EXERCISES 12.4

Cross Product Calculations

In Exercises 1–8, find the length and direction (when defined) of $u \times v$ and $v \times u.$

1.
$$\mathbf{u} = 2\mathbf{i} - 2\mathbf{j} - \mathbf{k}$$
, $\mathbf{v} = \mathbf{i} - \mathbf{k}$
2. $\mathbf{u} = 2\mathbf{i} + 3\mathbf{j}$, $\mathbf{v} = -\mathbf{i} + \mathbf{j}$
3. $\mathbf{u} = 2\mathbf{i} - 2\mathbf{j} + 4\mathbf{k}$, $\mathbf{v} = -\mathbf{i} + \mathbf{j} - 2\mathbf{k}$
4. $\mathbf{u} = \mathbf{i} + \mathbf{j} - \mathbf{k}$, $\mathbf{v} = \mathbf{0}$
5. $\mathbf{u} = 2\mathbf{i}$, $\mathbf{v} = -3\mathbf{j}$
6. $\mathbf{u} = \mathbf{i} \times \mathbf{j}$, $\mathbf{v} = \mathbf{j} \times \mathbf{k}$
7. $\mathbf{u} = -8\mathbf{i} - 2\mathbf{j} - 4\mathbf{k}$, $\mathbf{v} = 2\mathbf{i} + 2\mathbf{j} + \mathbf{k}$
8. $\mathbf{u} = \frac{3}{2}\mathbf{i} - \frac{1}{2}\mathbf{j} + \mathbf{k}$, $\mathbf{v} = \mathbf{i} + \mathbf{j} + 2\mathbf{k}$

In Exercises 9–14, sketch the coordinate axes and then include the vectors \mathbf{u} , \mathbf{v} and $\mathbf{u} \times \mathbf{v}$ as vectors starting at the origin.

9. u = i, v = j10. u = i - k, v = j11. u = i - k, v = j + k12. u = 2i - j, v = i + 2j13. u = i + j, v = i - j14. u = j + 2k, v = i

Triangles in Space

In Exercises 15-18,

- **a.** Find the area of the triangle determined by the points *P*, *Q*, and *R*.
- **b.** Find a unit vector perpendicular to plane *PQR*.

15. P(1, -1, 2), Q(2, 0, -1), R(0, 2, 1) **16.** P(1, 1, 1), Q(2, 1, 3), R(3, -1, 1) **17.** P(2, -2, 1), Q(3, -1, 2), R(3, -1, 1)**18.** P(-2, 2, 0), Q(0, 1, -1), R(-1, 2, -2)

Triple Scalar Products

In Exercises 19–22, verify that $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w} = (\mathbf{v} \times \mathbf{w}) \cdot \mathbf{u} = (\mathbf{w} \times \mathbf{u}) \cdot \mathbf{v}$ and find the volume of the parallelepiped (box) determined by \mathbf{u} , \mathbf{v} , and \mathbf{w} .

	u	V	W
19.	2 i	2 j	2 k
20.	$\mathbf{i} - \mathbf{j} + \mathbf{k}$	$2\mathbf{i} + \mathbf{j} - 2\mathbf{k}$	$-\mathbf{i} + 2\mathbf{j} - \mathbf{k}$
21.	2 i + j	$2\mathbf{i} - \mathbf{j} + \mathbf{k}$	$\mathbf{i} + 2\mathbf{k}$
22.	$\mathbf{i} + \mathbf{j} - 2\mathbf{k}$	$-\mathbf{i} - \mathbf{k}$	2i + 4j - 2k

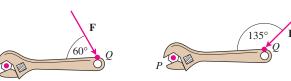
Theory and Examples

- 23. Parallel and perpendicular vectors Let $\mathbf{u} = 5\mathbf{i} \mathbf{j} + \mathbf{k}$, $\mathbf{v} = \mathbf{j} 5\mathbf{k}$, $\mathbf{w} = -15\mathbf{i} + 3\mathbf{j} 3\mathbf{k}$. Which vectors, if any, are (a) perpendicular? (b) Parallel? Give reasons for your answers.
- 24. Parallel and perpendicular vectors Let $\mathbf{u} = \mathbf{i} + 2\mathbf{j} \mathbf{k}$, $\mathbf{v} = -\mathbf{i} + \mathbf{j} + \mathbf{k}$, $\mathbf{w} = \mathbf{i} + \mathbf{k}$, $\mathbf{r} = -(\pi/2)\mathbf{i} - \pi\mathbf{j} + (\pi/2)\mathbf{k}$. Which vectors, if any, are (a) perpendicular? (b) Parallel? Give reasons for your answers.

In Exercises 39 and 40, find the magnitude of the torque exerted by **F** on the bolt at *P* if $|\overrightarrow{PQ}| = 8$ in. and $|\mathbf{F}| = 30$ lb. Answer in footpounds.

26.

25.



27. Which of the following are *always true*, and which are *not always true*? Give reasons for your answers.

a. $|\mathbf{u}| = \sqrt{\mathbf{u} \cdot \mathbf{u}}$ b. $\mathbf{u} \cdot \mathbf{u} = |\mathbf{u}|$ c. $\mathbf{u} \times \mathbf{0} = \mathbf{0} \times \mathbf{u} = \mathbf{0}$ d. $\mathbf{u} \times (-\mathbf{u}) = \mathbf{0}$ e. $\mathbf{u} \times \mathbf{v} = \mathbf{v} \times \mathbf{u}$ f. $\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = \mathbf{u} \times \mathbf{v} + \mathbf{u} \times \mathbf{w}$ g. $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{v} = \mathbf{0}$ h. $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$

28. Which of the following are *always true*, and which are *not always true*? Give reasons for your answers.

a.
$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$$

b. $\mathbf{u} \times \mathbf{v} = -(\mathbf{v} \times \mathbf{u})$
c. $(-\mathbf{u}) \times \mathbf{v} = -(\mathbf{u} \times \mathbf{v})$

- d. $(c\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (c\mathbf{v}) = c(\mathbf{u} \cdot \mathbf{v})$ (any number c) e. $c(\mathbf{u} \times \mathbf{v}) = (c\mathbf{u}) \times \mathbf{v} = \mathbf{u} \times (c\mathbf{v})$ (any number c) f. $\mathbf{u} \cdot \mathbf{u} = |\mathbf{u}|^2$ g. $(\mathbf{u} \times \mathbf{u}) \cdot \mathbf{u} = 0$ h. $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{u} = \mathbf{v} \cdot (\mathbf{u} \times \mathbf{v})$
- **29.** Given nonzero vectors **u**, **v**, and **w**, use dot product and cross product notation, as appropriate, to describe the following.
 - **a.** The vector projection of \mathbf{u} onto \mathbf{v}
 - **b.** A vector orthogonal to **u** and **v**
 - **c.** A vector orthogonal to $\mathbf{u} \times \mathbf{v}$ and \mathbf{w}
 - d. The volume of the parallelepiped determined by u, v, and w
- **30.** Given nonzero vectors **u**, **v**, and **w**, use dot product and cross product notation to describe the following.
 - **a.** A vector orthogonal to $\mathbf{u} \times \mathbf{v}$ and $\mathbf{u} \times \mathbf{w}$
 - **b.** A vector orthogonal to $\mathbf{u} + \mathbf{v}$ and $\mathbf{u} \mathbf{v}$
 - **c.** A vector of length $|\mathbf{u}|$ in the direction of **v**
 - **d.** The area of the parallelogram determined by \mathbf{u} and \mathbf{w}
- **31.** Let **u**, **v**, and **w** be vectors. Which of the following make sense, and which do not? Give reasons for your answers.

a. $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$	b. $\mathbf{u} \times (\mathbf{v} \cdot \mathbf{w})$
c. $\mathbf{u} \times (\mathbf{v} \times \mathbf{w})$	d. $\mathbf{u} \cdot (\mathbf{v} \cdot \mathbf{w})$

- 32. Cross products of three vectors Show that except in degenerate cases, (u × v) × w lies in the plane of u and v, whereas u × (v × w) lies in the plane of v and w. What *are* the degenerate cases?
- **33.** Cancellation in cross products If $\mathbf{u} \times \mathbf{v} = \mathbf{u} \times \mathbf{w}$ and $\mathbf{u} \neq \mathbf{0}$, then does $\mathbf{v} = \mathbf{w}$? Give reasons for your answer.
- **34.** Double cancellation If $\mathbf{u} \neq \mathbf{0}$ and if $\mathbf{u} \times \mathbf{v} = \mathbf{u} \times \mathbf{w}$ and $\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot \mathbf{w}$, then does $\mathbf{v} = \mathbf{w}$? Give reasons for your answer.

Area in the Plane

Find the areas of the parallelograms whose vertices are given in Exercises 35–38.

35. A(1, 0), B(0, 1), C(-1, 0), D(0, -1) **36.** A(0, 0), B(7, 3), C(9, 8), D(2, 5) **37.** A(-1, 2), B(2, 0), C(7, 1), D(4, 3)**38.** A(-6, 0), B(1, -4), C(3, 1), D(-4, 5)

Find the areas of the triangles whose vertices are given in Exercises 39-42.

- **39.** A(0,0), B(-2,3), C(3,1)
- **40.** A(-1, -1), B(3, 3), C(2, 1)
- **41.** A(-5, 3), B(1, -2), C(6, -2)
- **42.** A(-6, 0), B(10, -5), C(-2, 4)
- **43. Triangle area** Find a formula for the area of the triangle in the *xy*-plane with vertices at $(0, 0), (a_1, a_2)$, and (b_1, b_2) . Explain your work.
- **44.** Triangle area Find a concise formula for the area of a triangle with vertices $(a_1, a_2), (b_1, b_2)$, and (c_1, c_2) .