
920 Chapter 13: Vector-Valued Functions and Motion in Space

Modeling Projectile Motion

When we shoot a projectile into the air we usually want to know beforehand how far it will
go (will it reach the target?), how high it will rise (will it clear the hill?), and when it will
land (when do we get results?). We get this information from the direction and magnitude
of the projectile’s initial velocity vector, using Newton’s second law of motion.

The Vector and Parametric Equations for Ideal Projectile Motion

To derive equations for projectile motion, we assume that the projectile behaves like a par-
ticle moving in a vertical coordinate plane and that the only force acting on the projectile
during its flight is the constant force of gravity, which always points straight down. In
practice, none of these assumptions really holds. The ground moves beneath the projectile
as the earth turns, the air creates a frictional force that varies with the projectile’s speed
and altitude, and the force of gravity changes as the projectile moves along. All this must
be taken into account by applying corrections to the predictions of the ideal equations we
are about to derive. The corrections, however, are not the subject of this section.

We assume that the projectile is launched from the origin at time into the first
quadrant with an initial velocity (Figure 13.9). If makes an angle with the horizon-
tal, then

If we use the simpler notation for the initial speed then

(1)

The projectile’s initial position is

(2)r0 = 0i + 0j = 0.

v0 = sy0 cos adi + sy0 sin adj.

ƒ v0 ƒ ,y0

v0 = s ƒ v0 ƒ cos adi + s ƒ v0 ƒ sin adj.

av0v0

t = 0

13.2
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13.2 Modeling Projectile Motion 921

Newton’s second law of motion says that the force acting on the projectile is equal to
the projectile’s mass m times its acceleration, or if r is the projectile’s position
vector and t is time. If the force is solely the gravitational force then

We find r as a function of t by solving the following initial value problem.

The first integration gives

A second integration gives

Substituting the values of and from Equations (1) and (2) gives

Collecting terms, we have

v0 t
('''''')''''''*

r = -
1
2

 gt2j + sy0 cos adt i + sy0 sin adtj + 0

r0v0

r = -
1
2

 gt2j + v0 t + r0 .

dr
dt

= -sgtdj + v0 .

Initial conditions: r = r0 and dr
dt

= v0 when t = 0

Differential equation:  
d2r
dt2 = -g j

m 
d2r
dt2 = -mg j and d2r

dt2 = -g j.

-mg j,
msd2r>dt2d

x

y

(a)

(b)

�

x

y

0
R

Horizontal range

v

a � –gj

�v0� cos � i

�v0� sin � j
v0

r � 0 at
time t � 0

(x, y)

a � –gj

r � x i � yj

FIGURE 13.9 (a) Position, velocity,
acceleration, and launch angle at 
(b) Position, velocity, and acceleration at a
later time t.

t = 0.

Ideal Projectile Motion Equation

(3)r = sy0 cos adt i + asy0 sin adt -
1
2

 gt2b j.

Equation (3) is the vector equation for ideal projectile motion. The angle is the pro-
jectile’s launch angle (firing angle, angle of elevation), and as we said before, is the
projectile’s initial speed. The components of r give the parametric equations

(4)

where x is the distance downrange and y is the height of the projectile at time 

EXAMPLE 1 Firing an Ideal Projectile

A projectile is fired from the origin over horizontal ground at an initial speed of 500 m sec
and a launch angle of 60°. Where will the projectile be 10 sec later?

>

t Ú 0.

x = sy0 cos adt and y = sy0 sin adt -
1
2

 gt2 ,

y0 ,
a
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Solution We use Equation (3) with and to find
the projectile’s components 10 sec after firing.

Ten seconds after firing, the projectile is about 3840 m in the air and 2500 m
downrange.

Height, Flight Time, and Range

Equation (3) enables us to answer most questions about the ideal motion for a projectile
fired from the origin.

The projectile reaches its highest point when its vertical velocity component is zero,
that is, when

For this value of t, the value of y is

To find when the projectile lands when fired over horizontal ground, we set the verti-
cal component equal to zero in Equation (3) and solve for t.

Since 0 is the time the projectile is fired, must be the time when the projectile
strikes the ground.

To find the projectile’s range R, the distance from the origin to the point of impact
on horizontal ground, we find the value of the horizontal component when

The range is largest when or a = 45°.sin 2a = 1

 R = sy0 cos ad a2y0 sin a
g b =

y0
2

g  s2 sin a cos ad =

y0
2

g  sin 2a

 x = sy0 cos adt

t = s2y0 sin ad>g .

s2y0 sin ad>g
 t = 0, t =

2y0 sin a
g

 t ay0 sin a -
1
2

 gtb = 0

 sy0 sin adt -
1
2

 gt 2
= 0

ymax = sy0 sin ad ay0 sin a
g b -

1
2

 g ay0 sin a
g b2

=

sy0 sin ad2

2g
.

dy
dt

= y0 sin a - gt = 0, or t =

y0 sin a
g .

 L 2500i + 3840j.

 = s500d a1
2
bs10di + as500d a23

2
b10 - a1

2
b s9.8ds100db j

 r = sy0 cos adt i + asy0 sin adt -
1
2

 gt2b j

t = 10y0 = 500, a = 60°, g = 9.8,
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13.2 Modeling Projectile Motion 923

EXAMPLE 2 Investigating Ideal Projectile Motion

Find the maximum height, flight time, and range of a projectile fired from the origin over
horizontal ground at an initial speed of 500 m sec and a launch angle of 60º (same projec-
tile as Example 1).

Solution

From Equation (3), the position vector of the projectile is

A graph of the projectile’s path is shown in Figure 13.10.

Ideal Trajectories Are Parabolic

It is often claimed that water from a hose traces a parabola in the air, but anyone who looks
closely enough will see this is not so. The air slows the water down, and its forward
progress is too slow at the end to keep pace with the rate at which it falls.

 = 250t i + A A25023 B t - 4.9t 2 B j.
 = s500 cos 60°dt i + as500 sin 60°dt -

1
2

 s9.8dt 2b j

 r = sy0 cos adt i + asy0 sin adt -
1
2

 gt2b j

Maximum height: ymax =

sy0 sin ad2

2g

=

s500 sin 60°d2

2s9.8d
L 9566 m

Flight time:    t =

2y0 sin a
g

=

2s500d sin 60°
9.8

L 88.4 sec

Range:    R =

y0
2

g  sin 2a

=

s500d2 sin 120°
9.8

L 22,092 m

>

Height, Flight Time, and Range for Ideal Projectile Motion
For ideal projectile motion when an object is launched from the origin over a hor-
izontal surface with initial speed and launch angle 

Range:  R =

y0
2

g  sin 2a .

Flight time:   t =

2y0 sin a
g

Maximum height: ymax =

sy0 sin ad2

2g

a :y0

x

y
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FIGURE 13.10 The graph of the
projectile described in Example 2.
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What is really being claimed is that ideal projectiles move along parabolas, and this
we can see from Equations (4). If we substitute from the first equation
into the second, we obtain the Cartesian-coordinate equation

This equation has the form so its graph is a parabola.

Firing from 

If we fire our ideal projectile from the point instead of the origin (Figure 13.11),
the position vector for the path of motion is

(5)

as you are asked to show in Exercise 19.

EXAMPLE 3 Firing a Flaming Arrow

To open the 1992 Summer Olympics in Barcelona, bronze medalist archer Antonio
Rebollo lit the Olympic torch with a flaming arrow (Figure 13.12). Suppose that Rebollo
shot the arrow at a height of 6 ft above ground level 90 ft from the 70-ft-high cauldron, and
he wanted the arrow to reach maximum height exactly 4 ft above the center of the cauldron
(Figure 13.12).

r = sx0 + sy0 cos adtdi + ay0 + sy0 sin adt -
1
2

 gt2b j,

sx0, y0d

sx0, y0d

y = ax2
+ bx ,

y = - a g

2y0
2 cos2 a

b x2
+ stan adx .

t = x>sy0 cos ad
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0
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y

�

v0

(x0, y0)

FIGURE 13.11 The path of a projectile
fired from with an initial velocity

at an angle of degrees with the
horizontal.

av0

sx0 , y0d

FIGURE 13.12 Spanish archer Antonio Rebollo lights the Olympic torch in
Barcelona with a flaming arrow.

(a) Express in terms of the initial speed and firing angle 

(b) Use (Figure 13.13) and the result from part (a) to find the value of

(c) Find the value of 

(d) Find the initial firing angle of the arrow.

y0 cos a .

y0 sin a .
ymax = 74 ft

a .y0ymax
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13.2 Modeling Projectile Motion 925

Solution

(a) We use a coordinate system in which the positive x-axis lies along the ground toward
the left (to match the second photograph in Figure 13.12) and the coordinates of the
flaming arrow at are and (Figure 13.13). We have

We find the time when the arrow reaches its highest point by setting and
solving for t, obtaining

For this value of t, the value of y is

(b) Using and we see from the preceeding equation in part (a) that

or

(c) When the arrow reaches the horizontal distance traveled to the center of the
cauldron is We substitute the time to reach from part (a) and the hori-
zontal distance into the i-component of Equation (5) to obtain

Solving this equation for and using and the result from part (b), we
have

(d) Parts (b) and (c) together tell us that

tan a =

y0 sin a
y0 cos a =

A2s68ds64d B2
s90ds32d

=

68
45

y0 cos a =

90g
y0 sin a

=

s90ds32d2s68ds64d
.

g = 32y0 cos a

 = sy0 cos ad ay0 sin a
g b .

 90 = 0 + sy0 cos adt

 x = x0 + sy0 cos adt

x = 90 ft
ymaxx = 90 ft .

ymax ,

y0 sin a = 2s68ds64d .

74 = 6 +

sy0 sin ad2

2s32d

g = 32,ymax = 74

 = 6 +

sy0 sin ad2

2g
.

 ymax = 6 + sy0 sin ad ay0 sin a
g b -

1
2

 g ay0 sin a
g b2

t =

y0 sin a
g .

dy>dt = 0

 = 6 + sy0 sin adt -
1
2

 gt2 .

 y = y0 + sy0 sin adt -
1
2

 gt2

y0 = 6x0 = 0t = 0

x

y

0

NOT TO SCALE

ymax � 74'

90'

�

v0

6'

FIGURE 13.13 Ideal path of the arrow
that lit the Olympic torch (Example 3).

Equation (5), j-component

y0 = 6

Equation (5), i-component

x = 90, x0 = 0

t = sy0 sin ad>g
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or

This is Rebollo’s firing angle.

Projectile Motion with Wind Gusts

The next example shows how to account for another force acting on a projectile. We also
assume that the path of the baseball in Example 4 lies in a vertical plane.

EXAMPLE 4 Hitting a Baseball

A baseball is hit when it is 3 ft above the ground. It leaves the bat with initial speed of
152 ft sec, making an angle of 20° with the horizontal. At the instant the ball is hit, an in-
stantaneous gust of wind blows in the horizontal direction directly opposite the direction
the ball is taking toward the outfield, adding a component of to the ball’s
initial velocity 

(a) Find a vector equation (position vector) for the path of the baseball.

(b) How high does the baseball go, and when does it reach maximum height?

(c) Assuming that the ball is not caught, find its range and flight time.

Solution

(a) Using Equation (1) and accounting for the gust of wind, the initial velocity of the
baseball is

The initial position is Integration of gives

A second integration gives

Substituting the values of and into the last equation gives the position vector of
the baseball.

 = s152 cos 20° - 8.8dt i + A3 + (152 sin 20°dt - 16t2 B j.
 = -16t2j + s152 cos 20° - 8.8dt i + s152 sin 20°dtj + 3j

 r = -
1
2

 gt2j + v0 t + r0

r0v0

r = -
1
2

 gt2j + v0 t + r0 .

dr
dt

= -sgtdj + v0 .

d2r>dt2
= -g jr0 = 0i + 3j.

 = s152 cos 20° - 8.8di + s152 sin 20°dj.

 = s152 cos 20°di + s152 sin 20°dj - s8.8di

 v0 = sy0 cos adi + sy0 sin adj - 8.8i

s8.8 ft>sec = 6 mphd .
-8.8i sft>secd

>

a = tan-1 a68
45
b L 56.5°.
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13.2 Modeling Projectile Motion 927

(b) The baseball reaches its highest point when the vertical component of velocity is
zero, or

Solving for t we find

Substituting this time into the vertical component for r gives the maximum height

That is, the maximum height of the baseball is about 45.2 ft, reached about 1.6 sec
after leaving the bat.

(c) To find when the baseball lands, we set the vertical component for r equal to 0 and
solve for t:

The solution values are about and Substituting the posi-
tive time into the horizontal component for r, we find the range

Thus, the horizontal range is about 442 ft, and the flight time is about 3.3 sec.

In Exercises 29 through 31, we consider projectile motion when there is air resistance
slowing down the flight.

 L 442 ft .

 R = s152 cos 20° - 8.8ds3.3d

t = -0.06 sec.t = 3.3 sec

 3 + s51.99dt - 16t 2
= 0.

 3 + s152 sin 20°dt - 16t2
= 0

 L 45.2 ft .

 ymax = 3 + s152 sin 20°ds1.62d - 16s1.62d2

t =

152 sin 20°
32

L 1.62 sec.

dy
dt

= 152 sin 20° - 32t = 0.
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