## **EXERCISES 13.3**

## Finding Unit Tangent Vectors and Lengths of Curves

In Exercises 1-8, find the curve's unit tangent vector. Also, find the length of the indicated portion of the curve.

1.  $\mathbf{r}(t) = (2 \cos t)\mathbf{i} + (2 \sin t)\mathbf{j} + \sqrt{5}t\mathbf{k}, \quad 0 \le t \le \pi$ 2.  $\mathbf{r}(t) = (6 \sin 2t)\mathbf{i} + (6 \cos 2t)\mathbf{j} + 5t\mathbf{k}, \quad 0 \le t \le \pi$ 3.  $\mathbf{r}(t) = t\mathbf{i} + (2/3)t^{3/2}\mathbf{k}, \quad 0 \le t \le 8$ 4.  $\mathbf{r}(t) = (2 + t)\mathbf{i} - (t + 1)\mathbf{j} + t\mathbf{k}, \quad 0 \le t \le 3$ 5.  $\mathbf{r}(t) = (\cos^3 t)\mathbf{j} + (\sin^3 t)\mathbf{k}, \quad 0 \le t \le \pi/2$ 6.  $\mathbf{r}(t) = 6t^3\mathbf{i} - 2t^3\mathbf{j} - 3t^3\mathbf{k}, \quad 1 \le t \le 2$ 7.  $\mathbf{r}(t) = (t \cos t)\mathbf{i} + (t \sin t)\mathbf{j} + (2\sqrt{2}/3)t^{3/2}\mathbf{k}, \quad 0 \le t \le \pi$ 8.  $\mathbf{r}(t) = (t \sin t + \cos t)\mathbf{i} + (t \cos t - \sin t)\mathbf{j}, \quad \sqrt{2} \le t \le 2$ 9. Find the point on the curve

$$\mathbf{r}(t) = (5\sin t)\mathbf{i} + (5\cos t)\mathbf{j} + 12t\mathbf{k}$$

at a distance  $26\pi$  units along the curve from the origin in the direction of increasing arc length.

10. Find the point on the curve

$$\mathbf{r}(t) = (12\sin t)\mathbf{i} - (12\cos t)\mathbf{j} + 5t\mathbf{k}$$

at a distance  $13\pi$  units along the curve from the origin in the direction opposite to the direction of increasing arc length.

## Arc Length Parameter

In Exercises 11–14, find the arc length parameter along the curve from the point where t = 0 by evaluating the integral

$$s = \int_0^t |\mathbf{v}(\tau)| \, d\tau$$

from Equation (3). Then find the length of the indicated portion of the curve.

**11.**  $\mathbf{r}(t) = (4 \cos t)\mathbf{i} + (4 \sin t)\mathbf{j} + 3t\mathbf{k}, \quad 0 \le t \le \pi/2$  **12.**  $\mathbf{r}(t) = (\cos t + t \sin t)\mathbf{i} + (\sin t - t \cos t)\mathbf{j}, \quad \pi/2 \le t \le \pi$  **13.**  $\mathbf{r}(t) = (e^t \cos t)\mathbf{i} + (e^t \sin t)\mathbf{j} + e^t\mathbf{k}, \quad -\ln 4 \le t \le 0$ **14.**  $\mathbf{r}(t) = (1 + 2t)\mathbf{i} + (1 + 3t)\mathbf{j} + (6 - 6t)\mathbf{k}, \quad -1 \le t \le 0$ 

## **Theory and Examples**

15. Arc length Find the length of the curve

$$\mathbf{r}(t) = (\sqrt{2}t)\mathbf{i} + (\sqrt{2}t)\mathbf{j} + (1-t^2)\mathbf{k}$$

from (0, 0, 1) to  $(\sqrt{2}, \sqrt{2}, 0)$ .

- 16. Length of helix The length  $2\pi\sqrt{2}$  of the turn of the helix in Example 1 is also the length of the diagonal of a square  $2\pi$  units on a side. Show how to obtain this square by cutting away and flattening a portion of the cylinder around which the helix winds.
- 17. Ellipse
  - **a.** Show that the curve  $\mathbf{r}(t) = (\cos t)\mathbf{i} + (\sin t)\mathbf{j} + (1 \cos t)\mathbf{k}$ ,  $0 \le t \le 2\pi$ , is an ellipse by showing that it is the intersection of a right circular cylinder and a plane. Find equations for the cylinder and plane.
  - **b.** Sketch the ellipse on the cylinder. Add to your sketch the unit tangent vectors at  $t = 0, \pi/2, \pi$ , and  $3\pi/2$ .
  - **c.** Show that the acceleration vector always lies parallel to the plane (orthogonal to a vector normal to the plane). Thus, if you draw the acceleration as a vector attached to the ellipse, it will lie in the plane of the ellipse. Add the acceleration vectors for  $t = 0, \pi/2, \pi$ , and  $3\pi/2$  to your sketch.
  - **d.** Write an integral for the length of the ellipse. Do not try to evaluate the integral; it is nonelementary.
- **T** e. Numerical integrator Estimate the length of the ellipse to two decimal places.
- **18. Length is independent of parametrization** To illustrate that the length of a smooth space curve does not depend on

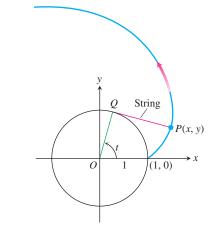
the parametrization you use to compute it, calculate the length of one turn of the helix in Example 1 with the following parametrizations.

**a.** 
$$\mathbf{r}(t) = (\cos 4t)\mathbf{i} + (\sin 4t)\mathbf{j} + 4t\mathbf{k}, \quad 0 \le t \le \pi/2$$
  
**b.**  $\mathbf{r}(t) = [\cos (t/2)]\mathbf{i} + [\sin (t/2)]\mathbf{j} + (t/2)\mathbf{k}, \quad 0 \le t \le 4\pi$   
**c.**  $\mathbf{r}(t) = (\cos t)\mathbf{i} - (\sin t)\mathbf{j} - t\mathbf{k}, \quad -2\pi \le t \le 0$ 

19. The involute of a circle If a string wound around a fixed circle is unwound while held taut in the plane of the circle, its end P traces an *involute* of the circle. In the accompanying figure, the circle in question is the circle  $x^2 + y^2 = 1$  and the tracing point starts at (1, 0). The unwound portion of the string is tangent to the circle at Q, and t is the radian measure of the angle from the positive x-axis to segment OQ. Derive the parametric equations

$$x = \cos t + t \sin t, \quad y = \sin t - t \cos t, \quad t > 0$$

of the point P(x, y) for the involute.



**20.** (*Continuation of Exercise 19.*) Find the unit tangent vector to the involute of the circle at the point P(x, y).