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FIGURE 10.28 The path defined by
x=1ty=1>-00 << isthe
entire parabola y = x? (Example 1).

Curves in the Cartesian plane defined by parametric equations, and the calculation of their
derivatives, were introduced in Section 3.5. There we studied parametrizations of lines,
circles, and ellipses. In this section we discuss parametrization of parabolas, hyperbolas,
cycloids, brachistocrones, and tautocrones.

Parabolas and Hyperbolas
In Section 3.5 we used the parametrization

x=\ﬂ, y =1, t>0

to describe the motion of a particle moving along the right branch of the parabola y = x?.

In the following example we obtain a parametrization of the entire parabola, not just its
right branch.

EXAMPLE 1  An Entire Parabola

The position P(x, y) of a particle moving in the xy-plane is given by the equations and pa-
rameter interval

X =1, y=t2, —00 < < 00,

Identify the particle’s path and describe the motion.

Solution We identify the path by eliminating ¢ between the equations x = ¢ and
y = 2, obtaining

y= ()7 =x%

2, so the particle moves

The particle’s position coordinates satisfy the equation y = x
along this curve.

In contrast to Example 10 in Section 3.5, the particle now traverses the entire
parabola. As ¢ increases from —00 to 00, the particle comes down the left-hand side,

passes through the origin, and moves up the right-hand side (Figure 10.28). ]

As Example 1 illustrates, any curve y = f(x) has the parametrization x = ¢,
y = f(¢). This is so simple we usually do not use it, but the point of view is occasionally
helpful.

EXAMPLE 2 A Parametrization of the Right-hand Branch of the Hyperbola
X —yr=1

Describe the motion of the particle whose position P(x, y) at time # is given by

— — _L]< < =
X = sect, y = tant, > 1<
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y2=
traced P(sec t, tan £) /

r=0/0<t<T
\ 2
o 1 *
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FIGURE 10.29 The equations

X = sect,y = tant and interval

—m/2 < t < /2 describe the right-hand
branch of the hyperbola x> — y% = 1
(Example 2).
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FIGURE 10.30 In Huygens’ pendulum
clock, the bob swings in a cycloid, so the
frequency is independent of the amplitude.

P(x,y) = (at + acos 0, a + a sin 6)

0l< at

FIGURE 10.31 The position of P(x, y) on
the rolling wheel at angle 7 (Example 3).
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Solution We find a Cartesian equation for the coordinates of P by eliminating ¢ be-
tween the equations

sect = x, tant = y.

We accomplish this with the identity sec> # — tan®# = 1, which yields
x2—yr=1.

Since the particle’s coordinates (x, y) satisfy the equation x> — y? = 1, the motion takes
place somewhere on this hyperbola. As ¢ runs between —r/2 and 7/2, x = sec ¢ remains
positive and y = tan ¢ runs between —00 and 00, so P traverses the hyperbola’s right-hand
branch. It comes in along the branch’s lower half as t— 0, reaches (1, 0) at t = 0, and
moves out into the first quadrant as ¢ increases toward 77/2 (Figure 10.29). ]

Cycloids

The problem with a pendulum clock whose bob swings in a circular arc is that the fre-
quency of the swing depends on the amplitude of the swing. The wider the swing, the
longer it takes the bob to return to center (its lowest position).

This does not happen if the bob can be made to swing in a cycloid. In 1673, Christiaan
Huygens designed a pendulum clock whose bob would swing in a cycloid, a curve we de-
fine in Example 3. He hung the bob from a fine wire constrained by guards that caused it
to draw up as it swung away from center (Figure 10.30).

EXAMPLE 3

A wheel of radius a rolls along a horizontal straight line. Find parametric equations for the
path traced by a point P on the wheel’s circumference. The path is called a cycloid.

Parametrizing a Cycloid

Solution We take the line to be the x-axis, mark a point P on the wheel, start the wheel
with P at the origin, and roll the wheel to the right. As parameter, we use the angle #
through which the wheel turns, measured in radians. Figure 10.31 shows the wheel a short
while later, when its base lies af units from the origin. The wheel’s center C lies at (at, a)

and the coordinates of P are
X = at + acosb, y=a+ asiné.

To express 0 in terms of 7, we observe that # + 6 = 377/2 in the figure, so that

027—1.

This makes

cos 6 = cos <3277 — t> = —sint, sinf = sin (3277 - t) = —cost.

The equations we seek are

X = at — asint, y=a — acost.
These are usually written with the a factored out:

x = a(t — sint), y =a(l — cost). (1)

Figure 10.32 shows the first arch of the cycloid and part of the next. [
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FIGURE 10.32 The cycloid

x = a(t — sint),y = a(l — cos 1), for
t=0.

0| a 2a ma 2ma

T T T T T T >
P(at — asint,a — acost)
/

B(am, 2a)

FIGURE 10.33 To study motion along an
upside-down cycloid under the influence
of gravity, we turn Figure 10.32 upside
down. This points the y-axis in the
direction of the gravitational force and
makes the downward y-coordinates
positive. The equations and parameter
interval for the cycloid are still

x = a(t — sint),

y=a(l —cost), t=0.

The arrow shows the direction of
increasing 7.
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Brachistochrones and Tautochrones

If we turn Figure 10.32 upside down, Equations (1) still apply and the resulting curve
(Figure 10.33) has two interesting physical properties. The first relates to the origin O and
the point B at the bottom of the first arch. Among all smooth curves joining these points,
the cycloid is the curve along which a frictionless bead, subject only to the force of
gravity, will slide from O to B the fastest. This makes the cycloid a brachistochrone
(“brah-kiss-toe-krone™), or shortest time curve for these points. The second property is
that even if you start the bead partway down the curve toward B, it will still take the bead
the same amount of time to reach B. This makes the cycloid a tautochrone (“faw-toe-
krone”), or same-time curve for O and B.

Are there any other brachistochrones joining O and B, or is the cycloid the only one?
We can formulate this as a mathematical question in the following way. At the start, the ki-
netic energy of the bead is zero, since its velocity is zero. The work done by gravity in
moving the bead from (0, 0) to any other point (x, y) in the plane is mgy, and this must
equal the change in kinetic energy. That is,

mgy = %mv2 — %m(O)z.

Thus, the velocity of the bead when it reaches (x, y) has to be

v = "V2gy.

That is,
ds ./ ds is the arc length differential
dr Zgy along the bead’s path.
or
p ds V1 + (dy/dx)* dx
t = = .

Vg Vag

The time T} it takes the bead to slide along a particular path y = f(x) from O to B(am, 2a)

is
x=am 1 + (dy/dx)?
Ty = —— —dx. 2
7 K—O 2gy X (2)

What curves y = f(x), if any, minimize the value of this integral?

At first sight, we might guess that the straight line joining O and B would give the
shortest time, but perhaps not. There might be some advantage in having the bead fall ver-
tically at first to build up its velocity faster. With a higher velocity, the bead could travel a
longer path and still reach B first. Indeed, this is the right idea. The solution, from a branch
of mathematics known as the calculus of variations, is that the original cycloid from O to
B is the one and only brachistochrone for O and B.

While the solution of the brachistrochrone problem is beyond our present reach, we
can still show why the cycloid is a tautochrone. For the cycloid, Equation (2) takes the form

/Hw \/m

x=0 Zgy From Equations (1),

:/t—w\/mdt d,\'fa(]' cost) dt,
o V=m0
T a a

:A \/;dt = 77\/;.

T cycloid
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Thus, the amount of time it takes the frictionless bead to slide down the cycloid to B after
it is released from rest at O is mVa/g.

Suppose that instead of starting the bead at O we start it at some lower point on the cy-
cloid, a point (xg, yo) corresponding to the parameter value #, > 0. The bead’s velocity at
any later point (x, y) on the cycloid is

v = \/Zg(y - ) = \/2ga(cos tg — cost). y=a(l — cost)

Accordingly, the time required for the bead to slide from (xg, ) down to B is

2
m 2 — 2cost T -
T:/\/a( cos 1) dt:\/}/ 1 cost_
o \ 2ga(costy — cost) 8, \costy— cost
B \/g /W \/ 2sin’ (1/2) 0
&)y N (2cos2(1/2) — 1) — (2cos>(#/2) — 1)
B \/Z/” sin (¢/2) dt
&) \/cosz(to/Z) — cos?(2/2)
\/;/[=7T 2 du u = cos(t/2)
=./% —— ~2du = sin (1/2) dt
g =ty V a’ — u? ¢ = cos (1/2)
P u t=m
= 2\/7 {—sin }
g ¢ =t
o\ 20D T
g cos (1/2) |,

_ a ol -1y — a
N —2\/;( sin" 0 + sin" 1) 77\/;.

FIGURE 10.34 Beads released This is precisely the time it takes the bead to slide to B from O. It takes the bead the same
simultaneously on the cycloid at 0,4, and  amount of time to reach B no matter where it starts. Beads starting simultaneously from O,
C will reach B at the same time. A, and C in Figure 10.34, for instance, will all reach B at the same time. This is the reason

that Huygens’ pendulum clock is independent of the amplitude of the swing.
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