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Graphing in Polar Coordinates

This section describes techniques for graphing equations in polar coordinates.

Symmetry

Figure 10.43 illustrates the standard polar coordinate tests for symmetry.
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FIGURE 10.43 Three tests for symmetry in polar coordinates.

Slope

The slope of a polar curve is given by dy dx, not by To see why,
think of the graph of ƒ as the graph of the parametric equations

x = r cos u = ƒsud cos u, y = r sin u = ƒsud sin u .

r¿ = dƒ>du .>r = ƒsud

Symmetry Tests for Polar Graphs

1. Symmetry about the x-axis: If the point lies on the graph, the point
or lies on the graph (Figure 10.43a).

2. Symmetry about the y-axis: If the point lies on the graph, the point
or lies on the graph (Figure 10.43b).

3. Symmetry about the origin: If the point lies on the graph, the point
or lies on the graph (Figure 10.43c).sr, u + pds -r, ud

sr, ud
s -r, -udsr, p - ud

sr, ud
s -r, p - udsr, -ud

sr, ud
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If ƒ is a differentiable function of then so are x and y and, when we can cal-
culate dy dx from the parametric formula

 =

df
du

 sin u + ƒsud cos u

df
du

 cos u - ƒsud sin u

 =

d
du

 sƒsud #  sin ud

d
du

 sƒsud #  cos ud

 
dy
dx

=

dy>du
dx>du

> dx>du Z 0,u ,
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Section 3.5, Equation (2)
with t = u

Product Rule for derivatives

Slope of the Curve 

provided at sr, ud .dx>du Z 0

dy
dx
`
sr, ud

=

ƒ¿sud sin u + ƒsud cos u

ƒ¿sud cos u - ƒsud sin u
,

r = ƒsud

If the curve passes through the origin at then and the slope
equation gives

If the graph of passes through the origin at the value the slope of the
curve there is tan The reason we say “slope at ” and not just “slope at the origin”
is that a polar curve may pass through the origin (or any point) more than once, with dif-
ferent slopes at different This is not the case in our first example, however.

EXAMPLE 1 A Cardioid

Graph the curve 

Solution The curve is symmetric about the x-axis because

As increases from 0 to decreases from 1 to and increases
from a minimum value of 0 to a maximum value of 2. As continues on from to

increases from back to 1 and r decreases from 2 back to 0. The curve starts to
repeat when because the cosine has period 

The curve leaves the origin with slope and returns to the origin with slope

We make a table of values from to plot the points, draw a smooth curve
through them with a horizontal tangent at the origin, and reflect the curve across the x-axis
to complete the graph (Figure 10.44). The curve is called a cardioid because of its heart
shape. Cardioid shapes appear in the cams that direct the even layering of thread on bob-
bins and reels, and in the signal-strength pattern of certain radio antennas.

u = p ,u = 0
tan s2pd = 0.

tan s0d = 0
2p .u = 2p

-12p, cos u

pu

r = 1 - cos u-1,p, cos uu

 Q  sr, -ud on the graph.

 Q  r = 1 - cos s -ud
 sr, ud on the graph Q  r = 1 - cos u

r = 1 - cos u .

u-values.

s0, u0du0 .
u = u0 ,r = ƒsud

dy
dx
`
s0, u0d

=

ƒ¿su0d sin u0

ƒ¿su0d cos u0
= tan u0 .

ƒsu0d = 0,u = u0 ,r = ƒsud
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FIGURE 10.44 The steps in graphing the
cardioid (Example 1). The
arrow shows the direction of increasing u .

r = 1 - cos u

cos u = cos s -ud
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EXAMPLE 2 Graph the Curve

Solution The equation requires so we get the entire graph by
running from to The curve is symmetric about the x-axis because

The curve is also symmetric about the origin because

Together, these two symmetries imply symmetry about the y-axis.
The curve passes through the origin when and It has a vertical

tangent both times because is infinite.
For each value of in the interval between and the formula 

gives two values of r:

We make a short table of values, plot the corresponding points, and use information
about symmetry and tangents to guide us in connecting the points with a smooth curve
(Figure 10.45).

r = ;22cos u .

r2
= 4 cos up>2,-p>2u

tan u

u = p>2.u = -p>2
 Q  s -r, ud on the graph.

 Q  s -rd2
= 4 cos u

 sr, ud on the graph Q  r2
= 4 cos u

 Q  sr, -ud on the graph.

 Q  r2
= 4 cos s -ud

 sr, ud on the graph Q  r2
= 4 cos u

p>2.-p>2u

cos u Ú 0,r2
= 4 cos u

r2
= 4 cos u .

10.6 Graphing in Polar Coordinates 721

cos u = cos s -ud
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FIGURE 10.45 The graph of The arrows show the direction
of increasing The values of r in the table are rounded (Example 2).u .

r2
= 4 cos u .

A Technique for Graphing

One way to graph a polar equation is to make a table of plot the
corresponding points, and connect them in order of increasing This can work well if
enough points have been plotted to reveal all the loops and dimples in the graph. Another
method of graphing that is usually quicker and more reliable is to

1. first graph in the Cartesian

2. then use the Cartesian graph as a “table” and guide to sketch the polar coordinate graph.

ru-plane,r = ƒsud

u .
(r, u)-values,r = ƒsud
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This method is better than simple point plotting because the first Cartesian graph,
even when hastily drawn, shows at a glance where r is positive, negative, and nonexistent,
as well as where r is increasing and decreasing. Here’s an example.

EXAMPLE 3 A Lemniscate

Graph the curve

Solution Here we begin by plotting (not r) as a function of in the Cartesian
See Figure 10.46a. We pass from there to the graph of in the

(Figure 10.46b), and then draw the polar graph (Figure 10.46c). The graph in
Figure 10.46b “covers” the final polar graph in Figure 10.46c twice. We could have man-
aged with either loop alone, with the two upper halves, or with the two lower halves. The
double covering does no harm, however, and we actually learn a little more about the be-
havior of the function this way.

Finding Points Where Polar Graphs Intersect

The fact that we can represent a point in different ways in polar coordinates makes extra
care necessary in deciding when a point lies on the graph of a polar equation and in deter-
mining the points in which polar graphs intersect. The problem is that a point of intersec-
tion may satisfy the equation of one curve with polar coordinates that are different from
the ones with which it satisfies the equation of another curve. Thus, solving the equations
of two curves simultaneously may not identify all their points of intersection. One sure
way to identify all the points of intersection is to graph the equations.

EXAMPLE 4 Deceptive Polar Coordinates

Show that the point lies on the curve 

Solution It may seem at first that the point does not lie on the curve because
substituting the given coordinates into the equation gives

which is not a true equality. The magnitude is right, but the sign is wrong. This suggests
looking for a pair of coordinates for the same given point in which r is negative, for exam-
ple, If we try these in the equation we find

and the equation is satisfied. The point does lie on the curve.

EXAMPLE 5 Elusive Intersection Points

Find the points of intersection of the curves

r2
= 4 cos u and r = 1 - cos u .

s2, p>2d

-2 = 2 cos 2 a- p
2
b = 2s -1d = -2,

r = 2 cos 2u ,s -2, -sp>2dd .

2 = 2 cos 2 ap
2
b = 2 cos p = -2,

s2, p>2d

r = 2 cos 2u .s2, p>2d

ru-plane
r = ;2sin 2ur2u-plane.
ur2

r2
= sin 2u .
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FIGURE 10.46 To plot in the
Cartesian in (b), we first plot

in the in (a) and then
ignore the values of for which is
negative. The radii from the sketch in (b)
cover the polar graph of the lemniscate in
(c) twice (Example 3).

sin 2uu

r2u-planer2
= sin 2u

ru-plane
r = ƒsud
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Solution In Cartesian coordinates, we can always find the points where two curves
cross by solving their equations simultaneously. In polar coordinates, the story is different.
Simultaneous solution may reveal some intersection points without revealing others. In
this example, simultaneous solution reveals only two of the four intersection points. The
others are found by graphing. (Also, see Exercise 49.)

If we substitute in the equation we get

The value has too large an absolute value to belong to either curve.
The values of corresponding to are

We have thus identified two intersection points: 
If we graph the equations and together (Figure 10.47), as

we can now do by combining the graphs in Figures 10.44 and 10.45, we see that the curves
also intersect at the point and the origin. Why weren’t the r-values of these points
revealed by the simultaneous solution? The answer is that the points (0, 0) and are
not on the curves “simultaneously.” They are not reached at the same value of On the
curve the point is reached when On the curve 
it is reached when where it is identified not by the coordinates which do
not satisfy the equation, but by the coordinates which do. Similarly, the cardioid
reaches the origin when but the curve reaches the origin when
u = p>2.

r2
= 4 cos uu = 0,

s -2, 0d ,
s2, pd ,u = 0,

r2
= 4 cos u ,u = p .s2, pdr = 1 - cos u ,
u .
s2, pd

s2, pd

r = 1 - cos ur2
= 4 cos u

(r, u) = (212 - 2, ;80°) .

 = ;80°.

 = cos-1 A3 - 222 B
 = cos-1 A1 - A222 - 2 B B

 u = cos-1 s1 - rd

r = -2 + 222u

r = -2 - 222

 r = -2 ; 222.

  r2
+ 4r - 4 = 0

 4r = 4 - r 2

 r = 1 - cos u = 1 -
r 2

4

r = 1 - cos u ,cos u = r2>4

10.6 Graphing in Polar Coordinates 723

HISTORICAL BIOGRAPHY

Johannes Kepler
(1571–1630)

Quadratic formula
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FIGURE 10.47 The four points of intersection of the
curves and (Example 5).
Only A and B were found by simultaneous solution.
The other two were disclosed by graphing.

r2
= 4 cos ur = 1 - cos u

From r = 1 - cos u

Set r = 222 - 2 .

Rounded to the nearest degree
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724 Chapter 10: Conic Sections and Polar Coordinates

USING TECHNOLOGY Graphing Polar Curves Parametrically

For complicated polar curves we may need to use a graphing calculator or computer to
graph the curve. If the device does not plot polar graphs directly, we can convert

into parametric form using the equations

Then we use the device to draw a parametrized curve in the Cartesian xy-plane. It may be
required to use the parameter t rather than for the graphing device.u

x = r cos u = ƒsud cos u, y = r sin u = ƒsud sin u .

r = ƒsud
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