EXERCISES 12.2

Vectors in the Plane

In Exercises 1–8, let $\mathbf{u} = \langle 3, -2 \rangle$ and $\mathbf{v} = \langle -2, 5 \rangle$. Find the **(a)** component form and **(b)** magnitude (length) of the vector.

2.
$$-2v$$

$$3. u + v$$

4.
$$u - v$$

5.
$$2u - 3v$$

6.
$$-2u + 5v$$

7.
$$\frac{3}{5}$$
u + $\frac{4}{5}$ **v**

8.
$$-\frac{5}{13}\mathbf{u} + \frac{12}{13}\mathbf{v}$$

In Exercises 9–16, find the component form of the vector.

- **9.** The vector \overrightarrow{PQ} , where P = (1, 3) and Q = (2, -1)
- **10.** The vector \overrightarrow{OP} where O is the origin and P is the midpoint of segment RS, where R = (2, -1) and S = (-4, 3)
- 11. The vector from the point A = (2, 3) to the origin
- **12.** The sum of \overrightarrow{AB} and \overrightarrow{CD} , where A = (1, -1), B = (2, 0), C = (-1, 3), and <math>D = (-2, 2)

- **13.** The unit vector that makes an angle $\theta = 2\pi/3$ with the positive *x*-axis
- **14.** The unit vector that makes an angle $\theta = -3\pi/4$ with the positive *x*-axis
- 15. The unit vector obtained by rotating the vector $\langle 0,1\rangle$ 120° counterclockwise about the origin
- **16.** The unit vector obtained by rotating the vector $\langle 1, 0 \rangle$ 135° counterclockwise about the origin

Vectors in Space

In Exercises 17–22, express each vector in the form $\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$.

- **17.** $\overrightarrow{P_1P_2}$ if P_1 is the point (5, 7, -1) and P_2 is the point (2, 9, -2)
- **18.** $\overrightarrow{P_1P_2}$ if P_1 is the point (1, 2, 0) and P_2 is the point (-3, 0, 5)
- **19.** \overline{AB} if A is the point (-7, -8, 1) and B is the point (-10, 8, 1)
- **20.** \overrightarrow{AB} if A is the point (1, 0, 3) and B is the point (-1, 4, 5)

21. $5\mathbf{u} - \mathbf{v}$ if $\mathbf{u} = \langle 1, 1, -1 \rangle$ and $\mathbf{v} = \langle 2, 0, 3 \rangle$

22. $-2\mathbf{u} + 3\mathbf{v}$ if $\mathbf{u} = \langle -1, 0, 2 \rangle$ and $\mathbf{v} = \langle 1, 1, 1 \rangle$

Geometry and Calculation

In Exercises 23 and 24, copy vectors **u**, **v**, and **w** head to tail as needed to sketch the indicated vector.

23.

 $\mathbf{a} \cdot \mathbf{u} + \mathbf{v}$

 $\mathbf{c.} \ \mathbf{u} - \mathbf{v}$

d. u - w

24.

 $\mathbf{a.} \ \mathbf{u} - \mathbf{v}$

b. $\mathbf{u} - \mathbf{v} + \mathbf{w}$

c. 2u - v

 \mathbf{d} . $\mathbf{u} + \mathbf{v} + \mathbf{w}$

Length and Direction

In Exercises 25-30, express each vector as a product of its length and direction.

25. 2i + j - 2k

26. 9i - 2j + 6k

27. 5k

28. $\frac{3}{5}i + \frac{4}{5}k$

29. $\frac{1}{\sqrt{6}}\mathbf{i} - \frac{1}{\sqrt{6}}\mathbf{j} - \frac{1}{\sqrt{6}}\mathbf{k}$ **30.** $\frac{\mathbf{i}}{\sqrt{3}} + \frac{\mathbf{j}}{\sqrt{3}} + \frac{\mathbf{k}}{\sqrt{3}}$

31. Find the vectors whose lengths and directions are given. Try to do the calculations without writing.

Length	Direction
a. 2	i
b. $\sqrt{3}$	$-\mathbf{k}$
c. $\frac{1}{2}$	$\frac{3}{5}\mathbf{j} + \frac{4}{5}\mathbf{k}$
d. 7	$\frac{6}{7}$ i $-\frac{2}{7}$ j $+\frac{3}{7}$ l

32. Find the vectors whose lengths and directions are given. Try to do the calculations without writing.

Length	Direction
Length	Direction
a. 7	- j
b. $\sqrt{2}$	$-\frac{3}{5}\mathbf{i}-\frac{4}{5}\mathbf{k}$
c. $\frac{13}{12}$	$\frac{3}{13}\mathbf{i} - \frac{4}{13}\mathbf{j} - \frac{12}{13}\mathbf{k}$
d. $a > 0$	$\frac{1}{\sqrt{2}}\mathbf{i} + \frac{1}{\sqrt{3}}\mathbf{j} - \frac{1}{\sqrt{6}}\mathbf{k}$

33. Find a vector of magnitude 7 in the direction of $\mathbf{v} = 12\mathbf{i} - 5\mathbf{k}$.

34. Find a vector of magnitude 3 in the direction opposite to the direction of $\mathbf{v} = (1/2)\mathbf{i} - (1/2)\mathbf{j} - (1/2)\mathbf{k}$.

Vectors Determined by Points; Midpoints

In Exercises 35-38, find

a. the direction of $\overrightarrow{P_1P_2}$ and

b. the midpoint of line segment P_1P_2 .

35. $P_1(-1, 1, 5)$ $P_2(2, 5, 0)$

36. $P_1(1, 4, 5)$ $P_2(4, -2, 7)$

 $P_2(2,3,4)$ **37.** $P_1(3, 4, 5)$

38. $P_1(0,0,0)$ $P_2(2,-2,-2)$

39. If $\overrightarrow{AB} = \mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$ and B is the point (5, 1, 3), find A.

40. If $\overrightarrow{AB} = -7\mathbf{i} + 3\mathbf{j} + 8\mathbf{k}$ and A is the point (-2, -3, 6), find B.

Theory and Applications

41. Linear combination Let $\mathbf{u} = 2\mathbf{i} + \mathbf{j}$, $\mathbf{v} = \mathbf{i} + \mathbf{j}$, and $\mathbf{w} = \mathbf{i} + \mathbf{j}$ $\mathbf{i} - \mathbf{j}$. Find scalars a and b such that $\mathbf{u} = a\mathbf{v} + b\mathbf{w}$.

42. Linear combination Let $\mathbf{u} = \mathbf{i} - 2\mathbf{j}$, $\mathbf{v} = 2\mathbf{i} + 3\mathbf{j}$, and $\mathbf{w} = 2\mathbf{i} + 3\mathbf{j}$ $\mathbf{i} + \mathbf{j}$. Write $\mathbf{u} = \mathbf{u}_1 + \mathbf{u}_2$, where \mathbf{u}_1 is parallel to \mathbf{v} and \mathbf{u}_2 is parallel to w. (See Exercise 41.)

43. Force vector You are pulling on a suitcase with a force F (pictured here) whose magnitude is $|\mathbf{F}| = 10 \text{ lb}$. Find the i- and jcomponents of F.

44. Force vector A kite string exerts a 12-lb pull ($|\mathbf{F}| = 12$) on a kite and makes a 45° angle with the horizontal. Find the horizontal and vertical components of F.

- **45. Velocity** An airplane is flying in the direction 25° west of north at 800 km/h. Find the component form of the velocity of the airplane, assuming that the positive *x*-axis represents due east and the positive *y*-axis represents due north.
- **46. Velocity** An airplane is flying in the direction 10° east of south at 600 km/h. Find the component form of the velocity of the airplane, assuming that the positive *x*-axis represents due east and the positive *y*-axis represents due north.
- **47. Location** A bird flies from its nest 5 km in the direction 60° north of east, where it stops to rest on a tree. It then flies 10 km in the direction due southeast and lands atop a telephone pole. Place an *xy*-coordinate system so that the origin is the bird's nest, the *x*-axis points east, and the *y*-axis points north.
 - a. At what point is the tree located?
 - **b.** At what point is the telephone pole?
- **48.** Use similar triangles to find the coordinates of the point Q that divides the segment from $P_1(x_1, y_1, z_1)$ to $P_2(x_2, y_2, z_2)$ into two lengths whose ratio is p/q = r.
- **49. Medians of a triangle** Suppose that *A*, *B*, and *C* are the corner points of the thin triangular plate of constant density shown here.
 - **a.** Find the vector from C to the midpoint M of side AB.
 - **b.** Find the vector from *C* to the point that lies two-thirds of the way from *C* to *M* on the median *CM*.

c. Find the coordinates of the point in which the medians of ΔABC intersect. According to Exercise 29, Section 6.4, this point is the plate's center of mass.

50. Find the vector from the origin to the point of intersection of the medians of the triangle whose vertices are

$$A(1, -1, 2)$$
, $B(2, 1, 3)$, and $C(-1, 2, -1)$.

- **51.** Let *ABCD* be a general, not necessarily planar, quadrilateral in space. Show that the two segments joining the midpoints of opposite sides of *ABCD* bisect each other. (*Hint:* Show that the segments have the same midpoint.)
- **52.** Vectors are drawn from the center of a regular *n*-sided polygon in the plane to the vertices of the polygon. Show that the sum of the vectors is zero. (*Hint:* What happens to the sum if you rotate the polygon about its center?)
- **53.** Suppose that A, B, and C are vertices of a triangle and that a, b, and c are, respectively, the midpoints of the opposite sides. Show that $\overrightarrow{Aa} + \overrightarrow{Bb} + \overrightarrow{Cc} = 0$.
- **54.** Unit vectors in the plane Show that a unit vector in the plane can be expressed as $\mathbf{u} = (\cos \theta)\mathbf{i} + (\sin \theta)\mathbf{j}$, obtained by rotating \mathbf{i} through an angle θ in the counterclockwise direction. Explain why this form gives *every* unit vector in the plane.