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11.9 Convergence of Taylor Series; Error Estimates

This section addresses the two questions left unanswered by Section 11.8:

1. When does a Taylor series converge to its generating function?

2. How accurately do a function’s Taylor polynomials approximate the function on a
given interval?

Taylor's Theorem

We answer these questions with the following theorem.
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THEOREM 22 Taylor's Theorem

If f and its first n derivatives f', f”, ..., f* are continuous on the closed interval
between a and b, and " is differentiable on the open interval between @ and b,
then there exists a number ¢ between a and b such that

16 = 1@ + fab - a) + 5 b = ap 4 -
@ e
+ ! (b —a) +m(b—a) L

Taylor’s Theorem is a generalization of the Mean Value Theorem (Exercise 39). There is a
proof of Taylor’s Theorem at the end of this section.

When we apply Taylor’s Theorem, we usually want to hold a fixed and treat b as an in-
dependent variable. Taylor’s formula is easier to use in circumstances like these if we
change b to x. Here is a version of the theorem with this change.

Taylor's Formula
If f has derivatives of all orders in an open interval / containing a, then for each
positive integer n and for each x in 7,
_ , f"(a) 2
f) = fla) + fa)x —a) + 5~ (x —a) + -
o
Dy R0, <1>
where
— f(n+1)(c) n+l
R,(x) = o+ 1) (x —a) for some ¢ between a and x. (2)

When we state Taylor’s theorem this way, it says that for each x e /,
f(x) = P,(x) + Ru(x).

The function R,(x) is determined by the value of the (n + 1)st derivative f("H) at a point
¢ that depends on both « and x, and which lies somewhere between them. For any value of
n we want, the equation gives both a polynomial approximation of f of that order and a
formula for the error involved in using that approximation over the interval /.

Equation (1) is called Taylor’s formula. The function R,(x) is called the remainder
of order n or the error term for the approximation of f by P,(x) over I. If R,(x) — 0 as
n —> o0 for all x € [, we say that the Taylor series generated by f at x = a converges to f
on /, and we write

oo g(k)
fo = 3 - a
=

Often we can estimate R, without knowing the value of ¢, as the following example illustrates.
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EXAMPLE 1 The Taylor Series for e* Revisited

Show that the Taylor series generated by f(x) = ¢* at x = 0 converges to f(x) for every
real value of x.

Solution The function has derivatives of all orders throughout the interval / =
(=00, 00). Equations (1) and (2) with f(x) = e*anda = 0 give

2 n Pol ial from Section
X L L olynomial Irom S>€ecC
er=1+x+ 21 ot M + Ry(x) 11.8, Example 2
and
e
R,(x) = mx”“ for some ¢ between 0 and x.
n !

Since e* is an increasing function of x, e lies between e’ = 1 and e*. When x is negative,
soisc,and e¢ < 1.When x is zero, e* = 1 and R,(x) = 0. When x is positive, so is ¢, and
e¢ < e*.Thus,

ntl
|R.(x)| = (1|1+|—1)' whenx = 0,
and
[R,(x)| < e"% whenx > 0.
Finally, because
. ot .
nhl%om =0 for every x, Section 11.1

lim R,(x) = 0, and the series converges to e* for every x. Thus,
n—>0o0

k 2 k

X S
iR TR i (3)

et =

oMg

k

Estimating the Remainder

It is often possible to estimate R,(x) as we did in Example 1. This method of estimation is
so convenient that we state it as a theorem for future reference.

THEOREM 23 The Remainder Estimation Theorem

If there is a positive constant M such that | f”*D(¢)| = M for all  between x and
a, inclusive, then the remainder term R,(x) in Taylor’s Theorem satisfies the in-
equality
| _ |n+1
< -
(R = M =0
If this condition holds for every n and the other conditions of Taylor’s Theorem
are satisfied by f, then the series converges to f(x).
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We are now ready to look at some examples of how the Remainder Estimation Theo-
rem and Taylor’s Theorem can be used together to settle questions of convergence. As you
will see, they can also be used to determine the accuracy with which a function is approxi-
mated by one of its Taylor polynomials.

EXAMPLE 2 The Taylor Series for sin xat x = 0

Show that the Taylor series for sin x at x = 0 converges for all x.

Solution The function and its derivatives are

fx) = sin x, f'(x) = oS X,
f'x) = —sin x, f"(x) = — COS X,
f®(x) = (=1)Fsinx, FPD(x) = (=1)fcos x,

SO
f@0)=0 and  f0) = (-1

The series has only odd-powered terms and, forn = 2k + 1, Taylor’s Theorem gives

3 5 (_l)kx2k+1
. X X
sinx = x — 37 + 5T + m + Ry 1(x).

All the derivatives of sin x have absolute values less than or equal to 1, so we can apply the
Remainder Estimation Theorem with M = 1 to obtain

|x|2k+2

R0 =1y

Since (|x|**2/(2k + 2)!) — 0 as k— oo, whatever the value of x, Ry+(x) — 0, and the
Maclaurin series for sin x converges to sin x for every x. Thus,

00 k 2k+1
. . (=1 _ x> ¥ x!
s1nx—];)(2k+l)! —x—3!+5!—7!+~~. (4)

EXAMPLE 3  The Taylor Series for cos x at x = 0 Revisited

Show that the Taylor series for cos x at x = 0 converges to cos x for every value of x.

Solution We add the remainder term to the Taylor polynomial for cos x (Section 11.8,
Example 3) to obtain Taylor’s formula for cos x with n = 2k:

2k
(2k)!

2 4
cosx=1—%+%—-~+(—l)k

+ Rou(x).
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Because the derivatives of the cosine have absolute value less than or equal to 1, the Re-
mainder Estimation Theorem with M = 1 gives

|x|2k+1

R0 = 1y

For every value of x, Ry, — 0 as k — 00 Therefore, the series converges to cos x for every
value of x. Thus,

_ - ( 1)kx2k_ x? x? x$
Cosx—zw—l—i'i‘ﬂ—a‘i‘"'. (5)

EXAMPLE 4  Finding a Taylor Series by Substitution

Find the Taylor series for cos 2x at x = 0.

Solution We can find the Taylor series for cos 2x by substituting 2x for x in the Taylor
series for cos x:

< (=1Df2x)* (2x) (20 (2x0)° o
cos2x = — 0 =1 - + — + - Equation (5)
= (2! 2! 4! 6! with 2x for x
. 222 Mt 25
TR TR TR

|
—_
.
N
=
—~ N
[\
N

Equation (5) holds for —o0 < x < o0, implying that it holds for —00 < 2x < 00, so
the newly created series converges for all x. Exercise 45 explains why the series is in fact
the Taylor series for cos 2x. [

EXAMPLE 5  Finding a Taylor Series by Multiplication

Find the Taylor series for x sinx at x = 0.

Solution We can find the Taylor series for x sin x by multiplying the Taylor series for

sin x (Equation 4) by x:
3 5 7
xsinx=x(x—§!+§!—);!+-~->
4 6 8
— 2 _Xx X _x
I TR TR T

The new series converges for all x because the series for sin x converges for all x. Exer-
cise 45 explains why the series is the Taylor series for x sin x. [

Truncation Error

The Taylor series for e* at x = 0 converges to e for all x. But we still need to decide how
many terms to use to approximate e* to a given degree of accuracy. We get this informa-
tion from the Remainder Estimation Theorem.
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EXAMPLE 6  Calculate e with an error of less than 107,

Solution We can use the result of Example 1 with x = 1 to write

1 1
e=1+1+2—!+-~-+E+Rn(l),

with

: 1
R,(1) = e¢——— for some ¢ between 0 and 1.
A1) (n + 1)
For the purposes of this example, we assume that we know that e < 3. Hence, we are
certain that

_
(n + 1)

3
< < —
R =G
because 1 < e < 3for0 <c < 1.
By experiment we find that 1/9! > 107°, while 3/10! < 107°. Thus we should take
(n + 1) to be at least 10, or 1 to be at least 9. With an error of less than 107°,
1

_ DA SIS 1Y
e=1+1+5+3 4+ ~2718282. L

EXAMPLE 7  For what values of x can we replace sin x by x — (x*/3!) with an error of
magnitude no greater than 3 X 1074?

Solution Here we can take advantage of the fact that the Taylor series for sin x is an al-
ternating series for every nonzero value of x. According to the Alternating Series Estima-
tion Theorem (Section 11.6), the error in truncating

3

sinx=x—%i+%—«--
after (x*/3!) is no greater than
| P
5! 120~

Therefore the error will be less than or equal to 3 X 107#if

|x |5 —4 \5/774 Rounded down,
Tog <3 X 10 or |x| < V360 x 107~ 0514, O

The Alternating Series Estimation Theorem tells us something that the Remainder
Estimation Theorem does not: namely, that the estimate x — (x>/3!) for sin x is an under-
estimate when x is positive because then x°/120 is positive.

Figure 11.15 shows the graph of sin x, along with the graphs of a number of its ap-
proximating Taylor polynomials. The graph of P3(x) = x — (x*/3!) is almost indistin-
guishable from the sine curve when —1 = x =< 1.
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FIGURE 11.15 The polynomials

n (_l)kx2k+l

Pyui1(x) = 12) 2k + 1)

converge to sin x as n — 00, Notice how closely P3(x)
approximates the sine curve for x < 1 (Example 7).

You might wonder how the estimate given by the Remainder Estimation Theorem com-
pares with the one just obtained from the Alternating Series Estimation Theorem. If we

write
3
= o — X
sinx = x 30 + R3,
then the Remainder Estimation Theorem gives
4 4
|R | =1- |xi| = ﬁ
3= 4 24>

which is not as good. But if we recognize that x — (x%/3!) =0 + x + Ox? —
(x*/31) + 0x*is the Taylor polynomial of order 4 as well as of order 3, then

x3

sinx=x—§+O+R4,

and the Remainder Estimation Theorem with M = 1 gives

B RP
[Rel =1+ 751 = g~
This is what we had from the Alternating Series Estimation Theorem. [

Combining Taylor Series

On the intersection of their intervals of convergence, Taylor series can be added, subtracted,
and multiplied by constants, and the results are once again Taylor series. The Taylor series
for f(x) + g(x) is the sum of the Taylor series for f(x) and g(x) because the nth derivative
of f+ gis /" + g™ and so on. Thus we obtain the Taylor series for (1 + cos 2x)/2 by
adding 1 to the Taylor series for cos 2x and dividing the combined results by 2, and the
Taylor series for sinx + cosx is the term-by-term sum of the Taylor series for sin x and
cOS X.
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Euler’s Identity

As you may recall, a complex number is a number of the form a + bi, where a and b are

real numbers and i = V —1. If we substitute x = i (6 real) in the Taylor series for e* and
use the relations

2 =1, i =i% = —i, it =% =1, P =i% =,
and so on, to simplify the result, we obtain
S TH TR TR TR T T
2 o e ) 0 0 .
:<1_2!+4!_6!+.” + g 9—§+§—~~- = cosf + isinf.

This does not prove that e’ = cos § + i sin 8 because we have not yet defined what it
means to raise e to an imaginary power. Rather, it says how to define e’ to be consistent
with other things we know.

DEFINITION

For any real number 6, ¢ = cos @ + isinf. (6)

Equation (6), called Euler’s identity, enables us to define e?** to be e?- " for any
complex number a + bi. One consequence of the identity is the equation

When written in the form e’™ + 1 = 0, this equation combines five of the most important
constants in mathematics.

A Proof of Taylor's Theorem

We prove Taylor’s theorem assuming @ < b. The proof for @ > b is nearly the same.
The Taylor polynomial

” (n)
P = f@ + @ - a) + D = @ e W gy

and its first » derivatives match the function f and its first n derivatives at x = a. We do
not disturb that matching if we add another term of the form K(x — a)"*!, where K is any
constant, because such a term and its first » derivatives are all equal to zero at x = a. The
new function

d’n(x) = Pn(x) + K(x - a)n+1

and its first n derivatives still agree with f and its first » derivatives at x = a.
We now choose the particular value of K that makes the curve y = ¢,(x) agree with
the original curve y = f(x) at x = b. In symbols,
f(b) — P,(b)

f(b) = Pu(b) + K(b — a)”“, or K = W (7)
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With K defined by Equation (7), the function
Fx) = f(x) = dulx)

measures the difference between the original function f and the approximating function ¢,
for each x in [a, b].

We now use Rolle’s Theorem (Section 4.2). First, because F(a) = F(b) = 0 and both
F and F' are continuous on [a, b], we know that

F'(c;) =0 for some ¢ in (a, b).

Next, because F'(a) = F'(c;) = 0 and both F" and F” are continuous on [a, ¢;], we know

that
F'(c) =0 for some ¢ in (a, c1).
Rolle’s Theorem, applied successively to F”, F", ..., F"~V implies the existence of
c3 in(a, c) such that £ (¢3) = 0,

¢y in(a,c3) such that F®(c4) = 0,

¢, in(a,cp—1) such that F “(¢,) = 0.

Finally, because F ™ is continuous on [a, c,] and differentiable on (a,c,), and
F"(a) = F"(¢,) = 0, Rolle’s Theorem implies that there is a number ¢,+; in (a, ¢,)

such that
F (1) = 0. (8)
If we differentiate F(x) = f(x) — P,(x) — K(x — a)""' atotal of n + 1 times, we get
F(x) = f"*D(x) — 0 — (n + 1)!K. (9)
Equations (8) and (9) together give
A .
K= m for some number ¢ = ¢, in (a, b). (10)
Equations (7) and (10) give
n+1
f(b) = Py(b) + M(b —a)"th
This concludes the proof. u
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