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Arc Length and the Unit Tangent Vector T

Imagine the motions you might experience traveling at high speeds along a path through
the air or space. Specifically, imagine the motions of turning to your left or right and the
up-and-down motions tending to lift you from, or pin you down to, your seat. Pilots flying
through the atmosphere, turning and twisting in flight acrobatics, certainly experience
these motions. Turns that are too tight, descents or climbs that are too steep, or either one
coupled with high and increasing speed can cause an aircraft to spin out of control, possi-
bly even to break up in midair, and crash to Earth.

In this and the next two sections, we study the features of a curve’s shape that describe
mathematically the sharpness of its turning and its twisting perpendicular to the forward
motion.

Arc Length Along a Space Curve

One of the features of smooth space curves is that they have a measurable length. This en-
ables us to locate points along these curves by giving their directed distance s along the
curve from some base point, the way we locate points on coordinate axes by giving their
directed distance from the origin (Figure 13.14). Time is the natural parameter for describ-
ing a moving body’s velocity and acceleration, but s is the natural parameter for studying a
curve’s shape. Both parameters appear in analyses of space flight.

To measure distance along a smooth curve in space, we add a z-term to the formula
we use for curves in the plane.
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FIGURE 13.14 Smooth curves can be
scaled like number lines, the coordinate of
each point being its directed distance along
the curve from a preselected base point.

DEFINITION Length of a Smooth Curve
The length of a smooth curve that is
traced exactly once as t increases from to , is

(1)L = L
b

a
 C adx

dt
b2

+ ady
dt
b2

+ adz
dt
b2

 dt .

t = bt = a
rstd = xstdi + ystdj + zstdk, a … t … b ,

Just as for plane curves, we can calculate the length of a curve in space from any con-
venient parametrization that meets the stated conditions. We omit the proof.

The square root in Equation (1) is the length of a velocity vector dr dt. This en-
ables us to write the formula for length a shorter way.

>ƒ v ƒ ,

Arc Length Formula

(2)L = L
b

a
ƒ v ƒ dt

EXAMPLE 1 Distance Traveled by a Glider

A glider is soaring upward along the helix How far does
the glider travel along its path from to t = 2p L 6.28 sec?t = 0

rstd = scos tdi + ssin tdj + tk.
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If a curve r(t) is already given in terms of some parameter t and s(t) is the arc length
function given by Equation (3), then we may be able to solve for t as a function of

Then the curve can be reparametrized in terms of s by substituting for

EXAMPLE 2 Finding an Arc Length Parametrization

If the arc length parameter along the helix

from to t is

 = 22 t .

 = L
t

0
22 dt

 sstd = L
t

t0
 ƒ vstd ƒ dt

t0

rstd = scos tdi + ssin tdj + tk

t0 = 0,

t: r = rstssdd .
s: t = tssd .

Solution The path segment during this time corresponds to one full turn of the helix
(Figure 13.15). The length of this portion of the curve is

This is times the length of the circle in the xy-plane over which the helix stands.

If we choose a base point on a smooth curve C parametrized by t, each value of t
determines a point on C and a “directed distance”

measured along C from the base point (Figure 13.16). If s(t) is the distance from
to P(t). If s(t) is the negative of the distance. Each value of s determines a

point on C and this parametrizes C with respect to s. We call s an arc length parameter
for the curve. The parameter’s value increases in the direction of increasing t. The arc
length parameter is particularly effective for investigating the turning and twisting nature
of a space curve.

We use the Greek letter (“tau”) as the variable of integration because the letter t is
already in use as the upper limit.

t

t 6 t0 ,Pst0d
t 7 t0 ,

sstd = L
t

t0
 ƒ vstd ƒ dt ,

Pstd = sxstd, ystd, zstdd
Pst0d

22

 = L
2p

0
22 dt = 2p22 units of length.

 L = L
b

a
ƒ v ƒ dt = L

2p

0
2s -sin td2

+ scos td2
+ s1d2 dt
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FIGURE 13.15 The helix 
in Example 1.ssin tdj + tkscos tdi +
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FIGURE 13.16 The directed distance
along the curve from to any point
P(t) is

sstd = L
t

t0
 ƒ vstd ƒ dt .

Pst0d

Arc Length Parameter with Base Point 

(3)sstd = L
t

t0

2[x¿std]2
+ [y¿std]2

+ [z¿std]2 dt = L
t

t0
 ƒ vstd ƒ dt

Pst0d

Equation (3)

Value from Example 1
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Solving this equation for t gives Substituting into the position vector r gives
the following arc length parametrization for the helix:

Unlike Example 2, the arc length parametrization is generally difficult to find analyti-
cally for a curve already given in terms of some other parameter t. Fortunately, however,
we rarely need an exact formula for s(t) or its inverse t(s).

EXAMPLE 3 Distance Along a Line

Show that if is a unit vector, then the arc length parameter along the
line

from the point where is t itself.

Solution

so

Speed on a Smooth Curve

Since the derivatives beneath the radical in Equation (3) are continuous (the curve is
smooth), the Fundamental Theorem of Calculus tells us that s is a differentiable function
of t with derivative

(4)

As we already knew, the speed with which a particle moves along its path is the magnitude
of v.

Notice that although the base point plays a role in defining s in Equation (3), it
plays no role in Equation (4). The rate at which a moving particle covers distance along its
path is independent of how far away it is from the base point.

Notice also that since, by definition, is never zero for a smooth curve.
We see once again that s is an increasing function of t.

Unit Tangent Vector T

We already know the velocity vector is tangent to the curve and that the
vector

T =

v
ƒ v ƒ

v = dr>dt

ƒ v ƒds>dt 7 0

Pst0d

ds
dt

= ƒ vstd ƒ .

sstd = L
t

0
ƒ v ƒ dt = L

t

0
ƒ u ƒ dt = L

t

0
1 dt = t .

v =

d
dt

 sx0 + tu1di +

d
dt

 s y0 + tu2dj +

d
dt

 sz0 + tu3dk = u1i + u2 j + u3k = u,

t = 0P0sx0, y0, z0d

rstd = sx0 + tu1di + s y0 + tu2dj + sz0 + tu3dk

u = u1i + u2 j + u3k

rstssdd = ¢cos 
s22
≤ i + ¢sin 

s22
≤j +

s22
 k.

t = s>22.
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is therefore a unit vector tangent to the (smooth) curve. Since for the curves we
are considering, s is one-to-one and has an inverse that gives t as a differentiable function
of s (Section 7.1). The derivative of the inverse is

This makes r a differentiable function of s whose derivative can be calculated with the
Chain Rule to be

This equation says that dr ds is the unit tangent vector in the direction of the velocity
vector v (Figure 13.17).

>

dr
ds

=

dr
dt

 
dt
ds

= v 
1
ƒ v ƒ

=

v
ƒ v ƒ

= T.

dt
ds

=
1

ds>dt
=

1
ƒ v ƒ

.

ds>dt 7 0
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FIGURE 13.17 We find the unit tangent
vector T by dividing v by ƒ v ƒ .

DEFINITION Unit Tangent Vector
The unit tangent vector of a smooth curve r(t) is

(5)T =

dr
ds

=

dr>dt

ds>dt
=

v
ƒ v ƒ

.

The unit tangent vector T is a differentiable function of t whenever v is a differen-
tiable function of t. As we see in Section 13.5, T is one of three unit vectors in a traveling
reference frame that is used to describe the motion of space vehicles and other bodies trav-
eling in three dimensions.

EXAMPLE 4 Finding the Unit Tangent Vector T

Find the unit tangent vector of the curve

representing the path of the glider in Example 4, Section 13.1.

Solution In that example, we found

and

Thus,

T =

v
ƒ v ƒ

= -

3 sin t29 + 4t2
 i +

3 cos t29 + 4t2
 j +

2t29 + 4t2
 k.

ƒ v ƒ = 29 + 4t2 .

v =

dr
dt

= -s3 sin tdi + s3 cos tdj + 2tk

rstd = s3 cos tdi + s3 sin tdj + t2k
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EXAMPLE 5 Motion on the Unit Circle

For the counterclockwise motion

around the unit circle,

is already a unit vector, so (Figure 13.18).T = v

v = s -sin tdi + scos tdj

rstd = scos tdi + ssin tdj
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FIGURE 13.18 The motion 
(Example 5).(cos tdi + ssin tdj

rstd =
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