EXERCISES 13.4

Plane Curves

Find T, N, and κ for the plane curves in Exercises 1–4.

1.
$$\mathbf{r}(t) = t\mathbf{i} + (\ln \cos t)\mathbf{j}, \quad -\pi/2 < t < \pi/2$$

- **2.** $\mathbf{r}(t) = (\ln \sec t)\mathbf{i} + t\mathbf{j}, \quad -\pi/2 < t < \pi/2$
- **3.** $\mathbf{r}(t) = (2t + 3)\mathbf{i} + (5 t^2)\mathbf{j}$
- **4.** $\mathbf{r}(t) = (\cos t + t \sin t)\mathbf{i} + (\sin t t \cos t)\mathbf{j}, \quad t > 0$
- 5. A formula for the curvature of the graph of a function in the *xy*-plane
 - **a.** The graph y = f(x) in the *xy*-plane automatically has the parametrization x = x, y = f(x), and the vector formula $\mathbf{r}(x) = x\mathbf{i} + f(x)\mathbf{j}$. Use this formula to show that if *f* is a twice-differentiable function of *x*, then

$$\kappa(x) = \frac{|f''(x)|}{\left[1 + (f'(x))^2\right]^{3/2}}$$

- **b.** Use the formula for κ in part (a) to find the curvature of $y = \ln(\cos x), -\pi/2 < x < \pi/2$. Compare your answer with the answer in Exercise 1.
- c. Show that the curvature is zero at a point of inflection.

6. A formula for the curvature of a parametrized plane curve

a. Show that the curvature of a smooth curve $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j}$ defined by twice-differentiable functions x = f(t) and y = g(t) is given by the formula

$$\kappa = \frac{|\dot{x}\,\ddot{y}\,-\,\dot{y}\,\ddot{x}|}{(\dot{x}^2\,+\,\dot{y}^2)^{3/2}}.$$

Apply the formula to find the curvatures of the following curves.

b. $\mathbf{r}(t) = t\mathbf{i} + (\ln \sin t)\mathbf{j}, \quad 0 < t < \pi$

c. $\mathbf{r}(t) = [\tan^{-1}(\sinh t)]\mathbf{i} + (\ln \cosh t)\mathbf{j}.$

7. Normals to plane curves

a. Show that $\mathbf{n}(t) = -g'(t)\mathbf{i} + f'(t)\mathbf{j}$ and $-\mathbf{n}(t) = g'(t)\mathbf{i} - f'(t)\mathbf{j}$ are both normal to the curve $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j}$ at the point (f(t), g(t)).

To obtain N for a particular plane curve, we can choose the one of \mathbf{n} or $-\mathbf{n}$ from part (a) that points toward the concave side of the curve, and make it into a unit vector. (See Figure 13.21.) Apply this method to find N for the following curves.

b.
$$\mathbf{r}(t) = t\mathbf{i} + e^{2t}\mathbf{j}$$

c. $\mathbf{r}(t) = \sqrt{4 - t^2}\mathbf{i} + t\mathbf{j}, \quad -2 \le t \le 2$

8. (*Continuation of Exercise* 7.)

a. Use the method of Exercise 7 to find N for the curve $\mathbf{r}(t) = t\mathbf{i} + (1/3)t^3\mathbf{j}$ when t < 0; when t > 0.

b. Calculate

$$\mathbf{N} = \frac{d\mathbf{T}/dt}{|d\mathbf{T}/dt|}, \quad t \neq 0,$$

for the curve in part (a). Does N exist at t = 0? Graph the curve and explain what is happening to N as t passes from negative to positive values.

Space Curves

Find **T**, **N**, and κ for the space curves in Exercises 9–16.

9. $\mathbf{r}(t) = (3 \sin t)\mathbf{i} + (3 \cos t)\mathbf{j} + 4t\mathbf{k}$

10. $\mathbf{r}(t) = (\cos t + t \sin t)\mathbf{i} + (\sin t - t \cos t)\mathbf{j} + 3\mathbf{k}$

11.
$$\mathbf{r}(t) = (e^t \cos t)\mathbf{i} + (e^t \sin t)\mathbf{j} + 2\mathbf{k}$$

- **12.** $\mathbf{r}(t) = (6 \sin 2t)\mathbf{i} + (6 \cos 2t)\mathbf{j} + 5t\mathbf{k}$
- **13.** $\mathbf{r}(t) = (t^3/3)\mathbf{i} + (t^2/2)\mathbf{j}, t > 0$
- **14.** $\mathbf{r}(t) = (\cos^3 t)\mathbf{i} + (\sin^3 t)\mathbf{j}, \quad 0 < t < \pi/2$
- **15.** $\mathbf{r}(t) = t\mathbf{i} + (a\cosh(t/a))\mathbf{j}, \ a > 0$
- 16. $\mathbf{r}(t) = (\cosh t)\mathbf{i} (\sinh t)\mathbf{j} + t\mathbf{k}$

More on Curvature

- 17. Show that the parabola $y = ax^2$, $a \neq 0$, has its largest curvature at its vertex and has no minimum curvature. (*Note:* Since the curvature of a curve remains the same if the curve is translated or rotated, this result is true for any parabola.)
- **18.** Show that the ellipse $x = a \cos t$, $y = b \sin t$, a > b > 0, has its largest curvature on its major axis and its smallest curvature on its minor axis. (As in Exercise 17, the same is true for any ellipse.)
- 19. Maximizing the curvature of a helix In Example 5, we found the curvature of the helix $\mathbf{r}(t) = (a \cos t)\mathbf{i} + (a \sin t)\mathbf{j} + bt\mathbf{k}$ $(a, b \ge 0)$ to be $\kappa = a/(a^2 + b^2)$. What is the largest value κ can have for a given value of b? Give reasons for your answer.
- **20. Total curvature** We find the **total curvature** of the portion of a smooth curve that runs from $s = s_0$ to $s = s_1 > s_0$ by integrating κ from s_0 to s_1 . If the curve has some other parameter, say *t*, then the total curvature is

$$K = \int_{s_0}^{s_1} \kappa \, ds = \int_{t_0}^{t_1} \kappa \frac{ds}{dt} dt = \int_{t_0}^{t_1} \kappa |\mathbf{v}| \, dt,$$

where t_0 and t_1 correspond to s_0 and s_1 . Find the total curvatures of

- **a.** The portion of the helix $\mathbf{r}(t) = (3 \cos t)\mathbf{i} + (3 \sin t)\mathbf{j} + t\mathbf{k}$, $0 \le t \le 4\pi$.
- **b.** The parabola $y = x^2, -\infty < x < \infty$.
- **21.** Find an equation for the circle of curvature of the curve $\mathbf{r}(t) = t\mathbf{i} + (\sin t)\mathbf{j}$ at the point $(\pi/2, 1)$. (The curve parametrizes the graph of $y = \sin x$ in the *xy*-plane.)

22. Find an equation for the circle of curvature of the curve $\mathbf{r}(t) = (2 \ln t)\mathbf{i} - [t + (1/t)]\mathbf{j}, e^{-2} \le t \le e^2$, at the point (0, -2), where t = 1.

Grapher Explorations

The formula

$$\kappa(x) = \frac{|f''(x)|}{\left[1 + (f'(x))^2\right]^{3/2}}$$

derived in Exercise 5, expresses the curvature $\kappa(x)$ of a twice-differentiable plane curve y = f(x) as a function of x. Find the curvature function of each of the curves in Exercises 23–26. Then graph f(x) together with $\kappa(x)$ over the given interval. You will find some surprises.

23. $y = x^2$, $-2 \le x \le 2$ **24.** $y = x^4/4$, $-2 \le x \le 2$ **25.** $y = \sin x$, $0 \le x \le 2\pi$ **26.** $y = e^x$, $-1 \le x \le 2$

COMPUTER EXPLORATIONS

Circles of Curvature

In Exercises 27–34 you will use a CAS to explore the osculating circle at a point *P* on a plane curve where $\kappa \neq 0$. Use a CAS to perform the following steps:

- **a.** Plot the plane curve given in parametric or function form over the specified interval to see what it looks like.
- **b.** Calculate the curvature κ of the curve at the given value t_0 using the appropriate formula from Exercise 5 or 6. Use the parametrization x = t and y = f(t) if the curve is given as a function y = f(x).

- **c.** Find the unit normal vector **N** at t_0 . Notice that the signs of the components of **N** depend on whether the unit tangent vector **T** is turning clockwise or counterclockwise at $t = t_0$. (See Exercise 7.)
- **d.** If $\mathbf{C} = a\mathbf{i} + b\mathbf{j}$ is the vector from the origin to the center (a, b) of the osculating circle, find the center **C** from the vector equation

$$\mathbf{C} = \mathbf{r}(t_0) + \frac{1}{\kappa(t_0)} \mathbf{N}(t_0).$$

The point $P(x_0, y_0)$ on the curve is given by the position vector $\mathbf{r}(t_0)$.

- e. Plot implicitly the equation $(x a)^2 + (y b)^2 = 1/\kappa^2$ of the osculating circle. Then plot the curve and osculating circle together. You may need to experiment with the size of the viewing window, but be sure it is square.
- **27.** $\mathbf{r}(t) = (3 \cos t)\mathbf{i} + (5 \sin t)\mathbf{j}, \quad 0 \le t \le 2\pi, \quad t_0 = \pi/4$
- **28.** $\mathbf{r}(t) = (\cos^3 t)\mathbf{i} + (\sin^3 t)\mathbf{j}, \quad 0 \le t \le 2\pi, \quad t_0 = \pi/4$
- **29.** $\mathbf{r}(t) = t^2 \mathbf{i} + (t^3 3t) \mathbf{j}, \quad -4 \le t \le 4, \quad t_0 = 3/5$

30.
$$\mathbf{r}(t) = (t^3 - 2t^2 - t)\mathbf{i} + \frac{3t}{\sqrt{1+t^2}}\mathbf{j}, \quad -2 \le t \le 5, \quad t_0 = 1$$

- **31.** $\mathbf{r}(t) = (2t \sin t)\mathbf{i} + (2 2\cos t)\mathbf{j}, \quad 0 \le t \le 3\pi, t_0 = 3\pi/2$
- **32.** $\mathbf{r}(t) = (e^{-t} \cos t)\mathbf{i} + (e^{-t} \sin t)\mathbf{j}, \quad 0 \le t \le 6\pi, \quad t_0 = \pi/4$

33.
$$y = x^2 - x$$
, $-2 \le x \le 5$, $x_0 = 1$

34.
$$y = x(1 - x)^{2/5}$$
, $-1 \le x \le 2$, $x_0 = 1/2$