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Graphing with Calculators and Computers

A graphing calculator or a computer with graphing software enables us to graph very com-
plicated functions with high precision. Many of these functions could not otherwise be eas-
ily graphed. However, care must be taken when using such devices for graphing purposes
and we address those issues in this section. In Chapter 4 we will see how calculus helps us
to be certain we are viewing accurately all the important features of a function’s graph.

Graphing Windows

When using a graphing calculator or computer as a graphing tool, a portion of the graph is
displayed in a rectangular display or viewing window. Often the default window gives an
incomplete or misleading picture of the graph. We use the term square window when the
units or scales on both axis are the same. This term does not mean that the display window
itself is square in shape (usually it is rectangular), but means instead that the x-unit is the
same as the y-unit.

When a graph is displayed in the default window, the x-unit may differ from the y-unit
of scaling in order to fit the graph in the display. The viewing window in the display is set
by specifying the minimum and maximum values of the independent and dependent vari-
ables. That is, an interval is specified as well as a range The ma-
chine selects a certain number of equally spaced values of x between a and b. Starting with
a first value for x, if it lies within the domain of the function ƒ being graphed, and if ƒ(x)
lies inside the range [c, d], then the point (x, ƒ(x)) is plotted. If x lies outside the domain of
ƒ, or ƒ(x) lies outside the specified range [c, d], the machine just moves on to the next 
x-value since it cannot plot (x, ƒ(x)) in that case. The machine plots a large number of
points (x, ƒ(x)) in this way and approximates the curve representing the graph by drawing
a short line segment between each plotted point and its next neighboring point, as we
might do by hand. Usually, adjacent points are so close together that the graphical repre-
sentation has the appearance of a smooth curve. Things can go wrong with this procedure
and we illustrate the most common problems through the following examples.

EXAMPLE 1 Choosing a Viewing Window

Graph the function in each of the following display or viewing
windows:

(a) by (b) by (c) by 

Solution

(a) We select and to specify the interval of x-values
and the range of y-values for the window. The resulting graph is shown in Figure
1.78a. It appears that the window is cutting off the bottom part of the graph and that
the interval of x-values is too large. Let’s try the next window.

(b) Now we see more features of the graph (Figure 1.78b), but the top is missing and we
need to view more to the right of as well. The next window should help.

(c) Figure 1.78c shows the graph in this new viewing window. Observe that we get a
more complete picture of the graph in this window and it is a reasonable graph of a
third-degree polynomial. Choosing a good viewing window is a trial-and-error
process which may require some troubleshooting as well.

x = 4

d = 10a = -10, b = 10, c = -10,

[-60, 60][-4, 10][-50, 10][-4, 4][-10, 10][-10, 10]

ƒsxd = x3
- 7x2

+ 28

c … y … d .a … x … b

1.7

4100 AWL/Thomas_ch01p001-072  8/19/04  10:50 AM  Page 59

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html
bounce01.html?3_3_l
bounce01.html?4_0_a


EXAMPLE 2 Square Windows

When a graph is displayed, the x-unit may differ from the y-unit, as in the graphs shown in
Figures 1.78b and 1.78c. The result is distortion in the picture, which may be misleading.
The display window can be made square by compressing or stretching the units on one
axis to match the scale on the other, giving the true graph. Many systems have built-in
functions to make the window “square.” If yours does not, you will have to do some calcu-
lations and set the window size manually to get a square window, or bring to your viewing
some foreknowledge of the true picture.

Figure 1.79a shows the graphs of the perpendicular lines and y �

together with the semicircle in a nonsquare by
display window. Notice the distortion. The lines do not appear to be perpendicular,

and the semicircle appears to be elliptical in shape.
Figure 1.79b shows the graphs of the same functions in a square window in which the

x-units are scaled to be the same as the y-units. Notice that the by viewing
window has the same x-axis in both figures, but the scaling on the x-axis has been com-
pressed in Figure 1.79b to make the window square. Figure 1.79c gives an enlarged view
with a square by [0, 4] window.[-3, 3]

[-4, 4][-6, 6]

[-6, 8]
[-6, 6]y = 29 - x2 ,-x + 322,

y = x
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FIGURE 1.78 The graph of in different viewing windows (Example 1).ƒsxd = x3
- 7x2

+ 28
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FIGURE 1.79 Graphs of the perpendicular lines and and the semicircle
in (a) a nonsquare window, and (b) and (c) square windows (Example 2).y = 29 - x2 ,

y = -x + 322,y = x

If the denominator of a rational function is zero at some x-value within the viewing
window, a calculator or graphing computer software may produce a steep near-vertical line
segment from the top to the bottom of the window. Here is an example.
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EXAMPLE 3 Graph of a Rational Function

Graph the function 

Solution Figure 1.80a shows the graph in the by default square
window with our computer graphing software. Notice the near-vertical line segment at

It is not truly a part of the graph and does not belong to the domain of the
function. By trial and error we can eliminate the line by changing the viewing window to
the smaller by view, revealing a better graph (Figure 1.80b).[-4, 4][-6, 6]

x = 2x = 2.

[-10, 10][-10, 10]

y =
1

2 - x
.

1.7 Graphing with Calculators and Computers 61

(a)

10

–10

10–10

(b)

4

–4

6–6

FIGURE 1.80 Graphs of the function (Example 3).y =

1
2 - x
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FIGURE 1.81 Graphs of the function in three viewing windows. Because the period is
the smaller window in (c) best displays the true aspects of this rapidly oscillating function (Example 4).

2p>100 L 0.063 ,y = sin 100x

Sometimes the graph of a trigonometric function oscillates very rapidly. When a calcula-
tor or computer software plots the points of the graph and connects them, many of the maxi-
mum and minimum points are actually missed. The resulting graph is then very misleading.

EXAMPLE 4 Graph of a Rapidly Oscillating Function

Graph the function 

Solution Figure 1.81a shows the graph of ƒ in the viewing window by
We see that the graph looks very strange because the sine curve should oscillate

periodically between and 1. This behavior is not exhibited in Figure 1.81a. We might
experiment with a smaller viewing window, say by but the graph is not
better (Figure 1.81b). The difficulty is that the period of the trigonometric function

is very small If we choose the much smaller viewing
window by we get the graph shown in Figure 1.81c. This graph reveals
the expected oscillations of a sine curve.

[-1, 1][-0.1, 0.1]
s2p>100 L 0.063d .y = sin 100x

[-1, 1] ,[-6, 6]
-1

[-1, 1] .
[-12, 12]

ƒsxd = sin 100x .
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EXAMPLE 5 Another Rapidly Oscillating Function

Graph the function 

Solution In the viewing window by the graph appears much like the co-
sine function with some small sharp wiggles on it (Figure 1.82a). We get a better look
when we significantly reduce the window to by [0.8, 1.02], obtaining the graph
in Figure 1.82b. We now see the small but rapid oscillations of the second term,

added to the comparatively larger values of the cosine curve.1>50 sin 50x ,

[-0.6, 0.6]

[-1, 1][-6, 6]

y = cos x +
1
50

 sin 50x .
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FIGURE 1.82 In (b) we see a close-up view of the function

graphed in (a). The term cos x clearly dominates the

second term, which produces the rapid oscillations along the

cosine curve (Example 5).

1
50

 sin 50x ,

y = cos x +

1
50

 sin 50x

EXAMPLE 6 Graphing an Odd Fractional Power

Graph the function 

Solution Many graphing devices display the graph shown in Figure 1.83a. When we
compare it with the graph of in Figure 1.38, we see that the left branch for

is missing. The reason the graphs differ is that many calculators and computer soft-x 6 0
y = x1>3

= 23 x

y = x1>3 .

(b)

2

–2

3–3

FIGURE 1.83 The graph of is missing the left branch in (a). In

(b) we graph the function obtaining both branches. (See

Example 6.)

ƒsxd =

x
ƒ x ƒ

#
ƒ x ƒ

1>3
y = x1>3
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ware programs calculate as (The exponential and logarithmic functions are
studied in Chapter 7.) Since the logarithmic function is not defined for negative values of
x, the computing device can only produce the right branch where 

To obtain the full picture showing both branches, we can graph the function

This function equals except at (where ƒ is undefined, although ). The
graph of ƒ is shown in Figure 1.83b.

Empirical Modeling: Capturing the Trend of Collected Data

In Example 3 of Section 1.4, we verified the reasonableness of Kepler’s hypothesis that the
period of a planet’s orbit is proportional to its mean distance from the sun raised to the 
power. If we cannot hypothesize a relationship between a dependent variable and an inde-
pendent variable, we might collect data points and try to find a curve that “fits” the data
and captures the trend of the scatterplot. The process of finding a curve to fit data is called
regression analysis and the curve is called a regression curve. A computer or graphing
calculator finds the regression curve by finding the particular curve which minimizes the
sum of the squares of the vertical distances between the data points and the curve. This
method of least squares is discussed in the Section 14.7 exercises.

There are many useful types of regression curves, such as straight lines, power, poly-
nomial, exponential, logarithmic, and sinusoidal curves. Many computers or graphing cal-
culators have a regression analysis feature to fit a variety of regression curve types. The
next example illustrates using a graphing calculator’s linear regression feature to fit data
from Table 1.5 with a linear equation.

EXAMPLE 7 Fitting a Regression Line

Starting with the data in Table 1.5, build a model for the price of a postage stamp as a
function of time. After verifying that the model is “reasonable,” use it to predict the price
in 2010.

Solution We are building a model for the price of a stamp since 1968. There were two
increases in 1981, one of three cents followed by another of two cents. To make 1981 com-
parable with the other listed years, we lump them together as a single five-cent increase,
giving the data in Table 1.6. Figure 1.84a gives the scatterplot for Table 1.6.

3>2

01>3
= 0x = 0x1>3

ƒsxd =

x
ƒ x ƒ

#
ƒ x ƒ

1>3 .

x 7 0.

e s1>3dln x .x1>3
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TABLE 1.5 Price of a
U.S. postage stamp

Year x Cost y

1968 0.06

1971 0.08

1974 0.10

1975 0.13

1977 0.15

1981 0.18

1981 0.20

1985 0.22

1987 0.25

1991 0.29

1995 0.32

1998 0.33

2002 0.37

TABLE 1.6 Price of a U.S postage stamp since 1968

x 0 3 6 7 9 13 17 19 23 27 30 34

y 6 8 10 13 15 20 22 25 29 32 33 37

Since the scatterplot is fairly linear, we investigate a linear model. Upon entering the data
into a graphing calculator (or computer software) and selecting the linear regression op-
tion, we find the regression line to be

y = 0.94x + 6.10.
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Figure 1.84b shows the line and scatterplot together. The fit is remarkably good, so the
model seems reasonable.

Evaluating the regression line, we conclude that in the price of a
stamp will be

The prediction is shown as the red point on the regression line in Figure 1.84b.

EXAMPLE 8 Finding a Curve to Predict Population Levels

We may want to predict the future size of a population, such as the number of trout or cat-
fish living in a fish farm. Figure 1.85 shows a scatterplot of the data collected by R. Pearl
for a collection of yeast cells (measured as biomass) growing over time (measured in
hours) in a nutrient.

y = 0.94s42d + 6.10 L 46 cents .

2010 sx = 42d ,
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FIGURE 1.84 (a) Scatterplot of (x, y) data in Table 1.6. (b) Using the
regression line to estimate the price of a stamp in 2010. (Example 7).
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FIGURE 1.85 Biomass of a yeast culture versus
elapsed time (Example 8).
(Data from R. Pearl, “The Growth of Population,” Quart. Rev.
Biol., Vol. 2 (1927), pp. 532–548.)

The plot of points appears to be reasonably smooth with an upward curving trend. We
might attempt to capture this trend by fitting a polynomial (for example, a quadratic

), a power curve or an exponential curve 
Figure 1.86 shows the result of using a calculator to fit a quadratic model.

s y = aebxd .s y = axbd ,y = ax2
+ bx + c
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The quadratic model appears to fit the collected data
reasonably well (Figure 1.86). Using this model, we predict the population after 17 hours
as Let us examine more of Pearl’s data to see if our quadratic model
continues to be a good one.

In Figure 1.87, we display all of Pearl’s data. Now you see that the prediction of
grossly overestimates the observed population of 659.6. Why did the

quadratic model fail to predict a more accurate value?
ys17d = 1622.65

ys17d = 1622.65.

y = 6.10x2
- 9.28x + 16.43
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FIGURE 1.86 Fitting a quadratic to
Pearl’s data gives the equation

and the
prediction (Example 8).y s17d = 1622.65
y = 6.10x2

- 9.28x + 16.43
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FIGURE 1.87 The rest of Pearl’s data (Example 8).

The problem lies in the danger of predicting beyond the range of data used to build
the empirical model. (The range of data creating our model was ) Such ex-
trapolation is especially dangerous when the model selected is not supported by some un-
derlying rationale suggesting the form of the model. In our yeast example, why would we
expect a quadratic function as underlying population growth? Why not an exponential
function? In the face of this, how then do we predict future values? Often, calculus can
help, and in Chapter 9 we use it to model population growth.

0 … x … 7.

Regression Analysis
Regression analysis has four steps:

1. Plot the data (scatterplot).

2. Find a regression equation. For a line, it has the form and for a
quadratic, the form 

3. Superimpose the graph of the regression equation on the scatterplot to see the fit.

4. If the fit is satisfactory, use the regression equation to predict y-values for val-
ues of x not in the table.

y = ax2
+ bx + c .

y = mx + b ,
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