
950 Chapter 13: Vector-Valued Functions and Motion in Space

Planetary Motion and Satellites

In this section, we derive Kepler’s laws of planetary motion from Newton’s laws of motion
and gravitation and discuss the orbits of Earth satellites. The derivation of Kepler’s laws
from Newton’s is one of the triumphs of calculus. It draws on almost everything we have
studied so far, including the algebra and geometry of vectors in space, the calculus of vector
functions, the solutions of differential equations and initial value problems, and the polar
coordinate description of conic sections.

13.6
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13.6 Planetary Motion and Satellites 951

Motion in Polar and Cylindrical Coordinates

When a particle moves along a curve in the polar coordinate plane, we express its position,
velocity, and acceleration in terms of the moving unit vectors

(1)

shown in Figure 13.32. The vector points along the position vector so The
vector orthogonal to points in the direction of increasing 

We find from Equations (1) that

(2)

When we differentiate and with respect to t to find how they change with time,
the Chain Rule gives

(3)

Hence,

(4)

See Figure 13.33. As in the previous section, we use Newton’s dot notation for time deriva-
tives to keep the formulas as simple as we can: means means and so on.

The acceleration is

(5)

When Equations (3) are used to evaluate and and the components are separated, the
equation for acceleration becomes

(6)

To extend these equations of motion to space, we add to the right-hand side of the
equation Then, in these cylindrical coordinates,

(7)

The vectors and k make a right-handed frame (Figure 13.34) in which

(8)

Planets Move in Planes

Newton’s law of gravitation says that if r is the radius vector from the center of a sun of
mass M to the center of a planet of mass m, then the force F of the gravitational attraction
between the planet and sun is
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FIGURE 13.32 The length of r is the
positive polar coordinate r of the point P.
Thus, which is is also r r.
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(Figure 13.35). The number G is the universal gravitational constant. If we measure mass in
kilograms, force in newtons, and distance in meters, G is about 

Combining Equation (9) with Newton’s second law, for the force acting on
the planet gives

(10)

The planet is accelerated toward the sun’s center at all times.
Equation (10) says that is a scalar multiple of r, so that

(11)

A routine calculation shows to be the derivative of 

(12)

0

Hence Equation (11) is equivalent to

(13)

which integrates to

(14)

for some constant vector C.
Equation (14) tells us that r and always lie in a plane perpendicular to C. Hence, the

planet moves in a fixed plane through the center of its sun (Figure 13.36).

Coordinates and Initial Conditions

We now introduce coordinates in a way that places the origin at the sun’s center of mass
and makes the plane of the planet’s motion the polar coordinate plane. This makes r the
planet’s polar coordinate position vector and makes equal to r and equal to We
also position the z-axis in a way that makes k the direction of C. Thus, k has the same
right-hand relation to that C does, and the planet’s motion is counterclockwise when
viewed from the positive z-axis. This makes increase with t, so that for all t. Fi-
nally, we rotate the polar coordinate plane about the z-axis, if necessary, to make the initial
ray coincide with the direction r has when the planet is closest to the sun. This runs the ray
through the planet’s perihelion position (Figure 13.37).

If we measure time so that at perihelion, we have the following initial condi-
tions for the planet’s motion.
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13.6 Planetary Motion and Satellites 953

Since

we also know that

5. when 

Kepler’s First Law (The Conic Section Law)

Kepler’s ƒirst law says that a planet’s path is a conic section with the sun at one focus. The
eccentricity of the conic is

(15)

and the polar equation is

(16)

The derivation uses Kepler’s second law, so we will state and prove the second law be-
fore proving the first law.

Kepler’s Second Law (The Equal Area Law)

Kepler’s second law says that the radius vector from the sun to a planet (the vector r in our
model) sweeps out equal areas in equal times (Figure 13.38). To derive the law, we use
Equation (4) to evaluate the cross product from Equation (14):

(17)

Setting t equal to zero shows that

(18)

Substituting this value for C in Equation (17) gives

(19)

This is where the area comes in. The area differential in polar coordinates is

dA =
1
2

 r2 du

r0 y0k = r2u
#

k, or r2u
#

= r0 y0 .

C = [rsru
#

d]t = 0 k = r0 y0k.

 = rsru
#

dk.

k0
('')''*('')''*

 = rr
# sur * urd + rsru

#

dsur * uud

 = rur * sr
# ur + ru

#

uud

 C = r * r# = r * v

C = r * r#

r =

s1 + edr0

1 + e cos u
.

e =

r0y0
2

GM
- 1

t = 0.ru
#

= y0

 = sru
#

dt = 0, 

 = ƒ ru
#

ƒ t = 0

 = s ƒ ru
#

ƒ ƒ uu ƒ dt = 0

 = ƒ ru
#

uu ƒ t = 0

 = ƒ r
# ur + ru

#

uu ƒ t = 0

 y0 = ƒ v ƒ t = 0

Equation (4)

when t = 0r
#

= 0

ƒ uu ƒ = 1

r and both positiveu
#

HISTORICAL BIOGRAPHY

Johannes Kepler
(1571–1630)

r

Planet

Sun

FIGURE 13.38 The line joining a planet
to its sun sweeps over equal areas in equal
times.

Equation (4)

4100 AWL/Thomas_ch13p906-964  8/25/04  2:48 PM  Page 953

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html
bounce13.html?3_1_a


(Section 10.7). Accordingly, dA dt has the constant value

(20)

So is constant, giving Kepler’s second law.
For Earth, is about 150,000,000 km, is about 30 km sec, and dA dt is about

Every time your heart beats, Earth advances 30 km along its
orbit, and the radius joining Earth to the sun sweeps out of area.

Proof of Kepler’s First Law

To prove that a planet moves along a conic section with one focus at its sun, we need to
express the planet’s radius r as a function of This requires a long sequence of calcula-
tions and some substitutions that are not altogether obvious.

We begin with the equation that comes from equating the coefficients of in
Equations (6) and (10):

(21)

We eliminate temporarily by replacing it with from Equation (19) and rearrange
the resulting equation to get

(22)

We change this into a first-order equation by a change of variable. With

Chain Rule

Equation (22) becomes

(23)

Multiplying through by 2 and integrating with respect to r gives

(24)

The initial conditions that and when determine the value of to be

Accordingly, Equation (24), after a suitable rearrangement, becomes
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The effect of going from Equation (21) to Equation (25) has been to replace a second-
order differential equation in r by a first-order differential equation in r. Our goal is still to
express r in terms of so we now bring back into the picture. To accomplish this, weuu ,
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13.6 Planetary Motion and Satellites 955

divide both sides of Equation (25) by the squares of the corresponding sides of the equa-
tion (Equation 19) and use the fact that to get

(26)

To simplify further, we substitute

obtaining

(27)

(28)

Which sign do we take? We know that is positive. Also, r starts from a
minimum value at so it cannot immediately decrease, and at least for early
positive values of t. Therefore,

The correct sign for Equation (28) is the negative sign. With this determined, we rearrange
Equation (28) and integrate both sides with respect to 

(29)

The constant is zero because when and Therefore,

and

(30)

A few more algebraic maneuvers produce the final equation
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Together, Equations (31) and (32) say that the path of the planet is a conic section with one
focus at the sun and with eccentricity This is the modern formulation of
Kepler’s first law.

Kepler’s Third Law (The Time–Distance Law)

The time T it takes a planet to go around its sun once is the planet’s orbital period.
Kepler’s third law says that T and the orbit’s semimajor axis a are related by the equation

(33)

Since the right-hand side of this equation is constant within a given solar system, the ratio
of to is the same ƒor every planet in the system.

Kepler’s third law is the starting point for working out the size of our solar system. It
allows the semimajor axis of each planetary orbit to be expressed in astronomical units,
Earth’s semimajor axis being one unit. The distance between any two planets at any time
can then be predicted in astronomical units and all that remains is to find one of these dis-
tances in kilometers. This can be done by bouncing radar waves off Venus, for example.
The astronomical unit is now known, after a series of such measurements, to be
149,597,870 km.

We derive Kepler’s third law by combining two formulas for the area enclosed by the
planet’s elliptical orbit:

Equating these gives

(34)

It remains only to express a and e in terms of and M. Equation (32) does this
for e. For a, we observe that setting equal to in Equation (31) gives

Hence,

(35)

Squaring both sides of Equation (34) and substituting the results of Equations (32) and
(35) now produces Kepler’s third law (Exercise 15).
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The geometry formula in which a is the
semimajor axis and b is the semiminor axis

Equation (20)

For any ellipse,

b = a21 - e 2
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13.6 Planetary Motion and Satellites 957

Orbit Data

Although Kepler discovered his laws empirically and stated them only for the six planets
known at the time, the modern derivations of Kepler’s laws show that they apply to any
body driven by a force that obeys an inverse square law like Equation (9). They apply to
Halley’s comet and the asteroid Icarus. They apply to the moon’s orbit about Earth, and
they applied to the orbit of the spacecraft Apollo 8 about the moon.

Tables 13.1 through 13.3 give additional data for planetary orbits and for the orbits of
seven of Earth’s artificial satellites (Figure 13.39). Vanguard 1 sent back data that revealed
differences between the levels of Earth’s oceans and provided the first determination of the
precise locations of some of the more isolated Pacific islands. The data also verified that
the gravitation of the sun and moon would affect the orbits of Earth’s satellites and that so-
lar radiation could exert enough pressure to deform an orbit.

TABLE 13.1 Values of a, e, and T for the major planets

Semimajor 
Planet axis Eccentricity e Period T

Mercury 57.95 0.2056 87.967 days

Venus 108.11 0.0068 224.701 days

Earth 149.57 0.0167 365.256 days

Mars 227.84 0.0934 1.8808 years

Jupiter 778.14 0.0484 11.8613 years

Saturn 1427.0 0.0543 29.4568 years

Uranus 2870.3 0.0460 84.0081 years

Neptune 4499.9 0.0082 164.784 years

Pluto 5909 0.2481 248.35 years

a*

TABLE 13.2 Data on Earth’s satellites

Time or Mass at Perigee Apogee Semimajor
expected launch Period height height axis a

Name Launch date time aloft (kg) (min) (km) (km) (km) Eccentricity

Sputnik 1 Oct. 1957 57.6 days 83.6 96.2 215 939 6955 0.052

Vanguard 1 Mar. 1958 300 years 1.47 138.5 649 4340 8872 0.208

Syncom 3 Aug. 1964 39 1436.2 35,718 35,903 42,189 0.002

Skylab 4 Nov. 1973 84.06 days 13,980 93.11 422 437 6808 0.001

Tiros II Oct. 1978 500 years 734 102.12 850 866 7236 0.001

GOES 4 Sept. 1980 627 1436.2 35,776 35,800 42,166 0.0003

Intelsat 5 Dec. 1980 1928 1417.67 35,143 35,707 41,803 0.0077106 years

7106 years

7106 years

Perigee height

Earth

Apogee height

FIGURE 13.39 The orbit of an Earth
satellite: 
perigee height + apogee height .

2a = diameter of Earth +

of kilometers.*Millions

4100 AWL/Thomas_ch13p906-964  8/25/04  2:48 PM  Page 957

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html


958 Chapter 13: Vector-Valued Functions and Motion in Space

Syncom 3 is one of a series of U.S. Department of Defense telecommunications
satellites. Tiros II (for “television infrared observation satellite”) is one of a series of
weather satellites. GOES 4 (for “geostationary operational environmental satellite”) is
one of a series of satellites designed to gather information about Earth’s atmosphere. Its
orbital period, 1436.2 min, is nearly the same as Earth’s rotational period of 1436.1 min,
and its orbit is nearly circular Intelsat 5 is a heavy-capacity commercial
telecommunications satellite.

se = 0.0003d .

TABLE 13.3 Numerical data

Universal gravitational constant:

Sun’s mass:

Earth’s mass:

Equatorial radius of Earth: 6378.533 km

Polar radius of Earth: 6356.912 km

Earth’s rotational period: 1436.1 min

Earth’s orbital period: 1 year = 365.256 days

5.975 * 1024 kg

1.99 * 1030 kg

G = 6.6726 * 10-11 Nm2 kg-2
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