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The Dot Product

If a force F is applied to a particle moving along a path, we often need to know the magni-
tude of the force in the direction of motion. If v is parallel to the tangent line to the path at
the point where F is applied, then we want the magnitude of F in the direction of v. Figure
12.18 shows that the scalar quantity we seek is the length where is the angle
between the two vectors F and v.

In this section, we show how to calculate easily the angle between two vectors directly
from their components. A key part of the calculation is an expression called the dot prod-
uct. Dot products are also called inner or scalar products because the product results in a
scalar, not a vector. After investigating the dot product, we apply it to finding the projec-
tion of one vector onto another (as displayed in Figure 12.18) and to finding the work done
by a constant force acting through a displacement.

uƒ F ƒ  cos u ,

12.3

v

F

Length �  F  cos �

�

FIGURE 12.18 The magnitude of the force
F in the direction of vector v is the length

of the projection of F onto v.ƒ F ƒ  cos u
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12.3 The Dot Product 863

Angle Between Vectors

When two nonzero vectors u and v are placed so their initial points coincide, they form an
angle of measure (Figure 12.19). If the vectors do not lie along the same
line, the angle is measured in the plane containing both of them. If they do lie along the
same line, the angle between them is 0 if they point in the same direction, and if they
point in opposite directions. The angle is the angle between u and v. Theorem 1 gives a
formula to determine this angle.

u

p

u

0 … u … pu

THEOREM 1 Angle Between Two Vectors
The angle between two nonzero vectors 

is given by

u = cos-1 au1 v1 + u2 v2 + u3 v3

ƒ u ƒ ƒ v ƒ

b .

8v1, v2, v39
u = 8u1, u2, u39 and v =u

Before proving Theorem 1 (which is a consequence of the law of cosines), let’s focus
attention on the expression in the calculation for u .u1 v1 + u2 v2 + u3 v3

DEFINITION Dot Product
The dot product of vectors and 
is

u # v = u1 v1 + u2 v2 + u3 v3 .

v = 8v1, v2, v39u = 8u1, u2, u39u # v s“u dot v”d

u

v

�

FIGURE 12.19 The angle between u and v.

EXAMPLE 1 Finding Dot Products

(a)

(b)

The dot product of a pair of two-dimensional vectors is defined in a similar fashion:

Proof of Theorem 1 Applying the law of cosines (Equation (6), Section 1.6) to the tri-
angle in Figure 12.20, we find that

Law of cosines

 2 ƒ u ƒ ƒ v ƒ  cos u = ƒ u ƒ
2

+ ƒ v ƒ
2

- ƒ w ƒ
2 .

 ƒ w ƒ
2

= ƒ u ƒ
2

+ ƒ v ƒ
2

- 2 ƒ u ƒ ƒ v ƒ  cos u

8u1, u29 # 8v1, v29 = u1 v1 + u2 v2 .

a1
2

 i + 3j + kb # s4i - j + 2kd = a1
2
b s4d + s3ds -1d + s1ds2d = 1

 = -6 - 4 + 3 =  -7

 81, -2, -19 # 8-6, 2, -39 = s1ds -6d + s -2ds2d + s -1ds -3d

v

u

�

w

FIGURE 12.20 The parallelogram law of
addition of vectors gives w = u - v.
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Because the component form of w is So

and

Therefore,

So

With the notation of the dot product, the angle between two vectors u and v can be
written as

EXAMPLE 2 Finding the Angle Between Two Vectors in Space

Find the angle between and 

Solution We use the formula above:

The angle formula applies to two-dimensional vectors as well.

 = cos-1 a -4
s3ds7d

b L 1.76 radians.

 u = cos-1 a u # v
ƒ u ƒ ƒ v ƒ

b
 ƒ v ƒ = 2s6d2

+ s3d2
+ s2d2

= 249 = 7

 ƒ u ƒ = 2s1d2
+ s -2d2

+ s -2d2
= 29 = 3

 u # v = s1ds6d + s -2ds3d + s -2ds2d = 6 - 6 - 4 = -4

v = 6 i + 3 j + 2k .u = i - 2 j - 2k

u = cos-1 a u # v
ƒ u ƒ ƒ v ƒ

b .

u = cos-1 au1 v1 + u2 v2 + u3 v3

ƒ u ƒ ƒ v ƒ

b

 cos u =

u1 v1 + u2 v2 + u3 v3

ƒ u ƒ ƒ v ƒ

 ƒ u ƒ ƒ v ƒ  cos u = u1 v1 + u2 v2 + u3 v3

 2 ƒ u ƒ ƒ v ƒ  cos u = ƒ u ƒ
2

+ ƒ v ƒ
2

- ƒ w ƒ
2

= 2su1 v1 + u2 v2 + u3 v3d

ƒ u ƒ
2

+ ƒ v ƒ
2

- ƒ w ƒ
2

= 2su1 v1 + u2v2 + u3 v3) .

 = u1
2

- 2u1v1 + v1
2

+ u2
2

- 2u2v2 + v2
2

+ u3
2

- 2u3v3 + v3
2

 = su1 - v1d2
+ su2 - v2d2

+ su3 - v3d2

 ƒ w ƒ
2

= A2su1 - v1d2
+ su2 - v2d2

+ su3 - v3d2 B2
 ƒ v ƒ

2
= A2v1

2
+ v2

2
+ v3

2 B2 = v1
2

+ v2
2

+ v3
2

 ƒ u ƒ
2

= A2u1
2

+ u2
2

+ u3
2 B2 = u1

2
+ u2

2
+ u3

2

8u1 - v1, u2 - v2 , u3 - v39 .w = u - v ,
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12.3 The Dot Product 865

EXAMPLE 3 Finding an Angle of a Triangle

Find the angle in the triangle ABC determined by the vertices 
and (Figure 12.21).

Solution The angle is the angle between the vectors and The component
forms of these two vectors are

First we calculate the dot product and magnitudes of these two vectors.

Then applying the angle formula, we have

Perpendicular (Orthogonal) Vectors

Two nonzero vectors u and v are perpendicular or orthogonal if the angle between them is
For such vectors, we have because The converse is also

true. If u and v are nonzero vectors with then and
u = cos-1 0 = p>2.

cos u = 0u # v = ƒ u ƒ ƒ v ƒ  cos u = 0,
cos sp>2d = 0.u # v = 0p>2.

 L 78.1° or 1.36 radians.

 = cos-1 £ 4

A229 B A213 B ≥
 u = cos-1 £ CA

1 # CB
1

ƒ CA
1

ƒ ƒ CB
1

ƒ

≥
 ƒ CB

1
ƒ = 2s -2d2

+ s3d2
= 213

 ƒ CA
1

ƒ = 2s -5d2
+ s -2d2

= 229

 CA
1 # CB

1
= s -5ds -2d + s -2ds3d = 4

CA
1

= 8-5, -29 and CB
1

= 8-2, 39 .
CB
1

.CA
1

u

C = s5, 2d
A = s0, 0d, B = s3, 5d ,u

x

y

A

�

B(3, 5)

C(5, 2)

1

1

FIGURE 12.21 The triangle in
Example 3.

DEFINITION Orthogonal Vectors
Vectors u and v are orthogonal (or perpendicular) if and only if u # v = 0.

EXAMPLE 4 Applying the Definition of Orthogonality

(a) and are orthogonal because 

(b) and are orthogonal because 

(c) 0 is orthogonal to every vector u since

 = 0.

 = s0dsu1d + s0dsu2d + s0dsu3d

 0 # u = 80, 0, 09 # 8u1, u2, u39

s -2ds2d + s1ds4d = 0.
u # v = s3ds0d +v = 2j + 4ku = 3i - 2j + k

u # v = s3ds4d + s -2ds6d = 0.v = 84, 69u = 83, -29
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Proofs of Properties 1 and 3 The properties are easy to prove using the definition. For
instance, here are the proofs of Properties 1 and 3.

1.

3.

We now return to the problem of projecting one vector onto another, posed in the
opening to this section. The vector projection of onto a nonzero vector 

(Figure 12.22) is the vector determined by dropping a perpendicular from Q to the line
PS. The notation for this vector is

If u represents a force, then represents the effective force in the direction of v
(Figure 12.23).

If the angle between u and v is acute, has length and direction
(Figure 12.24). If is obtuse, and has length and di-

rection In both cases,

 = au # v

ƒ v ƒ
2 bv.

ƒ u ƒ  cos u =

ƒ u ƒ ƒ v ƒ  cos u

ƒ v ƒ

=

u # v

ƒ v ƒ

 = au # v
ƒ v ƒ

b  
v
ƒ v ƒ

 projv u = s ƒ u ƒ  cos ud 
v
ƒ v ƒ

-v> ƒ v ƒ .
- ƒ u ƒ  cos uprojv ucos u 6 0uv> ƒ v ƒ

ƒ u ƒ  cos uprojv uu

projv u

projv u s“the vector projection of u onto v”d .

PR
1

v = PS
1u = PQ

1

 = u # v + u # w

 = su1 v1 + u2 v2 + u3 v3d + su1 w1 + u2 w2 + u3 w3d

 = u1 v1 + u1 w1 + u2 v2 + u2 w2 + u3 v3 + u3 w3

 = u1sv1 + w1d + u2sv2 + w2d + u3sv3 + w3d

 u # sv + wd = 8u1, u2 , u39 # 8v1 + w1, v2 + w2 , v3 + w39
u # v = u1 v1 + u2 v2 + u3 v3 = v1 u1 + v2 u2 + v3 u3 = v # u

Q

P

u

S

v

R

Q

P

u

S

v

R

FIGURE 12.22 The vector projection of
u onto v.

Dot Product Properties and Vector Projections

The dot product obeys many of the laws that hold for ordinary products of real numbers
(scalars).

866 Chapter 12: Vectors and the Geometry of Space

Properties of the Dot Product
If u, v, and w are any vectors and c is a scalar, then

1.

2.

3.

4.

5. 0 # u = 0.

u # u = ƒ u ƒ
2

u # sv + wd = u # v + u # w

scud # v = u # scvd = csu # vd
u # v = v # u

HISTORICAL BIOGRAPHY

Carl Friedrich Gauss
(1777–1855)

v

Force � u

FIGURE 12.23 If we pull on the box with
force u, the effective force moving the box
forward in the direction v is the projection
of u onto v.
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12.3 The Dot Product 867

The number is called the scalar component of u in the direction of v. To sum-
marize,

ƒ u ƒ  cos u

u

v

(b)

u

v 

(a)

�

�

projv u projv u

Length � �u� cos � Length � –�u� cos � 

FIGURE 12.24 The length of is (a) if and
(b) if cos u 6 0.- ƒ u ƒ  cos u

cos u Ú 0ƒ u ƒ  cos uprojv u

Vector projection of u onto v:

(1)

Scalar component of u in the direction of v:

(2)ƒ u ƒ  cos u =

u # v
ƒ v ƒ

= u # v
ƒ v ƒ

projv u = au # v

ƒ v ƒ
2 bv

Note that both the vector projection of u onto v and the scalar component of u onto v de-
pend only on the direction of the vector v and not its length (because we dot u with 
which is the direction of v).

EXAMPLE 5 Finding the Vector Projection

Find the vector projection of onto and the scalar
component of u in the direction of v.

Solution We find from Equation (1):

We find the scalar component of u in the direction of v from Equation (2):

Equations (1) and (2) also apply to two-dimensional vectors.

 = 2 - 2 -
4
3

= -
4
3

.

 ƒ u ƒ  cos u = u # v
ƒ v ƒ

= s6i + 3j + 2kd # a1
3

 i -
2
3

 j -
2
3

 kb

 = -
4
9

 si - 2j - 2kd = -
4
9

 i +

8
9

 j +

8
9

 k .

 projv u =

u # v
v # v  v =

6 - 6 - 4
1 + 4 + 4

 si - 2j - 2kd

projv u

v = i - 2j - 2ku = 6i + 3j + 2k

v> ƒ v ƒ ,
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EXAMPLE 6 Finding Vector Projections and Scalar Components

Find the vector projection of a force onto and the scalar compo-
nent of F in the direction of v.

Solution The vector projection is

The scalar component of F in the direction of v is

Work

In Chapter 6, we calculated the work done by a constant force of magnitude F in moving
an object through a distance d as That formula holds only if the force is directed
along the line of motion. If a force F moving an object through a displacement 
has some other direction, the work is performed by the component of F in the direction of
D. If is the angle between F and D (Figure 12.25), then

 =  F # D.

 =  s ƒ F ƒ  cos ud ƒ D ƒ

Work = ascalar component of F
in the direction of D b slength of Dd

u

D = PQ
1W = Fd .

ƒ F ƒ  cos u =

F # v
ƒ v ƒ

=

5 - 621 + 9
= -

1210
.

 = -
1
10

 i +

3
10

 j .

 =

5 - 6
1 + 9

 si - 3jd = -
1
10

 si - 3jd

 projv F = ¢F # v

ƒ v ƒ
2 ≤v

v = i - 3jF = 5i + 2j

868 Chapter 12: Vectors and the Geometry of Space

F

P QD

�F� cos �

�

FIGURE 12.25 The work done by a
constant force F during a displacement D
is s ƒ F ƒ  cos ud ƒ D ƒ .

DEFINITION Work by Constant Force
The work done by a constant force F acting through a displacement is

where is the angle between F and D.u

W = F # D = ƒ F ƒ ƒ D ƒ  cos u ,

D = PQ
1

EXAMPLE 7 Applying the Definition of Work

If (newtons), and the work done by F in acting from P
to Q is

Definition

Given values

 = 60 J s joulesd .

 = s120ds1>2d
 = s40ds3d cos 60°

 Work = ƒ F ƒ ƒ D ƒ  cos u

u = 60°,ƒ D ƒ = 3 m,ƒ F ƒ = 40 N
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12.3 The Dot Product 869

We encounter more challenging work problems in Chapter 16 when we learn to find
the work done by a variable force along a path in space.

Writing a Vector as a Sum of Orthogonal Vectors

We know one way to write a vector or as a sum of two or-
thogonal vectors:

(since ).
Sometimes, however, it is more informative to express u as a different sum. In me-

chanics, for instance, we often need to write a vector u as a sum of a vector parallel to a
given vector v and a vector orthogonal to v. As an example, in studying the motion of a
particle moving along a path in the plane (or space), it is desirable to know the components
of the acceleration vector in the direction of the tangent to the path (at a point) and of the
normal to the path. (These tangential and normal components of acceleration are investi-
gated in Section 13.4.) The acceleration vector can then be expressed as the sum of its
(vector) tangential and normal components (which reflect important geometric properties
about the nature of the path itself, such as curvature). Velocity and acceleration vectors are
studied in the next chapter.

Generally, for vectors u and v, it is easy to see from Figure 12.26 that the vector

is orthogonal to the projection vector (which has the same direction as v). The fol-
lowing calculation verifies this observation:

Equation (1)

cancels

So the equation

expresses u as a sum of orthogonal vectors.

u = projv u + su - projv ud

 = 0.

v # v = ƒ v ƒ
2 =

su # vd2

ƒ v ƒ
2 -

su # vd2

ƒ v ƒ
2

 = ¢u # v

ƒ v ƒ
2 ≤ su # vd - ¢u # v

ƒ v ƒ
2 ≤2

sv # vd

 su - projv ud # projv u = ¢u - ¢u # v

ƒ v ƒ
2 ≤v≤ # ¢u # v

ƒ v ƒ
2 ≤v

projv u

u - projv u

i # j = i # k = j # k = 0

u = u1 i + u2 j or u = u1 i + su2 j + u3 kd

u = 8u1, u2, u39u = 8u1, u29

u

v

projv u

u � projv u

FIGURE 12.26 Writing u as the sum of
vectors parallel and orthogonal to v.

Dot product properties
2 and 3

How to Write u as a Vector Parallel to v Plus a Vector Orthogonal to v

 = ¢u # v

ƒ v ƒ
2 ≤

(')'*

v + ¢u - ¢u # v

ƒ v ƒ
2 ≤v≤

('')''*

 u = projv u + su - projv ud

Parallel to v Orthogonal to v
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EXAMPLE 8 Force on a Spacecraft

A force is applied to a spacecraft with velocity vector 
Express F as a sum of a vector parallel to v and a vector orthogonal to v.

Solution

The force is the effective force parallel to the velocity v. The force
is orthogonal to v. To check that this vector is orthogonal to v, we

find the dot product:

a1
2

 i +

3
2

 j - 3kb # s3i - jd =

3
2

-

3
2

= 0.

s1>2di + s3/2dj - 3k
s3>2di - s1/2dj

 = a3
2

 i -
1
2

 jb + a1
2

 i +

3
2

 j - 3kb .

 =

5
10

 s3i - jd + a2i + j - 3k -

5
10

 s3i - jdb

 = a6 - 1
9 + 1

bv + aF - a6 - 1
9 + 1

bvb

 =

F # v
v # v  v + aF -

F # v
v # v  vb

 F = projv F + sF - projv Fd

v = 3i - j .F = 2i + j - 3k
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