EXERCISES 13.1

Motion in the xy-plane

In Exercises 1–4, $\mathbf{r}(t)$ is the position of a particle in the *xy*-plane at time *t*. Find an equation in *x* and *y* whose graph is the path of the particle. Then find the particle's velocity and acceleration vectors at the given value of *t*.

1.
$$\mathbf{r}(t) = (t+1)\mathbf{i} + (t^2 - 1)\mathbf{j}, \quad t = 1$$

2. $\mathbf{r}(t) = (t^2 + 1)\mathbf{i} + (2t - 1)\mathbf{j}, \quad t = 1/2$
3. $\mathbf{r}(t) = e^t \mathbf{i} + \frac{2}{9}e^{2t}\mathbf{j}, \quad t = \ln 3$

4. $\mathbf{r}(t) = (\cos 2t)\mathbf{i} + (3\sin 2t)\mathbf{j}, \quad t = 0$

Exercises 5–8 give the position vectors of particles moving along various curves in the *xy*-plane. In each case, find the particle's velocity and acceleration vectors at the stated times and sketch them as vectors on the curve.

5. Motion on the circle $x^2 + y^2 = 1$

$$\mathbf{r}(t) = (\sin t)\mathbf{i} + (\cos t)\mathbf{j}; \quad t = \pi/4 \text{ and } \pi/2$$

6. Motion on the circle $x^2 + y^2 = 16$

$$\mathbf{r}(t) = \left(4\cos\frac{t}{2}\right)\mathbf{i} + \left(4\sin\frac{t}{2}\right)\mathbf{j}; \quad t = \pi \text{ and } 3\pi/2$$

7. Motion on the cycloid $x = t - \sin t$, $y = 1 - \cos t$

 $\mathbf{r}(t) = (t - \sin t)\mathbf{i} + (1 - \cos t)\mathbf{j}; \quad t = \pi \text{ and } 3\pi/2$

8. Motion on the parabola $y = x^2 + 1$

$$\mathbf{r}(t) = t\mathbf{i} + (t^2 + 1)\mathbf{j}; \quad t = -1, 0, \text{ and } 1$$

Velocity and Acceleration in Space

In Exercises 9–14, $\mathbf{r}(t)$ is the position of a particle in space at time *t*. Find the particle's velocity and acceleration vectors. Then find the particle's speed and direction of motion at the given value of *t*. Write the particle's velocity at that time as the product of its speed and direction.

9.
$$\mathbf{r}(t) = (t+1)\mathbf{i} + (t^2 - 1)\mathbf{j} + 2t\mathbf{k}, \quad t = 1$$

10. $\mathbf{r}(t) = (1+t)\mathbf{i} + \frac{t^2}{\sqrt{2}}\mathbf{j} + \frac{t^3}{3}\mathbf{k}, \quad t = 1$
11. $\mathbf{r}(t) = (2\cos t)\mathbf{i} + (3\sin t)\mathbf{j} + 4t\mathbf{k}, \quad t = \pi/2$
12. $\mathbf{r}(t) = (\sec t)\mathbf{i} + (\tan t)\mathbf{j} + \frac{4}{3}t\mathbf{k}, \quad t = \pi/6$
13. $\mathbf{r}(t) = (2\ln(t+1))\mathbf{i} + t^2\mathbf{j} + \frac{t^2}{2}\mathbf{k}, \quad t = 1$
14. $\mathbf{r}(t) = (e^{-t})\mathbf{i} + (2\cos 3t)\mathbf{j} + (2\sin 3t)\mathbf{k}, \quad t = 0$

In Exercises 15–18, $\mathbf{r}(t)$ is the position of a particle in space at time *t*. Find the angle between the velocity and acceleration vectors at time t = 0.

15.
$$\mathbf{r}(t) = (3t+1)\mathbf{i} + \sqrt{3}t\mathbf{j} + t^2\mathbf{k}$$

16. $\mathbf{r}(t) = \left(\frac{\sqrt{2}}{2}t\right)\mathbf{i} + \left(\frac{\sqrt{2}}{2}t - 16t^2\right)\mathbf{j}$
17. $\mathbf{r}(t) = (\ln(t^2+1))\mathbf{i} + (\tan^{-1}t)\mathbf{j} + \sqrt{t^2+1}\mathbf{k}$
18. $\mathbf{r}(t) = \frac{4}{9}(1+t)^{3/2}\mathbf{i} + \frac{4}{9}(1-t)^{3/2}\mathbf{j} + \frac{1}{3}t\mathbf{k}$

In Exercises 19 and 20, $\mathbf{r}(t)$ is the position vector of a particle in space at time *t*. Find the time or times in the given time interval when the velocity and acceleration vectors are orthogonal.

19.
$$\mathbf{r}(t) = (t - \sin t)\mathbf{i} + (1 - \cos t)\mathbf{j}, \quad 0 \le t \le 2\pi$$

20. $\mathbf{r}(t) = (\sin t)\mathbf{i} + t\mathbf{j} + (\cos t)\mathbf{k}, \quad t \ge 0$

Integrating Vector-Valued Functions

Evaluate the integrals in Exercises 21–26.

21.
$$\int_{0}^{1} [t^{3}\mathbf{i} + 7\mathbf{j} + (t+1)\mathbf{k}] dt$$

22.
$$\int_{1}^{2} \left[(6 - 6t)\mathbf{i} + 3\sqrt{t}\mathbf{j} + \left(\frac{4}{t^{2}}\right)\mathbf{k} \right] dt$$

23.
$$\int_{-\pi/4}^{\pi/4} [(\sin t)\mathbf{i} + (1 + \cos t)\mathbf{j} + (\sec^{2} t)\mathbf{k}] dt$$

24.
$$\int_{0}^{\pi/3} [(\sec t \tan t)\mathbf{i} + (\tan t)\mathbf{j} + (2\sin t \cos t)\mathbf{k}] dt$$

25.
$$\int_{1}^{4} \left[\frac{1}{t}\mathbf{i} + \frac{1}{5-t}\mathbf{j} + \frac{1}{2t}\mathbf{k} \right] dt$$

26.
$$\int_{0}^{1} \left[\frac{2}{\sqrt{1-t^{2}}}\mathbf{i} + \frac{\sqrt{3}}{1+t^{2}}\mathbf{k} \right] dt$$

Initial Value Problems for Vector-Valued Functions

Solve the initial value problems in Exercises 27–32 for **r** as a vector function of *t*.

27.	Differential equation:	$\frac{d\mathbf{r}}{dt} = -t\mathbf{i} - t\mathbf{j} - t\mathbf{k}$
	Initial condition:	$\mathbf{r}(0) = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$
28.	Differential equation:	$\frac{d\mathbf{r}}{dt} = (180t)\mathbf{i} + (180t - 16t^2)\mathbf{j}$
	Initial condition:	$\mathbf{r}(0) = 100\mathbf{j}$
29.	Differential equation:	$\frac{d\mathbf{r}}{dt} = \frac{3}{2}(t+1)^{1/2}\mathbf{i} + e^{-t}\mathbf{j} + \frac{1}{t+1}\mathbf{k}$
	Initial condition:	$\mathbf{r}(0) = \mathbf{k}$
30.	Differential equation:	$\frac{d\mathbf{r}}{dt} = (t^3 + 4t)\mathbf{i} + t\mathbf{j} + 2t^2\mathbf{k}$
	Initial condition:	$\mathbf{r}(0) = \mathbf{i} + \mathbf{j}$

31. Differential equation: $\frac{d^2\mathbf{r}}{dt^2} = -32\mathbf{k}$

Initial conditions:

32. Differential equation: $\frac{d^2 \mathbf{r}}{dt^2} = -(\mathbf{r})$ Initial conditions: $\mathbf{r}(0) = 100$

tion:

$$\frac{dt^2}{dt^2} = -52\mathbf{k}$$

$$\mathbf{r}(0) = 100\mathbf{k} \text{ and}$$

$$\frac{d\mathbf{r}}{dt}\Big|_{t=0} = 8\mathbf{i} + 8\mathbf{j}$$
tion:

$$\frac{d^2\mathbf{r}}{dt^2} = -(\mathbf{i} + \mathbf{j} + \mathbf{k})$$

$$\mathbf{r}(0) = 10\mathbf{i} + 10\mathbf{j} + 10\mathbf{k} \text{ and}$$

$$\frac{d\mathbf{r}}{dt}\Big|_{t=0} = \mathbf{0}$$

Tangent Lines to Smooth Curves

As mentioned in the text, the tangent line to a smooth curve $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$ at $t = t_0$ is the line that passes through the point $(f(t_0), g(t_0), h(t_0))$ parallel to $\mathbf{v}(t_0)$, the curve's velocity vector at t_0 . In Exercises 33–36, find parametric equations for the line that is tangent to the given curve at the given parameter value $t = t_0$.

33. $\mathbf{r}(t) = (\sin t)\mathbf{i} + (t^2 - \cos t)\mathbf{j} + e^t\mathbf{k}, \quad t_0 = 0$ **34.** $\mathbf{r}(t) = (2\sin t)\mathbf{i} + (2\cos t)\mathbf{j} + 5t\mathbf{k}, \quad t_0 = 4\pi$ **35.** $\mathbf{r}(t) = (a\sin t)\mathbf{i} + (a\cos t)\mathbf{j} + bt\mathbf{k}, \quad t_0 = 2\pi$ **36.** $\mathbf{r}(t) = (\cos t)\mathbf{i} + (\sin t)\mathbf{j} + (\sin 2t)\mathbf{k}, \quad t_0 = \frac{\pi}{2}$

Motion on Circular Paths

- **37.** Each of the following equations in parts (a)–(e) describes the motion of a particle having the same path, namely the unit circle $x^2 + y^2 = 1$. Although the path of each particle in parts (a)–(e) is the same, the behavior, or "dynamics," of each particle is different. For each particle, answer the following questions.
 - i. Does the particle have constant speed? If so, what is its constant speed?
 - **ii.** Is the particle's acceleration vector always orthogonal to its velocity vector?
 - **iii.** Does the particle move clockwise or counterclockwise around the circle?
 - iv. Does the particle begin at the point (1, 0)?

a.
$$\mathbf{r}(t) = (\cos t)\mathbf{i} + (\sin t)\mathbf{j}, \quad t \ge 0$$

- **b.** $\mathbf{r}(t) = \cos(2t)\mathbf{i} + \sin(2t)\mathbf{j}, t \ge 0$
- **c.** $\mathbf{r}(t) = \cos(t \pi/2)\mathbf{i} + \sin(t \pi/2)\mathbf{j}, t \ge 0$
- **d.** $\mathbf{r}(t) = (\cos t)\mathbf{i} (\sin t)\mathbf{j}, \quad t \ge 0$
- **e.** $\mathbf{r}(t) = \cos(t^2)\mathbf{i} + \sin(t^2)\mathbf{j}, \quad t \ge 0$
- 38. Show that the vector-valued function

$$\mathbf{r}(t) = (2\mathbf{i} + 2\mathbf{j} + \mathbf{k}) + \cos t \left(\frac{1}{\sqrt{2}}\mathbf{i} - \frac{1}{\sqrt{2}}\mathbf{j}\right) + \sin t \left(\frac{1}{\sqrt{3}}\mathbf{i} + \frac{1}{\sqrt{3}}\mathbf{j} + \frac{1}{\sqrt{3}}\mathbf{k}\right)$$

describes the motion of a particle moving in the circle of radius 1 centered at the point (2, 2, 1) and lying in the plane x + y - 2z = 2.

Motion Along a Straight Line

- **39.** At time t = 0, a particle is located at the point (1, 2, 3). It travels in a straight line to the point (4, 1, 4), has speed 2 at (1, 2, 3) and constant acceleration $3\mathbf{i} - \mathbf{j} + \mathbf{k}$. Find an equation for the position vector $\mathbf{r}(t)$ of the particle at time *t*.
- 40. A particle traveling in a straight line is located at the point (1, -1, 2) and has speed 2 at time t = 0. The particle moves toward the point (3, 0, 3) with constant acceleration 2i + j + k. Find its position vector r(t) at time t.

Theory and Examples

- **41.** Motion along a parabola A particle moves along the top of the parabola $y^2 = 2x$ from left to right at a constant speed of 5 units per second. Find the velocity of the particle as it moves through the point (2, 2).
- **42.** Motion along a cycloid A particle moves in the *xy*-plane in such a way that its position at time *t* is

$$\mathbf{r}(t) = (t - \sin t)\mathbf{i} + (1 - \cos t)\mathbf{j}.$$

a. Graph $\mathbf{r}(t)$. The resulting curve is a cycloid.

- **b.** Find the maximum and minimum values of $|\mathbf{v}|$ and $|\mathbf{a}|$. (*Hint:* Find the extreme values of $|\mathbf{v}|^2$ and $|\mathbf{a}|^2$ first and take square roots later.)
- **43.** Motion along an ellipse A particle moves around the ellipse $(y/3)^2 + (z/2)^2 = 1$ in the *yz*-plane in such a way that its position at time *t* is

$$\mathbf{r}(t) = (3\cos t)\mathbf{j} + (2\sin t)\mathbf{k}$$

Find the maximum and minimum values of $|\mathbf{v}|$ and $|\mathbf{a}|$. (*Hint:* Find the extreme values of $|\mathbf{v}|^2$ and $|\mathbf{a}|^2$ first and take square roots later.)

- **44.** A satellite in circular orbit A satellite of mass *m* is revolving at a constant speed v around a body of mass *M* (Earth, for example) in a circular orbit of radius r_0 (measured from the body's center of mass). Determine the satellite's orbital period *T* (the time to complete one full orbit), as follows:
 - a. Coordinatize the orbital plane by placing the origin at the body's center of mass, with the satellite on the *x*-axis at t = 0 and moving counterclockwise, as in the accompanying figure.

Let $\mathbf{r}(t)$ be the satellite's position vector at time *t*. Show that $\theta = \upsilon t/r_0$ and hence that

$$\mathbf{r}(t) = \left(r_0 \cos \frac{vt}{r_0}\right)\mathbf{i} + \left(r_0 \sin \frac{vt}{r_0}\right)\mathbf{j}$$

- b. Find the acceleration of the satellite.
- **c.** According to Newton's law of gravitation, the gravitational force exerted on the satellite is directed toward *M* and is given by

$$\mathbf{F} = \left(-\frac{GmM}{r_0^2}\right)\frac{\mathbf{r}}{r_0},$$

where G is the universal constant of gravitation. Using Newton's second law, $\mathbf{F} = m\mathbf{a}$, show that $v^2 = GM/r_0$.

- **d.** Show that the orbital period T satisfies $vT = 2\pi r_0$.
- e. From parts (c) and (d), deduce that

$$T^2 = \frac{4\pi^2}{GM}r_0^3.$$

That is, the square of the period of a satellite in circular orbit is proportional to the cube of the radius from the orbital center.

45. Let **v** be a differentiable vector function of *t*. Show that if $\mathbf{v} \cdot (d\mathbf{v}/dt) = 0$ for all *t*, then $|\mathbf{v}|$ is constant.

46. Derivatives of triple scalar products

a. Show that if **u**, **v**, and **w** are differentiable vector functions of *t*, then

$$\frac{d}{dt} \left(\mathbf{u} \cdot \mathbf{v} \times \mathbf{w} \right) = \frac{d\mathbf{u}}{dt} \cdot \mathbf{v} \times \mathbf{w} + \mathbf{u} \cdot \frac{d\mathbf{v}}{dt} \times \mathbf{w} + \mathbf{u} \cdot \mathbf{v} \times \frac{d\mathbf{w}}{dt}.$$
(7)

b. Show that Equation (7) is equivalent to

$$\frac{d}{dt}\begin{vmatrix} u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3} \\ w_{1} & w_{2} & w_{3} \end{vmatrix} = \begin{vmatrix} \frac{du_{1}}{dt} & \frac{du_{2}}{dt} & \frac{du_{3}}{dt} \\ v_{1} & v_{2} & v_{3} \\ w_{1} & w_{2} & w_{3} \end{vmatrix} + \begin{vmatrix} u_{1} & u_{2} & u_{3} \\ \frac{dv_{1}}{dt} & \frac{dv_{2}}{dt} & \frac{dv_{3}}{dt} \\ w_{1} & w_{2} & w_{3} \end{vmatrix} + \begin{vmatrix} u_{1} & u_{2} & u_{3} \\ \frac{dv_{1}}{dt} & \frac{dv_{2}}{dt} & \frac{dv_{3}}{dt} \\ \frac{dw_{1}}{dt} & \frac{dw_{2}}{dt} & \frac{dw_{3}}{dt} \end{vmatrix}.$$
(8)

Equation (8) says that the derivative of a 3 by 3 determinant of differentiable functions is the sum of the three determinants obtained from the original by differentiating one row at a time. The result extends to determinants of any order.

47. (*Continuation of Exercise 46.*) Suppose that $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$ and that *f*, *g*, and *h* have derivatives through order three. Use Equation (7) or (8) to show that

$$\frac{d}{dt}\left(\mathbf{r}\cdot\frac{d\mathbf{r}}{dt}\times\frac{d^{2}\mathbf{r}}{dt^{2}}\right) = \mathbf{r}\cdot\left(\frac{d\mathbf{r}}{dt}\times\frac{d^{3}\mathbf{r}}{dt^{3}}\right).$$
(9)

(*Hint:* Differentiate on the left and look for vectors whose products are zero.)

48. Constant Function Rule Prove that if **u** is the vector function with the constant value **C**, then $d\mathbf{u}/dt = \mathbf{0}$.

49. Scalar Multiple Rules

a. Prove that if **u** is a differentiable function of *t* and *c* is any real number, then

$$\frac{d(c\,\mathbf{u})}{dt} = c\,\frac{d\,\mathbf{u}}{dt}$$

b. Prove that if **u** is a differentiable function of *t* and *f* is a differentiable scalar function of *t*, then

$$\frac{d}{dt}(f\mathbf{u}) = \frac{df}{dt}\mathbf{u} + f\frac{d\mathbf{u}}{dt}.$$

50. Sum and Difference Rules Prove that if **u** and **v** are differentiable functions of *t*, then

$$\frac{d}{dt}(\mathbf{u} + \mathbf{v}) = \frac{d\mathbf{u}}{dt} + \frac{d\mathbf{v}}{dt}$$

and

$$\frac{d}{dt}(\mathbf{u} - \mathbf{v}) = \frac{d\mathbf{u}}{dt} - \frac{d\mathbf{v}}{dt}.$$

- 51. Component Test for Continuity at a Point Show that the vector function \mathbf{r} defined by $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$ is continuous at $t = t_0$ if and only if f, g, and h are continuous at t_0 .
- 52. Limits of cross products of vector functions Suppose that $\mathbf{r}_1(t) = f_1(t)\mathbf{i} + f_2(t)\mathbf{j} + f_3(t)\mathbf{k}$, $\mathbf{r}_2(t) = g_1(t)\mathbf{i} + g_2(t)\mathbf{j} + g_3(t)\mathbf{k}$, $\lim_{t \to t_0} \mathbf{r}_1(t) = \mathbf{A}$, and $\lim_{t \to t_0} \mathbf{r}_2(t) = \mathbf{B}$. Use the determinant formula for cross products and the Limit Product Rule for scalar functions to show that

$$\lim_{t \to t_0} (\mathbf{r}_1(t) \times \mathbf{r}_2(t)) = \mathbf{A} \times \mathbf{B}$$

- **53.** Differentiable vector functions are continuous Show that if $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$ is differentiable at $t = t_0$, then it is continuous at t_0 as well.
- 54. Establish the following properties of integrable vector functions.
 - a. The Constant Scalar Multiple Rule:

$$\int_{a}^{b} k \mathbf{r}(t) dt = k \int_{a}^{b} \mathbf{r}(t) dt \quad (\text{any scalar } k)$$

The Rule for Negatives,

$$\int_a^b (-\mathbf{r}(t)) dt = -\int_a^b \mathbf{r}(t) dt,$$

is obtained by taking k = -1.

b. The Sum and Difference Rules:

$$\int_a^b (\mathbf{r}_1(t) \pm \mathbf{r}_2(t)) dt = \int_a^b \mathbf{r}_1(t) dt \pm \int_a^b \mathbf{r}_2(t) dt$$

c. The Constant Vector Multiple Rules:

$$\int_{a}^{b} \mathbf{C} \cdot \mathbf{r}(t) dt = \mathbf{C} \cdot \int_{a}^{b} \mathbf{r}(t) dt \quad (\text{any constant vector } \mathbf{C})$$

and

$$\int_{a}^{b} \mathbf{C} \times \mathbf{r}(t) dt = \mathbf{C} \times \int_{a}^{b} \mathbf{r}(t) dt \quad (\text{any constant vector } \mathbf{C})$$

- **55.** Products of scalar and vector functions Suppose that the scalar function u(t) and the vector function $\mathbf{r}(t)$ are both defined for $a \le t \le b$.
 - **a.** Show that *u***r** is continuous on [*a*, *b*] if *u* and **r** are continuous on [*a*, *b*].
 - **b.** If *u* and **r** are both differentiable on [*a*, *b*], show that *u***r** is differentiable on [*a*, *b*] and that

$$\frac{d}{dt}(u\mathbf{r}) = u\frac{d\mathbf{r}}{dt} + \mathbf{r}\frac{du}{dt}.$$

56. Antiderivatives of vector functions

- **a.** Use Corollary 2 of the Mean Value Theorem for scalar functions to show that if two vector functions $\mathbf{R}_1(t)$ and $\mathbf{R}_2(t)$ have identical derivatives on an interval *I*, then the functions differ by a constant vector value throughout *I*.
- **b.** Use the result in part (a) to show that if $\mathbf{R}(t)$ is any antiderivative of $\mathbf{r}(t)$ on *I*, then any other antiderivative of \mathbf{r} on *I* equals $\mathbf{R}(t) + \mathbf{C}$ for some constant vector \mathbf{C} .
- 57. The Fundamental Theorem of Calculus The Fundamental Theorem of Calculus for scalar functions of a real variable holds for vector functions of a real variable as well. Prove this by using the theorem for scalar functions to show first that if a vector function $\mathbf{r}(t)$ is continuous for $a \le t \le b$, then

$$\frac{d}{dt}\int_{a}^{t}\mathbf{r}(\tau) d\tau = \mathbf{r}(t)$$

at every point t of (a, b). Then use the conclusion in part (b) of Exercise 56 to show that if **R** is any antiderivative of **r** on [a, b] then

$$\int_{a}^{b} \mathbf{r}(t) \, dt = \mathbf{R}(b) - \mathbf{R}(a)$$

COMPUTER EXPLORATIONS

Drawing Tangents to Space Curves

Use a CAS to perform the following steps in Exercises 58-61.

- **a.** Plot the space curve traced out by the position vector **r**.
- **b.** Find the components of the velocity vector $d\mathbf{r}/dt$.
- **c.** Evaluate $d\mathbf{r}/dt$ at the given point t_0 and determine the equation of the tangent line to the curve at $\mathbf{r}(t_0)$.
- **d.** Plot the tangent line together with the curve over the given interval.
- 58. $\mathbf{r}(t) = (\sin t t \cos t)\mathbf{i} + (\cos t + t \sin t)\mathbf{j} + t^2\mathbf{k},$ $0 \le t \le 6\pi, \quad t_0 = 3\pi/2$
- **59.** $\mathbf{r}(t) = \sqrt{2}t\mathbf{i} + e^t\mathbf{j} + e^{-t}\mathbf{k}, \quad -2 \le t \le 3, \quad t_0 = 1$
- **60.** $\mathbf{r}(t) = (\sin 2t)\mathbf{i} + (\ln (1 + t))\mathbf{j} + t\mathbf{k}, \quad 0 \le t \le 4\pi, t_0 = \pi/4$
- **61.** $\mathbf{r}(t) = (\ln (t^2 + 2))\mathbf{i} + (\tan^{-1} 3t)\mathbf{j} + \sqrt{t^2 + 1} \mathbf{k},$ $-3 \le t \le 5, \quad t_0 = 3$

In Exercises 62 and 63, you will explore graphically the behavior of the helix

$$\mathbf{r}(t) = (\cos at)\mathbf{i} + (\sin at)\mathbf{j} + bt\mathbf{k}$$

as you change the values of the constants *a* and *b*. Use a CAS to perform the steps in each exercise.

- 62. Set b = 1. Plot the helix $\mathbf{r}(t)$ together with the tangent line to the curve at $t = 3\pi/2$ for a = 1, 2, 4, and 6 over the interval $0 \le t \le 4\pi$. Describe in your own words what happens to the graph of the helix and the position of the tangent line as *a* increases through these positive values.
- 63. Set a = 1. Plot the helix $\mathbf{r}(t)$ together with the tangent line to the curve at $t = 3\pi/2$ for b = 1/4, 1/2, 2, and 4 over the interval $0 \le t \le 4\pi$. Describe in your own words what happens to the graph of the helix and the position of the tangent line as b increases through these positive values.