11.5

The Ratio and Root Tests

The Ratio Test measures the rate of growth (or decline) of a series by examining the ratio a_{n+1}/a_n . For a geometric series $\sum ar^n$, this rate is a constant $((ar^{n+1})/(ar^n) = r)$, and the series converges if and only if its ratio is less than 1 in absolute value. The Ratio Test is a powerful rule extending that result. We prove it on the next page using the Comparison Test.

THEOREM 12 The Ratio Test

Let $\sum a_n$ be a series with positive terms and suppose that

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\rho.$$

Then

- (a) the series converges if $\rho < 1$,
- **(b)** the series *diverges* if $\rho > 1$ or ρ is infinite,
- (c) the test is inconclusive if $\rho = 1$.

Proof

(a) $\rho < 1$. Let r be a number between ρ and 1. Then the number $\epsilon = r - \rho$ is positive. Since

$$\frac{a_{n+1}}{a_n} \rightarrow \rho$$
,

 a_{n+1}/a_n must lie within ϵ of ρ when n is large enough, say for all $n \geq N$. In particular

$$\frac{a_{n+1}}{a_n} < \rho + \epsilon = r$$
, when $n \ge N$.

That is,

$$a_{N+1} < ra_N,$$

 $a_{N+2} < ra_{N+1} < r^2a_N,$
 $a_{N+3} < ra_{N+2} < r^3a_N,$
 \vdots
 $a_{N+m} < ra_{N+m-1} < r^ma_N.$

These inequalities show that the terms of our series, after the Nth term, approach zero more rapidly than the terms in a geometric series with ratio r < 1. More precisely, consider the series $\sum c_n$, where $c_n = a_n$ for n = 1, 2, ..., N and $c_{N+1} = ra_N, c_{N+2} = r^2a_N, ..., c_{N+m} = r^ma_N, ...$ Now $a_n \le c_n$ for all n, and

$$\sum_{n=1}^{\infty} c_n = a_1 + a_2 + \dots + a_{N-1} + a_N + ra_N + r^2 a_N + \dots$$
$$= a_1 + a_2 + \dots + a_{N-1} + a_N (1 + r + r^2 + \dots).$$

The geometric series $1 + r + r^2 + \cdots$ converges because |r| < 1, so $\sum c_n$ converges. Since $a_n \le c_n$, $\sum a_n$ also converges.

(b) $1 < \rho \leq \infty$. From some index M on,

$$\frac{a_{n+1}}{a_n} > 1$$
 and $a_M < a_{M+1} < a_{M+2} < \cdots$.

The terms of the series do not approach zero as n becomes infinite, and the series diverges by the nth-Term Test.

783

(c)
$$\rho = 1$$
. The two series

$$\sum_{n=1}^{\infty} \frac{1}{n} \quad \text{and} \quad \sum_{n=1}^{\infty} \frac{1}{n^2}$$

show that some other test for convergence must be used when $\rho = 1$.

For
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
: $\frac{a_{n+1}}{a_n} = \frac{1/(n+1)}{1/n} = \frac{n}{n+1} \to 1$.

For
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
: $\frac{a_{n+1}}{a_n} = \frac{1/(n+1)^2}{1/n^2} = \left(\frac{n}{n+1}\right)^2 \to 1^2 = 1$.

In both cases, $\rho = 1$, yet the first series diverges, whereas the second converges.

The Ratio Test is often effective when the terms of a series contain factorials of expressions involving n or expressions raised to a power involving n.

EXAMPLE 1 Applying the Ratio Test

Investigate the convergence of the following series.

(a)
$$\sum_{n=0}^{\infty} \frac{2^n + 5}{3^n}$$
 (b) $\sum_{n=1}^{\infty} \frac{(2n)!}{n!n!}$ (c) $\sum_{n=1}^{\infty} \frac{4^n n! n!}{(2n)!}$

(c)
$$\sum_{n=1}^{\infty} \frac{4^n n! n!}{(2n)!}$$

Solution

(a) For the series
$$\sum_{n=0}^{\infty} (2^n + 5)/3^n$$
,

$$\frac{a_{n+1}}{a_n} = \frac{(2^{n+1} + 5)/3^{n+1}}{(2^n + 5)/3^n} = \frac{1}{3} \cdot \frac{2^{n+1} + 5}{2^n + 5} = \frac{1}{3} \cdot \left(\frac{2 + 5 \cdot 2^{-n}}{1 + 5 \cdot 2^{-n}}\right) \to \frac{1}{3} \cdot \frac{2}{1} = \frac{2}{3}.$$

The series converges because $\rho = 2/3$ is less than 1. This does *not* mean that 2/3 is the sum of the series. In fact,

$$\sum_{n=0}^{\infty} \frac{2^n + 5}{3^n} = \sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^n + \sum_{n=0}^{\infty} \frac{5}{3^n} = \frac{1}{1 - (2/3)} + \frac{5}{1 - (1/3)} = \frac{21}{2}.$$

(b) If
$$a_n = \frac{(2n)!}{n!n!}$$
, then $a_{n+1} = \frac{(2n+2)!}{(n+1)!(n+1)!}$ and

$$\frac{a_{n+1}}{a_n} = \frac{n!n!(2n+2)(2n+1)(2n)!}{(n+1)!(n+1)!(2n)!}$$
$$= \frac{(2n+2)(2n+1)}{(n+1)(n+1)} = \frac{4n+2}{n+1} \to 4.$$

The series diverges because $\rho = 4$ is greater than 1.

(c) If
$$a_n = 4^n n! n! / (2n)!$$
, then

$$\frac{a_{n+1}}{a_n} = \frac{4^{n+1}(n+1)!(n+1)!}{(2n+2)(2n+1)(2n)!} \cdot \frac{(2n)!}{4^n n! n!}$$
$$= \frac{4(n+1)(n+1)}{(2n+2)(2n+1)} = \frac{2(n+1)}{2n+1} \to 1.$$

Because the limit is $\rho=1$, we cannot decide from the Ratio Test whether the series converges. When we notice that $a_{n+1}/a_n=(2n+2)/(2n+1)$, we conclude that a_{n+1} is always greater than a_n because (2n+2)/(2n+1) is always greater than 1. Therefore, all terms are greater than or equal to $a_1=2$, and the nth term does not approach zero as $n\to\infty$. The series diverges.

The Root Test

The convergence tests we have so far for $\sum a_n$ work best when the formula for a_n is relatively simple. But consider the following.

EXAMPLE 2 Let
$$a_n = \begin{cases} n/2^n, & n \text{ odd} \\ 1/2^n, & n \text{ even.} \end{cases}$$
 Does $\sum a_n$ converge?

Solution We write out several terms of the series:

$$\sum_{n=1}^{\infty} a_n = \frac{1}{2^1} + \frac{1}{2^2} + \frac{3}{2^3} + \frac{1}{2^4} + \frac{5}{2^5} + \frac{1}{2^6} + \frac{7}{2^7} + \cdots$$
$$= \frac{1}{2} + \frac{1}{4} + \frac{3}{8} + \frac{1}{16} + \frac{5}{32} + \frac{1}{64} + \frac{7}{128} + \cdots$$

Clearly, this is not a geometric series. The *n*th term approaches zero as $n \to \infty$, so we do not know if the series diverges. The Integral Test does not look promising. The Ratio Test produces

$$\frac{a_{n+1}}{a_n} = \begin{cases} \frac{1}{2n}, & n \text{ odd} \\ \frac{n+1}{2}, & n \text{ even.} \end{cases}$$

As $n \to \infty$, the ratio is alternately small and large and has no limit.

A test that will answer the question (the series converges) is the Root Test.

THEOREM 13 The Root Test

Let $\sum a_n$ be a series with $a_n \ge 0$ for $n \ge N$, and suppose that

$$\lim_{n\to\infty} \sqrt[n]{a_n} = \rho.$$

Then

- (a) the series converges if $\rho < 1$,
- **(b)** the series *diverges* if $\rho > 1$ or ρ is infinite,
- (c) the test is inconclusive if $\rho = 1$.

Proof

(a) $\rho < 1$. Choose an $\epsilon > 0$ so small that $\rho + \epsilon < 1$. Since $\sqrt[n]{a_n} \to \rho$, the terms $\sqrt[n]{a_n}$ eventually get closer than ϵ to ρ . In other words, there exists an index $M \ge N$ such that

$$\sqrt[n]{a_n} < \rho + \epsilon$$
 when $n \ge M$.

785

$$a_n < (\rho + \epsilon)^n$$
 for $n \ge M$.

Now, $\sum_{n=M}^{\infty} (\rho + \epsilon)^n$, a geometric series with ratio $(\rho + \epsilon) < 1$, converges. By comparison, $\sum_{n=M}^{\infty} a_n$ converges, from which it follows that

$$\sum_{n=1}^{\infty} a_n = a_1 + \dots + a_{M-1} + \sum_{n=M}^{\infty} a_n$$

converges.

- (b) $1 < \rho \le \infty$. For all indices beyond some integer M, we have $\sqrt[n]{a_n} > 1$, so that $a_n > 1$ for n > M. The terms of the series do not converge to zero. The series diverges by the nth-Term Test.
- (c) $\rho = 1$. The series $\sum_{n=1}^{\infty} (1/n)$ and $\sum_{n=1}^{\infty} (1/n^2)$ show that the test is not conclusive when $\rho = 1$. The first series diverges and the second converges, but in both cases $\sqrt[n]{a_n} \to 1$.

EXAMPLE 3 Applying the Root Test

Which of the following series converges, and which diverges?

(a)
$$\sum_{n=1}^{\infty} \frac{n^2}{2^n}$$
 (b) $\sum_{n=1}^{\infty} \frac{2^n}{n^2}$ (c) $\sum_{n=1}^{\infty} \left(\frac{1}{1+n}\right)^n$

(c)
$$\sum_{n=1}^{\infty} \left(\frac{1}{1+n} \right)$$

Solution

(a)
$$\sum_{n=1}^{\infty} \frac{n^2}{2^n} \text{ converges because } \sqrt[n]{\frac{n^2}{2^n}} = \frac{\sqrt[n]{n^2}}{\sqrt[n]{2^n}} = \frac{\left(\sqrt[n]{n}\right)^2}{2} \to \frac{1}{2} < 1.$$

(b)
$$\sum_{n=1}^{\infty} \frac{2^n}{n^2} \text{ diverges because } \sqrt[n]{\frac{2^n}{n^2}} = \frac{2}{\left(\sqrt[n]{n}\right)^2} \to \frac{2}{1} > 1.$$

(c)
$$\sum_{n=1}^{\infty} \left(\frac{1}{1+n} \right)^n \text{ converges because } \sqrt[n]{\left(\frac{1}{1+n} \right)^n} = \frac{1}{1+n} \to 0 < 1.$$

EXAMPLE 2 Revisited

Let
$$a_n = \begin{cases} n/2^n, & n \text{ odd} \\ 1/2^n, & n \text{ even.} \end{cases}$$
 Does $\sum a_n$ converge?

We apply the Root Test, finding that Solution

$$\sqrt[n]{a_n} = \begin{cases} \sqrt[n]{n/2}, & n \text{ odd} \\ 1/2, & n \text{ even.} \end{cases}$$

Therefore,

$$\frac{1}{2} \leq \sqrt[n]{a_n} \leq \frac{\sqrt[n]{n}}{2}.$$

Since $\sqrt[n]{n} \to 1$ (Section 11.1, Theorem 5), we have $\lim_{n\to\infty} \sqrt[n]{a_n} = 1/2$ by the Sandwich Theorem. The limit is less than 1, so the series converges by the Root Test.