Chapter 1

Practice Exercises

Convergent or Divergent Sequences

Which of the sequences whose nth terms appear in Exercises 1–18 converge, and which diverge? Find the limit of each convergent seauence.

1.
$$a_n = 1 + \frac{(-1)^n}{n}$$

2.
$$a_n = \frac{1 - (-1)^n}{\sqrt{n}}$$

3.
$$a_n = \frac{1-2^n}{2^n}$$

4.
$$a_n = 1 + (0.9)^n$$

$$5. \ a_n = \sin \frac{n\pi}{2}$$

6.
$$a_n = \sin n\pi$$

7.
$$a_n = \frac{\ln{(n^2)}}{n}$$

8.
$$a_n = \frac{\ln{(2n+1)}}{n}$$

$$9. \ a_n = \frac{n + \ln n}{n}$$

10.
$$a_n = \frac{\ln(2n^3 + 1)}{n}$$

11.
$$a_n = \left(\frac{n-5}{n}\right)^n$$

12.
$$a_n = \left(1 + \frac{1}{n}\right)^{-n}$$

13.
$$a_n = \sqrt[n]{\frac{3^n}{n}}$$

14.
$$a_n = \left(\frac{3}{n}\right)^{1/n}$$

15.
$$a_n = n(2^{1/n} - 1)$$

16.
$$a_n = \sqrt[n]{2n+1}$$

17.
$$a_n = \frac{(n+1)!}{n!}$$

18.
$$a_n = \frac{(-4)^n}{n!}$$

Convergent Series

Find the sums of the series in Exercises 19–24.

19.
$$\sum_{n=3}^{\infty} \frac{1}{(2n-3)(2n-1)}$$
 20.
$$\sum_{n=2}^{\infty} \frac{-2}{n(n+1)}$$

20.
$$\sum_{n=2}^{\infty} \frac{-2}{n(n+1)}$$

21.
$$\sum_{n=1}^{\infty} \frac{9}{(3n-1)(3n+2)}$$
 22. $\sum_{n=3}^{\infty} \frac{-8}{(4n-3)(4n+1)}$

22.
$$\sum_{n=3}^{\infty} \frac{-8}{(4n-3)(4n+1)}$$

23.
$$\sum_{n=0}^{\infty} e^{-n}$$

24.
$$\sum_{n=1}^{\infty} (-1)^n \frac{3}{4^n}$$

Convergent or Divergent Series

Which of the series in Exercises 25-40 converge absolutely, which converge conditionally, and which diverge? Give reasons for your answers.

$$25. \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$

26.
$$\sum_{n=1}^{\infty} \frac{-5}{n}$$

26.
$$\sum_{n=1}^{\infty} \frac{-5}{n}$$
 27. $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$

28.
$$\sum_{n=1}^{\infty} \frac{1}{2n^3}$$

29.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\ln(n+1)}$$
 30. $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$

30.
$$\sum_{n=2}^{\infty} \frac{1}{n (\ln n)^2}$$

$$31. \sum_{n=1}^{\infty} \frac{\ln n}{n^3}$$

$$32. \sum_{n=3}^{\infty} \frac{\ln n}{\ln (\ln n)}$$

33.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n\sqrt{n^2+1}}$$

34.
$$\sum_{n=1}^{\infty} \frac{(-1)^n 3n^2}{n^3 + 1}$$

35.
$$\sum_{n=1}^{\infty} \frac{n+1}{n!}$$

36.
$$\sum_{n=1}^{\infty} \frac{(-1)^n (n^2 + 1)}{2n^2 + n - 1}$$

37.
$$\sum_{n=1}^{\infty} \frac{(-3)^n}{n!}$$

38.
$$\sum_{n=1}^{\infty} \frac{2^n 3^n}{n^n}$$

39.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+1)(n+2)}}$$
 40. $\sum_{n=2}^{\infty} \frac{1}{n\sqrt{n^2-1}}$

40.
$$\sum_{n=2}^{\infty} \frac{1}{n\sqrt{n^2-1}}$$

Power Series

In Exercises 41–50, (a) find the series' radius and interval of convergence. Then identify the values of x for which the series converges (b) absolutely and (c) conditionally.

41.
$$\sum_{n=1}^{\infty} \frac{(x+4)^n}{n3^n}$$

42.
$$\sum_{n=1}^{\infty} \frac{(x-1)^{2n-2}}{(2n-1)!}$$

43.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1} (3x-1)^n}{n^2}$$
 44.
$$\sum_{n=0}^{\infty} \frac{(n+1)(2x+1)^n}{(2n+1)2^n}$$

44.
$$\sum_{n=0}^{\infty} \frac{(n+1)(2x+1)^n}{(2n+1)2^n}$$

$$45. \sum_{n=1}^{\infty} \frac{x^n}{n^n}$$

$$46. \sum_{n=1}^{\infty} \frac{x^n}{\sqrt{n}}$$

47.
$$\sum_{n=0}^{\infty} \frac{(n+1)x^{2n-1}}{3^n}$$

47.
$$\sum_{n=0}^{\infty} \frac{(n+1)x^{2n-1}}{3^n}$$
 48.
$$\sum_{n=0}^{\infty} \frac{(-1)^n(x-1)^{2n+1}}{2n+1}$$

$$49. \sum_{n=1}^{\infty} (\operatorname{csch} n) x^n$$

$$50. \sum_{n=1}^{\infty} (\coth n) x^n$$

Maclaurin Series

Each of the series in Exercises 51-56 is the value of the Taylor series at x = 0 of a function f(x) at a particular point. What function and what point? What is the sum of the series?

51.
$$1 - \frac{1}{4} + \frac{1}{16} - \dots + (-1)^n \frac{1}{4^n} + \dots$$

52.
$$\frac{2}{3} - \frac{4}{18} + \frac{8}{81} - \dots + (-1)^{n-1} \frac{2^n}{n3^n} + \dots$$

53.
$$\pi - \frac{\pi^3}{3!} + \frac{\pi^5}{5!} - \dots + (-1)^n \frac{\pi^{2n+1}}{(2n+1)!} + \dots$$

54.
$$1 - \frac{\pi^2}{9 \cdot 2!} + \frac{\pi^4}{81 \cdot 4!} - \dots + (-1)^n \frac{\pi^{2n}}{3^{2n} (2n)!} + \dots$$

55.
$$1 + \ln 2 + \frac{(\ln 2)^2}{2!} + \dots + \frac{(\ln 2)^n}{n!} + \dots$$

56.
$$\frac{1}{\sqrt{3}} - \frac{1}{9\sqrt{3}} + \frac{1}{45\sqrt{3}} - \cdots + (-1)^{n-1} \frac{1}{(2n-1)(\sqrt{3})^{2n-1}} + \cdots$$

Find Taylor series at x = 0 for the functions in Exercises 57–64.

57.
$$\frac{1}{1-2x}$$

58.
$$\frac{1}{1+x^3}$$

59.
$$\sin \pi x$$

60.
$$\sin \frac{2x}{3}$$

61.
$$\cos(x^{5/2})$$

62.
$$\cos \sqrt{5x}$$

63.
$$e^{(\pi x/2)}$$

64.
$$e^{-x^2}$$

Taylor Series

In Exercises 65-68, find the first four nonzero terms of the Taylor series generated by f at x = a.

65.
$$f(x) = \sqrt{3 + x^2}$$
 at $x = -1$

66.
$$f(x) = 1/(1-x)$$
 at $x = 2$

67.
$$f(x) = 1/(x+1)$$
 at $x = 3$

68.
$$f(x) = 1/x$$
 at $x = a > 0$

Initial Value Problems

Use power series to solve the initial value problems in Exercises 69–76.

69.
$$v' + v = 0$$
, $v(0) = -1$

69.
$$y' + y = 0$$
, $y(0) = -1$ **70.** $y' - y = 0$, $y(0) = -3$

71.
$$y' + 2y = 0$$
, $y(0) = 3$ **72.** $y' + y = 1$, $y(0) = 0$

72.
$$y' + y = 1$$
, $y(0) = 0$

73.
$$y' - y = 3x$$
, $y(0) = -1$ **74.** $y' + y = x$, $y(0) = 0$

74.
$$y + y = x$$
, $y(0) = 0$

75.
$$y' - y = x$$
, $y(0) = 1$

75.
$$y' - y = x$$
, $y(0) = 1$ **76.** $y' - y = -x$, $y(0) = 2$

Nonelementary Integrals

Use series to approximate the values of the integrals in Exercises 77–80 with an error of magnitude less than 10^{-8} . (The answer section gives the integrals' values rounded to 10 decimal places.)

77.
$$\int_0^{1/2} e^{-x^3} dx$$

78.
$$\int_0^1 x \sin(x^3) dx$$

79.
$$\int_0^{1/2} \frac{\tan^{-1} x}{x} dx$$

80.
$$\int_0^{1/64} \frac{\tan^{-1} x}{\sqrt{x}} dx$$

Indeterminate Forms

In Exercises 81-86:

- a. Use power series to evaluate the limit.
- **b.** Then use a grapher to support your calculation

81.
$$\lim_{x \to 0} \frac{7 \sin x}{e^{2x} - 1}$$

81.
$$\lim_{x \to 0} \frac{7 \sin x}{e^{2x} - 1}$$
 82. $\lim_{\theta \to 0} \frac{e^{\theta} - e^{-\theta} - 2\theta}{\theta - \sin \theta}$

83.
$$\lim_{t\to 0} \left(\frac{1}{2-2\cos t} - \frac{1}{t^2}\right)$$
 84. $\lim_{h\to 0} \frac{(\sin h)/h - \cos h}{h^2}$

84.
$$\lim_{h \to 0} \frac{(\sin h)/h - \cos h}{h^2}$$

85.
$$\lim_{z \to 0} \frac{1 - \cos^2 z}{\ln(1 - z) + \sin z}$$
 86. $\lim_{y \to 0} \frac{y^2}{\cos y - \cosh y}$

86.
$$\lim_{v \to 0} \frac{y^2}{\cos v - \cosh v}$$

87. Use a series representation of $\sin 3x$ to find values of r and s for

$$\lim_{x \to 0} \left(\frac{\sin 3x}{x^3} + \frac{r}{x^2} + s \right) = 0.$$

- 88. a. Show that the approximation $\csc x \approx 1/x + x/6$ in Section 11.10, Example 9, leads to the approximation $\sin x \approx$ $6x/(6 + x^2)$.
- **b.** Compare the accuracies of the approximations $\sin x \approx x$ and $\sin x \approx 6x/(6 + x^2)$ by comparing the graphs of $f(x) = \sin x - x$ and $g(x) = \sin x - (6x/(6 + x^2))$. Describe what you find.

Theory and Examples

89. a. Show that the series

$$\sum_{n=1}^{\infty} \left(\sin \frac{1}{2n} - \sin \frac{1}{2n+1} \right)$$

converges.

- **b.** Estimate the magnitude of the error involved in using the sum of the sines through n = 20 to approximate the sum of the series. Is the approximation too large, or too small? Give reasons for your answer.
- **90.** a. Show that the series $\sum_{n=1}^{\infty} \left(\tan \frac{1}{2n} \tan \frac{1}{2n+1} \right)$ converges.
- **b.** Estimate the magnitude of the error in using the sum of the tangents through $-\tan(1/41)$ to approximate the sum of the series. Is the approximation too large, or too small? Give reasons for your answer.

91. Find the radius of convergence of the series

$$\sum_{n=1}^{\infty} \frac{2 \cdot 5 \cdot 8 \cdot \cdots \cdot (3n-1)}{2 \cdot 4 \cdot 6 \cdot \cdots \cdot (2n)} x^{n}.$$

92. Find the radius of convergence of the series

$$\sum_{n=1}^{\infty} \frac{3 \cdot 5 \cdot 7 \cdot \cdots \cdot (2n+1)}{4 \cdot 9 \cdot 14 \cdot \cdots \cdot (5n-1)} (x-1)^n.$$

- 93. Find a closed-form formula for the *n*th partial sum of the series $\sum_{n=2}^{\infty} \ln(1 (1/n^2))$ and use it to determine the convergence or divergence of the series.
- **94.** Evaluate $\sum_{k=2}^{\infty} (1/(k^2 1))$ by finding the limits as $n \to \infty$ of the series' *n*th partial sum.
- 95. a. Find the interval of convergence of the series

$$y = 1 + \frac{1}{6}x^3 + \frac{1}{180}x^6 + \cdots + \frac{1 \cdot 4 \cdot 7 \cdot \cdots \cdot (3n-2)}{(3n)!}x^{3n} + \cdots$$

b. Show that the function defined by the series satisfies a differential equation of the form

$$\frac{d^2y}{dx^2} = x^a y + b$$

and find the values of the constants a and b.

- **96. a.** Find the Maclaurin series for the function $x^2/(1+x)$.
 - **b.** Does the series converge at x = 1? Explain.
- **97.** If $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are convergent series of nonnegative numbers, can anything be said about $\sum_{n=1}^{\infty} a_n b_n$? Give reasons for your answer.
- **98.** If $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are divergent series of nonnegative numbers, can anything be said about $\sum_{n=1}^{\infty} a_n b_n$? Give reasons for your answer.
- **99.** Prove that the sequence $\{x_n\}$ and the series $\sum_{k=1}^{\infty} (x_{k+1} x_k)$ both converge or both diverge.
- **100.** Prove that $\sum_{n=1}^{\infty} (a_n/(1+a_n))$ converges if $a_n > 0$ for all n and $\sum_{n=1}^{\infty} a_n$ converges.
- **101.** (Continuation of Section 4.7, Exercise 27.) If you did Exercise 27 in Section 4.7, you saw that in practice Newton's method stopped too far from the root of $f(x) = (x 1)^{40}$ to give a useful estimate of its value, x = 1. Prove that nevertheless, for any starting value $x_0 \neq 1$, the sequence $x_0, x_1, x_2, \ldots, x_n, \ldots$ of approximations generated by Newton's method really does converge to 1.
- **102.** Suppose that $a_1, a_2, a_3, \ldots, a_n$ are positive numbers satisfying the following conditions:
 - **i.** $a_1 \ge a_2 \ge a_3 \ge \cdots$;
 - ii. the series $a_2 + a_4 + a_8 + a_{16} + \cdots$ diverges.

Show that the series

$$\frac{a_1}{1} + \frac{a_2}{2} + \frac{a_3}{3} + \cdots$$

diverges.

103. Use the result in Exercise 102 to show that

$$1 + \sum_{n=2}^{\infty} \frac{1}{n \ln n}$$

diverges.

- **104.** Suppose you wish to obtain a quick estimate for the value of $\int_0^1 x^2 e^x dx$. There are several ways to do this.
 - **a.** Use the Trapezoidal Rule with n = 2 to estimate $\int_0^1 x^2 e^x dx$.
 - **b.** Write out the first three nonzero terms of the Taylor series at x = 0 for $x^2 e^x$ to obtain the fourth Taylor polynomial P(x) for $x^2 e^x$. Use $\int_0^1 P(x) dx$ to obtain another estimate for $\int_0^1 x^2 e^x dx$.
 - **c.** The second derivative of $f(x) = x^2 e^x$ is positive for all x > 0. Explain why this enables you to conclude that the Trapezoidal Rule estimate obtained in part (a) is too large. (*Hint:* What does the second derivative tell you about the graph of a function? How does this relate to the trapezoidal approximation of the area under this graph?)
 - **d.** All the derivatives of $f(x) = x^2 e^x$ are positive for x > 0. Explain why this enables you to conclude that all Maclaurin polynomial approximations to f(x) for x in [0, 1] will be too small. (*Hint*: $f(x) = P_n(x) + R_n(x)$.)
 - **e.** Use integration by parts to evaluate $\int_0^1 x^2 e^x dx$.

Fourier Series

Find the Fourier series for the functions in Exercises 105–108. Sketch each function.

105.
$$f(x) = \begin{cases} 0, & 0 \le x \le \pi \\ 1, & \pi < x \le 2\pi \end{cases}$$

106.
$$f(x) = \begin{cases} x, & 0 \le x \le \pi \\ 1, & \pi < x \le 2\pi \end{cases}$$

107.
$$f(x) = \begin{cases} \pi - x, & 0 \le x \le \pi \\ x - 2\pi, & \pi < x \le 2\pi \end{cases}$$

108.
$$f(x) = |\sin x|, \quad 0 \le x \le 2\pi$$