EXERCISES 11.8

Finding Taylor Polynomials

In Exercises 1–8, find the Taylor polynomials of orders 0, 1, 2, and 3 generated by f at a.

1.
$$f(x) = \ln x$$
, $a = 1$

1.
$$f(x) = \ln x$$
, $a = 1$ **2.** $f(x) = \ln (1 + x)$, $a = 0$

3.
$$f(x) = 1/x$$
, $a = 2$

3.
$$f(x) = 1/x$$
, $a = 2$ **4.** $f(x) = 1/(x + 2)$, $a = 0$

5.
$$f(x) = \sin x$$
, $a = \pi/4$

5.
$$f(x) = \sin x$$
, $a = \pi/4$ **6.** $f(x) = \cos x$, $a = \pi/4$

7.
$$f(x) = \sqrt{x}$$
, $a = 4$

7.
$$f(x) = \sqrt{x}$$
, $a = 4$ 8. $f(x) = \sqrt{x+4}$, $a = 0$

Finding Taylor Series at x = 0(Maclaurin Series)

Find the Maclaurin series for the functions in Exercises 9–20.

9.
$$e^{-x}$$

10.
$$e^{x/2}$$

11.
$$\frac{1}{1+x}$$

12.
$$\frac{1}{1-x}$$

14.
$$\sin \frac{x}{2}$$

16. $5 \cos \pi x$

17.
$$\cosh x = \frac{e^x + e^{-x}}{2}$$
18. $\sinh x = \frac{e^x - e^{-x}}{2}$

18.
$$\sinh x = \frac{e^x - e^{-x}}{2}$$

19.
$$x^4 - 2x^3 - 5x + 4$$

20.
$$(x + 1)^2$$

Finding Taylor Series

In Exercises 21–28, find the Taylor series generated by f at x = a.

21.
$$f(x) = x^3 - 2x + 4$$
, $a = 2$

22.
$$f(x) = 2x^3 + x^2 + 3x - 8$$
, $a = 1$

23.
$$f(x) = x^4 + x^2 + 1$$
, $a = -2$

24.
$$f(x) = 3x^5 - x^4 + 2x^3 + x^2 - 2$$
, $a = -1$

25.
$$f(x) = 1/x^2$$
, $a = 1$

26.
$$f(x) = x/(1-x)$$
, $a = 0$

27.
$$f(x) = e^x$$
, $a = 2$

28.
$$f(x) = 2^x$$
, $a = 1$

Theory and Examples

29. Use the Taylor series generated by e^x at x = a to show that

$$e^{x} = e^{a} \left[1 + (x - a) + \frac{(x - a)^{2}}{2!} + \cdots \right].$$

30. (Continuation of Exercise 29.) Find the Taylor series generated by e^x at x = 1. Compare your answer with the formula in Exercise 29.

31. Let f(x) have derivatives through order n at x = a. Show that the Taylor polynomial of order n and its first n derivatives have the same values that f and its first n derivatives have at x = a.

32. Of all polynomials of degree $\leq n$, the Taylor polynomial of order n gives the best approximation Suppose that f(x) is differentiable on an interval centered at x = a and that g(x) = $b_0 + b_1(x - a) + \cdots + b_n(x - a)^n$ is a polynomial of degree n with constant coefficients b_0, \ldots, b_n . Let E(x) = f(x) - g(x). Show that if we impose on g the conditions

a.
$$E(a) = 0$$

The approximation error is zero at x = a.

811

b.
$$\lim_{x \to a} \frac{E(x)}{(x-a)^n} = 0$$
, The error is negligible when compared to $(x-a)^n$.

$$g(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \cdots + \frac{f^{(n)}(a)}{n!}(x - a)^n.$$

Thus, the Taylor polynomial $P_n(x)$ is the only polynomial of degree less than or equal to n whose error is both zero at x = aand negligible when compared with $(x - a)^n$.

Quadratic Approximations

The Taylor polynomial of order 2 generated by a twice-differentiable function f(x) at x = a is called the quadratic approximation of f at x = a. In Exercises 33–38, find the (a) linearization (Taylor polynomial of order 1) and (b) quadratic approximation of f at x = 0.

$$33. \ f(x) = \ln(\cos x)$$

34.
$$f(x) = e^{\sin x}$$

35.
$$f(x) = 1/\sqrt{1-x^2}$$

$$36. \ f(x) = \cosh x$$

$$37. \ f(x) = \sin x$$

38.
$$f(x) = \tan x$$