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Alternating Series, Absolute and Conditional Convergence

A series in which the terms are alternately positive and negative is an alternating series.
Here are three examples:

(1)

(2)

(3)

Series (1), called the alternating harmonic series, converges, as we will see in a moment.
Series (2) a geometric series with ratio converges to 
Series (3) diverges because the nth term does not approach zero.

We prove the convergence of the alternating harmonic series by applying the Alternating
Series Test.
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11.6

THEOREM 14 The Alternating Series Test (Leibniz’s Theorem)
The series

converges if all three of the following conditions are satisfied:

1. The are all positive.

2. for all for some integer N.

3. un : 0.

n Ú N ,un Ú un + 1

un’s
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Proof If n is an even integer, say then the sum of the first n terms is

The first equality shows that is the sum of m nonnegative terms, since each term
in parentheses is positive or zero. Hence and the sequence is non-
decreasing. The second equality shows that Since is nondecreasing and
bounded from above, it has a limit, say

(4)

If n is an odd integer, say then the sum of the first n terms is
Since 

and, as 

(5)

Combining the results of Equations (4) and (5) gives (Section 11.1, Exer-

cise 119).

lim
n: q

 sn = L

s2m + 1 = s2m + u2m + 1 : L + 0 = L .

m : q ,

lim
m: q

 u2m + 1 = 0

un : 0,s2m + 1 = s2m + u2m + 1 .
n = 2m + 1,
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788 Chapter 11: Infinite Sequences and Series

EXAMPLE 1 The alternating harmonic series

satisfies the three requirements of Theorem 14 with  it therefore converges.

A graphical interpretation of the partial sums (Figure 11.9) shows how an alternating
series converges to its limit L when the three conditions of Theorem 14 are satisfied with

(Exercise 63 asks you to picture the case ) Starting from the origin of the
x-axis, we lay off the positive distance To find the point corresponding to

we back up a distance equal to Since we do not back up any
farther than the origin. We continue in this seesaw fashion, backing up or going forward as
the signs in the series demand. But for each forward or backward step is shorter
than (or at most the same size as) the preceding step, because And since the
nth term approaches zero as n increases, the size of step we take forward or backward gets
smaller and smaller. We oscillate across the limit L, and the amplitude of oscillation ap-
proaches zero. The limit L lies between any two successive sums and and hence dif-
fers from by an amount less than 

Because

we can make useful estimates of the sums of convergent alternating series.

ƒ L - sn ƒ 6 un + 1 for n Ú N ,

un + 1 .sn

sn + 1sn

un + 1 … un .
n Ú N ,

u2 … u1 ,u2 .s2 = u1 - u2 ,
s1 = u1 .

N 7 1.N = 1.

N = 1;

a
q

n = 1
s -1dn + 1 

1
n = 1 -

1
2

+
1
3

-
1
4

+
Á

L0

�u1

�u2

�u3

�u4

s2 s4 s3 s1

x

FIGURE 11.9 The partial sums of an
alternating series that satisfies the
hypotheses of Theorem 14 for 
straddle the limit from the beginning.

N = 1

THEOREM 15 The Alternating Series Estimation Theorem
If the alternating series satisfies the three conditions of
Theorem 14, then for 

approximates the sum L of the series with an error whose absolute value is less
than the numerical value of the first unused term. Furthermore, the remain-
der, has the same sign as the first unused term.L - sn ,

un + 1 ,
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+ s -1dn + 1un

n Ú N ,
gq
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We leave the verification of the sign of the remainder for Exercise 53.

EXAMPLE 2 We try Theorem 15 on a series whose sum we know:

The theorem says that if we truncate the series after the eighth term, we throw away a total
that is positive and less than 1 256. The sum of the first eight terms is 0.6640625. The sum
of the series is

The difference, is positive and less than
s1>256d = 0.00390625.
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Absolute and Conditional Convergence

DEFINITION Absolutely Convergent
A series converges absolutely (is absolutely convergent) if the correspon-
ding series of absolute values, converges.g ƒ an ƒ ,

gan

The geometric series

converges absolutely because the corresponding series of absolute values

converges. The alternating harmonic series does not converge absolutely. The corresponding
series of absolute values is the (divergent) harmonic series.
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DEFINITION Conditionally Convergent
A series that converges but does not converge absolutely converges conditionally.

THEOREM 16 The Absolute Convergence Test

If converges, then converges.a
q

n = 1
ana

q

n = 1
 ƒ an ƒ

The alternating harmonic series converges conditionally.
Absolute convergence is important for two reasons. First, we have good tests for con-

vergence of series of positive terms. Second, if a series converges absolutely, then it con-
verges. That is the thrust of the next theorem.

Proof For each n,

If converges, then converges and, by the Direct Comparison Test,
the nonnegative series converges. The equality 
now lets us express as the difference of two convergent series:

Therefore, converges.gq
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CAUTION We can rephrase Theorem 16 to say that every absolutely convergent series
converges. However, the converse statement is false: Many convergent series do not con-
verge absolutely (such as the alternating harmonic series in Example 1).

EXAMPLE 3 Applying the Absolute Convergence Test

(a) For the corresponding series of absolute

values is the convergent series

The original series converges because it converges absolutely.

(b) For the corresponding series of absolute

values is

which converges by comparison with because for every n.
The original series converges absolutely; therefore it converges.

EXAMPLE 4 Alternating p-Series

If p is a positive constant, the sequence is a decreasing sequence with limit zero.
Therefore the alternating p-series

converges.
If the series converges absolutely. If the series converges condi-

tionally.

Rearranging Series
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THEOREM 17 The Rearrangement Theorem for Absolutely
Convergent Series

If converges absolutely, and is any arrangement of the
sequence then converges absolutely and

a
q

n = 1
bn = a

q

n = 1
an .

gbn5an6 ,
b1, b2 , Á , bn , Ágq

n=1 an

(For an outline of the proof, see Exercise 60.)
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EXAMPLE 5 Applying the Rearrangement Theorem

As we saw in Example 3, the series

converges absolutely. A possible rearrangement of the terms of the series might start with
a positive term, then two negative terms, then three positive terms, then four negative
terms, and so on: After k terms of one sign, take terms of the opposite sign. The first
ten terms of such a series look like this:

The Rearrangement Theorem says that both series converge to the same value. In this ex-
ample, if we had the second series to begin with, we would probably be glad to exchange it
for the first, if we knew that we could. We can do even better: The sum of either series is
also equal to

(See Exercise 61.)

If we rearrange infinitely many terms of a conditionally convergent series, we can get
results that are far different from the sum of the original series. Here is an example.

EXAMPLE 6 Rearranging the Alternating Harmonic Series

The alternating harmonic series

can be rearranged to diverge or to reach any preassigned sum.

(a) Rearranging to diverge. The series of terms di-
verges to and the series of terms diverges to No matter how far
out in the sequence of odd-numbered terms we begin, we can always add enough pos-
itive terms to get an arbitrarily large sum. Similarly, with the negative terms, no matter
how far out we start, we can add enough consecutive even-numbered terms to get a
negative sum of arbitrarily large absolute value. If we wished to do so, we could start
adding odd-numbered terms until we had a sum greater than say, and then follow
that with enough consecutive negative terms to make the new total less than We
could then add enough positive terms to make the total greater than and follow
with consecutive unused negative terms to make a new total less than and so on.
In this way, we could make the swings arbitrarily large in either direction.

(b) Rearranging to converge to 1. Another possibility is to focus on a
particular limit. Suppose we try to get sums that converge to 1. We start with the first
term, 1 1, and then subtract 1 2. Next we add 1 3 and 1 5, which brings the total
back to 1 or above. Then we add consecutive negative terms until the total is less than
1. We continue in this manner: When the sum is less than 1, add positive terms until
the total is 1 or more; then subtract (add negative) terms until the total is again less
than 1. This process can be continued indefinitely. Because both the odd-numbered
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terms and the even-numbered terms of the original series approach zero as 
the amount by which our partial sums exceed 1 or fall below it approaches zero. So the
new series converges to 1. The rearranged series starts like this:

The kind of behavior illustrated by the series in Example 6 is typical of what can hap-
pen with any conditionally convergent series. Therefore we must always add the terms of a
conditionally convergent series in the order given.

We have now developed several tests for convergence and divergence of series. In
summary:
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1. The nth-Term Test: Unless the series diverges.

2. Geometric series: converges if  otherwise it diverges.

3. p-series: converges if otherwise it diverges.

4. Series with nonnegative terms: Try the Integral Test, Ratio Test, or Root
Test. Try comparing to a known series with the Comparison Test.

5. Series with some negative terms: Does converge? If yes, so does
since absolute convergence implies convergence.

6. Alternating series: converges if the series satisfies the conditions of
the Alternating Series Test.

gan
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