Exercises

8.1. The deformation gradient is given by F = Fi
·jei ⊗ ej , where

[
Fi
·j
]

=

⎡⎣ 1 2 0
−2 2 0

0 0 1

⎤⎦ .

Evaluate the stretch tensors U and v and the rotation tensor R using (8.11-
8.12) and (8.16-8.17).

8.2. Prove the orthogonality (8.62) of the basis tensors (8.61) using (4.44),
(5.33) and (5.55).




