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The Integral Test

Given a series we have two questions:

1. Does the series converge?

2. If it converges, what is its sum?

Much of the rest of this chapter is devoted to the first question, and in this section we answer that
question by making a connection to the convergence of the improper integral How-
ever, as a practical matter the second question is also important, and we will return to it later.

In this section and the next two, we study series that do not have negative terms. The
reason for this restriction is that the partial sums of these series form nondecreasing
sequences, and nondecreasing sequences that are bounded from above always converge
(Theorem 6, Section 11.1). To show that a series of nonnegative terms converges, we need
only show that its partial sums are bounded from above.

It may at first seem to be a drawback that this approach establishes the fact of conver-
gence without producing the sum of the series in question. Surely it would be better to
compute sums of series directly from formulas for their partial sums. But in most cases
such formulas are not available, and in their absence we have to turn instead to the two-
step procedure of first establishing convergence and then approximating the sum.

Nondecreasing Partial Sums

Suppose that is an infinite series with for all n. Then each partial sum is
greater than or equal to its predecessor because 

Since the partial sums form a nondecreasing sequence, the Nondecreasing Sequence The-
orem (Theorem 6, Section 11.1) tells us that the series will converge if and only if the par-
tial sums are bounded from above.
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Corollary of Theorem 6
A series of nonnegative terms converges if and only if its partial sums
are bounded from above.
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EXAMPLE 1 The Harmonic Series

The series

is called the harmonic series. The harmonic series is divergent, but this doesn’t follow
from the nth-Term Test. The nth term 1 n does go to zero, but the series still diverges. The
reason it diverges is because there is no upper bound for its partial sums. To see why,
group the terms of the series in the following way:
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11.3 The Integral Test 773

The sum of the first two terms is 1.5. The sum of the next two terms is which
is greater than The sum of the next four terms is 

which is greater than The sum of the next
eight terms is which is
greater than The sum of the next 16 terms is greater than and
so on. In general, the sum of terms ending with is greater than 
The sequence of partial sums is not bounded from above: If the partial sum is
greater than k 2. The harmonic series diverges.

The Integral Test

We introduce the Integral Test with a series that is related to the harmonic series, but
whose nth term is instead of 1 n.

EXAMPLE 2 Does the following series converge?

Solution We determine the convergence of by comparing it with
To carry out the comparison, we think of the terms of the series as values of

the function and interpret these values as the areas of rectangles under the
curve 

As Figure 11.7 shows,

Thus the partial sums of are bounded from above (by 2) and the series
converges. The sum of the series is known to be (See Exercise 16 in
Section 11.11.)
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FIGURE 11.7 The sum of the areas of the
rectangles under the graph of 
is less than the area under the graph
(Example 2).

f (x) = 1>x2

As in Section 8.8, Example 3,
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THEOREM 9 The Integral Test
Let be a sequence of positive terms. Suppose that where ƒ is a
continuous, positive, decreasing function of x for all (N a positive inte-
ger). Then the series and the integral both converge or both
diverge.
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Proof We establish the test for the case The proof for general N is similar.
We start with the assumption that ƒ is a decreasing function with for every

n. This leads us to observe that the rectangles in Figure 11.8a, which have areas
ƒsnd = an

N = 1.

Caution
The series and integral need not have the
same value in the convergent case. As we
noted in Example 2, 
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collectively enclose more area than that under the curve from
to That is,

In Figure 11.8b the rectangles have been faced to the left instead of to the right. If we mo-
mentarily disregard the first rectangle, of area we see that

If we include we have

Combining these results gives

These inequalities hold for each n, and continue to hold as 

If is finite, the right-hand inequality shows that is finite. If

is infinite, the left-hand inequality shows that is infinite. Hence the series

and the integral are both finite or both infinite.

EXAMPLE 3 The p-Series

Show that the p-series

( p a real constant) converges if and diverges if 

Solution If then is a positive decreasing function of x. Since

the series converges by the Integral Test. We emphasize that the sum of the p-series is not
The series converges, but we don’t know the value it converges to.

If then and

The series diverges by the Integral Test.
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FIGURE 11.8 Subject to the conditions of
the Integral Test, the series and
the integral both converge or
both diverge.
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If we have the (divergent) harmonic series

We have convergence for but divergence for every other value of p.

The p-series with is the harmonic series (Example 1). The p-Series Test shows
that the harmonic series is just barely divergent; if we increase p to 1.000000001, for in-
stance, the series converges!

The slowness with which the partial sums of the harmonic series approaches infinity
is impressive. For instance, it takes about 178,482,301 terms of the harmonic series to
move the partial sums beyond 20. It would take your calculator several weeks to compute a
sum with this many terms. (See also Exercise 33b.)

EXAMPLE 4 A Convergent Series

The series

converges by the Integral Test. The function is positive, continuous,
and decreasing for and

Again we emphasize that is not the sum of the series. The series converges, but we do
not know the value of its sum.

Convergence of the series in Example 4 can also be verified by comparison with the
series Comparison tests are studied in the next section.g1>n2 .

p>4
 =

p
2

-

p
4

=

p
4

.

 = lim
b: q

[arctan b - arctan 1]

 L
q

1
 

1
x2

+ 1
 dx = lim

b: q

 Carctan x D1b
x Ú 1,

ƒsxd = 1>sx2
+ 1d

a
q

n = 1
 

1
n2

+ 1

p = 1

p 7 1

1 +
1
2

+
1
3

+
Á

+
1
n +

Á .

p = 1,

4100 AWL/Thomas_ch11p746-847  8/25/04  2:41 PM  Page 775

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html

	copyright: 
	bio2_9: 


