EXERCISES 10.2

Ellipses

In Exercises 1–8, find the eccentricity of the ellipse. Then find and graph the ellipse's foci and directrices.

1.
$$16x^2 + 25y^2 = 400$$

1.
$$16x^2 + 25y^2 = 400$$
 2. $7x^2 + 16y^2 = 112$

$$3. \ 2x^2 + y^2 = 2$$

4.
$$2x^2 + y^2 = 4$$

5.
$$3x^2 + 2y^2 = 6$$

6.
$$9x^2 + 10y^2 = 90$$

7.
$$6x^2 + 9y^2 = 54$$

5.
$$3x^2 + 2y^2 = 6$$
 6. $9x^2 + 10y^2 = 90$ **7.** $6x^2 + 9y^2 = 54$ **8.** $169x^2 + 25y^2 = 4225$

Exercises 9–12 give the foci or vertices and the eccentricities of ellipses centered at the origin of the xy-plane. In each case, find the ellipse's standard-form equation.

- **9.** Foci: $(0, \pm 3)$ Eccentricity: 0.5
- **10.** Foci: $(\pm 8, 0)$ Eccentricity: 0.2
- **11.** Vertices: $(0, \pm 70)$ Eccentricity: 0.1
- **12.** Vertices: $(\pm 10, 0)$ Eccentricity: 0.24

Exercises 13–16 give foci and corresponding directrices of ellipses centered at the origin of the xy-plane. In each case, use the dimensions in Figure 10.19 to find the eccentricity of the ellipse. Then find the ellipse's standard-form equation.

- **13.** Focus: $(\sqrt{5}, 0)$ **14.** Focus: (4, 0)Directrix: $x = \frac{9}{\sqrt{5}}$ Directrix: $x = \frac{16}{3}$

- **15.** Focus: (-4, 0)
- **16.** Focus: $(-\sqrt{2}, 0)$
- Directrix: x = -16
- 17. Draw an ellipse of eccentricity 4/5. Explain your procedure.
- **18.** Draw the orbit of Pluto (eccentricity 0.25) to scale. Explain your procedure.
- 19. The endpoints of the major and minor axes of an ellipse are (1, 1), (3, 4), (1, 7),and (-1, 4). Sketch the ellipse, give its equation in standard form, and find its foci, eccentricity, and directrices.

- 20. Find an equation for the ellipse of eccentricity 2/3 that has the line x = 9 as a directrix and the point (4, 0) as the corresponding focus.
- **21.** What values of the constants a, b, and c make the ellipse

$$4x^2 + v^2 + ax + bv + c = 0$$

lie tangent to the x-axis at the origin and pass through the point (-1, 2)? What is the eccentricity of the ellipse?

22. The reflective property of ellipses An ellipse is revolved about its major axis to generate an ellipsoid. The inner surface of the ellipsoid is silvered to make a mirror. Show that a ray of light emanating from one focus will be reflected to the other focus. Sound waves also follow such paths, and this property is used in constructing "whispering galleries." (Hint: Place the ellipse in standard position in the xyplane and show that the lines from a point P on the ellipse to the two foci make congruent angles with the tangent to the ellipse at P.)

Hyperbolas

In Exercises 23–30, find the eccentricity of the hyperbola. Then find and graph the hyperbola's foci and directrices.

23.
$$x^2 - v^2 = 1$$

23.
$$x^2 - y^2 = 1$$
 24. $9x^2 - 16y^2 = 144$

25.
$$y^2 - x^2 = 8$$

26.
$$y^2 - x^2 = 4$$

25.
$$y^2 - x^2 = 8$$
 26. $y^2 - x^2 = 4$ **27.** $8x^2 - 2y^2 = 16$ **28.** $y^2 - 3x^2 = 3$ **29.** $8y^2 - 2x^2 = 16$ **30.** $64x^2 - 36y^2 = 16$

28.
$$v^2 - 3x^2 =$$

29.
$$8v^2 - 2x^2 = 16$$

30.
$$64x^2 - 36y^2 = 2304$$

Exercises 31-34 give the eccentricities and the vertices or foci of hyperbolas centered at the origin of the xy-plane. In each case, find the hyperbola's standard-form equation.

- **31.** Eccentricity: 3 Vertices: $(0, \pm 1)$
- **32.** Eccentricity: 2 Vertices: $(\pm 2, 0)$
- **33.** Eccentricity: 3 Foci: $(\pm 3, 0)$
- **34.** Eccentricity: 1.25 Foci: $(0, \pm 5)$

Exercises 35–38 give foci and corresponding directrices of hyperbolas centered at the origin of the *xy*-plane. In each case, find the hyperbola's eccentricity. Then find the hyperbola's standard-form equation.

- **35.** Focus: (4, 0)
- **36.** Focus: $(\sqrt{10}, 0)$ Directrix: $x = \sqrt{2}$
- Directrix: x = 2**37.** Focus: (-2, 0)
- **38.** Focus: (-6, 0)
- Directrix: $x = -\frac{1}{2}$
- Directrix: x = -2
- **39.** A hyperbola of eccentricity 3/2 has one focus at (1, -3). The corresponding directrix is the line y = 2. Find an equation for the hyperbola.
- **The effect of eccentricity on a hyperbola's shape** What happens to the graph of a hyperbola as its eccentricity increases? To find out, rewrite the equation $(x^2/a^2) (y^2/b^2) = 1$ in terms of a and e instead of a and b. Graph the hyperbola for various values of e and describe what you find.
 - **41.** The reflective property of hyperbolas Show that a ray of light directed toward one focus of a hyperbolic mirror, as in the accompanying figure, is reflected toward the other focus. (*Hint:* Show that the tangent to the hyperbola at P bisects the angle made by segments PF_1 and PF_2 .)

42. A confocal ellipse and hyperbola Show that an ellipse and a hyperbola that have the same foci *A* and *B*, as in the accompanying figure, cross at right angles at their point of intersection. (*Hint:* A ray of light from focus *A* that met the hyperbola at *P* would be reflected from the hyperbola as if it came directly from *B* (Exercise 41). The same ray would be reflected off the ellipse to pass through *B* (Exercise 22).)

