EXERCISES 1.1

Decimal Representations

- 1. Express 1/9 as a repeating decimal, using a bar to indicate the repeating digits. What are the decimal representations of 2/9? 3/9? 8/9? 9/9?
- 2. Express 1/11 as a repeating decimal, using a bar to indicate the repeating digits. What are the decimal representations of 2/11? 3/11? 9/11? 11/11?

Inequalities

3. If 2 < x < 6, which of the following statements about x are necessarily true, and which are not necessarily true?

a.
$$0 < x < 4$$

b.
$$0 < x - 2 < 4$$

c.
$$1 < \frac{x}{2} < 3$$

d.
$$\frac{1}{6} < \frac{1}{x} < \frac{1}{2}$$

e.
$$1 < \frac{6}{x} < 3$$

f.
$$|x-4| < 2$$

$$-6 < -x < 2$$

g.
$$-6 < -x < 2$$
 h. $-6 < -x < -2$

4. If -1 < y - 5 < 1, which of the following statements about y are necessarily true, and which are not necessarily true?

a.
$$4 < y < 6$$

b.
$$-6 < y < -4$$

c.
$$y > 4$$

d.
$$y < 6$$

e.
$$0 < y - 4 < 2$$
 f. $2 < \frac{y}{2} < 3$

f.
$$2 < \frac{y}{2} < 1$$

$$\mathbf{g} \cdot \frac{1}{6} < \frac{1}{v} < \frac{1}{4}$$

g.
$$\frac{1}{6} < \frac{1}{v} < \frac{1}{4}$$
 h. $|y - 5| < 1$

In Exercises 5–12, solve the inequalities and show the solution sets on the real line.

5.
$$-2x > 4$$

6.
$$8 - 3x \ge 5$$

7.
$$5x - 3 \le 7 - 3x$$

7.
$$5x - 3 \le 7 - 3x$$
 8. $3(2 - x) > 2(3 + x)$

9.
$$2x - \frac{1}{2} \ge 7x + \frac{7}{6}$$

9.
$$2x - \frac{1}{2} \ge 7x + \frac{7}{6}$$
 10. $\frac{6-x}{4} < \frac{3x-4}{2}$

11.
$$\frac{4}{5}(x-2) < \frac{1}{3}(x-6)$$
 12. $-\frac{x+5}{2} \le \frac{12+3x}{4}$

12.
$$-\frac{x+5}{2} \le \frac{12+3x}{4}$$

Absolute Value

Solve the equations in Exercises 13–18.

13.
$$|y| = 3$$

14.
$$|y - 3|$$

14.
$$|y - 3| = 7$$
 15. $|2t + 5| = 4$

16.
$$|1 - t| = 1$$

17.
$$|8 - 3s| = \frac{9}{2}$$

16.
$$|1 - t| = 1$$
 17. $|8 - 3s| = \frac{9}{2}$ **18.** $\left| \frac{s}{2} - 1 \right| = 1$

Solve the inequalities in Exercises 19–34, expressing the solution sets as intervals or unions of intervals. Also, show each solution set on the real line.

19.
$$|x| < 2$$

20.
$$|x| \leq 2$$

21.
$$|t-1| \le 3$$

22.
$$|t+2|<1$$

22.
$$|t+2| < 1$$
 23. $|3y-7| < 4$ **24.** $|2y+5| < 1$

24.
$$|2v + 5| < 1$$

25.
$$\left| \frac{z}{5} - 1 \right| \le$$

26.
$$\left| \frac{3}{2}z - 1 \right| \le 2$$

25.
$$\left| \frac{z}{5} - 1 \right| \le 1$$
 26. $\left| \frac{3}{2}z - 1 \right| \le 2$ **27.** $\left| 3 - \frac{1}{x} \right| < \frac{1}{2}$

28.
$$\left| \frac{2}{x} - 4 \right| < 3$$
 29. $|2s| \ge 4$ **30.** $|s+3| \ge \frac{1}{2}$

29.
$$|2s| \ge 4$$

30.
$$|s+3| \ge \frac{1}{2}$$

31.
$$|1 - x| > 1$$

32.
$$|2 - 3x| > 5$$

31.
$$|1-x| > 1$$
 32. $|2-3x| > 5$ **33.** $\left|\frac{r+1}{2}\right| \ge 1$

34.
$$\left| \frac{3r}{5} - 1 \right| > \frac{2}{5}$$

Quadratic Inequalities

Solve the inequalities in Exercises 35–42. Express the solution sets as intervals or unions of intervals and show them on the real line. Use the result $\sqrt{a^2} = |a|$ as appropriate.

35.
$$x^2 < 2$$

36.
$$4 \le x^2$$

37.
$$4 < x^2 < 9$$

38.
$$\frac{1}{9} < x^2 < \frac{1}{4}$$
 39. $(x-1)^2 < 4$ **40.** $(x+3)^2 < 2$

39.
$$(x-1)^2 < 4$$

40.
$$(x+3)^2 < 2$$

41.
$$x^2 - x < 0$$

41.
$$x^2 - x < 0$$
 42. $x^2 - x - 2 \ge 0$

Theory and Examples

- **43.** Do not fall into the trap |-a| = a. For what real numbers a is this equation true? For what real numbers is it false?
- **44.** Solve the equation |x 1| = 1 x.
- 45. A proof of the triangle inequality Give the reason justifying each of the numbered steps in the following proof of the triangle inequality.

$$|a + b|^2 = (a + b)^2$$
 (1)
= $a^2 + 2ab + b^2$

$$\leq a^2 + 2|a||b| + b^2 \tag{2}$$

$$= |a|^2 + 2|a||b| + |b|^2$$

$$= (|a| + |b|)^2$$
(3)

$$|a+b| \le |a| + |b| \tag{4}$$

- **46.** Prove that |ab| = |a||b| for any numbers a and b.
- **47.** If $|x| \le 3$ and x > -1/2, what can you say about x?
- **48.** Graph the inequality $|x| + |y| \le 1$.
- **49.** Let f(x) = 2x + 1 and let $\delta > 0$ be any positive number. Prove that $|x-1| < \delta$ implies $|f(x)-f(1)| < 2\delta$. Here the notation f(a) means the value of the expression 2x + 1 when x = a. This function notation is explained in Section 1.3.
- **50.** Let f(x) = 2x + 3 and let $\epsilon > 0$ be any positive number. Prove that $|f(x)-f(0)|<\epsilon$ whenever $|x-0|<\frac{\epsilon}{2}.$ Here the notation f(a) means the value of the expression 2x + 3 when x = a. (See Section 1.3.)
- **51.** For any number a, prove that |-a| = |a|.
- **52.** Let a be any positive number. Prove that |x| > a if and only if x > a or x < -a.
- **53.** a. If b is any nonzero real number, prove that |1/b| = 1/|b|.
 - **b.** Prove that $\left| \frac{a}{b} \right| = \frac{|a|}{|b|}$ for any numbers a and $b \neq 0$.
- **54.** Using mathematical induction (see Appendix 1), prove that $|a^n| = |a|^n$ for any number a and positive integer n.