Chapter 12 Additional and Advanced Exercises

1. Submarine hunting Two surface ships on maneuvers are trying to determine a submarine's course and speed to prepare for an aircraft intercept. As shown here, ship A is located at (4, 0, 0), whereas ship B is located at (0, 5, 0). All coordinates are given in thousands of feet. Ship A locates the submarine in the direction of the vector $2\mathbf{i} + 3\mathbf{j} - (1/3)\mathbf{k}$, and ship B locates it in the direction of the vector $18\mathbf{i} - 6\mathbf{j} - \mathbf{k}$. Four minutes ago, the submarine was located at (2, -1, -1/3). The aircraft is due in 20 min. Assuming that the submarine moves in a straight line at a constant speed, to what position should the surface ships direct the aircraft?

2. A helicopter rescue Two helicopters, H_1 and H_2 , are traveling together. At time t = 0, they separate and follow different straight-line paths given by

*H*₁:
$$x = 6 + 40t$$
, $y = -3 + 10t$, $z = -3 + 2t$
*H*₂: $x = 6 + 110t$, $v = -3 + 4t$, $z = -3 + t$.

Time *t* is measured in hours and all coordinates are measured in miles. Due to system malfunctions, H_2 stops its flight at (446, 13, 1) and, in a negligible amount of time, lands at (446, 13, 0). Two hours later, H_1 is advised of this fact and heads toward H_2 at 150 mph. How long will it take H_1 to reach H_2 ?

3. Torque The operator's manual for the Toro[®] 21 in. lawnmower says "tighten the spark plug to 15 ft-lb (20.4 N · m)." If you are installing the plug with a 10.5-in. socket wrench that places the center of your hand 9 in. from the axis of the spark plug, about how hard should you pull? Answer in pounds.

4. Rotating body The line through the origin and the point A(1, 1, 1) is the axis of rotation of a right body rotating with a constant angular speed of 3/2 rad/sec. The rotation appears to be clockwise when we look toward the origin from *A*. Find the velocity **v** of the point of the body that is at the position B(1, 3, 2).

5. Determinants and planes

a. Show that

$$\begin{vmatrix} x_1 - x & y_1 - y & z_1 - z \\ x_2 - x & y_2 - y & z_2 - z \\ x_3 - x & y_3 - y & z_3 - z \end{vmatrix} = 0$$

is an equation for the plane through the three noncollinear points $P_1(x_1, y_1, z_1)$, $P_2(x_2, y_2, z_2)$, and $P_3(x_3, y_3, z_3)$.

b. What set of points in space is described by the equation

$$\begin{vmatrix} x & y & z & 1 \\ x_1 & y_1 & z_1 & 1 \\ x_2 & y_2 & z_2 & 1 \\ x_3 & y_3 & z_3 & 1 \end{vmatrix} = 0$$

6. Determinants and lines Show that the lines

$$x = a_1s + b_1, y = a_2s + b_2, z = a_3s + b_3, -\infty < s < \infty$$

and

$$x = c_1 t + d_1, y = c_2 t + d_2, z = c_3 t + d_3, -\infty < t < \infty$$

intersect or are parallel if and only if

$$\begin{vmatrix} a_1 & c_1 & b_1 - d_1 \\ a_2 & c_2 & b_2 - d_2 \\ a_3 & c_3 & b_3 - d_3 \end{vmatrix} = 0$$

- **7. Parallelogram** The accompanying figure shows parallelogram *ABCD* and the midpoint *P* of diagonal *BD*.
 - **a.** Express \overrightarrow{BD} in terms of \overrightarrow{AB} and \overrightarrow{AD} .
 - **b.** Express \overrightarrow{AP} in terms of \overrightarrow{AB} and \overrightarrow{AD} .
 - **c.** Prove that *P* is also the midpoint of diagonal *AC*.

8. In the figure here, *D* is the midpoint of side *AB* of triangle *ABC*, and *E* is one-third of the way between *C* and *B*. Use vectors to prove that *F* is the midpoint of line segment *CD*.

9. Use vectors to show that the distance from $P_1(x_1, y_1)$ to the line ax + by = c is

$$d = \frac{|ax_1 + by_1 - c|}{\sqrt{a^2 + b^2}}$$

10. a. Use vectors to show that the distance from $P_1(x_1, y_1, z_1)$ to the plane Ax + By + Cz = D is

$$d = \frac{|Ax_1 + By_1 + Cz_1 - D|}{\sqrt{A^2 + B^2 + C^2}}$$

- **b.** Find an equation for the sphere that is tangent to the planes x + y + z = 3 and x + y + z = 9 if the planes 2x y = 0 and 3x z = 0 pass through the center of the sphere.
- **11. a.** Show that the distance between the parallel planes $Ax + By + Cz = D_1$ and $Ax + By + Cz = D_2$ is

$$d = \frac{|D_1 - D_2|}{|A\mathbf{i} + B\mathbf{j} + C\mathbf{k}|}.$$

- **b.** Find the distance between the planes 2x + 3y z = 6 and 2x + 3y z = 12.
- c. Find an equation for the plane parallel to the plane 2x y + 2z = -4 if the point (3, 2, -1) is equidistant from the two planes.
- **d.** Write equations for the planes that lie parallel to and 5 units away from the plane x 2y + z = 3.
- 12. Prove that four points A, B, C, and D are coplanar (lie in a common plane) if and only if $\overrightarrow{AD} \cdot (\overrightarrow{AB} \times \overrightarrow{BC}) = 0$.
- 13. The projection of a vector on a plane Let P be a plane in space and let v be a vector. The vector projection of v onto the plane P, proj_Pv, can be defined informally as follows. Suppose the sun is shining so that its rays are normal to the plane P. Then proj_Pv is the "shadow" of v onto P. If P is the plane x + 2y + 6z = 6 and v = i + j + k, find proj_Pv.
- 14. The accompanying figure shows nonzero vectors \mathbf{v} , \mathbf{w} , and \mathbf{z} , with \mathbf{z} orthogonal to the line *L*, and \mathbf{v} and \mathbf{w} making equal angles β with *L*. Assuming $|\mathbf{v}| = |\mathbf{w}|$, find \mathbf{w} in terms of \mathbf{v} and \mathbf{z} .

15. Triple vector products The *triple vector products* $(\mathbf{u} \times \mathbf{v}) \times \mathbf{w}$ and $\mathbf{u} \times (\mathbf{v} \times \mathbf{w})$ are usually not equal, although the formulas for evaluating them from components are similar:

$$(\mathbf{u} \times \mathbf{v}) \times \mathbf{w} = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} - (\mathbf{v} \cdot \mathbf{w})\mathbf{u}.$$
$$\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} - (\mathbf{u} \cdot \mathbf{v})\mathbf{w}.$$

Verify each formula for the following vectors by evaluating its two sides and comparing the results.

	u	V	W
a.	2 i	2 j	2 k
b.	$\mathbf{i} - \mathbf{j} + \mathbf{k}$	$2\mathbf{i} + \mathbf{j} - 2\mathbf{k}$	$-\mathbf{i} + 2\mathbf{j} - \mathbf{k}$
c.	2i + j	$2\mathbf{i} - \mathbf{j} + \mathbf{k}$	$\mathbf{i} + 2\mathbf{k}$
d.	$\mathbf{i} + \mathbf{j} - 2\mathbf{k}$	-i - k	2i + 4j - 2k

16. Cross and dot products Show that if **u**, **v**, **w**, and **r** are any vectors, then

a.
$$\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) + \mathbf{v} \times (\mathbf{w} \times \mathbf{u}) + \mathbf{w} \times (\mathbf{u} \times \mathbf{v}) = \mathbf{0}$$

b. $\mathbf{u} \times \mathbf{v} = (\mathbf{u} \cdot \mathbf{v} \times \mathbf{i})\mathbf{i} + (\mathbf{u} \cdot \mathbf{v} \times \mathbf{j})\mathbf{j} + (\mathbf{u} \cdot \mathbf{v} \times \mathbf{k})\mathbf{k}$
c. $(\mathbf{u} \times \mathbf{v}) \cdot (\mathbf{w} \times \mathbf{r}) = \begin{vmatrix} \mathbf{u} \cdot \mathbf{w} & \mathbf{v} \cdot \mathbf{w} \\ \mathbf{u} \cdot \mathbf{r} & \mathbf{v} \cdot \mathbf{r} \end{vmatrix}$.

17. Cross and dot products Prove or disprove the formula

 $\mathbf{u} \times (\mathbf{u} \times (\mathbf{u} \times \mathbf{v})) \cdot \mathbf{w} = -|\mathbf{u}|^2 \mathbf{u} \cdot \mathbf{v} \times \mathbf{w}.$

18. By forming the cross product of two appropriate vectors, derive the trigonometric identity

$$\sin (A - B) = \sin A \cos B - \cos A \sin B.$$

19. Use vectors to prove that

$$(a^{2} + b^{2})(c^{2} + d^{2}) \ge (ac + bd)^{2}$$

for any four numbers a, b, c, and d. (*Hint:* Let $\mathbf{u} = a\mathbf{i} + b\mathbf{j}$ and $\mathbf{v} = c\mathbf{i} + d\mathbf{j}$.)

- 20. Suppose that vectors u and v are not parallel and that u = w + r, where w is parallel to v and r is orthogonal to v. Express w and r in terms of u and v.
- **21.** Show that $|\mathbf{u} + \mathbf{v}| \le |\mathbf{u}| + |\mathbf{v}|$ for any vectors \mathbf{u} and \mathbf{v} .
- 22. Show that $\mathbf{w} = |\mathbf{v}|\mathbf{u} + |\mathbf{u}|\mathbf{v}$ bisects the angle between \mathbf{u} and \mathbf{v} .
- **23.** Show that $|\mathbf{v}|\mathbf{u} + |\mathbf{u}|\mathbf{v}$ and $|\mathbf{v}|\mathbf{u} |\mathbf{u}|\mathbf{v}$ are orthogonal.
- **24.** Dot multiplication is positive definite Show that dot multiplication of vectors is *positive definite*; that is, show that $\mathbf{u} \cdot \mathbf{u} \ge 0$ for every vector \mathbf{u} and that $\mathbf{u} \cdot \mathbf{u} = 0$ if and only if $\mathbf{u} = \mathbf{0}$.
- **25.** Point masses and gravitation In physics, the law of gravitation says that if P and Q are (point) masses with mass M and m, respectively, then P is attracted to Q by the force

$$\mathbf{F}=\frac{GMm\mathbf{r}}{|\mathbf{r}|^3},$$

where **r** is the vector from *P* to *Q* and *G* is the universal gravitational constant. Moreover, if Q_1, \ldots, Q_k are (point) masses with mass m_1, \ldots, m_k , respectively, then the force on *P* due to all the Q_i 's is

$$\mathbf{F} = \sum_{i=1}^{k} \frac{GMm_i}{|\mathbf{r}_i|^3} \mathbf{r}_i,$$

where \mathbf{r}_i is the vector from *P* to Q_i .

- **a.** Let point *P* with mass *M* be located at the point (0, d), d > 0, in the coordinate plane. For i = -n, -n + 1, ..., -1, 0, 1, ..., n, let Q_i be located at the point (id, 0) and have mass *mi*. Find the magnitude of the gravitational force on *P* due to all the Q_i 's.
- **b.** Is the limit as $n \to \infty$ of the magnitude of the force on *P* finite? Why, or why not?
- **26. Relativistic sums** Einstein's special theory of relativity roughly says that with respect to a reference frame (coordinate system) no material object can travel as fast as *c*, the speed of light. So, if \vec{x} and \vec{y} are two velocities such that $|\vec{x}| < c$ and $|\vec{y}| < c$, then the *relativistic sum* $\vec{x} \oplus \vec{y}$ of \vec{x} and \vec{y} must have length less than *c*. Einstein's special theory of relativity says that

$$\vec{x} \oplus \vec{y} = \frac{\vec{x} + \vec{y}}{1 + \frac{\vec{x} \cdot \vec{y}}{c^2}} + \frac{1}{c^2} \cdot \frac{\gamma_x}{\gamma_x + 1} \cdot \frac{\vec{x} \times (\vec{x} \times \vec{y})}{1 + \frac{\vec{x} \cdot \vec{y}}{c^2}}$$

where

$$\gamma_x = \frac{1}{\sqrt{1 - \frac{\vec{x} \cdot \vec{x}}{c^2}}}.$$

It can be shown that if $|\vec{x}| < c$ and $|\vec{y}| < c$, then $|\vec{x} \oplus \vec{y}| < c$. This exercise deals with two special cases.

- **a.** Prove that if \vec{x} and \vec{y} are orthogonal, $|\vec{x}| < c$, $|\vec{y}| < c$, then $|\vec{x} \oplus \vec{y}| < c$.
- **b.** Prove that if \vec{x} and \vec{y} are parallel, $|\vec{x}| < c$, $|\vec{y}| < c$, then $|\vec{x} \oplus \vec{y}| < c$.
- **c.** Compute $\lim_{c\to\infty} \vec{x} \oplus \vec{y}$.