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Power Series

Now that we can test infinite series for convergence we can study the infinite polynomials
mentioned at the beginning of this chapter. We call these polynomials power series be-
cause they are defined as infinite series of powers of some variable, in our case x. Like
polynomials, power series can be added, subtracted, multiplied, differentiated, and inte-
grated to give new power series.

11.7
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11.7 Power Series 795

DEFINITIONS Power Series, Center, Coefficients
A power series about is a series of the form

(1)

A power series about is a series of the form

(2)

in which the center a and the coefficients are constants.c0, c1, c2, Á , cn, Á

a
q

n = 0
cnsx - adn

= c0 + c1sx - ad + c2sx - ad2
+

Á
+ cnsx - adn

+
Á

x � a

a
q

n = 0
cn xn

= c0 + c1 x + c2 x2
+

Á
+ cn xn

+
Á .

x � 0

Power Series and Convergence

We begin with the formal definition.

Equation (1) is the special case obtained by taking in Equation (2).

EXAMPLE 1 A Geometric Series

Taking all the coefficients to be 1 in Equation (1) gives the geometric power series

This is the geometric series with first term 1 and ratio x. It converges to for
We express this fact by writing

(3)

Up to now, we have used Equation (3) as a formula for the sum of the series on the right.
We now change the focus: We think of the partial sums of the series on the right as polyno-
mials that approximate the function on the left. For values of x near zero, we need
take only a few terms of the series to get a good approximation. As we move toward

or we must take more terms. Figure 11.10 shows the graphs of
and the approximating polynomials for and 8.

The function is not continuous on intervals containing where it
has a vertical asymptote. The approximations do not apply when 

EXAMPLE 2 A Geometric Series

The power series

(4)

matches Equation (2) with This

is a geometric series with first term 1 and ratio The series converges forr = -

x - 2
2

.

a = 2, c0 = 1, c1 = -1>2, c2 = 1>4, Á , cn = s -1>2dn .

1 -
1
2

sx - 2d +
1
4

sx - 2d2
+

Á
+ a- 1

2
bn

sx - 2dn
+

Á

x Ú 1.
x = 1,ƒsxd = 1>s1 - xd

n = 0, 1, 2 ,yn = Pnsxdƒsxd = 1>s1 - xd ,
-1,x = 1,

Pnsxd

1
1 - x

= 1 + x + x2
+

Á
+ xn

+
Á, -1 6 x 6 1.

ƒ x ƒ 6 1.
1>s1 - xd

a
q

n = 0
xn

= 1 + x + x2
+

Á
+ xn

+
Á .

a = 0
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or The sum is

so

Series (4) generates useful polynomial approximations of for values of x near 2:

and so on (Figure 11.11).

EXAMPLE 3 Testing for Convergence Using the Ratio Test

For what values of x do the following power series converge?

(a)

(b)

(c)

(d) a
q

n = 0
n!xn

= 1 + x + 2!x2
+ 3!x3

+
Á

a
q

n = 0
 
xn

n!
= 1 + x +

x2

2!
+

x3

3!
+

Á

a
q

n = 1
s -1dn - 1 

x2n - 1

2n - 1
= x -

x3

3
+

x5

5 -
Á

a
q

n = 1
s -1dn - 1 

xn

n = x -

x2

2
+

x3

3
-

Á

 P2sxd = 1 -
1
2

 sx - 2d +
1
4

 sx - 2d2
= 3 -

3x
2

+

x2

4
,

 P1sxd = 1 -
1
2

 sx - 2d = 2 -

x
2

 P0sxd = 1

ƒsxd = 2>x

2
x = 1 -

sx - 2d
2

+

sx - 2d2

4
-

Á
+ a- 1

2
bn

sx - 2dn
+

Á, 0 6 x 6 4.

1
1 - r

=
1

1 +

x - 2
2

=
2
x ,

0 6 x 6 4.` x - 2
2
` 6 1
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FIGURE 11.10 The graphs of and four of
its polynomial approximations (Example 1).
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FIGURE 11.11 The graphs of 
and its first three polynomial approxima-
tions (Example 2).
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11.7 Power Series 797

Solution Apply the Ratio Test to the series where is the nth term of the series
in question.

(a)

The series converges absolutely for It diverges if because the nth
term does not converge to zero. At we get the alternating harmonic series

which converges. At we get 
the negative of the harmonic series; it diverges. Series (a) con-

verges for and diverges elsewhere.

(b)

The series converges absolutely for It diverges for because the nth
term does not converge to zero. At the series becomes 

which converges by the Alternating Series Theorem. It also con-
verges at because it is again an alternating series that satisfies the conditions
for convergence. The value at is the negative of the value at Series (b)
converges for and diverges elsewhere.

(c)

The series converges absolutely for all x.

(d)

The series diverges for all values of x except 

Example 3 illustrates how we usually test a power series for convergence, and the
possible results.

0
x

x = 0.

` un + 1
un
` = ` sn + 1d!xn + 1

n!xn ` = sn + 1d ƒ x ƒ : q  unless x = 0.

0
x

` un + 1
un
` = ` xn + 1

sn + 1d!
# n!
xn ` =

ƒ x ƒ

n + 1
: 0 for every x .

–1 0 1
x

-1 … x … 1
x = 1.x = -1

x = -1
1>5 - 1>7 +

Á ,
1 - 1>3 +x = 1

x2
7 1x2

6 1.

` un + 1
un
` =

2n - 1
2n + 1

 x2 : x2 .

–1 0 1
x

-1 6 x … 1
1>3 - 1>4 -

Á ,
-1 - 1>2 -x = -11 - 1>2 + 1>3 - 1>4 +

Á ,
x = 1,

ƒ x ƒ 7 1ƒ x ƒ 6 1.

` un + 1
un
` =

n
n + 1 ƒ x ƒ : ƒ x ƒ .

ung ƒ un ƒ ,

THEOREM 18 The Convergence Theorem for Power Series

If the power series converges for

then it converges absolutely for all x with If the series 
diverges for then it diverges for all x with ƒ x ƒ 7 ƒ d ƒ .x = d ,

ƒ x ƒ 6 ƒ c ƒ .x = c Z 0,

 a
q

n = 0
an xn

= a0 + a1 x + a2 x2
+

Á
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Proof Suppose the series converges. Then Hence, there is
an integer N such that for all That is,

(5)

Now take any x such that and consider

There are only a finite number of terms prior to and their sum is finite. Starting
with and beyond, the terms are less than

(6)

because of Inequality (5). But Series (6) is a geometric series with ratio which
is less than 1, since Hence Series (6) converges, so the original series converges
absolutely. This proves the first half of the theorem.

The second half of the theorem follows from the first. If the series diverges at 
and converges at a value with we may take in the first half of the the-
orem and conclude that the series converges absolutely at d. But the series cannot converge
absolutely and diverge at one and the same time. Hence, if it diverges at d, it diverges for
all x with 

To simplify the notation, Theorem 18 deals with the convergence of series of the form
For series of the form we can replace by and apply the re-

sults to the series 

The Radius of Convergence of a Power Series

The theorem we have just proved and the examples we have studied lead to the conclusion
that a power series behaves in one of three possible ways. It might converge
only at or converge everywhere, or converge on some interval of radius R centered
at We prove this as a Corollary to Theorem 18.x = a .

x = a ,
gcnsx - adn

gansx¿dn .
x¿x - agansx - adngan xn .

ƒ x ƒ 7 ƒ d ƒ .

c = x0ƒ x0 ƒ 7 ƒ d ƒ ,x0

x = d

ƒ x ƒ 6 ƒ c ƒ .
r = ƒ x>c ƒ ,

` xc `
N

+ ` xc `
N + 1

+ ` xc `
N + 2

+
Á

ƒ aN xN
ƒ

ƒ aN xN
ƒ ,

ƒ a0 ƒ + ƒ a1 x ƒ +
Á

+ ƒ aN - 1x
N - 1

ƒ + ƒ aN xN
ƒ + ƒ aN + 1xN + 1

ƒ +
Á .

ƒ x ƒ 6 ƒ c ƒ

ƒ an ƒ 6
1

ƒ c ƒ
n for n Ú N .

n Ú N .ƒ an cn
ƒ 6 1

limn:q an cn
= 0.gq

n=0 an cn
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COROLLARY TO THEOREM 18
The convergence of the series is described by one of the following
three possibilities:

1. There is a positive number R such that the series diverges for x with
but converges absolutely for x with The series

may or may not converge at either of the endpoints and

2. The series converges absolutely for every 

3. The series converges at and diverges elsewhere sR = 0d .x = a

x sR = q d .

x = a + R .
x = a - R

ƒ x - a ƒ 6 R .ƒ x - a ƒ 7 R

gcnsx - adn
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11.7 Power Series 799

Proof We assume first that so that the power series is centered at 0. If the se-
ries converges everywhere we are in Case 2. If it converges only at we are in
Case 3. Otherwise there is a nonzero number d such that diverges. The set S of
values of x for which the series converges is nonempty because it contains 0
and a positive number p as well. By Theorem 18, the series diverges for all x with

so for all and S is a bounded set. By the Completeness Prop-
erty of the real numbers (see Appendix 4) a nonempty, bounded set has a least upper
bound R. (The least upper bound is the smallest number with the property that the ele-
ments satisfy ) If then so the series diverges. If

then is not an upper bound for S (because it’s smaller than the least upper
bound) so there is a number such that Since the series 
converges and therefore the series converges by Theorem 18. This proves the
Corollary for power series centered at 

For a power series centered at we set and repeat the argument
with Since when a radius R interval of convergence for cen-
tered at is the same as a radius R interval of convergence for centered
at This establishes the Corollary for the general case.

R is called the radius of convergence of the power series and the interval of radius R
centered at is called the interval of convergence. The interval of convergence may
be open, closed, or half-open, depending on the particular series. At points x with

the series converges absolutely. If the series converges for all values of x,
we say its radius of convergence is infinite. If it converges only at we say its radius
of convergence is zero.

x = a ,
ƒ x - a ƒ 6 R ,

x = a

x = a .
gcnsx - adnx¿ = 0

gcnsx¿dnx = a ,x¿ = 0x¿ .
x¿ = sx - ada Z 0,

a = 0.
gcn ƒ x ƒ

n
gcn bnb H S ,b 7 ƒ x ƒ .b H S

ƒ x ƒƒ x ƒ 6 R ,
gcn xnx x Sƒ x ƒ 7 R Ú p ,x … R .x H S

x H S ,ƒ x ƒ … ƒ d ƒƒ x ƒ 7 ƒ d ƒ ,

gcn xn
gcn dn

x = 0
a = 0,

How to Test a Power Series for Convergence

1. Use the Ratio Test (or nth-Root Test) to find the interval where the series
converges absolutely. Ordinarily, this is an open interval

2. If the interval of absolute convergence is finite, test for convergence or diver-
gence at each endpoint, as in Examples 3a and b. Use a Comparison Test, the
Integral Test, or the Alternating Series Test.

3. If the interval of absolute convergence is the series
diverges for (it does not even converge conditionally), because
the nth term does not approach zero for those values of x.

ƒ x - a ƒ 7 R
a - R 6 x 6 a + R ,

ƒ x - a ƒ 6 R or a - R 6 x 6 a + R .

Term-by-Term Differentiation

A theorem from advanced calculus says that a power series can be differentiated term by
term at each interior point of its interval of convergence.
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EXAMPLE 4 Applying Term-by-Term Differentiation

Find series for and if

Solution

CAUTION Term-by-term differentiation might not work for other kinds of series. For ex-
ample, the trigonometric series

converges for all x. But if we differentiate term by term we get the series

which diverges for all x. This is not a power series, since it is not a sum of positive integer
powers of x.

a
q

n = 1
 
n!cos sn!xd

n2 ,

a
q

n = 1
 
sin sn!xd

n2

 = a
q

n = 2
nsn - 1dxn - 2, -1 6 x 6 1

 ƒ–sxd =
2

s1 - xd3 = 2 + 6x + 12x2
+

Á
+ nsn - 1dxn - 2

+
Á

 = a
q

n = 1
nxn - 1, -1 6 x 6 1

 ƒ¿sxd =
1

s1 - xd2 = 1 + 2x + 3x2
+ 4x3

+
Á

+ nxn - 1
+

Á

 = a
q

n = 0
xn, -1 6 x 6 1

 ƒsxd =
1

1 - x
= 1 + x + x2

+ x3
+ x4

+
Á

+ xn
+

Á

ƒ–sxdƒ¿sxd
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THEOREM 19 The Term-by-Term Differentiation Theorem
If converges for for some it defines
a function ƒ:

Such a function ƒ has derivatives of all orders inside the interval of convergence.
We can obtain the derivatives by differentiating the original series term by term:

and so on. Each of these derived series converges at every interior point of the in-
terval of convergence of the original series.

 ƒ–sxd = a
q

n = 2
nsn - 1dcnsx - adn - 2 ,

 ƒ¿sxd = a
q

n = 1
ncnsx - adn - 1

ƒsxd = a
q

n = 0
cnsx - adn, a - R 6 x 6 a + R .

R 7 0,a - R 6 x 6 a + Rgcnsx - adn
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11.7 Power Series 801

EXAMPLE 5 A Series for 

Identify the function

Solution We differentiate the original series term by term and get

This is a geometric series with first term 1 and ratio so

We can now integrate to get

The series for ƒ(x) is zero when so Hence

(7)

In Section 11.10, we will see that the series also converges to  at   x = ;1.tan-1 x

ƒsxd = x -

x3

3
+

x5

5 -

x7

7 +
Á

= tan-1 x, -1 6 x 6 1.

C = 0.x = 0,

Lƒ¿sxd dx = L  
dx

1 + x2 = tan-1 x + C .

ƒ¿sxd = 1>s1 + x2d

ƒ¿sxd =
1

1 - s -x2d
=

1
1 + x2 .

-x2 ,

ƒ¿sxd = 1 - x2
+ x4

- x6
+

Á, -1 6 x 6 1.

ƒsxd = x -

x3

3
+

x5

5 -
Á, -1 … x … 1.

tan-1 x, -1 … x … 1

THEOREM 20 The Term-by-Term Integration Theorem
Suppose that

converges for Then

converges for and

for a - R 6 x 6 a + R .

Lƒsxd dx = a
q

n = 0
cn 

sx - adn + 1

n + 1
+ C

a - R 6 x 6 a + R

a
q

n =0
cn 

(x - a)n+1

n + 1

a - R 6 x 6 a + R  sR 7 0d .

ƒsxd = a
q

n = 0
cnsx - adn

Term-by-Term Integration

Another advanced calculus theorem states that a power series can be integrated term by
term throughout its interval of convergence.
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USING TECHNOLOGY Study of Series

Series are in many ways analogous to integrals. Just as the number of functions with ex-
plicit antiderivatives in terms of elementary functions is small compared to the number
of integrable functions, the number of power series in x that agree with explicit elemen-
tary functions on x-intervals is small compared to the number of power series that con-
verge on some x-interval. Graphing utilities can aid in the study of such series in much
the same way that numerical integration aids in the study of definite integrals. The ability
to study power series at particular values of x is built into most Computer Algebra Sys-
tems.

If a series converges rapidly enough, CAS exploration might give us an idea of the
sum. For instance, in calculating the early partial sums of the series 
(Section 11.4, Example 2b), Maple returns for This
suggests that the sum of the series is 1.6066 95152 to 10 digits. Indeed,

The remainder after 200 terms is negligible.
However, CAS and calculator exploration cannot do much for us if the series con-

verges or diverges very slowly, and indeed can be downright misleading. For example,
try calculating the partial sums of the series The terms are tiny in
comparison to the numbers we normally work with and the partial sums, even for hun-
dreds of terms, are miniscule. We might well be fooled into thinking that the series con-
verges. In fact, it diverges, as we can see by writing it as a constant
times the harmonic series.

We will know better how to interpret numerical results after studying error estimates
in Section 11.9.

s1>1010dgq

k=1 s1>kd ,

gq

k=1 [1>s1010kd] .

a
q

k = 201
 

1
2k

- 1
= a

q

k = 201
 

1
2k - 1s2 - s1>2k - 1dd

6 a
q

k = 201
 

1
2k - 1 =

1
2199 6 1.25 * 10-60 .

31 … n … 200.Sn = 1.6066 95152
gq

k=1 [1>s2k - 1d]

Notice that the original series in Example 5 converges at both endpoints of the origi-
nal interval of convergence, but Theorem 20 can guarantee the convergence of the differ-
entiated series only inside the interval.

EXAMPLE 6 A Series for 

The series

converges on the open interval Therefore,

It can also be shown that the series converges at to the number ln 2, but that was not
guaranteed by the theorem.

x = 1

 = x -

x2

2
+

x3

3
-

x4

4
+

Á, -1 6 x 6 1.

 ln s1 + xd = L
x

0
 

1
1 + t

 dt = t -

t2

2
+

t3

3
-

t4

4
+

Á d
0

x

-1 6 t 6 1.

1
1 + t

= 1 - t + t2
- t3

+
Á

ln s1 + xd, -1 6 x … 1

Theorem 20
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11.7 Power Series 803

EXAMPLE 7 Multiply the geometric series

by itself to get a power series for for 

Solution Let

and

Then, by the Series Multiplication Theorem,

is the series for The series all converge absolutely for 
Notice that Example 4 gives the same answer because

d
dx

 a 1
1 - x

b =
1

s1 - xd2 .

ƒ x ƒ 6 1.1>s1 - xd2 .

 = 1 + 2x + 3x2
+ 4x3

+
Á

+ sn + 1dxn
+

Á

 Asxd # Bsxd = a
q

n = 0
cn xn

= a
q

n = 0
sn + 1dxn

n + 1 ones
('''')''''*

 = 1 + 1 +
Á

+ 1 = n + 1.

n + 1 terms
(''''''''''')''''''''''''*

cn = a0 bn + a1 bn - 1 +
Á

+ ak bn - k +
Á

+ an b0

 Bsxd = a
q

n = 0
bn xn

= 1 + x + x2
+

Á
+ xn

+
Á

= 1>s1 - xd

 Asxd = a
q

n = 0
an xn

= 1 + x + x2
+

Á
+ xn

+
Á

= 1>s1 - xd

ƒ x ƒ 6 1.1>s1 - xd2 ,

a
q

n = 0
xn

= 1 + x + x2
+

Á
+ xn

+
Á

=
1

1 - x
 , for ƒ x ƒ 6 1,

THEOREM 21 The Series Multiplication Theorem for Power Series
If and converge absolutely for 
and

then converges absolutely to A(x)B(x) for 

aa
q

n = 0
an xnb # aa

q

n = 0
bn xnb = a

q

n = 0
cn xn .

ƒ x ƒ 6 R :gq

n=0 cn xn

cn = a0 bn + a1 bn - 1 + a2 bn - 2 +
Á

+ an - 1b1 + an b0 = a
n

k = 0
ak bn - k ,

ƒ x ƒ 6 R ,Bsxd = gq

n=0 bn xnAsxd = gq

n=0 an xn

Multiplication of Power Series

Another theorem from advanced calculus states that absolutely converging power series
can be multiplied the way we multiply polynomials. We omit the proof.
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