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EXERCISES 13.5

Finding Torsion and the Binormal Vector
For Exercises 1–8 you found T, N, and in Section 13.4 (Exercises
9–16). Find now B and for these space curves.

1.

2.

3.

4.

5.

6.

7.

8.

Tangential and Normal Components
of Acceleration
In Exercises 9 and 10, write a in the form without finding
T and N.

9.

10. rstd = s1 + 3tdi + st - 2dj - 3tk

rstd = sa cos tdi + sa sin tdj + btk

aTT + aNN

rstd = scosh tdi - ssinh tdj + tk

rstd = ti + sa cosh st>addj, a 7 0

rstd = scos3 tdi + ssin3 tdj, 0 6 t 6 p>2
rstd = st3>3di + st2>2dj, t 7 0

rstd = s6 sin 2tdi + s6 cos 2tdj + 5tk

rstd = set cos tdi + set sin tdj + 2k

rstd = scos t + t sin tdi + ssin t - t cos tdj + 3k

rstd = s3 sin tdi + s3 cos tdj + 4tk

t

k

In Exercises 11–14, write a in the form at the given
value of t without finding T and N.

11.

12.

13.

14.

In Exercises 15 and 16, find r, T, N, and B at the given value of t.
Then find equations for the osculating, normal, and rectifying planes
at that value of t.

15.

16.

Physical Applications
17. The speedometer on your car reads a steady 35 mph. Could you

be accelerating? Explain.

18. Can anything be said about the acceleration of a particle that is
moving at a constant speed? Give reasons for your answer.

19. Can anything be said about the speed of a particle whose acceler-
ation is always orthogonal to its velocity? Give reasons for your
answer.

rstd = scos tdi + ssin tdj + tk, t = 0

rstd = scos tdi + ssin tdj - k, t = p>4

rstd = set cos tdi + set sin tdj + 22e t k, t = 0

rstd = t2i + st + s1>3dt3dj + st - s1>3dt3dk, t = 0

rstd = st cos tdi + st sin tdj + t2k, t = 0

rstd = st + 1di + 2tj + t2k, t = 1

a = aTT + aNN
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20. An object of mass m travels along the parabola with a
constant speed of 10 units sec. What is the force on the object
due to its acceleration at (0, 0)? at Write your answers
in terms of i and j. (Remember Newton’s law, )

21. The following is a quotation from an article in The American
Mathematical Monthly, titled “Curvature in the Eighties” by
Robert Osserman (October 1990, page 731):

Curvature also plays a key role in physics. The magnitude of 
a force required to move an object at constant speed along a
curved path is, according to Newton’s laws, a constant multiple
of the curvature of the trajectories.

Explain mathematically why the second sentence of the quotation
is true.

22. Show that a moving particle will move in a straight line if the
normal component of its acceleration is zero.

23. A sometime shortcut to curvature If you already know 
and then the formula gives a convenient way to
find the curvature. Use it to find the curvature and radius of cur-
vature of the curve

(Take and from Example 1.)

24. Show that and are both zero for the line

Theory and Examples
25. What can be said about the torsion of a smooth plane curve

Give reasons for your answer.

26. The torsion of a helix In Example 2, we found the torsion of
the helix

to be What is the largest value can have for a
given value of a? Give reasons for your answer.

tt = b>sa2
+ b2d .

rstd = sa cos tdi + sa sin tdj + btk, a, b Ú 0

rstd = ƒstdi + gstdj?

rstd = sx0 + Atdi + s y0 + Btdj + sz0 + Ctdk.

tk

ƒ v ƒaN

rstd = scos t + t sin tdi + ssin t - t cos tdj, t 7 0.

aN = k ƒ v ƒ
2

ƒ v ƒ ,
ƒ aN ƒ

F = ma.
s21>2, 2d?

> y = x2 27. Differentiable curves with zero torsion lie in planes That a
sufficiently differentiable curve with zero torsion lies in a plane is
a special case of the fact that a particle whose velocity remains
perpendicular to a fixed vector C moves in a plane perpendicular
to C. This, in turn, can be viewed as the solution of the following
problem in calculus.

Suppose is twice differen-
tiable for all t in an interval [a, b], that when and
that for all t in [a, b]. Then for all t in [a, b].

Solve this problem. (Hint: Start with and apply
the initial conditions in reverse order.)

28. A formula that calculates from B and v If we start with the
definition and apply the Chain Rule to rewrite
dB ds as

we arrive at the formula

The advantage of this formula over Equation (6) is that it is easier
to derive and state. The disadvantage is that it can take a lot of
work to evaluate without a computer. Use the new formula to find
the torsion of the helix in Example 2.

COMPUTER EXPLORATIONS

Curvature, Torsion, and the TNB Frame
Rounding the answers to four decimal places, use a CAS to find v, a,
speed, T, N, B, and the tangential and normal components of ac-
celeration for the curves in Exercises 29–32 at the given values of t.

29.

30.

31.

32. rstd = s3t - t2di + s3t2dj + s3t + t3dk, t = 1

rstd = st - sin tdi + s1 - cos tdj + 2- t k, t = -3p

rstd = set cos tdi + set sin tdj + e t k, t = ln 2

rstd = st cos tdi + st sin tdj + tk, t = 23

k, t ,

t = -

1
ƒ v ƒ

 adB
dt

# Nb .

dB
ds

=

dB
dt

 
dt
ds

=

dB
dt

 
1
ƒ v ƒ

,

> t = -sdB>dsd # N
T

a = d2r>dt2
hstd = 0v # k = 0

t = a ,r = 0
rstd = ƒstdi + gstdj + hstdk
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