
822 Chapter 11: Infinite Sequences and Series

Applications of Power Series

This section introduces the binomial series for estimating powers and roots and shows how
series are sometimes used to approximate the solution of an initial value problem, to eval-
uate nonelementary integrals, and to evaluate limits that lead to indeterminate forms. We
provide a self-contained derivation of the Taylor series for and conclude with a ref-
erence table of frequently used series.

The Binomial Series for Powers and Roots

The Taylor series generated by when m is constant, is

(1)

This series, called the binomial series, converges absolutely for To derive theƒ x ƒ 6 1.

+

msm - 1dsm - 2d Á sm - k + 1d
k!

 xk
+

Á .

1 + mx +

msm - 1d
2!

 x2
+

msm - 1dsm - 2d
3!

 x3
+

Á

ƒsxd = s1 + xdm ,

tan-1 x

11.10

4100 AWL/Thomas_ch11p746-847  8/25/04  2:41 PM  Page 822

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html


11.10 Applications of Power Series 823

series, we first list the function and its derivatives:

We then evaluate these at and substitute into the Taylor series formula to obtain
Series (1).

If m is an integer greater than or equal to zero, the series stops after terms
because the coefficients from on are zero.

If m is not a positive integer or zero, the series is infinite and converges for 
To see why, let be the term involving Then apply the Ratio Test for absolute conver-
gence to see that

Our derivation of the binomial series shows only that it is generated by and
converges for The derivation does not show that the series converges to 
It does, but we omit the proof.

s1 + xdm .ƒ x ƒ 6 1.
s1 + xdm

` uk + 1
uk
` = ` m - k

k + 1
 x ` : ƒ x ƒ as k : q .

xk .uk

ƒ x ƒ 6 1.
k = m + 1

sm + 1d

x = 0

 ƒskdsxd = msm - 1dsm - 2d Á sm - k + 1ds1 + xdm - k .

 o

 ƒ‡sxd = msm - 1dsm - 2ds1 + xdm - 3

 ƒ–sxd = msm - 1ds1 + xdm - 2

 ƒ¿sxd = ms1 + xdm - 1

 ƒsxd = s1 + xdm

The Binomial Series

For 

where we define

and
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EXAMPLE 1 Using the Binomial Series

If 

and

a-1

k
b =

-1s -2ds -3d Á s -1 - k + 1d
k!

= s -1dk ak!
k!
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With these coefficient values and with x replaced by the binomial series formula gives
the familiar geometric series

EXAMPLE 2 Using the Binomial Series

We know from Section 3.8, Example 1, that for small. With
the binomial series gives quadratic and higher-order approximations as well,

along with error estimates that come from the Alternating Series Estimation Theorem:

Substitution for x gives still other approximations. For example,

Power Series Solutions of Differential Equations
and Initial Value Problems

When we cannot find a relatively simple expression for the solution of an initial value prob-
lem or differential equation, we try to get information about the solution in other ways. One
way is to try to find a power series representation for the solution. If we can do so, we im-
mediately have a source of polynomial approximations of the solution, which may be all
that we really need. The first example (Example 3) deals with a first-order linear differen-
tial equation that could be solved with the methods of Section 9.2. The example shows how,
not knowing this, we can solve the equation with power series. The second example (Exam-
ple 4) deals with an equation that cannot be solved analytically by previous methods.

EXAMPLE 3 Series Solution of an Initial Value Problem

Solve the initial value problem

Solution We assume that there is a solution of the form

(2)y = a0 + a1 x + a2 x2
+
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+
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11.10 Applications of Power Series 825

Our goal is to find values for the coefficients that make the series and its first derivative

(3)

satisfy the given differential equation and initial condition. The series is the differ-
ence of the series in Equations (2) and (3):

(4)

If y is to satisfy the equation the series in Equation (4) must equal x. Since
power series representations are unique (Exercise 45 in Section 11.7), the coefficients in
Equation (4) must satisfy the equations

We can also see from Equation (2) that when so that (this being the
initial condition). Putting it all together, we have

Substituting these coefficient values into the equation for y (Equation (2)) gives

The solution of the initial value problem is 
As a check, we see that

and

EXAMPLE 4 Solving a Differential Equation

Find a power series solution for

(5)y– + x2y = 0.

y¿ - y = s2ex
- 1d - s2ex

- 1 - xd = x .

ys0d = 2e0
- 1 - 0 = 2 - 1 = 1

y = 2ex
- 1 - x .

 = 1 + x + 2sex
- 1 - xd = 2ex

- 1 - x .
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+
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+
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('''''')''''''*

the Taylor series for ex
- 1 - x
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2!
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+
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 a3 =

a2
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2
3 # 2

=
2
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2
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2
=

1 + 1
2

=
2
2

,

a0 = 1x = 0,y = a0

 o

 nan - an - 1 = 0

 o

 3a3 - a2 = 0

 2a2 - a1 = 1

 a1 - a0 = 0

y¿ - y = x ,

 + snan - an - 1dxn - 1
+

Á .

 y¿ - y = sa1 - a0d + s2a2 - a1dx + s3a3 - a2dx2
+

Á

y¿ - y

y¿ = a1 + 2a2 x + 3a3 x2
+

Á
+ nan xn - 1

+
Á

ak

Constant terms

Coefficients of x

Coefficients of x2

o

Coefficients of xn - 1

o
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Solution We assume that there is a solution of the form

(6)

and find what the coefficients have to be to make the series and its second derivative

(7)

satisfy Equation (5). The series for is times the right-hand side of Equation (6):

(8)

The series for is the sum of the series in Equations (7) and (8):

(9)

Notice that the coefficient of in Equation (8) is If y and its second derivative 
are to satisfy Equation (5), the coefficients of the individual powers of x on the right-hand
side of Equation (9) must all be zero:

(10)

and for all 

(11)

We can see from Equation (6) that

In other words, the first two coefficients of the series are the values of y and at 
Equations in (10) and the recursion formula in Equation (11) enable us to evaluate all the
other coefficients in terms of and 

The first two of Equations (10) give

Equation (11) shows that if then so we conclude that

and whenever or is zero. For the other coefficients we have

so that

and
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5 # 4
, a9 =

-a5

9 # 8
=

a1

4 # 5 # 8 # 9

 a12 =

-a8

11 # 12
=

-a0
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 +
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+
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11.10 Applications of Power Series 827

The answer is best expressed as the sum of two separate series—one multiplied by the
other by 

Both series converge absolutely for all x, as is readily seen by the Ratio Test.

Evaluating Nonelementary Integrals

Taylor series can be used to express nonelementary integrals in terms of series. Integrals
like arise in the study of the diffraction of light.

EXAMPLE 5 Express as a power series.

Solution From the series for sin x we obtain

Therefore,

EXAMPLE 6 Estimating a Definite Integral

Estimate with an error of less than 0.001.

Solution From the indefinite integral in Example 5,

The series alternates, and we find by experiment that

is the first term to be numerically less than 0.001. The sum of the preceding two terms gives

With two more terms we could estimate

with an error of less than With only one term beyond that we have
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with an error of about To guarantee this accuracy with the error formula for
the Trapezoidal Rule would require using about 8000 subintervals.

Arctangents

In Section 11.7, Example 5, we found a series for by differentiating to get

and integrating to get

However, we did not prove the term-by-term integration theorem on which this conclusion
depended. We now derive the series again by integrating both sides of the finite formula

(12)

in which the last term comes from adding the remaining terms as a geometric series with
first term and ratio Integrating both sides of Equation (12)
from to gives

where

The denominator of the integrand is greater than or equal to 1; hence

If the right side of this inequality approaches zero as Therefore
if and

(13)

We take this route instead of finding the Taylor series directly because the formulas for the
higher-order derivatives of are unmanageable. When we put in Equation (13),
we get Leibniz’s formula:

Because this series converges very slowly, it is not used in approximating to many deci-
mal places. The series for converges most rapidly when x is near zero. For that rea-
son, people who use the series for to compute use various trigonometric identities.ptan-1 x
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.
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tan-1 x = x -

x3

3
+

x5

5 -

x7

7 +
Á

+ s -1dn 
x2n + 1

2n + 1
+ Rnsxd ,

t = xt = 0
r = - t2 .a = s -1dn + 1t2n + 2

1
1 + t2 = 1 - t2

+ t4
- t6

+
Á

+ s -1dnt2n
+

s -1dn + 1t2n + 2

1 + t2 ,

tan-1 x = x -

x3

3
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11.10 Applications of Power Series 829

For example, if

then

and

Now Equation (13) may be used with to evaluate and with to
give The sum of these results, multiplied by 4, gives 

Evaluating Indeterminate Forms

We can sometimes evaluate indeterminate forms by expressing the functions involved as
Taylor series.

EXAMPLE 7 Limits Using Power Series

Evaluate

Solution We represent ln x as a Taylor series in powers of This can be accom-
plished by calculating the Taylor series generated by ln x at directly or by replacing
x by in the series for in Section 11.7, Example 6. Either way, we obtain

from which we find that

EXAMPLE 8 Limits Using Power Series

Evaluate

lim
x:0

 
sin x - tan x

x3 .

lim 
x:1

 
ln x

x - 1
= lim

x:1
 a1 -

1
2

 sx - 1d +
Áb = 1.

ln x = sx - 1d -
1
2

 sx - 1d2
+

Á ,

ln (1 + x)x - 1
x = 1

x - 1.

lim
x:1

 
ln x

x - 1
.

p .tan-1 (1>3).
x = 1>3tan-1 (1>2)x = 1>2

p
4

= a + b = tan-1 
1
2

+ tan-1 
1
3

.

tan sa + b d =

tan a + tan b

1 - tan a tan b
=

1
2 +

1
3

1 -
1
6

= 1 = tan 
p
4

a = tan-1 
1
2
 and b = tan-1 

1
3

,
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Solution The Taylor series for sin x and tan x, to terms in are

Hence,

and

If we apply series to calculate we not only find the limit suc-
cessfully but also discover an approximation formula for csc x.

EXAMPLE 9 Approximation Formula for csc x

Find 

Solution

Therefore,

From the quotient on the right, we can see that if is small, then

1
sin x

-
1
x L x # 1

3!
=

x
6
 or csc x L

1
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x
6

.

 ƒ x ƒ 
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Á
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Á
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Áb
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1
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 = -
1
2

.
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x:0

 
sin x - tan x
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x:0

 a- 1
2

-
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8
-

Áb

sin x - tan x = -

x3

2
-

x5

8
-

Á
= x3 a- 1

2
-
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8
-

Áb
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3!
+
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5!
-
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3
+

2x5
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+

Á .

x5 ,
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11.10 Applications of Power Series 831

TABLE 11.1 Frequently used Taylor series

Binomial Series

where

Note: To write the binomial series compactly, it is customary to define to be 1 and to take (even in the usually

excluded case where ), yielding If m is a positive integer, the series terminates at and the

result converges for all x.

xms1 + xdm
= gq

k=0 am
k
bxk .x = 0

x0
= 1am

0
b

am
1
b = m, am

2
b =

msm - 1d
2!

, am
k
b =

msm - 1d Á sm - k + 1d
k!

 for k Ú 3.

 = 1 + a
q

k = 1
 am

k
bxk, ƒ x ƒ 6 1,

 s1 + xdm
= 1 + mx +

msm - 1dx2

2!
+
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3!
+

Á
+
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+

Á
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x3

3
+

x5

5 -
Á

+ s -1dn 
x2n + 1

2n + 1
+

Á
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q

n = 0
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3
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Á
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+
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q

n = 0
 

x2n + 1
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x2

2
+

x3

3
-

Á
+ s -1dn - 1 

xn

n +
Á

= a
q

n = 1
 
s -1dn - 1xn

n , -1 6 x … 1

cos x = 1 -

x2

2!
+

x4

4!
-

Á
+ s -1dn 

x2n

s2nd!
+

Á
= a

q

n = 0
 
s -1dnx2n
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, ƒ x ƒ 6 q

sin x = x -

x3

3!
+

x5

5!
-

Á
+ s -1dn 
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+

Á
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q
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+

Á
+
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+

Á
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q

n = 0
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1
1 + x
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-

Á
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+
Á

= a
q

n = 0
s -1dnxn, ƒ x ƒ 6 1

1
1 - x

= 1 + x + x2
+

Á
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+
Á
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