13.4 Curvature and the Unit Normal Vector N

FIGURE 13.19 As *P* moves along the curve in the direction of increasing arc length, the unit tangent vector turns. The value of $|d\mathbf{T}/ds|$ at *P* is called the *curvature* of the curve at *P*.

In this section we study how a curve turns or bends. We look first at curves in the coordinate plane, and then at curves in space.

Curvature of a Plane Curve

As a particle moves along a smooth curve in the plane, $\mathbf{T} = d\mathbf{r}/ds$ turns as the curve bends. Since **T** is a unit vector, its length remains constant and only its direction changes as the particle moves along the curve. The rate at which **T** turns per unit of length along the curve is called the *curvature* (Figure 13.19). The traditional symbol for the curvature function is the Greek letter κ ("kappa").

DEFINITION Curvature

If T is the unit vector of a smooth curve, the curvature function of the curve is

$$\kappa = \left| \frac{d\mathbf{T}}{ds} \right|.$$

If $|d\mathbf{T}/ds|$ is large, **T** turns sharply as the particle passes through *P*, and the curvature at *P* is large. If $|d\mathbf{T}/ds|$ is close to zero, **T** turns more slowly and the curvature at *P* is smaller.

If a smooth curve $\mathbf{r}(t)$ is already given in terms of some parameter *t* other than the arc length parameter *s*, we can calculate the curvature as

$$\kappa = \left| \frac{d\mathbf{T}}{ds} \right| = \left| \frac{d\mathbf{T}}{dt} \frac{dt}{ds} \right| \qquad \text{Chain Rule}$$
$$= \frac{1}{|ds/dt|} \left| \frac{d\mathbf{T}}{dt} \right|$$
$$= \frac{1}{|\mathbf{v}|} \left| \frac{d\mathbf{T}}{dt} \right|. \qquad \qquad \frac{ds}{dt} = |\mathbf{v}|$$

Formula for Calculating Curvature

If $\mathbf{r}(t)$ is a smooth curve, then the curvature is

$$\kappa = \frac{1}{|\mathbf{v}|} \left| \frac{d\mathbf{T}}{dt} \right|,\tag{1}$$

where $\mathbf{T} = \mathbf{v}/|\mathbf{v}|$ is the unit tangent vector.

Testing the definition, we see in Examples 1 and 2 below that the curvature is constant for straight lines and circles.

EXAMPLE 1 The Curvature of a Straight Line Is Zero

On a straight line, the unit tangent vector **T** always points in the same direction, so its components are constants. Therefore, $|d\mathbf{T}/ds| = |\mathbf{0}| = 0$ (Figure 13.20).

EXAMPLE 2 The Curvature of a Circle of Radius *a* is 1/*a*

To see why, we begin with the parametrization

$$\mathbf{r}(t) = (a\cos t)\mathbf{i} + (a\sin t)\mathbf{j}$$

of a circle of radius a. Then,

$$\mathbf{v} = \frac{d\mathbf{r}}{dt} = -(a\sin t)\mathbf{i} + (a\cos t)\mathbf{j}$$
$$|\mathbf{v}| = \sqrt{(-a\sin t)^2 + (a\cos t)^2} = \sqrt{a^2} = |a| = a.$$
Since $a > 0$,
$$|a| = a.$$

From this we find

$$\mathbf{T} = \frac{\mathbf{v}}{|\mathbf{v}|} = -(\sin t)\mathbf{i} + (\cos t)\mathbf{j}$$
$$\frac{d\mathbf{T}}{dt} = -(\cos t)\mathbf{i} - (\sin t)\mathbf{j}$$
$$\frac{d\mathbf{T}}{dt} = \sqrt{\cos^2 t + \sin^2 t} = 1.$$

Hence, for any value of the parameter *t*,

$$\kappa = \frac{1}{|\mathbf{v}|} \left| \frac{d\mathbf{T}}{dt} \right| = \frac{1}{a} (1) = \frac{1}{a}.$$

Although the formula for calculating κ in Equation (1) is also valid for space curves, in the next section we find a computational formula that is usually more convenient to apply.

Among the vectors orthogonal to the unit tangent vector **T** is one of particular significance because it points in the direction in which the curve is turning. Since **T** has constant length (namely, 1), the derivative $d\mathbf{T}/ds$ is orthogonal to **T** (Section 13.1). Therefore, if we divide $d\mathbf{T}/ds$ by its length κ , we obtain a *unit* vector **N** orthogonal to **T** (Figure 13.21).

FIGURE 13.20 Along a straight line, **T** always points in the same direction. The curvature, $|d\mathbf{T}/ds|$, is zero (Example 1).

FIGURE 13.21 The vector $d\mathbf{T}/ds$, normal to the curve, always points in the direction in which **T** is turning. The unit normal vector **N** is the direction of $d\mathbf{T}/ds$.

DEFINITION Principal Unit Normal

At a point where $\kappa \neq 0$, the **principal unit normal** vector for a smooth curve in the plane is

$$\mathbf{N} = \frac{1}{\kappa} \frac{d\mathbf{T}}{ds}.$$

The vector $d\mathbf{T}/ds$ points in the direction in which **T** turns as the curve bends. Therefore, if we face in the direction of increasing arc length, the vector $d\mathbf{T}/ds$ points toward the right if **T** turns clockwise and toward the left if **T** turns counterclockwise. In other words, the principal normal vector **N** will point toward the concave side of the curve (Figure 13.21).

If a smooth curve $\mathbf{r}(t)$ is already given in terms of some parameter *t* other than the arc length parameter *s*, we can use the Chain Rule to calculate N directly:

$$\mathbf{N} = \frac{d\mathbf{T}/ds}{|d\mathbf{T}/ds|}$$
$$= \frac{(d\mathbf{T}/dt)(dt/ds)}{|d\mathbf{T}/dt||dt/ds|}$$
$$= \frac{d\mathbf{T}/dt}{|d\mathbf{T}/dt|}. \qquad \frac{dt}{ds} = \frac{1}{ds/dt} > 0 \text{ cancels}$$

This formula enables us to find N without having to find κ and s first.

Formula for Calculating N

If $\mathbf{r}(t)$ is a smooth curve, then the principal unit normal is

$$\mathbf{N} = \frac{d\mathbf{T}/dt}{|d\mathbf{T}/dt|},\tag{2}$$

where $\mathbf{T} = \mathbf{v}/|\mathbf{v}|$ is the unit tangent vector.

EXAMPLE 3 Finding **T** and **N**

Find T and N for the circular motion

$$\mathbf{r}(t) = (\cos 2t)\mathbf{i} + (\sin 2t)\mathbf{j}$$

Solution We first find **T**:

$$\mathbf{v} = -(2\sin 2t)\mathbf{i} + (2\cos 2t)\mathbf{j}$$
$$|\mathbf{v}| = \sqrt{4\sin^2 2t + 4\cos^2 2t} = 2$$
$$\mathbf{T} = \frac{\mathbf{v}}{|\mathbf{v}|} = -(\sin 2t)\mathbf{i} + (\cos 2t)\mathbf{j}.$$

From this we find

$$\frac{d\mathbf{T}}{dt} = -(2\cos 2t)\mathbf{i} - (2\sin 2t)\mathbf{j}$$
$$\left|\frac{d\mathbf{T}}{dt}\right| = \sqrt{4\cos^2 2t + 4\sin^2 2t} = 2$$

and

$$\mathbf{N} = \frac{d\mathbf{T}/dt}{|d\mathbf{T}/dt|}$$
$$= -(\cos 2t)\mathbf{i} - (\sin 2t)\mathbf{j}.$$
 Equation (2)

Notice that $\mathbf{T} \cdot \mathbf{N} = 0$, verifying that \mathbf{N} is orthogonal to \mathbf{T} . Notice too, that for the circular motion here, \mathbf{N} points from $\mathbf{r}(t)$ towards the circle's center at the origin.

Circle of Curvature for Plane Curves

The circle of curvature or osculating circle at a point *P* on a plane curve where $\kappa \neq 0$ is the circle in the plane of the curve that

- 1. is tangent to the curve at *P* (has the same tangent line the curve has)
- 2. has the same curvature the curve has at P
- 3. lies toward the concave or inner side of the curve (as in Figure 13.22).

The **radius of curvature** of the curve at *P* is the radius of the circle of curvature, which, according to Example 2, is

Radius of curvature =
$$\rho = \frac{1}{\kappa}$$
.

To find ρ , we find κ and take the reciprocal. The **center of curvature** of the curve at *P* is the center of the circle of curvature.

EXAMPLE 4 Finding the Osculating Circle for a Parabola

Find and graph the osculating circle of the parabola $y = x^2$ at the origin.

Solution We parametrize the parabola using the parameter t = x (Section 10.4, Example 1)

$$\mathbf{r}(t) = t\mathbf{i} + t^2\mathbf{j}.$$

First we find the curvature of the parabola at the origin, using Equation (1):

$$\mathbf{v} = \frac{d\mathbf{r}}{dt} = \mathbf{i} + 2t\mathbf{j}$$
$$|\mathbf{v}| = \sqrt{1 + 4t^2}$$

so that

$$\mathbf{T} = \frac{\mathbf{v}}{|\mathbf{v}|} = (1 + 4t^2)^{-1/2}\mathbf{i} + 2t(1 + 4t^2)^{-1/2}\mathbf{j}.$$

FIGURE 13.22 The osculating circle at P(x, y) lies toward the inner side of the curve.

FIGURE 13.23 The osculating circle for the parabola $y = x^2$ at the origin (Example 4).

FIGURE 13.24 The helix

(Example 5).

From this we find

$$\frac{d\mathbf{T}}{dt} = -4t(1+4t^2)^{-3/2}\mathbf{i} + [2(1+4t^2)^{-1/2} - 8t^2(1+4t^2)^{-3/2}]\mathbf{j}$$

At the origin, t = 0, so the curvature is

$$\kappa(0) = \frac{1}{|\mathbf{v}(0)|} \left| \frac{d\mathbf{T}}{dt}(0) \right|$$
Equation (1)
$$= \frac{1}{\sqrt{1}} |0\mathbf{i} + 2\mathbf{j}|$$
$$= (1)\sqrt{0^2 + 2^2} = 2.$$

Therefore, the radius of curvature is $1/\kappa = 1/2$ and the center of the circle is (0, 1/2) (see Figure 13.23). The equation of the osculating circle is

$$(x - 0)^{2} + \left(y - \frac{1}{2}\right)^{2} = \left(\frac{1}{2}\right)^{2}$$

or

$$x^2 + \left(y - \frac{1}{2}\right)^2 = \frac{1}{4}$$

You can see from Figure 13.23 that the osculating circle is a better approximation to the parabola at the origin than is the tangent line approximation y = 0.

Curvature and Normal Vectors for Space Curves

If a smooth curve in space is specified by the position vector $\mathbf{r}(t)$ as a function of some parameter t, and if s is the arc length parameter of the curve, then the unit tangent vector **T** is $d\mathbf{r}/ds = \mathbf{v}/|\mathbf{v}|$. The **curvature** in space is then defined to be

$$\kappa = \left| \frac{d\mathbf{T}}{ds} \right| = \frac{1}{|\mathbf{v}|} \left| \frac{d\mathbf{T}}{dt} \right|$$
(3)

just as for plane curves. The vector $d\mathbf{T}/ds$ is orthogonal to **T**, and we define the **principal** unit normal to be

$$\mathbf{N} = \frac{1}{\kappa} \frac{d\mathbf{T}}{ds} = \frac{d\mathbf{T}/dt}{|d\mathbf{T}/dt|}.$$
(4)

EXAMPLE 5 Finding Curvature

Find the curvature for the helix (Figure 13.24)

$$\mathbf{r}(t) = (a \cos t)\mathbf{i} + (a \sin t)\mathbf{j} + bt\mathbf{k}, \quad a, b \ge 0, \quad a^2 + b^2 \ne 0$$

 $\mathbf{r}(t) = (a\cos t)\mathbf{i} + (a\sin t)\mathbf{j} + bt\mathbf{k},$

drawn with *a* and *b* positive and $t \ge 0$

Solution We calculate **T** from the velocity vector **v**:

$$\mathbf{v} = -(a\sin t)\mathbf{i} + (a\cos t)\mathbf{j} + b\mathbf{k}$$
$$|\mathbf{v}| = \sqrt{a^2\sin^2 t + a^2\cos^2 t + b^2} = \sqrt{a^2 + b^2}$$
$$\mathbf{T} = \frac{\mathbf{v}}{|\mathbf{v}|} = \frac{1}{\sqrt{a^2 + b^2}} [-(a\sin t)\mathbf{i} + (a\cos t)\mathbf{j} + b\mathbf{k}].$$

Then using Equation (3),

$$\kappa = \frac{1}{|\mathbf{v}|} \left| \frac{d\mathbf{T}}{dt} \right|$$

= $\frac{1}{\sqrt{a^2 + b^2}} \left| \frac{1}{\sqrt{a^2 + b^2}} \left[-(a\cos t)\mathbf{i} - (a\sin t)\mathbf{j} \right] \right|$
= $\frac{a}{a^2 + b^2} \left| -(\cos t)\mathbf{i} - (\sin t)\mathbf{j} \right|$
= $\frac{a}{a^2 + b^2} \sqrt{(\cos t)^2 + (\sin t)^2} = \frac{a}{a^2 + b^2}.$

From this equation, we see that increasing b for a fixed a decreases the curvature. Decreasing a for a fixed b eventually decreases the curvature as well. Stretching a spring tends to straighten it.

If b = 0, the helix reduces to a circle of radius *a* and its curvature reduces to 1/a, as it should. If a = 0, the helix becomes the *z*-axis, and its curvature reduces to 0, again as it should.

EXAMPLE 6 Finding the Principal Unit Normal Vector N

Find **N** for the helix in Example 5.

Solution We have

$$\frac{d\mathbf{T}}{dt} = -\frac{1}{\sqrt{a^2 + b^2}} [(a\cos t)\mathbf{i} + (a\sin t)\mathbf{j}]$$
Example 5

$$\frac{d\mathbf{T}}{dt} = \frac{1}{\sqrt{a^2 + b^2}} \sqrt{a^2\cos^2 t + a^2\sin^2 t} = \frac{a}{\sqrt{a^2 + b^2}}$$

$$\mathbf{N} = \frac{d\mathbf{T}/dt}{|d\mathbf{T}/dt|}$$
Equation (4)

$$= -\frac{\sqrt{a^2 + b^2}}{a} \cdot \frac{1}{\sqrt{a^2 + b^2}} [(a\cos t)\mathbf{i} + (a\sin t)\mathbf{j}]$$

$$= -(\cos t)\mathbf{i} - (\sin t)\mathbf{j}.$$