
936 Chapter 13: Vector-Valued Functions and Motion in Space

Curvature and the Unit Normal Vector N

In this section we study how a curve turns or bends. We look first at curves in the coordi-
nate plane, and then at curves in space.

Curvature of a Plane Curve

As a particle moves along a smooth curve in the plane, turns as the curve
bends. Since T is a unit vector, its length remains constant and only its direction changes
as the particle moves along the curve. The rate at which T turns per unit of length along
the curve is called the curvature (Figure 13.19). The traditional symbol for the curvature
function is the Greek letter (“kappa”).k

T = dr>ds

13.4

DEFINITION Curvature
If T is the unit vector of a smooth curve, the curvature function of the curve is

k = ` dT
ds
` .
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FIGURE 13.19 As P moves along the
curve in the direction of increasing arc
length, the unit tangent vector turns. The
value of at P is called the
curvature of the curve at P.

ƒ dT>ds ƒ

If is large, T turns sharply as the particle passes through P, and the curvature at
P is large. If is close to zero, T turns more slowly and the curvature at P is smaller.

If a smooth curve r(t) is already given in terms of some parameter t other than the arc
length parameter s, we can calculate the curvature as

 =
1
ƒ v ƒ

 ` dT
dt
` .

 =
1

ƒ ds>dt ƒ

 ` dT
dt
`

 k = ` dT
ds
` = ` dT

dt
 
dt
ds
`

ƒ dT>ds ƒ

ƒ dT>ds ƒ

Chain Rule

ds
dt

= ƒ v ƒ

4100 AWL/Thomas_ch13p906-964  8/25/04  2:48 PM  Page 936

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html
bounce13.html?4_3_a
bounce13.html?4_4_a


13.4 Curvature and the Unit Normal Vector N 937

Testing the definition, we see in Examples 1 and 2 below that the curvature is constant
for straight lines and circles.

EXAMPLE 1 The Curvature of a Straight Line Is Zero

On a straight line, the unit tangent vector T always points in the same direction, so its com-
ponents are constants. Therefore, (Figure 13.20).

EXAMPLE 2 The Curvature of a Circle of Radius a is 1 a

To see why, we begin with the parametrization

of a circle of radius a. Then,

From this we find

Hence, for any value of the parameter t,

Although the formula for calculating in Equation (1) is also valid for space
curves, in the next section we find a computational formula that is usually more
convenient to apply.

Among the vectors orthogonal to the unit tangent vector T is one of particular sig-
nificance because it points in the direction in which the curve is turning. Since T has
constant length (namely, 1), the derivative dT ds is orthogonal to T (Section 13.1).
Therefore, if we divide dT ds by its length we obtain a unit vector N orthogonal to T
(Figure 13.21).

k ,> >

k

k =
1
ƒ v ƒ

 ` dT
dt
` =

1
a s1d =

1
a .

 ̀
dT
dt
` = 2cos2 t + sin2 t = 1.

 
dT
dt

= -scos tdi - ssin tdj

 T =

v
ƒ v ƒ

= -ssin tdi + scos tdj

 ƒ v ƒ = 2s -a sin td2
+ sa cos td2

= 2a2
= ƒ a ƒ = a .

 v =

dr
dt

= -sa sin tdi + sa cos tdj

rstd = sa cos tdi + sa sin tdj

>
ƒ dT>ds ƒ = ƒ 0 ƒ = 0

Formula for Calculating Curvature
If r(t) is a smooth curve, then the curvature is

(1)

where is the unit tangent vector.T = v> ƒ v ƒ

k =
1
ƒ v ƒ

 ` dT
dt
` ,

T

FIGURE 13.20 Along a straight line, T
always points in the same direction. The
curvature, is zero (Example 1).ƒ dT>ds ƒ ,

ƒ a ƒ = a .
Since a 7 0,
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The vector dT ds points in the direction in which T turns as the curve bends. There-
fore, if we face in the direction of increasing arc length, the vector dT ds points toward
the right if T turns clockwise and toward the left if T turns counterclockwise. In other
words, the principal normal vector N will point toward the concave side of the curve
(Figure 13.21).

If a smooth curve r(t) is already given in terms of some parameter t other than the arc
length parameter s, we can use the Chain Rule to calculate N directly:

This formula enables us to find N without having to find and s first.k

 =

dT>dt

ƒ dT>dt ƒ

.

 =

sdT>dtdsdt>dsd
ƒ dT>dt ƒ ƒ dt>ds ƒ

 N =

dT>ds

ƒ dT>ds ƒ

>>

938 Chapter 4: Applications of Derivatives

0 cancels
dt
ds

=

1
ds>dt

7

DEFINITION Principal Unit Normal
At a point where the principal unit normal vector for a smooth curve in
the plane is

N =
1
k 

dT
ds

.

k Z 0,
T
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T

N � 1
κ
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N � 1
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FIGURE 13.21 The vector dT ds,
normal to the curve, always points in the
direction in which T is turning. The unit
normal vector N is the direction of dT ds.>

>

Formula for Calculating N
If r(t) is a smooth curve, then the principal unit normal is

(2)

where is the unit tangent vector.T = v> ƒ v ƒ

N =

dT>dt

ƒ dT>dt ƒ

,

EXAMPLE 3 Finding T and N

Find T and N for the circular motion

Solution We first find T:

 T =

v
ƒ v ƒ

= -ssin 2tdi + scos 2tdj.

 ƒ v ƒ = 24 sin2 2t + 4 cos2 2t = 2

 v = -s2 sin 2tdi + s2 cos 2tdj

rstd = scos 2tdi + ssin 2tdj.
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13.4 Curvature and the Unit Normal Vector N 939

From this we find

and

Notice that verifying that N is orthogonal to T. Notice too, that for the circular
motion here, N points from r(t) towards the circle’s center at the origin.

Circle of Curvature for Plane Curves

The circle of curvature or osculating circle at a point P on a plane curve where is
the circle in the plane of the curve that

1. is tangent to the curve at P (has the same tangent line the curve has)

2. has the same curvature the curve has at P

3. lies toward the concave or inner side of the curve (as in Figure 13.22).

The radius of curvature of the curve at P is the radius of the circle of curvature,
which, according to Example 2, is

To find we find and take the reciprocal. The center of curvature of the curve at P is
the center of the circle of curvature.

EXAMPLE 4 Finding the Osculating Circle for a Parabola

Find and graph the osculating circle of the parabola at the origin.

Solution We parametrize the parabola using the parameter (Section 10.4,
Example 1)

First we find the curvature of the parabola at the origin, using Equation (1):

so that

T =

v
ƒ v ƒ

= s1 + 4t2d-1>2 i + 2ts1 + 4t2d-1>2 j.

 ƒ v ƒ = 21 + 4t 2

 v =

dr
dt

= i + 2tj

rstd = t i + t2j.

t = x

y = x2

kr ,

Radius of curvature = r =
1
k .

k Z 0

T # N = 0,

 = -scos 2tdi - ssin 2tdj.

 N =

dT>dt

ƒ dT>dt ƒ

 ̀
dT
dt
` = 24 cos2 2t + 4 sin2 2t = 2

 
dT
dt

= -s2 cos 2tdi - s2 sin 2tdj

Equation (2)

Curve

N
T

P(x, y)

Center of
curvature

Radius of
curvature

Circle of
curvature

FIGURE 13.22 The osculating circle at
P(x, y) lies toward the inner side of the
curve.
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From this we find

At the origin, so the curvature is

Therefore, the radius of curvature is and the center of the circle is (see

Figure 13.23). The equation of the osculating circle is

or

You can see from Figure 13.23 that the osculating circle is a better approximation to the
parabola at the origin than is the tangent line approximation  

Curvature and Normal Vectors for Space Curves

If a smooth curve in space is specified by the position vector r(t) as a function of some
parameter t, and if s is the arc length parameter of the curve, then the unit tangent 
vector The curvature in space is then defined to be

(3)

just as for plane curves. The vector dT ds is orthogonal to T, and we define the principal
unit normal to be

(4)

EXAMPLE 5 Finding Curvature

Find the curvature for the helix (Figure 13.24)

rstd = sa cos tdi + sa sin tdj + btk, a, b Ú 0, a2
+ b2

Z 0.

N =
1
k 

dT
ds

=

dT>dt

ƒ dT>dt ƒ

.

>

k = ` dT
ds
` =

1
ƒ v ƒ

 ` dT
dt
`

T is dr>ds = v> ƒ v ƒ .

y = 0.

x2
+ ay -

1
2
b2

=
1
4

.

sx - 0d2
+ ay -

1
2
b2

= a1
2
b2

(0, 1>2)1>k = 1>2
 = s1d202

+ 22
= 2.

 =
121

 ƒ 0i + 2j ƒ

 ks0d =
1

ƒ vs0d ƒ

 ` dT
dt

 s0d `
t = 0,

dT
dt

= -4ts1 + 4t2d-3>2 i + [2s1 + 4t2d-1>2
- 8t2s1 + 4t2d-3>2] j.

940 Chapter 13: Vector-Valued Functions and Motion in Space

Equation (1)

x

y

0 1

Osculating
circle

1
2

y � x2

FIGURE 13.23 The osculating circle 
for the parabola at the origin
(Example 4).
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(a, 0, 0)

r
P

t � 0

t � �
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t � 2�
t � �

2�b

x2 � y2 � a2

FIGURE 13.24 The helix

drawn with a and b positive and 
(Example 5).

t Ú 0

rstd = sa cos tdi + sa sin tdj + btk,
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13.4 Curvature and the Unit Normal Vector N 941

Solution We calculate T from the velocity vector v:

Then using Equation (3),

From this equation, we see that increasing b for a fixed a decreases the curvature. De-
creasing a for a fixed b eventually decreases the curvature as well. Stretching a spring
tends to straighten it.

If the helix reduces to a circle of radius a and its curvature reduces to 1 a, as it
should. If the helix becomes the z-axis, and its curvature reduces to 0, again as it
should.

EXAMPLE 6 Finding the Principal Unit Normal Vector N

Find N for the helix in Example 5.

Solution We have

 = -scos tdi - ssin tdj.

 = -

2a2
+ b2

a  #  
12a2

+ b2
 [sa cos tdi + sa sin tdj]

 N =

dT>dt

ƒ dT>dt ƒ

 ̀
dT
dt
` =

12a2
+ b2

 2a2 cos2 t + a2 sin2 t =

a2a2
+ b2

 
dT
dt

= -
12a2

+ b2
 [sa cos tdi + sa sin tdj]

a = 0,
>b = 0,

 =

a
a2

+ b2 2scos td2
+ ssin td2

=

a
a2

+ b2 .

 =

a
a2

+ b2 ƒ -scos tdi - ssin tdj ƒ

 =
12a2

+ b2
 ` 12a2

+ b2
 [-sa cos tdi - sa sin tdj] `

 k =
1
ƒ v ƒ

 ` dT
dt
`

 T =

v
ƒ v ƒ

=
12a2

+ b2
 [-sa sin tdi + sa cos tdj + bk] .

 ƒ v ƒ = 2a2 sin2 t + a2 cos2 t + b2
= 2a2

+ b2

 v = -sa sin tdi + sa cos tdj + bk

Example 5

Equatiion (4)
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