EXERCISES 13.5

Finding Torsion and the Binormal Vector

For Exercises 1–8 you found **T**, **N**, and κ in Section 13.4 (Exercises 9–16). Find now **B** and τ for these space curves.

1.
$$\mathbf{r}(t) = (3 \sin t)\mathbf{i} + (3 \cos t)\mathbf{j} + 4t\mathbf{k}$$

2. $\mathbf{r}(t) = (\cos t + t \sin t)\mathbf{i} + (\sin t - t \cos t)\mathbf{j} + 3\mathbf{k}$
3. $\mathbf{r}(t) = (e^t \cos t)\mathbf{i} + (e^t \sin t)\mathbf{j} + 2\mathbf{k}$
4. $\mathbf{r}(t) = (6 \sin 2t)\mathbf{i} + (6 \cos 2t)\mathbf{j} + 5t\mathbf{k}$
5. $\mathbf{r}(t) = (t^3/3)\mathbf{i} + (t^2/2)\mathbf{j}, \quad t > 0$
6. $\mathbf{r}(t) = (\cos^3 t)\mathbf{i} + (\sin^3 t)\mathbf{j}, \quad 0 < t < \pi/2$
7. $\mathbf{r}(t) = t\mathbf{i} + (a \cosh(t/a))\mathbf{j}, \quad a > 0$
8. $\mathbf{r}(t) = (\cosh t)\mathbf{i} - (\sinh t)\mathbf{j} + t\mathbf{k}$

Tangential and Normal Components of Acceleration

In Exercises 9 and 10, write **a** in the form $a_T \mathbf{T} + a_N \mathbf{N}$ without finding **T** and **N**.

9. $\mathbf{r}(t) = (a \cos t)\mathbf{i} + (a \sin t)\mathbf{j} + bt\mathbf{k}$ 10. $\mathbf{r}(t) = (1 + 3t)\mathbf{i} + (t - 2)\mathbf{j} - 3t\mathbf{k}$ In Exercises 11–14, write **a** in the form $\mathbf{a} = a_T \mathbf{T} + a_N \mathbf{N}$ at the given value of *t* without finding **T** and **N**.

11.
$$\mathbf{r}(t) = (t+1)\mathbf{i} + 2t\mathbf{j} + t^2\mathbf{k}, \quad t = 1$$

12. $\mathbf{r}(t) = (t\cos t)\mathbf{i} + (t\sin t)\mathbf{j} + t^2\mathbf{k}, \quad t = 0$
13. $\mathbf{r}(t) = t^2\mathbf{i} + (t+(1/3)t^3)\mathbf{j} + (t-(1/3)t^3)\mathbf{k}, \quad t = 0$
14. $\mathbf{r}(t) = (e^t\cos t)\mathbf{i} + (e^t\sin t)\mathbf{j} + \sqrt{2}e^t\mathbf{k}, \quad t = 0$

In Exercises 15 and 16, find \mathbf{r} , \mathbf{T} , \mathbf{N} , and \mathbf{B} at the given value of t. Then find equations for the osculating, normal, and rectifying planes at that value of t.

15.
$$\mathbf{r}(t) = (\cos t)\mathbf{i} + (\sin t)\mathbf{j} - \mathbf{k}, \quad t = \pi/4$$

16. $\mathbf{r}(t) = (\cos t)\mathbf{i} + (\sin t)\mathbf{j} + t\mathbf{k}, \quad t = 0$

Physical Applications

- **17.** The speedometer on your car reads a steady 35 mph. Could you be accelerating? Explain.
- **18.** Can anything be said about the acceleration of a particle that is moving at a constant speed? Give reasons for your answer.
- **19.** Can anything be said about the speed of a particle whose acceleration is always orthogonal to its velocity? Give reasons for your answer.

- **20.** An object of mass *m* travels along the parabola $y = x^2$ with a constant speed of 10 units/sec. What is the force on the object due to its acceleration at (0, 0)? at $(2^{1/2}, 2)$? Write your answers in terms of **i** and **j**. (Remember Newton's law, $\mathbf{F} = m\mathbf{a}$.)
- **21.** The following is a quotation from an article in *The American Mathematical Monthly*, titled "Curvature in the Eighties" by Robert Osserman (October 1990, page 731):

Curvature also plays a key role in physics. The magnitude of a force required to move an object at constant speed along a curved path is, according to Newton's laws, a constant multiple of the curvature of the trajectories.

Explain mathematically why the second sentence of the quotation is true.

- **22.** Show that a moving particle will move in a straight line if the normal component of its acceleration is zero.
- **23.** A sometime shortcut to curvature If you already know $|a_N|$ and $|\mathbf{v}|$, then the formula $a_N = \kappa |\mathbf{v}|^2$ gives a convenient way to find the curvature. Use it to find the curvature and radius of curvature of the curve

$$\mathbf{r}(t) = (\cos t + t \sin t)\mathbf{i} + (\sin t - t \cos t)\mathbf{j}, \quad t > 0.$$

(Take a_N and $|\mathbf{v}|$ from Example 1.)

24. Show that κ and τ are both zero for the line

$$\mathbf{r}(t) = (x_0 + At)\mathbf{i} + (y_0 + Bt)\mathbf{j} + (z_0 + Ct)\mathbf{k}.$$

Theory and Examples

- **25.** What can be said about the torsion of a smooth plane curve $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j}$? Give reasons for your answer.
- **26.** The torsion of a helix In Example 2, we found the torsion of the helix

$$\mathbf{r}(t) = (a\cos t)\mathbf{i} + (a\sin t)\mathbf{j} + bt\mathbf{k}, \quad a, b \ge 0$$

to be $\tau = b/(a^2 + b^2)$. What is the largest value τ can have for a given value of *a*? Give reasons for your answer.

27. Differentiable curves with zero torsion lie in planes That a sufficiently differentiable curve with zero torsion lies in a plane is a special case of the fact that a particle whose velocity remains perpendicular to a fixed vector **C** moves in a plane perpendicular to **C**. This, in turn, can be viewed as the solution of the following problem in calculus.

Suppose $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$ is twice differentiable for all t in an interval [a, b], that $\mathbf{r} = 0$ when t = a, and that $\mathbf{v} \cdot \mathbf{k} = 0$ for all t in [a, b]. Then h(t) = 0 for all t in [a, b].

Solve this problem. (*Hint:* Start with $\mathbf{a} = d^2 \mathbf{r}/dt^2$ and apply the initial conditions in reverse order.)

28. A formula that calculates τ from B and v If we start with the definition $\tau = -(d\mathbf{B}/ds) \cdot \mathbf{N}$ and apply the Chain Rule to rewrite $d\mathbf{B}/ds$ as

$$\frac{d\mathbf{B}}{ds} = \frac{d\mathbf{B}}{dt}\frac{dt}{ds} = \frac{d\mathbf{B}}{dt}\frac{1}{|\mathbf{v}|},$$

we arrive at the formula

$$\tau = -\frac{1}{|\mathbf{v}|} \left(\frac{d\mathbf{B}}{dt} \cdot \mathbf{N} \right).$$

The advantage of this formula over Equation (6) is that it is easier to derive and state. The disadvantage is that it can take a lot of work to evaluate without a computer. Use the new formula to find the torsion of the helix in Example 2.

COMPUTER EXPLORATIONS

Curvature, Torsion, and the TNB Frame

Rounding the answers to four decimal places, use a CAS to find v, a, speed, T, N, B, κ , τ , and the tangential and normal components of acceleration for the curves in Exercises 29–32 at the given values of *t*.

29.
$$\mathbf{r}(t) = (t \cos t)\mathbf{i} + (t \sin t)\mathbf{j} + t\mathbf{k}, \quad t = \sqrt{3}$$

30. $\mathbf{r}(t) = (e^t \cos t)\mathbf{i} + (e^t \sin t)\mathbf{j} + e^t \mathbf{k}, \quad t = \ln 2$
31. $\mathbf{r}(t) = (t - \sin t)\mathbf{i} + (1 - \cos t)\mathbf{j} + \sqrt{-t}\mathbf{k}, \quad t = -3\pi$
32. $\mathbf{r}(t) = (3t - t^2)\mathbf{i} + (3t^2)\mathbf{j} + (3t + t^3)\mathbf{k}, \quad t = 1$