
VECTOR-VALUED

FUNCTIONS AND MOTION

IN SPACE

OVERVIEW When a body (or object) travels through space, the equations 
and that give the body’s coordinates as functions of time serve as para-

metric equations for the body’s motion and path. With vector notation, we can condense
these into a single equation that gives the body’s position as
a vector function of time. For an object moving in the xy-plane, the component function
h(t) is zero for all time (that is, identically zero).

In this chapter, we use calculus to study the paths, velocities, and accelerations of
moving bodies. As we go along, we will see how our work answers the standard questions
about the paths and motions of projectiles, planets, and satellites. In the final section, we
use our new vector calculus to derive Kepler’s laws of planetary motion from Newton’s
laws of motion and gravitation.
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Vector Functions

When a particle moves through space during a time interval I, we think of the particle’s
coordinates as functions defined on I:

(1)

The points make up the curve in space that we call the
particle’s path. The equations and interval in Equation (1) parametrize the curve. A curve
in space can also be represented in vector form. The vector

(2)

from the origin to the particle’s position P(ƒ(t), g(t), h(t)) at time t is the particle’s position
vector (Figure 13.1). The functions ƒ, g, and h are the component functions (components)
of the position vector. We think of the particle’s path as the curve traced by r during the
time interval I. Figure 13.2 displays several space curves generated by a computer graphing
program. It would not be easy to plot these curves by hand.

Equation (2) defines r as a vector function of the real variable t on the interval I. More
generally, a vector function or vector-valued function on a domain set D is a rule that
assigns a vector in space to each element in D. For now, the domains will be intervals of
real numbers resulting in a space curve. Later, in Chapter 16, the domains will be regions

rstd = OP
1

= ƒstdi + g stdj + hstdk

sx, y, zd = sƒstd, g std, hstdd, t H I ,

x = ƒstd, y = g std, z = hstd, t H I .
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FIGURE 13.1 The position vector
of a particle moving through

space is a function of time.
r = OP

1
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13.1 Vector Functions 907

We refer to real-valued functions as scalar functions to distinguish them from vector
functions. The components of r are scalar functions of t. When we define a vector-valued
function by giving its component functions, we assume the vector function’s domain to be
the common domain of the components.

EXAMPLE 1 Graphing a Helix

Graph the vector function

Solution The vector function

is defined for all real values of t. The curve traced by r is a helix (from an old Greek word
for “spiral”) that winds around the circular cylinder (Figure 13.3). The curve
lies on the cylinder because the i- and j-components of r, being the x- and y-coordinates of
the tip of r, satisfy the cylinder’s equation:

The curve rises as the k-component increases. Each time t increases by the
curve completes one turn around the cylinder. The equations

parametrize the helix, the interval being understood. You will find more
helices in Figure 13.4.

- q 6 t 6 q

x = cos t, y = sin t, z = t

2p ,z = t

x2
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= 1.
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rstd = scos tdi + ssin tdj + tk

rstd = scos tdi + ssin tdj + tk.
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FIGURE 13.3 The upper half of the helix

(Example 1).
rstd = scos tdi + ssin tdj + tk

r(t) � (cos t)i � (sin t)j � (sin2t)k r(t) � (sin3t)(cos t)i �
    (sin3t)(sin t)j � tk 

r(t) � (4 � sin20t)(cos t)i �
    (4 � sin20t)(sint)j �
    (cos20t)k 
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FIGURE 13.2 Computer-generated space curves are defined by the position vectors r(t).

in the plane. Vector functions will then represent surfaces in space. Vector functions on a
domain in the plane or space also give rise to “vector fields,” which are important to the
study of the flow of a fluid, gravitational fields, and electromagnetic phenomena. We
investigate vector fields and their applications in Chapter 16.
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Limits and Continuity

The way we define limits of vector-valued functions is similar to the way we define limits
of real-valued functions.

908 Chapter 13: Vector-Valued Functions and Motion in Space

r(t) � (cos t)i � (sin t)j � tk
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r(t) � (cos t)i � (sin t)j � 0.3tk
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FIGURE 13.4 Helices drawn by computer.

DEFINITION Limit of Vector Functions
Let be a vector function and L a vector. We say that
r has limit L as t approaches and write

if, for every number there exists a corresponding number such that
for all t

0 6 ƒ t - t0 ƒ 6 d Q ƒ rstd - L ƒ 6 P .

d 7 0P 7 0,

lim
t: t0

 rstd = L

t0
rstd = ƒstdi + gstdj + hstdk

If then precisely when

The equation

(3)

provides a practical way to calculate limits of vector functions.

EXAMPLE 2 Finding Limits of Vector Functions

If then

We define continuity for vector functions the same way we define continuity for scalar
functions.

 =

22
2

 i +

22
2

 j +
p
4

 k.

 lim
t:p>4 rstd = a lim

t:p>4 cos tb i + a lim
t:p>4 sin tbj + a lim

t:p>4 tbk

rstd = scos tdi + ssin tdj + tk,

lim
t: t0

 rstd = a lim
t: t0

 ƒstdb i + a lim
t: t0

 gstdbj + a lim
t: t0

 hstdbk

lim
t: t0

 ƒstd = L1, lim
t: t0

 gstd = L2, and lim
t: t0

 hstd = L3 .

limt:t0 rstd = LL = L1i + L2 j + L3k,
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13.1 Vector Functions 909

From Equation (3), we see that r(t) is continuous at if and only if each compo-
nent function is continuous there.

EXAMPLE 3 Continuity of Space Curves

(a) All the space curves shown in Figures 13.2 and 13.4 are continuous because their
component functions are continuous at every value of t in 

(b) The function

is discontinuous at every integer, where the greatest integer function is
discontinuous.

Derivatives and Motion

Suppose that is the position vector of a particle moving
along a curve in space and that ƒ, g, and h are differentiable functions of t. Then the differ-
ence between the particle’s positions at time t and time is

(Figure 13.5a). In terms of components,

As approaches zero, three things seem to happen simultaneously. First, Q ap-
proaches P along the curve. Second, the secant line PQ seems to approach a limiting
position tangent to the curve at P. Third, the quotient (Figure 13.5b) approaches
the limit

We are therefore led by past experience to the following definition.

 = cdƒ
dt
d i + cdg

dt
dj + cdh

dt
dk.

 + c lim
¢t:0

 
hst + ¢td - hstd

¢t
dk

 lim
¢t:0

 
¢r
¢t

= c lim
¢t:0

 
ƒst + ¢td - ƒstd

¢t
d i + c lim

¢t:0
 
gst + ¢td - gstd

¢t
dj

¢r>¢t

¢t

 = [ƒst + ¢td - ƒstd]i + [gst + ¢td - gstd]j + [hst + ¢td - hstd]k.

 - [ƒstdi + gstdj + hstdk]

 = [ƒst + ¢tdi + gst + ¢tdj + hst + ¢tdk]

 ¢r = rst + ¢td - rstd

¢r = rst + ¢td - rstd

t + ¢t

rstd = ƒstdi + gstdj + hstdk

: t;
gstd = scos tdi + ssin tdj + : t;k

s - q , q d .

t = t0

DEFINITION Continuous at a Point
A vector function r(t) is continuous at a point in its domain if

The function is continuous if it is continuous at every point
in its domain.
limt:t0 rstd = rst0d .

t = t0
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z
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r(t � �t) � r(t) 
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r(t � �t)

�t

FIGURE 13.5 As the point Q
approaches the point P along the curve C.
In the limit, the vector becomes the
tangent vector r¿std .

PQ
1 >¢t

¢t : 0,
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A vector function r is differentiable if it is differentiable at every point of its domain.
The curve traced by r is smooth if dr dt is continuous and never 0, that is, if ƒ, g, and h
have continuous first derivatives that are not simultaneously 0.

The geometric significance of the definition of derivative is shown in Figure 13.5.

The points P and Q have position vectors r(t) and and the vector is repre-
sented by For the scalar multiple 

points in the same direction as the vector As this vector approaches a vector
that is tangent to the curve at P (Figure 13.5b). The vector when different from 0, is
defined to be the vector tangent to the curve at P. The tangent line to the curve at a point

is defined to be the line through the point parallel to We require
for a smooth curve to make sure the curve has a continuously turning tangent at

each point. On a smooth curve, there are no sharp corners or cusps.
A curve that is made up of a finite number of smooth curves pieced together in a con-

tinuous fashion is called piecewise smooth (Figure 13.6).
Look once again at Figure 13.5. We drew the figure for positive, so points for-

ward, in the direction of the motion. The vector having the same direction as 
points forward too. Had been negative, would have pointed backward, against the di-
rection of motion. The quotient however, being a negative scalar multiple of 
would once again have pointed forward. No matter how points, points forward
and we expect the vector when different from 0, to do the same.
This means that the derivative dr dt is just what we want for modeling a particle’s velocity. It
points in the direction of motion and gives the rate of change of position with respect to time.
For a smooth curve, the velocity is never zero; the particle does not stop or reverse direction.

>dr>dt = lim¢t:0 ¢r>¢t ,
¢r>¢t¢r

¢r,¢r>¢t ,
¢r¢t

¢r,¢r>¢t ,
¢r¢t

dr>dt Z 0
r¿st0d .sƒst0d, gst0d, hst0dd

r¿std ,
¢t : 0,PQ

1
.

s1>¢tdsrst + ¢td - rstdd¢t 7 0,rst + ¢td - rstd .
PQ
1rst + ¢td ,

>

910 Chapter 13: Vector-Valued Functions and Motion in Space

DEFINITION Derivative
The vector function has a derivative (is differen-
tiable) at t if ƒ, g, and h have derivatives at t. The derivative is the vector function

r¿std =

dr
dt

= lim
¢t:0

 
rst + ¢td - rstd

¢t
=

dƒ
dt

 i +

dg
dt

 j +

dh
dt

 k.

rstd = ƒstdi + gstdj + hstdk

C1

C2

C3 C4

C5

FIGURE 13.6 A piecewise smooth curve
made up of five smooth curves connected
end to end in continuous fashion.

DEFINITIONS Velocity, Direction, Speed, Acceleration
If r is the position vector of a particle moving along a smooth curve in space, then

is the particle’s velocity vector, tangent to the curve. At any time t, the direction of
v is the direction of motion, the magnitude of v is the particle’s speed , and the
derivative when it exists, is the particle’s acceleration vector. In
summary,

1. Velocity is the derivative of 

2. Speed is the magnitude of 

3. Acceleration is the derivative of 

4. The unit vector is the direction of motion at time t.v> ƒ v ƒ

velocity: a =

dv
dt

=

d2r
dt2 .

velocity: Speed = ƒ v ƒ .

position: v =

dr
dt

.

a = dv>dt ,

vstd =

dr
dt
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13.1 Vector Functions 911

We can express the velocity of a moving particle as the product of its speed and
direction:

In Section 12.5, Example 4 we found this expression for velocity useful in locating, for ex-
ample, the position of a helicopter moving along a straight line in space. Now let’s look at
an example of an object moving along a (nonlinear) space curve.

EXAMPLE 4 Flight of a Hang Glider

A person on a hang glider is spiraling upward due to rapidly rising air on a path having po-
sition vector The path is similar to that of a helix (al-
though it’s not a helix, as you will see in Section 13.4) and is shown in Figure 13.7 for

Find

(a) the velocity and acceleration vectors,

(b) the glider’s speed at any time t,

(c) the times, if any, when the glider’s acceleration is orthogonal to its velocity.

Solution

(a)

(b) Speed is the magnitude of v:

The glider is moving faster and faster as it rises along its path.

(c) To find the times when v and a are orthogonal, we look for values of t for which

Thus, the only time the acceleration vector is orthogonal to v is when We study ac-
celeration for motions along paths in more detail in Section 13.5. There we discover how
the acceleration vector reveals the curving nature and tendency of the path to “twist” out
of a certain plane containing the velocity vector. 

Differentiation Rules

Because the derivatives of vector functions may be computed component by component,
the rules for differentiating vector functions have the same form as the rules for differenti-
ating scalar functions.

t = 0.

v # a = 9 sin t cos t - 9 cos t sin t + 4t = 4t = 0.

 = 29 + 4t 2 .

 = 29 sin2 t + 9 cos 2 t + 4t 2

 ƒ vstd ƒ = 2s -3 sin td2
+ s3 cos td2

+ s2td2

 a =

d2r
dt2 = -s3 cos tdi - s3 sin tdj + 2k

 v =

dr
dt

= -s3 sin tdi + s3 cos tdj + 2tk

 r = s3 cos tdi + s3 sin tdj + t2k

0 … t … 4p .

rstd = s3 cos tdi + s3 sin tdj + t2k.

Velocity = ƒ v ƒ a v
ƒ v ƒ

b = sspeeddsdirectiond .

z

x y

(3, 0, 0)

FIGURE 13.7 The path of a hang glider
with position vector 

(Example 4).s3 sin tdj + t2k
rstd = s3 cos tdi +
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We will prove the product rules and Chain Rule but leave the rules for constants, scalar
multiples, sums, and differences as exercises.

Proof of the Dot Product Rule Suppose that

and

Then

Proof of the Cross Product Rule We model the proof after the proof of the Product Rule
for scalar functions. According to the definition of derivative,

d
dt

 su * vd = lim
h:0

 
ust + hd * vst + hd - ustd * vstd

h
.

u # v¿u¿
# v

('''')'''*(''')''''*

 = u1
œy1 + u2

œy2 + u3
œy3 + u1y1

œ

+ u2y2
œ

+ u3y3
œ .

 
d
dt

 su # vd =

d
dt

 su1 y1 + u2 y2 + u3 y3d

v = y1stdi + y2stdj + y3stdk .

u = u1stdi + u2stdj + u3stdk

912 Chapter 13: Vector-Valued Functions and Motion in Space

Differentiation Rules for Vector Functions
Let u and v be differentiable vector functions of t, C a constant vector, c any
scalar, and ƒ any differentiable scalar function.

1. Constant Function Rule:

2. Scalar Multiple Rules:

3. Sum Rule:

4. Difference Rule:

5. Dot Product Rule:

6. Cross Product Rule:

7. Chain Rule:
d
dt

 [usƒstdd] = ƒ¿stdu¿sƒstdd

d
dt

 [ustd * vstd] = u¿std * vstd + ustd * v¿std

d
dt

 [ustd # vstd] = u¿std # vstd + ustd # v¿std

d
dt

 [ustd - vstd] = u¿std - v¿std

d
dt

 [ustd + vstd] = u¿std + v¿std

d
dt

 [ƒstdustd] = ƒ¿stdustd + ƒstdu¿std

d
dt

 [custd] = cu¿std

d
dt

 C = 0

When you use the Cross Product Rule,
remember to preserve the order of the
factors. If u comes first on the left side
of the equation, it must also come first
on the right or the signs will be wrong.
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13.1 Vector Functions 913

To change this fraction into an equivalent one that contains the difference quotients for the
derivatives of u and v, we subtract and add in the numerator. Then

The last of these equalities holds because the limit of the cross product of two vector func-
tions is the cross product of their limits if the latter exist (Exercise 52). As h approaches
zero, approaches v(t) because v, being differentiable at t, is continuous at t
(Exercise 53). The two fractions approach the values of du dt and dv dt at t. In short,

Proof of the Chain Rule Suppose that is a differentiable
vector function of s and that is a differentiable scalar function of t. Then a, b, and
c are differentiable functions of t, and the Chain Rule for differentiable real-valued func-
tions gives

Vector Functions of Constant Length

When we track a particle moving on a sphere centered at the origin (Figure 13.8), the posi-
tion vector has a constant length equal to the radius of the sphere. The velocity vector dr dt,
tangent to the path of motion, is tangent to the sphere and hence perpendicular to r. This is
always the case for a differentiable vector function of constant length: The vector and its
first derivative are orthogonal. With the length constant, the change in the function is a
change in direction only, and direction changes take place at right angles. We can also ob-
tain this result by direct calculation:

 2r¿std # rstd = 0.

 r¿std # rstd + rstd # r¿std = 0

 
d
dt

 [rstd # rstd] = 0

 rstd # rstd = c2

>

 = ƒ¿stdu¿sƒstdd .

 =

ds
dt

 
du
ds

 =

ds
dt

 ada
ds

 i +

db
ds

 j +

dc
ds

 kb
 =

da
ds

 
ds
dt

 i +

db
ds

 
ds
dt

 j +

dc
ds

 
ds
dt

 k

 
d
dt

 [ussd] =

da
dt

 i +

db
dt

 j +

dc
dt

 k

s = ƒstd
ussd = assdi + bssdj + cssdk

d
dt

 su * vd =

du
dt

* v + u *

dv
dt

.

>>vst + hd

= lim
h:0

 
ust + hd - ustd

h
* lim

h:0
 vst + hd + lim

h:0
 ustd * lim

h:0
 
vst + hd - vstd

h
.

= lim
h:0

 cust + hd - ustd
h

* vst + hd + ustd *

vst + hd - vstd
h

d
= lim

h:0
 
ust + hd * vst + hd - ustd * vst + hd + ustd * vst + hd - ustd * vstd

h

d
dt

 su * vd

ustd * vst + hd

s = ƒstd

As an algebraic convenience, we
sometimes write the product of a scalar c
and a vector v as vc instead of cv. This
permits us, for instance, to write the
Chain Rule in a familiar form:

where s = ƒstd .

du
dt

=

du
ds

 
ds
dt

,

y

z

x

P
r(t)

dr
dt

FIGURE 13.8 If a particle moves on a
sphere in such a way that its position r is a
differentiable function of time, then
r # sdr>dtd = 0.

is constant.ƒ rstd ƒ = c

Differentiate both sides.

Rule 5 with rstd = ustd = vstd
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The vectors and r(t) are orthogonal because their dot product is 0. In summary,rœstd

914 Chapter 13: Vector-Valued Functions and Motion in Space

If r is a differentiable vector function of t of constant length, then

(4)r # dr
dt

= 0.

We will use this observation repeatedly in Section 13.4.

EXAMPLE 5 Supporting Equation (4)

Show that has constant length and is orthogonal to its
derivative.

Solution

Integrals of Vector Functions

A differentiable vector function R(t) is an antiderivative of a vector function r(t) on an in-
terval I if at each point of I. If R is an antiderivative of r on I, it can be shown,
working one component at a time, that every antiderivative of r on I has the form 
for some constant vector C (Exercise 56). The set of all antiderivatives of r on I is the
indefinite integral of r on I.

R + C
dR>dt = r

 r # dr
dt

= sin t cos t - sin t cos t = 0

 
dr
dt

= scos tdi - ssin tdj

 ƒ rstd ƒ = 2ssin td2
+ scos td2

+ A13 B2 = 21 + 3 = 2

 rstd = ssin tdi + scos tdj + 23k

rstd = ssin tdi + scos tdj + 23k

DEFINITION Indefinite Integral
The indefinite integral of r with respect to t is the set of all antiderivatives of r,
denoted by If R is any antiderivative of r, then

L  rstd dt = Rstd + C.

1  rstd dt .

The usual arithmetic rules for indefinite integrals apply.

EXAMPLE 6 Finding Indefinite Integrals

(5)

(6)

 = ssin tdi + tj - t 2k + C

 = ssin t + C1di + st + C2dj - st 2
+ C3dk

 L  sscos tdi + j - 2tkd dt = aL  cos t dtb i + aL  dtbj - aL  2t dtbk

C2 j - C3kC = C1i +
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13.1 Vector Functions 915

As in the integration of scalar functions, we recommend that you skip the steps in Equa-
tions (5) and (6) and go directly to the final form. Find an antiderivative for each compo-
nent and add a constant vector at the end.

Definite integrals of vector functions are best defined in terms of components.

DEFINITION Definite Integral
If the components of are integrable over [a, b],
then so is r, and the definite integral of r from a to b is

L
b

a
 rstd dt = aL

b

a
 ƒstd dtb i + aL

b

a
gstd dtbj + aL

b

a
hstd dtbk.

rstd = ƒstdi + gstdj + hstdk

EXAMPLE 7 Evaluating Definite Integrals

The Fundamental Theorem of Calculus for continuous vector functions says that

where R is any antiderivative of r, so that (Exercise 57).

EXAMPLE 8 Revisiting the Flight of a Glider

Suppose that we did not know the path of the glider in Example 4, but only its acceleration
vector We also know that initially (at time ),
the glider departed from the point (3, 0, 0) with velocity Find the glider’s posi-
tion as a function of t.

Solution Our goal is to find r(t) knowing

Integrating both sides of the differential equation with respect to t gives

We use to find 

 C1 = 0.

 3j = 3j + C1

 3j = -s3 sin 0di + s3 cos 0dj + s0dk + C1

C1 :vs0d = 3j

vstd = -s3 sin tdi + s3 cos tdj + 2tk + C1.

The differential equation: a =

d2r
dt2 = -s3 cos tdi - s3 sin tdj + 2k

The initial conditions: vs0d = 3j  and  rs0d = 3i + 0j + 0k.

vs0d = 3j.
t = 0astd = -s3 cos tdi - s3 sin tdj + 2k.

R¿std = rstd

L
b

a
rstd dt = Rstd Dab = Rsbd - Rsad

 = pj - p2k

 = [0 - 0]i + [p - 0]j - [p2
- 02]k

 = Csin t D
0

p
i + C t D

0

p
j - C t 2 D

0

p
k

 L
p

0
sscos tdi + j - 2tkd dt = aL

p

0
 cos t dtb i + aL

p

0
 dtb j - aL

p

0
2t dtbk
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The glider’s velocity as a function of time is

Integrating both sides of this last differential equation gives

We then use the initial condition to find 

The glider’s position as a function of t is

This is the path of the glider we know from Example 4 and is shown in Figure 13.7.

Note: It was peculiar to this example that both of the constant vectors of integration,
and turned out to be 0. Exercises 31 and 32 give different results for these

constants. 
C2,C1

rstd = s3 cos tdi + s3 sin tdj + t2k.

 C2 = 0.

 3i = 3i + s0dj + s0dk + C2

 3i = s3 cos 0di + s3 sin 0dj + s02dk + C2

C2 :rs0d = 3i

rstd = s3 cos tdi + s3 sin tdj + t2k + C2.

dr
dt

= vstd = -s3 sin tdi + s3 cos tdj + 2tk.
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