
12.5 Lines and Planes in Space 889

Cylinders and Quadric Surfaces

Up to now, we have studied two special types of surfaces: spheres and planes. In this sec-
tion, we extend our inventory to include a variety of cylinders and quadric surfaces.
Quadric surfaces are surfaces defined by second-degree equations in x, y, and z. Spheres
are quadric surfaces, but there are others of equal interest.

Cylinders

A cylinder is a surface that is generated by moving a straight line along a given planar
curve while holding the line parallel to a given fixed line. The curve is called a generating
curve for the cylinder (Figure 12.43). In solid geometry, where cylinder means circular
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890 Chapter 12: Vectors and the Geometry of Space

cylinder, the generating curves are circles, but now we allow generating curves of any
kind. The cylinder in our first example is generated by a parabola.

When graphing a cylinder or other surface by hand or analyzing one generated by a
computer, it helps to look at the curves formed by intersecting the surface with planes par-
allel to the coordinate planes. These curves are called cross-sections or traces.

EXAMPLE 1 The Parabolic Cylinder 

Find an equation for the cylinder made by the lines parallel to the z-axis that pass through
the parabola (Figure 12.44).y = x2, z = 0

y = x2

y

z

x
Lines through
generating curve
parallel to x-axis

Generating curve
(in the yz-plane)

FIGURE 12.43 A cylinder and generating
curve.

x

z

y

Generating curve
y � x2, z � 0

FIGURE 12.44 The cylinder of lines
passing through the parabola in the
xy-plane parallel to the z-axis (Example 1).

y = x2

Solution Suppose that the point lies on the parabola in the xy-
plane. Then, for any value of z, the point will lie on the cylinder because it
lies on the line through parallel to the z-axis. Conversely, any point

whose y-coordinate is the square of its x-coordinate lies on the cylinder be-
cause it lies on the line through parallel to the z-axis (Figure 12.45).

Regardless of the value of z, therefore, the points on the surface are the points whose
coordinates satisfy the equation This makes an equation for the cylinder.
Because of this, we call the cylinder “the cylinder ”

As Example 1 suggests, any curve in the xy-plane defines a cylinder par-
allel to the z-axis whose equation is also The equation defines
the circular cylinder made by the lines parallel to the z-axis that pass through the circle

in the xy-plane. The equation defines the elliptical cylinder
made by the lines parallel to the z-axis that pass through the ellipse in the
xy-plane.

In a similar way, any curve in the xz-plane defines a cylinder parallel to
the y-axis whose space equation is also (Figure 12.46). Any curve hs y, zd = cg sx, zd = c
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P0(x0, x0
2, 0)

Q0(x0, x0
2, z)

FIGURE 12.45 Every point of the
cylinder in Figure 12.44 has coordinates of
the form We call it “the
cylinder ”y = x2 .

sx0 , x0
2, zd .
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12.6 Cylinders and Quadric Surfaces 891

defines a cylinder parallel to the x-axis whose space equation is also (Figure
12.47). The axis of a cylinder need not be parallel to a coordinate axis, however.

hs y, zd = c
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Cross sections
perpendicular to x-axis

The generating hyperbola:
y2 � z2 � 1

y2 � z2 � 1

–1

FIGURE 12.47 The hyperbolic cylinder is made of lines parallel to the x-axis
and passing through the hyperbola in the yz-plane. The cross-sections of the
cylinder in planes perpendicular to the x-axis are hyperbolas congruent to the generating
hyperbola.

y2
- z2

= 1
y2

- z2
= 1

Quadric Surfaces

The next type of surface we examine is a quadric surface. These surfaces are the three-
dimensional analogues of ellipses, parabolas, and hyperbolas.

A quadric surface is the graph in space of a second-degree equation in x, y, and z.
The most general form is

where A, B, C, and so on are constants. However, this equation can be simplified by trans-
lation and rotation, as in the two-dimensional case. We will study only the simpler equa-
tions. Although defined differently, the cylinders in Figures 12.45 through 12.47 were also
examples of quadric surfaces. The basic quadric surfaces are ellipsoids, paraboloids, el-
liptical cones, and hyperboloids. (We think of spheres as special ellipsoids.) We now
present examples of each type.

EXAMPLE 2 Ellipsoids

The ellipsoid

(1)

(Figure 12.48) cuts the coordinate axes at and It lies
within the rectangular box defined by the inequalities and 
The surface is symmetric with respect to each of the coordinate planes because each vari-
able in the defining equation is squared.

ƒ z ƒ … c .ƒ x ƒ … a, ƒ y ƒ … b ,
s0, 0, ;  cd .s0, ;  b, 0d ,s ; a, 0, 0d ,

x2
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b2 +
z2

c2 = 1
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+ By2

+ Cz2
+ Dxy + Eyz + Fxz + Gx + Hy + Jz + K = 0,
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Generating ellipse:
x2 � 4z2 � 4

Elliptical trace
(cross-section)

–1

x2 � 4z2 � 4

x

FIGURE 12.46 The elliptical cylinder
is made of lines parallel to

the y-axis and passing through the ellipse
in the xz-plane. The cross-

sections or “traces” of the cylinder in
planes perpendicular to the y-axis are
ellipses congruent to the generating
ellipse. The cylinder extends along the
entire y-axis.

x2
+ 4z2

= 4

x2
+ 4z2

= 4
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The curves in which the three coordinate planes cut the surface are ellipses. For example,

The section cut from the surface by the plane is the ellipse

If any two of the semiaxes a, b, and c are equal, the surface is an ellipsoid of revolu-
tion. If all three are equal, the surface is a sphere.

EXAMPLE 3 Paraboloids

The elliptical paraboloid

(2)

is symmetric with respect to the planes and (Figure 12.49). The only inter-
cept on the axes is the origin. Except for this point, the surface lies above (if ) or en-
tirely below (if ) the xy-plane, depending on the sign of c. The sections cut by the
coordinate planes are

 z = 0: the point s0, 0, 0d .

 y = 0: the parabola z =

c
a2 x2

 x = 0: the parabola z =

c
b2 y2

c 6 0
c 7 0

y = 0x = 0

x2

a2 +

y2

b2 =
z
c

x2

a2s1 - sz0>cd2d
+

y2

b2s1 - sz0>cd2d
= 1.

z = z0 , ƒ z0 ƒ 6 c ,

x2

a2 +

y2

b2 = 1 when z = 0.
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FIGURE 12.48 The ellipsoid

in Example 2 has elliptical cross-sections in each of the three coordinate planes.

x2

a2 +

y2

b2 +

z2

c2 = 1
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12.6 Cylinders and Quadric Surfaces 893

Each plane above the xy-plane cuts the surface in the ellipse

EXAMPLE 4 Cones

The elliptical cone

(3)

is symmetric with respect to the three coordinate planes (Figure 12.50). The sections cut
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FIGURE 12.49 The elliptical paraboloid in Example 3, shown for
The cross-sections perpendicular to the z-axis above the xy-plane are ellipses. The

cross-sections in the planes that contain the z-axis are parabolas.
c 7 0.

sx2>a2d + s y2>b2d = z>c
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a b
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z
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The line z �    x
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c
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ELLIPSE

z
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x

FIGURE 12.50 The elliptical cone 
in Example 4. Planes perpendicular to the z-axis cut the cone in
ellipses above and below the xy-plane. Vertical planes that contain
the z-axis cut it in pairs of intersecting lines.

sx2>a2d + sy2>b2d = sz2>c2d
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by the coordinate planes are

The sections cut by planes above and below the xy-plane are ellipses whose centers
lie on the z-axis and whose vertices lie on the lines given above.

If the cone is a right circular cone.

EXAMPLE 5 Hyperboloids

The hyperboloid of one sheet

(4)

is symmetric with respect to each of the three coordinate planes (Figure 12.51).

x2

a2 +

y2

b2 -
z2

c2 = 1

a = b ,

z = z0

 z = 0: the point s0, 0, 0d .

 y = 0: the lines z = ;  
c
a x

 x = 0: the lines z = ;  
c
b

 y
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FIGURE 12.51 The hyperboloid in Example 5.
Planes perpendicular to the z-axis cut it in ellipses. Vertical planes containing the z-axis
cut it in hyperbolas.

sx2>a2d + sy2>b2d - sz2>c2d = 1

The sections cut out by the coordinate planes are

 z = 0: the ellipse 
x2

a2 +

y2

b2 = 1.

 y = 0: the hyperbola 
x2

a2 -
z2

c2 = 1

 x = 0: the hyperbola 
y2

b2 -
z2

c2 = 1
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12.6 Cylinders and Quadric Surfaces 895

The plane cuts the surface in an ellipse with center on the z-axis and vertices on
one of the hyperbolic sections above.

The surface is connected, meaning that it is possible to travel from one point on it to
any other without leaving the surface. For this reason, it is said to have one sheet, in con-
trast to the hyperboloid in the next example, which has two sheets.

If the hyperboloid is a surface of revolution.

EXAMPLE 6 Hyperboloids

The hyperboloid of two sheets

(5)

is symmetric with respect to the three coordinate planes (Figure 12.52). The plane 
does not intersect the surface; in fact, for a horizontal plane to intersect the surface, we
must have The hyperbolic sections

have their vertices and foci on the z-axis. The surface is separated into two portions, one
above the plane and the other below the plane This accounts for its name.z = -c .z = c
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 x = 0: z2
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Vertex
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FIGURE 12.52 The hyperboloid in Example 6.
Planes perpendicular to the z-axis above and below the vertices cut it in ellipses. Vertical
planes containing the z-axis cut it in hyperbolas.

sz2>c2d - sx2>a2d - sy2>b2d = 1
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Equations (4) and (5) have different numbers of negative terms. The number in each
case is the same as the number of sheets of the hyperboloid. If we replace the 1 on the right
side of either Equation (4) or Equation (5) by 0, we obtain the equation

for an elliptical cone (Equation 3). The hyperboloids are asymptotic to this cone
(Figure 12.53) in the same way that the hyperbolas

are asymptotic to the lines

in the xy-plane.

EXAMPLE 7 A Saddle Point

The hyperbolic paraboloid

(6)

has symmetry with respect to the planes and (Figure 12.54). The sections in
these planes are

(7)

(8) y = 0: the parabola z = -

c
a2 x2 .

 x = 0: the parabola z =

c
b2 y2 .

y = 0x = 0

y2

b2 -

x2

a2 =
z
c,  c 7 0

x2

a2 -

y2

b2 = 0

x2

a2 -

y2

b2 = ;1

x2

a2 +

y2

b2 =
z2

c2
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FIGURE 12.54 The hyperbolic paraboloid The cross-sections in planes perpendicular to the
z-axis above and below the xy-plane are hyperbolas. The cross-sections in planes perpendicular to the other axes are parabolas.

sy2>b2d - sx2>a2d = z>c, c 7 0.

y

x

0

z

FIGURE 12.53 Both hyperboloids are
asymptotic to the cone (Example 6).
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12.6 Cylinders and Quadric Surfaces 897

In the plane the parabola opens upward from the origin. The parabola in the plane
opens downward.

If we cut the surface by a plane the section is a hyperbola,

with its focal axis parallel to the y-axis and its vertices on the parabola in Equation (7). If
is negative, the focal axis is parallel to the x-axis and the vertices lie on the parabola in

Equation (8).
Near the origin, the surface is shaped like a saddle or mountain pass. To a person trav-

eling along the surface in the yz-plane the origin looks like a minimum. To a person travel-
ing in the xz-plane the origin looks like a maximum. Such a point is called a saddle point
of a surface.

z0

y2

b2 -

x2

a2 =

z0
c ,

z = z0 7 0,
y = 0

x = 0,

USING TECHNOLOGY Visualizing in Space

A CAS or other graphing utility can help in visualizing surfaces in space. It can draw
traces in different planes, and many computer graphing systems can rotate a figure so
you can see it as if it were a physical model you could turn in your hand. Hidden-line al-
gorithms (see Exercise 74, Section 12.5) are used to block out portions of the surface that
you would not see from your current viewing angle. A system may require surfaces to be
entered in parametric form, as discussed in Section 16.6 (see also CAS Exercises 57
through 60 in Section 14.1). Sometimes you may have to manipulate the grid mesh to see
all portions of a surface.
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