EXERCISES 11.7

Intervals of Convergence

In Exercises 1-32, (a) find the series' radius and interval of convergence. For what values of x does the series converge (b) absolutely, (c) conditionally?

1.
$$\sum_{n=0}^{\infty} x^n$$

2.
$$\sum_{n=0}^{\infty} (x+5)^n$$

3.
$$\sum_{n=0}^{\infty} (-1)^n (4x+1)^n$$

4.
$$\sum_{n=1}^{\infty} \frac{(3x-2)^n}{n}$$

5.
$$\sum_{n=0}^{\infty} \frac{(x-2)^n}{10^n}$$

$$6. \sum_{n=0}^{\infty} (2x)^n$$

$$7. \sum_{n=0}^{\infty} \frac{nx^n}{n+2}$$

8.
$$\sum_{n=1}^{\infty} \frac{(-1)^n (x+2)^n}{n}$$

$$9. \sum_{n=1}^{\infty} \frac{x^n}{n\sqrt{n} \, 3^n}$$

10.
$$\sum_{n=1}^{\infty} \frac{(x-1)^n}{\sqrt{n}}$$

11.
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^n}{n!}$$

12.
$$\sum_{n=0}^{\infty} \frac{3^n x^n}{n!}$$

13.
$$\sum_{n=0}^{\infty} \frac{x^{2n+1}}{n!}$$

14.
$$\sum_{n=0}^{\infty} \frac{(2x+3)^{2n+1}}{n!}$$

15.
$$\sum_{n=0}^{\infty} \frac{x^n}{\sqrt{n^2 + 3}}$$

16.
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^n}{\sqrt{n^2 + 3}}$$

17.
$$\sum_{n=0}^{\infty} \frac{n(x+3)^n}{5^n}$$

18.
$$\sum_{n=0}^{\infty} \frac{nx^n}{4^n(n^2+1)}$$

$$19. \sum_{n=0}^{\infty} \frac{\sqrt{n} x^n}{3^n}$$

20.
$$\sum_{n=1}^{\infty} \sqrt[n]{n} (2x + 5)^n$$

$$21. \sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^n x^n$$

$$22. \sum_{n=1}^{\infty} (\ln n) x^n$$

$$23. \sum_{n=1}^{\infty} n^n x^n$$

24.
$$\sum_{n=0}^{\infty} n!(x-4)^n$$

25.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x+2)}{n2^n}$$

25.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x+2)^n}{n2^n}$$
 26.
$$\sum_{n=0}^{\infty} (-2)^n (n+1)(x-1)^n$$

$$27. \sum_{n=2}^{\infty} \frac{x^n}{n(\ln n)^2}$$

27. $\sum_{n=2}^{\infty} \frac{x^n}{n(\ln n)^2}$ Get the information you need about $\sum_{n=2}^{\infty} \frac{1/(n(\ln n)^2)}{n(\ln n)^2}$ from Section 11.3,

$$28. \sum_{n=2}^{\infty} \frac{x^n}{n \ln n}$$

28. $\sum_{n=2}^{\infty} \frac{x^n}{n \ln n}$ Get the information you need about $\sum_{n=2}^{\infty} \frac{1}{(n \ln n)}$ from Section 11.3,

29.
$$\sum_{n=1}^{\infty} \frac{(4x-5)^{2n+1}}{n^{3/2}}$$

30.
$$\sum_{n=1}^{\infty} \frac{(3x+1)^{n+1}}{2n+2}$$

$$31. \sum_{n=1}^{\infty} \frac{(x+\pi)^n}{\sqrt{n}}$$

32.
$$\sum_{n=0}^{\infty} \frac{(x-\sqrt{2})^{2n+1}}{2^n}$$

In Exercises 33-38, find the series' interval of convergence and, within this interval, the sum of the series as a function of x.

33.
$$\sum_{n=0}^{\infty} \frac{(x-1)^{2n}}{4n}$$

34.
$$\sum_{n=0}^{\infty} \frac{(x+1)^{2n}}{9^n}$$

35.
$$\sum_{n=0}^{\infty} \left(\frac{\sqrt{x}}{2} - 1 \right)^n$$

$$36. \sum_{n=0}^{\infty} (\ln x)^n$$

37.
$$\sum_{n=0}^{\infty} \left(\frac{x^2 + 1}{3} \right)^n$$

38.
$$\sum_{n=0}^{\infty} \left(\frac{x^2 - 1}{2} \right)^n$$

Theory and Examples

39. For what values of x does the series

$$1 - \frac{1}{2}(x - 3) + \frac{1}{4}(x - 3)^{2} + \dots + \left(-\frac{1}{2}\right)^{n}(x - 3)^{n} + \dots$$

converge? What is its sum? What series do you get if you differentiate the given series term by term? For what values of x does the new series converge? What is its sum?

- 40. If you integrate the series in Exercise 39 term by term, what new series do you get? For what values of x does the new series converge, and what is another name for its sum?
- 41. The series

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} - \frac{x^{11}}{11!} + \cdots$$

converges to $\sin x$ for all x.

- **a.** Find the first six terms of a series for cos x. For what values of x should the series converge?
- **b.** By replacing x by 2x in the series for $\sin x$, find a series that converges to $\sin 2x$ for all x.
- c. Using the result in part (a) and series multiplication, calculate the first six terms of a series for $2 \sin x \cos x$. Compare your answer with the answer in part (b).
- **42.** The series

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \cdots$$

converges to e^x for all x.

- **a.** Find a series for $(d/dx)e^x$. Do you get the series for e^x ? Explain your answer.
- **b.** Find a series for $\int e^x dx$. Do you get the series for e^x ? Explain your answer.
- **c.** Replace x by -x in the series for e^x to find a series that converges to e^{-x} for all x. Then multiply the series for e^{x} and e^{-x} to find the first six terms of a series for $e^{-x} \cdot e^{x}$.

805

43. The series

$$\tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \frac{62x^9}{2835} + \cdots$$

converges to $\tan x$ for $-\pi/2 < x < \pi/2$.

- **a.** Find the first five terms of the series for $\ln |\sec x|$. For what values of x should the series converge?
- **b.** Find the first five terms of the series for $\sec^2 x$. For what values of x should this series converge?
- **c.** Check your result in part (b) by squaring the series given for sec *x* in Exercise 44.

44. The series

$$\sec x = 1 + \frac{x^2}{2} + \frac{5}{24}x^4 + \frac{61}{720}x^6 + \frac{277}{8064}x^8 + \cdots$$

converges to sec x for $-\pi/2 < x < \pi/2$.

- **a.** Find the first five terms of a power series for the function $\ln|\sec x + \tan x|$. For what values of x should the series converge?
- **b.** Find the first four terms of a series for sec *x* tan *x*. For what values of *x* should the series converge?

c. Check your result in part (b) by multiplying the series for sec *x* by the series given for tan *x* in Exercise 43.

45. Uniqueness of convergent power series

- **a.** Show that if two power series $\sum_{n=0}^{\infty} a_n x^n$ and $\sum_{n=0}^{\infty} b_n x^n$ are convergent and equal for all values of x in an open interval (-c, c), then $a_n = b_n$ for every n. (*Hint:* Let $f(x) = \sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} b_n x^n$. Differentiate term by term to show that a_n and b_n both equal $f^{(n)}(0)/(n!)$.)
- **b.** Show that if $\sum_{n=0}^{\infty} a_n x^n = 0$ for all x in an open interval (-c, c), then $a_n = 0$ for every n.
- **46.** The sum of the series $\sum_{n=0}^{\infty} (n^2/2^n)$ To find the sum of this series, express 1/(1-x) as a geometric series, differentiate both sides of the resulting equation with respect to x, multiply both sides of the result by x, differentiate again, multiply by x again, and set x equal to 1/2. What do you get? (Source: David E. Dobbs' letter to the editor, Illinois Mathematics Teacher, Vol. 33, Issue 4, 1982, p. 27.)
- **47. Convergence at endpoints** Show by examples that the convergence of a power series at an endpoint of its interval of convergence may be either conditional or absolute.
- **48.** Make up a power series whose interval of convergence is

a.
$$(-3,3)$$

b.
$$(-2,0)$$