
OVERVIEW In this chapter we give geometric definitions of parabolas, ellipses, and
hyperbolas and derive their standard equations. These curves are called conic sections, or
conics, and model the paths traveled by planets, satellites, and other bodies whose motions
are driven by inverse square forces. In Chapter 13 we will see that once the path of a mov-
ing body is known to be a conic, we immediately have information about the body’s veloc-
ity and the force that drives it. Planetary motion is best described with the help of polar co-
ordinates, so we also investigate curves, derivatives, and integrals in this new coordinate
system.
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Conic Sections and Quadratic Equations

In Chapter 1 we defined a circle as the set of points in a plane whose distance from some
fixed center point is a constant radius value. If the center is (h, k) and the radius is a, the
standard equation for the circle is It is an example of a conic
section, which are the curves formed by cutting a double cone with a plane (Figure 10.1);
hence the name conic section.

We now describe parabolas, ellipses, and hyperbolas as the graphs of quadratic equa-
tions in the coordinate plane.

Parabolas

sx - hd2
+ s y - kd2

= a2 .

10.1

DEFINITIONS Parabola, Focus, Directrix
A set that consists of all the points in a plane equidistant from a given fixed point
and a given fixed line in the plane is a parabola. The fixed point is the focus of
the parabola. The fixed line is the directrix.

If the focus F lies on the directrix L, the parabola is the line through F perpendicular
to L. We consider this to be a degenerate case and assume henceforth that F does not lie
on L.

A parabola has its simplest equation when its focus and directrix straddle one of the
coordinate axes. For example, suppose that the focus lies at the point F(0, p) on the positive
y-axis and that the directrix is the line (Figure 10.2). In the notation of the figure,y = -p
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a point P(x, y) lies on the parabola if and only if From the distance formula,

When we equate these expressions, square, and simplify, we get

(1)

These equations reveal the parabola’s symmetry about the y-axis. We call the y-axis the
axis of the parabola (short for “axis of symmetry”).

The point where a parabola crosses its axis is the vertex. The vertex of the parabola
lies at the origin (Figure 10.2). The positive number p is the parabola’s focal length.x2

= 4py

y =

x2

4p
 or x2

= 4py .

 PQ = 2sx - xd2
+ ( y - s -pdd2

= 2s y + pd2 .

 PF = 2sx - 0d2
+ s y - pd2

= 2x2
+ s y - pd2

PF = PQ .
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Circle: plane perpendicular
to cone axis

Ellipse: plane oblique
to cone axis

Point: plane through
cone vertex only

Single line: plane
tangent to cone

Pair of intersecting lines

Parabola: plane parallel
to side of cone

Hyperbola: plane cuts
both halves of cone

(a)

(b)

FIGURE 10.1 The standard conic sections (a) are the curves in which a plane cuts a double cone. Hyperbolas come in two parts, called
branches. The point and lines obtained by passing the plane through the cone’s vertex (b) are degenerate conic sections.

Directrix: y � –p

The vertex lies
halfway between
directrix and focus.

Q(x, –p)

P(x, y)

F(0, p)
Focus

p

p

x2 � 4py

L

x

y

FIGURE 10.2 The standard form of the
parabola x2

= 4py, p 7 0.

Standard form
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If the parabola opens downward, with its focus at and its directrix the line
then Equations (1) become

(Figure 10.3). We obtain similar equations for parabolas opening to the right or to the left
(Figure 10.4 and Table 10.1).

y = -

x2

4p
 and x2

= -4py

y = p ,
s0, -pd
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x

y

Directrix: y � p

Vertex at origin

Focus (0, –p)x2 � –4py

FIGURE 10.3 The parabola
x2

= -4py, p 7 0.

Vertex

Directrix
x � –p

0

Focus

F(p, 0)

y2 � 4px

x

y

(a)

Directrix
x � p

0

Focus

F(–p, 0)

y2 � –4px

Vertex

x

y

(b)

FIGURE 10.4 (a) The parabola (b) The parabola
y2

= -4px .
y2

= 4px .

TABLE 10.1 Standard-form equations for parabolas with vertices at the origin

Equation Focus Directrix Axis Opens

(0, p) y-axis Up

y-axis Down

( p, 0) x-axis To the right

x-axis To the leftx = ps -p, 0dy2
= -4px

x = -py2
= 4px

y = ps0, -pdx2
= -4py

y = -px2
= 4py

sp 7 0d

EXAMPLE 1 Find the focus and directrix of the parabola 

Solution We find the value of p in the standard equation 

Then we find the focus and directrix for this value of p:

Directrix: x = -p or x = -

5
2

.

Focus: s p, 0d = a5
2

, 0b

4p = 10, so p =

10
4

=

5
2

.

y2
= 4px :

y2
= 10x .
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If the foci are and (Figure 10.7), and is denoted by 2a,
then the coordinates of a point P on the ellipse satisfy the equation

To simplify this equation, we move the second radical to the right-hand side, square, iso-
late the remaining radical, and square again, obtaining

(2)

Since is greater than the length (triangle inequality for triangle ),
the number 2a is greater than 2c. Accordingly, and the number in Equation
(2) is positive.

The algebraic steps leading to Equation (2) can be reversed to show that every point P
whose coordinates satisfy an equation of this form with also satisfies the equa-
tion A point therefore lies on the ellipse if and only if its coordinates
satisfy Equation (2).

If

(3)

then and Equation (2) takes the form

(4)
x2

a2 +

y2

b2 = 1.

a2
- c2

= b2

b = 2a2
- c2 ,

PF1 + PF2 = 2a .
0 6 c 6 a

a2
- c2a 7 c

PF1 F2F1 F2PF1 + PF2

x2

a2 +

y2

a2
- c2 = 1.

2sx + cd2
+ y2

+ 2sx - cd2
+ y2

= 2a .

PF1 + PF2F2sc, 0dF1s -c, 0d

The quickest way to construct an ellipse uses the definition. Put a loop of string
around two tacks and pull the string taut with a pencil point P, and move the pencil
around to trace a closed curve (Figure 10.5). The curve is an ellipse because the sum

being the length of the loop minus the distance between the tacks, remains
constant. The ellipse’s foci lie at and F2 .F1

PF1 + PF2 ,

F2 ,F1

F1 F2

P(x, y)
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FIGURE 10.5 One way to draw an ellipse
uses two tacks and a loop of string to guide
the pencil.

DEFINITIONS Focal Axis, Center, Vertices
The line through the foci of an ellipse is the ellipse’s focal axis. The point on the
axis halfway between the foci is the center. The points where the focal axis and
ellipse cross are the ellipse’s vertices (Figure 10.6).

The horizontal and vertical shift formulas in Section 1.5, can be applied to the
equations in Table 10.1 to give equations for a variety of parabolas in other locations
(see Exercises 39, 40, and 45–48).

Ellipses

Vertex VertexFocus FocusCenter

Focal axis

FIGURE 10.6 Points on the focal axis of
an ellipse.

x

y

Focus Focus

Center0F1(–c, 0)
F2(c, 0)

P(x, y)

a

b

FIGURE 10.7 The ellipse defined by the
equation is the graph of
the equation 
where b2

= a2
- c2.

sx2>a2d + s y2>b2d = 1,
PF1 + PF2 = 2a

DEFINITIONS Ellipse, Foci
An ellipse is the set of points in a plane whose distances from two fixed points
in the plane have a constant sum. The two fixed points are the foci of the
ellipse.
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Equation (4) reveals that this ellipse is symmetric with respect to the origin and both
coordinate axes. It lies inside the rectangle bounded by the lines and It
crosses the axes at the points and The tangents at these points are perpen-
dicular to the axes because

is zero if and infinite if 
The major axis of the ellipse in Equation (4) is the line segment of length 2a joining

the points The minor axis is the line segment of length 2b joining the points
The number a itself is the semimajor axis, the number b the semiminor axis.

The number c, found from Equation (3) as

is the center-to-focus distance of the ellipse.

EXAMPLE 2 Major Axis Horizontal

The ellipse

(5)

(Figure 10.8) has

EXAMPLE 3 Major Axis Vertical

The ellipse

(6)

obtained by interchanging x and y in Equation (5), has its major axis vertical instead of
horizontal (Figure 10.9). With still equal to 16 and equal to 9, we have

There is never any cause for confusion in analyzing Equations (5) and (6). We simply
find the intercepts on the coordinate axes; then we know which way the major axis runs
because it is the longer of the two axes. The center always lies at the origin and the foci and
vertices lie on the major axis.

Center: s0, 0d .

Vertices: s0, ;ad = s0, ;4d

Foci: s0, ;cd = A0, ;27 B
Center-to-focus distance: c = 216 - 9 = 27

Semimajor axis: a = 216 = 4, Semiminor axis: b = 29 = 3

b2a2

x2

9
+

y2

16
= 1,

Center: s0, 0d .

Vertices: s ;a, 0d = s ;4, 0d

Foci: s ;c, 0d = A ;27, 0 B
Center-to-focus distance: c = 216 - 9 = 27

Semimajor axis: a = 216 = 4, Semiminor axis: b = 29 = 3

x2

16
+

y2

9
= 1

c = 2a2
- b2 ,

s0, ;bd .
s ;a, 0d .

y = 0.x = 0

dy
dx

= -

b2x
a2y

s0, ;bd .s ;a, 0d
y = ;b .x = ;a
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Obtained from Equation (4)
by implicit differentiation

x

y

(0, 3)

(0, –3)

Vertex
(4, 0)

Vertex
(–4, 0)

Focus Focus

Center

0(–�7, 0) (�7, 0)

x2

16
y2

9
�      � 1

FIGURE 10.8 An ellipse with its major
axis horizontal (Example 2).

x

y

(0, 4) Vertex

(0, –4)Vertex

Focus

Focus

Center 0

(3, 0)(–3, 0)

(0, –�7)

(0, �7)

x2

9
y2

16
�      � 1

FIGURE 10.9 An ellipse with its major
axis vertical (Example 3).
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Hyperbolas

690 Chapter 10: Conic Sections and Polar Coordinates

If the foci are and (Figure 10.10) and the constant difference is 2a,
then a point (x, y) lies on the hyperbola if and only if

(7)

To simplify this equation, we move the second radical to the right-hand side, square, iso-
late the remaining radical, and square again, obtaining

(8)

So far, this looks just like the equation for an ellipse. But now is negative because
2a, being the difference of two sides of triangle is less than 2c, the third side.

The algebraic steps leading to Equation (8) can be reversed to show that every point
P whose coordinates satisfy an equation of this form with also satisfies Equa-
tion (7). A point therefore lies on the hyperbola if and only if its coordinates satisfy Equa-
tion (8).

If we let b denote the positive square root of 

(9)

then and Equation (8) takes the more compact form

(10)
x2

a2 -

y2

b2 = 1.

a2
- c2

= -b2

b = 2c2
- a2 ,

c2
- a2 ,

0 6 a 6 c

PF1 F2 ,
a2

- c2

x2

a2 +

y2

a2
- c2 = 1.

2sx + cd2
+ y2

- 2sx - cd2
+ y2

= ;2a .

F2sc, 0dF1s -c, 0d

x

y

0F1(–c, 0) F2(c, 0)

x � –a x � a

P(x, y)

FIGURE 10.10 Hyperbolas have two
branches. For points on the right-hand
branch of the hyperbola shown here,

For points on the left-
hand branch, We then
let b = 2c2

- a2.
PF2 - PF1 = 2a .

PF1 - PF2 = 2a .

DEFINITIONS Hyperbola, Foci
A hyperbola is the set of points in a plane whose distances from two fixed points
in the plane have a constant difference. The two fixed points are the foci of the
hyperbola.

Standard-Form Equations for Ellipses Centered at the Origin

In each case, a is the semimajor axis and b is the semiminor axis.

Vertices: s0, ;ad
Foci: s0, ;cd
Center-to-focus distance: c = 2a2

- b2

Foci on the y-axis: x2

b2 +

y2

a2 = 1 sa 7 bd

Vertices: s ;a, 0d
Foci: s ;c, 0d
Center-to-focus distance: c = 2a2

- b2

Foci on the x-axis: x2

a2 +

y2

b2 = 1 sa 7 bd
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The differences between Equation (10) and the equation for an ellipse (Equation 4) are the
minus sign and the new relation

From Equation (9)

Like the ellipse, the hyperbola is symmetric with respect to the origin and coordinate
axes. It crosses the x-axis at the points The tangents at these points are vertical
because

is infinite when The hyperbola has no y-intercepts; in fact, no part of the curve lies
between the lines and x = a .x = -a

y = 0.

dy
dx

=

b2x
a2y

s ;a, 0d .

c2
= a2

+ b2 .

10.1 Conic Sections and Quadratic Equations 691

DEFINITIONS Focal Axis, Center, Vertices
The line through the foci of a hyperbola is the focal axis. The point on the axis
halfway between the foci is the hyperbola’s center. The points where the focal
axis and hyperbola cross are the vertices (Figure 10.11).

Asymptotes of Hyperbolas and Graphing

If we solve Equation (10) for y we obtain

or, taking square roots,

As the factor approaches 1, and the factor is dominant.
Thus the lines

are the two asymptotes of the hyperbola defined by Equation (10). The asymptotes
give the guidance we need to graph hyperbolas quickly. The fastest way to find the
equations of the asymptotes is to replace the 1 in Equation (10) by 0 and solve the new
equation for y:

x2

a2 -

y2

b2 = 1 :  
x2

a2 -

y2

b2 = 0 :  y = ;

b
a x.

('')''* ('')''* (')'*

y = ;

b
a x

;sb>adx21 - a2>x2x : ; q ,

y = ;

b
a x B1 -

a2

x2 .

 =

b2

a2 x2 a1 -

a2

x2 b

 y2
= b2 ax2

a2 - 1b

Focus Focus

Center

Focal axis

Vertices

FIGURE 10.11 Points on the focal axis of
a hyperbola.

Obtained from Equation (10)
by implicit differentiation

hyperbola 0 for 1 asymptotes
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EXAMPLE 4 Foci on the x-axis

The equation

(11)

is Equation (10) with and (Figure 10.12). We have

EXAMPLE 5 Foci on the y-axis

The hyperbola

obtained by interchanging x and y in Equation (11), has its vertices on the y-axis instead of
the x-axis (Figure 10.13). With still equal to 4 and equal to 5, we have

Center: (0, 0)

Reflective Properties

The chief applications of parabolas involve their use as reflectors of light and radio
waves. Rays originating at a parabola’s focus are reflected out of the parabola parallel to
the parabola’s axis (Figure 10.14 and Exercise 90). Moreover, the time any ray takes from
the focus to a line parallel to the parabola’s directrix (thus perpendicular to its axis) is the
same for each of the rays. These properties are used by flashlight, headlight, and spotlight
reflectors and by microwave broadcast antennas.

Asymptotes: 
y2

4
-

x2

5 = 0 or y = ;
225

 x .

Foci: s0, ;cd = s0, ;3d, Vertices: s0, ;ad = s0, ;2d
Center-to-focus distance: c = 2a2

+ b2
= 24 + 5 = 3

b2a2

y2

4
-

x2

5 = 1,

Asymptotes: x2

4
-

y2

5 = 0 or y = ;

25
2

 x .

Center: s0, 0d
Foci: s ;c, 0d = s ;3, 0d, Vertices: s ;a, 0d = s ;2, 0d
Center-to-focus distance: c = 2a2

+ b2
= 24 + 5 = 3

b2
= 5a2

= 4

x2

4
-

y2

5 = 1
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Standard-Form Equations for Hyperbolas Centered at the Origin

Notice the difference in the asymptote equations (b a in the first, a b in the second).>>
 Asymptotes: x2

a2 -

y2

b2 = 0 or y = ;

b
a x

 Vertices: s ;a, 0d
 Foci: s ;c, 0d
 Center-to-focus distance: c = 2a2

+ b2

Foci on the x-axis: x2

a2 -

y2

b2 = 1

x

y

F(3, 0)F(–3, 0)

2–2

y � –       x�5
2

y �        x�5
2

x2

4
y2

5
�      � 1

FIGURE 10.12 The hyperbola and its
asymptotes in Example 4.

x

y

F(0, 3)

F(0, –3)

y � –       x
�5
2 y �        x

�5
2

y2

4
x2

5
�      � 1

2

–2

FIGURE 10.13 The hyperbola and its
asymptotes in Example 5.

 Asymptotes: 
y2

a2 -

x2

b2 = 0 or y = ;

a
b

 x

 Vertices: s0, ;ad
 Foci: s0, ;cd
 Center-to-focus distance: c = 2a2

+ b2

Foci on the y-axis: 
y2

a2 -

x2

b2 = 1
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Filament (point source)
at focus

Outgoing light
parallel to axisParabolic light

reflector

HEADLAMP

Parabolic radio
wave reflector

Incoming radio signals

concentrate at focus

RADIO TELESCOPE

FIGURE 10.14 Parabolic reflectors can generate a beam of light parallel to the parabola’s
axis from a source at the focus; or they can receive rays parallel to the axis and concentrate
them at the focus.

F1 F2

FIGURE 10.15 An elliptical mirror
(shown here in profile) reflects light from
one focus to the other.

Hyperbola

FH � FP

FE � FH

Ellipse

Parabola

Primary mirror

FE

FIGURE 10.16 Schematic drawing of a
reflecting telescope.

If an ellipse is revolved about its major axis to generate a surface (the surface is called
an ellipsoid ) and the interior is silvered to produce a mirror, light from one focus will be
reflected to the other focus (Figure 10.15). Ellipsoids reflect sound the same way, and this
property is used to construct whispering galleries, rooms in which a person standing at
one focus can hear a whisper from the other focus. (Statuary Hall in the U.S. Capitol build-
ing is a whispering gallery.)

Light directed toward one focus of a hyperbolic mirror is reflected toward the other
focus. This property of hyperbolas is combined with the reflective properties of parabolas
and ellipses in designing some modern telescopes. In Figure 10.16 starlight reflects off a
primary parabolic mirror toward the mirror’s focus It is then reflected by a small hy-
perbolic mirror, whose focus is toward the second focus of the hyperbola,

Since this focus is shared by an ellipse, the light is reflected by the elliptical
mirror to the ellipse’s second focus to be seen by an observer.
FE = FH .

FH = FP ,
FP .
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